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X - 2 COMOLA ET AL.: BLOWING SNOW FRAGMENTATION

Understanding the dynamics driving the transformation of snowfall crys-2

tals into blowing-snow particles is critical to correctly account for the energy3

and mass balances in polar and alpine regions. Here, we propose a fragmen-4

tation theory of fractal snow crystals that explicitly links the size distribu-5

tion of blowing snow particles to that of falling snow crystals. We use dis-6

crete element modeling of the fragmentation process to support the assump-7

tions made in our theory. By combining this fragmentation model with a statistical-8

mechanics model of blowing-snow, we are able to reproduce the character-9

istic features of blowing-snow size distributions measured in the field and in10

a wind tunnel. In particular, both model and measurements show the emer-11

gence of a self-similar scaling for large particle sizes and a systematic devi-12

ation from this scaling for small particle sizes.13
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1. Introduction

The size of snow surface particles plays an outsize role in determining the radiative14

balance [Flanner and Zender, 2006] in polar and alpine regions. A key factor that deter-15

mines the size distribution of snow particles is the transformation of snowflakes once they16

impact the surface. In particular, measurements [Sato et al., 2008] show that, even in17

light winds, many snowflakes break upon collision with the surface, and that the number18

of fragments increases with impact velocity. Fragmentation of snow crystals blown by19

wind might explain the remarkable differences in size between snowflakes and blowing20

snow particles [Gunn and Marshall, 1958; Schmidt, 1982]. Snowfall crystals are relatively21

large, often in the range of 1 ∼ 5 mm depending on precipitation intensity, and generally22

follow an exponential size distribution [Woods et al., 2008; Garrett and Yuter, 2014]. In23

contrast, blowing-snow particles span the size range 50 ∼ 500 µm with a frequency dis-24

tribution well described by a gamma function [Nishimura and Nemoto, 2005; Nishimura25

et al., 2014].26

Measurements [Legagneux et al., 2002] suggest that, when wind shatters large dendritic27

crystals into small fragments, the specific surface area of a fresh snow cover significantly28

decreases. Because specific surface area has been identified as one of the main controls29

on the optical properties of snow surfaces [Domine et al., 2006], blowing-snow fragmen-30

tation may significantly reduce snow surface albedo in alpine and polar regions, and thus31

play a key role in the energy budget. Furthermore, the size-distribution of deposited32

snow partially determines the mechanical properties of alpine snow covers and thus their33

vulnerability to wind erosion [Gallée et al., 2001] and avalanche danger [Gaume et al.,34
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2017]. Moreover, fragmentation processes intensify snow sublimation, which is not only35

responsible for a significant loss of snow mass in snow-covered regions [Lenaerts et al.,36

2012; MacDonald et al., 2010], but also for bromine aerosols release and seasonal ozone37

depletion in Antarctica [Yang et al., 2008; Lieb-Lappen and Obbard, 2015].38

Here, we propose that fragmentation of snow particles while they are blown by wind is39

the missing link that connects the size distribution of precipitating snowflakes to that of40

deposited snow crystals. Specifically, we propose a physical and mathematical description41

of snow fragmentation, based on the fractal geometry of dendritic snow crystals. We eval-42

uate the assumptions of the theory through discrete element simulations of snow crystal43

breaking. We finally derive and apply a statistical-mechanics model of saltation, which44

incorporates the proposed fragmentation processes, to establish the missing connection45

between snowfall and blowing-snow size-distributions.46

2. Snow crystal fragmentation

When wind blows over a fresh snow cover, snow crystals are lifted through aerodynamic47

or splash entrainment [Clifton and Lehning, 2008; Comola and Lehning, 2017], follow48

ballistic trajectories in the saltation layer and eventually impact the surface, thereby pro-49

ducing smaller fragments [Sato et al., 2008]. Large fragments follow the same dynamics,50

break further and progressively gain momentum until they are small enough to be trans-51

ported in suspension by turbulent eddies [Pomeroy and Gray, 1990]. These fragmentation52

processes are controlled by the kinetic energy and mechanical properties of the wind-53

blown sediment [Kok, 2011]. When subjected to impulsive forces, ice behaves as a brittle54

material [Kirchner et al., 2001; Weiss, 2001], presenting a linearly elastic response up to a55
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failure stress at which fracture occurs. In brittle objects, such as ice solids, crack propaga-56

tion dynamics depend on the impact energy. Low energies generate the so-called damage57

regime, yielding a few fragments having size of the same order of the original object,58

while high energies produce the so-called shattering regime, yielding a full scale-invariant59

spectrum of fragment sizes [Kun and Herrmann, 1999].60

The fragmentation dynamics of snow crystals are likely to be different from those of ice61

solids, in large part because of the uncertain role played by their geometry. It is known62

that snow crystals present extremely variable shapes, such as needles, columns, plates,63

and dendrites, depending on temperature and humidity at the time of formation [Nakaya,64

1954]. Because of such fascinating diversity, the development of a fragmentation theory65

that applies to any crystal type seems prohibitive. Nevertheless, there exists a family of66

snow crystals that present a common feature, that is, a fractal structure. A typical ex-67

ample are the dendritic crystals, which mostly form in conditions of supersaturation and68

temperature ranges −22 ∼ −10 ◦C and −3 ∼ 0 ◦C [Nakaya, 1954]. Dendritic crystals are69

commonly observed in nature. It should not surprise, in fact, that one of earliest fractal70

shapes to have been described is the so-called ”Koch’s snowflake” [Sugihara and May,71

1990]. Numerical and experimental studies were able to identify the fractal dimension72

γ of dendritic snow crystals, which spans the range 1.9 ∼ 2.5 depending on their spe-73

cific structure [Nittmann and Stanley, 1987; Heymsfield et al., 2010; Chukin et al., 2012;74

Leinonen and Moisseev, 2015]. We hereafter exploit the fractal properties of dendritic75

snow crystals to derive a fragmentation theory that links the size distribution of snowfall76

crystals to that of blowing-snow particles.77
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When a fractal crystal impacts the surface with sufficient energy, crack formation is78

likely to take place at the connections between different branches, where sharp corners79

yield local stress peaks. Accordingly, a fundamental role is played by the size distribution80

of surface irregularities. Let us define the box-counting measure M (ε) as the number of81

boxes of side-length ε needed to cover the fractal curve. A relevant property of fractals82

is the scale invariance of the box-counting measure, i.e. M (λε) = λ−γM (ε) [Weiss,83

2001]. Let us then call D the size of the parent crystals, which is commonly defined84

as the diameter of the circle of equivalent area [Schmidt, 1982; Nishimura and Nemoto,85

2005; Gordon and Taylor, 2009], and λD the distance between adjacent cracks, with86

λ ∈ [0; 1]. Assuming that cracks develop from sharp corners, where small curvatures87

yield local stress peaks, crystal breaking acts by chipping surface irregularities off the88

fractal contour. Because the distance between adjacent cracks defines the characteristic89

size of the fragment, λ is hereafter referred to as the dimensionless fragment size. The90

fragment size distribution resulting from the complete shattering of the fractal crystal91

would be perfectly scale-invariant, such that the number N (λD) of fragments with size92

λD is λ−γN (D). Given that we are considering only one parent crystal, we would have93

N (D) = 1 and N (λD) = λ−γ. However, it is sensible to assume that impact energies are94

generally not large enough to yield a complete shattering, but rather a damage regime95

characterized by crack formation at a few critical corners. Let us then call p (λ) the96

probability density function describing the likelihood of crack formations at distance λD97

one from another. The total number of children crystals formed upon impact is therefore98
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N =

∫ 1

0

N (λD) dλ =

∫ 1

0

λ−γp (λ) dλ. (1)

Equation (1) can be employed to estimate the number of fragments produced upon im-99

pact of a dendritic snow crystal, provided some reasonable assumptions on the probability100

distribution p (λ) are made. Even though p (λ) is not precisely known, it seems reasonable101

to assume that cracks develop from the sides of larger branches, which are more protrud-102

ing and thus more subjected to large bending forces and local stress peaks. If we indicate103

with Λ the size of the larger branches, this assumption yields p (λ) = δ (λ− Λ), i.e., a104

Dirac delta function centered in Λ, such that105

N = Λ−γ. (2)

We perform numerical simulations of snow crystal fragmentation based on the discrete106

element method (DEM) to evaluate whether equation (2) holds for a dendritic snow crys-107

tal. Figure 1a (ii) shows the simplified snow crystal model, whose geometry mimics that of108

a real dendritic snowflake (Figure 1a (i)), formed of ice elements in contact through cohe-109

sive bonds (see also Figure S1 of the supporting information). The mechanical properties110

of ice are used for the contact model [Petrovic, 2003; Gaume et al., 2015], yielding realis-111

tic deformations and stress distribution (details about the DEM are provided in section112

1 of the supporting information [Cundall and Strack, 1979; Akyildiz et al., 1990; Itasca113

Consulting Group, 2014; Steinkogler et al., 2015]).114

We perform impact simulations with a flat surface for different values of impact speed vi115

and impact angle θi, computing the stress distribution (Figure 1a (iii)) and the fragment116
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release (Figure 1a (iv)). Although the DEM approach would allow us to investigate the117

fragmentation process in three dimensions, such simulations would present additional118

degrees of freedom and require information on the three-dimensional structure of the119

snowflake. Because our purpose is to test a fragmentation theory derived from the fractal120

properties of planar snowflakes, we chose to perform 2-D simulations to provide the best121

trade-off between accuracy and complexity.122

Figure 1b shows the cumulative distribution (CD) and the frequency distribution (FD,123

in the inset) of the fragment sizes. We obtain the distributions from averaging the results124

of 1000 impact simulations, presenting all possible combinations of 10 values of crystal125

orientation βi ∈ [0◦, 60◦] (see Figure 1a (ii)), 10 values of impact velocity vi ∈ [0.5, 1.5]126

m/s, and 10 values of impact angle θi ∈ [5◦, 15◦]. The variability ranges of vi and θi are127

typical of snow saltation [Araoka and Maeno, 1981]. The frequency distribution highlights128

that the majority of fragments presents λ = 0.2 ∼ 0.3, with a mean value 〈λ〉 = 0.3. If we129

assign Λ = 0.3 in equation (2) it follows that, for a fractal dimension γ = 2.1 repersentative130

of dendritic shapes, the number of fragments N is approximately 10.131

Figures 1c and 1d show how 〈λ〉 and N vary with respect to impact velocity vi and132

impact angle θi. Each value of 〈λ〉 and N is obtained by averaging the results of 10 impact133

simulations with different crystal orientations βi. These results suggest that 〈λ〉 ≈ 0.3134

and N ≈ 10 are reasonable approximations in the range of impact velocities and impact135

angles typical of snow saltation [Araoka and Maeno, 1981] (we study the sensitivity of our136

results to these values in section 5).137
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The DEM simulations thus suggest that equation (2) provides an effective prediction138

on the number of fragments produced upon breaking of a dendritic crystal. The results139

also indicate that crystal rebound does not take place under the tested impact conditions140

and that deposition only occurs for very low impact velocities (〈λ〉 = 1 and N = 0 for141

vi < 0.2 ms−1, Figure 1c), which is consistent with experimental observations [Sato et al.,142

2008].143

3. Blowing-snow fragmentation

In light of the observations of section 2, we propose a physical description of blowing-144

snow fragmentation as schematically represented in Figure 2. A large dendritic snowflake145

of size D0, lifted from the surface through aerodynamic or splash entrainment, follows146

a ballistic trajectory and eventually impacts the surface producing a number N = Λ−γ147

of smaller fragments with size D1 = ΛD0. A fraction α (D1) of these children crystals148

moves to the suspension layer transported by turbulent eddies, while the remaining part149

remains in saltation and eventually impacts the surface generating fragments of size D2 =150

ΛD1. Given that crystals of size D2 have a smaller inertia than crystals of size D1,151

turbulent motions are more efficient in carrying them in suspension and thus α (D2) >152

α (D1). Following this fragmentation pattern, the number of crystals of size Dn = ΛDn−1153

generated at the nth impact is154

N (Dn) = N (Dn−1) [1− α (Dn−1)] Λ−γ. (3)

An assumption underlying the proposed theory is the scale-invariance of the fragmen-155

tation process, that is, children crystals of any size present the same fractal geometry and156
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thus experience the same fragmentation dynamics of their larger parent crystals. The157

experimental studies by Sato et al. [2008] and our DEM simulations (Figure 1) suggest158

that large crystals are too brittle to rebound without breaking and that deposition oc-159

curs in very light wind conditions, i.e., for surface shear stresses significantly below the160

limit required to initiate snow transport. Accordingly, we assume that crystals of any size161

experience fragmentation upon impact, neglecting deposition and rebound. In reality,162

crystal fragments with size of the order of the smallest branches (around 50 µm) present163

a spheroidal shape rather than a fractal one [Gordon and Taylor, 2009]. Small-scale de-164

viations from the fractal theory are, in fact, typical of all geometries of nature [Brown165

et al., 2002]. The saltation dynamics of small ice fragments become then similar to those166

of sand grains, which experience deposition and rebound rather than fragmentation [Kok167

et al., 2012; Kobayashi, 1972]. Bearing this limitation in mind, we can still regard the168

assumption of scale-invariance as adequate for the purpose of studying how fragmentation169

processes transform the snowfall size-distribution, given the significant separation between170

the size of large snowflakes and the length scale at which the fractal theory is expected171

to fail.172

4. Modeling blowing-snow fragmentation

We incorporate the proposed fragmentation process in a statistical-mechanics model of173

saltation. We cast the particle dynamics in a residence time distribution framework, which174

has been widely employed in stochastic formulations of water [Botter et al., 2011], con-175

taminant [Benettin et al., 2013], and heat transport [Comola et al., 2015] in underground176

formations. Let us define the residence time of a crystal as the time elapsed between the177
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start and the end of its motion in the saltation layer. Crystal motion can start when the178

crystal is entrained from the surface, through aerodynamic forces or splash, or when the179

crystal is formed upon fragmentation of a larger crystal. Conversely, the end of motion180

occurs when the crystal moves to the suspension layer carried by turbulence or when it181

impacts the surface, producing smaller fragments.182

The number N (D, t) (m−2) of crystals of size D in saltation at time t can be expressed183

as the number of crystals whose motion starts at time t′ and whose residence time is larger184

than t− t′, for all t′ < t, i.e.185

N (D, t) =

∫ t

0

[E (D, t) + F (D, t)]P (t− t′ | D) dt′. (4)

E (D, t) and F (D, t) (m−2s−1) are surface entrainment and fragment production, i.e. the186

fluxes responsible for initiating crystal motion. P (t− t′ | D) is the probability that the187

residence time of crystals of size D is larger than t− t′. We can differentiate equation (4)188

using Leibniz’s rule to express the size-resolved mass balance equation (see section 2 of189

the supporting information for more details)190

dN (D, t)

dt
= E (D, t) + F (D, t)− S (D, t)− I (D, t) . (5)

On the right-hand side of equation (5), the two sink terms S (D, t) and I (D, t) (m−2s−1)191

are the suspension flux and the impact rate of crystals of size D at time t. These two192

terms read193

S (D, t) = α (D)

∫ t

0

[E (D, t′) + F (D, t′)] pS (t− t′) dt′, (6)
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I (D, t) = [1− α (D)]

∫ t

0

[E (D, t′) + F (D, t′)] pI (t− t′) dt′. (7)

α (D) ∈ [0; 1] is the probability that a crystal of size D becomes suspended. Conversely,194

1− α (D) is the probability that a crystal of size D impacts the surface. Here, we assign195

to α (D) the expression of the eddy-diffusivity correction for inertial particles with respect196

to passive tracers [Csanady, 1963], given that the two quantities obey the same limits and197

are governed by similar physics. In fact, the probability of becoming suspended is equal198

to 1 in the limit of D → 0, that is, for passive tracers, decreases as the settling velocity199

becomes relevant compared to turbulent fluctuations, and reaches the lower value 0 in the200

limit of D →∞. We therefore write201

α (D) =

[
1 +

w2
s (D)

σ2

]− 1
2

, (8)

where ws (D) is the settling velocity of crystals of size D and σ2 is the turbulence veloc-202

ity variance (see section 2 of the supporting information for their analytical expressions203

[Pope, 2001; Stull, 2012]). Furthermore, pS (t− t′) and pI (t− t′) are the residence-time204

probability density functions of crystals moving to suspension and impacting the surface,205

respectively. If we assume that particles move independently from one another, it follows206

that the dynamics are well described by a Poisson process, yielding for pS (t− t′) and207

pI (t− t′) exponential residence time distributions.208

We assume that the surface entrainment E (D, t), the first source term on the right-hand209

side of equation (5), samples uniformly from the size-distribution of crystals resting at the210

surface, according to the principle of equal mobility [Willetts, 1998]. Because we aim at211
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establishing a link between the snowfall and blowing-snow size distributions, we consider212

the typical situation in which drifting snow already starts during snowfall events. We213

therefore simulate impact and fragmentation of snowfall crystals by applying equation (1)214

to an exponential snowfall size-distribution bounded within 0.75 and 2 mm (dashed black215

line in Figure S4 of the supporting information), which is typical of precipitation intensities216

of the order of ∼ 0.3 mmh−1 [Gunn and Marshall, 1958]. The resulting size-distribution217

of surface crystals proves similar to that obtained by sieve analysis in very cold conditions218

[Granberg, 1985] (dashed grey line in Figure S4 of the supporting information). It does219

happen, sometimes, that low-wind snowfalls generate a snow cover that is eroded by220

subsequent higher winds. In these cases, the size distribution of surface particles does not221

only result from fragmentation of snowfall crystals, but also from the snow metamorphism222

that takes place in the snow cover [Colbeck, 1982]. Although relevant in some situations,223

the effect of snow metamorphism goes beyond the scope of this work and is thus not224

included in our model.225

The second source term in equation (5) is the fragment production rate F (D, t), which,226

following equation (1), reads227

F (D, t) =

∫ 1

0

I

(
D

λ
, t

)
λ−γp (λ) dλ. (9)

If we assume again that p (λ) = δ (λ− Λ), we obtain F (D, t) = I (D/Λ, t) Λ−γ.228

We solve equation (5) numerically, letting the system evolve until a stationary condition229

is reached (see section 3 of the supporting information for more details on the transient230
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process). We then compute the size-distribution of blowing-snow by normalizing N (D, t)231

in stationary conditions.232

5. Model results

We first perform a model simulation using γ = 2.1 and Λ = 0.3, which are representative233

of the dendritic snow crystal considered in section 2. In our simulations, we set a lower234

threshold of 10 µm to the particle size, assuming that any smaller crystal disappears235

through sublimation. To evaluate the model results, we analyze all known published236

datasets of blowing-snow size distributions, collected from field campaigns in the United237

States [Schmidt, 1982], Canada [Gordon and Taylor, 2009], French Alps [Nishimura et al.,238

2014], and Antarctica [Nishimura and Nemoto, 2005] (see section 5 of the supporting239

information for more details). It is worth noting that the snowflake shape for the different240

measurements is unknown, and likely presents a mix of fractal and non-fractal snow types.241

We only consider size-distribution measurements within the saltation height, which is242

approximately of the order of 15 cm [Gordon et al., 2009; Nishimura and Nemoto, 2005].243

If several saltation measurements are available for the same dataset, we average them244

to obtain the mean size-distribution. Additionally, we present the blowing-snow size-245

distribution that we measured in wind tunnel tests. We carried out the experiments over246

a post-snowfall surface at the Institute for Snow and Avalanche Research (SLF/WSL) in247

Davos, Switzerland, at 1670 m above sea level [Clifton et al., 2006]. We obtain the blowing-248

snow size-distribution by averaging three series of measurements within the saltation layer,249

namely at 10, 17, and 30 mm above the surface.250
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Figure 3 shows the size-distribution dN/dD as obtained from the fragmentation model251

(grey dashed line) and dataset analyses (colored dots). The measured size-distributions,252

which are commonly approximated by a gamma function, are well reproduced by the253

proposed fragmentation theory. In particular, results highlight that blowing-snow size-254

distributions display a power-law scaling for the largest crystal sizes (D > 200 µm) and255

a systematic deviation from this self-similar scaling for smaller sizes. Interestingly, the256

power-law exponent seems to be approximately 2.1, suggesting that the fractal dimension257

is indeed a control on snow crystal fragmentation. The deviation from the power-law258

indicates that there exists an under-production of fragments smaller than 200 µm, that259

is, not all the small branches are chipped off the crystal contour. In fact, as shown in260

Figure 2, the fragmentation process yields small fragments only after multiple impacts,261

when a significant number of the larger fragments has already moved to suspension with262

smaller branches still attached. It is worth noting, however, that the small-scale deviation263

observed in the measured size-distributions may in part be due to the rapid sublimation264

of the smallest ice fragments [Groot Zwaaftink et al., 2011].265

The results thus suggest that a fractal power-law scaling emerges in the size range for266

which turbulent eddies are not efficiently carrying crystals in suspension (200− 500 µm).267

On the contrary, below 200 µm, turbulence starts to be efficient in removing crystals from268

the saltation layer and reducing the production of smaller fragments. As a result, the269

peak of the blowing-snow size-distributions lies at ∼ 100 µm, where there is the optimal270

trade-off between the two described mechanisms.271
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We further perform a sensitivity analysis of the model results to variations in the fractal272

dimension γ, within the range suggested by measurements, and fragment size Λ, within the273

range suggested by the DEM simulations. The purpose of this analysis is to test whether274

variations in the dendritic structure (different γ values) and in the impact conditions275

(different Λ values) may significantly alter the blowing-snow size distribution. Figures 3b276

and 3c suggest that varying γ and Λ produces significant quantitative variations in the277

results. Despite this quantitative sensitivity, the main qualitative features of the results278

seem robust relative to reasonable variations in γ and Λ.279

6. Discussion and conclusions

We proposed a fragmentation theory for snow crystals to test the hypothesis that frag-280

mentation processes constitute the missing link between the seemingly inconsistent size281

distributions of snowfall and blowing-snow. A key assumption underlying our model is282

that the fragment size and the fragment number follow from the power-law distribution of283

surface irregularities typical of fractal geometries. We used discrete element simulations284

of snow crystal breaking to explicitly test this assumption. These simulations indicated285

that the theoretical results in terms of fragment size and number is indeed representa-286

tive of a dendritic snowflake geometry (Figure 1). The results of a statistical-mechanics287

model of saltation, accounting for the proposed fragmentation theory, are consistent with288

measurements (Figure 3a).289

Our results suggest that the self-similarity of snow crystals shapes the blowing-snow290

size-distribution. In particular, our model predicts, and measurements support, a self-291

similar scaling for crystal sizes larger than 200 µm (Figure 3). The deviation from the292
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power-law observed at the lower end of crystal size is due to the relatively large turbulent-293

diffusivity of particles smaller than 200 µm, which are efficiently transported in suspension294

and are thus less likely to produce smaller fragments upon impact.295

Overall, our analysis suggests that fragmentation processes can indeed transform an296

exponential snowfall distribution into the so-called gamma distribution of blowing-snow.297

In particular, the typical features of a gamma distribution emerge, on one side, from the298

fractal geometry and, on the other side, from the interactions between inertial particles299

and turbulent eddies.300

Further analyses show that these features are conserved for a wide range of fractal301

dimensions and fragment sizes (Figures 3b and 3c). This suggests that the proposed302

fragmentation dynamics may hold for a wide range of dendritic snowflakes and impact303

conditions. It is worth noting that some commonly observed snow crystals, such as needles304

and plates, do not present the fractal structure considered in our theory. Figure 3a305

indicates, however, that our model can reproduce several measured size distributions,306

which may have resulted from fragmentation of snowflakes with different shapes. This307

suggests that our theory may still provide an effective prediction of the size and number308

of fragments produced by non-dendritic crystals, although the assumptions on which the309

theory rests are not supposed to hold for these shapes.310

Our work also points toward the need of accurate estimations for the typical time- and311

length-scale necessary to complete the transition from the size-distribution of snowfall to312

that of blowing-snow. This will clarify the need of accounting for fragmentation processes313
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in snow transport models and in climate models, in order to improve the predictions of314

surface mass and energy balances in snow-covered regions.315
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Figure 1. (a) Illustration of the DEM simulations: i) real snowflake (credit: Satoshi Yanagi,

http://www1.odn.ne.jp/snow-crystals/page1 E.html), ii) simplified DEM description, iii) ratio

between tensile stress σ in bonds and at the moment of the impact and tensile strength of ice σr,

iv) fragmented snowflake (each level of grey represents a fragment). In the snow crystal model,

the radius of the largest elements is 50 µm, while the radius of the smallest ones is 12.5 µm.

(b) Cumulative size distribution (CD) of the dimensionless fragment size λ and corresponding

frequency distribution (FD). (c) Influence of impact velocity and (d) impact angle on the average

dimensionless fragment size 〈λ〉 and number of fragments N . The grey bands identify the ranges

of impact velocity and impact angle typical of snow saltation, i.e., 0.5 < vi < 1.5 m/s and

5◦ < θi < 15◦ [Araoka and Maeno, 1981].
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Figure 2. Schematic representation of the fragmentation process during saltation. Each

crystal impact leads to formation of fragments having size equal to Λ times the original size.

The number of children crystals follows from the scale-invariance property. Small fragments,

formed after repeated impacts, are likely to be caught by turbulent eddies and transported to

the suspension layer.
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Figure 3. (a) Size-distribution of saltating snow crystals, modeled with the proposed frag-

mentation theory (dashed grey line), reported in published datasets [Gordon and Taylor, 2009;

Nishimura et al., 2014; Nishimura and Nemoto, 2005; Schmidt, 1982], and measured in the SLF

wind tunnel in Davos, Switzerland (colored dots). Because the normalized distributions are sen-

sitive to the specific range of sizes measured by the instruments, we rescaled the distributions

such that all of them are tangent to a unique power-law (black dashed line) in the range where

they show a scale-invariant behavior (200 ∼ 500 µm). (b) Sensitivity analysis of the modeled

blowing-snow size distribution to the fractal dimension γ. (c) Sensitivity analysis of the modeled

blowing-snow size distribution to the dimensionless fragment size Λ.
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