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Ideal representations in a similarity space 
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Abstract 

The present study provides an empirical evaluation  of the 
ideal representation view of concept representation. We 
compared the ideal representation view with the more 
established exemplar and prototype views both in common 
taxonomic categories and in ad hoc categories. All three 
views are modeled based on underlying spatial similarity 
representations. Results suggest that the ideal representation 
is the better representation in ad hoc categories, and that the  
exemplar model  is the better representation in the common 
taxonomic categories.  

Keywords: concepts; category representation; computational 
models of concept representation; typicality; ad hoc concepts 

 

An important and robust observation in concept 

representation research is that not all members of a category 

are equally representative of the category. For example, 

while a platypus is a mammal, it is not a good example of a 

mammal. It has many features that do not fit our image of 

what a mammal should be like: it has webbed feet, a beak 

and it lays eggs. A cow on the other hand, is a good 

example of a mammal to most people. In the same way, a 

spoon is a bad example of the category weapons, and a gun 

is a good example. 

Previous research suggests that people are in agreement as 

to what are representative, good examples of a certain 

category and which examples are not (Rosch & Mervis, 

1975). This graded membership structure is often referred to 

as the typicality gradient and has been reliably observed in a 

broad range of natural language categories, including 

common taxonomic categories (e.g. De Deyne et al., 2008) 

and ad hoc categories, such as goal derived categories 

(Barsalou, 1983, 1985) 

Typicality is assumed to be closely linked to the 

representation of a concept (e.g., Murphy, 2002; Rosch, 

1978). Theories  of concept representation should therefore 

be able to explain the observation of a typicality gradient. 

The observation of a typicality gradient in different kinds of 

categories however, does not necessarily imply that the 

same processes and the same kind of concept representation 

underlies typicality judgments. The present study aims at 

evaluating different views on concept representation in 

different kinds of categories. 

Kinds of concept representations 

Two contrasting views on category representation have 

dominated the computational research on categories and 

concepts, each giving a different account of the graded 

internal structure of categories. In both approaches 

typicality is related to similarity of a category member  to 

the category representation. The two views differ in what 

the category representation is assumed to consist of.  

On the one hand, the prototype view states that a category 

is represented by an abstract summary representation, 

referred to as the prototype (e.g., Hampton, 1979; Posner & 

Keele, 1968). In this view, the concept vehicle is a 

represented by a summary  of what vehicles are like on 

average, abstracted from specific instances of vehicles, 

containing information such as ‘moves people or cargo from 

point A to point B’. The typicality of car for the category 

vehicle then is the similarity of car to this abstract 

prototype. 

On the other hand, the exemplar view proposes that a 

category is represented by previously encountered instances 

of the category, instead of an abstract summary (e.g., 

Brooks, 1978; Medin & Shaffer, 1978). According to this 

view, typicality is conceptualized as the summed similarity 

of a category member to all stored members of the category. 

For example, the concept vehicle consists of memory traces 

of previously encountered instances of vehicles, such as 

train, plane and metro (i.e. member-categories at a lower 

level of abstraction). The typicality of car is then its 

summed similarity to all stored instances of vehicle. 

 Barsalou (1985) has proposed a third approach to account 

for the typicality gradient. Focusing on ad hoc categories – 

categories constructed ad hoc to serve a specific purpose, 

for example things you rescue from a burning house or 

things you eat when on a die – he proposed the idea of an 

ideal representation. Like a prototype representation, an 

ideal representation is a summary representation. Unlike a 

prototype which is based on average, central tendency 

values on the stimulus dimensions, an ideal contains 

extreme values on relevant dimensions. For example, a 

typical member of the category things to eat when on a diet 

has an extreme value on the ideal dimension ‘fat percentage’ 

– typical examples being at the extreme low end of that 

dimension, with a zero percentage of fat as an extreme ideal 

representation. 
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Barsalou (1985) compared a number of determinants of 

the typicality gradient in both common, taxonomic  

categories and ad hoc categories – including a prototype 

measure and an ideal representation measure. He found that 

whereas in common taxonomic categories the prototype 

measure was the dominant determinant of typicality, the 

ideal measure determined the typicality gradient of the ad 

hoc categories significantly.  

This notion of ideal representation provides and excitingly 

new perspective on concept representation, but, unlike the 

exemplar and prototype views, it has not yet made its way 

into a computational model of concept representation. 

Recently we developed a model that attempts to translate 

the idea of an ideal representation to a computational model 

(Voorspoels, Vanpaemel & Storms, submitted) that is based 

on an underlying spatial similarity representation. To test 

whether this model is a proper translation of the notion of 

ideal representations, we aim at replicating the findings of 

Barsalou (1985) using computational models. We will 

compare the performance of the model that implements 

ideal representations to an exemplar model and a prototype 

model (also based on underlying similarity spaces) in 

common taxonomic categories and ad hoc categories. If our 

model is a proper implementation of ideal representations, 

we expect an interaction between the type of model and the 

kind of category. The ideal representation model should be 

the lesser model in the common taxonomic categories and 

the better model in the ad hoc categories.  

Models 

The models considered in the present paper are all based on 

underlying spatial similarity representations. In a spatial 

representation of a category, the members are represented 

by points in a M-dimensional space, and the distance 

between two members (i.e., between two points) is inversely 

related to the similarity between the two members. Such a 

representation is typically derived using multidimensional 

scaling (MDS) techniques, based on pairwise similarity 

data. The axes that span the similarity space of a category 

can be considered dimensions that are important to 

determine the similarity relations between members in the 

category. In the present study, we do not attempt to interpret 

the axes.  

Ideal Dimension Model 

The ideal dimension model (IDM) posits that an ideal 

dimension exists in the underlying similarity space.  Each 

exemplar of a category has a certain value along the ideal 

dimension, obtained by an orthogonal projection on this 

dimension. The further this value is located along the 

dimension in the ideal direction, the more typical an 

exemplar is.  

It is useful to think of the ideal dimension as a specific 

combination of (unarticulated) features. The more a member 

has of this combination of features, the more typical it is for 

the category. In the case of things to eat when on a diet, the 

ideal dimension possibly is made up by a combination of 

features such as fat percentage, sweetness and calories. For 

taxonomic categories, it is more difficult to articulate the 

specific combination of features that might make up the 

ideal. To put it somewhat trivially: a car is typical for the 

category of vehicles if it has a lot of the combination of 

features that make up “vehicle-ness”.  

Formally, the IDM assumes that judging the typicality of 

an item i for a category A comes down to evaluating the 

value of i on a certain dimension VA. In an M-dimensional 

space, the typicality of item i for category A, is then given 

by:  
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where xAk are the coordinates spanning the ideal dimension 

VA, xik are the coordinates of item i, and M is the number of 

dimensions. We restrict xA to be at a fixed distance from the 

origin. This does not pose a restriction for the ideal 

dimension. 

The model orthogonally projects item i on the ideal 

dimension VA , and returns a dimensional value relative to 

the origin that rises when the projection is farther in the 

ideal direction (i.e., the direction determined by the vector 

VA). This value is considered the typicality of item i for 

category A. 

Generalized Context Model 

The generalized context model (GCM; Nosofsky, 1984, 

1986) assumes that categorization decisions are based on 

similarity comparisons with individually stored category 

exemplars. Originally, the model was developed to account 

for categorization decisions, but it has successfully been 

adapted for typicality judgments (Nosofsky, 1991; 

Voorspoels, et al. 2008a).  

Typicality of an exemplar is calculated by summing the 

similarity of that exemplar to all other exemplars in the 

category. Formally, the typicality of an exemplar i for 

category A is then given by:   

 ∑
=
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n
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where ηij is the similarity of exemplar i to exemplar j, with j 

belonging to category A.  

The similarity between two exemplars is a function of the 

distance of the exemplars in the M-dimensional 

psychological space, adjusted by attentional weights – that 

specify which underlying dimensions are important in the 

similarity calculation – and a sensitivity parameter – which 

magnifies or shrinks the psychological space. Formally, the 

scaled psychological distance between two exemplars i and j 

is given by: 
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where xik and xjk are the coordinates of exemplars i and j on 

dimension k, wk a parameter reflecting the attention weight 

for dimension k, M is the number of dimensions, and c is the 

sensitivity parameter. Since Euclidean distances are 

generally accepted to be more appropriate for integral 

dimensions (Shepard, 1964), we fixed r at 2 for the present 

studies. 

Similarity of a stimulus i to another stimulus j, is related 

to psychological distance as follows: 

( )
ijij d−= expη ,   (4) 

 

where dij is the scaled psychological distance between 

exemplar i and j. The free parameters in the GCM consist of 

M-1 dimension weights and a scaling parameter c. 

MDS-based Prototype Model 

Within the framework of the GCM, one can easily define a 

prototype model (MPM; Nosofsky, 1992). Typicality of a 

category member then is the similarity towards the 

prototype of the category:  

 

AiPiAT η= ,    (5) 

 

where PA is the prototype of category A. The position of the 

prototype in the similarity space is determined by averaging 

the coordinates of all category members on each axis. 

The free parameters in the model are identical to the free 

parameters in the GCM (i.e., M-1 dimension weights and a 

scaling parameter). 

Data 

Construction of the psychological space relies on similarity 

data. Evaluation of the models relies on typicality data. For 

the common categories we used data from a recent norm 

study De Deyne et al. (2008). For the ad hoc categories, we 

collected the data. We will discuss the data for both 

category types in turn. 

Common taxonomic categories 

Eleven common taxonomic categories, from two semantic 

domains (animals and artifacts) were used in the present 

study (from de Deyne et al., 2008): birds, fish, insects, 

mammals, reptiles, clothes, kitchen utensils, musical 

instruments, tools, vehicles and weapons. The categories 

contain between 22 and 30 members. 

 

Typicality measure The exemplars of each category, 

presented as verbal stimuli, were rated by 28 participants for 

goodness-of-example for the superordinate category they 

belonged to on a Likert-rating scale ranging from 1 for very 

bad examples to 20 for very good examples. The reliability 

of the judgments was evaluated by means of split-half 

correlations corrected with the Spearman-Brown formula, 

and ranged from .91 to .98 across the 11 categories (De 

Deyne et al., 2008, Table 1, p. 1033). The ratings were 

averaged over participants. 

 

Similarity measure Pairwise similarity ratings were also 

available in de Deyne et al. (2008). Similarity of each 

member pair within a category was rated by 15 to 25 

participants (varying across categories, not within 

categories). Estimated reliability of the ratings ranged from 

.88 and .96 across categories.  

Ad hoc categories 

Ten ad hoc categories were constructed, including those of 

Barsalou (1985): things you put in your car, things you 

rescue from a burning house, things not to eat/drink when 

on a diet, wedding gifts, things you use to bake an apple pie, 

things you take to the beach, means of transport between 

Brussels and London, properties and actions that make you 

win the election, weapons used for hunting and tools used 

when gardening.  

For each of the categories, 80 participants generated at 

least eight members. From the resulting potential members 

pool, we sampled 20 to 25 members, covering the 

production frequency dimension.  

 

Typicality measure The members of each category were 

rated for goodness-of-example by 30 participants on a 

Likert-rating scale ranging from 1 for very bad examples to 

20 for very good examples. The reliability of the judgments 

was evaluated by means of split-half correlations corrected 

with the Spearman-Brown formula, and ranged from .94 to 

.98. 

 

Similarity measure Since the members of an ad hoc 

category can be very divers and seemingly irrelevant to each 

other (e.g., tissues and candy), we did not ask participants to 

directly rate the similarity of each member pair within a 

category. Participants performed a sorting task, an often 

applied technique to arrive at a similarity measure for large 

stimuli sets (e.g., Ameel & Storms, 2006; Van der Kloot & 

Van Herk, 1991). We will briefly describe the procedure.  

For each category, 60 participants sorted the members into 

piles according to whatever principle they thought was 

fitting, the only restriction being that there had to be more 

than one pile and less than the number of members in a 

category. Following their initial sort, they were asked to 

either further divide the piles they made in subgroups (when 

the number of piles in the initial sort was smaller than five), 

or to join piles together (when the number of piles was 

larger than five). This procedure resulted in 120 exemplar-

by-exemplar matrices (on for each separate sort) for each  

category, each cell reflecting whether the pair was in the 

same pile or not. We summed the 120 matrices, arriving at 

one matrix per category, the summed scores in the cells 

reflecting the similarity between two members. 
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Results 

The similarity measures for all 21 categories were used as 

input for a SAS non-metric MDS analyses, resulting in 

spatial representations in Dimensionalities 2 to 8. Stress 

values, measuring the badness-of-fit for the resulting 

geometric representation, showed a monotonically 

decreasing pattern in each category, indicating that the 

algorithm did not get trapped in a local minimum. Overall, 

the stress values dropped below .1 from Dimensionality 4 

onwards for the common taxonomic categories and from 

Dimensionality 3 onwards for the ad hoc categories. Taking 

into account stress and the number of members of the 

categories, we will present results for the common 

taxonomic categories in Dimensionalities 4 to 8 and for the 

ad hoc categories from Dimensionality 3 to 6 (following 

generally used rules of thumb regarding number of 

dimensions and stress). 

Recently, increasing attention has been drawn to the 

importance of a model’s flexibility and complexity in model 

evaluation, and the necessity to penalize models that are 

more complex (any data pattern can be accounted for 

perfectly by a sufficiently complex model). Comparing the 

best fit a model can provide ignores this complexity, while 

assessing the average fit of the model across all possible 

parameter values balances model complexity and data fit 

(e.g., Pitt, Kim & Myung, 2003). This average fit is 

measured by the marginal likelihood.  Given the differences 

in functional form of the GCM and IDM, the model 

evaluation in terms of marginal likelihoods is preferable. 

The results of the model analyses are reported through 

model weights. The model weight of a model reflects the 

relative evidence that the data provide in favor of that 

model, within the set of all models that are evaluated.  The 

evidence for a model is the marginal likelihood of the model 

– calculated by sampling the parameter space. For each 

sampled parameter value, one can calculate the likelihood 

given the prior distributions of the parameters. After a 

number of samples, the average of all samples will converge 

into an estimate of the marginal likelihood of the model. 

We relied on standard uninformative priors. For the IDM, 

this translates to a uniform prior over all points at a certain 

distance of the origin. For the GCM and the prototype 

model, a uniform prior over the range 0 to 1 was used for 

the dimensional weights, adding the restriction that the 

dimensional weights have to sum to 1. The prior for the 

sensitivity parameter followed a Gamma(.001,.001) 

distribution. 

We will first present the results of the analyses of the 

common categories. Then we will present the results for the 

ad hoc categories.  

Common taxonomic categories 

Figure 1 presents the model weights for all three models for 

the common taxonomic categories. For 9 out of 11 

categories, the results are highly consistent across 

dimensionalities. Results are not consistent for musical 

instruments and vehicles, consequently making inferences 

regarding these categories rather difficult. We will consider 

the results of categories fish and tools to be consistent, since 

only in Dimensionality 4 they deviate from the other 

Dimensionalities. For tools, closer inspection of the 

underlying representation revealed that stress-values 

dropped below .1 from Dimensionality 5 onwards, possibly 

explaining the anomaly in the Dimensionality 4.  

 
Figure 1. Model weights for the GCM, MPM and IDM for 

the common taxonomic categories. 

 

It can be seen that for the 9 consistent categories, the 

GCM gives the better account of the typicality gradient for 8 

out of 9 categories. For only 1 out of 9 categories, birds, the 

IDM clearly provides a better account. The MPM is not 

competitive in the present evaluation. Only for the category 

fish, it seems to provide a viable alternative in higher 

Dimensionalities (but even there, the MPM is not 

convincingly better). 

In sum, the GCM seems to be the better model for the 

typicality gradient of the common taxonomic categories. 

The prototype model is never competitive, performing 

worse than the GCM in all categories and nearly all 

dimensionalities. This result confirms results of earlier 

comparisons between the exemplar view and the prototype 

view in common taxonomic concepts (e.g., Voorspoels et al. 

2008) and artificial category learning (Nosofsky, 1992, 

Vanpaemel & Storms, 2010). The IDM possibly drives the 

typicality gradient of a small minority of common 

taxonomic categories (only birds in our set).    

Ad hoc categories 

Figure 2 presents the model weights of the three models for 

the ad hoc categories. For 9 out of 10 categories, the results 

are consistent across dimensionalities. Results are not 

consistent across dimensionalities for things you take to a 
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beach. Looking at the 9 consistent categories, the evidence 

is overwhelmingly in favor of the IDM in 7 categories. Only 

for the categories hunting weapons and things you use when 

baking an apple pie the GCM (in close competition with the 

MPM for the latter) is the best model. In sum, the ideal 

representation view indeed seems to provide a better 

account of the typicality gradient of ad hoc categories than 

the prototype and exemplar view, yet the evidence is not 

univocal.  

 
Figure 2. Model weights for the three models for the set of 

ad hoc categories. 

 

The model weights reported are a relative measure of 

model performance, i.e., the model weight only reflects the 

performance of a model relative to a set of competitive 

models. To our knowledge however, the representational 

mode and the computational models used in the present 

study have not been applied to ad hoc categories. It is 

therefore informative to evaluate whether the models can 

give a sufficient account of the typicality gradient in 

absolute terms.  

To this end we calculated correlations between observed 

and predicted typicality scores, using the optimal parameter 

values for each model. Results of these analyses are 

presented in Figure 3. It can be seen in Figure 3 that 

correlations rise above .6 for all categories in which the 

IDM is to be preferred based on the model weights, except 

for properties and actions that make you win the election 

and means of transport between Brussels and London. For 

the categories in which evidence based on the model 

weights was not in favor of the IDM, or the model weights 

were not consistent across dimensionalities, the optimal 

correlations are generally somewhat lower.  

Discussion 

The present study focused on the IDM, a model that 

provides a computational account of the notion of an ideal 

representation in the context of spatial similarity 

representations. The IDM was evaluated in its account of 

the typicality gradient both common taxonomic categories 

and ad hoc categories and compared to the GCM, arguably 

the most successful exemplar model, and the MPM. 

Following earlier findings by Barsalou (1985), we 

hypothesized that the IDM would have difficulty accounting 

for the typicality gradient of the common taxonomic 

categories, but that it would give a better account of the 

typicality gradient of ad hoc categories.  

 
Figure 3. Optimal correlations between observed and 

predicted typicality ratings as a function of Dimensionality  

 

The results supported the hypothesis. While evidence was 

not consistent across dimensionalities for 3 out of 21 

categories, the overall pattern clearly showed the expected 

interaction: in the common taxonomic categories, the GCM 

was the better model – as can be expected based on earlier 

findings – and in the ad hoc categories the IDM was the 

better model. The evidence in any case strongly suggests 

that the typicality gradient of common taxonomic categories 

and of ad hoc categories is determined by a different 

representation. Moreover, the results support the 

reasonableness of the IDM as a formal implementation of 

Barsalou’s (1985) notion of ideal representation.  

It is unclear why this pattern broke down in 3 out of the 16 

“consistent” categories. For fish, the IDM was the better 

model. In hunting weapons and things you use to make an 

apple pie, the GCM (MPM respectively) was the better 

model. Note however that for things you use to make an 
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apple pie, none of the models could give a good account of 

the typicality gradient in terms of optimal correlations (see 

Figure 3). This might suggest that the typicality gradient in 

this category is driven by yet another process, different from 

than the ones under consideration. For hunting weapons, the 

category might be considered a well-established category, 

rather than an ad hoc category. 

To a certain extent, this study is a replication of Barsalou’s 

work on ad hoc categories and ideal representations 

(Barsalou, 1985). There are, however, three crucial 

differences. First, we compared the ideal dimension 

approach to (advanced implementations of) both a prototype 

approach and an exemplar approach. This is important, 

since in this study, and in previous studies (e.g., Voorspoels 

et al., 2008) it is found that the exemplar approach is to be 

preferred over the prototype approach in concept 

representation.  

Second, Barsalou (1985) used a priori ideals, which were 

generated intuitively by the researchers, for which all 

members of the relevant category were rated. No such 

instruction takes place with the IDM.   

Third, Barsalou (1985) evaluated the relative contribution 

of different determinants of typicality, such as ideals and 

central tendencies, using regression analyses and a number 

of measures of these determinants. We tested and compared 

computational models of typicality that are derived from 

assumptions concerning concept representation. 

Importantly, we developed a computational model that 

introduces the notion of ideal representation to the context 

of underlying spatial representations in an intuitive way. An 

important finding of the present study is that the IDM 

indeed can be considered a computational model of ideal 

representations, which can be usefully applied in the further 

investigation of differences between concepts in terms of 

concept representation. 

Acknowledgments 

The Research in this article is part of research project 

G.0281.06 sponsored by the Belgian National Science 

Foundation – Flanders, given to the third author. We want to 

thank Sander Vanhaute for his help with collecting data. 

References 

Ameel, E., & Storms, G. (2006). From prototypes to 

caricatures: Geometrical models for concept typicality. 

Journal of Memory and Language, 55, 402-421. 

Barsalou, L.W. (1983). Ad hoc categories. Memory & 

Cognition, 11, 211-227. 

Barsalou, L. W. (1985). Ideals, central tendency, and 

frequency of instantiation as determinants of graded 

structure in categories. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 11, 4, 

629 - 654. 

De Deyne, S., Verheyen, S., Ameel, E., Vanpaemel, W., 

Dry, M., Voorspoels, W., & Storms, G. (2008). 

Exemplar by feature applicability matrices and other 

Dutch normative data for semantic concepts. Behavioral 

Research Methods, 40, 1030-1048.  

Hampton, J. A. (1979).  Polymorphous concepts in semantic 

memory.  Journal of Verbal Learning and Verbal 

Behavior, 18, 441-461. 

Medin, D. M., & Schaffer, M. M. (1978). Context theory of 

classification learning. Psychological Review, 85, 207-

238. 

Murphy, G. L. (2002). The Big Book of Concepts. 

Cambridge: MIT Press. 

Nosofsky, R. N. (1984). Choice, Similarity, and the context 

model of classification. Journal of Experimental 

Psychology: Learning, Memory and Cognition, 10, 104-

114. 

Nosofsky, R. N. (1986). Attention, Similarity, and the 

identification-categorization relationship. Journal of 

Experimental Psychology: General, 115, 39-57. 

Nosofsky, R. N. (1991). Typicality in logically defined 

categories: Exemplar-similarity versus rule instantiation. 

Memory & Cognition, 19, 131-150 

Nosofsky, R., N. (1992). Exemplars, prototypes, and 

similarity rules. In A. F. Healy, & S. M. Kosslyn (Eds.), 

Essays in honor of William K. Estes. Hillsdale, NJ, 

England: Lawrence Erlbaum Associates, Inc. 

Pitt, M., A., Kim, W., &  Myung, J. (2003). Flexibility 

versus generalizability in model selection. Psychonomic 

Bulletin & Review, 10, 29-44. 

Posner, M.I., & Keele, S. W. (1968). On the genesis of 

abstract ideas. Journal of Experimental Psychology, 3, 

392-407. 

Rosch, E. (1978). Principles of categorization. In E. Rosch 

and B. B. Lloyd (Eds.), Cognition and categorization 

(pp. 27-48). Hillsdale, NJ: Erlbaum. 

Rosch, E., & Mervis, C. B. (1975). Family resemblances: 

Studies in the internal structure of categories. Cognitive 

Psychology, 7, 573-605. 

Shepard, R. N. (1964). Attention and the metric structure of 

stimulus space. Journal of Mathematical Psychology, 1, 

54-87 

Van der Kloot, W. A., van Herk, H. (1991). 

Multidimensional scaling of sorting data: A comparison 

of three procedures. Multivariate Behavioral Research, 

26 (4), 563-581. 

Vanpaemel, W., & Storms, G. (in press). Abstraction and 

model evaluation in category learning. Behavior 

Research Methods. 

Voorspoels,W., Vanpaemel, W., Storms, G. (2008). 

Exemplars and prototypes in natural language concepts: 

a typicality based evaluation. Psychonomic Bulletin & 

Review, 15, 3, 630-637. 

Wagenmakers, E. J., & Farrel, S. (2004). AIC model 

selection using Akaike weights. Psychonomic Bulletin & 

Review, 11, 192-196. 

2295




