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E N V I R O N M E N T A L  S T U D I E S

Estimating global biomass and biogeochemical cycling 
of marine fish with and without fishing
Daniele Bianchi1*, David A. Carozza2, Eric D. Galbraith3,4, Jérôme Guiet1,3, Timothy DeVries5

The biomass and biogeochemical roles of fish in the ocean are ecologically important but poorly known. Here, we 
use a data-constrained marine ecosystem model to provide a first-order estimate of the historical reduction of fish 
biomass due to fishing and the associated change in biogeochemical cycling rates. The pre-exploitation global 
biomass of exploited fish (10 g to 100 kg) was 3.3 ± 0.5 Gt, cycling roughly 2% of global primary production 
(9.4 ± 1.6 Gt year−1) and producing 10% of surface biological export. Particulate organic matter produced by ex-
ploited fish drove roughly 10% of the oxygen consumption and biological carbon storage at depth. By the 1990s, 
biomass and cycling rates had been reduced by nearly half, suggesting that the biogeochemical impact of fisher-
ies has been comparable to that of anthropogenic climate change. Our results highlight the importance of devel-
oping a better mechanistic understanding of how fish alter ocean biogeochemistry.

INTRODUCTION
Fish have not typically been considered as a dynamic component of 
global ocean biogeochemistry. Instead, the dominant biogeochemical 
paradigm has focused on the interactions between phytoplankton, 
zooplankton, and bacteria (1). Yet, in recent years, there has been a 
growing appreciation for the potential role of fish, which is becom-
ing increasingly important in light of marked alterations caused by 
fishing, habitat degradation, warming, deoxygenation, and acidifi-
cation (2–5). Fish and other consumers can exert control on marine 
food webs via top-down interactions (6, 7) and affect nutrient 
dynamics by storing, redistributing, and releasing carbon and 
nutrients within and across ecosystems (8–10). But while the 
biogeochemical role of fish has been documented in a variety of 
environments, most notably freshwater and coral reef ecosystems 
(8, 10), few studies have highlighted the role of fish on the ocean’s 
biological pump and seawater chemistry (11–14), and the influ-
ence of fish has only begun to be represented in Earth system 
models (15, 16).

Assessing the importance of fish in ocean biogeochemistry has 
primarily been hindered by a lack of knowledge regarding their 
abundance, distribution, and metabolic rates (17), properties that 
have changed markedly over the past century and remain uncertain 
(14, 18–21). Historically, the development of fisheries was accom-
panied by rapid and substantial biomass declines (5, 22, 23), most of 
which occurred without direct scientific observation. In many 
regions, industrial fisheries exploited ecosystems that had already 
been affected by traditional fishing, resulting in uncertain baselines 
(24). Climate change is now causing additional declines, although 
these remain much smaller than the direct fishing-related reduc-
tions for the species targeted by fisheries (25, 26). Fishing has been 
shown to have a substantial impact on ocean carbon fluxes by 
diminishing the flux of sinking fish carcasses (27), but this does not 
capture the full impact of fish on the long-term biogeochemical 

state of the ocean, which also includes respiration by fish and 
production of sinking fecal pellets, which are integrated over the 
multicentennial time scale of ocean circulation.

The animal biomass that existed before major human distur-
bances is a natural starting point from which the role of fish on 
ocean biogeochemistry can be evaluated. By providing estimates of 
carrying capacity that approximate pre-exploitation fish biomass, 
scientific stock assessments (28) can shed light on these quantities, 
in particular in data-rich regions. Likewise, analysis of historical 
records (24) and sedimentary proxies (29) has allowed reconstruction 
of fish populations for periods that predate modern fisheries. These 
efforts have been complemented by numerical models, which allow 
for extrapolation of sparse observations to entire ecosystems on 
large scales, coupling ecosystem dynamics to spatially varying envi-
ronmental drivers (18, 30, 31).

However, large uncertainties remain, as shown by the wide 
range of estimates of global fish biomass, mostly from numerical 
models, which range from less than 1 Gt to more than 50 Gt 
(Fig. 1A). While discrepancies can partly be explained by differences 
in the definition of fish and the size classes considered, we find a 
similar range even when comparing the same size classes and taxo-
nomic groups (Fig. 1B and section S1). These discrepancies reflect 
variability in model formulations, ranging from application of 
ecological theory (18, 20) to intricate food web models (31), 
compounded by the scarcity of observations available to constrain 
models at the global scale. The persistent uncertainty has prompted 
a call for new, unified approaches and models that combine diverse 
constraints to provide more robust estimates of the global biomass 
and biogeochemical cycling rates of fish (17).

Here, we take advantage of records of the intense removal of 
wild fish by fisheries to better constrain the dynamics of global fish 
communities and their role for biogeochemistry. We use historical 
reconstructions of fish catch and stock assessments (28, 32), in 
combination with a biological-economic model (33, 34), to infer the 
biomass, metabolic rate, and biogeochemical importance of fish 
targeted by fisheries, their spatial distribution in the global ocean, 
and their historical change (Materials and Methods). Because the 
relationship between catch and biomass is complex (35) and has 
been subject to debate (36), we use complementary diagnostics to 
calibrate the dynamical model, forcing an interpretation of the data 
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that is consistent across sources and with ecological theory. The 
combined use of catch reconstructions and stock assessments offers 
a global, long-term perspective on marine ecosystems that is not 
available from other sources.

The model resolves a globally gridded, size-structured ecosystem 
that depends on local water temperature and primary production 
(33) and is coupled to an economic model that simulates dynami-
cally interactive fish catches (34). We include targeted invertebrates 
(e.g., squid) as “fish” due to their ecological similarities with true fish, 
but note that the fraction of total catch from invertebrates is only around 
10% (32). Although the model does simulate variable recruitment, 
our analysis considers only the sizes larger than plankton (>10 g), 
because the mortality rates of ichthyoplankton are large, variable, 
and poorly constrained. Thus, our estimates do not include larval 
fish, which can functionally be described as zooplankton.

We carry out the model calibration by producing a large ensemble 
of simulations and objectively selecting model variants with catch 
histories and catch-to-biomass (C:B) ratios that are in best agree-
ment with observations (34). Our most important constraints come 

from the relatively unambiguous characteristics of catch peaks at 
global, large marine ecosystem (LME) and individual stock levels 
(Materials and Methods and fig. S1) (37, 38).

We focus on reconstructing ocean fish biomass in the absence of 
fisheries, which, for simplicity, we refer to as “preindustrial biomass,” 
analogous to the preindustrial state that is widely used in climate 
research. Note that several additional drivers have likely altered fish 
biomass over the historical period in a way that we do not assess 
here. These include anthropogenic climate change (3, 25, 26), pollu-
tion and habitat degradation (39), and early defaunation (4, 5, 40), 
such as the marked early reduction in anadromous fish species (9) 
and marine mammals (41). Thus, the term preindustrial should be 
considered to reflect the ocean state in the absence of fishing rather 
than in the absence of human activities.

Our approach necessarily makes many assumptions, and the 
nature of the available data constraints requires a number of simpli-
fications (summarized in table S6). For example, the data used here 
reflect environmental conditions during years of peak harvest 
(1960s to early 2000s) overprinted by natural variability. Our use of 
LME catch data to constrain the fish biomass means that the model 
explicitly represents only those species exploited by fisheries, a 
factor that we highlight by referring throughout to “targeted species.” 
Our high seas estimates and extensions to nontargeted species 
assume that the overall fish biomass, including species that are not 
currently exploited, can be predicted by the same environmental 
dependences as for targeted species in LMEs. This strategy is based 
on an assumption that there is no fundamental bioenergetic 
difference between the portion of the ecosystem that we choose to 
exploit and that we do not, an assumption that bears future explora-
tion (42, 43). Our analysis also ignores other potential environmental 
factors such as iron limitation (44). Last, while we estimate param-
eter uncertainty using an ensemble of simulations, we cannot 
quantify structural model uncertainty, which requires using an 
ensemble of models based on different architectures (26). We hope 
that our estimates can be improved by addressing these issues 
through future work.

RESULTS
Model verification
Our ensemble reproduces realistic peak catches spanning more 
than three orders of magnitude, across LMEs encompassing the 
range of temperatures and productivity found over most of the 
ocean (fig. S2). Peak catches are reasonably well correlated between 
the ensemble and observational reconstructions (Pearson correla-
tion coefficient R = 0.56, P < 10−4). The remaining variability (fig. 
S2A) is not surprising, given uncertainties in the catch data (32) and 
the model simplifications, and suggests an important role for man-
agement. For example, the model overestimates fish catch in a cluster 
of warm-water LMEs along the Australian shelf (left side of fig. S2A), 
where stringent quota-based regulations limited fishing effort (37). The 
ensemble also produces C:B ratios in line with observations (Materials 
and Methods and fig. S2, B to D), with an average value of 0.21 ± 0.11 year−1 
as compared to 0.22 ± 0.20 year−1 in stock assessment data (28), 
indicating that it simulates realistic fish production rates.

When forced by a continuous expansion of technology, the 
model reproduces a trajectory of development, peak, and decline of 
global fisheries that parallels observations of global fish catch, 
biomass, and effort (Fig. 2) (23, 32, 45, 46). The preindustrial fish 

Fig. 1. Estimates of the biomass of fish and other consumers in the ocean. We 
include both (A) the biomass originally reported in the papers and (B) an estimate 
of the same biomass rescaled to the range between 1 g and 1000 kg, a typical 
range for marine fish and other consumers, applying a conversion factor based on 
size-spectrum theory, as described in section S1. Note that, going from (A) to (B), 
biomass estimates could increase or decrease, depending on whether the original 
size range is smaller or larger than 1 g and 1000 kg, respectively. The complete list 
of values and the corresponding references are listed in table S1. The values reported 
as “this work” (highlighted in red) reflect fish biomass in the absence of fishing. 
Note the logarithmic scale on the vertical axis.
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biomass can then be estimated by backtracking the biomass trajec-
tory to the beginning of the simulations, i.e., in the absence of fish 
catches (Fig. 2B).

Estimated global preindustrial biomass  
and losses due to fishing
In the absence of fishing, we obtain a global biomass for targeted 
fish from 10 g to 100 kg of 3.3 ± 0.5 Gt (Table 1). About half of this 
preindustrial biomass (1.6 ± 0.2 Gt) is found within LMEs, which, 
despite covering only 20% of the ocean surface, include the most 
productive areas of the ocean. The largest preindustrial biomass 
densities are found within coastal regions and marginal seas with 
expansive continental shelves, extending further into the open 
ocean in the productive mid and high latitudes (Fig. 3A). Preindustrial 
biomass density is much lower in the vast oligotrophic areas of the 
ocean’s subtropical gyres, reflecting a combination of low primary 
production and dissipation of energy by small organisms (47).

By the time of the global peak catch, the simulated biomass has 
decreased to 47 ± 20% of the preindustrial values averaged over 
LMEs (Fig. 3, B and C), falling within the range suggested by recon-
structions of global stock depletions for the past century (46). The 
model indicates that stronger biomass depletions (approximately 

20% of fish remaining) occur in high-biomass, cold-water regions, 
and weaker depletions (approximately 60% remaining) in less 
productive, low-biomass ecosystems (Fig. 3C). This pattern reflects 
the progression of model fisheries from initially profitable, biomass- 
rich but slow-growing ecosystems, mostly located in high latitudes, 
to ecosystems with less initial biomass but faster growth rates, mostly 
located in the tropics and subtropics (38). While the open-access 
dynamic omits important social aspects of fisheries, such as 
management, which played a role in the development of real-world 
fisheries, it nonetheless captures the main progression of observed 
catches (23, 38).

Biogeochemical role of targeted fish in the ocean
We estimate the biogeochemical impact of fish by considering the 
rate at which energy, in the form of biomass, passes through the fish 
community, and refer to it as the biomass cycling rate. The model 
indicates that targeted fish were responsible for cycling biomass at a 
globally integrated rate of 9.4 ± 1.6 Gt year−1, with about half of this 
cycling (4.3 ± 0.7 Gt year−1) occurring in LMEs (Table 1). The fraction 
of primary production consumed by targeted fish was approximately 
2% when globally integrated, 1.1 ± 0.2% when globally averaged, 
and 1.0 ± 0.2% when averaged locally over LMEs, reflecting the high 
trophic level position of fish in the marine food web. This flow rep-
resents biomass that passes through fish and is returned to the envi-
ronment, as a combination of dissolved and particulate forms, and 
reflects gross metabolic demand plus egestion. This metabolic demand 
is strongly correlated with biomass: More abundant fish popula-
tions require larger amounts of energy. Thus, regions hosting 
abundant fish stocks (Fig. 3A) also cycle large amounts of biomass 
(Fig. 4A).

As with biomass, the fraction of primary production that is 
cycled through fish also shows distinctive regional patterns (Fig. 4B). 
In relatively cold, productive ecosystems, targeted fish processed 
up to 4% of the energy fixed by phytoplankton, compared to values 
of less than 1% in oligotrophic regions. These regional patterns 
can be explained by a combination of primary production and tem-
perature effects (fig. S3). Where productivity is high, a larger portion 
of photosynthesis is cycled through fish. This dependence is further 
modulated by temperature; colder regions show a greater utiliza-
tion of net primary production by fish (fig. S3). This dependence 
reflects structural assumptions of the model regarding the response 
of trophic webs and energy transfer under different environ-
mental conditions (37, 47), as constrained by the model optimiza-
tion. Nutrient and chlorophyll-rich low-temperature waters tend to 
host larger phytoplankton cells at the base of the food web com-
pared to warm, oligotrophic waters (48). In the model, this re-
sults in relatively short food webs, where primary production is 
more efficiently transferred to fish and other consumers before 
being dissipated (37, 47).

At peak catch, driven by the widespread reduction of biomass, 
the cycling rate of targeted fish declines to 5.5 ± 0.9 Gt year−1 globally 
and 2.5 ± 0.4 Gt year−1 over LMEs, corresponding to a reduction from 
the unfished level of approximately 40% when spatially averaged, 
similar to the biomass decline (around 50%). The reduction of fish 
cycling at the time of global peak catch is more pronounced in cold, 
high-latitude LMEs compared to less productive low-latitude regions, 
to a similar degree, or even stronger than the biomass reduction, 
suggesting potential nonlinear interactions between biomass deple-
tion and temperature (Fig. 4C).

Fig. 2. Estimated temporal evolution of fish catch and biomass. (A) Fish catch 
integrated over large marine ecosystems (LMEs) (Mt year−1). The thick red line indicates 
the Sea Around Us Project (SAUP) (32) catch summed over LME, and the thin red 
lines indicate the 50% uncertainty on the SAUP estimates. The thick and thin solid 
red lines show the central estimate and the range of catch from SAUP reconstructions, 
respectively, and the horizontal dashed line shows the global peak catch over LME 
from SAUP (109 Mt year−1). (B) Global fish biomass (Gt) from the optimized ensem-
ble of simulations. In each panel, in (A) and (B), the solid black line shows the mean 
of the ensemble of simulations, and the three blue shadings include 50% (25 to 
75%), 80% (10 to 90%), and 90% (5 to 95%) of the model results. All model simulations 
and the SAUP catch have been aligned so that the global peak catch occurs at 
time t = 0 (vertical dashed line).
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Roughly one-fifth of the biomass ingested by fish returns to the 
environment as fecal pellets (49), an important source of large 
organic particles from the surface ocean (11). For the unfished 
ocean, this implies a fecal flux of 1.9 Gt year−1, roughly one order of 
magnitude larger than the sinking carcass flux estimated in (27). 
Relative to a satellite-based estimate of the total particle export (48), 
the overall contribution of targeted fish remains small, on average, 
around 2%. However, because fish fecal pellets sink at speeds that are 
orders of magnitude faster than small particles (up to approximately 
1000 m day−1) (11), the expected contribution of fish-produced fecal 
pellets becomes increasingly significant at depth. An idealized calculation 
based on a data-constrained representation of marine particle flux (sec-
tion S6 and table S5) (50) suggests that, at a depth of 200 m, the upper 
boundary of the ocean’s mesopelagic zone, fish fecal pellets will be 
twice as important as at the base of the euphotic zone. This ampli-
fication rises to a fivefold increase at 1000 m, a horizon below which 
exported carbon and nutrients would be sequestered for hundreds 
to thousands of years (51). At these depths, our simple calcu-
lation suggests that fish fecal pellets from targeted species could con-
tribute approximately 10% of the total global sinking particle flux 
(table S5).

We use an ocean circulation inverse model (52), and a simple 
representation of the sinking and degradation of organic particles, 
to illustrate the imprint of fish-produced fecal pellets on seawater 
chemistry (Fig. 5 and Materials and Methods). Decomposition of 
fast-sinking particles preferentially occurs in the abyssal ocean, 
where the respiration of fish-produced particles could reach up to 
20% of the total oxygen utilization (Fig. 5A). This oxygen deficit 
accumulates along the pathway of the deep ocean circulation, 
increasing from the North Atlantic to the North Pacific (Fig. 5B), 
and is further modulated by the patterns of surface export (48). This 
respiration is accompanied by an accumulation of inorganic 
nutrients and carbon at depth, which, based on our model, would 
contribute approximately 10% of the biological nutrient and carbon 
sequestration below 1000 m depth, consistent with the ideal-
ized calculation presented above. The total carbon sequestration 
by fish-produced particles is approximately 100 GtC, or about 10% 
of the total deep carbon sequestration by the biological pump (51). 
The sequestration time of fish-produced fecal pellets is approximately 

600 years, making it one of the most efficient natural carbon se-
questration mechanisms in the ocean (51).

Extrapolation to nontargeted fish
The results discussed above focus on targeted fish, which are explicitly 
simulated by the model and constrained with catch and biomass 
observations. We also extrapolate the results to the sum of targeted 
and nontargeted species by carrying out a set of simulations that 
approximate the whole spectrum of animals within the model size 
range (10 g to 100 kg; see section S4). Targeted fish are assumed to have 
access to a fraction of the total photosynthetic energy transferred across 
food webs, estimated as 0.58 ± 0.22 (Materials and Methods). The 
remaining energy is implicitly transferred to nontargeted consumers 
in the same size range, assuming that they are identical to targeted 
fish in terms of their bioenergetics. By repeating the simulations with 
this fraction set to 1, the biomass and metabolic rates are thereby extra-
polated to the sum of targeted and nontargeted species (section S4).

The results of these additional simulations suggest that the total 
animal biomass and cycling rates in the unfished ocean were roughly 
twofold those of targeted species (Table 1 and Fig. 6). While this 
extrapolation is weakly constrained (section S4), it suggests a pre-
industrial global biomass of consumers between 10 g and 100 kg of 
3.3 ± 1.7 Gt over LME regions and 6.9 ± 3.6 Gt globally (Fig. 6). 
Together, this animal biomass would have cycled organic matter at 
rates of 8.5 ± 3.4 and 18.9 ± 7.8 Gt year−1, representing approximately 
4% of primary production when integrated globally, 2.0 ± 0.8% when 
averaged globally, and 2.2 ± 0.9% when averaged over LMEs.

DISCUSSION
When extrapolated to the size range between 1 g and 1000 kg 
(section S1), our results indicate a preindustrial biomass of 5.0 Gt 
for targeted fish and 10.5 Gt for the sum of all fish (Fig. 1B). While 
this is on the high end of previous estimates, it lies within the pub-
lished range of 5 to 20 Gt from recent global models (19, 20) and 
meta-analyses (21) for the biomass of fish and other consumers in 
the ocean (Fig. 1B).

Although the biomass directly cycled by 10 g to 100 kg fish in the 
absence of fishing (18.9 Gt year−1) is only about 4% of the total 

Table 1. Ensemble model estimates of biomass (Gt) and cycling rates (Gt year−1) of fish targeted by fisheries. All values represent means from the 
optimized ensemble and have been spatially integrated (biomass and cycling rates) or averaged [cycling rates relative to net primary production (NPP)] over 
LME regions (i.e., excluding the high seas) and over the global ocean. Preindustrial ocean (top rows) refers to the ocean in the absence of fishing; peak catch 
(bottom rows) refers to the year when maximum catch is reached, considering each LME independently. 

LME Global

Biomass (Gt) Cycling rate  
(Gt year−1) % of NPP* Biomass (Gt) Cycling rate  

(Gt year−1) % of NPP*

Preindustrial ocean

Commercial 1.6 ± 0.2 4.3 ± 0.7 1.0 ± 0.2 3.3 ± 0.5 9.4 ± 1.6 1.1 ± 0.2

Total 3.3 ± 1.6 8.5 ± 3.4 2.0 ± 08 6.9 ± 3.6 18.9 ± 7.8 2.2 ± 0.9

Peak catch†

Commercial 0.6 ± 0.2 2.5 ± 0.4 0.7 ± 0.1 1.1 ± 0.2 5.5 ± 0.9 0.7 ± 0.1

*Ratios of cycling rates to NPP were calculated at each model grid point and then spatially averaged.   †Values determined at the time of the global peak 
catch integrated over LME regions in the model.
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biomass generated by phytoplankton (53), fish have a significant 
potential to modify the fluxes of carbon and nutrients in the ocean 
(Figs. 5 and 6), by forming fast-sinking fecal pellets (11), or via hor-
izontal (9) and vertical migrations (13, 16).

For example, our estimate suggests that fish feces are an important 
and efficient component of particle export, the biogeochemical 
significance of which would be expected to increase with depth. 
Because fish fecal pellets sink much faster and further than smaller 
particles such as phytoplankton aggregates and zooplankton fecal 
pellets (11), they could account for more than 20% (considering 
targeted and nontargeted species) of the deep ocean respiration and 
carbon sequestration driven by the ocean’s biological pump. This 
contribution is comparable in magnitude to other secondary export 
processes such as particle subduction and downward mixing, diel 
vertical migrations, and ontogenetic zooplankton migrations and 
could be important for closing the deep ocean carbon budget (51). 
In addition, if we consider that this export may have been altered by 
more than 30% in response to fishing pressures, the resulting effect 
on the biological pump would rival in magnitude estimates of 
climate change impacts (54).

Furthermore, the magnitude of fish-mediated fluxes is sufficient 
to alter the sensitive balance of oxygen in the deep sea. We estimate 
that respiration of fecal pellets produced by targeted fish is respon-
sible for an average of about 20 mmol m−3 oxygen utilization below 

2000 m, corresponding to about 10 to 15% of the total oxygen utili-
zation at these depths. If the flux of fish fecal pellets had simply been 
reduced proportionally to the fish cycling rate reduction estimated 
here, it would imply a sizable reduction of respiration in the deep 
ocean. While this form of oxygen utilization is not dominant at 
those depths, even for the unfished ocean, it is still an important 
shift to consider, for example, in the deep Pacific Ocean, where the 
accumulated effect of respiration drives oxygen concentrations close 
or even below the thresholds for hypoxia (55). In this and compara-
ble hypoxic regions, oxygen declines of few tens of mmol m−3 are 
sufficient to limit the habitat of marine organisms, requiring specific 
adaptations to life at low oxygen (55). Consequently, any process 
increasing available oxygen would strongly influence the ecology in 
these regions.

Changes in oxygen of this magnitude are also significant when 
compared to observed deep ocean deoxygenation, on the order of a 
few mmol m−3 over the past century (2). These reconstructions 
indicate that the contribution from global warming can only explain 
half of the observed oxygen loss (3), requiring a significant compo-
nent due to unresolved biological processes (2). While a causal link 
between fisheries and deoxygenation cannot be firmly established 
yet (15), our results suggest that the magnitude of fish-mediated 
export makes it an integral part of oceanic oxygen regulation so that 

Fig. 4. Estimated biomass cycling rate, and its historical reduction, for fish 
targeted by fisheries (size range of 10 g to 100 kg). (A) Biomass cycling rate 
(t km−2 year−1) by targeted fish in the preindustrial state (i.e., in the absence of fish-
ing). (B) Biomass cycling rate of targeted fish, relative to net primary production (%). 
(C) Reduction (%) of the biomass cycling rate by targeted fish at the time of the 
global peak catch, averaged over LMEs. All maps are based on means from the 
optimized ensemble of simulations.

Fig. 3. Estimated biomass of fish targeted by fisheries (size range of 10 g to 
100 kg) and its historical reduction. (A) Preindustrial biomass of targeted fish (t km−2). 
(B) Biomass of targeted fish (t km−2) at the time of global peak catch. (C) Fraction (%) 
of biomass remaining at the time of the global peak catch, relative to the preindus-
trial biomass, averaged over every LME. All maps are based on means from the 
optimized ensemble of simulations.
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changes in fish populations would be expected to drive change in 
ocean oxygen concentrations of a similar magnitude to those 
recently observed. That is, deoxygenation changes could be larger 
than appreciated, as the drop in fish biomass (and thus respiration) 
may have masked a substantial fraction of the effect. However, we 
caution that the possibility for trophic cascades and shifts between 
communities (including phytoplankton and zooplankton) could 
lead to nontrivial patterns of change (15).

Our results provide a first-order quantification of global fish 
biomass and metabolism and their decline caused by fisheries. 
Generating this quantification required making several simplifying 
assumptions regarding the marine ecosystem, leading to a number of 
important caveats and uncertainties (table S6). While acknowledging 
these necessary simplifications, we estimate that, at the time of 
global peak catch, the simulated biomass of targeted fish was reduced 
to less than half of its unfished state, and the cycling rate by about 
40% over LMEs, with marked reductions in productive, cold-water 
ecosystems. These estimates are likely to underestimate the total 
change, because they do not include the detrimental effects of habitat 
degradation (4) and climate change (3), the latter of which has 
probably contributed an additional 4 to 5% fish biomass decline 
over the past century (25, 26).

While classical fisheries science would argue that this level of 
biomass change is close to desired for achieving maximum sustainable 
yields (56), this overlooks the broader ecosystem implications of 
that degree of biomass change. Biogeochemistry is just one ecosystem 
process potentially affected by such change but should be considered 

among the consequences of rebuilding marine fisheries and ecosystems 
(56, 57). Evaluating the signature of fisheries on ocean biogeochem-
istry is a complex problem that requires a better characterization of 
the impacts of fish on productivity and particle export (15–17), and 
of the ecosystem changes that follow the depletion, for example, 
changes in size structure and trophic cascades (7). Nonetheless, it is 
likely that changes in biomass and cycling rate caused by fisheries 
would reverberate through the food web to alter carbon, nutrient, 
and oxygen cycles relative to the unfished ocean (15), given the tight 
stoichiometric relationships between these elements. While a number 
of challenges remain (table S6), global ecosystem models will be essen-
tial to quantifying interactions between fisheries and biogeochemistry 
and should aim at representing fish and other consumers as integral 
components of Earth system cycles. Recent marine ecosystem model 
intercomparison and ensemble analyses are promising steps in this 
direction (26). Given the large change in global fish communities 
that has resulted from industrial fishing and early defaunation (40), 
and the emerging effect of additional stressors such as ocean warm-
ing (25), the development of a better understanding of these bio-
geochemical implications is an urgent undertaking.

MATERIALS AND METHODS
Model description and experimental design
We use the BiOeconomic mArine Trophic Size-spectrum (BOATS) 
model (33, 34), which consists of a size-based representation of fish 

Fig. 6. Summary of simulated fish biomass, metabolism, and biogeochemical 
impacts. (A) Preindustrial ocean (i.e., in the absence of fishing). (B) Ocean at the 
time of the global peak catch. In both panels, numbers in black show fish biomass 
in Pg; in red biomass cycling processes in Pg year−1, for all fish in bold, and for 
targeted fish in brackets (size range of 10 g to 100 kg for both groups). Processes 
affecting ocean biogeochemistry consist of respiration, production of sinking 
particles, and diel vertical migrations (DVMs), all included in the metabolism 
term. Total metabolism and particle production are explicitly quantified in this 
paper, but not DVM. See also Table 1 for numerical values.

Fig. 5. Illustration of the impact of fish cycling on ocean biogeochemistry. The 
two panels show estimates of the dissolved oxygen utilization caused by the 
decomposition of sinking organic particles produced by targeted fish and other con-
sumers as a fraction (%) of the dissolved oxygen utilization caused by remineralization 
of all sinking particles. The estimate reflects fish cycling rate in the unfished ocean 
(Fig. 4A). Details of the calculation are provided in section S7. (A) Zonal average. 
(B) Average for the deep ocean (all depths are greater than 1000 m).
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ecology and life history, coupled to an “open-access” economic 
model of fishing effort. BOATS represents all targeted species with 
individual mass between 10 g and 100 kg, as three continuous, inde-
pendent size spectra with different asymptotic sizes, which provide 
a rough representation of fish diversity and are directly comparable 
to size-dependent catch reconstructions (32). While these species 
include invertebrates (e.g., mollusks and crustaceans), they are 
dominated by fish, and we simply refer to them as fish in the paper. 
The model is implemented on a global, two-dimensional grid at 1° 
spatial resolution and is forced with monthly climatological tempera-
tures and satellite-derived primary productivity from observations 
representative of the 1990s to 2000s period (34). We use the same 
forcings for simulations with and without fishing. Thus, our estimate 
of preindustrial fish biomass (i.e., in the absence of fishing) does not 
include the impacts of anthropogenic climate change, which has been 
estimated to be relatively minor for the historical period (25, 26).

Biological and ecological processes (e.g., growth, mortality, 
reproduction, and recruitment) are parameterized on the basis of 
relationships that draw from macroecological theory and observa-
tions (33). The ecological model is coupled to a representation of 
fishing effort and catches based on the open-access Gordon-Schaefer 
fishery economics model (section S2) (34), which reasonably ap-
proximates to the dynamics of fisheries under weak regulation, up 
to the time of the global peak catch in the 1990s (23, 38). Because 
our focus is on the difference between fished and unfished biomasses, 
rather than details of the historical transient, we simply use a single, 
high rate of technological progress of 7% year−1 throughout the 
simulations, on the higher range of observational estimates (23). 
Note that the hindcasts likely underestimate catches in the early 
decades of the simulations (Fig. 2A), primarily because preindustrial 
artisanal and subsistence fisheries are not explicitly represented.

Among the model parameters, we define the fraction of primary 
production that is potentially available to targeted fish, , as the 
energy input to the base of the food web that can ultimately support 
targeted species, and the vast majority of which is implicitly respired 
by zooplankton and bacteria (section S2.2). As default, we set the 
value of  equal to 1, but we reassess it as part of the model optimi-
zation procedure.

A summary of the model rationale, equations, and parameters 
is presented in section S2. A summary of model assumptions and 
limitations is presented in table S6.

Observational constraints
We use two observational datasets to constrain model catch and 
biomass at the global scale. The first is the Sea Around Us Project 
database (SAUP) 2010 release (32), which contains reconstruction 
of global annual catches based on Food and Agriculture Organization 
(FAO) data, encompassing industrial, artisanal, and recreational 
fisheries, as well as bycatches. The SAUP database spans the ocean 
exclusive economic zones from 1950s to 2010, providing a global, 
long-term perspective on fish catches. The second dataset is the 
RAM Legacy Database version 4.3 (28), which contains a synthesis 
of more than a thousand stock assessments from the global ocean, 
including biomass and catch data.

We aggregate and analyze the SAUP data at the scale of 66 LMEs, 
which provide ecologically consistent, regional-scale spatial units 
that can be directly compared with spatially integrated model output. 
Following previous studies (37), we further consider the peak catch-
es as the average of the largest 5 years of catches in each LME.

Biomass estimates are only available for scientifically assessed 
stocks and represent only a fraction of the targeted fish biomass in 
the ocean. To overcome this limitation, we use the stock assessments 
in the RAM database to define the C:B ratio at the scale of LMEs.

The C:B ratio is computed from the general total catch (the 
variable “TCbest”) and general total biomass (the variable “TBbest”) 
reported by the RAM Legacy Database (28). We combine these 
ratios with the global SAUP catch data to constrain the model fish 
biomass. That is, a model with a realistic representation of fish 
catches and C:B ratios would also produce a realistic representation 
of fish biomass. We recognize that C:B ratios vary by species, 
environmental conditions, and level of exploitation. To minimize 
the effects of these sources of variability, we select C:B ratios for 
available stocks at the time of maximum catch, which tend to reflect 
the inherent productivity of stocks [e.g., (37)], and aggregate them 
over LMEs, where environmental conditions tend to be more uniform 
than at the global scale. Accordingly, we determine the C:B ratio at 
peak catch for 25 LMEs from 292 stocks by calculating the total 
catch and dividing it by the total biomass in each LME, and taking 
the average over the highest 5 years of catch. Using the total catch 
and biomass from each LME ensures that the resulting C:B ratios 
are representative of the overall LME productivity, rather than 
reflecting individual stocks. The list of LME used, the number of 
stocks, and the corresponding average C:B ratios are summarized 
in table S4.

Monte Carlo approach and optimized ensemble
Without posterior constraints, the range of model parameters pro-
duces model solutions that span several orders of magnitude for the 
globally integrated fish biomass and catch (34). Following previous 
work (23, 33), we adopt a Bayesian Monte Carlo approach to select 
a set of model parameters (“optimized ensemble”) producing solu-
tions that best agree with observational estimates of fish catch and 
biomass at the scale of LMEs. The approach is schematically shown 
in fig. S1 and is summarized by the following steps:

1) We start from an initial set of N = 10,000 simulations (“Monte 
Carlo ensemble”), with parameters randomly assigned based on 
ranges drawn from the literature. Details of this Monte Carlo 
ensemble are presented in (34, 23) and are summarized in section 
S3. Although we use the same Monte Carlo ensemble, the selection 
of optimized members (described below) differs from the two prior 
works, leading to a new, larger ensemble that spans a broader range 
of parameters.

2) For each simulation in the Monte Carlo ensemble, we calculate 
the global peak catch as the average of the five largest annual catches 
integrated over LMEs. On the basis of these peak catches, we esti-
mate the fraction of primary production potentially available to fish 
() that would produce in each simulation a global peak catch 
equal to the SAUP estimate, 110 Mt year−1, summed over LMEs 
(32). We then exclude all the runs that would require more energy 
than potentially available from net primary production to sustain 
the global fish catch (i.e., all the runs for which  > 1). This leaves 
us with N = 962 simulations.

3) To preserve a realistic partitioning of fish captures by size, we 
constrain the catch for fish in the medium and large size groups to 
be in the observed range relative to fish in the small group (34). This 
reduces the number of runs to N = 618.

4) To ensure that global catches are supported by realistic rates of 
fish biomass production, we compare the model C:B ratios averaged 
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over 25 LMEs to the observational estimate from the RAM database 
(28). We do so by only retaining runs for which a Kolmogorov- 
Smirnoff test indicates a probability greater than 50% that the model 
C:B ratios follow the same distribution as observations. This selec-
tion leaves N = 66 runs.

5) To ensure that the selected runs reflect geographical patterns 
of observed catches across a range of temperatures and productivi-
ties, we select model solutions that produce similar peak catch at 
the scale of LMEs as the SAUP reconstructions. Specifically, we cal-
culate the Pearson correlation coefficient R between modeled and 
observed peak catches for each LME and take all solutions with 
R > 0.60 as our optimized ensemble. This leaves us with N = 31 solu-
tions, with average  of 0.58 ± 0.22 and average C:B ratio over LME 
of 0.21 ± 0.11 year−1.

We finally rerun the optimized ensemble for 200 years without 
catches to reach an equilibrium representative of the biomass of 
targeted fish in the absence of fishing, followed by a continuous 
220-year increase of catchability at a rate of 7% year−1, mimicking 
the historical progression of global fisheries (23). In each of these 
runs, the fraction of primary production potentially available to 
fish, , is set to the value required to produce the global catch of 
110 Mt year−1 from SAUP (section S4). To obtain an approximate 
estimate of the biomass of all consumers (that is, both targeted and 
nontargeted species), we also run a second instance of this optimized 
ensemble, where we set  = 1  in each run. For this second set of 
simulations, we assume that targeted and nontargeted consumers 
follow the same dynamics and together represent all consumers 
within the model size range of 10 g to 100 kg.

Model diagnostics
We focus our analysis on the biomass of fish, both in the unfished 
state and at the time of the global peak catch. We further calculate 
the metabolic demand of fish and compare it to the net primary 
production that ultimately sustains it. We use the new biomass 
production rate and the trophic efficiency from the model (see 
section S5) and determine the biomass ingested by fish, and returned 
directly to the environment as a combination of organic (e.g., fecal 
pellets and excretion) and inorganic (respiration) fluxes, but not 
retained within the fish size spectrum. We express this cycling rate 
in units of wet biomass processed per unit area per unit time (i.e., 
t km−2 year−1). As a proxy of the particle production by fish, we 
assume that about 20% of the biomass cycling rate is returned to the 
environment as fecal pellets (49). Assuming a constant carbon 
content of organic matter of 10 gC/cWB (18), we compare these 
quantities to biogeochemical rates expressed in carbon units, such 
as generation of new biomass from photosynthesis and export of 
organic matter from the upper ocean as particles, which we take 
from existing satellite-based estimates (48).

Oxygen utilization due to fish-produced particles
We use an ocean inverse circulation model (52) to estimate the 
impact of remineralization of fish-produced fecal pellets in the 
ocean interior. The ocean inverse circulation model provides a 
data-based estimate of ocean transport, which we use to solve for 
the steady-state distribution of dissolved biogeochemical tracers 
(i.e., oxygen and carbon) resulting from remineralization of organic 
matter in the ocean interior. We assume that remineralization is 
mainly driven by the flux of organic particles produced in the 
euphotic zone (here set equal to 74 m, the depth of the second model 

layer, and close to the global average) but acknowledge that this 
neglects a portion of remineralization that is driven by other 
mechanisms such as dissolved organic matter and vertically migrating 
organisms (51). Below the euphotic zone, particles sink and decompose, 
following a remineralization profile described by a power-law 
equation (section S6) (50). We specify the total surface particle 
export flux from a satellite-based observational synthesis (48) and 
assume that these particles remineralize with a power-law exponent 
equal to −0.7, a representative value for the ocean (50). The export 
of fish-produced particles is estimated based on the mean fish 
egestion from the optimized ensemble. We assume that fish-produced 
particles are formed above the euphotic depth (a conservative 
assumption), and sink with a velocity 10 times larger than the bulk 
sinking speed of all particles, consistent with observations (11). We 
represent this rapid sinking by imposing a power-law exponent for 
fish particle flux equal to −0.07 (section S6). We then use the ocean 
circulation inverse model to solve separately for the three-dimensional 
steady-state concentration of dissolved inorganic carbon resulting 
from (i) the remineralization of all particles and (ii) the remineral-
ization of fish-produced particles (details on the model equations 
and solution are discussed in section S7). The results (Fig. 5) are 
presented as the oxygen utilization resulting from this remineraliza-
tion, which is calculated by using a typical stoichiometric ratio of 
oxygen to carbon of −150:106 (58).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abd7554
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