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a b s t r a c t

This paper proposes a new method for combining forecasts based on complete subset regressions. For a
given set of potential predictor variables we combine forecasts from all possible linear regression models
that keep the number of predictors fixed. We explore how the choice of model complexity, as measured
by the number of included predictor variables, can be used to trade off the bias and variance of the
forecast errors, generating a setup akin to the efficient frontier known from modern portfolio theory.
In an application to predictability of stock returns, we find that combinations of subset regressions can
producemore accurate forecasts than conventional approaches based on equal-weighted forecasts (which
fail to account for the dimensionality of the underlying models), combinations of univariate forecasts, or
forecasts generated by methods such as bagging, ridge regression or Bayesian Model Averaging.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Methods for controlling estimation error in forecasting prob-
lems that involve small sample sizes and many potential predictor
variables have been the subject of much recent research.1 One les-
son learned from this literature is that a strategy of including all
possible variables is typically too profligate; given the relatively
short data samples typically available to estimate the parameters
of economic forecasting models, it is important to limit the num-
ber of parameters that have to be estimated or in otherways reduce
the effect of parameter estimation error. This has led to the prepon-
derance of forecast methods such as shrinkage or ridge regression
(Hoerl and Kennard, 1970), model averaging (Bates and Granger,
1969; Raftery et al., 1997), bagging (Breiman, 1996), and the Lasso
(Tibshirani, 1996), which accomplish this in different ways.

This paper proposes a new method for combining forecasts
based on complete subset regressions. For a given set of potential
predictor variables we combine forecasts from all possible linear
regression models that keep the number of predictors fixed. For
example, with K possible predictors, there are K unique univariate
models and nk,K = K !/((K − k)!k!) different k-variate models for
k ≤ K . We refer to the set of models for a fixed value of k as a
complete subset and propose to use equal-weighted combinations

✩ We thank the Editor, Herman van Dijk, and two anonymous referees for many
constructive and helpful comments.
∗ Correspondence to: UC San Diego, Rady School of Management, 9500 Gilman

Drive, La Jolla, CA 92093-0553, United States.
E-mail address: atimmermann@ucsd.edu (A. Timmermann).

1 See, e.g., Stock and Watson (2006) for a review of the literature.
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of the forecasts from all models within these subsets indexed by k.
Moreover, we show that an optimal value of k can be determined
from the covariancematrix of the potential regressors and so lends
itself to being selected recursively in time.

Special cases of subset regression combinations have appeared
in the empirical literature. For example, Rapach et al. (2010) con-
sider equal-weighted combinations of all possible univariate eq-
uity premium models and find that they produce better forecasts
of stock returns than a simple no-predictability model. This corre-
sponds to setting k = 1 in our context. Papers such as Aiolfi and
Favero (2003) consider equal-weighted combinations of forecasts
of stock returns from all possible 2K models. While their combina-
tion scheme is not directly nested by our approach, this can nev-
ertheless be obtained from a combination of the individual subset
regression forecasts.

From a theoretical perspective, we show that subset regression
combinations are akin to a complex version of shrinkage which, in
general, does not reduce to shrinking the Ordinary Least Squares
(OLS) estimates coefficient by coefficient. Rather, the adjustment
to the coefficients depends on all least squares estimates and is a
function of both k, the number of variables included in the model,
and K , the total number of potential predictors. Only in the special
case where the covariance matrix of the predictors is orthonormal
does subset regression reduce to ridge regression or, equivalently,
to a Bayes estimator with a specific prior distribution. For this
special case we derive the exact degree of shrinkage implied by
different values of k and thus formalize how k, the number of
parameters in the conditional mean equation, is equivalent to
other measures of model complexity that have previously been
proposed in the literature.

http://dx.doi.org/10.1016/j.jeconom.2013.04.017
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jeconom.2013.04.017&domain=pdf
mailto:atimmermann@ucsd.edu
http://dx.doi.org/10.1016/j.jeconom.2013.04.017
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We also show that the weights implied by subset regression re-
flect omitted variable bias in a way that can be useful for forecast-
ing. This holds particularly in situations with strongly positively
correlated regressors since the subset regression estimates account
for the omitted predictors.

An attractive property of the proposed method is that, unlike
the ridge estimator and conventional Bayesian estimators, it does
not impose the same amount of shrinkage on each coefficient.
Unlike model selection methods, it also does not assign binary
zero–one weights to the OLS coefficients. Other approaches that
apply flexible weighting to individual predictors include bagging
(Breiman, 1996) which applies differential shrinkage weights to
each coefficient, the adaptive Lasso (Zou, 2006) which applies
variable-specific weights to the individual predictors in a data-
dependent adaptive manner, the Elastic Net (Zou and Hastie,
2005; Zou and Zhang, 2009) which introduces extra parameters
to control the penalty for inclusion of additional variables, and
Bayesian methods such as adaptive Monte Carlo (Lamnisos et al.,
2012).

To illustrate the subset regression approach empirically we
consider, like many previous studies, predictability of US stock
returns. In particular, following Rapach et al. (2010), we study
quarterly data on US stock returns in an application that has 12
potential predictor variables and so generates subset regressions
with k = 1, 2, . . . , 12 predictor variables. We find that subset
regression combinations that use k = 2, 3, or 4 predictors produce
the lowest out-of-sample mean squared error (MSE)-values.
Moreover, these subset models generate superior predictive
accuracy relative to the equal-weighted average computed across
all possible models, a benchmark that is well-known to be difficult
to beat, see Clemen (1989). We also find that the value of k in the
subset regression approach can be chosen recursively (in pseudo
‘‘real time’’) in such amanner that the approach produces forecasts
with lower out-of-sample MSE-values than those produced by
recursive versions of Bayesian Model Averaging, ridge regression,
Lasso, or bagging.

The outline of the paper is as follows. Section 2 introduces
the subset regression approach and characterizes its theoretical
properties, Section 3 presents a Monte Carlo simulation study,
Section 4 conducts the empirical analysis of US stock returns, while
Section 5 concludes.

2. Theoretical results

This section presents the setup for the analysis and derives
theoretical results for the proposed complete subset regression
method.

2.1. Setup

Suppose we are interested in predicting the univariate (scalar)
variable yT+1 using a linear regression model based on observing
K predictors xT ∈ RK , and a history of data, {yt+1, xt}T−1

t=0 . Let
E[xtx′

t ] = ΣX for all t and, without loss of generality, assume that
E[xt ] = 0 for all t . To focus on regressions that include only a
subset of the predictors, define β to be a K × 1 vector with slope
coefficients in the rows representing included regressors and zeros
in the rows of the excluded variables. Let β0 be the pseudo true
value for β , the population value of the projection of y on X , where
y = (y1, . . . , yT ) is a T×1 vector andX = (x0, x1, . . . , xT−1)

′ stacks
the x observations into a T × K matrix. Denote the generalized
inverse of a matrix A by A−. Let Si be a K × K matrix with zeros
everywhere except for ones in the diagonal cells corresponding to
included variables, so that if the [j, j] element of Si is one, the jth
regressor is included, while if this element is zero, the jth regressor
is excluded. Sums over i are sums over all permutations of Si.
We propose an estimation method that uses equal-weighted
combinations of forecasts based on all possiblemodels that include
a particular subset of the predictor variables. Each subset is defined
by the set of regressionmodels that include a fixed (given) number
of regressors, k ≤ K . Specifically, we run the ‘short’ regression of
yt on a particular subset of the regressors, then average the results
across all k dimensional subsets of the regressors to provide an
estimator, β̂ , for forecasting, where k ≤ K . With K regressors
in the full model and k regressors chosen for each of the short
models, there will be subset regressions to average over. In turn,
each regressor gets included a total of nk−1,K−1 times.

As an illustration, consider the univariate case, k = 1, which
has n1,K = K short regressions, each with a single variable. Here
all elements of β̂i are zero except for the least squares estimate of yt
on xit in the ith row. The equal-weighted combination of forecasts
from the individual models is then

ŷT+1 =
1
K

K
i=1

x′

T β̂i. (1)

Following common practice, our analysis assumes quadratic or
mean square error (MSE) loss. For any estimator, we have

E


yT+1 − β̂ ′

T xT
2

= E


yT+1 − β ′

0xT + (β0 − β̂T )
′xT
2

= E

εT+1 + (β0 − β̂T )

′xT
2

= σ 2
ε


1 + T−1σ−2

ε E

T (β̂T − β0)

′xT x′

T (β̂T − β0)

. (2)

Here εT+1 is the residual from the population projection of yT+1
on xT and σ 2

ε is its variance. We concentrate on the last term since
the first term does not depend on β̂ . Hence, we are interested in
examining σ−2

ε E

(β̂T − β)′xT x′

T (β̂T − β)

.

2.2. Complete subset regressions

Subset regression coefficients canbe computed as averages over
least squares estimates of the subset regressions.When the covari-
ates are correlated, the individual regressions will be affected by
omitted variable bias. However, as we next show, the subset re-
gression estimators are themselves approximately a weighted av-
erage of the components of the full regression OLS estimator, β̂OLS.

Theorem 1. Assume that as the sample size gets large β̂OLS →
p β0 for

some β0 and T−1X ′X →
pΣX . Then, for fixed K , the estimator for the

complete subset regression, β̂k,K , can be written as

β̂k,K = Λk,K β̂OLS + op(1),

where

Λk,K ≡
1

nk,K

nk,K
i=1


S ′

iΣXSi
−
(S ′

iΣX ).

A proof of this result is contained in the Appendix.
This result on the relationship between β̂k,K and the OLS esti-

mator makes use of high level assumptions that hold under very
general conditions on the data; see White (2001, Chapter 3) for
a set of sufficient conditions. Effectively, any assumptions on the
model that result in the OLS estimators being consistent for their
population values and asymptotically normal will suffice. For
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Fig. 1. Degree of shrinkage measured by λk,K = 1 −
nk,K−1
nk,K

as a function of k
(the number of included predictors) for three values of K (the number of possible
predictors) assuming a diagonal covariance matrix.

example, the result allows {Xt} to be dependent, mixing with a
sufficiently small mixing coefficient, and even allows E[X ′

tXt ] to be
heterogeneous over time, in which caseΣX is the average variance
covariance matrix, although, for simplicity, we assume that ΣX is
constant over time. Ruled out are unit roots in the x- variables, al-
though predictor variables are routinely transformed to be station-
ary in forecast experiments.

In general, Λk,K is not diagonal and hence the coefficients
β̂k,K are not (approximately) simple OLS coefficient-by-coefficient
shrinkages. Rather, the subset regression coefficients are functions
of all the OLS coefficients in the regression. Insight into how the
method works as a shrinkage estimator can be gained from the
special case when the covariates are orthonormal.2 In this case,
β̂k,K = λk,K β̂OLS, where λk,K = 1 − (nk,K−1/nk,K ) is a scalar and
so subset regression is numerically equal to ridge regression.3

To see this, note that for this special case β̂OLS = X ′ywhile each
of the subset regression estimates can be written β̂i = SiX ′y. The
complete subset regression estimator is then given by

β̂k,K =
1

nk,K

nk,K
i=1

β̂i

=
1

nk,K

nk,K
i=1

SiX ′y

=


1

nk,K

nk,K
i=1

Si


β̂OLS.

The result now follows by noting that the elements of
nk,K

i=1 Si are
zero for the off-diagonal terms, and equal the number of times
the regressor is included in the subset regressions for the diagonal
terms. In turn the diagonal terms equal nk,K minus the number of
times a regressor is excluded, which gives the result, noting that
the solution is the same for each diagonal.

2 We refer to subset regressions as similar to shrinkage although for some
configurations of the variance covariance matrix of the predictors and some OLS
estimates, subset regression will not actually shrink the coefficient estimates.
3 Equivalently, this case corresponds to a Bayes estimator under normality with

prior N(µ, γ−1
k,K σ

2
ε ), β̂ = (X ′X + γk,K I)−1(X ′y + γk,Kµ), prior mean µ = 0, and

γk,K = (1−λk,K )/λk,K . If the assumption on the regressors is weakened toΣX = IK ,
the same result holds asymptotically.
Several points follow from this result. First, the amount of
shrinkage implied by λk,K is a function of both k and K . As an
illustration, Fig. 1 plots λk,K as a function of k for the orthonormal
case. Higher curves represent smaller values of K , where K =

{10, 15, 20}. For any value of K , λk,K is a linear function of k that
increases to one. In fact, setting k = K corresponds to simply
running OLSwith all variables included. Further, as K increases, the
slope of the λk,K line gets reduced, so the amount of shrinkage is
decreasing for any k, the larger is K , the total number of potential
predictors. Essentially, the smaller k is relative to K , the greater
the amount of shrinkage. Effectively, the result relates shrinkage
provided by model averaging to shrinkage on the coefficients,
whereas a typical Bayesian approach would separate the two.

Second, in general Λk,K reduces to the ridge estimator, either
approximately or exactly, only when the regressors are uncorre-
lated. When this does not hold, subset regression coefficients will
not be simple regressor-by-regressor shrinkages of the OLS esti-
mates, and instead depend on the full covariance matrix of all re-
gressors. Specifically,Λk,K is not diagonal and each element of β̂ is
approximately a weighted sum of all of the elements in β̂OLS. The
weights depend not only on {k, K} but on all elements in ΣX , de-
notedΣij. For example, if K = 3 and k = 1, we have

Λ1,3 =
1
3


1

Σ12

Σ11

Σ13

Σ11
Σ12

Σ22
1

Σ23

Σ22
Σ13

Σ33

Σ23

Σ33
1

 . (3)

Each row of Λ1,3 is the result of including a particular subset re-
gression in the average. For example, the first row gives the first
element of β̂1,3 as aweighted sum of the OLS regressors β̂OLS. Apart
from the multiplication by 1/3, its own coefficient is given a rela-
tive weight of one while the remaining coefficients are those we
expect from omitted variable bias formulas. The effect of dividing
by n1,3 = 3 is to shrink all coefficients, including its own coeffi-
cient, towards zero.

For k > 1, each regressor gets included more often in the re-
gressions. This increases their effect on Λk,K through a higher in-
clusion frequency, but decreases their effect through the omitted
variable bias. Since the direct effect is larger than the omitted vari-
able bias, an increased k generally reduces the amount of shrink-
age. Of course, in the limit as k = K , there is no shrinkage and the
method is identical to OLS.

While we focus on one-period forecasts in our analysis, the
results readily go through for arbitrary horizons provided that the
direct approach to forecasting is used, i.e., current values of y are
projected on h-period lagged values of the predictors. Conversely,
the iterated approach to forecasting requires modeling a VAR
comprising both y and all x-variables and so is more involved.

2.3. Risk

We next examine the risk of the subset regression estimator.
Forecasting is an estimation problem and risk is the expected loss
as a function of the true (but unknown) model parameters. Under
MSE loss, risk amounts to the expected loss. In common with all
biased methods, for values of β0 far from zero, the risk is large
and so it is appropriate not to shrink coefficients towards zero.
Shrinkagemethods only add valuewhenβ0 is near zero. To capture
such a situation, we assume that β0 is local to zero. Specifically, we
assume that β0 = T−1/2σεb for some fixed vector b.

Under general, dependent data generating processes, the risk is
difficult to derive. However, if we restrict the setup to i.i.d. data
{yt+1, xt}, we get the following result.
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Fig. 2. Expected loss (risk) for different values of the local-to-zero parameters (b) forΣ = I (left) andΣ = Σ̂X (right), assuming K = 10 possible predictor variables.
Theorem 2. Assume that the data {yt+1, xt} are i.i.d., β0 = T−1/2

σεb, E[(β̂ − β0)
2
|xT+1] = E[(β̂ − β0)

2
], and T 1/2(β̂OLS − β)

→
d N(0,Σ−1

X ). Then, in large samples,

σ−2
ε E


T (β̂T − β)′ΣX (β̂T − β)


≈

K
j=1

ζj + b′(Λk,K − I)′ΣX (Λk,K − I)b, (4)

where ζj are the eigenvalues of Λ′

k,KΣXΛk,KΣ
−1
X .

The expected loss depends on many aspects of the problem.
First, it is a function of the variance covariance matrix through
both ΣX and Λk,K . Second, it depends on the dimension of the
problem, K , and of the subset regression, k. Third, it is a function of
the elements of b. Different trade-offs can be explored by varying
these parameters. Some will be very attractive when compared to
OLS, while others might not be. As in the simple orthogonal case,
the larger the elements of b are, the worse the complete subset
regression methods will perform.

For different choices of {K , k,ΣX , b}, we can compute the ex-
pected loss frontier as a function of k. If ΣX = I , so the regressors
are mutually orthogonal, (4) reduces to

σ−2
ε E


(β̂T − β)′ΣX (β̂T − β)


= λ2k,KK + (1 − λk,K )

2b′b, (5)

which depends on {K , k, b′b}. For fixed values of b′b and K , as k in-
creases, λk,K gets larger and the increase in the first term in (5) is
offset by the decrease in the second term in this equation. The ex-
tent of this offset depends on the relative sizes of K and b′b. As an
illustration of this, the left window in Fig. 2 plots the value of the
expected loss (5) as a function of k, for K = 10 and b′b = (1, 3, 4).
Each line corresponds to a separate value of b′b with larger inter-
cept on the x axis, the greater b′b is. Setting k = K = 10 yields OLS
loss, so all lines converge at that point. A variety of shapes are pos-
sible. If b′b is quite small, so that the regressors are not that useful
for forecasting, then a large amount of shrinkage, and hence a small
value of k, works best. Conversely, if b′b is large, larger values of k
become optimal.

In practice, different choices of k can be motivated by theo-
retical considerations. As always with shrinkage estimation, the
smaller b is expected to be, the more useful it is to apply strong
shrinkage. As we discuss above, the amount of shrinkage tends to
be greater, the smaller one chooses k. Since {k, K} are known and
ΣX can be estimated by T−1X ′X , (4) can be used to produce curves
such as those in the left window of Fig. 2 but relevant for the ap-
plication at hand. One can then choose k as the point at which
expected loss is lowest given reasonable choices for b. As an illus-
tration of this point, the right window of Fig. 2 uses data from the
application in Section 4 to estimate ΣX and shows expected loss
curves for b′b = 1, 2, or 3. Although the expected loss curve varies
quite a bit across different values of b′b, an interior optimal value
– corresponding to a minimal expected loss – around k = 2, 3, or
4 is obtained in all three cases.

2.4. Comparison with OLS and ridge

It is informative to compare the risk for subset regressions to
that of models estimated by OLS. In some cases, this comparison
can be done analytically. For example, this can be done for general
K when ΣX has ones on the diagonal and ρ elsewhere and k = 1,
corresponding to combinations of univariate models. First, note
that when b = 1K , a K -vector of ones, the risk for OLS regression
is K while for this case the risk of the subset regression method
reduces to

E[(yT+1 − β̂ ′

1,K xT )
2
] =

1
K


1 + (K − 1)ρ2

+ (ρ − 1)2

K − 1
K

2

(K + K(K − 1)ρ) . (6)

Hence, subset regressions produce lower risk than OLS for any
(K , ρ) pair for which

1
K


1 + (K − 1)ρ2

+ (ρ − 1)2

K − 1
K

2

× (K + K(K − 1)ρ) < K .

For small values of K this holds for nearly all possible correlations.
To illustrate this, Fig. 3 plots the ratio of the subset regression MSE
to the OLS MSE as a function of ρ, the correlation between the
predictors, and k, the number of predictors included. The figure
assumes that T = 100.Whenever the plotted value falls belowone,
the subset regression approach dominates OLS regression in the
sense that it produces lower risk. For any K ≤ 6, subset regression
always (for any ρ for which ΣX is positive definite) has a lower
risk than OLS based on the complete set of regressors. For K > 6,
we find that there is a small region with small values of ρ and
k = 1 forwhich the reverse is true, but otherwise subset regression
continues to perform better than OLS.

The figure thus illustrates that a simple equal-weighted average
of univariate forecasts can produce better forecasts than the
conventional multivariate model that includes all predictors, even
in situations where the univariate models are misspecified due to
omitted variable bias.

It is also of interest to compare the subset regression approach
tomethods such as ridge regression which apply the same amount
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Fig. 3. Relative performance of OLS versus subset regression. The figure shows the MSE loss under subset regression relative to OLS (i.e. MSEsubset/MSEOLS) as a function of
ρ, the correlation between predictors, k, the number of included predictors, and K , the total number of predictors. Values below unity mean that the subset regression risk
is lower than the OLS risk, whereas values above unity imply that OLS is better.
of shrinkage to each regression coefficient. To this end, Fig. 4 uses
heat maps to compare the expected loss of the subset regressions
to that of the ridge regression approach for different values of
the limit of the shrinkage parameter, γ /T . The figure assumes
that there are K = 8 predictor variables, sets b = 1K , a vector
of ones, and lets ΣX have ones on the diagonal and ρ on all
off-diagonal cells. The correlation between predictor variables, ρ,
varies along the horizontal axis, while the shrinkage parameter,
γ , varies along the vertical axis. We use colors to indicate the
value formin(0,MSEridge

−MSEsubset), with dark red indicating that
MSEridge > MSEsubset, while, conversely, yellow and blue indicate
areas where MSEridge < MSEsubset. Each window corresponds to a
different value of k. Suppose that, moving along the vertical axis
corresponding to a particular value of ρ, there is no red color.
This shows that, for this particular value of ρ, ridge regressions
always produce a lower expected loss than the corresponding
subset regressions. Conversely, if, for a given value of ρ, the area
is red for all values of γ , subset regressions dominate all ridge
regressions, regardless of the chosen shrinkage parameter.

Fig. 4 shows that when k = 1, ridge regressions mostly pro-
duce lower MSE-values than subset regressions for ρ < 0.6. Con-
versely, for ρ > 0.85, the univariate subset regressions uniformly
dominate all ridge results. If k = 2, subset regressions uniformly
dominate when ρ > 0.6, while if k = 4, subset regressions always
dominate when ρ < 0.5.

2.5. Discussion

The method presented above, along with the analytical results,
relies on the total number of regressors,K , being somewhat smaller
than T , the number of observations available. This necessarily
limits the possible values for K , given that for many applications,
especially in macroeconomics, T is not particularly large. Model
instabilities may further exacerbate this concern since they could
limit the amount of past data available for model combination.
In such situations, using an equal-weighted average forecast can
provide robust out-of-sample predictive performance and so helps
to motivate our approach of not using estimated combination
weights. Moreover, empirical work has largely failed to come
up with alternative weighting schemes that systematically beat
equal-weighting, so we find the simplicity of this weighting
scheme attractive. However, it is of interest to consider extensions
to very large values of K or to alternative weighting schemes. We
next discuss these issues.

2.5.1. Computational issues
In cases where K is very large and so nk,K is too large to allow all

models in a given subset to be considered, one can employ fewer
than all possible models in each subset. Specifically, if nk,K is very
large, one can randomly draw a smaller number of models and av-
erage across these. Uniform probability weighting of the models
within each subset is the easiest approach and is natural to con-
sider here sinceweuse equalweights in themodel averaging stage.

Alternatively, the probability that a model is included could
depend on the properties of that model, an approach that will be
computationally costlier since it requires evaluation of themodels.
Methods exist that employ some of the model information to
decide on inclusion without requiring statistics for all models to
be computed. MCMC algorithms developed in the Bayesian model
combination and selection literature can be used, particularly
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Fig. 4. Relative performance of ridge versus subset regression. This figure showsmin(0,MSEridge/MSEsubset) as a function ofρ, the correlation between the predictor variables
on the x-axis, and γ , the shrinkage parameter used by the ridge approach on the y-axis. Dark red color shows areas where the subset regression produces a lower MSE than
the ridge approach, while yellow and blue colors indicate areas where the subset approach produces the highest MSE values. Each box corresponds to a different value of k,
the number of predictors included in the forecast model. The graph assumes that b is a vector of ones and K = 8. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
if it is desired that model weights should reflect posteriors. A
possibility along these lines that allows K to become very large
is the transdimensional Markov chains that simultaneously cover
both the parameter and model spaces. More generally, reversible
jump MCMC techniques (reviewed by Sisson, 2005) or stochastic
search algorithms such as the shotgun stochastic search algorithm
of Hans et al. (2007) can be adopted.

2.5.2. Weighting schemes
Our approach uses equal-weighted combinations of forecasts

within each subset. However, alternativeweighting schemes could
be used and we will also consider approximate Bayesian Model
Averaging (BMA) weights that are based on the individual models’
values of the Schwarz information criterion (SIC). In keeping with
the empirical evidence on optimalMSEweights, we do not attempt
to use Bates and Granger (1969) weights; the large literature on
forecast combination under MSE loss does not suggest methods
that we expect to work better than equal weights.

Outside of minimizing the risk criterion considered here, there
exist other combination methods that rely on alternative charac-
terizations of risk. Liang et al. (2011) consider linear models with
serially independent homoskedastic normal errors and estimate
combination weights through a procedure designed to minimize
the trace of the MSE of the parameter vector estimates. Note that
this objective is different from minimizing the forecast error MSE
which weights the sampling error of the parameter vector differ-
ently from that invoked by the trace.

The optimal prediction pool approach of Geweke and Amisano
(2011) combinesmodels so as tomaximize the log predictive score.
This requires computation of the density for each model and not
just an estimate of the conditional mean. Although this approach
has many theoretically appealing properties and does not need to
assume that the true model is included in the set over which the
model search is conducted, it is unclear how well it would work in
settings that combine a very large set of models.

2.5.3. Model instability
Economic time series often undergo change. As a consequence,

the parameters of the underlying forecast models may be subject
to change and the best forecast model could also change over time.
To deal with this, Groen et al. (2013) consider an approach that
accounts for breaks in the individual models’ parameters as well as
breaks in the error variance of the overall combination. Similarly,
Billio et al. (2012) propose a variety of combination strategies
that allow for time-varying weights, and Koop and Korobilis
(2012) consider dynamic model averaging methods. While model
instability is ignored here, it can be partially incorporated either
by explicitly modeling the break process or by using ad hoc
approaches such as rolling-window estimators.

3. Monte Carlo simulation

To better understand how the subset combination approach
works, we first consider a Monte Carlo simulation experiment that
allows us to study both the absolute forecast performance of the
subset regression approach as well as its performance relative to
alternative methods.
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3.1. Simulation setup

Our Monte Carlo design assumes a simple linear regression
model:

Yt+1 =

K
k=1

βkxkt + εt+1, εt+1 ∼ N(0, σ 2
ε ). (7)

We assume a sample size of T = 100 observations and consider
one-step-ahead forecasts of YT+1. The covariance matrix of the
X-variablesΣX = Cov(X1, . . . , XK ) takes the simple form

ΣX =



1 ρ ρ · · · ρ

ρ 1
. . .

...

. . .

...
. . . 1 ρ

ρ · · · ρ 1

 ,

where ρ ∈ {0, 0.25, 0.5, 0.75, 0.95}. Small values of ρ correspond
to small values of the predictive R2, while the R2 increases as
ρ is raised. Data are assumed to be i.i.d., and we include up to
K = 8 predictors. Two designs are considered for the regression
parameter: b = 1K and b = (1 1 1 1 0 0 0 0). In the first experiment,
all predictors are relevant and matter equally; in the second
experiment only the first four predictors matter to the outcome.

3.2. Comparison with other approaches

We are interested not only in how well the subset combination
approach performs in absolute terms, but also in how it compares
with other approaches. Many alternative ways to combine or
shrink forecasts from differentmodels have been considered in the
literature. Among the most prominent ones are ridge regression
(Hoerl and Kennard, 1970), the Lasso (Tibshirani, 1996), the
Elastic Net (Zou, 2006), bagging (Breiman, 1996), and Bayesian
Model Averaging (Raftery et al., 1997). Given the availability of
these alternatives, it becomes important to compare the subset
regression combination approach to such methods. We briefly
discuss each of themethods and explain howwe implement them.

3.2.1. Ridge regression
The only parameter that has to be chosen under the ridge

approach is γ , which regulates the amount of shrinkage imposed
on the regression coefficients. Given a value of γ , the forecasts are
given by

ŷRIDGET+1|T = x′

T β̂γ , (8)

where

β̂γ = argmin
β


T−1
t=1

(yt+1 − x′

tβ)
2
+ γ

K
j=1

β2
j


. (9)

Note that, by construction, as γ → ∞, ŷRIDGET+1 →
1

T−1

T
j=2 yj, so

the ridge forecast simply converges to the samplemean. Following
Inoue and Kilian (2008), we consider a range of shrinkage values
γ ∈ {0.5, 1, 2, 3, 4, 5, 10, 20, 50, 100, 150, 200}.

3.2.2. Lasso
Least absolute shrinkage and selection operator, Lasso (Tibshi-

rani, 1996), retains the features of both model selection and ridge
regression: it shrinks some coefficients and sets others to zero.
Lasso forecasts are computed as

ŷLASSOT+1|T = x′

T β̂ψ , (10)
where

β̂ψ = argmin
β


T−1
t=1

(yt+1 − x′

tβ)
2


, (11)

s.t.
K

j=1

|βj| ≤ ψ.

Here the parameter ψ controls for the amount of shrinkage. For
sufficiently large values of ψ the constraint is not binding and
the Lasso estimator reduces to OLS. Given the absolute value
operator | · |, the constraint is not linear and a closed form solu-
tion is not available. β̂ψ is therefore computed following the al-
gorithm described in Section 6 of Tibshirani (1996). Because the
forecasts depend on ψ , we consider a grid of values ψ ∈ {1, 2, 3,
4, 5, 10, 20, 50, 100}.

3.2.3. Elastic Net
Various authors have recently proposed flexible generalizations

of the Lasso such as the adaptive Lasso of Zou (2006) or the Elastic
Net of Zou and Hastie (2005) and Zou and Zhang (2009). We
focus on the Elastic Net, which is a useful compromise between
ridge and Lasso and has previously been used in economic studies
such as Korobilis (2013). Ridge regressions shrink the coefficients
of correlated predictors towards each other. Conversely, Lasso is
indifferent to very correlated predictors and tends to simply pick
one and ignore the rest. Elastic Net forecasts avoid these extreme
solutions and are computed as

ŷNETT+1|T = x′

T β̂α,ψ , (12)

where

β̂α,ψ = argmin
β


T−1
t=1

(yt+1 − x′

tβ)
2

+ψ


K

j=1

(1 − α)β2
j + α|βj|


.

The Elastic Net penalty term includes as special cases the ridge
penalty (α = 0) and the Lasso penalty (α = 1). β̂α,ψ is computed
using the coordinate descent algorithmdeveloped in Friedman and
Tibshirani (2010). We set α = 0.5, while for ψ we consider a grid
of values ψ ∈ {1, 2, 3, 4, 5, 10, 20, 50, 100}.

3.2.4. Bagging
Our implementation of bagging is based on 1000 bootstrapped

samples of the original data arranged in the {yt+1:T , Xt:T−1} tuple.
We preserve the autocorrelation structure of the predictors by
applying the circular block bootstrap of Politis and Romano
(1992) with block size chosen optimally according to Politis and
White (2004).4 Contemporaneous dependence across observations
is preserved by using the same blocks for all variables. For
each bootstrapped sample {ybt+1:T , X

b
t:T−1}, an estimate of β, β̂b is

obtained and forecasts are computed as

ŷbT+1|T = (x′

T ST )β̂
b. (13)

Here ST is the stochastic selection matrix whose (i, i) elements
equal the indicator function I(|ti| > c). A predictor is added only if
its t-statistic is significant at the threshold implied by c. The larger

4 To ensure robustness, we also implemented the parametric bootstrap, but
found that the results are not sensitive to this choice.
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the value of c , the higher the threshold and so the more parsimo-
nious the final model will be. To control for this effect, we fol-
low Inoue and Kilian and consider different values c ∈ {0.3853,
0.6745, 1.2816, 1.4395, 1.6449, 1.9600, 2.2414, 2.5758, 2.8070,
3.0233, 3.2905, 3.4808, 3.8906, 4.4172, 5.3267}. The final bag-
ging forecasts are obtained by averaging across the bootstrap
draws

ŷBAGGT+1|T =
1
B

B
b=1

ŷbT+1|T . (14)

3.2.5. Bayesian Model Averaging
Bayesian Model Averaging predictions are obtained by weight-

ing each model’s forecast by its posterior probability:

ŷBMA
T+1|T =

2K
j=1

ŷjp(Mj|y1:T ), (15)

where ŷj is the posterior mean and p(Mj|y1:T ) is the posterior
probability of the jth model, which follows from Bayes’ theorem

p(Mj|y1:T ) =
f (y1:T |Mj)p(Mj)

2K
j=1

f (y1:T |Mj)p(Mj)

. (16)

To obtain the predictive likelihood, f (yT+1|yT ,Mj), the marginal
likelihood, f (y1:T |Mj), and the model priors, p(Mj), in Eqs. (15) and
(16), we follow the specification suggested by Fernandez et al.
(2001a,b) and Ley and Steel (2009). Let γi be an indicator variable
which takes a value of one if the predictor is included in the regres-
sion and is zero otherwise. Let θ be the probability of inclusion, so
the prior probability of the jth model is P(Mj) = θ kj(1 − θ)K−kj ,
where kj is the number of predictors in the jth model. A prior for
θ is obtained indirectly through a prior on the model size, mk =K

i=1 γi. If θ is kept fixed, mk has a Binomial(K , θ) distribution
with expected value E[mk] = m = θK , from which it follows that
θ = m/K .5

As in Ley and Steel (2009), we also allow θ to be random and
follow a beta distributionwith shape parameters s1 = 1 and s2. Ley
and Steel (2009) show that under this specification, kwill follow a
binomial-beta distribution. As in the fixed θ scenario, a prior on
s2 is obtained indirectly by solving the equation for the expected
model size, s2 = (K − m)/m.

The marginal and predictive likelihoods have closed form ex-
pressions only when using conjugate priors. We follow Fernandez
et al. (2001a), and adopt a combination of a ‘‘non-informative’’ im-
proper prior on the common intercept α and scale σε and a g-prior
(Zellner, 1986) on the regression coefficientsβj, leading to the prior
density p(α, βj, σε|Mj) ∝ σ−1

ε f qN (β|0, σ 2
ε (gZ

′

j Zj)
−1), where Zj are

the demeaned regressors that are included in the jth model. Under
this specification yT+1|yT ,Mj follows a t-distribution with location
parameter ŷj =

1
T

T
i=1 yi + x′

jβj/(g + 1).
To sumup,weneed to specify a value for the priormodel size,m,

and the g-prior. In the empirical exercise we setm equal to 0.1 and
1 to keep the models from including too many predictors which
we know is likely to hurt the performance of the return forecasts,
see, e.g., Goyal and Welch (2008). In the Monte Carlo simulations
we setm to one half and one third of K . We follow Fernandez et al.
(2001a) and set g to 1/T or 1/K 2. In the empirical exercise we add
g = 1 to ensure stronger shrinkage since, as g → ∞, b̂j converges
to the prevailing mean.

5 This approach avoids using uniformpriors over themodel space, which can lead
to undesirable properties, particularly when regressors are correlated, see George
and Foster (2000).
3.3. Simulation results

Table 1 shows results from the simulation experiment, using
25,000 simulations and T = 100. We report performance in terms
of the R2-value, which is inversely related to the MSE-value, but
conveys the same message and is slightly easier to interpret. First,
consider the performance of the subset regression approach when
b = 1K (left panel). Since the R2 is positive for the (infeasible)
model that uses the correct parameter values, negative R2-values
show that parameter estimation error dominates whatever evi-
dence of predictability the model identifies. This case only occurs
for the subset regressions when ρ = 0 and k = 8, correspond-
ing to the ‘‘kitchen sink’’ approach that includes all predictors and
so does not average across multiple models. For small values of ρ
the best subset regressions use three or four predictors. As ρ in-
creases, the number of variables included in the best-performing
subset regressions tends to decrease and the best performance is
obtained for k = 1 or k = 2. In general, the difference between
the best and worst subset combinations (usually the kitchen sink,
k = 8) tends to be greater, the smaller the value of ρ. This is likely
to reflect the greater importance of estimation error in situations
where the predictive signal is weaker, parameter estimation error
matters more and affects the larger models (large k) more than the
smaller models (small k).

The ridge regression results most closely resemble those from
the subset regressions. Compared with subset regression, ridge
regression performs quite well, although, consistent with Fig. 4,
the best subset regression produces better performance than the
best ridge regression in all cases. In turn, the best subset and ridge
regressions generally perform better than the best Lasso, bagging
and BMA approaches.

Similar conclusions emerge when we set b = (1 1 1 1 0 0 0 0)′,
the results for which are shown in the right panel of Table 1. This
case represents a setup with a smaller degree of predictability
over the outcome variable, and so lower R2-values are obtained.
Unsurprisingly, for this case the best subset regressions use a
smaller value of k than in the previous case where all predictors
had an effect on the outcome. The subset regressions that include
relatively few predictors, e.g., k = 2, 3, or 4, continue to perform
particularly well, whereas performance clearly deteriorates for the
models that include more predictors.

3.4. Subset combinations with large K

Computing forecasts for all models within a given subset is
not feasible when nk,K is large. To explore the consequence of
this limitation, we next use simulations that evaluate some of the
alternative solutions discussed in Section 2.5.1. First, we set K =

15, a number small enough that we can use the complete subset
method for all values of k ≤ 15. We report the outcome of three
alternative approaches that combine forecasts over (i) randomly
selectedmodels; models selected by stochastic search using either
(ii) a Markov chain or (iii) the shotgun approach of Hans et al.
(2007). The Markov chain and shotgun approaches differ in how
they explore the model space.

The simulations were implemented as follows. Let c ≤ nk,K be
the number of included models, while α ∈ (0, 1) is the fraction of
the nk,K models that is combined so c = α×nk,K . Also define c̄ and
c as upper and lower bounds on c so that if α × nk,K > c̄ , only c̄
models are combined while if α × nk,K ≤ c , we set c = nk,K . Our
simulations set α = 0.25, c = 100, and c̄ = 5000.

Under the random approach c models are drawn without re-
placement from the model space Mk = [m1,m2, . . . ,mnk,K ], each
model receiving a weight of c−1.

The stochastic search algorithms select models according to a
fitness function, f (·), such as the model posterior. The included
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Table 1
Monte Carlo simulation results. This table reports the R2 from a linear prediction model yt+1 = x′

tβ + ϵt+1 , with X containing eight predictors. The X-variables and ϵ are
assumed to be normally distributed and i.i.d., while βi = bi σϵ√

T
. The covariance matrix of the predictor variables has ones on the diagonal and ρ in all off-diagonal cells,

so ρ controls the degree of correlation among the predictors. All forecasting methods only use information up to time T to produce predictions ŷ(j)T+1 , where j refers to the

simulation number. The prevailingmean forecast is ȳ(j)T+1 =
1
T

T
t=1 y

(j)
t . The reported out-of-sample R2 is computed as R2

=


1−

25.000
j=1 (y(j)T+1−ŷ(j)T+1)

225.000
j=1 (y(j)T+1−ȳ(j)T+1)

2


×100 and is reported

in parentheses. The results are based on 25,000 simulations and a sample size of T = 100 observations.

b = [1 1 1 1 1 1 1 1] b = [1 1 1 1 0 0 0 0]

Subset regression
R2 R2

k 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

ρ

0 1.608 2.725 3.356 3.498 3.139 2.256 0.816 −1.227 0.690 1.000 0.930 0.474 −0.380 −1.653 −3.378 −5.593
0.25 10.361 14.291 15.782 16.092 15.698 14.796 13.469 11.736 3.213 4.380 4.651 4.364 3.632 2.488 0.926 −1.081
0.5 21.025 24.081 24.618 24.349 23.645 22.606 21.255 19.578 6.334 7.131 7.033 6.495 5.593 4.330 2.685 0.624
0.75 31.821 32.845 32.741 32.275 31.553 30.589 29.374 27.886 10.378 10.579 10.268 9.641 8.710 7.462 5.871 3.903
0.95 37.557 37.475 37.176 36.686 35.994 35.089 33.952 32.556 12.529 12.359 11.921 11.234 10.251 8.979 7.373 5.404

Ridge regression
R2 R2

γ 30 60 90 120 150 180 210 240 30 60 90 120 150 180 210 240

ρ

0 2.194 3.206 3.486 3.497 3.400 3.261 3.110 2.960 −1.732 −0.262 0.405 0.732 0.897 0.978 1.011 1.018
0.25 14.997 15.827 15.897 15.653 15.267 14.819 14.348 13.875 2.751 3.951 4.393 4.537 4.544 4.483 4.387 4.274
0.5 23.460 24.295 24.309 24.234 23.916 23.520 23.080 22.617 5.373 6.510 6.900 7.028 7.031 6.985 6.899 6.793
0.75 32.238 32.669 32.613 32.381 32.055 31.672 31.253 30.809 9.614 10.295 10.459 10.472 10.420 10.333 10.224 10.100
0.95 37.474 37.429 37.253 37.005 36.704 36.364 35.993 35.599 12.394 12.493 12.495 12.453 12.384 12.298 12.194 12.085

Elastic Net
R2 R2

ψ 1 15 30 45 60 75 90 100 1 15 30 45 60 75 90 100

ρ

0 0.000 2.215 2.082 0.724 −0.299 −0.820 −1.054 −1.128 0.000 0.533 −1.242 −3.254 −4.526 −5.136 −5.401 −5.483
0.25 0.000 10.814 14.449 13.964 12.929 12.273 11.964 11.865 0.000 3.632 3.176 1.417 0.094 −0.583 −0.874 −0.966
0.5 0.000 18.317 22.830 22.482 21.229 20.313 19.888 19.746 0.000 5.892 5.993 3.860 2.145 1.246 0.875 0.758
0.75 0.000 26.437 31.395 31.278 29.894 28.746 28.215 28.062 0.000 9.041 9.790 7.871 5.777 4.635 4.176 4.049
0.95 0.000 32.703 36.968 36.968 35.481 33.763 32.984 32.773 0.000 11.365 12.334 11.032 8.243 6.453 5.764 5.594

Lasso
R2 R2

ψ 1 15 30 45 60 75 90 100 1 15 30 45 60 75 90 100

ρ

0 0.000 2.162 1.811 0.536 −0.386 −0.853 −1.064 −1.133 0.000 0.383 −1.500 −3.429 −4.608 −5.164 −5.410 −5.488
0.25 0.000 10.954 14.176 13.742 12.810 12.225 11.944 11.855 0.000 3.597 2.934 1.232 0.004 −0.617 −0.887 −0.971
0.5 0.000 18.454 22.492 22.236 21.084 20.257 19.866 19.736 0.000 5.872 5.721 3.641 2.023 1.203 0.862 0.752
0.75 0.000 26.743 31.013 30.999 29.710 28.671 28.192 28.052 0.000 9.049 9.533 7.569 5.600 4.574 4.159 4.041
0.95 0.000 32.745 36.643 36.745 35.212 33.605 32.930 32.751 0.000 11.385 12.189 10.704 7.885 6.302 5.725 5.579

Bagging
R2 R2

c 0.38 1.28 1.64 2.24 2.80 3.29 3.89 5.32 0.38 1.28 1.64 2.24 2.80 3.29 3.89 5.32

ρ

0 −1.219 −0.005 0.766 1.694 1.746 1.416 0.901 0.159 −5.558 −3.610 −2.345 −0.607 0.207 0.418 0.375 0.103
0.25 11.729 12.479 12.720 11.855 9.244 6.366 3.320 0.373 −1.061 0.654 1.709 2.690 2.429 1.758 0.927 0.093
0.5 19.581 20.546 20.848 19.403 14.738 9.704 4.771 0.455 0.656 2.689 3.926 4.766 3.852 2.566 1.228 0.102
0.75 27.902 29.061 29.417 26.747 19.246 11.942 5.392 0.428 3.937 6.086 7.364 7.669 5.613 3.451 1.509 0.108
0.95 32.617 34.233 34.550 29.972 19.913 11.435 4.696 0.310 5.467 8.094 9.615 9.596 6.614 3.853 1.579 0.119

Bayesian Model Averaging
R2 R2

m 4 6 2 4
g 1/T 1/K 2 1/T 1/K 2 1/T 1/K 2 1/T 1/K 2

θ Fix Random Fix Random Fix Random Fix Random Fix Random Fix Random Fix Random Fix Random

ρ

0 1.281 0.932 1.321 1.034 1.111 0.976 1.069 1.077 0.180 0.241 0.154 0.236 −0.225 0.219 −0.336 0.191
0.25 12.445 11.136 12.669 11.540 13.158 11.342 13.245 11.746 2.655 2.152 2.757 2.294 2.926 2.297 2.941 2.431
0.5 21.229 20.392 21.385 20.650 21.607 20.512 21.637 20.762 5.124 4.548 5.228 4.699 5.358 4.691 5.362 4.829
0.75 30.354 29.825 30.434 29.966 30.389 29.884 30.348 30.019 9.095 8.628 9.142 8.733 9.032 8.715 8.977 8.792
0.95 36.586 36.856 36.511 36.817 35.921 36.830 35.761 36.779 11.935 11.635 11.943 11.695 11.635 11.679 11.524 11.693
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Table 2
Monte Carlo simulation results for large values of K . This table reports the out-of-sample R2-value from a linear prediction model
yt+1 = x′

tβ + εt+1 , with X containing K = 15 (Panel A) or K = 20 (Panel B) predictors. The X-variables and ε are assumed to be normally
distributed and i.i.d., while βi = σε/

√
T . The covariance matrix of the predictor variables has ones on the diagonal and ρ = 0.5 in all

off-diagonal cells. Forecasting methods only use information up to time T to produce predictions ŷ(j)T+1 , where j refers to the simulation
number and T = 100.

Out-of-sample R2

k Panel A k Panel B
Complete subset Random Markov chain Shotgun Random Markov chain Shotgun

1 43.409 43.409 43.409 43.409 1 51.909 51.909 51.909
2 50.652 49.757 49.925 49.84 2 62.485 61.362 61.696
3 52.901 52.826 52.733 52.81 3 65.61 65.273 65.217
4 53.768 53.759 53.765 53.023 4 67.657 67.898 66.395
5 54.095 54.056 54.095 53.697 5 68.687 68.761 68.25
6 54.147 54.174 54.178 53.897 6 69.363 69.424 69.507
7 54.03 54.044 53.861 53.536 7 69.839 69.837 70.236
8 53.786 53.801 53.758 53.364 8 70.017 70.003 70.206
9 53.435 53.427 53.258 52.753 9 70.272 70.24 69.832

10 52.982 53.023 52.915 52.857 10 70.37 70.381 70.336
11 52.429 52.454 52.372 52.971 11 70.39 70.291 69.815
12 51.77 51.631 51.545 51.114 12 70.3 70.381 70.3
13 50.999 50.972 50.987 50.362 13 70.221 70.4 70.091
14 50.104 50.104 50.104 50.104 14 70.103 70.073 69.966
15 49.073 49.073 49.073 49.073 15 69.863 69.734 69.63

16 69.565 69.542 69.886
17 69.011 68.992 69.101
18 68.732 68.424 68.934
19 68.332 68.332 68.332
20 67.778 67.778 67.778
models, as well as their weights, depend on the chain’s path, with
models never visited receiving a zero weight, while visited models
receive a weight proportional to the number of visits divided by
the length of the chain.

Specifically, theMarkov chainmoves frommodelmt to the next
candidate model, mt+1, based on a uniform probability draw from
the set of models Nmt ⊂ Mk, where Nmt represents the set of
models containing at least k − 1 of the variables originally in mt .
The transition probability of the chain is p = min


1, f (mt+1)

f (mt )


. If the

candidate model offers a better fit, so f (mt+1) > f (mt), the chain
jumps to mt+1 for sure; if this condition fails, the chain may still
move to f (mt+1) since this prevents the chain from being trapped
in local solutions. Theworse the relative fit of the candidatemodel,
the lower the probability of such a move.

Under the shotgun approach, the candidate model, mt+1, fol-
lowing from an initial model mt , is drawn from Nmt with a prob-
ability proportional to its fit, so that the jth candidate model has
probability p(mj) = f (mj)/


Nmt

f (mi). Here the transition prob-

ability is p = min

1,


Nmt+1
f (mj)/


Nmt

f (mi)

.

Panel A of Table 2 reports results in the form of out-of-sample
R2-values. These values are very similar across each of the columns,
suggesting that very little is lost in terms of performance of the
combined forecast as a result of using only a portion of all models
within a given subset.

We next increase K to 20. In this case, some of the nk,K values
are too large to allow us to evaluate the complete subset combi-
nation and so we only present results for cases (i)–(iii). Panel B in
Table 2 shows that, once again, there is little to distinguish between
models selected randomly versus models selected by the Markov
chain or shotgun approaches. These findings suggest that our sub-
set combination approach can be implemented without much loss
when K is large.

4. Empirical application: stock return predictions

To illustrate the complete subset regression approach to fore-
cast combination and to compare its performance against that of
other approaches, this section provides an empirical application
to US stock returns. This application is well suited for our analysis
both because predictability of stock returns has been the subject of
an extensive literature in finance, recently summarized by Rapach
and Zhou (forthcoming), and because there is a great deal of uncer-
tainty about which, if any, predictors help forecast stock returns.
Clearly this is a case where estimation error matters a great deal.

Specifically, we investigate whether there is any improvement
in the subset regression forecasts that combine k-variate models
for k ≥ 2 relative to using a simple equal-weighted combination
of univariate models (k = 1), as proposed in Rapach et al. (2010),
or relative to other combination schemes such as those described
in the previous section.

Predictability of US stock returns by means of combinations of
models based on different sets of predictors has been considered
by studies such as Avramov (2002), Cremers (2002), and Rapach
et al. (2010). For example, Avramov (2002) uses BMAon all possible
combinations of models with 16 predictors to forecast monthly
returns.

Our analysis again ignores model instability. Models with time-
varying coefficients have been considered for stockmarket data by
Griffin and Kalli (2012) and Dangl and Halling (2012), while Pet-
tenuzzo and Timmermann (2011) consider forecast combination
in the presence of model instability.

Diebold (2012) discusses the merits of out-of-sample versus
in-sample tests of predictive accuracy. From the perspective of
inference on model validity, in-sample performance tests provide
higher power than out-of-sample tests. However, in applications
such as ours where the interest lies in testing whether a method
could have been used in real time to generate forecasts that led
to better economic decisions (portfolio holdings) that improved
economic utility, an out-of-sample perspective seems appropriate.

4.1. Data

Data are taken from Goyal and Welch (2008), updated to
2010, and are recorded at the quarterly horizon over the period
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1947Q1–2010Q4. The list of predictors comprises 12 variables for
a total of 212

= 4096 possible models.6
The 12 variables are theDividend Price Ratio (dp), the difference

between the log of the 12-month moving sum of dividends and
the log of the S&P 500 index; Dividend Yield (dy), the difference
between the log of the 12-monthmoving sum of dividends and the
lagged log S&P 500 index; Earnings Price Ratio (ep), the difference
between the log of the 12-month moving sum of earnings and
the log S&P 500 index; Book to Market (bm), the ratio of the
book value to market value for the Dow Jones Industrial Average;
Net Equity Expansion (ntis), the ratio of the 12-month moving
sum of net issues by NYSE listed stocks divided by the total end-
of-year market capitalization of NYSE stocks; Treasury Bill (tbl),
the 3-Month Treasury Bill (secondary market) rate; Long Term
Rate of Returns (ltr), the long-term rate of return on US Bonds;
Term Spread (tms), the difference between the long term yield
on government bonds and the Treasury Bill rate; Default Yield
Spread (dfy), the difference between yields on AAA- and BAA-rated
bonds; Default Return Spread (dfr), the difference between long-
term corporate bond and long-term government bond returns;
Inflation (infl), the (log) growth of the Consumer Price Index (All
UrbanConsumers); and Investment to Capital Ratio (ik), the ratio of
aggregate investments to aggregate capital for thewhole economy.

The excess return, our dependent variable, is the difference
between the continuously compounded return on the S&P 500
index (including dividends) and the 3-month Treasury Bill rate. As
in Rapach et al. (2010) and Goyal and Welch (2008), we adopt a
recursively expanding estimation scheme. The initial estimation
sample goes from 1947Q1 to 1964Q4, yielding a first forecast
for 1965Q1, while the last forecast is for 2010Q4. Each quarter’s
parameters are (re)estimated using all available information up
to that point. This pseudo out-of-sample forecasting exercise
simulates the practice of a real time forecaster. As in the theoretical
analysis, forecasts are generated from the following predictive
regression:

r2:t+1 = α + (X1:tS)β + ϵ2:t+1, (17)

where r2:t+1 is the excess return defined above, X1:t is the full
regressor matrix, ϵ2:t+1 is a vector of error terms, α and β are
unknown parameters estimated by OLS, and S is a diagonal
selector matrix whose unity elements determine which variables
get included in the model. For example, the ‘‘kitchen sink’’ model
containing all predictors is obtained by setting S = I12, while the
constant ‘null’ model is obtained by setting S equal to a 12 × 12
matrix of zeros. Following the analysis in Section 2, our focus is on
the combination of k-variate models,

r̂kt+1 =
1

nk,K

nk,K
j=1

(α̂j + x′

tSjβ̂j) s.t. tr(Sj) = k, (18)

where tr(◦) is the trace operator.

4.2. Bias–variance trade-off

Fig. 5 plots time-series of out-of-sample forecasts of returns for
the different k-variate subset regression combinations. The fore-
casts display similar patterns except that as k increases, the vari-
ance of the combined forecasts also increases. The least volatile

6 Data are available at http://www.hec.unil.ch/agoyal/. Variable definitions and
data sources are described in more detail in Goyal and Welch (2008). To avoid
multicollinearity when estimating some of the multivariate models, we exclude
the log dividend earnings ratio and the long term yield. By construction, the log
dividend earnings ratio is equal to the difference between the log dividend price
ratio and the log earnings price ratio, while the long term yield is equal to the sum
of the term spread and the Treasury Bill rate.
Fig. 5. Out-of-sample forecasts of monthly stock returns for different k-variate
subset combinations.

forecasts are generated by the constant model (k = 0), while
the most volatile forecasts arise when we use the model that con-
tains all regressors (k = K = 12). Neither of these cases perform
any forecast combination. As we shall subsequently see, forecasts
from the best k-variate combinations are in turnmore volatile than
those from combinations of univariate models (k = 1) but less
volatile than those from the other k-variate combinations. The ex-
tent towhich volatility of the forecast reduces or enhances forecast
performance depends, of course, on how strongly this variation is
correlated with the outcome—a point we further address below.

Fig. 6 provides insight into the relation between the variance
and bias of the forecasts. Along the x-axis, the upper left window
lists the number of predictors included in each model, k, while the
y-axis lists the time-series variance associated with a givenmodel.
For example, for k = 1 the circles show the variance for each of the
12 univariate forecasting models, while for k = 2 the circles show
the forecast variance for each of the 66 bivariatemodels. The upper
left graph shows that the variance of the forecast is increasing in
the number of variables included in the forecast models. To see
why, define xSt = xtS and X S

1:T = X1:T S, and note that

var(r̂t+1) = var(α̂ + xSt β̂) = [ι′ι+ xSt (X
′

1:TX1:T )
−1xSt

′
]σ̂ϵ, (19)

which is increasing in σ̂ϵ , the estimated standard deviation of the
residuals, and in the column dimension of ι′, xSt

′ and X S . Therefore,
the larger the dimension of the pooled models, the higher the
forecast variance.

The upper right window in Fig. 6 shows how the squared bias is
reduced by pooling themodels. Specifically, the combination of the
three-variate models has the lowest bias. The constant model pro-
duces the most (upward) biased forecasts. At the other end of the
spectrum, the ‘‘kitchen sink’’modelwith all variables included gen-
erates the most biased forecasts because of its occasional extreme
negative forecasts (see Fig. 5). Except for the models based on dp,
dy and ep, the individual univariate models generate a large bias.

Putting together the forecast variance and bias results, the
bottom window of Fig. 6 establishes a (squared) bias–variance
trade-off. This resembles the well-known mean–variance efficient
frontier known from modern portfolio theory in finance, albeit
with the role of the bias and variance reversed. In our example, the
(squared) bias is largest for models with either very few or very
many predictors, while the variance increases monotonically in k.

4.3. Performance of subset regressions

To gain insight into the forecast performance of the various
models, Fig. 7 plots the out-of-sample R2 (top window) and

http://www.hec.unil.ch/agoyal/
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Fig. 6. Bias–variance trade-off. Each circle represents a single regression model, grouped according to the number of predictors the model contains. Triangles represent
average values computed across all modelswith a given number of predictors, k, i.e., for a given subset. The horizontal linemarked ‘Average’ shows the performance averaged
across all 4096modelswhile the dotted horizontal linemarked ‘EW’ refers to the performance of the equal-weighted forecast combination based on allmodels. The full curved
line tracks the subset combination of the k-variate models. The best and worst univariate models are displayed as text strings; AIC and BIC refer to the models recursively
selected by these information criteria. The bottom figure displays the scatter plot of the squared bias against the variance for each of the k-variate subset combinations (with
k denoted in red) as well as for the individual univariate models. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
the MSE-value (bottom window) for the individual k-variate
forecasting models along with those for the subset regression
combinations.7 The lower x-axis shows the number of predictors
included in each model, while the upper x-axis in the top window
lists the total number of k-variate models, i.e., nk,12. For 1 ≤ k ≤ 6,
the k-variate combinations generate lower MSE-values than the
equal-weighted average forecast computed across all 4096models,
the ‘‘thick’’ forecast modeling approach used by Aiolfi and Favero
(2003). They also performbetter than the constant equity premium
model (k = 0), a benchmark considered difficult to beat in the
finance literature, see Goyal and Welch (2008).

Interestingly, the two and three-variate combinations generate
out-of-sample R2-values that are 1% higher than the univariate
combination approach used by Rapach et al. (2010). This may not
seem like such a large difference but, as emphasized by Campbell
and Thompson (2008), even small differences in out-of-sample R2

can translate into economically large gains in investor utility.
Fig. 6 showed that the forecast results do not depend simply

on the number of pooled forecasts. For example, there are 66
two-variate as well as ten-variate models, but the corresponding

7 The out-of-sample R2-value is computed as

R2
= 1 −

T−1
τ=T0

(rτ+1 − r̂τ+1|τ )
2

T−1
τ=T0

(rτ+1 − r̂bmk
τ+1|τ )

2

,

where T0 is the start of the evaluation period and T is the final data point.
equal-weighted combinations produce very different outcomes.
This is not surprising given that the worst two-variate model is
better than the best ten-variate model. To control for the mere
effect of the number of models included in the combination, we
also combine models that are randomly selected across different
values of k. Fig. 8 plots the out-of-sample MSE- and R2-values as a
function of the number of models in the combined forecast. Less
than 100 models, i.e. about 2% of the total, need to be pooled in
order to approximate the behavior of the forecasts obtained by
combining all models.8

The benefit of subset combination is evident from three obser-
vations. First, the k-variate subset combinations have similar, if not
better (for k = 1, 2, 3, 10 and 11), performance compared with
the single best k-variate model, the identity of which is difficult to
establish ex ante. Second, for k ≤ 10 the k-variate combinations
produce better results than models selected by recursively apply-
ing information criteria such as the AIC or the BIC. This happens
despite the fact that these subset combinations contain, on aver-
age, the same or a larger number of predictors.9 Third, while some
univariate models, the ones containing dp, dy, dfr, and ik, produce
better results than the equal-weighted combination of all models,
in contrast no single predictor model does better than the three
best-performing k-variate subset combinations.

8 This finding becomes very relevant in situations where it is infeasible to
estimate all 2K models, e.g., when K > 20, since the number of models is
exponentially related to the number of predictors.
9 On average, the BIC andAIC criteria select 2.73 and 4.88 predictors, respectively.
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Fig. 7. Out-of-sample forecast performance. Each circle represents a single regressionmodel, grouped according to the number of predictors themodel contains. For a given
value of k, the number of possible k-variate models,


12
k


=

12!
k!(12−k)! , is reported on the upper x-axis at the top of the diagram. Triangles represent average values computed

across all models with a given number of predictors, k. The horizontal line marked ‘Average’ shows the performance averaged across all 4096 models while the dotted
horizontal line marked ‘EW’ refers to the performance of the equal-weighted forecast combination based on all models. The full curved line tracks the subset combination
of the k-variate models. The best and worst univariate models are displayed as text strings above k = 1; AIC and BIC refer to the models recursively selected by these
information criteria.
Fig. 8. Performance of pools of randomly selected models. At each point in time, n models are randomly selected (without replacement), their forecasts pooled, and the
forecast performance recorded. This procedure is repeated 1000 times. The solid line tracks the median value across these trials. For comparison, the horizontal line shows
the performance of the combination of all 4096 models.
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Table 3
Out-of-sample forecast performance for US stock returns. Panel A displays the out-of-sample forecast performance for the 12 univariate models, Panel B for the subset
regression, Panel C for Lasso and Elastic Net, Panel D for ridge regression, Panel E for bagging and Panel F for Bayesian Model Averaging. The p-values associated with the
out-of-sample R2 are based on the one-sided test of Clark and West (2007), and the encompassing test of Harvey et al. (1998). All forecasts of quarterly stock returns are
computed recursively and cover the period 1965Q1–2010Q4.MSE is the out-of-samplemean squared error, R2 is the out-of-sample R2 , CER is the certainty equivalent return.
Except for the p-values and MSE, all entries are in percentages.

Panel A: Univariate Panel B: Subset regression Panel C.1: Lasso
Variable MSE R2 CER p-valCW p-valHLN k MSE R2 CER p-valCW p-valHLN ψ MSE R2 CER p-valCW p-valHLN

dp 0.708 0.708 0.247 0.039 0.041 0 0.713 0.000 0.000 1 0.713 0.000 −0.000 0.255 0.256
dy 0.706 0.986 0.405 0.030 0.031 1 0.691 2.991 1.364 0.002 0.002 2 0.712 0.055 0.247 0.392 0.393
ep 0.720 −1.066 −0.016 0.297 0.298 2 0.684 4.097 1.984 0.004 0.004 3 0.712 0.073 0.261 0.370 0.371
bm 0.725 −1.767 −1.272 0.427 0.428 3 0.685 3.923 2.088 0.006 0.007 5 0.717 −0.662 0.401 0.502 0.502
ntis 0.728 −2.115 −0.594 0.630 0.629 4 0.691 2.985 1.897 0.009 0.010 20 0.733 −2.829 0.341 0.140 0.142
tbl 0.731 −2.502 0.164 0.046 0.048 5 0.701 1.643 1.572 0.014 0.015 50 0.782 −9.721 −0.978 0.056 0.058
ltr 0.721 −1.150 −0.100 0.305 0.306 6 0.712 0.073 1.200 0.020 0.021 Panel C.2: Elastic-Net (α = 0.5)
tms 0.732 −2.672 −1.305 0.056 0.058 7 0.725 −1.696 0.805 0.027 0.028 1 0.713 0.000 −0.000 0.255 0.256
dfy 0.732 −2.699 −1.119 0.717 0.716 8 0.739 −3.716 0.371 0.035 0.037 2 0.712 0.044 0.197 0.401 0.402
dfr 0.706 0.906 −0.110 0.110 0.112 9 0.756 −6.096 −0.139 0.046 0.047 3 0.711 0.217 0.325 0.301 0.303
infl 0.711 0.192 0.269 0.307 0.308 10 0.777 −8.979 −0.778 0.058 0.059 5 0.714 −0.174 0.454 0.403 0.404
ik 0.696 2.281 1.054 0.010 0.011 11 0.802 12.535 −1.610 0.072 0.074 20 0.726 −1.891 0.563 0.110 0.112

12 0.833 16.948 −2.697 0.090 0.092 50 0.780 −9.432 −0.912 0.055 0.056

Panel D: Ridge regression Panel E: Bagging Panel F: Bayesian Model Averaging
γ MSE R2 CER p-valCW p-valHLN c MSE R2 CER p-valCW p-valHLN m|g|θ MSE R2 CER p-valCW p-valHLN

0.5 0.824 −15.630 −2.254 0.084 0.086 0.3853 0.754 −5.754 −0.948 0.156 0.158 0.1| 1n |fix 0.723 −1.477 0.199 0.495 0.495
1 0.817 −14.671 −1.965 0.080 0.082 0.6745 0.745 −4.557 −0.550 0.137 0.139 0.1| 1

k2
|fix 0.723 −1.423 0.166 0.519 0.518

2 0.807 −13.268 −1.582 0.074 0.076 1.2816 0.717 −0.613 0.736 0.082 0.084 0.1|1|fix 0.709 0.578 0.389 0.112 0.114
3 0.800 −12.227 −1.322 0.070 0.072 1.4395 0.710 0.379 0.968 0.065 0.067 0.1| 1n |rnd 0.724 −1.601 0.162 0.510 0.510
4 0.794 −11.389 −1.125 0.068 0.070 1.6449 0.705 1.137 1.109 0.055 0.057 0.1| 1

k2
|rnd 0.723 −1.506 0.134 0.532 0.532

5 0.789 −10.684 −0.965 0.065 0.067 1.96 0.700 1.725 1.131 0.044 0.045 0.1|1|rnd 0.709 0.578 0.390 0.113 0.115
10 0.771 −8.185 −0.426 0.057 0.059 2.2414 0.703 1.368 0.892 0.059 0.061 1| 1n |fix 0.741 −4.029 0.212 0.392 0.393
20 0.750 −5.289 0.177 0.047 0.049 2.5758 0.706 0.979 0.608 0.080 0.082 1| 1

k2
|fix 0.737 −3.478 0.214 0.401 0.402

50 0.722 −1.314 1.004 0.032 0.034 2.807 0.706 0.945 0.493 0.069 0.071 1|1|fix 0.699 1.882 1.441 0.052 0.054
100 0.704 1.203 1.515 0.024 0.025 3.0233 0.709 0.579 0.324 0.116 0.118 1| 1n |rnd 0.746 −4.686 0.129 0.462 0.462
150 0.697 2.266 1.707 0.020 0.021 3.2905 0.710 0.418 0.203 0.131 0.133 1| 1

k2
|rnd 0.739 −3.703 0.147 0.464 0.464

200 0.693 2.793 1.778 0.017 0.019 3.4808 0.711 0.222 0.145 0.218 0.219 1|1|rnd 0.703 1.338 1.396 0.072 0.074
3.8906 0.712 0.105 0.058 0.268 0.269
4.4172 0.712 0.072 0.033 0.223 0.224
5.3267 0.713 0.021 0.003 0.349 0.350
4.4. Performance comparisons

Table 3 presents out-of-sample R2-values. First, consider the
univariate models shown in Panel A. Only five of the twelve
variables generate positive out-of-sample R2-values, the highest
such value being 2.28% for the investment–capital ratio. Panel B
shows that all subset regressions with k ≤ 6 generate positive
out-of-sample R2-values, the largest values occurring for k = 2
or k = 3, which lead to an R2 around 4%. As k grows larger, the
out-of-sample forecasting performance quickly deteriorates, with
values below −10% when k = 11 or k = 12.10

Turning to the alternative approaches described earlier, Panel C
shows that the Lasso forecasts are only capable of producing small
positive R2-values forψ ≤ 3 and generate large negative R2-values
for the largest values ofψ . Panel D shows that the ridge regressions
generate large negative R2-values when the shrinkage parameter,
γ , is small, corresponding to the inclusion of many predictors.
Better performance is reached for higher values of γ , but even the
best value of γ only leads to an R2 of 2.8%. The bagging approach
(panel E) suffers from similar deficiencies when c is small, leading
to large predictionmodels, but improves for values of c around two
for which an R2 of 1.7% is reached. Turning to the BMA results, we
also consider a value of g = 1, in addition to the previous values of
g = 1/k2 and g = 1/n. This value of g induces less concentrated
weights on a fewmodels, which turns out to be advantageous here.

10 Very similar results were obtained when we expanded our list of predictor
variables to include a liquidity measure as proposed by Amihud (2002).
Indeed, the Bayesian Model Averaging forecasts produce positive
R2-values in three out of four cases when g = 1 and otherwise
mostly produce negative R2-values.

To compare model performance more formally, we use the
test proposed by Clark and West (2007), treating the simple
prevailingmean forecast as our benchmark. This test re-centers the
difference inmean squared forecast errors to account for the higher
variability associated with forecasts from larger models. The test
results show that three of the univariate models (corresponding
to dp, dy, and ik) produce better forecasting performance than the
benchmark at the 5% significance level. For the bagging method,
forecasting performance superior to the benchmark is obtained
only when c is around two, while the BMA fails to dominate the
benchmark. The ridge regressions produce significantly improved
forecasts for γ ≥ 20, while the subset regressions do so for all but
the largest models, i.e., as long as k ≤ 9. Notably, the rejections are
much stronger for many of the subset regressions, with p-values
below 1% as long as k ≤ 5. Similar results are obtained when the
encompassing test of Harvey et al. (1998) is adopted.

4.4.1. Recursive selection of hyperparameters
Our results so far show that the choice of hyperparameter can

matter a great deal for the performance ofmany of the combination
approaches. It is therefore important to establish whether such
hyperparameters can be chosen recursively, in ‘‘real time’’ to
deliver good forecasting performance. To this end, we conduct an
experiment that, at each point in time, uses the data up to this
point (but not thereafter) to select the value of the hyperparameter
which would have given the best performance. Fig. 9 shows the
recursively chosen values for the hyperparameters. The subset
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Fig. 9. Recursive choice of parameter values. For each approach the graphs show the value of the design parameter that, at each point in time, gets selected based on its
recursive performance evaluated up to that point in time. Parameter selection is performed from the discrete grid of values described in the text of the paper.
Table 4
Out-of-sample forecast performance with recursively selected hyperparameters.
This table displays the out-of-sample forecast performance when the model
parameters are chosen recursively in a pseudo out-of-sample experiment with
an expanding estimation window. p-values are based on Clark and West (2007).
The forecast evaluation period is 1970Q1–2010Q4. MSE is the out-of-sample mean
squared error, R2 is the out-of-sample R2 , CER is the certainty equivalent return.
Except for the p-values and MSE, all entries are in percentages.

MSE R2 CER p-valCW p-valHLN

Univariate 0.826 −9.805 −2.435 0.740 0.739
Subset 0.741 1.515 1.294 0.074 0.076
Lasso 0.769 −2.137 −0.119 0.407 0.408
Elastic Net 0.787 −4.652 −0.593 0.745 0.743
Ridge 0.747 0.704 1.093 0.076 0.079
Bagging 0.750 0.328 0.712 0.075 0.078
BMA 0.764 −1.570 0.540 0.355 0.356

regression approach always chooses k = 2 or k = 3, with k = 2
being chosen almost exclusively from 1990 onwards. The value
for γ chosen under the ridge approach fluctuates between 100
and 200. The critical value, c , in the bagging approach fluctuates
between 1.2 and 2.2, while φ fluctuates between zero and 100
under the BMA approach.

Table 4 shows the resulting forecast performance numbers
from this exercise. The univariate regression approach performs
very poorly by this measure, as do the Lasso, Elastic Net and
BMA approaches, all ofwhich generate negative R2-values. Bagging
produces an R2 of 0.3%, while the ridge approach generates an
R2-value around 0.7%. The best approach, however, is the subset
regression method which generates an R2-value of 1.5%. Using the
Clark–West p-values, the subset, ridge, and bagging forecasts all
improve on the prevailing mean forecast at the 10% significance
level.

4.4.2. Performance with BIC weights
Our approach uses equal-weighted combinations of forecasts

from models within the same subset. As discussed in Section 2.5,
Table 5
Out-of-sample forecast performance under different weighting
schemes. This table displays the out-of-sample forecast perfor-
mance of complete subset regressions when models are combined
using equal weights (EW) versus weights that are proportional to
the values of the models’ Bayes information criterion (BIC). MSE
is the out-of-sample mean squared error, R2 is the out-of-sample
R2 , CER is the certainty equivalent return. The forecast evaluation
period is 1970Q1–2010Q4.

k MSEBIC MSEEW R2
BIC R2

EW

1 0.692 0.691 2.967 2.991
2 0.683 0.684 4.135 4.097
3 0.684 0.685 4.010 3.923
4 0.691 0.691 3.091 2.985
5 0.700 0.701 1.750 1.643
6 0.711 0.712 0.179 0.073
7 0.724 0.725 −1.586 −1.696
8 0.738 0.739 −3.510 −3.716
9 0.755 0.756 −5.975 −6.096

10 0.776 0.777 −8.868 −8.979
11 0.801 0.802 −12.458 −12.535
12 0.833 0.833 −16.948 −16.948

many alternative weighting schemes have been proposed in the
combination literature. One such approach is to simply let each
model’s weight be proportional to the exponential of its Schwarz
information criterion value. Within each subset, the number of
parameters is the same across models and so the models with
high likelihood will obtain larger weights than models with low
likelihood by this procedure.

Table 5 presents results for this combination scheme. For direct
comparison, we also show results for the equal-weighted subset
combination. There is evidence of slight improvement in the out-
of-sample R2-values for some subsets, but the values are very
similar under the two combination schemes. Although minor
improvements might be achievable by straying away from equal-
weights, the convenience and simplicity of this weighting scheme
justifies its use in our approach.
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4.5. Economic value of forecasts

To assess the economic value of our return forecasts, we con-
sider the value of the predictions from the perspective of a mean-
variance investor who chooses portfolio weights to maximize
expected utility subject to the constraint that the weight on stocks
lies in the interval [0, 1.5], thus ruling out short sales and leverage
above 50%.11

Specifically, we assume that the investor optimally allocates
wealth to the aggregate stock market given estimates of the first
two conditional moments of the return distribution, Et [rt+1]− r ft+1

and Vt [rt+1], where rt+1 is the market return and r ft+1 is the risk-
free rate (T-bill rate). Under mean-variance preferences, this gives
rise to an optimal allocation to stocks, ω∗

t , of

ω∗

t =
Et [rt+1] − r ft+1

ϕVt [rt+1]
, (20)

where ϕ captures the investor’s risk aversion. We set ϕ = 3 in our
analysis, similar to the value adopted in finance studies. Following
standard methods in the literature on volatility modeling, we use
a GARCH(1, 1) specification to capture time-variation in volatility,
Vt [rt+1], but results based on a realized volatility measure are very
similar. Since our focus is on predicting mean returns, we keep the
volatility specification constant across all models.

Following Marquering and Verbeek (2004), the investor’s ex-
post realized utility is

ut+1 = rf ,t+1 + ω∗

t (rt+1 − rf ,t+1)− 0.5ϕω∗2
t Vart+1, (21)

where Vart+1 is the realized variance based on squared daily re-
turns during month t + 1. Finally, we compare the investor’s aver-
age utility, ū =

1
T−1

T−1
i=1 ut+i, under the modeling approaches

that allow for time-varying expected returns against the corre-
sponding value under the benchmark prevailing mean model. We
report results in the formof the annualized certainty equivalent re-
turn (CER), i.e., the return that would leave an investor indifferent
between using the prevailing mean forecasts versus the forecasts
produced by one of the other approaches. Positive values indicate
that the prevailing mean method underperforms, while negative
values indicate that it performs better than the alternative fore-
casts.

Table 3 shows that the better statistical performance of the
subset and ridge regression methods translates into positive
CER-values. For the subset regressionswith k = 2 or 3 predictors, a
CER-value around 2% is achieved, whereas for the ridge regres-
sions, values around 1.5%–1.7% are achieved for the largest val-
ues of γ . Interestingly, the BMA approach delivers consistently
good performance on this criterion, always generating higher CER-
values than the prevailing mean model.

Moreover, Table 4 shows that when the methods are imple-
mented recursively, the prevailing mean approach delivers higher
average utility than the univariate, Lasso and Elastic Net methods.
Conversely, according to this utility-based approach, the bagging
and BMAmethods deliver CER-values around 0.5% higher than the
prevailingmean, while the ridge and subset regression approaches
better the prevailing mean by more than one percent per annum.

5. Conclusion

We propose a new forecast combination approach that aver-
ages forecasts across complete subset regressions with the same

11 Utility-based measures of forecast performance have been widely used in
studies of stock return predictability; see Pesaran and Timmermann (1995) for an
early example.
number of predictor variables and thus the same degree of model
complexity. In many cases the trade-off between model complex-
ity andmodel fit is such that subset combinations performwell for
a relatively small number of includedpredictors.Moreover,we find
that subset regression combinations often do better than the sim-
ple equal-weighted combinations which include all models, small
and large, and hence do not penalize sufficiently for including vari-
ables withweak predictive power. Inmany cases subset regression
combinations amount to a form of shrinkage, but one that is more
general than the conventional variable-by-variable shrinkage im-
plied by ridge regression.

Empirically, in an analysis of US stock returns, we find that
the subset regression approach appears to perform quite well
when compared to competing approaches such as ridge regression,
bagging, Lasso or Bayesian Model Averaging.

Appendix

This Appendix provides details of the technical results in the
paper.

A.1. Proof of Theorem 1

Proof. The proof follows from aggregating over the finite number
nk,K of subset regression estimators β̂i = (S ′

iX
′XSi)−(S ′

iX
′y) =

S ′

iΣXSi
−
(S ′

iΣX )β̂OLS + op(1). First, note that

β̂i = (S ′

iX
′XSi)−(S ′

iX
′y)

= (S ′

iX
′XSi)−(S ′

iX
′X)β̂OLS

=

S ′

iΣXSi
−
(S ′

iΣX )β̂OLS

+


(S ′

iX
′XSi)−(S ′

iX
′X)−


S ′

iΣXSi
−
(S ′

iΣX )

β̂OLS.

Since β̂OLS →
p β and T−1X ′X → ΣX , we have

(S ′

iX
′XSi)−(S ′

iX
′X)−


S ′

iΣXSi
−
(S ′

iΣX )

= (S ′

iT
−1X ′XSi)−(S ′

iΣX )−

S ′

iΣXSi
−
(S ′

iΣX )+ op(1)

=


(S ′

iT
−1X ′XSi)− −


S ′

iΣXSi
−

(S ′

iΣX )+ op(1).

S ′

iT
−1X ′XSi can be rearranged so that the upper k × k block is

T−1X∗′

i X∗

i , where X∗

i contains the k regressors included in the ith
regression. Since T−1X ′X →

pΣX , then T−1X∗′

i X∗

i →
pΣ∗

Xi
(which is

the variance covariance matrix of the included regressors) by the
definition of convergence in probability for matrices. Rearranging
the term (S ′

iT
−1X ′XSi)− −


S ′

iΣXSi
− in this way yields an upper

k×kblock that is op(1)with the remaining blocks equal to zero. The
final regressor is a sum over these individual regressors, yielding
the result. �

A.2. Proof of Theorem 2

Proof. From the results of Theorem 1, we have

σ−2
ε E


T (β̂T − β0)

′xT x′

T (β̂T − β0)


= σ−2
ε E


T (β̂T − β0)

′ΣX (β̂T − β0)


+ σ−2
ε E


T (β̂T ,OLS − β0)

′Λ′(xT x′

T −ΣX )

× Λ(β̂T ,OLS − β0)


+ op(1)

= σ−2
ε E


T (β̂T − β0)

′ΣX (β̂T − β0)


+ op(1),
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where the second term is zero by the law of iterated expectations
as we assume E[(β̂OLS − β0)

2
|xT ] = E[(β̂OLS − β0)

2
] and E[xT x′

T −

ΣX ] = 0.
Now

T 1/2σ−1
ε Σ

1/2
X (β̂T − β0)

= T 1/2σ−1
ε Λ(β̂T ,OLS − β0)+ T 1/2σ−1

ε (Λ− I)β0 + op(1)

= T 1/2σ−1
ε Λ(β̂T ,OLS − β0)+ (Λ− I)b + op(1),

and so

σ−2
ε E


T (β̂T − β0)

′ΣX (β̂T − β0)


= σ−2
ε E


T (β̂T ,OLS − β0)

′Λ′ΣXΛ(β̂T ,OLS − β0)


+ b′(Λ− I)′ΣX (Λ− I)b

+ 2b′(Λ− I)′ΣXΛ


σ−1
ε


ET 1/2(β̂T ,OLS − β)


+ op(1).

Since T 1/2(β̂T ,OLS − β)→d N(0,ΣX ), the third term is zero in
large enough samples and σ−2

ε T (β̂T ,OLS − β0)
′Λ′ΣXΛ(β̂T ,OLS −

β0)→
d Z ′Λ′ΣXΛZ with Z ∼ N(0,ΣX ) and E


Z ′Λ′ΣXΛZ


=K

j=1 ζj. �
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