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Abstract

The complex and unresolved evolutionary origins of the 2009 H1N1 influenza pandemic exposed 

major gaps in our knowledge of the global spatial ecology and evolution of influenza A viruses in 

swine (swIAVs). Here we undertake an expansive phylogenetic analysis of swIAV sequence data 

and demonstrate that the global live swine trade strongly predicts the spatial dissemination of 

swIAVs, with Europe and North America acting as sources of viruses in Asian countries. In 

contrast, China has the world’s largest swine population but is not a major exporter of live swine, 

and is not an important source of swIAVs in neighboring Asian countries or globally. A meta-

population simulation model incorporating trade data predicts that the global ecology of swIAVs 

is more complex than previously thought, and the US and China’s large swine populations are 

unlikely to be representative of swIAV diversity in their respective geographic regions, requiring 

independent surveillance efforts throughout Latin America and Asia.

Introduction

In early 2009, a novel reassortant H1N1 influenza A virus with gene segments from two 

swine virus (swIAV) lineages emerged in humans, initiating the first influenza pandemic of 

the 21st century. The virus had a complex genetic composition that had not been previously 

detected in swine, with six genome segments of North American triple reassortant swine 

virus origin (PB2, PB1, PA, HA (H1), NP, and NS) and two genome segments of Eurasian 

avian-like swine virus origin (NA (N1) and MP)1. Evolutionary analysis of this novel North 

American/Eurasian reassortant virus indicated that these segments had circulated undetected 

in swine for at least eight years2. The first human outbreak of the pandemic H1N1 virus 

(pH1N1) occurred in Mexico, and the extent of viral genetic diversity observed in Mexico 

supports the hypothesis that the virus first emerged there in humans3. However, efforts to 

detect the last common ancestor of the pH1N1 virus in Mexican swine populations have not 

been successful to date, and the opaque evolutionary history of the pandemic virus in swine 

highlights the gaps in our understanding of swIAV dynamics at a global scale.

In general, influenza viruses in swine are spatially separated into distinct North American 

and European swIAV lineages, although viruses of North American and European origin 

both circulate in Asia. Multiple viral lineages co-circulate in North American swine, 

including (i) ‘classical’ swine viruses, which descend from the 1918 H1N1 pandemic4; (ii) 

‘triple reassortant’ swine viruses, which emerged in the mid-1990s with a combination of 

human, swine, and avian segments5; and (iii) ‘delta’ (δ) viruses that are closely related to 

human seasonal H1 viruses from the early 2000s6,7. The main European swIAV lineages 

include ‘avian-like’ H1N1 viruses that jumped from birds to swine in the 1970s, human-

origin H1N1 viruses from the 1980s, and human-origin H3N2 viruses that are antigenically 

described as A/Port Chalmers/1/1973-like8. Multiple North American and European-origin 

swIAV lineages have both been identified in Asian countries9–12. Due to high levels of co-

infection, segmental reassortment occurs frequently in swine, such that they are an important 

reservoir host for influenza virus genetic diversity9,11,13–16.

Live transport is routine in swine farming, and in the United States the transport of millions 

of swine from Southern to Midwestern regions for end-stage production appears to drive the 
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strongly directional dissemination of swIAVs from Southern US states with high hog 

production (e.g., North Carolina, Texas, and Oklahoma) to the traditional center of swine 

farming located in the Midwestern ‘corn belt’17. Large numbers of swine also enter the 

United States from Canada, which has been implicated in the dissemination of other 

important swine pathogens, including Porcine Reproductive and Respiratory Syndrome 

Virus (PRRSV)18. Intercontinental trade of live swine also occurs, for end-stage production 

or to acquire female breeding pigs for genetic improvement of swine reproduction or growth 

traits. Globally, the largest swine population is found in China, where over 450 million hogs 

reside (Fig. 1). Large swine populations also are found in the United States (> 60 million 

hogs), Brazil (> 30 million hogs), Vietnam (> 20 million hogs), Germany (> 20 million 

hogs), and Spain (> 20 million hogs).

Despite the global nature of both swine farming and swIAV circulation, the patterns and 

dynamics of the worldwide spread of this economically important virus are unknown. To 

characterize the phylodynamics and phylogeography of swIAVs at a global scale, here we 

conduct a phylogenetic analysis of 785 whole-genome swIAV sequences collected from ten 

countries/regions representing four continents, the largest study of its kind undertaken to 

date. To assess the drivers of viral migration, we compare the phylogeographic patterns with 

empirical data on live swine trade and swine population sizes. Based on these findings, we 

build a meta-population model to simulate the spatial dissemination of swIAVs at a global 

scale and identify regions at high risk for co-invasion of divergent lineages, increased total 

genetic diversity, and emergence of viruses with pandemic potential.

Results

Global migration of swIAVs

Phylogenetic analysis revealed that long-distance movement of influenza A viruses between 

countries and continents has occurred continuously in swine since the 1970s (summarized in 

Fig. 2). Our estimate of 18 international viral migration events is a minimum based on the 

currently available influenza virus sequence data and certainly underestimates the true 

number. This lower-bound estimate is based on discrete monophyletic groups (defined by 

country) that are supported by high posterior probabilities (> 80), reflecting migration events 

that led to successful onward transmission. The estimate does not include the much higher 

number of international viral movements between the United States and Canada or between 

countries in Europe, which are each considered as meta-populations in our analysis. The 

estimate also does not consider viral migration events for which only one sequence is 

available, any viruses that do not form a well-supported clade, or which only partial 

sequence data was available.

Although global surveillance and sequencing of swIAVs has increased dramatically in the 

last five years, our time-scaled MCC phylogenies indicate that most intercontinental viral 

migration events occurred prior to this increase in surveillance (representative phylogeny of 

the NA segment is presented in Fig. 3; phylogenies for other seven segments are available in 

Supplementary Figs. 1–7). Eight of the 18 viral migration events identified in our study were 

evident on the phylogenies inferred for all eight viral genome segments, indicative of 

onward transmission of the full viral genome in the new location (introductions 1, 3, 4, 5, 8, 
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9, 10, 15). The consistency of spatial-temporal inferences across these eight segments 

strengthens inferences of when and where each of these introductions occurred 

(Supplementary Table 1). Ten viral migration events could only be identified by a subset of 

genome segments, as at least one segment has been replaced in intervening years by 

reassortment (introductions 2, 6, 7, 11, 12, 13, 14, 16, 17, and 18). There is no evidence in 

these data that either of the δ-1 or δ-2 virus lineages that emerged in North American swine 

in the early 2000s has transmitted to swine on any other continents, despite high rates of 

detection in US swine populations of δ-1 viruses19.

A consistent global spatial dynamic was observed for swIAVs during 1970–2013, based on 

both a conservative measure of strongly supported monophyletic groups (Fig. 3 and 

Supplementary Figs. 1–7) as well as ‘Markov jump’ counts20 of the expected number of 

location state transitions along the branches of the tree. ‘Markov jump’ counts provide a 

quantitative measure of gene flow between regions that includes singletons and clusters that 

may have poor phylogenetic resolution (Fig. 4, Supplementary Table 2). Overall, North 

America (in this case referring to the United States and Canada) and Europe represent 

independent viral source populations for the Asian countries sampled in our study: China, 

Japan, South Korea, Thailand, and Vietnam. In contrast, only a single swIAV migration 

event was observed between North America and Europe (introduction 5).

Spatial dynamics of swIAVs in North America—Bi-directional viral migration 

between Canada and the United States is so frequent (reflected by the extremely high 

number of Markov jump counts, Fig. 4) that Canada and the US were considered as a single 

meta-population, similar to Europe (Fig. 2). The higher availability of swIAV sequence data 

from US swine makes it particularly difficult to distinguish whether an introduction was 

specifically of US or Canadian swine origin, and the origin of such introductions is more 

appropriately characterized as ‘North American’. Using newly generated sequence data from 

five swIAVs of the H3N2 subtype that were collected in Mexico during 2010–2011 (A/sw/

Mexico/SG1442/2010, A/sw/Mexico/SG1444/2011, A/sw/Mexico/SG1447/2011, A/sw/

Mexico/SG1448/2011, and A/sw/Mexico/SG1449/2011, accession numbers available in 

Supplementary Table 3), our phylogenetic analysis provides evidence of a single 

introduction of a H3N2 triple reassortant swIAV from the United States into Mexico that 

occurred between mid-2005 and mid-2006 (introduction 11, Fig. 2). At the time of sampling, 

all five Mexican swIAVs had acquired at least one pH1N1 segment of human origin via 

reassortment, evidence that pH1N1 viruses also have circulated in Mexico’s swine 

population.

Spatial dynamics of swIAVs in Asia

Given China’s large swine population and long-term surveillance, it may have been 

expected that this country (encompassing mainland China, Hong Kong, Taiwan, and Macau) 

would be an important source of swIAV diversity for neighboring Asian countries in this 

study. However, since 1970 there have been 16 swIAV introductions of European or North 

American origin into Asia, compared to only two swIAV migration events between Asian 

countries, and only one definitive introduction of a swIAV from China into another country 

(introduction 16). Overall, the genetic diversity of swIAVs in Asia derives from five swIAV 
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introductions of European origin and eleven swIAV introductions of North American origin. 

Six viral introductions from Europe and North America were observed in Thailand, and five 

introductions were observed in China, including the earliest intercontinental swIAV 

migration detected to date (introduction 1, Fig. 2).

In contrast to the frequent exchange of swIAVs across European country borders and across 

the US-Canadian border, only two swIAV migration events were observed between any two 

Asian countries. A pair of H1 segments collected in South Korea in 2013 are positioned 

within a clade of avian-origin Eurasian viruses from China, suggesting China-to-Korea 

migration (introduction 16, Fig. 2 and Supplementary Fig. 4). Closely related North 

American triple reassortant viruses also were identified in China and Vietnam, suggestive of 

viral migration between these Asian countries. However, the location state probability for 

the node representing the common ancestor of the Chinese and Vietnamese clades is too low 

(ranging from 0.46 to 0.65 across the eight genome segments) to determine whether the 

North American virus was first introduced to Vietnam and disseminated to China, or vice 

versa (Fig. 2 and Supplementary Figs. 1–7).

Although much of the swIAV diversity in Asia appears to have emerged in the last two 

decades, the phylogenies suggest long-term circulation of swIAVs in Thailand and Japan, 

either via imports from North American or European swine in the 1970s and 1980s (Fig. 2) 

or direct introductions from humans as early as the 1960s (Fig. 3c). Long branch lengths and 

the lack of historical swIAV data from Asian countries make it difficult to infer with 

confidence the spatial history of older viral lineages in Asia. The relative lack of swIAV 

surveillance in Thailand prior to 2000 particularly complicates estimates of the timing and 

spatial pathway of the multiple viral introductions from North America and Europe that 

likely occurred during the 1980s and 1990s (e.g., introductions 6, 14, 17, and 18). At this 

time, there is little evidence of viral dissemination from Japan or Thailand to other Asian 

countries in our study, despite many decades of potential swIAV circulation. However, the 

relatively long branches may not reflect a single direct transition between the origin and 

(final) destination location, and may conceal additional spatial movements during the 

elapsed time. The evolutionary history of swIAVs in Thailand is also made more complex 

by the frequency of reassortment involving multiple clades, poorly supported clusters, and 

singletons. Whereas avian-like Eurasian viruses in China are monophyletic and result from a 

single introduction from Europe (introduction 15), the Thai viruses from this lineage are 

monophyletic only in the PB2, NP, and N1 trees. Our estimate of two introductions of avian-

like Eurasian viruses into Thailand is therefore conservative and likely underestimates the 

true number (introductions 13 and 14, Figs. 2 and 3, Supplementary Figs. 1–7). Singletons 

and unsupported clusters also were observed among South Korean viruses, complicating the 

estimation of the number of viral migration events into South Korea as well.

Importance of live swine trade in the global dispersal of swIAVs

We used a generalized linear model (GLM) extension of phylogeographic inference21 to 

identify the putative drivers of swIAV migration events inferred from the genetic data. This 

approach considers single introductions and clusters that may have poor resolution, the 

uncertainty of which is accommodated by the analysis. The Bayesian model averaging 
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approach found consistent and strong evidence that the amount of asymmetric live swine 

trade (measured in USD for the years 1996–2012) from one country to another is the 

dominant driver of the dispersal of IAVs in swine globally. This is reflected by the maximal 

estimated inclusion probability of live swine trade for all six internal gene segments 

(probability of 1, results for PB2, PB1, PA, and NP are presented in Fig. 5; results for the 

shorter MP and NS segments are available in Supplementary Fig. 8; the analysis could not 

be performed on the HA or NA due to the high frequency of human viruses in these 

phylogenies). Accordingly, viral migration, measured by ‘Markov jump’ counts, was 

positively correlated with live swine trade volume (USD) (rho = 0.52, p = 1.5 × 10−7, 

Spearman correlation, Supplementary Fig. 9).

Other potential predictors, including swine population size, contributed little to the observed 

global spatial patterns, except for the number of sequences of the country of destination 

(average probability of ~0.5 across the six internal segments). Not only is the effect of live 

swine trade consistently robust to the inclusion of sample size, the high inclusion probability 

of live swine trade in cases where the effect of sample size is particularly low (e.g., the PA 

segment) indicates that it is also independent of sample size. The conditional effect size (the 

size of the effect conditional on the predictor being included in the model) ranges between 

about 3 to 5 on a log scale, implying that viral lineage movement probability is several 

orders of magnitude higher for connections with the highest swine trade compared to 

connections without trade (Fig. 5).

Our GLM analysis could be affected by regional differences in the early establishment of 

swIAVs, with swIAVs having been potentially seeded later in Asia and decreasing the 

probability of viral export from Asia. To further explore this hypothesis, we conducted a 

sensitivity analysis focused on two more recent periods that correspond approximately to the 

emergence in China of classical North American swIAVs (1990–2013) and avian-origin 

swIAVs from Europe (2000–2013), using an ‘epoch’ extension of the diffusion model22. We 

find that the volume of live swine is still the only well-supported predictor of viral migration 

for both periods (Supplementary Table 4), including when swIAVs are thought to be 

endemic at high levels in Asia as well as Europe and North America. In addition to the 

relatively low number of highly supported migration events during 2000–2013 (Fig. 2), 

transitions involving singleton viruses or clades that do not have high bootstrap support also 

contribute to the signal over this restricted time period, including migrations across the 

relatively porous US-Canada border and between the US/Canada and South Korea.

Predicted spatial dissemination of swIAVs

To explore how the network of global live swine trade may drive movements of swIAVs 

beyond the ten countries for which whole-genome sequence data was available, we used 

data on pairwise live swine trade between 146 countries to simulate the patterns of viral 

dissemination under different epidemiological scenarios. Fig. 6 explores the predicted 

spatiotemporal spread of a new swIAV lineage that hypothetically originates in swine in five 

countries with large swine populations: Canada, China, France, Mexico, and the United 

States. These predictions are largely consistent with the spatial movements observed in the 

genetic data, with a high probability of viral export from the US and Canada into Asia, and 
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from Europe to Asia, whereas epidemics originating from China have low probabilities of 

onward dissemination to other countries (Supplementary Table 5). In addition, we identified 

predicted connections with countries not sampled in our study, including swIAV migration 

from the USA and Canada to many countries in Latin America, as well as Russia, 

Kazakhstan, Malaysia, Thailand, and Singapore. Interestingly, our model suggests that a 

virus seeded in Mexican swine is comparatively less likely to disseminate to swine in other 

countries.

We also used our model to estimate the probability of co-invasion of European and North 

American swIAVs lineages, illustrating the potential for reassortment between lineages of 

European and North American descents, of the kind that generated the 2009 pH1N1 virus. 

Overall, co-invasion is strongly regionalized, with the highest probability in East and South-

East Asian countries, particularly China, South Korea, and Russia (Fig. 6, Supplementary 

Table 5). Conversely, South Asia, the Middle East, Africa, and Australia exhibited a low 

probability of invasion by each of these lineages. Mid-level probabilities were found in 

regions with a high probability of invasion by only one of the two lineages (i.e., the North 

American lineage in the Americas, and the Eurasian lineage in Europe). Interestingly, these 

simulations reveal a low probability of co-invasion in Mexico, where pH1N1 first emerged 

in humans, owing to the low probability of invasion by a European swine virus in Latin 

America.

Discussion

The unknown origins of the swine virus that begot the 2009 H1N1 pandemic underscores 

the importance of understanding how influenza A viruses evolve in swine at a global scale, 

including regions where swIAV surveillance is lacking. Our expansive phylogenetic analysis 

of global swIAV sequence data demonstrates the importance of the asymmetrical nature of 

the global live swine trade on the global ecology and evolution of swIAVs. Using a 

phylogeographic GLM approach to assess the strength of specific predictors, we determine 

that the size of a country’s swine population is not a major factor in the rate of viral export 

to other countries. As a notable case in point, China, which hosts the world’s largest swine 

population, does not appear to be a major source of the viral diversity observed in other 

Asian countries. Rather, Japan, Thailand, Vietnam, and South Korea independently imported 

novel viruses from Europe and North America, most likely via long-distance live swine 

trade.

The reported pattern of swIAV dissemination is a reverse of a model proposed for the global 

spread of A/H3N2 seasonal influenza viruses in humans, in which a highly connected 

network of South-East Asian countries, including China, acts as a key source of viruses for 

Europe, North America, and other continents21,23, reflecting differences in the disease and 

mobility patterns of humans and swine. These findings have important implications for 

swIAV surveillance strategies, as the relatively low levels of viral gene flow between Asian 

countries means that no single country in Asia can serve as a proxy for the region, including 

China’s large swine herds. The extent of viral genetic diversity in Thailand highlights the 

importance of enhancing surveillance throughout South-East Asia, including countries not 

sampled in our study, such as Malaysia, Indonesia, Singapore, Laos, and Cambodia, as well 
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as undersampled countries such as Thailand, Vietnam, Japan, and South Korea. 

Furthermore, Russia emerged as a hotspot for invasion and co-invasion of divergent lineages 

in our simulations, and yet Russia has no publicly available whole-genome swIAV 

sequences.

The limited number of sequences from Asian countries other than China (particularly via 

Hong Kong, the final destination of large numbers of hogs from mainland China) reduces 

our ability to detect viral migration events within Asia, particularly those that do not 

transmit onward in swine for many years. However, the high number of viruses identified in 

Asia that were of North American and European origin indicates that sample bias alone 

cannot explain the lack of viral exchange observed between Asian countries. Analysis of 

larger, less-constrained data sets including all available HA swIAV sequences from Asia 

identified several additional viral migration events from Europe and North American swine 

into Asia, but only limited evidence for one additional putative connection between two 

Asian countries (Supplementary Figs. 10–11). However, all inferences of spatial connections 

must be interpreted within the context of the many countries that are unsampled and under-

sampled, and long branches may conceal additional spatial movements between the origin 

and (final) destination location.

It is important to note that our study focused only on the international dissemination of 

swIAVs, and did not consider the probability of initial emergence of an epidemic within a 

country, which is likely to be influenced by numerous local factors related to national swine 

farming practices, including the size and density of farms, movements of pigs within 

countries, and opportunities for interspecies transmission. As demonstrated previously, the 

dynamics of outbreaks within a large country like the US can be complex, with different 

regions acting as source and sink populations for viral diversity17. Novel IAVs of human 

origin have emerged repeatedly in swine in countries in North America, South America, 

Asia, and Europe, suggesting that swine populations in these regions can sustain new 

epidemics24. The extent of viral export from a country of origin is a product of both the 

national prevalence of circulating swIAVs and the volume of live swine export. In this 

study, we were unable to assess whether geographic differences in the prevalence of 

swIAVs affects large-scale viral migration, as population-level virological and serological 

data indicative of swIAV prevalence is available only from a limited number of study sites 

and time periods that are unlikely to be sufficiently representative for a global study. We 

therefore recognize that there are scenarios where live swine trade alone would not be a 

good predictor of viral migration. For example, if the major exporters of live swine (North 

America and Europe) did not have large endemic swIAV populations, then live swine trade 

alone would not be a good predictor of viral migration. This does not appear to be the case, 

as North America and Europe have long histories of endemic swIAV circulation and the 

highest volumes of outgoing international live swine trade. The apparent association 

between viral endemicity and trade export may not be a coincidence, as the features that 

enable countries in Europe and North America to export high volumes of live swine (i.e., 

large-scale commercial swine production) also are likely to be conducive to sustained 

endemic swIAV transmission. Finally, our analysis did not consider swine influenza vaccine 

use, which is highly heterogeneous within and between countries, and would be an 

important, albeit challenging, factor to integrate into future studies that consider the 
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interaction between the national prevalence of swIAVs, the structure of swine industries, 

and the global spatial dynamics of trade and viral migration.

Although it is not possible at this time to incorporate empirical data on historical differences 

in swIAV prevalence by region, we were able to explore the interaction of influenza virus 

prevalence and trade volume using our simulation model. Of particular interest was the 

question of whether the low levels of viral export from Asia observed in our study could be 

an artifact of historically lower levels of endemic swIAV activity in Asia. As a consequence, 

viral exports from Asian countries might be expected to rise in the future as swIAVs become 

endemic at higher levels throughout the region. There was no support for this hypothesis, as 

our simulations predicted very low rates of viral export from China to other countries even 

when the prevalence of swIAVs in China is set unrealistically high (e.g., 58% of Chinese 

swine infected when R0 = 1.5). Our simulations predicted low rates of swIAV export from 

Japan and Thailand under similar transmissibility scenarios (Supplementary Fig. 12), with 

the exception of viral dissemination from Thailand to Cambodia, as these countries are trade 

partners. These predictions are consistent with our observation from the genetic data that 

swIAVs could have circulated in Japan and Thailand for many decades without substantial 

onward dissemination to other Asian locations sampled in our study. In addition, a 

sensitivity analysis of the GLM model limited to the more recent 1990–2013 and 2000–2013 

periods where swIAVs were established in Asia lends further support for the importance of 

trade. Overall, our findings suggest that viral exchange between Asian countries with low 

levels of trade is unlikely to increase in the future, regardless of the potential increases in 

endemic swIAV activity in the region as farming practices are modernized and swine farms 

become larger.

Despite the importance of swine trade in the global ecology of swIAVs, it should be noted 

that humans may be equally, if not more, important in disseminating IAV diversity to swine 

herds globally25. Even in the absence of international swine trade, swIAVs of human origin 

would likely still circulate in the majority of countries in our study, including in Asia. 

Quarantine and other restrictions in international trade may have the potential to reduce the 

genetic diversity of swIAVs, but are not likely to prevent swIAVs from circulating in a 

country’s swine population (Australia is a case in point26). The frequency of human-to-

swine transmission has been even more apparent since the 2009 H1N1 pandemic, and 

humans have disseminated pH1N1 viruses to swine in numerous countries that had not 

previously reported IAV activity in swine, including Australia26,27, Brazil28,29, India30, 

Cameroon31, Mexico32, Nigeria33, Sri Lanka34, and several countries in Europe35–37.

Unfortunately, these new data did not advance our understanding of the evolution of the 

pH1N1 virus during the many years of undetected circulation in swine prior to 2009. Given 

that the human pandemic likely emerged in Mexico3, the most parsimonious explanation is 

that the pH1N1 virus transmitted from swine to humans in Mexico or a nearby locality. 

However, extremely little swIAV sequence data is available from swine in Mexico and other 

parts of Latin America, and Eurasian viruses have not been detected in any part of the 

Americas to date. Our simulation model provides a quantitative indicator of where the 

reassortment event that produced the pH1N1 virus in swine was most likely to have 

occurred, based on the probability of invasion with both North American and European 
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viruses. Given limitations in our model, including the lack of information on within-country 

dynamics and the likelihood of initial viral emergence within seed countries, we consider the 

relative ranking of probabilities to be more important than their absolute values. To date, 

Asia is the only region where any reassortant viruses containing both North American and 

Eurasian virus segments have been detected38, consistent with our simulations, which show 

a high probability of co-invasion by both North American and Eurasian swine lineages in 

China, South-East Asia, and Russia. However, it remains unclear how a reassortant virus 

that most likely emerged in swine in Asia caused its first outbreak in humans in Mexico. 

Given the lack of south-to-north swine trade flows in the Americas, some swIAV lineages 

are likely to be exclusive to Latin America39,40 and do not reach the United States or 

Canada. Strengthened surveillance in Latin America is warranted to gain a better 

understanding of swIAV diversity in the region.

Finally, we have focused our study on the global dynamics of influenza A viruses in swine, 

but our findings invite investigation of how trade, quarantine, and swine farming practices 

affect the spatial dynamics of other globally dispersed swine pathogens, such as PRRSV and 

the porcine epidemic diarrhea virus (PEDV) that emerged in US swine herds in 2013. 

Modeling studies rooted in pathogen sequence information, demographics, and mobility data 

have the power to inform global surveillance and control strategies for major animal and 

human disease threats.

Materials and Methods

Influenza virus sample preparation

Influenza A virus samples collected from swine via routine diagnostic submissions for the 

years 2002–2011 were randomly selected from the existing influenza virus archive at the 

University of Minnesota Veterinary Diagnostic Laboratory (UMVDL). These samples were 

chosen to best represent this time period and the three main geographical regions of US hog 

production: the Southeast region (US states of Alabama, Georgia, Kentucky, North Carolina, 

Tennessee, Virginia), South-central/west region (Arkansas, Colorado, New Mexico, 

Oklahoma, Texas), and Midwest region (Iowa, Illinois, Indiana, Kansas, Minnesota, 

Missouri, Nebraska). Samples from swine in Canada (2005–2011) and Mexico (2010–2011) 

also were selected from UMVDL, as available. Original specimen material (nasal swab 

supernatant or lung tissue homogenate stored at −80°C) were aliquotted from the archived 

samples and sent to the J. Craig Venter Institute (JCVI) in Rockville, MD for sequencing.

Influenza virus genome sequencing

The complete genomes of 240 influenza viruses collected from North American swine were 

sequenced at JCVI. Viral RNA was isolated using the ZR 96 Viral RNA kit (Zymo Research 

Corporation, Irvine, CA, USA). The influenza A genomic RNA segments were 

simultaneously amplified from 3 μL of purified RNA using a multi-segment RT-PCR 

strategy41. The M-RTPCR amplicons were sequenced using Nextera Library construction 

using the MiSeq platform (Illumina, Inc., San Diego, CA, USA). Additionally, M-RTPCR 

amplicons were sheared for 7 minutes and Ion Torrent compatible barcoded adapters were 

ligated to create 200 base-pair libraries that were purified and sequenced using Ion Torrent 
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(Life Technologies, Grand Island, NY, USA). All data sequenced for this study was 

submitted to the Influenza Virus Resource at the National Center for Biotechnology 

Information’s GenBank42, and accession codes are available in Supplementary Table 3.

Phylogenetic analysis

In addition to the sequences generated for this study, whole-genome sequences from 

influenza A viruses collected in swine globally during 1960–2013 were downloaded from 

the Influenza Virus Resource at GenBank42. Viruses were removed that (a) had truncated 

sequences, (b) were of avian origin with no evidence of circulation in swine, (c) had 

unknown geographic origin, or (e) had evidence of lab errors (assessed by root-to-tip 

divergence using the program Path-O-Gen v1.3). Due to the disproportionately large number 

of swIAV sequences from the United States for the years 2009–2013, 100 of these were 

randomly sub-sampled.

Sequence alignments were constructed for each of the six internal gene segments (PB2, PB1, 

PA, NP, MP, and NS) and for the H1, H3, N1, and N2 antigenic segments separately using 

MUSCLE v3.8.3143, with manual correction in Se-Al v2.0 (available at http://

tree.bio.ed.ac.uk/software/seal/). Phylogenetic trees were inferred using the neighbor-joining 

method available in PAUP v4.0b10 for each of the ten alignments (available at http://

paup.csit.fsu.edu/). For the PB2, PB1, and PA segments, each virus was categorized as 

belonging to one of the following lineages: (a) classical swine virus lineage, (b) triple 

reassortant (‘trig’) lineage, (c) avian-origin Eurasian swine lineage, (d) the pandemic H1N1 

lineage that emerged in humans in 2009 and transmitted from humans to swine globally 

during 2009–2013 or (e) related to human seasonal influenza A viruses. For the NP, MP, 

and NS segments, each virus was categorized as (a) classical, (b) avian-origin Eurasian, (c) 

pandemic, or (d) human seasonal. No ‘trig’ category exists for the NP, MP, and NS 

segments because triple reassortant viruses contain classical virus NP, MP, and NS segments 

acquired through reassortment. For the H1 and N1 segments, each virus was categorized as 

(a) classical, (b) avian-origin Eurasian, (c) pandemic, or (d) human seasonal virus origin. All 

H3 and N2 segments belonged to the same category: human seasonal H3N2 virus-related.

The sequence alignment for each segment was further divided into each of these lineages. 

For the PB2, PB1, PA, NP, MP, NS, and N1 segments, very few (< 10) viruses were found 

to be of recent human seasonal virus origin, which is consistent with previous findings24, so 

these data sets were excluded from further analyses. The pandemic H1N1 viruses that have 

been recently transmitted from humans to swine since 2009 remain spatially structured by 

country (or continent), with little evidence of long-distance migration between continents44, 

and therefore sequences of pH1N1 origin were not included in further analyses. Similarly, 

no global migration was observed among N1 swIAV sequences that were closely related to 

human seasonal H1N1 viruses, and they were excluded from the study. In total, 22 segment- 

and lineage-specific data sets were included in the analysis (Supplementary Table 6; 

Supplementary Data 1). For the H3, N2, and H1 human-like (delta) lineages, human 

seasonal influenza virus H3, N2, and H1 sequences also were included as background. To 

reduce the impact of sample bias, additional phylogenies were inferred using all available 

full-length swIAV H1 and H3 sequence data from Asia, which included an additional 206 
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swIAVs from China, South Korea, Thailand, and Japan for the classical H1 segment, 191 

swIAVs from China for the avian-origin Eurasian H1 segment, and 230 swIAVs from 

China, Thailand, Japan, Mongolia, South Korea, and Indonesia for the human seasonal virus 

origin H3 segment.

Phylogenetic relationships were inferred for each of the 22 data sets separately using the 

time-scaled Bayesian approach using MCMC available via the BEAST v1.8.0 package45 

and the high-performance computational capabilities of the Biowulf Linux cluster at the 

National Institutes of Health, Bethesda, MD (http://biowulf.nih.gov). A relaxed uncorrelated 

lognormal (UCLN) molecular clock was used, with a flexible Bayesian skyline plot (BSP) 

demographic model (10 piece-wise constant groups), and a general-time reversible (GTR) 

model of nucleotide substitution with gamma-distributed rate variation among sites. For 

viruses for which only the year of viral collection was available, the lack of tip date 

precision was accommodated by sampling uniformly across a one-year window from 

January 1st to December 31st. The MCMC chain was run separately three times for each of 

the data sets for at least 100 million iterations with sub-sampling every 10,000 iterations, 

using the BEAGLE library to improve computational performance46. All parameters 

reached convergence, as assessed visually using Tracer v.1.6, with statistical uncertainty 

reflected in values of the 95% highest posterior density (HPD). At least 10% of the chain 

was removed as burn-in, and runs for the same lineage and segment were combined using 

LogCombiner v1.8.0 and downsampled to generate a final posterior distribution of 1,000 

trees that was used in subsequent analyses.

The phylogeographic analysis considered ten locations: Argentina, Canada, China, Europe, 

Japan, Mexico, Thailand, United States of America, South Korea, and Vietnam. All viruses 

from Europe (our study included swIAV data from Belgium, Czech Republic, Denmark, 

France, Germany, Italy, Netherlands, Poland, Spain, and the United Kingdom) were 

categorized into a single spatial category due to the high level of influenza virus mixing 

within Europe (Supplementary Fig. 13) and the relatively low level of sampling of 

individual countries. Similarly, we considered Hong Kong viruses to be part of China based 

on genetic similarities. The location state was specified for each viral sequence, allowing the 

expected number of location state transitions in the ancestral history conditional on the data 

observed at the tree tips to be estimated using ‘Markov jump’ counts20, which provided a 

quantitative measure of asymmetry in gene flow between regions (a representative XML file 

used in the analysis is provided in Supplementary Data 2). For computational efficiency the 

phylogeographic analysis was run using an empirical distribution of 1,000 trees21, allowing 

the MCMC chain to be run for 25 million iterations, sampling every 1,000. A Bayesian 

stochastic search variable selection (BSSVS) was employed to improve statistical efficiency 

for all data sets containing more than four location states. Maximum clade credibility 

(MCC) trees were summarized using TreeAnnotator v1.8.0 and the trees were visualized in 

FigTree v1.4.2.

Testing predictors of global swIAV migration

A generalized linear model (GLM)21 parameterization of the discrete phylogeographic 

diffusion model was employed to estimate the contribution of potential predictors to the 
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migration patterns of swIAVs (a representative XML file used in the analysis is provided in 

Supplementary Data 3; the R code used to summarize the estimates is provided in 

Supplementary Data 4). First, the trade value (USD) for live swine trade between countries 

(asymmetric) for the years 1996–2012 was obtained from the United Nations’ Commodity 

Trade Statistics Database (available at http://comtrade.un.org, accessed March 20, 2014) 

(Supplementary Data 5). For the purposes of our study, we calculated the total trade value 

for each country. Data from all European countries was aggregated within the category 

‘Europe’, and data from mainland China, Macao SAR, and Hong Kong SAR was aggregated 

within the category ‘China’. Second, estimates of the number of live swine by country and 

the total number of live swine imports and exports per country were obtained for a longer 

time period (1969–2010) from the Food and Agriculture Organization (FAO) of the United 

Nations Datasets repository (available at http://data.fao.org/datasets, accessed March 21, 

2014) (Supplementary Table 7). Again, data were aggregated across years and for Europe as 

well as for China. Although there is variance in trade volumes between years, some of which 

may also reflect variance in reporting, consistent differences in trade volume were evident 

among countries across years (Supplementary Fig. 14). Further, we estimated the country-

specific percentage change in the pig population over the study period (ratio of the numbers 

of live swine in 1969 versus 2010) as an additional putative predictor of swIAVs migration. 

All the predictors were log-transformed and standardized prior to their specification in the 

GLM parameterization. We performed the GLM analysis separately for each of the six 

internal gene segments (PB2, PB1, PA, NP, MP, and NS) and jointly for all three swIAV 

lineages (avian-origin Eurasian, triple reassortant, and classical) for each segment. We 

achieve this, for each segment, by sharing a single GLM-diffusion model across the 

independent evolutionary histories of the three viral lineages. For the NP, MP, and NS 

segments only two lineages were included, as the triple reassortant lineage is an extension of 

the classical lineage for these three segments. We also excluded Argentina from the GLM 

analysis because no viral migration was observed between Argentina and any other country 

in our study. Additionally, to explore the effect of regional differences in the early 

establishment of swIAVs we used an ‘epoch’ extension of the diffusion model22 for two 

periods that correspond approximately to the emergence in China of classical North 

American swIAVs (1990–2013) and avian-origin swIAVs from Europe (2000–2013) 

(representative XML file available provided in Supplementary Data 6).

Meta-population model simulating the global spread of swine influenza

Next, we built a meta-population model to explore the global spread of swIAVs and identify 

potential geographical hotspots for reassortment between viruses originating from different 

regions, which may generate novel viruses with pandemic potential. We built a meta-

population model to explore the global spread of swIAVs and identify potential 

geographical hotspots for reassortment. We employed a stochastic patch-based SIR model 

adapted from an earlier model for the global diffusion of human influenza47. Each patch 

represents the swine population of an individual country, and patches are linked based on 

live swine trade movements. To calibrate the model, we obtained swine population sizes and 

pairwise between-country trade information for 146 countries reporting to FAO during 

1969–2010 (http://data.fao.org/datasets; Supplementary Table 7, Supplementary Data 5), 

which coincides with the study period considered for phylogenetic analysis of swIAVs. We 
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used the averages of swine population sizes and pairwise trade volumes throughout the study 

period for model simulations.

The influenza simulation model is as follows. Let S, I, and R denote vectors representing the 

number of susceptible, infected, and recovered swine at any time point in each of the 146 

countries studied. We let μ = 1/5 denote the daily probability that an individual recovers (so 

that the infectious period is 5 days48,49), and βI the daily per-capita rate of infection from 

infectious individuals within the same country. Here, β varies between countries; it is a 

vector scaled such that the effective reproduction number Reff = βN / μ is the same in all 

countries, where N is the vector of swine population sizes. We use an R0 of 1.5 in main 

analyses, consistent with limited information on swine influenza dynamics48,49 The per-

capita rate of contacts with infectious swine from other countries is given by G*I, where G 
represents the 146*146 matrix of between-country coupling.

To build G, we first create T, a 146*146 matrix with off-diagonal elements based on 

empirical live swine trade and zeros along the diagonal. We then rescale T by the estimated 

trade coefficients of the phylogeographic GLM model, as the GLM model suggests the 

relationship between trade and viral migration is not linear (but results are qualitatively 

similar with no rescaling). Following past work47, the rescaled matrix T’ is then tuned by a 

free parameter, c, which governs the amount of international vs. domestic contacts between 

swine, while at the same time allowing conversion of empirical swine trade data (provided 

in $ amount by FAO) into actual population movements. Tuning parameter c allows 

obtaining realistic time course of infection, with global epidemics lasting between several 

months to several years, in line with (limited data available on) the global spread of past 

swine outbreaks. Our final coupling matrix is G = cG’, where c is such that the maximum 

element of the coupling matrix is lower than 10−3.

We use a spatially-extended chain-binomial system to update the progression of the 

epidemic in each patch47:

Here, Wt is the daily incidence of swine influenza (ie the number of new cases), and Vt is 

the number of new ‘recovereds’.

In simulations, the epidemic is initialized by infecting 5 swine in a predetermined seed 

country; we explored various scenarios with seeds in countries of the Americas, Europe and 

Asia. After the first infection occurs in each country, we draw a multinomial to determine 

the source of the infection, from a normalized vector G*I. For each scenario, involving a 

given source country (e.g., US, Canada, UK, France, China), we ran 1,000 simulations, 

allowed to run over a three year time period, and assess the probability of swine flu invasion 

in each non-source country, and its most likely source of infection. We conducted sensitivity 
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analyses with higher and lower values of the free parameter c and R0, which mostly affected 

the time course of the global epidemic and the synchronicity of epidemics across locations, 

but did not change dramatically the identification of hotspots countries for onward spread. 

To explore the probability of reassortment between viruses originating from North America 

and Europe, we ran 1000 independent simulations of epidemics starting in North America 

(USA and Canada), and in each the 10 European countries with largest swine populations, 

and compute the co-invasion probability in country i, following:

where p.invi,k is the probability that country i is invaded when the outbreak is seeded in 

country k.

Estimates were then used to produce risk maps for swIAV invasion and co-invasion using 

software available in the R package (http://www.r-project.org/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Modeled global swine distributions
Digital layers from Gridded Livestock of the World (GLW) (version 2.01)50, downloaded 

from the publically available Livestock Geo-Wiki database (http://www.livestock.geo-

wiki.org) and manually edited in QGIS v.1.7.0. Swine densities are represented by black 

shading.
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Fig. 2. Inter-continental migration events of swIAVs
Circles represent the country of origin, based on the estimates summarized in the MCC tree, 

and are shaded accordingly. Lines represent the inferred time period of inter-continental 

transmission, within a level of uncertainty, inferred from the estimated date of ancestral 

nodes on the MCC tree. Triangles represent clades resulting from onwards transmission of 

the introduced viruses, are shaded by the country of destination, and extend as far forward in 

time as the most recently sampled virus. Numbers of introduction (1–18) correspond to the 

clade numbers on the phylogenies (Fig. 3 and Supplementary Figs. 1–7). The asterisks 

indicate that additional HA and NA swIAV sequence data was used to estimate the timing of 

introduction 18. Countries/regions are abbreviated as follows: CHN = China (including 
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Hong Kong SAR and Taiwan), THA = Thailand, VNM = Vietnam, KOR = South Korea, 

JPN = Japan, MEX = Mexico, and EUR = Europe.
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Fig. 3. MCC trees of the NA lineages in swine
Time-scaled Bayesian MCC trees inferred for the NA segment for the three major swine 

virus lineages: (a) avian-origin Eurasian N1 swIAV lineage, the (b) classical N1 swIAV 

lineage, and the (c) multiple human seasonal virus-origin N2 swIAV lineages circulating in 

swine. Branches of human seasonal H3N2 influenza virus origin are shaded grey in (c), 

while branches associated with viruses from swine are shaded by country of origin: 

Argentina = brown; Canada = red; China (including Hong Kong SAR and Taiwan) = 

yellow; Europe = black; Japan = pink; Mexico = light blue; South Korea = green; Thailand 

= orange; USA = dark blue; Vietnam = purple. Posterior probabilities > 0.8 are included for 

key nodes, and international migration events that are supported by high posterior 

probabilities and long branch lengths are labeled according to Fig. 2.
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Fig. 4. Heat-map of swIAV migration between locations
Countries are listed in order of increasing geographical distance from Argentina (ARG). 

MEX = Mexico, USA = United States, CAN = Canada, EUR = Europe, JPN = Japan, CHN 

= China (including Hong Kong SAR and Taiwan), KOR = South Korea, THA = Thailand, 

VNM = Vietnam. The intensity of the color (red = high; white = low) reflects the number of 

‘Markov jump’ counts inferred over the totality of phylogenies (all segments, all lineages) 

from one location to another (asymmetrical). Markov jump counts measure the number of 

inferred location state transitions, modelled by a continuous-time Markov chain process, that 
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occur along the branches of the phylogeny. For clarity the heat-map has been divided into 

four sections representing (a) viral migration events within the Americas and between the 

Americas and Europe; (b) migrations from the Americas/Europe to Asia; (c) migrations 

from Asia to the Americas/Europe; and (d) migrations between Asian countries.
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Fig. 5. The support and contribution of swIAV diffusion predictors among 9 countries
Twelve predictors were considered: geographical distance (km), volume of live swine trade, 

1996–2012 (USD), swine population size for the years 1969–2010, the total number of 

imports of live swine during 1969–2010, the total number of swine exports during 1969–

2010, the percent change in swine population size from 1969–2010, and the number of 

sequences available from a given country for our analysis. ‘O’ refers to the swine population 

of origin, and ‘d’ refers to the swine population of destination. Support for each predictor is 

represented by an inclusion probability that is estimated as the posterior expectation for the 
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indicator variable associated with each predictor (E[δ]). The contribution of each predictor is 

represented by the mean and credible intervals of the GLM coefficients (β) on a log scale 

conditional on the predictor being included in the model (β|δ=1). See Supplementary Fig. 8 

for MP and NS results.
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Fig. 6. Maps of simulated spread of influenza viruses via live swine trade flows
Simulated spread of an influenza virus from 5 seed countries (shaded in black) to 146 

countries for which live swine trade is available from the United Nations Commodity Trade 

Statistics Database (available at http://comtrade.un.org) (a–e). Probability of an outbreak in 

the invaded country is shaded from white (probability of 0) to red (probability of 1). The 

probability of co-invasion by both a virus seeded in North America (Canada and the United 

States) and Europe also is shaded from white (probability of 0) to red (probability of 1) (f). 

Arrows represent the direction of viral dissemination for countries with a probability of an 

outbreak > 0.25 (see Supplementary Table 5 for a complete list of all outbreak probabilities 

by country).

Nelson et al. Page 26

Nat Commun. Author manuscript; available in PMC 2015 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://comtrade.un.org



