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Professor Guang Cheng, Chair

A membership inference attack is a method of extracting the training data from machine

learning models. Previous analysis has characterized the worst case vulnerability to mem-

bership inference by instantiating the attack algorithm as the Bayes Optimal Classifier. We

extend these findings by developing practical estimators for the worst case vulnerability on

a sub-class of membership inference problems that are easy to compute without resorting

to computationally expensive privacy auditing techniques. Extensive simulation studies are

conducted on real world data sets to show that privacy auditing techniques, such as shadow

modeling, can be replaced with the proposed worst case estimators. Furthermore, we exam-

ine the notion of disparity in membership inference: that some subgroups of the population

are easier to identify in the training data set than others. We use a framework to quantify

the degree of disparity and demonstrate that several real world models exhibit disparity in

membership inference. We advocate that average metrics of attack accuracy, commonly used

in the privacy auditing literature, do not reliably convey the difference in privacy risks across

different levels of the population.
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CHAPTER 1

Introduction

Machine learning is a widely popular method for statistical analysis that involves fitting a

predictive model on a training data set. Most common machine learning models, such as

deep neural networks, train the on the same data points multiple times, which makes these

models predict these points well. However, it has been observed empirically that the machine

learning models can leak information about the training data constituting privacy risks of

the individual records in the training data set [HSS22]. Membership inference attacks are

one type of algorithm where an adversary attempts to determine if a specific record was part

of the training data [SSS16]. Furthermore, it has been shown that privacy violations are not

uniform across population subgroups: individuals or groups can be more easily identified,

this is known as disparity [YKT19], [HSS22]. Thus demonstrating the need for formal privacy

guarantees for machine learning models.

The most popular privacy preserving framework is Differential privacy which accom-

plishes privacy by injecting controlled noise into a model’s training procedure [Dwo08]. The

noise ensures that any individual record has limited influence on the output of the model.

However, the additional noise comes at a cost of reduced model utility when compared to

an non-privatized model.

In the remainder of the thesis, I will examine the analytic trade-off between differential

privacy and the success of membership inference, by instantiating membership inference as

the Bayes Optimal classifier which corresponds to the worst case privacy violations. Fur-

thermore, I will explore the relationship between membership inference and the phenomena
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of disparity in membership inference. Lastly, I will conduct extensive simulation studies

examining under what scenarios we can estimate worst case privacy risks.
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CHAPTER 2

Machine Learning

The main goal of a Machine Learning is to a predictive model given samples from a distri-

bution on X × Y . X is the space of predictors or features and Y is the space of outcome

variables we wish to predict. We want to learn some function of the form:

f(x; θ) : X → Y

that is optimal given only a finite number of data points to train on. We refer to θ as the

parameters of the function, these could be the weights of a neural network or the coefficients

in a regression. We estimate θ by minimizing loss function ℓ given training data Dtrain =

{(xi, yi)}ni=1:

θ̂ = argmin
θ

n
∑

i=1

ℓ(yi, f(xi; θ))

The notion of minimizing a loss function can be formally motivated from the principle of

maximum likelihood inference. Maximum likelihood inference is a statistical method used

to estimate the parameters of a statistical model based on observed data. The underlying

principle is to find the values of the model’s parameters that maximize the likelihood function,

which quantifies the probability of obtaining the observed data given the parameter values.

In maximum likelihood inference, we assume the observed data {(xi, yi)}ni=1 is generated

from a probability distribution that depends on the parameter θ of interest. The goal is to

find the values of these parameters that make the observed data most likely to have been

generated by the assumed distribution. In machine learning, our main assumption is that the

conditional distribution of P(y|x) is contained within some family of distributions indexed
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by some parameters θ:

ℓ(θ) = P(y|x; θ)

We refer to ℓ(θ) as the likelihood function. Given a realization of {(xi, yi)}ni=1 of the data

we think of the likelihood as purely a function of θ. Given that the data are generated i.i.d.

from P(y|x; θ), the likelihood simplifies to:

ℓ(θ) = P(y|x; θ) =
n
∏

i=1

P(yi|xi; θ)

Typically the product is difficult to optimize so we convert the product into a sum via the

logarithm and taking its negative:

L(θ) = − log ℓ(θ) =
n
∑

i=1

logP(yi|xi; θ)

In the remaining sections on machine learning, we will see how maximizing the likelihood

can be equivalently formulated as a loss minimizing problem.

Maximum likelihood inference offers several desirable properties, including consistency,

efficiency, and asymptotic normality under certain conditions [Kee10]. It is widely used in

statistics and machine learning to estimate parameters and fit models based on observed

data [SB14], [Bis16].

2.1 Regression

In regression analysis, the outcome or dependent variable of interest is continuous valued:

yi ∈ R. The training data consists of observations {(xi, yi)}ni=1 where xi ∈ R
p. We make the

assumption that our family of distributions P(y|x; θ) is normally distributed:

P(y|x; θ) ∼ N(f(x; θ), σ2)

Typically σ2 is a nuisance parameter or parameter we have prior knowledge of. f(x; θ)

encodes the explicit relationship between x and y. A common example is that f(x; θ) is a
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linear function, e.g.

f(x; θ) = xT θ

Which recovers standard linear regression. Now, the likelihood becomes:

ℓ(θ) = P(y|x; θ) =
n
∏

i=1

1√
2πσ2

exp

(−1

2σ2
[yi − f(xi; θ)]2

)

=
1

(2πσ2)n/2
exp

(

−1

2σ2

n
∑

i=1

[yi − f(xi; θ)]2
)

Taking the logarithm, which preserves the optimum,

L(θ) = − log ℓ(θ)

= − log

[

1

(2πσ2)n/2
exp

(

−1

2σ2

n
∑

i=1

[yi − f(xi; θ)]2
)]

=
1

2σ2

n
∑

i=1

[yi − f(xi; θ)]2 +
n

2
log
(

2πσ2
)

Disregarding the constant σ2 we arrive at:

L(θ) =
1

2

n
∑

i=1

[yi − f(xi; θ)]2

Which is the squared error loss. Now, we have shown that:

max
θ

ℓ(θ) ⇐⇒ min
θ
L(θ)

Thus we see that maximum likelihood estimation can equivalently be formulated as a mini-

mizing the squared error loss for regression.

2.2 Classification

In classification, the outcome or dependent variable of interest is discrete: yi ∈ {0, 1}. For

simplicity, we will only cover the case of binary classification, but there are extensions to

discrete sets with more than 2 values. Again, the training data consists of observations
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{(xi, yi)}ni=1 where xi ∈ R
p. Our main assumption is that the outcome yi is Bernoulli

conditional on a transformation of the inputs xi:

P(y|x; θ) ∼ Bernoulli(p)

Where, p is generated by taking the sigmoid function σ of f .

p = σ(f(xi; θ)) =
exp (f(xi; θ))

1 + exp (f(xi; θ))

Now we can use the maximum likelihood framework to to fit the model parameters from the

data. First we note the pdf of a Bernoulli(pi) random variable is given by:

p(yi|pi) = pyii (1− pi)
(1−yi)

By independence we have the likelihood function is given by:

ℓ(θ) =

n
∏

i=1

p(yi|xi; θ) =

n
∏

i=1

pyii (1− pi)
(1−yi)

We take the negative log of the likelihood since it preserves the location of the optimum:

L(θ) = −
n
∑

i=1

yi log(pi) + (1− yi) log(1− pi)

Which is commonly know as the cross entropy loss function. Thus to fit a classification

model we find the θ that minimizes the cross entropy loss. Hence,

max
θ

ℓ(θ) ⇐⇒ min
θ
L(θ)

In the next section we present a simple algorithm for minimizing loss functions.

2.3 Stochastic Gradient Descent

Now we present a simple algorithm, Stochastic Gradient Descent (SGD), for fitting a model

when the loss function is differentialiable with respect to its parameters θ. SGD is a par-

ticularly useful when the data set is large, as it avoids computing the gradient of ℓ over the

entire data set, but instead repeatedly computes the gradient on a much smaller sub sample

of {(xi, yi)}ni=1 to update θ. A comprehensive analysis of SGD can be read in [SB14].
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Algorithm 1 Stochastic Gradient Descent

1: procedure SGD(Dtrain, θ0,∇θℓ, α, T,m)

2: for j = 1, · · · , T do ⊲ Number of iterations

3: {(xi, yi)}mi=1 ∼ Dtrain ⊲ Sample Mini Batch of size m

4: θj = θj−1 − α 1
m

∑m
i=1∇θℓ(yi, f(xi, θj)) ⊲ Update θ

5: end for

6: return θT ⊲ Return last θ

7: end procedure

SGD requires an initial θ0 to begin the algorithm, a learning rate α that governs how

quickly θ is updated, the derivative of loss function ∇θℓ, a number of iterations, and size of

mini batches. We essentially only need to know how to compute ∇θℓ to perform SGD.

For demonstrating the derivation of the gradient ∇θℓ, we can assume that f(x; θ) = xT θ

and derive the gradients required for both regression and classification. Now for regression,

∇θL(θ) = ∇θ
1

2

n
∑

i=1

[

yi − θTxi

]2

= −
n
∑

i=1

[

yi − θTxi

]

∇θ

[

yi − θTxi

]

=

n
∑

i=1

[

yi − θTxi

]

xi

Thus for sample of size m from Dtrain = {(xi, yi)}ni=1 the update step is given by:

θ(t+1) = θ(t) − α

m
∑

i=1

[

yi − θ(t)Txi

]

xi

In the case that f(x; θ) is linear, there is a unique solution for θ provided (XTX)−1 exists,

where X ∈ R
n×p is the matrix of observed features x. For more complicated models where

f(x; θ) is nonlinear, iterative methods like SGD provides a way to learn θ.

Now, for the case of classification, even when f(x; θ) is linear there is no closed form

solution of the equation:

∇θL(θ) = 0
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So to perform SGD, we just need to derive ∇θL(θ), we will similarly make the assumption

that f(x; θ) is linear. Noting that, the derivative of the sigmoid function is given by

σ′(b) = (1− σ(b))σ(b)

We can derive the gradient of the cross entropy loss

∇θ −L(θ) = ∇θ −
n
∑

i=1

yi log(pi) + (1− yi) log(1− pi)

= −
n
∑

i=1

yi∇θ log(pi) + (1− yi)∇θ log(1− pi)

= −
n
∑

i=1

yi
1

pi
∇θpi + (1− yi)

1

1− pi
∇θ(1− pi)

= −
n
∑

i=1

yi
1

pi
pi(1− pi)xi − (1− yi)

1

1− pi
(1− pi)pixi

= −
n
∑

i=1

yi(1− pi)xi − (1− yi)pixi

= −
n
∑

i=1

(yi − pi)xi

=

n
∑

i=1

(pi − yi)xi

Thus for sample of size m from Dtrain = {(xi, yi)}ni=1 the update rule for SGD of classification

is given by:

θ(t+1) = θ(t) − α
m
∑

i=1

(pi − yi)xi

8



CHAPTER 3

Differential Privacy

Differential privacy is a framework that addresses privacy concerns when analyzing and shar-

ing sensitive data. It provides a mathematical guarantee of privacy protection by ensuring

that the presence or absence of an individual’s data does not significantly affect the results

of a query or computation.

The primary goal of differential privacy is to strike a balance between the need to extract

useful information from data and the obligation to protect the privacy of individuals whose

data is being analyzed. It offers a rigorous and quantifiable notion of privacy, providing a

privacy budget that limits the amount of information that can be leaked about any individual.

The core idea of differential privacy lies in the introduction of randomness or noise into

the computation or query responses. By injecting controlled amounts of noise, the output

becomes indistinguishable whether an individual’s data is included or excluded, thereby

preventing any inference about an individual’s presence in the dataset.

To achieve differential privacy, various techniques can be employed, such as adding noise

to query responses, modifying the data before analysis, or applying privacy-preserving al-

gorithms. These techniques ensure that the statistical properties of the data are preserved

while minimizing the risk of re-identification or disclosure of sensitive information.

Differential privacy has gained significant attention in recent years due to the increasing

concerns surrounding privacy and data protection. It has become a crucial tool in domains

such as health care, finance, social sciences, and machine learning, where data analysis is

necessary but privacy is paramount.
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By adopting differential privacy mechanisms, organizations and researchers can respon-

sibly leverage sensitive data for analysis, research, and decision-making while upholding

the privacy rights and protecting the confidentiality of individuals. It provides a robust

framework that offers provable guarantees of privacy, promoting trust and accountability in

data-driven applications.

3.1 ǫ-Differential Privacy

Definition 1. (Neighboring Data Sets) We say that two data sets X1 and X2 are neighboring

if they only differ in precisely one element. We denote two neighboring data sets as:

X1 ≈ X2

The notion of neighboring data sets is the fundamental building block of the statistical

notion of privacy. Intuitively we want to know that the output of some query response is

indistinguishable whether a specific record of was included or excluded.

Definition 2. (ǫ-Differential Privacy) We say that a randomized algorithm A : X → Y is

ǫ-Differential Private if ∀ X1 ≈ X2 and ∀T ∈ range(A)

P(A(X1) ∈ T ) ≤ exp(ǫ)P(A(X2) ∈ T )

Where the probability is taken over the randomness of A. We abbreviate ǫ-Differential Pri-

vacy as ǫ-DP.

Some typical examples of randomized algorithms A are very simple methods such as

reporting the group average of a data set. More complicated example is when A is a machine

learning models where the outputs of A are the functions of its predicted values. When A is

trained by SGD the randomness of A typically comes from two places: the selection of the

mini batches in stochastic gradient descent and the random initialization of the parameters

before training.

10



For an intuitive understanding of ǫ-DP, we can examine the dynamics of privacy based

on the limits of ǫ. Now ǫ→ 0, we achieve total privacy:

P(A(X1) ∈ T ) = P(A(X2) ∈ T )

Meaning that the output of our algorithm A is independent of all data sets X1 ≈ X2. This

ensures that the output of the A is not dependent on any individual records in X but is

influenced by the collective data X , meaning that the individual records in X are protected.

Differential privacy can be characterized by a special random variable called the privacy

loss random variable.

Definition 3. (Privacy Loss Random Variable) Let Y and Z be two random variables. Draw

t ∼ Y and the privacy loss random variable, denoted LY ‖Z , is defined as:

LY ‖Z = log

[

P(Y = t)

P(Z = t)

]

The privacy loss random variable is only defined when the support of Y and Z are equal.

Clearly, if Y ∼ A(X1) and Z ∼ A(X2) then we have:

A is ǫ-DP ⇐⇒ LA(X1)‖A(X2) ≤ ǫ

Which gives a very intuitive characterization that if the privacy loss random variable is

bounded above by ǫ, then we have achieved differential privacy for the algorithm A.

A natural concern at this point would be given a randomized algorithm A that may not

be private how do we achieve ǫ-Differential Privacy? There are several potential ways of

ensuring differential privacy, but the most common methods are the Laplace and Gaussian

Mechanisms. Which privacy mechanism we choose to use primarily depends on the structure

of the the algorithm A.

Definition 4. (Laplace Random Variable). The Probability distribution function of the

Laplace Random Variable with location parameter µ ∈ R and scale parameter b ∈ R
+ and is

11



given by:

f(x;µ, b) =
1

2b
exp

(

−|x− µ|
b

)

The centered Laplace distribution, with location µ = 0, which we will denote by as Lap(b)

with scale parameter b.

To achieve an ǫ level of Differential privacy we will need to know how much our algorithm

A changes between two neighboring records. To that end we are particularly interested in

the worst case of how much A changes to know how much noise to inject into the release of

A.

Definition 5. (ℓ1 Sensitivity). Let f : X → R
d, then the sensitivity of f is defined as:

∆1(f) = sup
X1≈X2

‖f(X1)− f(X2)‖ℓ1

Where the supremum is taken over all data sets differing in one element.

The Laplace Mechanism achieves differential privacy by injecting Laplace noise into the

output of f that is governed by the sensitivity of f .

Definition 6. (Laplace Mechanism). f : X → R
d. Then we define the Laplace Mechanism

to be:

Tf(X) = f(X) + Y

Where Y ∈ R
d and Yi ∼ Lap

(

∆1(f)
ǫ

)

.

Theorem 1. [Dwo08] The Laplace Mechanism is ǫ-DP.

Proof. Assume X ≈ Y . Denote the p.d.f of Tf(X) evaluated at z as p1(z) and the p.d.f. of

12



Tf (Y ) evaluated at z as p2(z). Then,

p1(z)

p2(z)
=

n
∏

i

exp
(

− ǫ|f(x)i−zi|
∆1(f)

)

exp
(

− ǫ|f(y)i−zi|
∆1(f)

)

=

n
∏

i=1

exp

(

−ǫ (|f(x)i − zi| − |f(y)i − zi|)
∆1(f)

)

≤
n
∏

i=1

exp

(

−ǫ (|f(x)i − f(y)i|)
∆1(f)

)

= exp

(

− ǫ

∆1(f)

n
∑

i=1

|f(x)i − f(y)i|
)

≤ exp

(

− ǫ

∆1(f)
‖f(X)− f(Y )‖ℓ1

)

≤ exp(ǫ)

Hence,

p1(z) ≤ exp(ǫ)p2(z)

3.2 (ǫ, δ)-Differential Privacy

The notion of ǫ-DP can be generalized. ǫ-DP is strict in the sense that it requires every

release of A to satisfy the constraints of ǫ-DP. This notation can be extended to include the

probability of failing to preserve ǫ-DP constraints.

Definition 7. (ǫ, δ)-Differential Privacy. We say that a randomized algorithm A : X → Y
is (ǫ, δ)-Differential Private if for all data sets X1, X2 such that X1 ≈ X2 and ∀T ∈ range(A)

P(A(X1) ∈ T ) ≤ exp(ǫ)P(A(X2) ∈ T ) + δ

We abbreviate (ǫ, δ)-Differential Privacy as (ǫ, δ)-DP.

The δ parameter roughly corresponds to the probability that ǫ-DP condition will fail.

This can be seen most clearly, when analyzing the privacy loss random variable.
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Theorem 2. [Dwo08] (ǫ, δ)-DP is equivalent to that the absolute value of the privacy loss

random variable being bounded by ǫ with probability 1− δ.

A is (ǫ, δ)-DP ⇐⇒ P(|LA(X1)‖A(X2)| ≤ ǫ) ≤ 1− δ

Thus we see that δ governs the probability that the absolute value of privacy loss random

variable is not bounded by ǫ, corresponding to a failure of the ǫ-DP conditions. This means

that the ǫ-DP is more strict in that the privacy loss random variable is always bounded.

To make a non-private random algorithm A (ǫ, δ)-DP, we need a modified notion of the

sensitivity of A.

Definition 8. (ℓ2 Sensitivity). Let f : X → R
d, then the sensitivity of f is defined as:

∆2(f) = sup
X1≈X2

‖f(X1)− f(X2)‖ℓ2

Where the supremum is taken over all data sets differing in one element. Algorithms that

are (ǫ, δ)-DP naturally involve the ℓ2 norm. The Gaussian Mechanism can enforce (ǫ, δ)-DP

guarantees.

Definition 9. (Gaussian Mechanism). Let f : X → R
d. Then we define the Gaussian

Mechanism to be:

Tf(X) = f(X) + Y

Where Y ∈ R
d and Yi ∼ N (0, σ2).

Theorem 3. [Dwo08] Let ǫ ∈ (0, 1). Then for c2 > 2 ln 1.25/δ, the Gaussian Mechanism

with parameter σ2 ≥ c∆2(f)/ǫ is (ǫ, δ)-DP.

The Gaussian Mechanism is particularly important for machine learning because it can

be applied during training of a machine learning model when trained by SGD. To enforce

(ǫ, δ)-DP guarantees can only need a slight modification of SGD. We simply need to clip the

gradients to a prescribed size C and apply the Gaussian Mechanism to the gradient with an

appropriate variance parameter determined by C. DP-SGD was first analysed by [ACG16]

and an outline of the method is below in Algorithm (2):
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Algorithm 2 DP-SGD

1: procedure DP-SGD(Dtrain the training data set, ℓ(θ) the loss function, α the learning

rate, σ variance parameter, L sampling proportion, C gradient size.)

2: Initialize θ0

3: for t = 1, · · · , T do

4: Take random sample  Lt ∼ Dtrain with sampling probability L
N

5: For each i ∈ Lt compute gt = ∇θℓ(θt)

6: Clip Gradient: ḡt(xi, yi) = gt(xi, yi)/max(1,
‖gt‖ℓ2

C
)

7: Add Gaussian Noise: g̃t = 1
L

(
∑

i ḡt(xi, yi) + N(0, σ2CI))

8: Gradient Descent Update: θt+1 = θt − αg̃t

9: end for

10: return θT

11: end procedure
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CHAPTER 4

Membership Inference

Membership inference attacks (MIA) in machine learning refer to the exploitation of machine

learning models to determine whether a specific data point was part of the model’s training

dataset. These attacks aim to reveal information about the presence or absence of individual

data points in the training set, which can lead to privacy breaches and potential misuse of

sensitive information. The first successful membership inference attacks were reported in

[SSS16].

The idea behind membership inference attacks stems from the vulnerability of machine

learning models to overfitting. During training, models learn to generalize from a limited

set of labeled data examples, and they often memorize some details of the training set. This

memorization can inadvertently reveal information about the presence of specific data points,

allowing an adversary to infer membership.

Adversaries exploit this vulnerability by leveraging the model’s response or behavior.

By observing the predicted values of the model on various records, the attacker aims to

distinguish between records that were part of the training set and those that were not. This

can be achieved by analyzing statistical properties, confidence scores, or other characteristics

of the model’s predictions.

Membership inference attacks can be classified into two main categories:

• White-box attacks: In these attacks, the adversary has complete knowledge of the

model’s architecture, parameters, and access to the data distribution on X ×Y . They

can access the model’s internals, such as intermediate activations or gradients, to gain
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insights into the membership status of specific data points.

• Black-box attacks: In these attacks, the adversary only has partial knowledge of access

to the model. In this scenario an adversary is allowed to query the model by sending

features x and receive the predicted values ŷ from the model. Additionally, this may

assume the adversary has knowledge of the data distribution on X × Y or that the

adversary has access to a reference sample from the data distribution.

Membership inference attacks have important implications for privacy, especially in sce-

narios where the data being modeled is sensitive, such as medical records or personal infor-

mation. These attacks highlight the need for privacy-preserving techniques like differential

privacy to mitigate the risk of membership inference and protect the privacy of individuals

whose data is used for training machine learning models.

4.1 Formalizing Membership Inference

We will follow the conventional formulation of membership inference as an indistinguishabil-

ity game [YFJ17]. We will need some notation to introduce the main concepts. We denote

A as a membership inference attack algorithm, A the victim model training procedure, e.g.

a neural network trained by Stochastic Gradient Descent,n the training sample size, D the

data distribution, a distribution on X × Y , and m ∈ {0, 1} membership label, whether a

record x was used to train A. The goal of a membership inference attack is to produce a pre-

diction m̂ about the membership label m for a set of records (x, y). The game of membership

inference, or membership inference experiment, is described diagrammatically in Algorithm

(3).

We say that the membership inference experiment is successful if the predicted member-

ship label m̂ is correct:

MIA(A, A, n,D) = 1 if m̂ = m

17



Algorithm 3 MIA (A, A, n,D) Experiment

S ← Dn ; AS = A(S)

m← {0, 1} sample uniformly.

if m = 1 then

x← S

else if m = 0 then

x← D
m̂ = A(x,AS, n,D)

return m̂ = m

In the membership inference experiment a challenger samples n records from D and trains

the model using A on the sample S. The challenger then samples a secret bit m decide if

the record is to be pulled from the training data S or sampled from D. The adversary then

uses the outputted model AS and the query point to make a guess about the membership

label m.

To assess the efficacy of membership inference we will need a metric, since the member-

ship inference attack experiment is naturally interpreted as a classification task, we use the

normalized advantage over random guessing.

Definition 10. (Vulnerability) The vulnerability of a trained model A to a membership

inference attack A is the normalized advantage over a random guess.

V (A) = 2P [MIA(A, A, n,D) = 1]− 1

Vulnerability will serve as the main theoretical and experimental benchmark for evalu-

ating the success of membership inference attacks.

Additionally, if we assume the population of interest can be partitioned into t subgroups

z1, z2, . . . , zt then we can define vulnerability with respect to a subgroup. This will be useful

for analyzing when some groups in the training data set are easier to identify than others.
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Definition 11. (Subgroup Vulnerability) The vulnerability of a trained model A with respect

to a subgroup z to a membership inference attack A is the normalized advantage over a

random guess restricted to Z = z.

Vz(A) = 2P [MIA(A, A, n,D) = 1|Z = z]− 1

The accuracy of membership inference can be directly related to the ǫ parameter if the

model satisfies the ǫ-DP conditions.

Theorem 4. [YFJ17] Let A be an ǫ-DP learning algorithm and A be a membership adver-

sary. Then we have:

V (A) ≤ exp(ǫ)− 1

This inequality further expands our understanding of differential privacy in the following

sense. We know that if A is ǫ-DP with ǫ → 0, then A is perfectly private. In this case,

the accuracy of membership inference is bounded above by 0, meaning that membership

inference is essentially impossible. Additionally, if ǫ is large, then V (A) is upper bounded

by a large constant indicating that membership inference attacks can be very accurate.

4.2 Methods of Membership Inference

There are several variants of membership inference methods that depend on the underlying

victim model. The two methods we will focus on in this thesis are metric based attacks and

shadow modeling attacks. Metric based attacks apply a simple threshold to the output of a

target model to predict whether a query point was used to train the target model. Shadow

modeling attempts to learn a classifier that given the predictions of the target model will

distinguish between the distribution of the predictions on the training and testing set [SSS16].

Definition 12. (Adversarial Features) We refer to the random variable W generated by the

mapping w ← φW (AS, x) as the Adversarial features. Where φW is a function of the predicted

values of AS.

19



In general, membership inference will proceed in 3 stages outlined below.

Algorithm 4 Membership Inference Strategy

Phase 1: Adversary will prepare an attack algorithm A(x,AS, n,D). Which depends on

the victim model AS, sample size n, and data distribution D.

Phase 2: Adversary extracts features from AS: w ← φW (AS, x).

Phase 3: Adversary applies A on extracted features w to produce membership guess m̂.

The most common examples of adversarial features are when W is the predicted proba-

bilities, the predicted class labels, the values of the loss function used to train the model AS,

or more complicated features such as the models gradients in some white-box attacks. For

the remainder of the paper we will focus on black box attacks as they assume the adversary

has the most limited set of knowledge.

4.2.1 Metric Based Attack

In a metric based attack, we use a decision rule by simply applying a threshold τ to some

function of a target model’s predictions. In practice, τ is either prescribed a priori by the

adversary or can be estimated in a simulation setting. The most common metric based

attack is when a threshold is applied to the loss function used to train the maching learning

model.

Definition 13. (Loss Based Attack) In the loss based attack a prescribed threshold τ is used

determine the decision boundary where φW = ℓ(y, AS(x)), thus the attack algorithm A is

governed by:

1 [ℓ(y, AS(x))) ≤ τ ]

This idea seeks to exploit that machine learning models can achieve very small values

of the training loss. For example, when trained by SGD, the same data points are used to

train the model repeatedly and these records will have small values of the loss function. The
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intuition behind why this attack can work is that the data points the model is trained on

will have small values of the loss function while data on a testing data set will have higher

values. Thus we use the loss function ℓ to determine which (x, y) that were used to train the

model A.

4.2.2 Shadow Modeling Attack

Shadow modeling is a more complicated attack that attempts to mimic the behavior of the

target model and train a classifier to distinguish between the predictions on the training and

testing data sets. The shadow modeling procedure was first described in [SSS16]. The full

procedure for shadow modeling is described in Algorithm (5).

In a shadow modeling attack an adversary repeatedly samples training and testing sets

from the distribution D on X × Y , these are called shadow data sets. The adversary then

trains a shadow model on the training set and produces predictions for both the training

and test sets. A shadow model is a model that is as close to the victim model AS as possible.

The adversary appends a set of membership labels , mout, min to the predictions on both the

shadow training and testing sets. This step is repeated t times to produce a large “attacking”

data set, produced by unioning all the shadow data sets with membership labels. Lastly, a

classifier is trained to distinguish the assigned membership labels using only the predictions

ypred.

The shadow modeling technique is not free from assumptions and assumes that the

adversary has some background knowledge of the victim model. In shadow modeling we are

assuming that an adversary A has knowledge of the specifications of the model AS . For

example, if AS is a neural network, the adversary may know approximately the training set

size n, the architecture of AS, and the specifications of the optimization used during training.

Shadow modeling is computationally expensive since it requires fitting t models with the

same specifications, or as close as possible, to the target model AS. However, shadow mod-
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Algorithm 5 Shadow Modeling

1: procedure Shadow Modeling(A, A, n,D, t)
2: S ∼ D ⊲ Sample training set size n

3: Train: AS = A(S) ⊲ Train Victim Model on S
4: for j = 1, · · · , t do ⊲ Build Shadow Data Sets

5: Sin
j ∼ D ⊲ Sample training set size n

6: Sout
j ∼ D ⊲ Sample testing set size n

7: Train: ASin
j

= A(Sin
j ) ⊲ Train Shadow Model j

8: Predict: ŷinj = ASin
j

(Sin
j ) ⊲ Get Shadow Training predictions

9: Predict: ŷoutj = ASin
j

(Sout
j ) ⊲ Get Shadow Testing predictions

10: Create: min
j = 1 ⊲ Vector of 1′s size n

11: Create: mout
j = 0 ⊲ Vector of 0′s size n

12: Create Shadow Data Set j: Shadowj = (ŷinj , min
j ) ∪ (ŷoutj , mout

j )

13: end for

14: Create Attack Data Set: ∪tj=1Shadowj

15: Train Attack Classifier A with features ŷ to predict mem label on the Attack Data.

return A ⊲ return Attack Model

16: end procedure
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eling is the de-facto standard benchmark method in evaluating the accuracy of membership

inference attacks.
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CHAPTER 5

Characterizing Membership Inference

The next section examines a characterization of membership inference following the work

developed by [YKT19]. There are a few key ideas, the first is to analyze membership infer-

ence as a classification problem, where the adversarial attack algorithm with features W is

the Bayes optimal classifier, this will correspond to the theoretical worst case membership

inference attack. An extended notion of model generalization is developed to characterize

the vulnerability of a model with respect to the Bayes optimal attack.

5.1 Worst Case Vulnerability

Our main interest is to quantify the maximum vulnerability of a trained model A to any

attack that uses a given set of adversarial features W:

max
A:W→{0,1}

V (A ◦ φw)

This is particularly import because this will correspond to the theoretical worst case privacy

infringement of a model A to membership inference attacks. Since vulnerability is a linear

function of the accuracy of a membership inference attack, we know that minimizing the

probability of misclassification will maximize vulnerability. It is well known that the Bayes

Classifier minimizes the probability of misclassification [DLG14].

Definition 14. (Bayes Classifier). The Bayes classifier is given by:

Cbayes(x) = arg max
y∈{0,1}

P[Y = y|X = x]
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Thus, defining the attack algorithm as the Bayes optimal classifier will maximize V (A).

Definition 15. (The Bayes Adversary) The Bayes Adversary, denoted A∗
W
, with given ad-

versarial features W is given by:

A∗
W = arg max

m∈{0,1}

P[M = m|W = w]

The Bayes optimal classifier trivially achieves the worst case vulnerability, since the Bayes

optimal classifier minimizes the probability of misclassification.

We will consider two types of adversaries A, sub-group aware adversaries: (Z ∈ W),

where the an indicator variable for the subgroup Z is included in the set of adversarial

features. And regular adversaries: (Z /∈ W), where W is a function of the predicted values

of A.

Theorem 5. [YKT19] The worst-case vulnerability to a subgroup-aware (Bayes) adversary

is equal or higher compared to a regular (Bayes) adversary.

V (A∗
W,Z) ≥ V (A∗

W
)

The main take away is that in the worst cast scenario, the accuracy of membership

inference is as good or better when we included sub-group indicators Z in our adversarial

features W. This has particularly important implications for privacy auditing, mainly that

we should always include sensitive indicators Z in our feature set W to get more realistic

estimates of the worst possible case. Indeed this is always possible, since we have access to

the vector of features X in the data we can just pull the sensitive variables of interest Z

from them.

5.2 Distributional Generalization

Several studies have empirically demonstrated there is a strong relationship between over

fitting and the accuracy of membership inference. [YKT19] define a more general notion
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of predictive model generalization that subsumes the standard definition of comparing the

average loss on a training and testing set. This is used to characterize the the worst case

vulnerability of A.

Definition 16. (Property Function). A property function is any function that takes as input

a model AS and an example x and returns a numeric vector. We denote a property function

as π(AS, x). For any set T in the range of π, we define the corresponding probability measures

as generated by π:

µπ
1 (T ) = P

S∼Dn

x∼S

[π(AS, x) ∈ T ] training

µπ
0 (T ) = P

S∼Dn

x∼D

[π(AS, x) ∈ T ] testing

The key difference between µπ
1 and µπ

0 is that the randomness of µπ
1 is defined over the

randomness of the training examples x ∼ S and µπ
0 is defined over the randomness of data

from the data distribution x ∼ D. Some common examples of property functions are the

predicted values of the model itself π(AS, x) = AS(x). In this case, µπ
1 and µπ

0 are probability

measures generated by the predicted values of the model AS. We are particularly interested

in the case that π = φW is the adversarial feature extraction map and how different these

two measures are for a particular set of adversarial features W.

Definition 17. (Distributional Generalization Gap). The Distributional Generalization Gap

associated to property function π(AS, x) is given by:

R(π, d) = d(µπ
1 , µ

π
0 )

Where d(·, ·) is any valid distance between probability measures.

This notion of generalization characterizes the worst case vulnerability.

Theorem 6. [YKT19] The worst-case vulnerability to membership inference attack with a

given set of adversarial features W is equal to the distributional generalization gap under the

total-variation distance:

V (A∗
W ) = R(φW , dTV )
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Where

dTV (µ, µ′) = sup
T⊆W
|µ(T )− µ′(T )|

Proof. Let us denote the Bayes error L∗, the 0− 1 classification error of the Bayes classifier

A∗
W . Thus,

L∗ = P[A∗
W (w) 6= m]

So,

V (A∗
W ) = 2(1− P[A∗

W (w) 6= m])− 1

= 1− 2L∗

Using Le Cam’s Method:

L∗ =
1

2
− 1

2
dTV (P[W |M = 1],P[W |M = 0])

=
1

2
− 1

2
dTV

(

P
S∼Dn

x∼S

[φW (AS, x)], P
S∼Dn

x∼D

[φW (AS, x)]

)

=
1

2
− 1

2
dTV

(

µφw

1 , µφw

0

)

Thus,

V (A∗
W ) = 1− 2L∗

= 1− 2(
1

2
− 1

2
dTV

(

µφw

1 , µφw

0

)

= dTV

(

µφw

1 , µφw

0

)

Corollary 1. [YKT19] Let ℓ(AS, x) = 1 [AS(x) 6= y(x)] be the 0−1 loss, and the adversary’s

features be the loss values W = ℓ(AS, x). Then, the standard generalization gap equals worst

case vulnerability:

V (A∗
ℓ(AS ,x)

) = |R(ℓ, dMD)|
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Where dMD is the mean discrepancy distance:

dMD(µ, µ′) =

∫

ωdµ(ω)−
∫

ωdµ′(ω)

Proof.

R(ℓ, dTV ) = |P[ℓ(AS, x) = 1|M = 1]− P[ℓ(AS, x) = 1|M = 0]|

= |E[ℓ(AS, x)|M = 1]− E[ℓ(AS, x)|M = 0]|

= |R(ℓ, dMD)|

In the experimental section, we will empirically verify this will result which was not

experimentally verified in [YKT19].

5.3 Estimating Vulnerability

Estimating vulnerability of a given model AS is important for experimental verification of

bounds that ǫ-DP provides, as well as giving practitioners a framework to estimate the

inherit privacy risks when deploying models with highly sensitive features. Using simulation

to estimate vulnerability to membership inference attacks is known as privacy auditing.

The current field of privacy auditing is highly empirical, we note some of the contemporary

simulation methods for producing estimates of vulnerability. First we can start with a formal

notion of privacy auditing.

Definition 18. (Privacy Auditing). Given a model AS (private or non-private) and its set

of adversarial features W, we define privacy auditing to be the any simulation technique that

produces an estimate of the model AS vulnerability to membership inference.

In practice, auditors will select one or a few techniques, such as shadow modeling, and

perform membership inference against AS in a simulation and provide an estimate of V (A).

28



Additionally, the modeler does have some influence on the set of adversarial features W. In

particular, modelers can restrict the outputs of the model, thus restricting the possible forms

of the adversarial feature extraction mechanism φW . The main cases commonly assessed in

the privacy auditing literature are the following [HSS22]:

1. The adversarial features W are predicted values from the model AS, i.e. φW (AS, x) =

AS(x). In the case of classification, these are the predicted probabilities.

2. The adversarial features W are the loss function used during training of the model, i.e.

φW (AS, x) = ℓ(y, AS(x)). In the case of classification, there are a few functions ℓ, but

in our cases we will use the 0− 1 loss.

3. The two previous cases can be extended by including subgroup indicator variables Z in

addition to the predicted values or loss function values to make the adversarial attack

algorithm sub-group aware (W,Z).

The main idea of using simulation to estimate V (A) is to essentially play the MIA game

repeatedly.

Definition 19. (Model Specific Estimate of Vulnerability). Given a model AS, its set of

adversarial features W, and a membership inference algorithm A. We sample r training

data sets of size n: {Si}i=1,...,r and testing data sets of size n: {S̄i}i=1,...,r. We define the

model-specific estimate of vulnerability to be the unbiased estimator:

V̂ (A) =
1

r

r
∑

i=1

vi

Where we use an unbiased estimator of vi :

vi =
2

n

n
∑

j=1

1

[

A(S
(j)
i , ASi

, n,D) = 1
]

+
2

n

n
∑

j=1

1

[

A(S̄
(j)
i , ASi

, n,D) = 0
]

− 1

Theorem 7. The estimator vi, in Definition (19), is an unbiased estimator of vulnerability

V (A).
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Proof. Note we can express the accuracy of a membership inference attack using a union as

follows:

P [MIA(A, A, n,D) = 1] = P(A = 1, m = 1) + P(A = 0, m = 0)

Now taking expectations:

E[vi] = E

[

2

n

n
∑

j=1

1

[

A(S
(j)
i , ASi

, n,D) = 1
]

+
2

n

n
∑

j=1

1

[

A(S̄
(j)
i , ASi

, n,D) = 0
]

− 1

]

=
2

n

n
∑

j=1

E

[

1

[

A(S
(j)
i , ASi

, n,D) = 1
]]

+
2

n

n
∑

j=1

E

[

1

[

A(S̄
(j)
i , ASi

, n,D) = 0
]]

− 1

=
2

n

n
∑

j=1

P

[

A(S
(j)
i , ASi

, n,D) = 1
]

+
2

n

n
∑

j=1

P

[

A(S̄
(j)
i , ASi

, n,D) = 0
]

− 1

=
2

n

n
∑

j=1

P [A = 1, m = 1] +
2

n

n
∑

j=1

P [A = 0, m = 0]− 1

= 2P [A = 1, m = 1] + 2P [A = 0, m = 0]− 1

= 2P [MIA(A, A, n,D) = 1]− 1

= V (A)

Hence vi is unbiased for V (A).

There are several reasons why estimating vulnerability in this inherently model specific

to the attack algorithm A. In practice an adversary could use a different attack algorithm

that could result in a different vulnerability. For practitioners, there are several things to

consider when reporting a model specific estimate of vulnerability: (1) they are specific to one

particular set of adversarial features, (2) they are specific to one particular attack algorithm,

(3) they are specific to what knowledge the adversary has about the data distribution D. In

practice, we do not know what attack algorithm, features, or knowledge a potential adversary

has. In that sense these estimates provide a limited window into the potential privacy leakage

of a model, they are specific to our assumptions about what an adversary’s knowledge may

be.
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5.4 Estimating Worst Case Vulnerability

The discussion in the previous section regarding model specific estimates of vulnerability

illustrate an important short coming in the privacy auditing literature: that there is no

universally accepted way to estimate vulnerability without making strong assumptions on

the adversary’s knowledge or method.

The characterization of worst case vulnerability in terms of the total variation distance

suggest potential techniques for estimating strategies of the worst case vulnerability as a way

to potentially address this shortcoming. In this section, we will attempt to close the gap by

proposing estimators of the worst case vulnerability by leveraging their characterization in

terms of the total variation distance.

For the experiments we will focus on the case when the adversarial features are discrete

valued. There are two main cases when the set of adversarial features W is a discrete random

variable. We will focus on the case that the model AS is a classification model.

1. Let {ŷ0, ŷ1} denote the predicted values for the classes {0, 1} respectively for the model

AS. The model AS only releases the predicted class labels, thus the feature extraction

mechanism is given by:

φW (AS, x) := max{ŷ0, ŷ1}

2. The model AS only releases the training loss function, in the case of classification, 0−1

loss, thus the feature extraction mechanism is given by:

φW (AS, x) := 1[y 6= AS(x)]

Both of these scenarios have been explored in the literature as an attempt to reduce the set

of information released by a model when compared to releasing the predicted probabilities.

However, several studies have demonstrated that membership inference is still successful

when the features are discrete [HSS22].
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Moreover, the scenarios when the adversarial features are discrete can always be reduced

to the case of the 0− 1 loss. Whenever, an adversary has access to the predicted class from

AS, as long as they have the entire vector of data points (x, y), they can apply the loss

function 1[y 6= AS(x)] to that example. Thus these examples reduce to only one use case:

when the adversarial features are the 0− 1 loss function.

Given the characterization of worst case disparity for the 0 − 1 loss from Corollary (1),

suggest potential estimation strategies. We are required to come up with an estimator for

|R(ℓ, dMD)|. We simply average the training loss and testing loss as our estimator as plug

in estimator for |R(ℓ, dMD)|. In the experimental section, we will verify Corollary (1) using

real world data sets that was not examined in [YKT19].
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CHAPTER 6

Disparity

6.1 Disparity

Disparity in machine learning refers to the existence of unfair or biased outcomes and treat-

ment among different groups of individuals when utilizing machine learning algorithms for

decision making. These disparities can arise from various sources, including biased training

data, biased features, or biased decision-making processes within the algorithms themselves.

We are particularly interested in the case of discriminatory outcomes: Machine learning algo-

rithms can lead to discriminatory outcomes if they disproportionately favor or disadvantage

certain groups. For instance, an algorithm used in the criminal justice system for predict-

ing recidivism rates may have higher error rates or make more false positive predictions for

certain racial or socioeconomic groups, leading to unfair treatment. This classical notion of

disparity in outcomes can be extended to the notion of vulnerability to membership inference

attacks.

Definition 20. (Disparity). Assume that A is a membership inference attack algorithm.

Then disparity in vulnerability, or disparity, ∆Vz,z′(A) between two subgroups z and z′ is the

difference in vulnerability of the subgroups z and z′:

∆Vz,z′(A) = Vz(A)− Vz′(A)

Detecting the presence of disparity is particularly important because metrics such as

average vulnerability may disguise that there are some subgroups z in the data set that are

easier to identify in a membership inference attack.
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Theorem 8. [YKT19] Assume that the model A satisfies ǫ−DP, then the magnitude of worst

case disparity between any subgroups z and z′ is uniformly bounded for any adversary with

features W :
∣

∣∆Vz,z′(A∗
W,Z)

∣

∣ ≤ exp(ǫ)− 1

Theorem(6) is particularly important because it extends the protection that differen-

tial privacy provides for vulnerability to the worst case of disparity. Thus in practice, by

privatizing models, the risk of disparity can be reduced.

In the experimental section, we will demonstrate that models such as neural networks

can exhibit disparity to membership inference attacks. This will demonstrate that for prac-

titioners conducting privacy auditing to report estimates of disparity to get more detailed

measures of privacy risks.

6.2 Estimating Disparity

In the next section we will follow a framework developed by [YKT19] to detect model specific

estimates of vulnerability to membership inference attacks.

To get model specific estimates of disparity we can follow the same estimation strategy

for model specific estimates of vulnerability. We sample r training data sets of size n :

{Si}i=1,...,r and testing data sets of size n :{S̄i}i=1,...,r. We get model specific estimates of

subgroup vulnerability:

V̂z(A) =
1

r

r
∑

i=1

vi,z

Where we use an unbiased estimator of subgroup vulnerability vi,z :

vi,z =
2

nz

nz
∑

j=1

1

[

A(S
(j)
i , ASi

, nz,D) = 1
]

+
2

n̄z

n̄z
∑

j=1

1

[

A(S̄
(j)
i , ASi

, n̄z,D) = 0
]

− 1

Where nz is the size of subgroup z in Si and n̄z is the size of the subgroup z in S̄. Essentially,

for Vz(A), we use the same estimator for vulnerability, but only use examples that belong to

the subgroup of interest z when subgroup vulnerability vi,z.
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Assuming we have t subgroups z1, . . . , zt. We are interested in the following problem:

given estimates {vi,z}i=1...r across different subgroups, we want to find evidence that the

actual subgroup vulnerabilities differ:

Vz1 6= Vz2 6= . . . 6= Vzt

We have multiple measurements, the model-specific vulnerability estimates, for different

subgroups vi,z1 , vi,z2, . . . , vi,zt for the same victim model ASi
. The standard approach is

to use a repeated measure one way ANOVA. We can follow up the F test with pairwise

dependent t-tests with correction for multiple comparisons, e.g. Bonferroni Method. In

the experimental section, we will use this framework to demonstrate real world evidence of

disparity.
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CHAPTER 7

Experiments

In this chapter we will analyze our proposed estimators for privacy leakage and model specific

disparity by conducting membership inference attacks on popular privacy benchmark data

sets. These will help determine to what extent that empirical privacy auditing techniques,

like shadow modeling, can be substituted with worst case estimators. Additionally, model

specific estimates of disparity will serve to demonstrate that average privacy violation metrics

may tell an incomplete story: that there are subgroups or individuals in data sets that are

easier for adversaries to identify.

7.1 Law School Data

One case study will be based on the Law School Admissions Data Set. The data consists

of a survey among law students attending school in the U.S. in 1991 [San04], [Scu23]. The

primary purpose of the survey was to analyze what factors influenced whether students were

passing the bar examination. The total number of students in the survey was 20, 800. A

summary of the variables of interest is below in Table 7.1.
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Variable Description

age the student’s age in years

decile1 the student’s decile in the school given their grades in Year 1

decile3 the student’s decile in the school given their grades in Year 3

fam inc the student’s family income bracket (from 1 to 5)

lsat the student’s LSAT score

ugpa the student’s undergraduate GPA

gender the student’s gender

race1 a category specifying: Asian, Black, Hispanic, Other, or White

cluster a category encoding the tiers of law school prestige

fulltime whether the student will work full-time or part-time

bar whether the student passed the bar exam on the first try

Table 7.1: Law School Admissions Data.
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7.2 Adult Data

Another case study will be conducted on the popular privacy benchmark data set the Adult

Census Data set. The data consists of records from the 1994 census where the dependent

variable of interest is whether an individual was earning over 50, 000 in yearly income [BK96].

The total number of individuals in the study is 48, 842. A description of the variables are

listed below in Table (7.2).

Variable Description

age the individual’s age in years

workclass category Private, Self Employed, Federal Government, . . .

fnlwgt survey weights in the census

education category of Level of Education

marital status category of individuals marital status

occupation occupation category

relationship Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried

race category White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black

sex category Female, Male

capital-gain continuous

capital-loss continuous

hours-per-week continuous, number of working hours per week

native-country category, country of origin

outcome True or False if annual income is greater than 50K

Table 7.2: Adult Census Data.

The census survey weight variable, “fnlwgt”, is removed in the experiments it is not

relevant to the study besides the design of the survey.
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7.3 Experimental Design

Since the dependent variable of interest for both data sets is a binary variable, the modeling

associated with each data set is naturally formulated as a classification task. For the Adult

Data set the variable “outcome” is the dependent variable and for the Law School data the

variable “bar” is the dependent variable. We will study neural network models as the victim

models for our experiments since they were some of the first models that demonstrated

vulnerability to membership inference attacks [SSS16].

For detection of disparity, we will use the race indicator variable as a partition of the

population into subgroups for both of the data sets. All the experiments will focus discrete

adversarial features:φW = 1[y 6= AS(x)], when the model releases whether the data point

(x, y) was predicted correctly. To implement the worst case estimators we will simply used

the plug in estimators of the 0−1 loss on the training and testing data sets, and taking their

absolute difference to be our estimate of worst case vulnerability.

7.3.1 Victim Model Implementation

All experiments are conducted in Python (version 3.10) and were seeded to be reproducible.

Both victim neural networks are custom implemented for tabular data sets using the

popular framework PyTorch [PGM19]. The neural network that I explored were simple: 1

hidden layer with 8 hidden units. The weights w were all randomly initialized using by the

uniform distribution: w ∼ Unif
[

−1/
√

10, 1/
√

10
]

. The neural network fitted for 200 epochs

by Stochastic Gradient descent with a learning rate of α = 0.01. No form of regularization

on the weights w is used during training.
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7.3.2 Attack Model Implementation

For all the experiments we will use shadow modeling attacks. For each model, we will use 5

shadow models, and the the attack classifier is an XGBoost classifier with 100 decision trees

[CG16]. There is one nuance of shadow modeling that needs to be addressed. In the original

paper on shadow modeling, [SSS16], there is an assumption that the adversary has access to

a the data distribution D. To simulate having access to D, we will split our data set in three

separate data sets: training, testing, and reference. The reference data set will be randomly

sampled to build the 5 shadow models on that will have the same hyper-parameters and

training implementations as the victim models. The victim model will be trained on the

training data set and the accuracy of the attack model will be assessed only on the training

and testing data set.

The training and testing data set are kept to the same size to be as close to the member-

ship inference game. Arbitrarily increasing or decreasing the sizes of the training and testing

data sets will have a substantial effect on estimated vulnerability. For all experiments, we

set the training and testing data set sizes to be approximately 40% of the entire data with

the remaining 20% used for the reference data set. In some experiments, authors allow the

reference and training data sets to share the same data, but as a worst case analysis we do

not allow the training and reference data sets to have any overlap.

Furthermore, the shadow modeling attacks are repeated 200 times for each victim model.

Each time, the split of the training, testing, and reference data sets is changed.

7.4 Law School Data Results

The next section contains the results of the worst case vulnerability estimators, model specific

estimates of vulnerability, and model specific estimates of disparity for the neural network.

Figure (7.3) depicts the empirical distribution of the shadow model specific estimates of
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vulnerability broken down across the different race attributes for the neural network victim

model. The distributions for non-white individuals are approximately centered around 2.5%

vulnerability while the distribution for white individuals are centered around 0% vulner-

ability. In addition, the variability of the estimates for subgroup of White individuals is

significantly smaller than all other races. Graphically there appears to evidence of disparity

in vulnerability among the different races.

Figure 7.1: Shadow Model Estimates of Vulnerability broken down by Race for the Law

School Data set.

Table (7.3) depicts the results of the repeated measure ANOVA of the shadow model

estimates of vulnerability for the neural network. The p-value of the F -test is approximately

4.4e−15, so the null hypothesis of disparity is rejected at the signficance level of α = 0.01. In-

dicating that for the neural network there is evidence of disparity in vulnerability, confirming

the visual results seen in Figure (7.1)

Since the ANOVA F -test rejects the null hypothesis, we perform Bonferroni adjusted

pairwise t-tests to determine which groups exhibit statistically significant disparity, with
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Table 7.3: ANOVA Results for the Law School Data set.

F Value DF Pr(> F )

race 9.185115 796 4.440025e−15

Table 7.4: Bonferroni Adjusted Pairwise t-tests for the Law School Data set.

z z’ t p p-corr. Reject Null

asian black -2.1616 0.0318 0.0455 False

asian hisp -0.3078 0.7586 0.7586 False

asian other -3.0455 0.0026 0.0053 True

asian white 5.7856 0.0000 0.0000 True

black hisp 1.9998 0.0469 0.0586 False

black other -1.4794 0.1406 0.1562 False

black white 10.4066 0.0000 0.0000 True

hisp other -2.855 0.0048 0.0079 True

hisp white 6.6791 0.0000 0.0000 True

other white 8.158 0.0000 0.0000 True

significance level α = 0.01. The results are contained below in Table (7.4). The table

contains the t-values of the test, the p-values, the adjusted p-values, and whether the t-test

is rejected at the α = 0.01 level based on the adjusted p-value.

The particular striking observation is that there is evidence of disparity between white

individuals and all other races. Moreover, the direction of the disparity is positive indicating

that the other races are easier to identify in the training data set. Additionally, the other

category exhibits statistically significant disparity between all other races except for African

American.

Lastly, Figure (7.4) depicts the results of the worst case estimate of vulnerability (x-axis)
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in comparison to the estimated shadow model estimates of vulnerability (y-axis). For the

neural network model there is evidence that the worst case estimates of vulnerability are

correlated with shadow modeling. The correlation coefficient below is 0.66.

Figure 7.2: Worst Case Vulnerability and Shadow Model Vulnerability for the Law School

Data set.

7.5 Adult Census Data Results

The next section contains the results of the worst case vulnerability estimators, model specific

estimates of vulnerability, and model specific estimates of disparity for the Adult Census Data

set.

Figure (7.3) depicts the distributions of the shadow model specific estimates of vulnera-

bility broken down across the different race attributes for the neural network victim model.

Graphically there appears to evidence of disparity in vulnerability among the different races

as the distributions have different medians and variance across all racial categories.
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Figure 7.3: Shadow Model Estimates of Vulnerability broken down by Race for the Adult

Data set.
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Table (7.3) depicts the results of the repeated measure ANOVA of the shadow model

estimates of vulnerability for the neural network. The p-value of the F -test is approximately

4.4e−133, so the null hypothesis of disparity is soundly rejected at the significance level of

α = 0.01. Indicating that for the neural network on the Adult data set there is strong

evidence of disparity in vulnerability, confirming the visual results seen in Figure (7.3).

Table 7.5: ANOVA Results for the Adult Data set.

F Value DF Pr(> F )

race 234.553506 796 5.440307e−133

Since the ANOVA F -test rejects the null hypothesis so we perform Bonferroni adjusted

pairwise t-tests to determine which groups exhibit statistically significant disparity, with

significance level α = 0.01. The results are contained below in Table (7.4). The table

contains the t-values of the test, the p-values, the adjusted p-values, and whether the t-test

is rejected at the α = 0.01 level based on the adjusted p-value.

The Bonferroni Adjusted t-tests confirm that every group exhibits disparity among all

other groups. This result is not particularly surprising given the Figure (7.3) and the p-value

of the F -test being so small. One particularly concerning take away from these experiments

is that the white individuals appear to be the most protected, i.e. least the vulnerable to

membership inference attacks.

Lastly, Figure (7.4) depicts the results of the worst case estimate of vulnerability (x-

axis) in comparison to the estimated shadow model estimates of vulnerability (y-axis). For

the Adult Census data set the neural network model there is evidence that the worst case

estimates of vulnerability are highly correlated with shadow modeling. The correlation

coefficient below is 0.998.
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Table 7.6: Bonferroni Adjusted Pairwise t-tests for the Adult Data set.

z z’ t p p-corr. Reject Null

’Amer-Indian-Eskimo’ ’Asian-Pac-Islander’ -18.4981 0. 0. True

’Amer-Indian-Eskimo’ ’Black’ 3.4963 0.0006 0.0006 True

’Amer-Indian-Eskimo’ ’Other’ -3.352 0.001 0.001 True

’Amer-Indian-Eskimo’ ’White’ 6.148 0. 0. True

’Asian-Pac-Islander’ ’Black’ 40.6659 0. 0. True

’Asian-Pac-Islander’ ’Other’ 13.5096 0. 0. True

’Asian-Pac-Islander’ ’White’ 51.7445 0. 0. True

’Black’ ’Other’ -7.5032 0. 0. True

’Black’ ’White’ 8.1134 0. 0. True

’Other’ ’White’ 10.2026 0. 0. True

Figure 7.4: Worst Case Vulnerability and Shadow Model Vulnerability for the Adult Data

set.
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CHAPTER 8

Discussion

In this thesis we explored the notion of worst case vulnerability and the notion of disparity

in vulnerability to membership inference attacks. We proposed estimators for the a sub-

case of discrete adversarial features and implemented shadow model attacks on real world

data sets. We demonstrated there there is evidence of statistically significant disparity when

viewing the population partition by race on two popular privacy benchmark data sets. In the

final section, we will address some guidelines for practitioners conducting privacy auditing

and address some possible future directions for the general case of continuous adversarial

features.

8.1 Practitioners Considerations

The real world experiments demonstrated several nuances for practitioners conducting pri-

vacy auditing to consider.

First, a simple one hidden layer neural network can exhibit statistically significant evi-

dence of disparity among subgroups. Adversaries attempting to infer the training data set

can seek to exploit this by using subgroup aware adversaries to improve the accuracy of at-

tacks. Thus practitioners should estimate disparity among sensitive subgroups to get more

realistic estimates of privacy leakage.

Second, in the case of classifiers like neural networks with discrete adversarial features,

practical estimators of worst case privacy violations can help to compute an estimate of
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vulnerability without resorting to computationally extensive simulation techniques. Differ-

entially privatizing models bounds even the theoretical worst case of privacy leakage and

should always be used when making models trained on highly sensitive data available to

the public. One ethical drawback of computed estimators for privacy leakage is that they

can be exploited by adversaries. An adversary can use the same estimator to identify which

subgroups will be easiest to identify and add those subgroup indicators into the adversarial

feature set. However, I strongly believe the usefulness of these estimators for practitioners

seeking to mitigate privacy risks is more beneficial than an adverse actor seeking to exploit

them.

Lastly, the main nuance for modelers seeking to deploy models to the public is that

they will not know in advance what set of adversarial features (Z,W ) will be used by the

attacker. Especially since any variable or combination of variables in the set of X can simply

be appended to the output of the model W to form (Z,W ). Thus the only sound defense

strategy, with provable guarantees against both disparity and vulnerability to membership

inference attacks is to make machine learning models differentially privatized.

8.2 Future Directions

One particularly interesting question, that is not addressed in this thesis, is how membership

inference attacks such as shadow modeling are related to the Bayes Optimal Attacker. We

can compute estimates of worst case privacy violations and examine how correlated they are

to existing attack strategies, but the question of how to develop a method that accurately

approximates the Bayes Optimal Attacker is still unknown. A fruitful direction to explore

in the future would be to determine attack strategies that produce attack models that are

consistent with the Bayes Optimal Attacker. Some papers have attempted to characterize

which attacks are the Bayes Optimal Attacker, but are not analytically tractable (they are

left as high dimensional integrals) [SDO19]. Furthermore, [SDO19] have suggested that

48



shadow modeling may be a Monte Carlo approximation to one of the terms derived in their

expression of the Bayes Optimal Attack without providing formal analysis. This avenue

merits further investigation.

One major use case for estimating worst case vulnerability not addressed in this thesis

when the set of features released by the model is continuous φw(As, x) : X → R
d. This

is would be the case where a classification model releases the predicted class probabilities.

This is an important issue that needs to be addressed in future studies. The problem of

estimating V (A∗
W ) reduces to estimating the expression:

dTV (µπ
1 , µ

π
0) = sup

A
|µπ

1(A)− µπ
0 (A)|

If we assume µπ
1 and µπ

0 are absolutely continuous measures with respect to the Lebesgue

measure and have density functions f1 and f0 respectively then the above simplifies to:

dTV (µπ
1 , µ

π
0 ) =

1

2

∫

|f1(x)− f0(x)| dx

In general, the problem becomes estimating the above integral based on samples from the

measures µπ
1 , µ

π
0 . There are well known results from kernel density estimation that allow

for consistent estimation of total variation distance between two probability measures from

samples.

Let fn
1 (x) and fm

0 (x) be the empirical distribution functions estimated via Kernel Density

Estimation for densities f1 and f0 respectively. We are interested in bounding:

|dTV (fn
1 , f

m
0 )− dTV (f1, f0)|

Using the fact that dTV (·, ·) is a norm we end up with:

|dTV (fn
1 , f

m
0 )− dTV (f1, f0)| ≤ dTV (fn

1 , f1) + dTV (fm
0 , f0)

See [SFG12] for an in depth discussion of consistent estimation of integral probability metrics.
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The main result from Kernel Density Estimation (KDE) for absolutely continuous prob-

ability measures f in R
d with KDE fn [Tay18]:

lim
n→∞

∫

Ω

|fn − f | dΩ→ 0 a.s.

Note the convergence of the above quantity is exactly 1/2 dTV (fn, f), i.e. the total

variation distance between kernel density estimate and the underlying density f . Thus the

result we get is the following:

lim
n→∞
m→∞

|dTV (fn
1 , f

m
0 )− dTV (f1, f0)| → 0 a.s.

In essence we can get consistent estimator of dTV (f1, f0) by using the KDE of f1 and

f0 and numerically computed an estimate of the integral by any numerical estimation of

integrals, e.g. Simpson’s rule or trapezoidal rule.

There are two issues with this approach that need to be addressed before worst case esti-

mates can be made available to practitioners. First, this method would rely on kernel density

estimates which is difficult in practice due to selection of the bandwidth and dimension of

the problem. Some general rules of thumb or guidance would be needed for privacy auditing

guidelines. The second is that we need to correctly characterizing the source of randomness

in the measures µπ
1 and µπ

0 which is taken over the sampling of the data sets S ∼ Dn and

x ∼ D or x ∼ S. Analysis on a theoretically tractable case would be highly beneficial to

understand the feasibility of this approach.
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