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Objectives:Metabonomics is a powerful and promising analytic tool that allows assessment of global low-
molecular-weight metabolites in biological systems. It has a great potential for identifying useful biomarkers
for early diagnosis, prognosis and assessment of therapeutic interventions in clinical practice. The aim of this
review is to provide a brief summary of the recent advances inUPLC-basedmetabonomic approach for biomarker
discovery in a variety of diseases, and to discuss their significance in clinical chemistry.

Design andmethods:All the available information onUPLC-basedmetabonomic applications for discovering
biomarkers of diseases were collected via a library and electronic search (using Web of Science, Pubmed,
ScienceDirect, Springer, Google Scholar, etc.).

Results:Metabonomics has been used in clinical chemistry to identify and evaluate potential biomarkers and
therapeutic targets in various diseases affecting the liver (hepatocarcinoma and liver cirrhosis), lung (lung cancer
and pneumonia), gastrointestinal tract (colorectal cancer) and urogenital tract (prostate cancer, ovarian cancer

and chronic kidney disease), as well as metabolic diseases (diabetes) and neuropsychiatric disorders
(Alzheimer's disease and schizophrenia), etc.

Conclusions: The information provided highlights the potential value of determination of endogenous low-
molecular-weight metabolites and the advantages and potential drawbacks of the application of UPLC-based
metabonomics in clinical setting.
© 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
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Introduction

Metabonomics is a powerful new technology that allows assessment
of global low-molecular-weight metabolites in biological systems and
holds great potential in biomarker discovery. Analysis of the keymetab-
olites in the body fluids has become an important part of the diagnosis,
prognosis, and assessment of therapeutic interventions in clinical appli-
cation [1]. This review is intended to provide an overview of the main
applications of ultra-performance liquid chromatography (UPLC) in
metabonomics and the current utility of the UPLC-basedmetabonomics
in the fields of oncology, metabolic, neuropsychiatric, cardiovascular,
infectious, and other diseases. Especial emphasis is placed on the poten-
tial use of endogenous low-molecular-weight metabolites in clinical
chemistry.

Metabonomics

Metabonomics is defined as the “quantitative measurement of the
dynamic multi-parametric metabolic responses of living systems to
pathophysiological stimuli or genetic modifications” [2]. It is used to
characterize the biochemical patterns of the endogenous metabolites
in cells, body fluids or tissues for physiological evaluation, disease diag-
nosis and disease prognosis [3]. In contrast to classical biochemical
approaches that often focus on a single metabolite, metabonomics
reveals a collection of molecules which covers a broad range of small
molecules such as lipids, amino acids, sterols, nucleic acids, peptides,
organic acids, carbohydrates and vitamins and as such provides a com-
prehensive overview of the impact of the pathophysiological processes
or pharmacological interventions of interest on metabolism and meta-
bolic dynamics.

Metabonomic analytical technologies

Various analytical techniques are used in metabonomics which can
be classified into two categories: I—nuclear magnetic resonance
(NMR) and II—mass spectrometry (MS) [4]. Although other spectral ap-
proaches including Fourier transform ion cyclotron resonance, Raman
and ultraviolet spectrum are employed for metabonomics studies,
they are generally less sensitive than MS [5]. An increasing number of
publications have described metabonomics using analytical techniques
including 1H NMR, gas chromatography–mass spectrometry (GC–MS)
and liquid chromatography–mass spectrometry (UPLC–MS) [6].
1H NMR, which is as one of the first methods used for metabonomics,
represents a rapid, non-destructive and highly robust technology that
provide highly informative structural information [7]. 1H NMR is often
used without any pre-separation process and unlike chromatography
it does not require development. However, as each metabolite partici-
pates in the 1H NMR spectra, the deconvolution of the signals is often
quite tedious [8]. GC–MS based metabonomics can resolve hundreds
of metabolite peaks, with metabolite identification performed by
matching the fragmentation ion spectra and retention indices to the
established database. Theuse of GC–MS is limited to the analysis of ther-
mally stable, volatile and relatively non-polar components. Compo-
nents' volatility can be increased using derivatization, which is
laborious and increases annotation complexity [9]. UPLC–MS can ana-
lyze volatile, non-volatile and polar compounds, over a wider mass
range thanGC–MSand does not require sample derivatization [6]. How-
ever, UPLC–MS based metabonomics is hindered by the lack of
established spectral database. Among the analytical techniques in
metabonomics research, it is generally accepted that LC–MS is superior
to NMR in terms of selectivity and sensitivity, while 1HNMR andGC–MS
based metabonomics are characterized by high reproducibility. There-
fore use of UPLC–MS combined with 1H NMR and GC–MS can provide
a superior approach to study metabonomics.

UPLC–MS technique

The recently introduced UPLC technique is considered to be suitable
for metabonomics, especially for large-scale untargeted metabonomics
due to its high sensitivity in detecting metabolites [6]. UPLC operates
with 1.7 μm chromatographic particles and a fluid system capable of
operating at pressures in the 6000–15000 psi range, providing an
increased chromatographic selectivity compared with conventional
high performance liquid chromatography (HPLC) which uses larger
particles [10]. Due to a reduction of peak width, there will also be a
greater S/N ratio and an increasing sensitivity compared with the
conventional HPLC. This can provide better peak resolution and higher
sensitivity and speed for complex mixture separation. Because of the
superior UPLC resolution, the problem of ion suppression is greatly
reduced [10].

Mass spectrometryElevated Energy (MSE) techniquewas first applied to
metabonomics by Plumb and co-workers [11]. Two scanning functions
are simultaneously used for data collection. In the first function, Q1 is
scanned from m/z 50–1000, and Q2 (collision cell) uses a normal low
collision energy that provides for the transmission of intact ions through
the cell collisions. These ions are then pushed into the TOF analyzer and
detectedwith high resolution andmass accuracy. The second scan func-
tion also scans Q1 over the same mass range; however, Q2 has a high
collision energy that fragments all of the ions transmitted through Q1.
The resulting ions are again detected in the TOF analyzer. In this way,
two mass chromatograms are generated, one with information on the
intact molecules from the first function, and the other with the
fragmented ion information from the second function. A variety of
data-processing algorithms can be used to extract metabolite informa-
tion from these data [12,13]. In otherwords,MSE can provide parallel al-
ternating scans for acquisition at either low collision energies to obtain
precursor ion information or high collision energies to obtain full-scan
accurate mass fragment, precursor ion, and small neutral molecules.
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MSE involves a simultaneous acquisition through alternating between
high and low collision energies during a single chromatographic run.
This ability is ofmajor importance, as it offers the structural information
required for the identification of the unknown biomarkers in the con-
text of untargeted analyses. Recently, the MSE technique has proved to
be a powerful tool for the identification of trace components of complex
mixtures and for confirming their presence [14–19].
Data analysis of the UPLC-based metabonomics

The detection of biomarkers includes the use of various methods
for taking the acquired mass values, retention time, and peak inten-
sity and performing pattern recognition by themultivariate statistics
including principal component analysis (PCA), orthogonal partial
least squares-discriminant analysis (OPLS-DA), and partial least
squares-discriminant analysis (PLS-DA). PCA is the most commonly
used statistical method in metabonomics. PCA is an unsupervised
multivariate data analysis method which provides a comprehensive
view of the clustering trend for the multi-dimensional data. PCA
can visualize correlated variations in more than two dimensions.
This method represents data in the form of a linear combination of
scores containing information on the tested samples and loadings
containing information on the variables. The advantage of PCA is
that the results are intuitively understandable owing to the graphical
representation [20]. However, PCA is limited by the fact that it is not
based on a statistical analytical model [21]. PLS-DA has gained wide
applications in metabonomics and bioinformatics. PLS-DA is a PLS
regression of a set Y of binary variables representing the kinds of a
categorical variable on a set X of predictor variables [22]. It is a com-
promise between the usual discriminant analysis and a discriminant
analysis on the significant principal components of the predictor
variables. This method is suitable for processing plenty of predictors
[22]. The OPLS-DA method is an extension of the PLS-DA method
which integrates an orthogonal signal correction filter to distinguish
variations that are suited to predict a quantitative response from
variations that are orthogonal to prediction. OPLS-DA was shown to
be a powerful tool for the analysis of qualitative data structures.
The OPLS-DA score plot revealed good fitness and high predictability
of the OPLS-DA model with high statistical values of R2 and Q2[23].
OPLS-DA method was used as a complement to the PLS-DA to
discriminate two or more groups using multivariate data [24,25].
OPLS-DA model is calculated between the multivariate data and a
response variable that only contains class information. The advan-
tage of OPLS-DA compared to PLS-DA is that a single component is
used as a predictor for the class, while the other variables describe
the variation orthogonal to the first predictive component. UPLC-
MS based metabonomics produces large amounts of raw data. The
handling of such complex data sets manually is practically impossi-
ble. Hence several software tools and methods have been developed
for processing and advanced statistical analysis of the raw data.
A number of software tools from MS manufacturers and researchers
have been developed to process metabonomics MS data. The
software packages are linked to the corresponding analytical
platform such as MarkerLynx from Waters to process the raw data.
MS software packages apply special algorithms that filter and bin
the raw data and then assign as a pair of retention time and m/z
ratio. The software next aligns and normalizes the features found in
the sample set, finally producing a large data matrix, which is then
subjected to PCA, OPLS-DA, PLS-DA and other statistical analysis
tools. In a comprehensive review article, Katajamaa and Oresic
have described in detail the data processing methods for the
MS-based metabonomics [26]. The final goal is to identify ions of
interest on which the investigations can focus as a possible source
of biomarker information. Biomarker identification employs a
range of mass spectral techniques including MS, MS/MS, MSE,
isotope patterns and neutral losses, and searches in HMDB,
Chemspider and KEGG. A sample workflow of UPLC–QTOF/MS is
shown in Fig. 1.

UPLC-based metabonomics and biomarker discovery in
clinical chemistry

Clinical chemistry deals with any analysis performed on the body
fluids for a medical purpose including disease diagnosis, prognosis and
treatment. Nowadays,most clinical tests still use the oldmethod includ-
ing single biomarker test, histopathology and immunohistochemistry.
Current test methods are usually neither specific nor sensitive for a
particular disease, and traditional biomarkers only change significantly
after substantial disease injury or dysfunction has occurred. For exam-
ple, serum creatinine (Scr) is the most commonly used biomarker of
renal function. However, Scr concentrations may not change until a
significant amount of renal function has been lost, meaning that renal
injury is already present or occurs before Scr is elevated. In addition,
the amount of tubular secretion of creatinine results in overestimation
of renal function at lower glomerular filtration rates. Moreover, inter-
individual differences in the body's muscle mass significantly alter Scr
independent of renal function. Therefore, novel and more sensitive
biomarkers are urgently needed for early detection and diagnosis of
the disease. The UPLC-basedmetabonomic approach is now increasing-
ly considered as a novel diagnostic approach in clinical studies including
liver, lung, gastrointestinal, urogenital and other diseases. Table 1
displays UPLC-based metabonomic applications for discovering
biomarkers of various diseases in clinical chemistry.

Hepatocarcinoma (HCC), liver cirrhosis and chronic liver diseases

HCC
Late diagnosis of HCC is one of the primary reasons for poor sur-

vival of patients. Identification of sensitive and specific biomarkers
is of great importance in early diagnosis of HCC. Ressom et al. stud-
ied serum metabolites in HCC patients and cirrhotic controls. They
found increased sphingosine-1-phosphate and LPC (17:0) and de-
creased glycochenodeoxycholic acid (GCDCA) 3-sulfate, glycocholic
acid (GCA), glycodeoxycholic acid (GDCA), taurocholic acid (TCA),
and taurochenodeoxycholate which are involved in bile acid bio-
synthesis and cholesterol metabolism in HCC patients compared to
patients with liver cirrhosis [27]. Another study identified serum
1-methyladenosine as a characteristic metabolite in HCC [28].
Serum and urinary metabonomics were performed on patients
with HCC and benign liver tumor as well as healthy controls. 43
serum metabolites and 31 urinary metabolites involved in bile
acids, free fatty acids, glycolysis, and methionine metabolism as
well as urea cycle were identified in HCC patients. Bile acids, histi-
dine and inosine were markedly elevated in HCC patients. However,
liver cirrhosis and hepatitis were associated with alterations of
several bile acids including GCDCA, GCA, TCA and chenodeoxycholic
acid (CDCA). The HCC patients with α fetoprotein were successfully
differentiated from healthy controls using metabolite biomarkers
[29]. In addition, UPLC–QTOF/MS and UPLC–MS/MS approaches
were used for qualitative and quantitative analyses of serum bio-
markers for patients with HCC. The results indicated that patients
with HCC had decreased LPCs, increased long-chain and decreased
medium-chain acylcarnitines, and increased aromatic and decreased
branched-chain amino acid [30]. UPLC–QTOF/MS and UPLC triple
quadrupole linear ion trap MS approaches were performed on qual-
itative and quantitative comparisons of metabolite levels in sera of
HCC patients and cirrhosis patients from Egypt [31]. The metabolites
including GCA, GDCA, 3β,6β-dihydroxy-5β-cholan-24-oic acid,
oleoyl carnitine and Phe-Phe were identified by UPLC–QTOF/MS.
UPLC triple quadrupole linear ion trap MS-based quantitation
confirmed significant differences between HCC and cirrhotic controls
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in themetabolite levels of bile acid metabolites, long chain carnitines
and small peptide.

To discriminate HCC from liver cirrhosis, UPLC-basedmetabonomics
has been conducted to characterize serum profiles from HCC patients,
liver cirrhosis patients and healthy subjects. Metabolic profiles were
capable of discriminating not only HCC patients from the controls but
also HCC from liver cirrhosis. Thirteen biomarkers were identified and
suggested that there were significant disturbances of organic acids,
phospholipids, fatty acids, bile acids and gut flora metabolism in HCC
patients. Canavaninosuccinate was first identified as a metabolite that
is significantly reduced in liver cirrhosis and increased in HCC. In
addition, GCDCA was suggested to be an important indicator for HCC
diagnosis and disease prognosis [32]. Chronic liver diseases including
chronic hepatitis B and hepatic cirrhosis are the major risk factors for
development of HCC. The differential diagnosis between chronic liver
diseases and HCC is a challenge. Serum metabonomics showed that
long-chain acylcarnitines accumulated, whereas free carnitine, medium
and short-chain acylcarnitines decreased with the severity of the non-
malignant liver diseases, accompanied by the corresponding alterations
of the enzyme activities. However, the magnitude of the changes was
smaller in HCC than in hepatic cirrhosis, possibly due to the differences
in energy metabolism in the tumor cells [33].

Urinary metabolome of patients suffering from HCC was studied
usingUPLC–MS (Fig. 2) and 21metaboliteswere considered as potential
biomarkers. Urinary metabolites related to arginine and proline metab-
olism, alanine and aspartate metabolism, lysine degradation, fatty acid
oxidation, nicotinate and nicotinamide metabolism were significantly
changed in HCC patients[34]. UPLC-based urinary metabonomics was
used to explore common and specific metabolites in HCC patients
with hepatitis B virus (HBV) or hepatitis C virus (HCV) infections.
Increased arachidonic acid and decreased lysophosphatidylcholines
(LPCs) were observed in the HCC and cirrhosis patients compared
with the healthy control, which may partly contribute to chronic in-
flammation and the initiation and progression of the malignant
hepatoma. Decreased ratios of polyunsaturated to saturated LPCs
in patients with HCC compared with chronic liver disease patients
with HBV or HCV infection and healthy controls further demonstrat-
ed the profound influence of the malignant liver tumor independent
of viral infection. Significant increases in serum endocannabinoids,
anandamide and palmitylethanolamide, were found in the HCC
compared with the healthy control and in HCC patients with HCV
compared with corresponding patients with chronic liver disease.
Endocannabinoids anandamide and palmitylethanolamide showed
better sensitivity and specificity as potential biomarkers to
distinguish the HCC from cirrhosis associated with HCV infection
[35]. The UPLCmetabonomics was also used to identify andmeasure
the metabolic profile of GCA in HCC patients. HCC patients had in-
creased urinary GCA which was associated with changes in primary
bile acid biosynthesis, secondary bile acid biosynthesis and bile se-
cretion [36]. UPLC-based fecal metabonomics were performed on
the liver cirrhosis and HCC patients and healthy volunteers. CDCA
dimeride, urobilin, urobilinogen, 7-ketolithocholic acid, LPC(18:0)
and LPC(16:0) were considered as potential biomarkers with a
strong increase in LPCs and a dramatic decrease in bile acids and
bile pigments in patients with liver cirrhosis and HCC compared
with the healthy volunteers [37]. In addition, UPLC and linear trap
quadrupole-Orbitrap XL-MS platform were used to analyze endoge-
nous metabolites in the homogenate of central tumor tissue, adja-
cent tissue, and distant tissue obtained from 10 HBV-related HCC
patients [38]. Five metabolites quinaldic acid, β-sitosterol,
arachidyl carnitine, oleamide and tetradecanal were observed for
the first time. Nine metabolite lysophosphatidylethanolamines,



Table 1
UPLC-based metabolomic applications for discovering biomarkers of diseases in clinical
chemistry.

Experimental conditions Application Biological
medium

Reference

UPLC–QTOF/MS
UPLC–QqQLIT/MS
UPLC–QqQ/MS

HCC with liver cirrhosis Serum [27]

UPLC–MS HCC Serum [28]
UPLC–QTOF/MS
GC–TOF/MS

HCC Serum, Urine [29]

UPLC–QTOF/MS UPLC–
MS/MS

HCC Serum [30]

UPLC–QTOF/MS
UPLC–QqQLIT/MS

HCC Serum [31]

UPLC–QTOF/MS HCC from liver cirrhosis Serum [32]
RRLC–QTOF/MS HCC and CLD Serum [33]
UPLC–QTOF/MS HCC Urine [34]
UPLC–QTOF/MS
HPLC–TQ/MS

HCC with HBV or HCV Serum [35]

UPLC–QTOF/HDMS/MSE HCC Urine [36]
UPLC–QTOF/MS HCC and liver cirrhosis Feces [37]
UPLC–LTQ Orbitrap
XL-MS

HCC Liver tissue [38]

UPLC–QTOF/MS
UPLC–TQ/MS
GC–TOF/MS

HCC Plasma [41]

UPLC–QTOF/MS
GC–TOF/MS

Hepatitis B cirrhosis Urine [42]

UPLC–QTOF/MS Acute and chronic liver
failure

Plasma [43]

UPLC–QTOF/MS Liver cirrhosis Serum [44]
UPLC–QTOF/HDMS/MSE HBV Urine [45]
UPLC–QTOF/MS Primary biliary cirrhosis Serum [46]
UPLC-QTOF/MS Liver transplantation Bile [47]
UPLC–QTOF/MS Lung cancer Plasma [53]
UPLC–QTOF/MS Lung cancer Plasma [54]
RRLC–QTOF/MS Lung cancer Urine [55]
UPLC–HILIC-QTOF/MS Lung cancer Plasma [58]
UPLC–Orbitrap MS
GC–MS

Lung cancer Serum, Plasma [59]

UPLC–QTOF/MS Pneumonia Plasma, Urine [60]
UPLC–QTOF/MS Colorectal cancer Urine [64]
UPLC–QTOF/MS
GC–TOF/MS

Colorectal cancer Serum [65]

UPLC–QTOF/MS
GC–TOFMS

Colorectal cancer Serum [66]

UPLC–QTOF/MS
SPE-HPLC

Colorectal cancer Urine [67]

UPLC–QTOF/MS Colorectal cancer Colon [68]
UPLC–QTOF/MS Intestinal fistulas Urine [69]
UPLC–LTQ/MS
GC–MS

Prostate cancer Plasma [70]

UPLC–QTOF/MS Ovarian cancer Serum [72]
UPLC–QTOF/MS Ovarian cancer Plasma [73]
UPLC–QTOF/MS Chronic renal failure Serum [74]
UPLC–QTOF/MS Acute kidney injury Urine [75]
UPLC–QTOF/MS Renal nephrolithiasis Urine [78]
UPLC–QTOF/MS
GC × GC–TOF/MS

Autoimmune diabetes Serum [80]

UPLC–MS/MS
1H NMR

Type 1 diabetes Plasma [81]

UPLC–QTOF/MS Type 2 diabetes Serum [85]
UPLC–QTOF/MS
1H NMR

Type 2 diabetes Serum [86]

UPLC–QTOF/MS
GC–MS
1H NMR

Type 2 diabetes Serum [87]

HILIC/UHPLC–MS
RP/UHPLC–MS

Alzheimer's disease Cerebrospinal
fluid

[94]

HILIC/UHPLC–MS Alzheimer's disease CSF, Plasma [95]
UPLC–QTOF/MS Cerebral infarction Serum [99]
UPLC–QTOF/MS Acute cerebral infarction Plasma [101]
UPLC–QTOF/MS
GC × GC–TOF/MS

Schizophrenia Serum [107]

UPLC–QTOF/MS
1H NMR

Schizophrenia Plasma [111]
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glycerophosphocholine, LPCs, CDCA glycine conjugate and L-
phenylalanine had been reported as serum metabolite biomarkers
for HCC diagnosis in previous research [39–41].

Urinary metabonomics using GC–TOF/MS and UPLC–QTOF/MS
was carried out to study post-hepatitis B cirrhosis patients. The
study showed significant changes in α-hydroxyhippurate, tyrosine-
betaxanthin, 3-hydroxyisovalerate, canavaninosuccinate, estrone, and
glycoursodeoxycholate among cirrhotic patients reflecting disturbance
of amino acid, bile acids, hormonal and intestinal microbial metabolism
[42].

Liver cirrhosis and chronic liver diseases
Liver failure induced byHBV is a severe diseasewith a highmortality

rate. Plasma was employed to investigate metabonomics in acute-on-
chronic liver failure patients. LPCs, primary fatty acid amides and conju-
gated bile acids were identified. LPCs and conjugated bile acids were
found to be associated with survival whereas primary fatty acid amides
represented risk factors [43]. Serum metabonomics was analyzed from
control subjects and patients with alcoholic cirrhosis or HBV-induced
cirrhosis. Decreased serum LPCs and increased serum GCA, GCDCA,
hypoxanthine and stearamide were observed in cirrhosis patients and
are considered common biomarkers for hepatic cirrhosis. Oleamide
and myristamide were increased in patients with alcoholic cirrhosis
but were decreased in those with HBV-induced cirrhosis. These could
be specific biomarkers for differential diagnosis between alcohol- and
HBV-induced hepatic cirrhosis [44]. Eleven urinary metabolites were
identified potential predictors of progression of HBV-related liver
disease. The biotin sulfone, 5-oxo-heneicosanoic acid, D-glucosaminide
and 2-methylhippuric acid were effective for the diagnosis of human
HBV [45].

Primary biliary cirrhosis and primary sclerosing cholangitis are two
cholestatic diseases characterized by hepatic accumulation of bile
acids. Serum metabonomics was carried out to explore patients with
primary biliary cirrhosis, with severe pruritus, and without pruritus
and healthy controls. More than 400 serummetabolites were identified
from patients with primary biliary cirrhosis. The metabolic profile of
patients with primary biliary cirrhosis and pruritus was characterized
by a significant change in the lipid metabolites, particularly in the
ceramides, sphingomyelins and LPCs [46]. Bile flow restoration is a
crucial step in the recovery process following liver transplantation.
UPLC metabonomics has been conducted to monitor total bile finger-
print during human liver transplantation. Ten major conjugated
bile acid salts were measured and significantly increased TCA and
taurochenodeoxycholic acid (TCDCA) were observed after transplanta-
tion. Bile acid ratios in the donor liver at the pre-transplant and post-
transplant stage may be important and that profiling of secreted bile
after transplantation may aid clinical assessment and progress post-
transplantation [47].

It has been reported that the abnormal bile acids and lyso-
phospholipids are associated with liver cirrhosis and hepatitis [48].
Conjugated bile acids can bind lipids, cholesterol and fat-soluble vita-
mins. GDCAwas reported to play an important role in the detoxification
of lipophilic compounds [49]. Decreased serum bile acids have been
related to the accumulation of toxic and even carcinogenic bile acid in
liver thatmay be caused by the alteration in the bile acid transport path-
way [50]. GCDCAhas been reported as an inducer of apoptosis in human
hepatocyte [51]. Abnormality of bile acid biosynthesis leads to develop-
ment and progression of liver cancer [52].

Lung cancer and pneumonia

Lung cancer
Lung cancer is one of the most common cancers in the world, but

reliable clinical biomarkers that can help to diagnose and assess progno-
sis of the disease at an early stage are lacking and urgently needed.
UPLC-based metabonomics was used to find potential biomarkers by



Fig. 2. Typical urinary total ion chromatograms separated on (a) reversed-phase liquid chromatography and (b) hydrophilic interaction chromatography from patients with liver cancer.
Several metabolites marked with an arrow were not retained on reversed-phase column but well separated on a hydrophilic interaction column.
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comparing serum samples from lung cancer patients with healthy
volunteers. LPC(16:0), isomer of LPC(16:0), LPC(18:0), LPC(18:1) and
LPC(18:2) were identified as specific biomarkers [53,54]. Decreased
LPCs may be explained by Lands' cycle pathway. In lung cancer, cell
proliferation is accompanied by a high metabolic state, and abnormal
LPCAT1 results in the reduction of LPCs. Other investigators developed
a rapid resolution liquid chromatography–mass spectrometry (RRLC–
MS) for global metabolic profiling of the urine in lung cancer patients.
Eleven potential biomarkers including amino acids, nucleosides and
indole were identified. The study revealed elevated amino acid and
nucleoside metabolism as well as protein degradation in patients with
lung cancer [55]. Previous studies indicated increased urinary aromatic
amino acids that might be caused by derangement of protein metabo-
lism in cancer patients [56]. Indoxyl is metabolic end-products of the
tryptophan's metabolite indole, both of which have been implicated as
etiological factors in development and growth of cancer. Significant
variations of modified nucleosides have been demonstrated in various
types of cancer due to the regulated cell turnover rate, activity of
modifying enzymes, and RNA/DNAmodifications [57]. In addition, high-
ly polarmetaboliteswere also compared in the plasma from lung cancer
patients and healthy volunteers. Nineteen metabolites showed a signif-
icant difference between lung cancer patients and healthy controls. This
method was also applied to the effect of radiotherapy on highly polar
metabolites. Nineteen metabolites were altered at different points
during the course of radiotherapy [58]. Serum and plasma
metabonomics were developed and tested in patients with small-cell
lung cancer. Plasma glycerophosphocholines, erythritol, creatinine,
hexadecanoic acid and glutamine were associated with life expectancy
and response to the clinical management in small-cell lung cancer
patients [59].
Pneumonia
Pneumonia remains the leading cause of death in young children

worldwide. Increased plasma uric acid, hypoxanthine and glutamic
acid and decreased L-tryptophan and adenosine-5′-diphosphate were
observed in pneumonia patients. This was associated with decreased
urinary uric acid and L-histidine in these patients [60]. Based on the
previous studies, the identified metabolites are important for the host's
response to infection through antioxidant, inflammatory, and
antimicrobial pathways and energy metabolism [61–63].

Gastrointestinal diseases

Colorectal cancer (CRC) is the third most common cancer world-
wide, and its prognosis if not detected at early stages is poor. Both
targeted and untargeted metabonomics have been used to identify
biomarkers of CRC. UPLC–MS was applied to explore urinary metabolic
profile in patients with CRC undergoing colorectal resection. The study
showed a significant increase in two compounds with molecular
weights of 283 and 234 in patients before surgery compared with
healthy volunteers. The levels of these metabolites significantly
decreased after the surgical resection of the tumor [64].

GC–MS and UPLC–MS-based metabonomics developed and applied
on the serum from CRC patients revealed perturbation of glycolysis,
arginine and proline metabolism, fatty acid metabolism and oleamide
metabolism and its association with CRC morbidity [65]. Tricarboxylic
acid cycle, urea cycle, glutamine, fatty acids, and gut flora metabolism
were disturbed [66], which are consistent with previous findings [67].
Other studies showed that identified metabolites form CRC patients
are related to glutamine metabolism, fatty acid oxidation, nucleotide
biosynthesis and protein metabolism [68]. UPLC–MS method was



22 Y.-Y. Zhao et al. / Clinical Biochemistry 47 (2014) 16–26
developed and validated for the targeted profiling of eight relevant
eicosanoids and the major metabolic precursor, arachidonic acid in the
human colon. Arachidonic acid, prostaglandin E2, prostacyclin and
12-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid were found to be
significantly different between cancerous and normal mucosae [69].
The previous studies also showed that eicosanoids such as prostaglan-
dins, leukotrienes, thromboxanes and hydroxy eicosatetraenoic acids
play an important role in promoting inflammation in CRC patients.

Urogenital diseases

Prostate cancer
UPLC-based metabonomics has been applied to identify biomarkers

for non-invasive diagnosis andprognosis, and aggressiveness of urogen-
ital cancers. One of the major biomarker discovery studies in this field
was the unbiased metabonomics performed using plasma, tissue and
urine from patients with biopsy proven prostate cancer and biopsy
negative controls [70]. More than 1126 metabolites were identified to
be related to prostate cancer using two complementary GC–MS and
UPLC–MS methods. The tissue metabonomics was able to distinguish
normal prostate, localized prostate cancer, and metastatic prostate
cancer. For 628 tissue metabolites, sixty metabolites were found in
localized and/or metastatic tumors but not in normal prostate. Signifi-
cantly increased sarcosine, uracil, kynurenine, glycerol-3-phosphate,
leucine and proline levels were observed from benign to clinically local-
ized prostate cancer andmetastatic prostate cancer. Sarcosinewas high-
ly increased in tissues during prostate cancer progression tometastasis.
Sarcosinewas identified as a potential candidate for early disease detec-
tion and marker of aggressiveness of prostate cancer. However, moni-
toring of prostatic tissue sarcosine is of limited interest since
histological examination of the available tissue is a more powerful tool
for the diagnosis and the prognosis of cancer. For this reason the authors
focused on urine sarcosine. They found that sarcosine was detectable in
the urine at trace levels and had a modest but significant predictive
value for prostate cancer diagnosis and disease progression. In addition
to being a biomarker of prostate cancer, Sarcosine serves as a cytokine
that contributes to the progression of the disease. In fact using molecu-
lar approaches and targeting metabolic pathways, the authors demon-
strated the role of sarcosine in modulating cancer cell invasion and
migration, making it a potential target for development of novel thera-
peutic interventions. Another study demonstrated that lipid metabo-
lism and insulin resistance were decreased in this condition [71].

Ovarian cancer
The UPLC-based untargeted metabonomics has been conducted to

identify and validate novel metabolic biomarkers for the epithelial
ovarian cancer (EOC) and benign ovarian tumors (BOT). The study
revealed increased 27-nor-5β-cholestane-3,7,12,24,25 pentol glucuro-
nide (CPG), phenylalanine, GCA, propionylcarnitine, Phe-Phe and
LPC(18:2) levels in EOC compared to the BOT specimens and as such
could be considered as potential biomarkers. In particular tissue CPG
level was significantly higher in EOC tissue compared with BOT tissue
and increased CPG level was found in early stages of EOC and in all of
its three histological types. For this reason CPG was considered to be
complementary to CA125 and a relevant biomarker for detection of
early stages of EOC [72]. UPLC–MSmetabonomics has also been applied
to differentiate between EOC and BOT. Decreased plasma L-tryptophan,
LPC(18:3), LPC(14:0) and 2-piperidinone were observed in EOC
patients when compared to the BOT patients. Tryptophan and
LPCs have been suspected to participate in cancer progression, and
2-piperidinone might be a novel biomarker for EOC [73]. Accelerated
L-tryptophan degradation has been observed in the blood of EOC
patients when compared to the healthy controls [74]. A similar
phenomenon has been observed in other malignant tumors. The abnor-
mal levels of LPCs are due to binding and activation by the specific cell-
surfaceG protein-coupled receptors,which initiate cell growth, prolifer-
ation, and survival pathways [75].

Chronic kidney disease (CKD)
UPLC-based metabonomics was employed to investigate the serum

from chronic renal failure patients. Increased LPC(18:0), phenylalanine
and kynurenine and decreased LPC(16:0), LPC(18:1) and tryptophan
were observed in chronic renal failure patients [76]. UPLC-based
metabonomics was developed to analyze the plasma samples from
end-stage renal disease patients. 1-Methylinosine was found to be an
effective candidate biomarker to estimate adequacy of a hemodialysis
regimen [77]. One study reported that urinary hypoxanthine was the
most significant metabolite in children with nephrolithiasis. However,
other investigator demonstrated that proline and 5C-aglycone were
barely detected in the urine of these patients but were abundant in
the healthy controls [78]. Based on the 1H NMR and UPLC–MS/MS
techniques, urine metabolome was analyzed from 15 patients with
CKD and 15 healthy controls to find a classification pattern clearly indic-
ative of CKD. Seven urinary metabolites glutamate, 5-oxoproline,
guanidoacetate, taurine, phenylacetylglutamine, trimethylamine
N-oxide and citrate differed between CKD and non-CKD urine samples
[79].

Metabolic diseases

Type 1 diabetic (T1D)
Insulin is as a major postprandial hormonewith profound effects on

carbohydrate, lipid, and protein metabolism. Serum metabonomics
indicated that specific metabolic disturbances precede β-cell autoim-
munity in humans and can be used to identify T1D children [80].
These findings suggest alternative metabolism-related pathways
as therapeutic targets to prevent diabetes. Another UPLC-based
metabonomic study has revealed significant perturbations in plasma
amino acids and amino acid metabolites during insulin deprivation in
T1D. Several known metabolic pathways are perturbed in acute insulin
deprivation T1D [81]. Plasma branched chain amino acids are increased
in untreated T1D [82] and have been attributed to the breakdown of
muscle protein and release of amino acids in the circulation [83] and
liver [84].

Type 2 diabetes (T2DM)
T2DM and its attendant complications have emerged as a major

public health problemworldwide. T2DM is a typical metabolic disorder
characterized by insulin resistance and relative deficiency of insulin
production. Fatty acidmetabolism and free fatty acid levels aremarked-
ly altered in diabetic patients [85]. Increased plasma acylcarnitines and
tryptophan and decreased plasma LPC(16:0), LPC(18:0), LPC(18:2) and
phenylalanine were reported in treated T2DM patients [86]. Another
study has shown changes in plasma amino acid and perturbation of
metabolic pathways linked to 3-indoxyl sulfate, glycerophospholipids,
free fatty acids and interaction with the bile acids in diabetic patients
[87]. Fatty acids can improve insulin secretion in the basal or glucose
stimulated states and fatty acids are essential for stimulus-secretion
coupling in β-cells [88]. However long-term elevation of free fatty
acids can induce or aggravate insulin resistance and contribute to the
development and progression of type 2 diabetes [89]. Extensive studies
have shown that high level of circulating free fatty acids can inhibit
insulin receptor substrates (IRSs) function [90,91].

Neuropsychiatric diseases

Alzheimer's disease (AD)
AD is a neurodegenerative disorder which is characterized by

progressive loss of cognitive functions and is the most common cause
of dementia among older people. The results of the UPLC-based
metabonomic studies in AD have been summarized in several published
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reviews [92,93]. UPLC–MS metabonomics used to investigate cerebro-
spinal fluid (CSF) has revealed significant metabolic differences in
subjects during the course of AD progression [94]. Mild cognitive
impairment (MCI) is considered as a transition phase between normal
aging and AD and its presence increases the risk of developing AD.
UPLC–MS was applied to plasma and CSF from patients with different
AD severity. Plasma lysine and CSF Krebs cycle were significantly affect-
ed in individuals with MCI compared to those with normal cognitive
function. Cholesterol and sphingolipids metabolisms were altered in
both CSF and plasma of AD patients. Other metabolic pathways includ-
ing energy metabolism, Krebs cycle, mitochondrial function, neuro-
transmitter and amino acid metabolism and lipid biosynthesis were
disturbed in MCI and AD patients. Plasma polyamine and lysine, and
tryptophan metabolism and aminoacyl-tRNA biosynthesis and CSF
cortisone and prostaglandin 2 biosynthesis and metabolism could dis-
criminate between different groups [95]. Abnormal neuronal networks
and neurotransmitter systems are one of the main dysfunctions in AD.
Many studies have demonstrated that synaptic malfunction and synap-
tic loss occur prior to the development of amyloidβ-plaques and neuro-
fibrillary tangles [96]. These alterations of synaptic function are directly
related to deterioration of synaptic strength and synaptic plasticity [96].
Acetylcholine, dopamine, serotonin and noradrenalin are primarily
affected in AD with subsequent loss of the associated neurons [97].
Lysine, is a strictly ketogenic amino acid that is required for the synthe-
sis of L-carnitine. L-Carnitine is the sole transporter of fatty acids to
mitochondria for energy production and carnitine level has been
shown to be lower in CSF of MIC-AD and AD patients than in CSF from
non-AD subjects [98].

Stroke
Cerebral infarction is an acute neurological disorder which has

serious consequences. Serum metabonomics was obtained from
cerebral infarction patients and healthy controls. Folic acid, cysteine,
S-adenosyl homocysteine and oxidized glutathione were identified as
potential biomarkers of cerebral infarction [99]. These biomarkers are
associated with the conjoined activated one-carbon and the folate
cycle which are involved in protein and DNA stabilization, synthesis of
various molecules, and protection against toxins and reactive oxygen
metabolites [100].

UPLC-based metabonomics was employed to investigate non-
dampness-phlegm and dampness-phlegm patients. LPC(18:2) and
LPC(20:3) were lower in dampness-phlegm than in non-dampness-
phlegm stroke pattern. However, increased LPC(18:0) and LPC(16:0)
were observed in dampness-phlegm pattern [101]. The results demon-
strated that plasma LPCs with polyunsaturated fatty acid were associat-
ed with dampness-phlegm pattern and suggested that variation of
plasma lipid profiles could serve as potential biomarker for diagnosis
of dampness-phlegm pattern [102]. Previous reports suggested the
possibility of relationships between plasma LPC levels and dampness-
phlegm pattern. It was known that dampness-phlegm pattern was re-
lated to obesity and hyperlipidemia [103,104], and some metabonomic
analyses showed that plasma LPC levels were also associated with
obesity [105,106].

Schizophrenia
UPLC–MS and two-dimensional GC–MS serum metabonomics were

applied to schizophrenia patients who had significantly higher lipid and
amino acid levels compared with the health controls [107]. Previous
studies demonstrated that metabolic abnormalities of schizophrenia
were related to glucoregulatory processes and proline metabolism
[108–110]. A combined UPLC–MS and 1H NMR-based metabonomics
was used to study patients with new-onset neuroleptic-naive schizo-
phrenia before and after a 6-week risperidone monotherapy. A group
of healthy control individuals served as controls. The study revealed a
disturbance in neurotransmitters and their metabolites together
with 32 identified biomarkers that underpin pathways involved in
neurotransmitters, amino acids, glucose, lipids, and energymetabolism,
as well as antioxidant defense system, bowel microflora and endocrine
system in schizophrenic patients. Bonferroni analysis of the data
showed that among these metabolites pregnanediol, citrate and
α-ketoglutarate were significantly associated with symptomatology of
schizophrenia andmay be useful biomarkers formonitoring therapeutic
efficacy [111].

Concluding remarks and perspectives

Metabonomics is a potent and promising new approach that allows
the assessment of global low-molecular-weight endogenous and exog-
enous metabolites in a biological system and which shows great poten-
tial in investigation of physiological status, discovery of biomarkers,
identification of metabolic pathways, and diagnosis of diseases and
assessment of drug therapy and safety. The use of UPLC–QTOF/MS
with a MSE data collection technique has progressed and is now very
popular because it is versatile, sensitive and provides comprehensive in-
formation about low-molecular-weight metabolites. The aim of this re-
view was to introduce UPLC-based metabonomics and to present and
discuss its key applications focusing on disease biomarkers in clinical
chemistry. The clinical chemistry of application of metabonomics for
study of the above-mentioned diseases has great potential for disease
diagnosis and newbiomarker discovery. Analysis of the key endogenous
metabolites in the body fluids has become an important part of improv-
ing the diagnosis, prognosis, and therapy of human diseases.
Metabonomics could help to discover early biochemical changes of dis-
ease and understand themechanismof disease occurrence and progres-
sion on the metabolic level and provide information for the
identification of early and differential metabolic markers. The clinical
application ofmetabonomics could provide comprehensive information
and improve the feasibility of high-throughput patient screening for di-
agnosis of disease status or risk evaluation. Indeed, identification of clin-
ically relevant metabolites that may be regarded as potential new
biomarkers will also help with the evaluation of prognosis and contrib-
ute to the development of new therapeutic strategies.

The metabolome is characterized by a large diversity of chemical
structures requiring diverse analytical platforms (1H NMR, UPLC, GC,
MS, etc.) to reach its comprehensive coverage. Despite recent techno-
logical and conceptual improvements, metabonomics appears to be
still in its infancy and sample preparation, acquisition of metabolic
profiling, metabolite detection, statistical analyses and biomarker iden-
tification is a bottleneck in itself. How to acceleratemetabonomics stud-
ies is, therefore, a challenging issue. The published papers in the field of
clinical metabonomics have remained in the discovery phase and most
of the identified potential biomarkers have not been adopted in routine
clinical practice. Due to the complexity and various factorial interactions
of diseases, the situation seems difficult in the field of clinical chemistry
for which multiplexed targeted approaches provide the clinician with
information on a limited number of metabolites by usingMS/MS analy-
sis performed on triple quadruple MS. Furthermore, recent improve-
ments in UPLC–QTOF/MS/MSE have improved the efficacy of global
approaches by facilitating the identification of metabolites of interest
thanks to high-resolution and accurate mass measurements, which
Q-TOF/MS/MSE can simultaneously acquire MS and MS/MS (MSE) data
of all the metabolites through alternating between high and low colli-
sion energies during a single chromatographic run [112–120].

Despite significant advances there are several limitations of current
technology including lack of a single method for extensive analysis of
the entire metabolome, limited spectral libraries and databases, and
disadvantages of current metabonomic software for data processing
and biomarker extraction. Further research is needed before finding a
reasonable method for metabolite analysis that can replace or comple-
ment the traditional and non-specific diagnostic method or technology
in clinical chemistry. Future technological development combined with
more robust data analysis and bioinformatic tools will help to overcome
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the current limitations and fully integrate small molecule biochemistry
with systems biology. Because metabonomics is complementary to
genomics, transcriptomics and proteomics, full integration of four
omics technologies will ultimately improve personalized molecular
diagnosis and disease treatment. Further improvements in the sensitiv-
ity and selectivity of analytical techniques and routine use of novel
methods are certain to find novel targets in the future.
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