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Abstract 
A preliminary meta-analysis using the p-curve method 
(Simonsohn, Nelson, & Simmons, 2014) was performed on a 
subset of the learned categorical perception literature to 
explore the robustness of the phenomenon. Only studies using 
novel visual categories and behavioral measures were 
included. The results strongly suggest that the phenomenon is 
robust but that the studies are somewhat underpowered. We 
argue that this is problematic because it renders both 
statistically significant and nonsignificant results very 
difficult to interpret, which impedes progress in 
understanding the learned CP phenomenon, for example, why 
expansion vs. compression is observed, or boundary vs. 
dimensional effects.  Fortunately, there is a clear solution: 
conduct studies with greater statistical power. 

Keywords: categorical perception; categorization; learning; 
p-curve; statistical power; expansion; compression; 
dimensional modulation 

Introduction 
Learned categorical perception (CP) is a phenomenon 
whereby learning to place objects into categories alters 
some aspect of the way those objects are judged (for a 
review, see Goldstone & Hendrickson, 2009).  The classic 
patterns of change in judgments are that items placed in 
different categories become more distinguishable, 
sometimes called expansion, and/or that items placed in the 
same category become less distinguishable, sometimes 
called compression.  These are category boundary effects, 
but other versions of learned CP are increased sensitivity to 
dimensions relevant to the category distinction and/or 
decreased sensitivity to dimensions irrelevant to the 
category distinction. 

There has been a great deal of research on learned CP, but 
this paper will focus on visual categories learned in a 
laboratory setting. This is motivated mainly by our own 
interest in learned visual CP and the recognition that there 
may be important differences between CP in different 

modalities that would make it inappropriate to group those 
studies together for this meta-analysis.  Thus the large body 
of research on auditory CP, in particular for speech sound 
distinctions that are acquired in the lengthy process of 
learning a natural language, will not be considered here. It is 
notable that laboratory-induced learned CP effects are 
obtained with very little training compared to the kind of 
exposure that is usually given in real category learning, e.g., 
learning color categories.  This makes the phenomenon 
appear to be pervasive and basic, but there are several 
important questions that need to be addressed. 

First, in light of the recent attention given to failures to 
replicate (Open Science Collaboration, 2015), p-hacking 
(Head, Holman, Lanfear, Kahn, & Jennions, 2015), the file 
drawer problem (Rosenthal, 1979), lack of sufficient 
statistical power (Button, Ioannidis, Mokrysz, Nosek, Flint, 
Robinson, & Munafò, 2013), and so forth, we believe that it 
is essential to assess whether the published learned CP 
literature demonstrates convincing evidence for the effect.  
Like many, perhaps most, areas of research in cognitive 
science, the phenomenon of learned CP allows researchers 
many degrees of freedom that may, unintentionally no 
doubt, inflate the appearance of real effects.  For example, 
within a single study, there are often a variety of different 
ways in which the data can be analyzed to look for evidence 
of learned CP effects. Researchers can investigate accuracy 
and/or response time data – both have been used as evidence 
of CP in the literature – in a multitude of combinations due 
to the many different possible behavioral patterns that count 
as learned CP. Furthermore, different potential criteria for 
what counts as successful learning (a precondition for 
testing for learned CP effects) can be used, leading to 
additional choices that can unintentionally bias the analysis. 
In short, this is exactly the kind of situation where 
preregistration is important to avoid mistaking the noise in 
the data for signal. To our knowledge, very little if any 
learned CP research has been preregistered as of yet, for 
replication purposes or otherwise.  
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One reason this is important is the current controversy 
over whether there are really any genuine top-down effects 
of cognition on perception, of which learned CP could 
potentially be one type.  Firestone and Scholl (2016) argue 
that none of the vast amount of research claiming to have 
demonstrated such effects has actually successfully done so.  
It seems to us that before we can effectively debate whether 
learned CP provides evidence for such effects that is 
immune from Firestone and Scholl’s criticisms, we must 
first establish that there is credible evidence that the effects 
themselves actually exist.   

The optimist might point to the dozens of studies on CP 
that report significant results as compelling evidence that 
these effects are real. The problem with this approach is that 
it ignores the existence of publication bias in favor of 
statistically significant results. If learned CP turned out to 
not be replicable, it would not be the first example of a 
widely reported phenomenon that did not reliably replicate 
(e.g., Lurquin et al., 2016; Papesh, 2015; Shanks et al., 
2013; Simmons & Simonsohn, in press).  

The purpose of this paper was to do a preliminary 
evaluation of published learned CP effects by using a p-
curve analysis (Simonsohn, Nelson, & Simmons, 2014). A 
p-curve is a meta-analytic technique that looks at the 
distribution of statistically significant p-values in a set of 
related studies. An advantage of the p-curve approach is that 
it nicely handles the file-drawer problem by looking only at 
statistically significant p-values. If the results come from a 
collection of well-powered studies investigating a real 

effect, most of the p-values should be very small (well 
below .05). However, if many of the results are due to false-
positives, either because of a lack of statistical power or 
because the phenomenon being studied is not real, then the 
distribution of significant p-values will be flat, in the case of 
a null effect, or close to flat, in the case of low statistical 
power. (In extreme cases, the presence of substantial p-
hacking can generate a p-curve with left skew.)  
Furthermore, the p-curve can reliably estimate the average 
statistical power of a set of studies because the distribution 
of observed p-values is directly related to statistical power 
when the null hypothesis is false. This estimation of power 
is an average estimate assuming that all studies are 
investigating the same basic effect. 

In the analyses presented below, we calculate p-curves for 
a set of studies from the visual learned CP literature, but we 
caution that this analysis is preliminary. We expect that 
enlarging the scope of the search for relevant sources would 
yield many additional studies of learned CP that could be 
included in the analysis, though our sample size is large 
enough to likely be informative.  

Method and Results 
The articles used in the analysis were selected by 
conducting a Scopus search of all articles citing Goldstone 
(1994) that had “CP” or “categorical perception” in the title, 
abstract, or key words and were deemed relevant (i.e., 
reported original empirical results in detail; used visual 

 
 
               Table 1.  Articles used in the p-curve meta-analysis of learned categorical perception research.
 

 
 
 

Authors 
Year of 
publication 

# experiments 
included 

# analyses 
included 

Learned CP 
measure 

Type of 
measurea 

Corneille & Judd 1999 3 2 Typicality S 
Folstein, Palmeri, & Gauthier 2014 1 1 Same-different O 
Goldstone 1994 4 8 Same-different O 
Goldstone, Lippa, & Shiffrin 2001 1 1 Similarity S 
Goldstone, Steyvers, & Larimer 1996 1 1 Same-different O 
Grandison, Sowden, Drivonikou, 
Notman, Alexander, & Davies 

2016 1 1 Target location RT O 

Gureckis & Goldstone 2008 1 1 XAB O 
Holmes & Wolff 2012 1 1 Discrimination RT O 
Levin & Beale 2000 3 2 XAB variant O 
Livingston & Andrews 2005 2 2 Similarity,  

same-different  
S, O 

Livingston, Andrews, & Harnad 1998 3 2 Similarity S 
Notman, Sowden, & Özgen 2005 2 2 Same-different O 
Op de Beeck, Wagemans, &  
Vogels 

2003 2 2 Same-different O 

Özgen & Davies 2002 2 2 Same-different O 
Stevenage 1998 2 4 Similarity S 
Zhou, Mo, Kay, Kwok, Ip, & Tan 2010 1 1 Target location RT 

 
O 

aO = objective, S = subjective  
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Figure 1: P-curve for all relevant results in the articles listed in Table 1. The solid blue line shows the observed distribution of 
significant p-values. The dotted red line shows what the expected distribution of p-values would be if the null hypothesis 
were true. The right skew tests, for both the full set of p-values (all p-values < .05) and half set of p-values (all p-values < 
.025), indicate that the p-values are more right skewed than would be expected if the null were true. The dashed green line 
represents the expected distribution of p-values if the set of studies had 33% power. The flat tests test if the observed 
distribution is flatter than the distribution that would be observed if the studies had 33% power. 
 

 
stimuli, unfamiliar categories, and behavioral measures; and 
focused on learned CP).  This yielded 14 articles; in 
addition, we included two conference papers meeting the 
same criteria for a total of 16 sources (see Table 1).  Within 
those 16 sources were a total of 30 experiments reporting 42 
distinct relevant statistical results.  (For example, statistical 
results pertaining to the learning of the categories per se 
were not relevant.)  Of these 42 statistical results, 33 were 
statistically significant in the predicted direction and these 
results were input to the p-curve app version 4.05 
(http://www.p-curve.com/app4/) to produce the p-curve 
shown in Figure 1.  Note that the p-curve analysis only 
considers the distribution of p-values below the 0.05 
threshold. 

In addition, separate p-curves were generated for the 
subset of results obtained using objective measures of 
learned CP, such as accuracy of same-different judgments, 
and the subset of results obtained using subjective measures 
such as similarity judgments.  These are shown in Figures 2 
and 3. 

The p-curves shown in Figures 1-3 display the 
distribution of p-values that fall into five bins. For a real 

effect with high power samples, most of the p-values should 
be in the leftmost bin (p < 0.01). Shown in the figures are 
what the distribution would look like with a set of studies 
powered at 33% (green dashed line) and a set of studies 
testing a null effect (red dotted line). Note that because the 
distribution of p-values is determined by statistical power 
when investigating a real effect, the average power of the 
studies can be estimated from the observed distribution of p-
values. 

The results of the overall p-curve meta-analysis show a 
curve that is right-skewed, which strongly suggests that the 
research has evidential value and is not the result of 
worrisome p-hacking (which produces a left-skewed 
curve).1 This is welcome news.  However, the estimated 
power is only 62% (90% confidence interval is 41-78%) 
which is not very high. If this estimate were correct, it 
would mean that only 6 in 10 studies of learned CP will 
detect an effect. We explain why this is a significant 

                                                             
1The p-curve app conducts three different statistical tests to 

detect whether there is right skew. All of these tests were 
statistically significant (p < 0.001 for all), indicating that the curve 
is very unlikely to be not right skewed. 
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problem for advancing our theory of learned CP in the 
discussion. 

We conducted a separate analysis for objective and 
subjective measures of CP for two reasons. The first is that 
some researchers have suggested based on neural evidence 
that learned CP is not a genuinely perceptual effect but 
occurs at a higher, post-perceptual level (e.g., Clifford, 
Franklin, Holmes, Drivonikou, Özgen, & Davies, 2012; but 
see Zhong, Li, Li, Xu, & Mo, 2015 for counterevidence). 
We reasoned that if this were the case, studies employing 
more subjective measures of learned CP, such as ratings of 
similarity or typicality, should show stronger effects.  The 
second is that there is a worry that learned CP effects could 
be the result of demand effects (Goldstone, Lippa, & 
Shiffrin, 2001). That is, participants in these experiments 
may indicate that two items are subjectively more similar 
(dissimilar) to each other precisely because the experiment 
trains them that the two objects belong to the same category 
(different categories), and not because of any perceived 
change in similarity of the visual objects. If this is a 
contributing factor, then we would expect studies with 
subjective measures to have higher power, because this 
demand effect will only contribute for subjective measures 
of CP. 

 

 
 

Figure 2: P-curve for learned CP results based on 
objective measures. 

 
These ideas received some support from the p-curve 

patterns based on studies using subjective vs. objective 
learned CP measures, with a generally stronger pattern and 
higher power estimate for the subjective measure studies 
(79%) than objective measure studies (52%).  However, 
given the preliminary nature of this analysis and the small 
set of results included, particularly for those using 
subjective measures, it is premature to draw any conclusions 
about this yet (note that the confidence intervals for the 
power estimates overlap substantially). Furthermore, we 

can’t distinguish between the two possible explanations of 
this result without directly investigating the matter. 

 

 
 

Figure 3: P-curve for learned CP results based on 
subjective measures. 

Discussion 
The literature for learned visual categorical perception 
contains evidentiary value, according to this meta-analysis. 
We can be reasonably confident that the studies reported are 
in general not reporting on a null effect. However, the 
relatively low statistical power shown by this analysis for 
the overall set of findings has important implications for 
how our theoretical understanding of learned CP is informed 
by these studies, and future studies with similar statistical 
power. We argue here that the statistical power of learned 
CP research must be improved in order to make robust 
advances in theory. 

Several debates in learned CP research (e.g., to what 
degree is CP a perceptual or decision-making process; what 
kinds of judgments are changed by learning categories; is 
CP the result of demand effects) currently hinge on the 
observation of CP in some experimental contexts but not 
others. However, the overall lack of statistical power makes 
the pattern of significant and non-significant results difficult 
to interpret. Low power may well explain the occurrence of 
non-significant results. Low power also increases the 
likelihood that significant results are actually false positives.  
It follows from these two facts that when studies of learned 
CP are underpowered, the noise in the data makes it very 
difficult to distinguish among specific theoretical variants of 
what learned CP is. For example, it is difficult to distinguish 
among the different types of learned CP, of which there are 
at least four, as noted in the introduction (the boundary 
effects of compression and/or expansion and dimensional 
sensitization and desensitization based on category 
relevance). Since null results are impossible to interpret 
when statistical power is low (and using traditional 
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statistical methods), and patterns in statistically significant 
results may be just noise, it is correspondingly impossible to 
use the data to figure out under what conditions each of the 
types of learned CP do and do not occur.  Yet this is 
essential to do in order to determine the nature of learned 
CP mechanisms and their purpose. 

To understand the problem that this causes for our 
theoretical understanding of learned CP, it is important to 
keep in mind that the articles included in our analysis are 
not a set of direct replications, but rather a body of scientific 
evidence. Experiments in this set of results aim to build on 
the contributions of prior work to refine our theory of 
learned CP. Thus, we often rely on the pattern of findings 
within individual studies, or between small sets of studies, 
to constrain theorizing. But, as noted, with low statistical 
power comes the increased probability of false negatives 
and the increased probability that significant results are false 
positives. This leaves the theorist in a tough position. Are 
we improving our theoretical understanding with a new set 
of data, or merely reading the tea leaves of statistical noise?  

Recent work in our lab provides an illustration of this 
problem (de Leeuw, Andrews, Livingston, & Chin, 2016).  
We were primarily interested in why some learned CP 
studies had shown compression while others showed 
expansion.  There seemed to be a relationship between both 
the type of learned CP measure (similarity vs. same-
different judgment accuracy) and stimulus discriminability, 
on the one hand, and the pattern of learned CP on the other.  
Initial studies in our lab seemed to confirm variations of this 
kind but the patterns were somewhat bewildering.  Only 
when we conducted a large scale study (N > 550) 
simultaneously incorporating multiple measures and levels 
of stimulus discriminability and used Bayesian data analysis 
did a clear picture emerge:  learned CP effects occurred (in 
fact, three of the four possible patterns occurred), but this 
pattern of effects did not differ systematically according to 
either of those variables.2 

It is important to note a related set of problems with 
learned CP research that also presented a challenge for 
conducting the p-curve analysis.   (1) Learned CP studies 
often don’t test for more than one or two of the four possible 
types of effect, and the statistical analysis used may test for 
different effects separately or lump them together. 
Furthermore, there are methodological ambiguities in many 
of the studies that make separating out which effects 
occurred impossible.3 We therefore could not classify the p-
values according to which aspect of learned CP they 

                                                             
2 This study was not included in the preliminary meta-analysis 

reported here because it did not provide the relevant standard 
statistical information. 

3 Another difficulty with sorting out the different potential 
effects of learned CP is that nearly all the published work is not 
designed to address this question. This makes it impossible in most 
cases to distinguish between, as an example, acquired 
distinctiveness of a dimension plus compression versus just 
expansion. These two cases have the same behavioral outcome, 
and thus must be distinguished through experimental controls, such 
as different kinds of training. 

corresponded to, even though we would have liked to be 
able to do this.  (2) Predictions are often vague in regard to 
the nature of a two-way interaction in an ANOVA, for 
example.  But different results should be used for the p-
curve for attenuation and reversal interaction predictions 
(just the overall interaction for attenuation and just the 
simple effects for reversal). Since we were limited to the 
information available in the articles, most of which did not 
predict a specific pattern of interaction, power may be 
overestimated by the p-curve. (3) A final caveat regarding 
our analysis is that our p-curve results could potentially be 
somewhat misleading if in fact certain learned CP effects 
(e.g., dimensional effects) are much stronger than others 
(e.g., boundary effects), which would mean that they are not 
really the same kind of effect as assumed by a combined p-
curve analysis. If this were the case, it would suggest that 
power could be higher than our estimate for some aspects of 
learned CP, but lower for others. This would only further 
exacerbate the problem of drawing theoretical conclusions 
about the nature of learned CP, as the studies of certain 
kinds of effects that are deeply relevant to the theory would 
have even lower power. 

The preliminary meta-analysis we report here strongly 
suggests that learned CP effects are real but also that our 
current knowledge of them is highly ambiguous and 
destined to remain so if we do not change the way we do 
research.  In our view, only by conducting future studies 
with sufficient statistical power will we make significant 
progress understanding the phenomenon of learned CP. 
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