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ABSTRACT OF THE DISSERTATION

Nonequilibrium Effects in Strongly Driven Correlated Systems

by

Kathleen Elizabeth Hamilton

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, December 2014

Dr. Leonid P. Pryadko, Chairperson

At the heart of this dissertation is the phenomenon of correlations between members of

a system. Many systems exhibit correlated behavior and those described in this work

are divided into two classes: strongly driven correlated electron systems and networks

formed by correlations. The work on correlated electron systems focuses initially on

using a strong external AC field to drive a system into new phases, far from equilibrium:

e.g. dynamical stabilization of a pendulum, band-gap suppression, and inversion of

electronic bandwidths. Several of these effects are further investigated with the addition

of a DC field, leading to effects such as: doubling of an electron’s Bloch oscillation

period, generation of a non-zero net current in a metal-insulator transition or higher

harmonic generation for electrons whose conduction bands are inverted. For correlations

on networks, the focus was on bounds for the percolation transition threshold. The

effects of correlated percolation are discussed in the second part of this dissertation,

where a random process can affect a cluster of sites simultaneously. First, a mapping

between a graph and a tree is derived, and an extended mean-field approach is used to

determine a lower bound on the percolation threshold for quasi-transitive graphs. To

study correlated percolation, three models are used: the first is an approximation of

each lattice animal by a covering shape, second is an approximation of the additional

connections created by lattice animals as a single auxiliary vertex, the third is analysis

based on the adjacency matrix of the random graph created through the overlap of

lattice animals. In all three models a lower bound on the percolation threshold can

be established, and this bound is dependent on the size of clusters present. Initial

disagreement between the models is ameliorated by reducing the dimensionality of the

covering shapes.
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Chapter 1

Introduction

The study of correlated systems has been a fundamental area of condensed

matter research. Correlations between particles in a system, that the existence of other

members of a system affects the physics and dynamics of a single particle, is of im-

portance on many length scales and system sizes, from classical systems to quantum

systems to large-scale networks. Such systems are complex, involving many degrees of

freedom. The complexity of these interacting many body systems is compounded by

the addition of large amplitude driving forces which oscillate at large frequencies. It

is the ability of correlations on small scales to affect behavior on large scale quantities

that is important. Similarly, correlations between random systems can lead to changes

in thresholds which determine phase transitions.

This dissertation is organized into two sections: Chapters (3)-(5) study the

dynamics of correlated systems which are driven with strong fields which oscillate at

high frequency, and Chapters (7), and (8) delve into the phenomenon of percolation

on random graphs and how correlations affect large-scale transitions. As a result, the

methodology pertinent to the first section and the second sections are separated. Chap-

ter (2) discusses the methods used for driven systems, while Chapter (6) gives the

definitions and methods needed to discuss random graphs and percolation. The central

theme to this work is the nonlinear effects in systems with correlations, whether it’s the

change due to strong external fields or the sudden change in percolating systems.

The first section explores the effects of strong field driving on correlated sys-

tems. In the classical model, the driven Sine-Gordon model, the result is the transfor-

mation of unstable points of the system into stable points. In the quantum two-band

model, the result is delocalization of a particle by closing gaps in the energy bands.

In the quantum single-band model, the result is the inversion of a single energy band,

leading to harmonic generation.
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In the second section, the growth of random networks is studied. First, a

method for establishing the percolation threshold on a random graph is designed which

connects the mean-field methods of tree networks to the more complex structure of ran-

dom graphs. Second, the growth of a random graph is studied for process which grow

networks through the overlap of groups of graph nodes, rather than by connecting indi-

vidual nodes. The random sizes of these groups determines the threshold of percolation

and the methods used provide a way to extend continuum based models to discrete

spaces and random networks.

The two sections of this dissertation are at first glance, unrelated. However

both are studying effects on highly connected, complex systems. The approximations

of mean-field theory are used across all sections. From reducing the complexity of

many-body electron systems to describing the growth of clusters on random networks,

the approximations due to mean-field theory help to give phenomenological insight into

driven correlated systems.

1.1 Strongly driven correlated systems

1.1.1 Driven pendulum

A simple model of an oscillator is the physical pendulum. The dynamics of a

pendulum under the influence of a strong external oscillating force was introduced by

Stephenson [1], where the support of a pendulum is vertically oscillating. Such a dynamic

system exhibits unique behavior, particularly the inversion of the pendulum [1]. Further

study by Kapitza [2], described the motion of the pendulum along two time scales (slow

and fast dynamics), and introduced the concept of an effective potential governing the

slow dynamics. The general problem of a classical system under high frequency driving

was described by Landau [3]. The oscillation of the pendulum mass about the vertical

position (above the support) has been called ”dynamical stabilization.” The ability to

invert multiple, stacked, pendulums, was studied by Acheson [4]. A driven system

with friction has also been studied [5]. Experimental and numerical studies of the

driven, vertical pendulum show agreement with the effective potential approach [6–8].

A horizontal set of coupled pendulums which are driven by a time-dependent torque

applied at points of support for each pendulum, which is a physical interpretation of the

driven Sine-Gordon model, is studied. In contrast to the model studied by Kapitza, the

point of support is not driven but rather the driving is incorporated into the relative

angle time dependence for the coupled pendulums.
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1.1.2 Classical field theory: the Sine-Gordon model

An example of a correlated classical system is the Sine-Gordon model. Physi-

cally, it can be interpreted as a system of horizontal pendulums with a coupling existing

between their individual pivot points. The relative angle of each pendulum is coupled

to its neighbors and used to define a classical field theory [9]. Physically, the Sine-

Gordon model is useful in treating Josephson junctions [10] and the dynamics of the

Frenkel-Kontorova model [11]. Once the field theory is quantized, and proper quan-

tum operators are defined, it is possible to use the Sine-Gordon model to describe the

dynamics of correlated boson models [12].

In the Sine-Gordon model, the equations of motion for a stationary solution can

be rewritten as the equations of motion for a single particle in the Sine-Gordon potential

[13]. In Chapter (3) the effective potential approach is applied to the driven Sine-Gordon

model. From the effective potential, the possibility of dynamical stabilization for a

horizontal chain of coupled oscillators is investigated. In the Kapitza model, dynamical

stabilization occurred when a pendulum, with its support vertically driven, was stable

in an inverted position (above the support). For the horizontal chain of pendulums,

dynamical stabilization is defined by a subset of pendulums being stable above the

support.

Studies on strongly driven Sine-Gordon models have established the existence

of π-solitons, excitations in the system with half the width of an un-driven soliton. Such

excitations have a natural interpretation as domain walls in ferromagnetic systems.

Through the application of strong driving forces it is seen how the width of such a

domain wall can be affected. The physical interpretation of the Sine-Gordon model as a

chain of coupled pendulum lead to the identification of the stable driven positions above

the support and it is seen in Chapter (3) how multiple pendulum can be stabilized in

an inverted position. In a ferromagnetic system this would correspond to a broadening

of a domain wall.

The classical Sine-Gordon model can be connected to a variety of correlated,

quantum systems. When the classical Sine-Gordon equation is quantized, it defines a

quantum field theory which is identical to that of spin-less bosons with a gapped mass

spectrum. The gap is due to backscattering. Additionally, the π-soliton of the Sine-

Gordon model can be interpreted as a “true” domain wall in ferromagnetic systems [14].

In a one-dimensional, interacting electron system, such a domain wall would correspond

to an excitation in the charge or spin spectra. It is of interest how the strong field effect

of dynamical stabilization in the classical system is manifested in the quantum system.
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1.1.3 Correlated many-body quantum systems

One-dimensional, correlated many-body quantum systems are incredibly com-

plex systems. The dimensionality of the systems raises complications with the Fermi

liquid model [15–17] and the quasi-particle description of excitations. Interactions and

correlations due to the spin and charge of electrons cannot be exactly accounted for

without prohibitively large computing resources. However, there are a range of approx-

imations to correlated systems and the result recast is a representation which is more

tractable to analysis. For the gap suppression discussed in Chapter (4), a phenomeno-

logical model is derived using the Hartree-Fock approximation to a one-dimensional

Hubbard model.

The Hartree-Fock approximation has been established as a perturbative ap-

proach to interacting quantum systems [18]; describing orbital energies of atoms or

molecules [19, 20], interacting electron systems [21, 22] and interacting spins in ferro-

magnets [23,24]. The self-consistent field central to the method is an effective potential

which describes independent electrons interacting with a mean field due to the remain-

ing electron density. Through the Hartree-Fock approximation, an interacting system

can be decomposed into terms which account for Coulumb repulsion, exchange and

correlation interactions without the use of two-body operator products.

A class of systems which have been treated with the Hartree-Fock approxima-

tion is the Mott-Hubbard model, a correlated system with a metal-insulator transition

at low-temperature [25–28]. Specifically, the use of the Hartree-Fock model gives an

approximate description of the gap opening due to interactions (and subsequent metal-

insulator transition) [29]. Originally derived for correlated spin systems, the Hubbard

model can also be mapped to spinless fermion models, discussed further in Section (2.3).

One-dimensional, electron systems can be described in the Luttinger liquid

picture. The theory of the Luttinger liquid is well-established in the literature (see

Refs: [30, 31]). Excitations of an interacting system no longer produce quasi-particles

(as in the Fermi liquid theory), but rather density waves in the charge or spin spectrum.

Additionally, one-dimensional systems exhibit spin-charge separation [32, 33]. Further

simplification is done by using bosonization to rewrite the fermionic operators as bosonic

ones [34,35]. Also, considering a system at the Luther-Emery point, results in a gapped

spectrum in either the spin or charge spectra [30, 36]. As a result, the physics of a

many-body, electron system in one-dimension can be studied using a system of spinless

fermions.
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1.2 Driven quantum systems

The dynamics of charged particles in external fields, magnetic or electric, have

been studied in stationary fields and oscillatory fields. The results have shaped the

understanding of transport in quantum systems. The effects in stationary electric fields,

time-dependent fields and large amplitude fields are discussed. In the systems studied

in this dissertation the fundamental effects are due to large amplitude, time-dependent

fields. The verification of these effects are probed using weak stationary fields (see

Chapters (4), (5)). As the work in this dissertation is focused on electric field driving,

the effects discussed here are due to electric fields.

1.2.1 Stationary field driving

The behavior of a particle trapped in a potential well and subject to a static

external electromagnetic force has been an active area of research for over a century and

has unexpected results. Intuitively, it is expected that the particle in a potential can be

driven far from its initial position with a strong enough external force. However, when

driving a system with a static (DC) field, it is possible to localize a particle in a spatially

periodic well. This localization has been explained by Bloch oscillations [37, 38], and

Wannier-Stark ladder formation [39]. The observation of these effects was made possible

in superlattice structures [40, 41] and optical lattices [42–45].

In Chaper (4), Bloch oscillations are used to further probe the effects of oscil-

lating field driving. The dynamics of electrons under DC field driving are determined by

the periodicity of the Brillouin zone. It is expected that if a system is driven through a

gap closure then the resulting DC field dynamics will show the effects of the zone width

increase.

1.2.2 Oscillating field driving

The effective potential approach, and the concept of a system evolving along

slow and fast time scales, has been used to describe quantum systems and atomic dy-

namics in rapidly oscillating external fields [46–49]. Using the Floquet quasi-energy

spectrum allows for time-independent analysis.

For a periodically driven quantum system, the Floquet-Bloch theorem recasts a

time-dependent system as a series of time-independent Hamiltonians and has been well-

established in the study of quantum systems interacting with oscillatory external fields

[50–53]. The work in this dissertation is inspired by two known effects of electrons in a

strongly oscillating field, coherent destruction of tunneling and dynamical localization.
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Coherent destruction of tunneling (CDoT) was proposed in 1991, as a pertur-

bative effect seen in a two-level system driven by a strong AC field [54]. In a double-well

system, the degeneracy between neighboring well levels is removed through tunnel split-

ting. When a strong AC field is applied it was shown that particles could be localized

in one well [54] by suppressing the tunnel splitting. This effect was later confirmed in

optical lattices [55, 56]. An inverse effect is discussed in Chapter (4), the delocaliza-

tion of a particle by strong AC field driving. Using the perturbative approach of the

Hartree-Fock model, the phenomenological effects of AC driving at Thz frequencies on

an interaction-induced gap, are studied; in particular, gap suppression analogous to the

suppression of tunnel splitting in CDoT. However, if an interaction-induced gap can be

suppressed, this would lead to delocalization of electrons, rather than localization.

Another effect of strong AC driving is dynamical localization (DL) [57], later

described in terms of Floquet band collapse [58], and verified experimentally in optical

lattices [59]. While CDoT is a perturbative effect, DL is an exact result, describing

the renormalization of a system’s bandwidth [60]. When dynamical localization occurs,

the effective bandwidth of a system is suppressed (band collapse). This bandwidth

renormalization has inspired research into what occurs as a system is driven past the

point of band suppression. It is possible to invert a bandwidth, and this has been studied

as a dynamical renormalization of particle interactions, turning repulsive interactions to

attractive [61].

The behavior of a collection of particles driven into an inverted Floquet band

and higher harmonic generation, is discussed in Chapter (5). In particular an amplifi-

cation of the third harmonic of the driving field is sought. Higher harmonic generation

in strongly driven crystal structures has been studied theoretically [62,63] and observed

experimentally [64]. In a similar approach which has been applied to topological insula-

tors (see [65] and [66] for theoretical and experimental results), lead to the investigation

of the driven dynamics of a system: if they will be determined by the renormalized

Floquet spectrum, rather than the un-driven spectrum.

The theoretical predictions of Floquet states that have been verified by experi-

ment lead us to study how a system can be driven through renormalized Floquet bands.

For a two-band system with a band-gap the effects of gap closure on the stationary field

driving effects such as Bloch oscillations and how an initially full band can be driven

into an effectively half-filled band are investigated. In the inverted band system this

is extended to the study of whether a system can equilibrate to the renormalized (in-

verted) Floquet quasi-energy band, rather than the original energy bands. It has come

to our attention that similar work on band-gap suppression in a two-band model has
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been carried out [67].

1.2.3 Strong field driving

Non-equilibrium transport has gained a lot of attention as electronics have

been scaled down to the nanoscale and the ability to generate intense laser fields has

been refined. Many experimental measurements of high drift velocities in graphene and

semiconductor materials driven by high electric fields exist (for examples, see [68, 69]),

and many theoretical reviews are available, [70, 71]. There are many challenges in the

study of strong driving fields including incoherence, heating, and the lack of equilibrium

statistical mechanics. The use of non-equilibrium (Keldysh) Green’s functions [72, 73]

provides a connection to the quantum kinetic equation, used to describe charge trans-

port.

1.3 Dynamics of quantum systems and percolation

The theory of percolation in quantum systems has been used to describe a va-

riety of critical phenomena, including: ferromagnetism, charge and magnetic transport.

Many of these systems rely on an underlying lattice which may have defects that affect

the large-scale qualities of transport. Percolation theory can describe phase transitions

due to spin interactions between particles. It can also describe transport in systems

of nano-scale objects. distributed in a substrate, which form networks. Additionally,

lower-dimensional objects such as quantum dots can be collected into networks used

for charge transport. Percolation theory can be applied to predict the possibility of

conduction in such systems, or to investigate the robustness of such systems to failure.

The work discussed in Chapters (7) derives an extension to mean field theory

in order to find a percolation threshold on a quasi-regular graph. Chapter (8) explores

correlated percolation on: regular lattice structures, quasi-regular lattice structures and

random graphs. Correlation refers to a random process which affects multiple vertices,

rather than site or bond percolation which only affects individual vertices or edges. The

lower bound on the percolation threshold is established using continuum percolation

methods, an auxiliary vertex model and using the adjacency matrix to define a bound

on the mean cluster size. These methods can be applied to the variety of physical

systems that have been studied through percolation theory, expanded by the role of

correlations. Physical examples of correlations are discussed in this section and their

possible connections to the work in Chapter (7) and (8) are emphasized.
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1.3.1 Percolation theory and ferromagnetism

Magnetic behavior of materials is a direct bridge between correlated quantum

systems and percolation theory. In interacting spin systems, the correlations between

particles lead to large-scale phenomena, such as the parallel (or anti-parallel) alignment

of spins. One of the earliest atomic systems studied with percolation theory is the

ferromagnetic phase transition in a metal at the Curie temperature [74–76]. Theoretical

descriptions of how correlations between neighboring particles lead to large-scale effects

have been made using mean-field theory introduced by Weiss [77], and Bethe [78, 79].

It was discussed in Section (1.1.3) that a correlated system in one-dimension can be

described in terms of independent electrons interacting with a mean field due to the

remaining system electrons. The mean-field approach to percolation systems (such as

magnetic transitions) does not include all possible interactions between particles, only

nearest neighbors. This mean-field approach is the basis for the extended-mean field

theory discussed in Chapter (7). Ferromagnetism can also be studied in semiconductor

systems, where the Curie temperature is affected by impurities or clustering of dopants

[80–83].

1.3.2 Percolation theory and semiconductor transport

Charge and magnetic transport have been studied in semiconductors and inter-

preted as a percolation process. Transport can be affected by the connections available

in the system, either by design, or by the amount of dopants in a semiconductor.

Conductivity can be studied as the transport of charge through a given sys-

tem, modeled by a resistor network, which is a randomly connected network [84, 85].

The system can be affected by the presence of impurities, defects and the geometry or

deformation of the lattice [86–89]. Such methods can be applied to magnetic trans-

port [90–92] or transport in systems of nanocomposites [93]. Semiconductors formed

through the addition of dopants in a material are also modeled as percolating systems.

The clustering of dopants leads to systems which could exhibit correlated percolation,

as described in Chapter (8).

1.3.3 Networks of nanoscale objects

With the advance of nano-scale fabrication, systems comprised of many nanoscale

objects distributed in an environment can be created. The density and distribution of

such objects exhibits a crossover point where the behavior can be treated not as a

collection of individual objects, but as singular object. For example, quantum dots
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on a surface can exhibit behavior of a thin metal film [94, 95], or sheets of exfoliated

graphene can behave as a carbon surface [96] Additionally, conductivity in materials

with suspended nano-structures has been studied [93, 97, 98]. Quantum dot networks

have also lead to new designs of highly-efficient solar cells [99].

Such networks of finite-sized shapes and their collective effects are related to

correlated percolation, discussed in Chapter (8). Percolation theory can be applied to

such networks to determine when the system will no longer behave as a collection of

disconnected shapes, but rather as a large cluster. The emergence of this behavior can be

interpreted as forming a percolating cluster on a random graph through the connection

of finite-sized lattice animals.

1.4 Percolation theory

The modern age is defined by relationships and networks [100]. In addition to

the physical systems described in the previous section, large-scale events can be defined

in social, economic, biological, chemical, technological and ecological systems [101–104].

For example, it is possible for members of a society to become infected by a virus, which

will spread throughout the network defined by social connections. On a power grid, the

failure of one node can lead to catastrophic failure which can destroy the whole network.

The conditions that lead to the existence of large-scale clusters is of great

interest. The probability of a large cluster, or giant component forming on a network

exhibits a phase transition. There exists a threshold value of the probability, below where

there is no giant component. Above this threshold the existence of a giant component

is certain. The existence of a percolation threshold is dependent on the structure of the

network or graph. While it may be possible on some graphs and systems to define an

exact value for the percolation threshold, on others it may only be possible to define an

upper or lower bound on the probability of percolation.

1.4.1 Percolation thresholds on graphs and trees

The study of percolation has lead to many estimates to the percolation thresh-

old on trees, regular lattices and random graphs. On trees, graphs with no cycles, the

mean field theory approach leads to exact results [74,105–107]. The mean field approach

is based on determining the probability that a branch grown from some arbitrary point

on a graph, can grow to an infinitely long length. Additionally, bounds on the per-

colation threshold have been established on many kinds of regular lattices (e.g. site

percolation on the square and honeycomb lattice [108], site and bond percolation on
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triangular, honeycomb or quadratic lattices [109]). Many estimates for the percolation

threshold on random graphs exist [110, 111]. To determine these thresholds, methods

which incorporate degree correlations, small-world arguments are used. In Chapter (7),

the methods of mean field analysis are applied to a quasi-random graph. A bound on the

percolation threshold of a random graph is sought by establishing a mapping between

a graph with cycles and a tree. The mean field analysis is based on the connections

between vertices, rather than the number of neighbors for a given vertex.

1.4.2 Percolation thresholds in continuum

On a graph of discrete nodes and connections, it is straightforward to define

percolation by considering processes which affect single nodes. In a continuum model, it

is difficult to define a discrete point, and it is through the continuum model of percolation

that the process of correlated percolation is first studied. In a 2008 paper by Gouéré

[112], a lower bound on the percolation threshold was established. By considering the

size of the cluster formed by overlapping spheres in a continuum model, it was found

that the threshold for percolation is proportional to the average covered fraction of

the full space. Our studies of correlated percolation on random graphs begins from

the discretization of these results: establishing a percolation threshold by studying the

connected cluster formed by overlapping spheres on a regular lattice. Modifications to

this method are needed to study correlated percolation on random lattices.

1.4.3 Correlation in percolation

Correlated percolation as used in this dissertation, describes a percolation pro-

cess wherein a random graph is generated from an initial graph through a random

selection of vertices. However, the probabilities of a vertex and its neighbors being open

are no longer independent. Correlated percolation can be described as percolation by

shapes, known as lattice animals. These are collections of adjacent vertices and the

percolation process is defined as follows: if a vertex (i) of a graph is contained inside a

lattice animal it is open, and a. s. all vertices connected to (i) through the lattice animal

are also open. Now on a lattice, percolation will occur when a large cluster is formed

through the overlap of shapes, rather than connecting individual vertices.

Lattice animals are found throughout the study of percolation [74, 113], and

research has focused on enumerating the many kinds of animals that can be formed on

different graphs, or the distribution of animal sizes [114–118]. Percolation with lattice

animals has been studied in terms of the critical exponents of percolation [119, 120].
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In this work the lattice animals are distributed with a known probability distribution

and what is studied is how the average size determined the percolation threshold of the

overall system.

The concept of percolation by shapes, or by objects that contain more than

one vertex of a graph, has ties to the study of adsorption of polymers on surfaces

[121–124]. Random sequential adsorption describes how a surface is covered by a random

application of shapes, and the surface is modeled as a continuum or a lattice. However,

these studies are restricted to systems covered by shapes that do not overlap and instead

establish conditions for jamming coverage. I extend results for continuum percolation

models to study how a lattice can be covered by overlapping shapes by first extending

the Gouéré results to a discrete lattice.

The discrete lattice leads to promising results, where it is seen that the perco-

lation threshold due to overlapping circles scales proportionally to the covered volume

of lattice points. However, on a tree or random graph, the percolation threshold scales

exponentially, leading to an infinitesimally small threshold. In order to get a bound on

the percolation threshold which is not trivial, the adjacency matrix approach of Ref [125]

for the random graph system, is modified to incorporate lattice animal connections.

A note on units: throughout this dissertation, natural units are used (� = kB = c = 1).
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Chapter 2

Theory of driven correlated

systems

Dynamics of particles in strong external fields have many degrees of complexity.

In this chapter we discuss the methods which are used to reduce the complexity through

the reduction of degrees of freedom, assumptions about the time-evolution of systems

and the definition of perturbation series expansions. For the classical Sine-Gordon sys-

tems (discussed in Chapter (3)), the method of effective potentials is discussed. For the

two-band quantum system (discussed in Chapter (4)), the derivation of a phenomeno-

logical theory is discussed using the Hartree-Fock approximation, the Hubbard model

and the Luttinger liquid. The result is a description of the physics for a many-body,

interacting electron system in one-dimension as a two-band model of spin-less fermions.

Finally, for the single-band theory (discussed in Chapter (5)), the Keldysh formalism

and Boltzmann master equations are discussed.

In the three physical systems considered in the first part of this dissertation,

systems of many particles are strongly driven by an external force which is rapidly

oscillating in time. It is expected that the effects of such an external force on the

system will occur on two time scales. The dynamics of the system will evolve along a

slow time scale and a fast time scale. On the slow time scale, driving effects gradually

accumulate over several periods of the driving force. On the fast time scale, effects on

the system are rapidly oscillating and will have zero mean value when averaged over a

period of the driving force, resulting in no net changes to the system. This separation

of time scales results in expressions for slow dynamics which show the dynamical effects

due to the driving field. It is also investigated how robust these effects are against

externals perturbations due to phonon scattering. In the presence of the external field,
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all three systems are recast in a moving reference frame and the effects of the driving

field are described through classical effective potentials, or quantum quasi-energy models

(renormalization of the Floquet spectrum). The methods discussed in this chapter are

for dynamical systems only, the methods for percolation theory are discussed in Chapter

(6).

2.1 Effective potential

One method for deriving the classical dynamics of a particle moving in an

external potential begins with the Lagrangian density. From the kinetic and potential

energy of a particle (or system of particles), the Euler-Lagrange equations of motions

are found through a variational method [3]. For simple potentials, or simple forces, these

equations are easily found. However, complex systems, either through multi-dimensional

motion or a potential field plus an external force, can obscure the physics described by

the equations of motion. It is useful to define an effective potential, a rearrangement of

the equations of motion such that the form is reminiscent of a particle moving under

the influence of a single external potential. Such an approach is standard in classical

mechanics textbooks when describing orbital motion or systems with external driving [3].

From a generic Lagrangian:

L(ẋ, x, t) = 1

2
(ẋ)2 − U(x), (2.1)

the Euler-Lagrange equations of motion have the form:

m(ẍ) = −∂U(x)

∂x
. (2.2)

2.2 Correlated systems

The systems studied in Chapters (4) and (5) are interacting electron systems in

one-dimension. They will be treated using models of spin-less fermions. The discussion

in this section begins with the general treatment of interacting electron systems, with

focus on approximations to many-body operators (the Hartree-Fock model) and the

treatment of strongly localized interactions (the Hubbard model).

2.2.1 Hartree-Fock approximation

In a non-interacting electron system, the Hamiltonian can be written as a sum

over single-body operators,

H0 =
�

k

�ka
†
k
ak, (2.3)
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and the ground state of such a system is just a collection of non-interacting particles.

When interactions between particles are included, the Hamiltonian must include two-

body operators,

H = H0 +H � = H0 +
�

k,k�,q

Vqa
†
k+q

a†
k�−q

ak�ak. (2.4)

To determine the effects of interactions on the non-interacting ground state, a mean-

field analysis is used. An electron in the system is treated as an independent particle

interacting with the mean field due to the remaining electrons in the system. To find the

mean field of the two-body term, �a†
k+q

a†
k�−q

ak�ak�, requires the use of Wick’s theorem

[126,127]. This theorem allows for multi-body operators to be written in terms of single-

body operators. This is done by expanding a product of N operators into a sum, where

each term accounts for a possible pair contraction of operators. For the four operators

in the two-body interaction, that would result in the expansion,

�a†
k+q

a†
k�−q

ak�ak� =

�a†
k+q

ak�a†k�−q
ak� + a†

k+q
ak�a†k�−q

ak��

− �a†
k+q

ak��a†k�−q
ak − a†

k+q
ak��a†k�−q

ak�

(2.5)

The two-body operator is now a sum of single-body operators, and the averaging �. . . � is
done with respects to a Hartree-Fock ground state. the full Hartree-Fock Hamiltonian

has three terms. It is noted that the creation and annihilation operators a†
k
, ak are

dependent on position, wave-number and spin (ak = ak,σ(r̄)). Likewise the interaction

potential in Eq.(2.4) may depend on position and spin, not just transferred momenta.

The position dependence of the operators a†
k
, ak and the interaction will be discussed in

Section (2.2.2) where the interacting system is studied in a strongly correlated lattice.

The separation of charge and spin variables will be discussed in Section (2.3.1).

2.2.2 The Hubbard model

The Hubbard model is a description of strongly interacting particles (in this

dissertation, electrons). The Hamiltonian has two terms, one describing the hopping of

electrons between sites (with hopping parameter t) and the second describing the on-site

interaction energy (U),

H = −t
�

i

(a†
i
ai+1 + a†

i+1ai) + U
�

i

nini+1 (2.6)

where ni = a†
i
ai. In the previous section it was mentioned that an interaction term can

be dependent on many different parameters. The Hubbard model treats the interaction

term as acting at lattice sites only.
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Applying the Hartree-Fock approximation to the Hubbard model rewrites the

on-site repulsion term in terms of average occupation numbers �ni� and single particle

operators,

nini+1 = a†
i
aia

†
i+1ai+1

≈ �a†
i
ai�a†i+1ai+1 + a†

i
ai�a†i+1ai+1�

− �a†
i
ai+1�a†i+1ai − a†

i
ai+1�a†i+1ai�.

(2.7)

This approximation leads to four terms, two are diagonal and two are off-diagonal.

Rewriting the Hubbard Hamiltonian,

H = −t
�

i

((1− �a†
i+1ai�)a

†
i
ai+1 + (1− �a†

i
ai+1�)a†i+1ai)

+ U
�

i

�a†
i
ai�a†i+1ai+1 + a†

i
ai�a†i+1ai+1�

(2.8)

it is seen that the Hartree-Fock terms lead to a modification of the hopping parameter.

The work in Chapter (4) relies on a phenomenological description of a gapped system.

The Hartree-Fock approximation to the Hubbard model returns a general form of such

a system:

H = −J
�

i

(a†
i
ai+1 + a†

i+1ai)

+ V
�

i

a†
i+1ai+1 + a†

i
ai

(2.9)

with the Hartree-Fock terms contained in the renormalized hopping parameter J and

gap V .

2.3 One-dimensional correlated systems

In one-dimension, correlated systems have dramatically different behavior com-

pared to d ≥ 2 systems. First, a discussion of the Luttinger liquid and bosonization

methods outline the foundations of the spin-less fermion model used in later chapters.

The combination of the Hartree-Fock approximation and the Hubbard model leads to

the discussion of the general two-band model in Section (2.3.2).

2.3.1 The Luttinger liquid

In systems with spatial dimension d > 1, the Fermi liquid of interacting par-

ticles can be evolved from the non-interacting system (the Fermi gas) by adiabatically

turning on interactions. As a result, the gas particles are evolved into quasi-particle
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states which are long-lived and weakly interacting. Excitations in the interacting sys-

tem are now single particle excitations of a quasi-particle above the Fermi surface, and

the creation of a hole beneath the Fermi surface. As a result, an interacting electron

system can be treated as non-interacting, or weakly interacting quasi-particles. There

are many systems that exhibit Luttinger liquid behavior, these were outlined in the

paper by Haldane [33]. Of importance to this dissertation are the connections to the

Sine-Gordon solitons, and spinless fermion models.

The Fermi liquid description fails in one dimension. Fundamentally, any one-

dimension system is correlated: the dimensionality of the system means any motion by

an electron results in the motion of neighboring particles. Secondly, the one-dimensional

lattice at half-filling is unstable when interactions between electrons are introduced, no

matter how small. The resulting symmetry breaking is known as the Peierl’s instability

and leads a non-interacting, half-filled band (which is a metallic system) to become a

filled band with a gap (an insulating system) when interactions are turned on. Due to

the collective motion inherent in any one-dimensional system, excitations in the charge

or spin spectra are density waves.

Solutions of the Luttinger liquid are built on the bosonic nature of density

waves. Through the technique of bosonization [35], the Luttinger liquid can be described

by operators that obey bosonic commutation rules. Notable results from this method

are the separation of the spin and charge spectra and the finer points of the method

can be found in Refs. [33,128–130]. The purpose of this section is to show a connection

between the Sine-Gordon model and interacting fermion systems (the connection was

also highlighted by Haldane [33]). Also, this is the final piece to support the use of a

spinless fermion system to describe an interacting electron system.

In the Luttinger liquid, the concept of a Fermi surface is reduced to a set of

Fermi points in the energy spectrum. The energy spectrum can be linearized near the

Fermi points. After linearization, the system has two energy branches which correspond

to the two kinds of particles in the system, left movers and right movers. Particles that

move to the right have energy �1 = −kvF , particles that move to the left have energy

�2 = kvF .

The Luttinger liquid is described with the Hamiltonian [126],

H = H0 +Hint = vF
�

k,s

k(a†1,k,sa1,k,s − a†2,k,sa2,k,s) +Hint. (2.10)

Where H0 is the kinetic energy term, and Hint contains all the two-body interaction

terms ((k, s) label the momentum and spin). Beginning with just the non-interacting

electrons will show the nature of particles and excitations in a one-dimensional electron
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system. There are two sets of creation and destruction operators, these are necessary

to distinguish between the right (a1, a
†
1) and left (a2, a

†
2) moving electrons.

Following the derivations of [36,126], creation and annihilation operators can be

defined for the charge density and spin density excitations. The charge density operator

(defined in [126]) ρ(k) is given by,

ρ(k) = ρ1(k) + ρ2(k) =
�

p>0,s

a†
(p− k

2 ),s
a(p+ k

2 ),s
+

�

p<0,s

a†
(p− k

2 ),s
a(p+ k

2 ),s
. (2.11)

Similarly for the spin density operator σ(k),

σ(k) = σ1(k) + σ2(k) =
�

p>0,s

sa†
(p− k

2 ),s
a(p+ k

2 ),s
+

�

p<0,s

sa†
(p− k

2 ),s
a(p+ k

2 ),s
. (2.12)

A charge-density wave is a periodic modulation in the charge, a spin-density wave is a

periodic modulation of the spin. The operators ρ(k), σ(k) follow bosonic commutation

rules and can be used to redefine the non-interacting Luttinger Hamiltonian. This

redefined Hamiltonian can be separated into two parts, describing a spin spectrum and

charge spectrum.

For the interacting Luttinger model, the two-body operators can also be written

as bosonic operators. The bosonization of the operators (a1, a2) was derived by Luther

and Peschel [129]. The authors avoided the direct calculation of (a1, a2) by defining a

new set of operators that has the same equation of motion as the field operators, and

the same commutator algebra as bosonic density operators [129].

Using the redefined field operators, the spin-charge separation of the non-

interacting Hamiltonian also occurs in the full Hamiltonian [130], there are no terms

that mix ρ and σ operators. Depending on the strength of the interactions, and the

scattering processes allowed, the result is either the charge or spin spectrum becomes

gapped. The bosonized forms of the backscattering and Umklapp processes have the

same form, but depend on either the spin boson field, or the charge boson field (re-

spectively). In Ref. [131], the general form of these scattering terms is found to be

proportional to cos (φρ,σ), and the Hamiltonian of the bosonic field theory (for charge

or spin fields) has the same form as the quantized Sine-Gordon model. Backscattering

processes contribute to a gap in the spin spectrum, Umklapp processes contribute to a

gap in the charge spectrum. At half-filling, Umklapp processes cannot be omitted. As

a result, the one-dimensional, interacting electron system at half-filling can be studied

using a system of spinless electrons.
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2.3.2 General two-band system

The general two-band theory of a tight-binding lattice model begins with an

undriven, non-interacting many-body system. The electrons on odd or even lattice

sites are identified by the creation operators α†
k
, β†

k
, respectively. In the absence of

the perturbation or the driving force, the system consists of a hopping term (−t) which

describes hopping between odd and even sites. The simple, non-interacting tight-binding

model has a sum over the N-particles,

Htb = −t
�

k

(α†
k
βk+a + β†

k
αk+a) (2.13)

where (a) is the lattice spacing. In the momentum basis it can be represented by an

N ×N Hamiltonian,

H =





. . . −t 0 0 . . .

0 −t 0 −t 0 0 . . .

. . . 0 −t 0 −t 0 0 . . .

. . . 0 0 −t 0 −t 0 . . .

. . . . . . 0 0 −t 0 −t . . .

. . . . . . 0 0 −t
. . .





. (2.14)

For a tight-binding model, the annihilation and creation operators can be expanded in

Fourier modes with respect to the quasi-momentum (k), the wavefunction of the N ×N

Hamiltonian is an N -length vector:

ψn(k) =





...

α

βeika

αei2ka

βei3ka

αei4ka

...





. (2.15)

The Schrödinger equation for such a system gives a set of N-coupled equations describing

the energy states:

−tβeika = iα̇

−tα− tαei2ka = iβ̇eika

−tβ − tβei3ka = iα̇ei2ka

−tα− tαei4ka = iβ̇ei3ka

...

(2.16)
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These can be reduced to two coupled equations, since each new equation for α̇ or β̇ can

be generated with a translation of ka → ka+ a.

−tα− tαei2ka = iβ̇eika (2.17)

−tβ − tβei3ka = iα̇ei2ka (2.18)

which reduces to,

−2t cos (ka)α = iβ̇ (2.19)

−2t cos (ka)β = iα̇ (2.20)

giving a simple two-level description of the N-body, non-interacting tight-binding model

(Htbψ = �tb(k)ψ). 

 0 −2t cos (ka)

−2t cos (ka) 0



 = �



α

β



 (2.21)

which can be rotated into a diagonal form (�(k) = −2t cos (ka)):

Hsys = �(k)σz =



�(k) 0

0 −�(k)



 . (2.22)

There are no interactions between the two bands. In the absence of the weak potential

the system’s eigenvalues give the energy spectrum, which is identical to �(k).



�(k)− λ 0

0 −�(k)− λ



 . (2.23)

−(�(k)2 − λ2) = 0 (2.24)

λ =
�
�(k)2 = ±�(k). (2.25)

The addition of interactions leads to a gap in the energy spectrum. From the

discussion of the Hartree-Fock approximation given in Section (2.2.1), when interactions

are present the off-diagonal terms in Eq. (2.23) are non-zero:

Hsys = �(k)σz + δσx =



�(k) δ

δ −�(k)



 . (2.26)

Additionally, the interactions cause a renormalization of the hopping parameter. The

self-consistent calculation of the Hartree-Fock term will not be used, rather the hopping

parameter will be renamed: t → J , where J is a phenomenological constant describing
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the hopping in an interacting system. The energy spectrum can again be found from

the eigenvalues of the matrix for Hsys. The characteristic polynomial,



�(k)− λ δ

δ −�(k)− λ



 , (2.27)

results in the eigenvalues,

−(�(k)2 − λ2)− δ2 = 0 (2.28)

λ =
�

�(k)2 + δ2 (2.29)

The addition of interactions causes a gap to open at the mid-point of the Brillouion

zone.

Using the gauge transformation methods defined in Section (2.6), the strong

driving field can be incorporated into the unperturbed Hamiltonian through the minimal

coupling shift k̄ = k + dα

dx
= k +A(t). With the full system Hamiltonian given by,

Hsys = �(k +A(t))σz + δσx, (2.30)

the interaction Hamiltonian can be defined, using the methods described in Section

(2.5).

2.4 Floquet - Bloch formalism

Many physical systems have dynamics which can be described using differential

equations which have a periodic symmetry. Quasi-periodic systems have a dynamical

structure which repeats after one period (either in space or time), but with the addition

of a phase.

In the chapters that follow, the systems studied are periodic in space and

time. Time-independent, spatially periodic systems, such as electrons in a metal can

be expanded in terms of Bloch functions [132]. Time periodic systems, such as systems

under AC field driving, can be expanded in terms of Floquet modes [53, 133]. Both

expansions will define new quantities for the momentum and energy, called the quasi-

momentum and quasi-energy, respectively. By working in the space defined by these

quantities, it will be seen that the system is recast in an effective space of slowly varying

energy levels [133].

Both formalisms rely on the fact that the periodic symmetry of the Hamiltonian

is shared by the solutions of the Schrödinger equation. In this initial section, the systems
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considered will not have any perturbations present and the equation of motion is given

by,

−i
∂

∂t
ψ(x, t) = H(x, t)ψ(x, t) (2.31)

The time periodic system is considered first. If the system has a time-periodicity

H(t) = H(t+ τ), the wavefunction ψ(x, t) can be expanded in a series of time-periodic

functions and a phase term. The eigenfunctions of the periodic Schrödinger’s equation

have the form:

ψ(x, t) = ei�mtfm(x, t) (2.32)

where fm(x, t) = fm(x, t+τ) shares the periodicity of the Hamiltonian. The phase term

defines the Floquet quasi-energy, which is unique up to a factor of mω,m = ±1, 2, . . . ,

ω = 2π/τ . This first description expands ψ(x, t) in terms of a Floquet mode (m).

Substitute the Floquet mode form of ψ(x, t) into the original equation of motion and

the result is the equation:

−i
∂

∂t
ψ(x, t) = H(x, t)ψ(x, t)

−i
∂

∂t
ei�mtfm(x, t) = H(x, t)ei�mtfm(x, t)

ei�mt

�
�m − i

∂

∂t

�
fm(x, t) = ei�mtH(x, t)fm(x, t)

(�m)fm(x, t) = H(x, t)fm(x, t)

(2.33)

Where the Hamiltonian operator is redefined as H(x, t) = H(x, t) + i ∂

∂t
. This equation

can be used to define the energy of a given Floquet mode and further manipulated to

recast the driven Hamiltonian as a series of time-independent equations.

The periodicity of the function u(x, t) allows it to be expanded into a Fourier

series:

fm(x, t) =
�

n

einωtum,n(x, t) (2.34)

leading to the complete expression for ψ(x, t),

ψ(x, t) =
�

n

ei(�m+nω)tum,n(x, t). (2.35)

So it is seen that a single Floquet mode �m contains many harmonics. Finally, the

Hamiltonian is also expanded in a periodic series:

H(x, t) =
�

m

Hm(x)eimωt. (2.36)

The Floquet formalism casts a time-periodic Hamiltonian into an infinite series of time-

independent bands, with the Fourier modes of H(x, t) separated by a gap determined
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by the periodicity ∆ = ω, ω = 2π/τ ,

H =





. . . 0 0 0 0 . . .

. . . H(−2)(x)− 2ω 0 0 0 . . .

. . . 0 H(−1)(x)− ω 0 0 . . .

. . . 0 0 H(0)(x) 0 . . .

. . . 0 0 0 H(1)(x) + ω . . .

. . . . . . 0 0 0
. . .





. (2.37)

By recasting a time-dependent Hamiltonian into the Floquet representation, the time-

dependent spectrum is rewritten as a ladder of time-independent levels, separated by

a spacing ∆� = ω. In the work that follows, the spacing between Floquet levels is

important. In order to ensure a particle will most likely scatter within a single band,

the separation between levels has to be large enough to ensure neighboring Floquet bands

do not overlap. The bandwidth of a Floquet level is a renormalization of the original

bandwidth ( �J), this lead to a hierarchy for the system parameters: ∆ < �J < ω < J .

The theory of particles in a periodic potential is described using Bloch theory,

the analysis follows a similar method to Floquet theory. If a Hamiltonian is time-

independent, and spatially periodic (H(r̄) = H(r̄+R̄)), then the wavefunction is defined

by a spatially periodic function and a phase term:

ψ(r̄) = e−ik̄m·r̄fm(r̄). (2.38)

The dynamics of a particle in a periodic potential is that of a plane wave with a spatially-

periodic amplitude given by fm(r̄) = fm(r̄+ R̄). Since the systems considered here only

have one spatial dimension the vector notation will be dropped r̄ = x. As with the

Floquet modes, the first decomposition of ψ(x) is given in terms of a single Bloch

mode, defined with the quasimomentum k, which is unique up to a factor 2mπ/R,m =

±1, 2, . . . .

An additional expansion of the function fm(x) is done in terms of spatial

harmonics, called Wannier functions [132]:

ψ(x) =
�

R

eikRφn(x−R). (2.39)

The advantage to expanding the Floquet mode into Fourier harmonics, and expanding

the Bloch mode into Wannier functions, is that the final periodic functions um,n(x, t)

and φn(x−R) are orthogonal.
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2.5 Interaction representation

The systems studied in this work are driven by strong, highly-oscillatory fields.

To study the effects of strong driving and small perturbations on the Hamiltonians,

perturbation expansions are used. In the case of quantum systems (the gapped electron

system and the single band renormalization) the small perturbations are resolved using

the interaction representation. The general form of the system’s Hamiltonian,

Hsys = H0 +HD +HP , (2.40)

is composed of three terms: H0 is the un-driven system with known eigenfunctions,

HD is the time-dependent driving, and HP includes any other external potential terms.

The system is time-dependent and rapidly oscillating. Additionally, the driving force

amplitude is large, and cannot be treated as a perturbation.

In the systems that follow, the term H0 has a set of know eigenfunctions

ψ0 (either tight-binding Wannier functions or free electrons). The time-dependence

from the driving force is treated by defining a gauge field and is discussed in the next

section. The small potential given byHext is treated by transforming into the interaction

representation and from there defining a cumulant expansion which will be truncated at

the appropriate order. A time-dependent, unitary operator is defined which will evolve

the system in time (U(t)). The full operator U(t) is decomposed into two factors,

U(t) = U0(t)S(t). (2.41)

The time dependence of the wave-function φ(t) is found from the differential equation

of the known Schrödinger equation for H0,

φ̇(t) = −iH0φ(t). (2.42)

Comparing the time-dependent Schrödinger equation with the definition of U0, it is seen

there is an equivalent way to describe the time evolution of the wave-function:

φ(t) = U0φ(t = 0), (2.43)

φ̇(t) =
d(U0φ(t = 0))

dt
= U̇0φ(t = 0). (2.44)

The time-dependence of U0 can be determined through an equation similar to the time-

dependent Schrödinger equation:

U̇0 = −iH0U0. (2.45)
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For systems which are time-independent, the equation can be easily integrated:

U0(t) = e−iH0t (2.46)

When a small perturbation term (H �) is included to the time-independent Hamiltonian,

the definition of the unitary operator changes to an operator U(t) which will evolve the

full system (Hsys = H0 +H �),

U(t) = U0(t)S(t). (2.47)

Where S(t) is a factor which accounts for the change in system evolution due to the

perturbation. There are now two time evolution equations which can be written:

U̇0 = −iH0U0 (2.48)

U̇ = −iHsysU (2.49)

The last equation can be rewritten in terms of U0, and S:

U̇ = (U̇0S + U0Ṡ) = −i(H0 +H �)(U0S). (2.50)

Terms which can be cancelled are identified by multiplying the unperturbed evolution

equations on the right by the operator S,

(U̇0)S = (−iH0U0)S, (2.51)

and the time evolution operator for U reduces to:

U0Ṡ = −iH �U0S (2.52)

Multiplying through by U †
0 allows the equation to be written as an evolution equation

for S(t),

Ṡ(t) = −iHintS(t) (2.53)

Ṡ(t) = −iU †
0H

�U0S(t) (2.54)

The interaction Hamiltonian is identified Hint = U †
0H

�U0. Once the interaction repre-

sentation is identified, the complete dynamics of the operator S(t) can be approximated

through a perturbation series. Assuming the amplitude of H � is small the series can be

truncated at a low order.

The iterative solution of the equation above for S(t) begins at time t = 0.

The initial conditions for the operatorS(t) are defined as S(t = 0) = 1. Additionally, at

t = 0, the full system evolution operator U(t = 0) = 1. From the time evolution equation
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defined above, the evolution of S(t) is determined by the interaction representation of

the Hamiltonian. To find the full form of S(t), the equation is integrated:

Ṡ(t) = −i(U †
0H

�U0)S(t) (2.55)
� T

0
dtṠ(t) = −i

� T

0
dt(U †

0H
�U0)S(t) (2.56)

The left-hand side of the equation is evaluated:

S(T )− S(0) = S(T )− 1 (2.57)

The equation for S(t) is given in terms of an integral:

S(t) = 1− i

�
t

0
dt�Hint(t

�)S(t�). (2.58)

Likewise, for S(t�),

S(t�) = 1− i

�
t
�

0
dt��Hint(t

��)S(t��). (2.59)

So after two iterations, the equation for S(t) is given,

S(t) = 1− i

�
t

0
dt�Hint

�
1− i

�
t
�

0
dt��HintS(t

��)

�
(2.60)

= 1− i

�
t

0
dt�Hint(t

�) + (−i)2
�

t

0
dt�

�
t
�

0
dt��Hint(t

�)Hint(t
��)S(t��) (2.61)

A more compact form can be given by defining the integrals with time-ordered operators

[126]. Time ordering of two operators organizes the arguments such that operators that

act earlier in time are placed to the right.

T [Hint(t1)Hint(t2)] = Θ(t1 − t2)Hint(t1)Hint(t2) + Θ(t2 − t1)Hint(t2)Hint(t1) (2.62)

By time-ordering operators, the upper limit for all integrals goes to (t). The second

order expansion of S(t) can be generalized to m-order,

S(t) = 1− i

�
t0

0
dt1 HI(t1) +

(−i)2

2

�
t1

0

�
t2

t1

dt1dt2 [HI(t1), HI(t2)]

+ · · ·+ (−i)m

m!

�
t

0
dtj TtHm

I ,

(2.63)

and written as an exponential operator,

S(t) = Tte−i
� t
0 dt

�
Hint(t�) (2.64)
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2.6 Gauge field definition

The strong driving field is incorporated by minimal coupling to a gauge field.

First the gauge will be found for the case of a driven free particle, then for a driven

tight-binding model. The exact form of the driving force is not important at this stage,

but it is assumed to be dependent on time and the position operator F = F (x̂, t). The

full Hamiltonian is given by,

�H(p̂, x̂, t) = H0(p̂) +Hdriving(x̂, t) (2.65)

The undriven free-particle Hamiltonian is only dependent on the momentum operator

(p̂). A unitary operator, U(t) can be defined in the following form:

U(t) = e−iα(x̂,t)U0(t), (2.66)

U0(t) = e
�
dt �H(p̂,x̂,t). (2.67)

U(t) is defined by the evolution of the driven system and the factor α(x̂, t). The above

equations can be rearranged for a definition of U0(t) and used in the time-evolution

equation: This equation can be solved for the gauge field α(x̂, t), and also a gauge

transformed form of the driven, unperturbed, Hamiltonian. Rearranging the equation

for U(t) to give a definition of U0(t) and using it in the time evolution equation:

U0(t) = eiα(x̂,t)U(t), (2.68)

U̇0(t) =
d

dt

�
eiα(x̂,t)U(t)

�
= −iHU0. (2.69)

(2.70)

Fully expanded,

�
iα̇eiα(x̂,t)U(t) + eiα(x̂,t)U̇(t)

�
= −i [H0(p̂) +Hdriving(x̂, t)]

�
eiα(x̂,t)U(t)

�
, (2.71)

and after multiplying on the left by the exponential operator e−iα(x̂,t):

�
ie−iα(x̂,t)α̇eiα(x̂,t)U(t) + U̇(t)

�
(2.72)

= −i
�
e−iα(x̂,t)H0(p̂)e

iα(x̂,t) + e−iα(x̂,t)Hdriving(x̂, t)e
iα(x̂,t)

�
U(t). (2.73)

The exponential operators are expanded according to the Baker-Campbell-Hausdorff

formula:

eiÂB̂e−iÂ = B̂ +
�
Â, B̂

�
+

1

2!

�
Â,

�
Â, B̂

��
+ . . . (2.74)
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and for position and momentum operators, the series truncates after the second term.

e−iα(x̂,t)α̇eiα(x̂,t) = α̇(x̂, t) (2.75)

e−iα(x̂,t)F (x̂)eiα(x̂,t) = F (x̂) (2.76)

e−iα(x̂,t)p̂eiα(x̂,t) = p̂+
d

dx
α(x̂, t) = p̃ (2.77)

The third line gives the gauge transformed momentum operator p̃. To form the gauge

transformed Hamiltonian, H̄, the momentum operator in H0 is replaced by the gauge-

transformed momentum:

H̄ = H0(p̃) = H0

�
p̂+

d

dx
α(x̂, t)

�
(2.78)

As a result, Eq. ((2.73)) reduces to:

iα̇(x̂, t) + U̇ = −iH̄U − iF (x̂, t)U, (2.79)

which is allows for the following identifications:

iα̇(x̂, t)U(t) = −iF (x̂, t)U(t), (2.80)

U̇ = −iH̄U. (2.81)

So that once a driving force of the form F (x̂, t) is known, the gauge transform can be

defined:

α(x, t) =

�
dtF (x̂, t) (2.82)

Once the gauge transformed Hamiltonian H0(p̃) is found, it can be used in the above

expansion to define the interaction representation of a small perturbation. The gauge-

transformed system is effectively in an accelerated frame, the potential the particles are

bound to is considered stationary and the effects of the driving force are seen in the

motion of the reference frame.

2.7 Driven field dynamics

To further probe the existence of gap closure, a DC field was added to the

driving force. For a sinusoidal system under AC driving, the dynamics of a single

particle or a collection of particles due to a weak DC field is studied. The advantages of

using the sinusoidal system are due to the Bloch oscillations possible and the possibility

of a band insulating system.
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Bloch oscillations are the periodic motion of the electron’s quasi-momentum.

From semi-classical equations of motion, the time dependence for k, and v are determined

by the applied field (E). For the quasi-momentum,

k̇ = −eE (2.83)

k(t) = k0 − eEt. (2.84)

The value for k is periodic, when k reaches the boundary at
π

a
it is Bragg reflected back

to the opposite edge, −π

a
. For the velocity,

v = ṙ =
∂�(k)

∂k
(2.85)

v = −J sin (ka) = J sin ((k0 − eEt)a). (2.86)

The velocity oscillates with period eEτ =
2π

a
. Thus, the electron in a static electric

field will oscillate around an average position (in real space). Likewise, for a particle

that begins at the leftmost edge of the quasi-momentum zone at t = −π

a
, at time t = τ

the particle will be at k =
π

a
and will reflected back to its original value. The periods

of oscillations for real and momentum space are equal.

To calculate the electric current of a driven two-band system, the possibility

that the system may have multiple states occupied needs to be considered. The electric

transport of one (or many) electrons in the two-band system was calculated using the

quantum master equation. The general two-band system and its associated eigenvalues

(λi) and eigenvectors (|ψi�) are given by,

H = �(k)σz + V σx (2.87)

λ1,2 = ±
�
�(k)2 − V 2 (2.88)

Hψ1 = λ1ψ1 (2.89)

Hψ2 = λ2ψ2. (2.90)

where the indices (1, 2) indicate which band a particle occupies. For example, λ1 =

−
�
�(k)2 − V 2 corresponds to the energy of a particle in the lower band, and ψ1 = ( 01 ).

For a closed system, the master equation is defined as the time evolution of the density

matrix, describing the probability of each the system’s eigenfunctions being occupied,

ρ̇ = −i[H, ρ]. (2.91)

From the eigenfunctions of a system |ψi�, the density matrix ρ is constructed from their

inner product,

ρ =
�

i

pi|ψi��ψi|, (2.92)
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and a factor pi which gives the probability that a system is in the state given by |ψi�.
These probabilities are defined by the thermal probability that a state is occupied (β =

1/T , where T is the temperature),

P (λi, β) =
1

eλiβ + 1
. (2.93)

.

This formalism was applied to the following situations: the electric current

generated by a single particle, and the net electric current generated by a full electron

band. Defining the system’s dynamics with the density matrix allows for the incorpo-

ration of the system’s temperature, though for the closed system it will not account

for additional heating or energy dissipation. For a given observable in the system, the

density matrix leads to a direct method of evaluating the expected value,

��M� = Tr(ρ�M)

Tr(ρ)
. (2.94)

The calculation of the average electric current for a single electron used the

the operator �M = dH

dA
,

�ik(t)� =
Tr(ρdH

dA
)

Tr(ρ)
. (2.95)

For a collection of electrons in a band, the total current is found by summing all mo-

mentum values,

I(t) =

�
dk �ik(t)� (2.96)

where the integration is over the entire Brillouin zone.

2.8 Keldysh formalism

The quantum systems studied in this work involve a strong AC field to create

a modified Floquet spectrum which exhibits such qualities as band-gap suppression

or band inversion. In addition, the systems are also driven with a weak DC field to

determine how a particle will behave in the modified Floquet spectrum. In the previous

section it was discussed how the dynamics of a single electron, or a collection of electrons

can be determined for a closed system through the use of a quantum master equation.

Central to the work in Chapter (5) is the derivation of a master equation when the

system is strongly driven far from equilibrium and also is coupled to a dissipated heat

bath (phonon modes).

Green’s functions are a standard method of calculating properties in quantum

many-body systems and the brief discussion here follows standard texts [70, 126]. For
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equilibrium systems, they give probability amplitudes for the creation and annihilation

of particles at given positions and time [126] and can be used to propagate a wavefunction

between two states. Interactions, such as a heat bath coupling, are incorporated through

a perturbative expansion in terms of self-energy functions. There are several forms of

the Green’s function (GR,A,<,>(r̄�, t�, r̄, t)) which are useful in defining physical quantities

for quantum systems and can be defined for fermions, bosons and phonons (the phonon

Green’s function is denoted as DR,A,<,>(r̄�, t�, r̄, t)). In particular, the lesser Green’s

function G< can be connected to the electron distribution function of a system, with

the use of the spectral function (G<(r̄�, t�, r̄, t) = iA(r̄�, t�, r̄, t)n(r̄�, t�, r̄, t)). The time-

evolution of the electron distribution is defined by the quantum transport equation

known as the Boltzmann equation.

For the discussion of general Green’s functions and their definitions, the Hamil-

tonian has the general form,

H = H0 + V (2.97)

where H0 may or many not be time-dependent and V contains the interactions. The

equilibrium Green’s function is defined by the time-ordered product of operators,

G(r̄�, t�, r̄, t) = �T a(r̄�, t�)a†(r̄, t)� (2.98)

describing the probability that a particle is destroyed at (r̄, t) and created at (r̄�, t�).

To simplify the coordinate notation, we follow Rammer’s notation of 1 ≡ (r̄, t) and

1� ≡ (r̄�, t�). Of the four types of Green’s functions, GR,A,<,>, only the retarded (GR)

and the lesser (G<) are discussed here, they are integral to the derivation of quantum

transport equations in the nonequilibrium system. The retarded and lesser Green’s

functions are derived from the general form by rewriting the time-ordered operators as

commutators,

GR(1, 1�) = −iθ(t− t�)�{a(r̄, t), a†(r̄�, t�)}� (2.99)

G<(1, 1�) = i�a†(r̄, t)a(r̄�, t�)� (2.100)

The addition of interactions requires an perturbative expansion in terms of

self-energy functions ΣR,A,<,>. This expansion defined the Dyson equations,

G = G0 +G0ΣG (2.101)

from which the time evolution of a Green’s function can be defined. For interactions

due to electron-phonon coupling, the self-energy will depend on the electron Green’s

functions and the phonon Green’s functions.
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When systems are driven far from equilibrium, it require redefinition of known

equilibrium Green’s functions into the nonequilibrium Green’s function formalism (NEGF)

[73], also known as the Keldysh Green’s function formalism [72]. For the strongly driven

single band discussed in Chapter (5), the Keldysh formalism provides a description of

the non-equilibrium electron dynamics using quantities very similar to those of equilib-

rium systems. Additionally, it provides a means to derive a quantum master equation

which includes dissipative effects due to phonon scattering.

Green’s functions are dependent on the time ordering of the field operators.

In the nonequilibrium picture the time ordering is done with respect to a contour. To

define the time contour, first the system evolve is described as follows: at some initial

time ti the system is in an equilibrium state with regards to a thermal bath, at a later

time t, the strong driving field is turned on. The time contour begins at ti, continues

to t� > t, then returns to ti. This modifies the time-ordering by splitting it into two-

branches, those operators that sit on the branch [ti, t�] and those that sit on the branch

[t�, ti]. The definition of the Green’s functions, and phonon propagator is similar to the

equilibrium function, with the modification due to the contour ordering,
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Chapter 3

Driven Sine-Gordon model

The study of correlated systems in external fields begins with a classical model.

A well-known physical system that exhibits ‘dynamical stabilization’ is the pendulum

with a vertically oscillating support (the Kapitza pendulum). In this chapter the effects

of a strong, oscillating torque on a chain of pendulums are investigated. For the Kapitza

pendulum dynamical stabilization results in an inverted pendulum, with a stable position

in a vertical position over the support bar. Using a multi-scale approach, an effective

potential is derived which assumes dynamical changes in the system occur on two time

scales: gradual changes that accumulate over each period of the driving torque and rapid

oscillations that have zero mean over each period of the driving torque. It is investigated

if such a chain will exhibit dynamical stabilization. This stabilization will occur as a

subset of the coupled pendulums are stable in an inverted position with respect to the

horizontal support. It is shown that for a sinusoidal driving torque with amplitude and

frequency that satisfy F0/ω2 = 2.4048 the effective potential will have stable points

both above and below the pendulum support. When the system is driven with these

parameters, the driven Sine-Gordon equation is numerically integrated to find stationary

waveform solutions. It is seen that a wide soliton can be created in the system with

a dissipative term introduced to keep the motion from becoming chaotic. The driven

Sine-Gordon equation provides a classical model of a correlated field theory and the

connection between this classical field theory and a gapped quantum field theory will be

discussed. Specifically the results in this chapter set the foundation for studies of how

external driving forces will affect gapped quantum systems.
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3.1 Introduction

The Sine-Gordon model and its soliton solutions has been an active area of

research in both classical and quantum dynamics. Classically, the Sine-Gordon model

is a nonlinear system with stationary wave solutions. These solutions (called solitons)

have been well-established and many review articles exist, [13, 134, 135]. This classical

model can be connected to quantum systems, such as the Frenkel-Kontorova model

[11,136,137], and used in describing the physics of Josephson junctions [10]. In addition

to the classical field theory, the quantization of the soliton fields resulted in a new way

to study interacting fermionic systems [12, 138–141]. Of interest is the mapping of the

Sine-Gordon model to a massive fermionic model, which results in a gapped spectrum.

Through the use of bosonization, it is seen that the massive fermionic model is equal

to a model with backscattering [35,142]. The topological aspects of solitons has lead to

renewed interest in the past decade [143–145].

Driven soliton systems have been extensively studied [146–154]. In this chapter

we use an approach similar to that of Kivshar [146, 155], namely the expansion of the

field variable ϕ in terms of harmonic functions which oscillate at the frequency of the

external, driving field (or torque).

In the sections that follow, the Lagrangian and Hamiltonian dynamics of the

Sine-Gordon model are discussed. First the qualities of the system including the wave-

forms known as solitons are described, and the effects of strong periodic driving are

explored through the effective potential. The connection between the classical Sine-

Gordon model and strongly correlated electron systems is discussed. The classical results

are applicable for (3 + 1) dimensions, however will be restricted to (1 + 1) dimensions

(one spatial dimension, one time dimension). In the classical field theory, the equations

of motion that one obtains from the Lagrangian, for a time-independent field can be

generalized to given the equations of motion of a particle in an effective field.

The general Lagrangian density of a field theory in (1+ 1) space has the form,

L(ϕ(x, t)) = 1

2
(ϕ̇)2 − m2

2

�
ϕ��2 − V (ϕ) (3.1)

where the differential operator defined ∂ = (∂/∂t,−∂/∂x). There are many nonlin-

ear field theories which exhibit kinks and solitons. We are focusing here on the Sine-

Gordon equation, a second-order differential equation which has a periodic potential

term V (ϕ) = m2(1−cos (ϕ)). The classical field Lagrangian density for the Sine-Gordon
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equation is given by [13]:

L(ϕ(x, t)) = 1

2
(∂ϕ)2 − V (ϕ), (3.2)

V (ϕ) =

�
m4

λ

�
cos

��√
λ

m

�
ϕ

�
. (3.3)

The form of the Sine-Gordon potential is chosen such that the Taylor expansion around

ϕ = 0 will result in the Klein-Gordon potential. Inside the cosine function, the factor
√
λ/m is the coupling constant of the model. Through a rescaling of the field variable,

the equations of motion derived from the Lagrangian above of a one-dimensional field

ϕ(x, t) is given by,

−d2φ

dt2
+

d2φ

dx2
= λ2 sin (φ). (3.4)

Solutions to eq. (3.4) have known waveforms called solitons [156]. The physical proper-

ties of solitons are well-established, of importance to this work is the particle-like nature

of excitations in the Sine-Gordon model. These excitations are commonly called kinks,

in the x-direction they has a hyperbolic tangent shape. Asymptotically, as x → −∞
the solution φ(x) = −1 and for x → ∞ the solution φ(x) = 1. The soliton shape is

recognized as a narrow region where there field φ(x) goes from −1 → 1. A physical

interpretation of a set of horizontal pendulums would show a soliton wave as a twist,

as the pendulums rotate from a stable position below the support, through the vertical

position over the support and return to a stable position below.

3.2 Effective Potential of a driven Sine-Gordon model

3.2.1 Driven system without damping

Beginning from the general Sine-Gordon equation in (3.4), the driving torque

f(t) is added to the right hand side of the system,

ϕ̈− ϕ�� + λ2 sin (ϕ) = F0 cos (ωt). (3.5)

To incorporate the effects of the driving torque on the dynamics of the soliton solution,

the undriven solution ϕ0(x, t) is rescaled by the addition of a time dependent function

ξ(t), effectively shifting the system into a moving reference frame. The function ξ(t) is

assumed to be periodic with the same frequency as the driving torque,

ϕ(t) = ϕ0(t) + ξ(t). (3.6)

In the function ϕ(x, t), the term ϕ0(x, t) contains the slow dynamics of the system, it

was change gradually over a period of the driving torque. The term ξ(x, t) contains the
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fast dynamics of the system, it will have a zero mean over one period of the driving.

The choice of ξ(x, t) will be used to incorporate the effects of the driving torque and

eventually derive an effective potential for the driven, damped system.

The first choice for ξ(x, t) is a simple shift by a periodic function with a constant

amplitude:

ϕ(x, t) = ϕ0(x, t) + ξ(x, t) = ϕ0(t) + C cos (ωt). (3.7)

The constant amplitude C is yet undetermined. Under the rescaling eqtn (3.6), the

terms in eqtn (3.5) change accordingly:

ϕ̈ = ϕ̈0 −
�
Cω2

�
cos (ωt), (3.8)

ϕ�� = ϕ��
0, (3.9)

sin (ϕ) = sin (ϕ0 + C cos (ωt)). (3.10)

The shifted Sine-Gordon equation becomes,

ϕ̈0 − ϕ��
0 + λ2 sin (ϕ0 + C cos (ωt))

−
�
Cω2

�
cos (ωt) = F0 cos (ωt).

(3.11)

With the choice of C = −F0
ω2 , it is seen how the function ξ(t) can be used to cancel the

driving term on the right hand side of (3.5). The field equations of (3.5) are now:

ϕ̈0 − ϕ��
0 + λ2 sin (ϕ0 −

F0

ω2
cos (ωt)) = 0. (3.12)

An expansion of the potential term begins by separating the slow and fast terms:

sin (ϕ0 −
F0

ω2
cos (ωt)) = sin (ϕ0) cos (

F0

ω2
cos (ωt)),

− cos (ϕ0) sin (
F0

ω2
cos (ωt)).

(3.13)

The nested trigonometric functions are expanded in series according to the Jacobi-Anger

expansion:

cos (
F0

ω2
cos (ωt)) = J0

�
F0

ω2

�
+ 2

∞�

n=1

(−1)nJ2n

�
F0

ω2

�
cos (2nωt), (3.14)

sin (
F0

ω2
cos (ωt)) = −2

∞�

n=1

(−1)nJ2n−1

�
F0

ω2

�
cos ((2n− 1)ωt). (3.15)

Assuming F0
ω2 � 1, justifies keeping only the lowest order terms. Equation (3.12) be-

comes:

ϕ̈0 − ϕ��
0 + �λ2 sin (ϕ0)− 2λ2J1

�
F0

ω2

�
cos (ωt) cos (ϕ0) = 0 (3.16)

ϕ̈0 − ϕ��
0 + �λ2 sin (ϕ0)− �λ2

�
F0

2ω2

�
cos (ωt) cos (ϕ0) = 0 (3.17)
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where the rescaled parameter �λ = λ2J0
�
F0
ω2

�
is introduced and the second equation

comes from an approximation to the first Bessel function. From the recursive relation

between Bessel functions,

J0(z) + J2(z) =
2

z
J1(z) (3.18)

J1(z) =
z

2
(J0(z) + J2(z)) (3.19)

J1(z) ≈
z

2
J0(z) (z � 1) (3.20)

This simple shift will be the zeroth order approximation of the driven system.

If now a more general shift expression is used, higher orders of approximation

can be found. The general expansion of a waveform,

ψ(x, t) = ϕ(x, t) +
�

n

an(x, t) sin (nωt) +
�

n

bn(x, t) cos (nωt)

=

�
ϕ0(x, t)−

F0

ω2
cos (ωt)

�
+

�

n

an(x, t) sin (nωt) +
�

n

bn(x, t) cos (nωt)
(3.21)

includes the zeroth order term and higher (Floquet) harmonics. In the general expansion

it is assumed the coefficients an, bn have small amplitude |an|, |bn| � 1. As above,

the individual terms of the Sine-Gordon equation are listed separately. First the time

derivatives,

ψ̈(x, t) = ϕ̈0(x, t) +
F0

ω2
cos (ωt)

+
�

n

�
än(x, t) sin (nωt) + 2(nω)ȧn(x, t) cos (nωt)− (nω)2an(x, t) sin (nωt)

�

+
�

n

�
b̈n(x, t) cos (nωt)− 2(nω)ḃn(x, t) sin (nωt)− (nω)2bn(x, t) cos (nωt)

�
;

(3.22)

and next the spatial derivatives,

ψ��(x, t) = ϕ��
0(x, t) +

�

n

a��n(x, t) sin (nωt) +
�

n

b��n cos (nωt). (3.23)

Finally an expression for the driven Sine-Gordon equation with the general expansion

(3.21) (the x and t dependencies of ψ, ϕ,an, bn are dropped for the remainder of this

section) is established,

ψ̈ − ψ�� + λ2 sin (ψ) = F0 cos (ωt), (3.24)
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becomes:

ϕ̈0(x, t) +
�

n

�
än(x, t) sin (nωt) + 2(nω)ȧn(x, t) cos (nωt)− (nω)2an(x, t) sin (nωt)

�

+
�

n

�
b̈n(x, t) cos (nωt)− 2(nω)ḃn(x, t) sin (nωt)− (nω)2bn(x, t) cos (nωt)

�

−
�
ϕ��
0(x, t) +

�

n

a��n(x, t) sin (nωt) +
�

n

b��n cos (nωt)

�

λ2 sin

�
ϕ0 −

F0

ω2
cos (ωt) +

�

n

an sin (nωt) +
�

n

bn sin (nωt)

�
= 0

(3.25)

To establish the perturbation expansion in our system, first the many terms with nested

trigonometric functions must be expanded. In the final term of (3.25), the function

σ(x, t) is defined,

σ(x, t) = ϕ0 +
�

n

an sin (nωt) +
�

n

bn cos (nωt), (3.26)

separating the term F0
ω2

cos (ωt), and allowing for the expansion of the sine function:

sin

�
ϕ0 −

F0

ω2
cos (ωt) +

�

n

an sin (nωt) +
�

n

bn sin (nωt)

�

= sin

�
σ(x, t)− F0

ω2
cos (ωt)

�

= sin (σ(x, t)) cos

�
F0

ω2
cos (ωt)

�
− cos (σ(x, t)) sin

�
F0

ω2
cos (ωt)

�
(3.27)

Again the expansion of nested trigonometric functions is done with the Jacobi-Anger

expansion, and the potential of the Sine-Gordon equation becomes,

λ2

�
sin (σ)

�
J0

�
F0

ω2

�
+ 2

∞�

n=1

(−1)nJ2n

�
F0

ω2

�
cos (2nωt)

�

+ cos (σ)
�
2

∞�

n=1

(−1)nJ2n−1

�
F0

ω2

�
cos ((2n− 1)ωt)

��
(3.28)

The expansion of the terms sin (σ), cos (σ) can be simplified from the assumption about

the terms in the series: an, bn, sin (nωt), cos (nωt). Assuming the magnitude of each

term of the series are very small, |an|, |bn| � 1, the sum of the series is also assumed to
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be small. This allows for approximations of terms accordingly,

sin (
�

n

an sin (nωt)) ≈
�

n

an sin (nωt) (3.29)

sin (
�

n

bn cos (nωt)) ≈
�

n

bn cos (nωt) (3.30)

cos (
�

n

an sin (nωt)) ≈ 1 (3.31)

cos (
�

n

bn cos (nωt)) ≈ 1. (3.32)

Additionally, it is assumed that terms of the form sin (. . . ) cos (. . . ) will add destructively

in the series, and as a result may be dropped.

After all expansions and simplifications have been made, the final expression

of (3.25) is,

ϕ̈0 − ϕ��
0 +

�

n

�
än − a��n − 2(nω)ḃn − (nω)2an

�
sin (nωt)

+
�

n

�
b̈n − b��n − 2(nω)ȧn − (nω)2bn

�
cos (nωt)

+ λ2

�
sin (ϕ)

�
J0

�
F0

ω2

�
+ 2

∞�

n=1

(−1)mJ2m

�
F0

ω2

�
cos (2mωt)

�

+ cos (ϕ0)

�
J0

�
F0

ω2

�
(
�

n

(an sin (nωt) + bn cos (nωt)) +
�

n

b2nJ2n

�
F0

ω2

��

+ cos (ϕ0)

�
2

∞�

n=1

(−1)nJ2n−1

�
F0

ω2

�
cos ((2n− 1)ωt)

�

+ sin (ϕ0)

� ∞�

n=1

b2n−1J2n−1

�
F0

ω2

���

(3.33)

From equation (3.33) the terms are separated according to slow and fast dynamics.

The slow terms are identified as those independent of sin (. . . ), cos (. . .). Additionally,

the series over sin (nωt), cos (nωt) are separated into sums over even or odd harmonics.

Then equation (3.33) is separated into dynamic equations for slow dynamics, and the

fast dynamics determined by an, bn. The terms will be kept to lowest order, which will

be O(λ2). Terms proportional to λ2an or λ2bn are dropped. The slow dynamics are

determined by the equation:

ϕ̈0 − ϕ��
0 + λ2 sin (ϕ0)J0

�
F0

ω2

�

+ λ2

� ∞�

n=1

b2n−1J2n−1

�
F0

ω2

�
+ cos (ϕ0)

� ∞�

n=1

b2nJ2n

�
F0

ω2

���

= 0

(3.34)
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The terms proportional to sin (nωt), separated in even or odd harmonics:

ä2n−a��2n − 2(2nω)ḃ2n − (2nω)2a2n

+ λ2 cos (ϕ0)

�
�

n

a2nJ0

�
F0

ω2

�
sin (2nωt)

�
= 0

(3.35)

ä2n−1−a��2n−1 − 2((2n− 1)ω)ḃ2n−1 − ((2n− 1)ω)2a2n−1

+ λ2 cos (ϕ0)

�
�

n

a2n−1J0

�
F0

ω2

�
sin ((2n− 1)ωt)

�
= 0

(3.36)

The terms proportional to cos (nωt), separated into even or odd harmonics,

b̈2n−b��2n + 2(2nω)ȧ2n − (2nω)2b2n

+ λ2

�
sin (ϕ0)

�
2

∞�

l=1

(−1)lJ2l

�
F0

ω2

�
cos (2lωt)

�

+ cos (ϕ0)

�
J0

�
F0

ω2

�
b2n cos (2nωt)

�

+ cos (ϕ0)

� ∞�

l=1

(−1)lb2nJ2l

�
F0

ω2

��
cos (2[n− l]ωt) + cos (2[n+ l]ωt)

��

− 2 sin (ϕ0)

�
�

l=1

(−1)lJ2l−1

�
F0

ω2

�
cos ([2l − 1]ωt)

��
= 0

(3.37)

b̈2n−1 − b��2n−1 + 2([2n− 1]ω)ȧ2n−1 − ([2n− 1]ω)2b2n−1

+ λ2

�
cos (ϕ0)

� ∞�

l=1

(−1)lJ2l

�
F0

ω2

��
cos ([2(2n− 1− l)− 1]ωt)

+ cos ([2(2n+ 2l − 1)− 1]ωt)

��
b2n−1

− 2 sin (ϕ0)

�
�

l=1

(−1)lJ2l−1

�
F0

ω2

�
cos ([2l − 1]ωt)

�
b2n−1

�
= 0

(3.38)

We seek a solution to the driven dynamics which results in a quasi-stationary

state. In the slow dynamics equation we need to establish the coefficients an, bn, which

will be found from the terms proportional to sin (nωt), cos (nωt). The equations for

the harmonic dynamics are used to establish a recursive solution. To find the quasi-

stationary state, the terms ȧn, än, ḃn, b̈n are set to zero, resulting in quasi-static equa-

tions:

−a��2n − (2nω)2a2n = 0

−a��2n−1 − ((2n− 1)ω)2a2n−1 = 0
(3.39)

−b��2n − (2nω)2b2n

+ λ2

�
2
�

l

(−1)lJ2l

�
F0

ω2

�
sin (ϕ0)

�
= 0

(3.40)
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−b��2n−1 − ([2n− 1]ω)2b2n−1

− λ2

�
2 cos (ϕ0)

∞�

l=1

(−1)lJ2l−1

�
F0

ω2

��
= 0

(3.41)

Equations (3.39)-(3.41) are solved recursively to find solutions for an, bn. The zeroth

order approximation sets the spatial derivatives to zero and the solved fora(0)n , b(0)n .

Immediately it is seen from (3.39) that the coefficients an vanish for all orders

of approximation:

−(2nω)2a(0)2n = 0 (3.42)

−((2n− 1)ω)2a(0)2n−1 = 0 (3.43)

Equation (3.40) is solved for the b2n coefficients:

(2nω)2b(0)2n = 2λ2 sin (ϕ0)

�
�

l

(−1)lJ2l

�
F0

ω2

��
(3.44)

b(0)2n =
2λ2

(2nω)2

�
�

l

(−1)lJ2l

�
F0

ω2

��
sin (ϕ0) (3.45)

and equation (3.41) is solved for the b2n−1 coefficients:

((2n− 1)ω)2b(0)2n−1 = 2λ2 cos (ϕ0)

�
�

l

(−1)lJ2l−1

�
F0

ω2

��
(3.46)

b(0)2n−1 =
2λ2

([2n− 1]ω)2

�
�

l

(−1)lJ2l−1

�
F0

ω2

��
cos (ϕ0) (3.47)

The next order of approximation is found by using the zeroth order solutions in equations

3.40,(3.41).

b(1)2n = 2λ2 sin (ϕ0)

�
l
(−1)lJ2l

�
F0
ω2

�

2nω2
− 1

(2nω)2
(b(0)2n )

��

b(1)2n =
2λ2

(2nω)2

�

l

(−1)lJ2l

�
F0

ω2

��
sin (ϕ0)−

sin (ϕ0)
��

(2nω)2

� (3.48)

b(1)2n−1 =
2λ2

([2n− 1]ω)2

�
�

l

(−1)lJ2l−1

�
F0

ω2

��
cos (ϕ0) +

1

([2n− 1]ω)2
(b(0)2n−1)

��

b(1)2n−1 =
2λ2

([2n− 1]ω)2

�
�

l

(−1)lJ2l−1

�
F0

ω2

���
cos (ϕ0) +

cos (ϕ0)
��

((2n− 1)ω)2

� (3.49)

The slow dynamics equation is used to define the effective potential of the

driven system. After the first order approximations are found, they are used in the slow
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dynamics equation,

ϕ̈0 − ϕ��
0

+ λ2

�
sin (ϕ0)

�
J0

�
F0

ω2

�
+

∞�

n=1

b(1)2n−1J2n−1

�
F0

ω2

��

+ cos (ϕ0)

� ∞�

n=1

b(1)2n J2n

�
F0

ω2

���
= 0

(3.50)

and a set of coefficients A1, A2, A3, A4 are defined, containing the summations over even

and odd harmonics of Bessel functions. Beginning with the even harmonics, the explicit

forms for A1, A2 are found:

A1 =
2λ4

ω2

�

n

(−1)n

(2n)2
J2n

�
F0

ω2

��

l

(−1)lJ2l

�
F0

ω2

�
, (3.51)

A2 =
2λ4

ω4

�

n

(−1)n

(2n)4
J2n

�
F0

ω2

��

l

(−1)lJ2l

�
F0

ω2

�
. (3.52)

Similarly for the odd harmonics, the explicit forms for A3, A4 are found:

A3 =
2λ4

ω2

�

n

(−1)n

[2n− 1]2
J2n−1

�
F0

ω2

��

l

(−1)lJ2l−1

�
F0

ω2

�
(3.53)

A4 =
2λ4

ω4

�

n

(−1)n

[2n− 1]4
J2n−1

�
F0

ω2

��

l

(−1)lJ2l−1

�
F0

ω2

�
(3.54)

The coefficients are evaluated numerically at given values of F0, ω in subsequent sections.

The resulting equation of motion for the driven Sine-Gordon model is given in terms of

the slowly varying term ϕ0. It is seen that the coupling constant λ factor multiplying

sin (ϕ0) acquires an additional factor J0(F0/ω2).

ϕ̈0 − ϕ��
0 + λ2J0

�
F0

ω2

�
sin (ϕ0) +

�
A1(cos (ϕ0))−A2(cos (ϕ0)

��)
�
sin (ϕ0)

+
�
A3(sin (ϕ0))−A4(sin (ϕ0)

��)
�
cos (ϕ0) = 0

(3.55)

Since the system is assumed to be in a quasi-stationary state, the term ϕ̈0 will be

dropped. The terms cos (ϕ0) sin (ϕ0) are rewritten in terms of the double angle argu-

ment, (1/2) sin (2ϕ0) and both sides are multiplied by ϕ�
0,

(ϕ�
0)(ϕ

��
0) +A2 cos (ϕ0)

�� sin (ϕ0)ϕ
�
0 +A4 sin (ϕ0)

�� cos (ϕ0)ϕ
�
0

= λ2J0

�
F0

ω2

�
sin (ϕ0)ϕ

�
0 +

(A1 +A3)

2
sin (2ϕ)ϕ�

0

(3.56)

and integrated by parts. The terms in the slow dynamics equation can be simplified by
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identifying terms accordingly:

�
df(x)

dx

��
d2f(x)

dx2

�
=

�
1

2

�
d

dx

��
df(x)

dx

�2
�

(ϕ�
0)(ϕ

��
0) =

1

2

�
(ϕ0)

���

cos (ϕ0)
�� sin (ϕ0)ϕ

�
0 = cos (ϕ0)

�� [− cos (ϕ0)]
� = −1

2

�
cos (ϕ0)

���

sin (ϕ0)
�� cos (ϕ0)ϕ

�
0 = sin (ϕ0)

�� [sin (ϕ0)]
� =

1

2

�
sin (ϕ0)

���

sin (2ϕ0)ϕ
�
0 = −1

2
[cos (2ϕ0)]

�

sin (ϕ0)ϕ
�
0 = −[cos (ϕ0)]

�

(3.57)

This results in an equation,

1

2

�
(ϕ�

0)
2
�� − 1

2
A2

�
(cos (ϕ0)

�)2
��
+

1

2
A4

�
(sin (ϕ0)

�)2
��

= −λ2J0

�
F0

ω2

�
[cos (ϕ0)]

� −
�
A1 +A3

4

�
[cos (2ϕ0)]

�,
(3.58)

which is easily integrated (C is a constant due to integration):

1

2
(ϕ�

0)
2 − 1

2
A2(cos (ϕ0)

�)2 +
1

2
A4(sin (ϕ0)

�)2

= −λ2J0

�
F0

ω2

�
cos (ϕ0)−

�
A1 +A3

4

�
cos (2ϕ0) + C,

(3.59)

This equation is simplified further to find an expression for U(ϕ0) =
1
2(ϕ

�
0)

2,

1

2
(1 +A2 sin (ϕ0)

2 +A4 cos (ϕ0)
2)(ϕ�

0)
2

= −λ2J0

�
F0

ω2

�
cos (ϕ0)−

�
A1 +A3

4

�
cos (2ϕ0) + C.

(3.60)

The final expression for the effective potential is given as:

U(ϕ0) = −1

2
(ϕ�

0)
2 =

λ2J0
�
F0
ω2

�
cos (ϕ0) +

�
A1+A3

4

�
cos (2ϕ0) + C

1 +A2 sin (ϕ0)
2 +A4 cos (ϕ0)

2 (3.61)

It is seen in (3.61), that by choosing the driving torque amplitude and frequency such

that F0
ω2 = 2.4048, the numerator term proportional to cos (ϕ0) will vanish. The result

will be the slow dynamics behaving according to a potential proportional to cos (2ϕ0).

3.2.2 Numerical analysis of driven system without damping

To explore the period doubling in the driven Sine Gordon model, the effective

potential is evaluated numerically. The summations in the coefficients A1, A2, A3, A4

converge rapidly and the series’ can be truncated after 10 elements. Additionally, the
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coefficient λ2J0
�
F0
ω2

�
is defined as A0. Depending on the values chosen for the driving

amplitude and frequency the periodicity of the effective potential can be tuned from τ

to 2τ , shown in figure 3.1. The simulation is valid for systems with a weak potential

λ � 1. When F0
ω2 ≈ 2.4048 the term A0 is suppressed and the effective potential is

proportional to cos (2ϕ0). As the driving amplitude is increased it affects the stability

(a) (b)

(c)
(d)

�2 Π �Π Π 2 Π

� Λ2

Λ
2

U(ϕ0)

ϕ0

�2 Π �Π Π 2 Π

� Λ3

Λ
3

U(ϕ0)

ϕ0

�2 Π �Π Π 2 Π

� Λ7

Λ
7

�2 Π �Π Π 2 Π

� Λ15

Λ
20

ϕ0

ϕ0

U(ϕ0) U(ϕ0)

Figure 3.1: Emergence of period doubling in the driven Sine Gordon model. As the driv-
ing amplitude is tuned towards a root of the zeroth Bessel function, the effective potential
changes periodicity. Shown are simulations for ω = 1.0 and F0 = {0.1, 1.0, 1.8, 2.405}
(a) - (d), respectively.

points of the system. For small driving amplitudes, the system behaves as a Sine-Gordon

model with the dominant terms of the potential proportional to cos (ϕ). In figure 3.1(a)

such a system has an effective potential with stable positions at ϕ = 0, 2π. Increasing

the driving amplitude such that the dominant term of the potential is now cos (2ϕ)

corresponds to the system having stable points at ϕ = 0, π, 2π.

For values of F0, ω which do not correspond to a root of J0, it is seen that A0

is the dominant term in the effective potential (see figure 3.2).
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1 2 3 4 5 6 7

Λ
2

Ai

F0

Figure 3.2: Dependence of Ai on driving amplitude. Shown are A0 (black, solid), A1

(blue, solid), A2 (red, solid), A3 (red, dashed), A4 (black, dotted). ω = 1 and λ = 1.
Where A0 vanished, the remaining coefficients are non-zero, leading to period doubling.

3.2.3 Driven system with damping

The system studied is an one-dimensional Sine-Gordon (SG) model with a

driving torque of amplitude (F0) and a dissipative term with constant amplitude α,

d2ϕ

dt2
− d2ϕ

dx2
= −α

dϕ

dt
− λ2 sin (ϕ) + F0 cos (ωt). (3.62)

The solution to the un-driven SG model, where no dissipation is present is labelled as

(ϕ0). These solutions are well known waveforms known as solitons.

With the driving torque present, the un-driven solution is modified by the

addition of a function (ξ(t)). As described in [3], this splits the solution of the driven

system into two terms: ϕ0(x, t) is assumed to change slowly over one period of the

driving torque while ξ(x, t) is assumed to oscillate rapidly. The form of ξ(t) is chosen

as (ξ(t) = B sin (ωt) + C cos (ωt)), when averaged over one period of the driving torque

the additional term vanishes. The shifted field ϕ(x, t) has the general form,

ϕ(x, t) = ϕ0(x, t) + ξ(t) = ϕo(x, t) + B sin (ωt) + C cos (ωt). (3.63)

Using the equation (3.63) in equation (3.62),

d2ϕ0

dt2
− d2ϕ0

dx2
=

− α
dϕ0

dt
− λ2 sin (ϕo(x, t) + B sin (ωt) + C cos (ωt) + F0 cos (ωt))+

(Bω2 + αCω) sin (ωt) + (Cω2 − αBω + F0) cos (ωt) (3.64)

The coefficients B, C can be chosen to exactly cancel the terms proportional to sin (ωt),
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and cos (ωt),

B =
(αF0)

(ω(ω2 + α2))
, C =

(−F0)

(ω2 + α2)
, (3.65)

it is noted that for vanishingly small damping α → 0 the coefficients B, C reduce to the

undamped values B → 0, and C → −F0
ω2 . The resulting expression for the soliton is

ϕ(x, t) = ϕ0(x, t)−
�

F0

(ω2 + α2)

�
cos (ωt) +

�
F0α

ω(ω2 + α2)

�
sin (ωt) (3.66)

The derivation of the effective potential follows closely the derivation in Section

3.2.1. The solution of equation (3.62) is expressed in a series expansion,

ϕ(x, t) = ϕ0 + ξ(t) +
�

n

an sin (nωt) +
�

n

bn cos (nωt) (3.67)

The derivatives of ϕ for use in the driven, damped Sine-Gordon model:

ϕ̈ = ϕ̈0 − Bω2 sin (ωt)− C cos (ωt)
�

n

(än sin (nωt) + 2(nω)ȧn cos (nωt)− an(nω)
2 sin (nωt)

�

n

(b̈n cos (nωt)− 2(nω)ḃn sin (nωt)− bn(nω)
2 cos (nωt)

ϕ�� = ϕ�� +
�

n

(a��n sin (nωt)) +
�

n

(b��n cos (nωt))

ϕ̇ = ϕ̇0 + Bω cos (ωt)− Cω sin (ωt)

+
�

n

(ȧn sin (nωt) + an(nω) cos (nωt))

+
�

n

(ḃn cos (nωt)− bn(nω) sin (nωt))

(3.68)

The expansion of sin (ϕ) uses the same smallness arguments as in Section 3.2.1,

no assumption of smallness is made with respect to the damping term. First, separating

the terms in the argument

ϕ(x, t) = α(x, t) + γ(x, t)

α(x, t) = ϕ0 +
�

n

an sin (nωt) +
�

n

bn cos (nωt)

γ(x, t) = B sin (ωt) + C cos (ωt)

sin (ϕ) = sin (α) cos (γ) + cos (α) sin (γ)
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Simplifying the terms sin (α), cos (α) by using the fact that |an|, |bn| � 1.

α(x, t) = ϕ0 + χ(x, t) (3.69)

χ(x, t) =
�

n

an sin (nωt) +
�

n

bn cos (nωt) (3.70)

sin (α) = sin (ϕ0 + χ) = sin (ϕ0)(1) + cos (ϕ0) sin (χ) (3.71)

cos (α) = cos (ϕ0)− sin (ϕ0)χ (3.72)

Expanding the terms cos (γ), sin (γ);

sin γ = sin (B sin (ωt)) cos (C cos (ωt))+

cos (B sin (ωt)) sin (C cos (ωt))

= I + II

cos γ = cos (B sin (ωt)) cos (C cos (ωt))−

sin (B sin (ωt)) sin (C cos (ωt))

= III + IV

(3.73)

The nested trigonometric functions are rewritten in terms of Bessel functions via the

Jacobi-Anger expansions. The result is four terms.

I = J0(B)J0(C) + 2J0(C)
�

n

J2n(B) cos (2nωt) + 2J0(B)
�

n

(−)nJ2n(C) cos (2nωt)

+ 4
�

n,m

(−)mJ2n(B)J2m(C) cos (2nωt) cos (2mωt)

= J0(B)J0(C) + 2J0(C)
�

n

J2n(B) cos (2nωt) + 2J0(B)
�

n

(−)nJ2n(C) cos (2nωt)

+ 2
�

n

(−)nJ2n(B)J2n(C)

(3.74)

II = 2(
�

n

J2n−1(B) sin ((2n− 1)ωt))(−2
�

n

J2n−1(C) cos ((2n+ 1)ωt))

= 0

(3.75)

III = 2J0(C)
�

n

J2n−1(B) sin ((2n− 1)ωt)

+ 4
�

n,m

J2n−1(B)J2m(C) sin ((2n− 1)ωt) cos (2mωt)

= 2J0(C)
�

n

J2n−1(B) sin ((2n− 1)ωt)

(3.76)
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IV = −2J0(B)
�

m

J2m−1(C) cos ((2m− 1)ωt)

− 4
�

n,m

J2n(B)J2m−1(C) cos (2nωt) cos ((2m− 1)ωt)

= −2J0(B)
�

m

J2m−1(C) cos ((2m− 1)ωt)

(3.77)

The full expansion of the term sin (ϕ), in terms of (I, II, III, IV );

sin (ϕ) = (sin (ϕ0) + χ(x, t) cos (ϕ0))(I + II) + (cos (ϕ0)− χ(x, t) sin (ϕ0))(III + IV )

(3.78)

The full expression for the system, now expanded with ϕ, is divided into slowly evolving

terms, terms proportional to sin (ωt) and terms proportional to cos (ωt).

3.2.4 Full Expansion

The full expansion of the driven, damped Sine-Gordon equation, given in (3.62)

and reproduced here,

ϕ̈− ϕ�� = −αϕ̇− λ2 sin (ϕ) + F0 cos (ϕ) (3.79)

is found by using the shifted series expansion defined above.
�
ϕ̈0 − Bω2 sin (ωt)− Cω2 cos (ωt) +

�

n

�
än sin (nωt) + 2(nω)ȧn cos (nωt)

− an(nω)
2 sin (nωt)

�
+
�

n

�
b̈n cos (nωt)− 2(nω)ḃn sin (nωt)− b(nω)2 cos (nωt)

��

−
�
ϕ��
0 +

�

n

(a��n sin (nωt)) +
�

(b��n cos (nωt))

�

= −α

�
ϕ̇0 + Bω cos (nωt)− Cω sin (nωt) +

�

n

�
ȧn sin (nωt) + an(nω) cos (nωt)

�

+
�

n

�
ḃn cos (nωt)− bn(nω) sin (nωt)

��

− λ2

�
[I] sin (ϕ0) + [III] cos (ϕ0) + [IV ] cos (ϕ0)

+ [(2
�

n

(−1)nJ2n(B)J2n(C))(
�

(an sin (nωt)) +
�

(bn cos (nωt)))

+ (J0(C)
�

n

J2n(B)b2n + J0(B)
�

J2n(C)b2n) cos (ϕ0)

− (J0(C)
�

n

J2n+1(Ba2n+1) sin (ϕ0) + (J0(B)
�

J2n+1(C)b2n+1) sin (ϕ0)
�

+ F0 cos (ωt)

(3.80)
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Again, as in the previous section, the full expansion is separated according to slow

dynamics, and terms proportional to even and odd harmonics of sin (nωt), cos (nωt). The

slow dynamics are determined by the terms in the full expansion which are independent

of sin (nωt), cos (nωt),

ϕ̈0 − ϕ��
o = −αϕ̇0 − (λ2)[[J0(B)J0(C)−

J0(C)
�

m

J2m−1(B)a2m−1 + 2
�

m

(−)mJ2m(B)J2m(C)] sin (ϕ0)+

�
J0(C)

�

n

J2n(B) + J0(B)
�

n

J2n(C)
�
b2n cos (ϕ0)+

(J0(B)
�

J2n−1(C)b2n−1) sin (ϕ0)]

(3.81)

The even and odd harmonics of sin (nωt), cos (nωt) are used to define the equations of

motion for the coefficients of the series expansion. The even harmonics of sin (nωt),

(ä2n − (2nω)a2n)− 2(2nω)2ḃ2n − a��2n

= −α(ȧ2n − (2nω)b2n)− (λ)2(J0(B)J0(C)a2n

+ 2(
�

k

(−)kJ2k(B)J2k(C))a2n cos (ϕ0)

(3.82)

the odd harmonics of sin (nωt),

(ä2n+1 − ((2n+ 1)ω)2a2n+1)− 2((2n+ 1)ω)ḃ2n+1 − a��2n+1

= −α(ȧ2n+1 − ((2n+ 1)ω)b2n+1)− (λ)2
�
J0(B)J0(C)a2n+1

+ 2(
�

k

(−)kJ2k(B)J2k(C))a2n+1 cos (ϕ0) + 2J0(C)J2n+1(B) cos (ϕ0)
� (3.83)

the even harmonics of cos (nωt),

(b̈2n − (2nω)2b2n) + 2(2nω)ȧ2n − b��2n =

− α(ḃ2n + (2nω)a2n)− (λ)2(2(J2n(B)J0(C)

+ J2n(C)J0(B)) sin (ϕ0) + (J0(C)J0(B)

+ 2(
�

k

(−)kJ2k(B)J2k(C))b2n cos (ϕ0)

(3.84)

and the odd harmonics of cos (nωt),

(b̈2n+1 − ((2n+ 1)ω)2b2n+1) + 2((2n+ 1)ω)ȧ2n+1 − b��2n+1

= −α(ḃ2n+1 + ((2n+ 1)ω)a2n+1)− (λ)2(−2(J2m+1(C)J0(B))

+ (J0(C)J0(B) + 2(
�

k

(−)kJ2k(B)J2k(C))b2n+1 cos (ϕ0)

(3.85)

From equations (3.82),(3.83),(3.84),(3.85), solutions for an, bn are found by self-consistent

calculation. The results are used in the slow term equation. To lowest order in (λ2),
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terms proportional to (λ2)an, (λ2)bn are dropped. The equations for a2n, a2n+1 reduce

to

(ä2n − (2nω)2a2n)− 2(2nω)ḃ2n − a��2n = −α(ȧ2n − (2nω)b2n)

(ä2n+1 − ((2n+ 1)ω)2a2n+1)− 2((2n+ 1)ω)ḃ2n+1 − a��2n+1

= −α(ȧ2n+1 − ((2n+ 1)ω)b2n+1)− (λ)2(J0(B)J0(C)) cos (ϕ0)

(3.86)

The equations for b2n, b2n+1,

(b̈2n − (2nω)2b2n) + 2(2nω)ȧ2n − b��2n

= −α(ḃ2n + (2nω)a2n)− (λ)2(2(J2m(B)J0(C) + J2m(C)J0(B)) sin (ϕ0)

(b̈2n+1 − ((2n+ 1)ω)2b2n+1) + 2((2n+ 1)ω)ȧ2n+1 − b��2n+1

= −α(ḃ2n+1 + ((2n+ 1)ω)a2n+1)− (λ)2(−2(J2m+1(C)J0(B))

(3.87)

For a static solution, the time derivatives in the above equations are set to

zero. The zeroth approximation to the a(0)n , b(0)n is found by solving the above equations,

where the spatial derivates are also set to zero,

a(0)2n =

�
−α(λ2)

(2nω)3 + α2(2nω)

�
(2[J0(C)J2n(B) + J0(B)J2n(C) sin (ϕ0)

b(0)2n =

�
α(λ2)

(2nω)2 + α2

�
(2(J0(C)J2n(B) + J0(B)J2n(C))) sin (ϕ0)

(3.88)

a(0)2n+1 =

�
λ

(2n+ 1)ω

�2

(2J0(C)J2n+1(B) cos (ϕ0))

−
�

α

(2n+ 1)ω

��
λ2

((2n+ 1)ω)2 + α2

��� α

(2n+ 1)ω

�
(2J0(C)J2n+1(B))

− (2J0(B)J2n+1(C))
�
cos (ϕ0)

b(0)2n+1 =

�
λ2

((2n+ 1)ω)2 + α2

��� α

(2n+ 1)ω

�
(2J0(C)J2n+1(B))

− (2J0(B)J2n+1(C))
�
cos (ϕ0)

(3.89)

Collect terms in the expression for a(0), b(0),

a(0)2n = C1 sin (ϕ0) a(0)��2n = C1 sin (ϕ0)
�� (3.90)

b(0)2n = C2 sin (ϕ0) b(0)��2n = C2 sin (ϕ0)
�� (3.91)

a(0)2n+1 = C3 cos (ϕ0) a(0)��2n+1 = C3 cos (ϕ0)
�� (3.92)

b(0)2n+1 = C4 cos (ϕ0) b(0)��2n+1 = C4 cos (ϕ0)
�� (3.93)
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The next approximation a(1)n , b(1)n is found with a(0)n , b(0)n .

a(1)2n =
−1

(2nω)2
[a(0)��2n + α(2nω)b(1)2n ]

b(1)2n =
−1

(2nω)2
[b(0)��2n − α(2nω)a(1)2n−

(λ2)(2[J0(C)J2n(B) + J0(B)J2n(C)] sin (ϕ0))]

a(1)2n+1 =
−1

((2n+ 1)ω)2
[a(0)��2n+1 + α((2n+ 1)ω)b(1)2n+1−

(λ2)(2J0(C)J2n+1(B)) cos (ϕ0)]

b(1)2n+1 =
−1

((2n+ 1)ω)2
[b(0)��2n+1 − α((2n+ 1)ω)a(1)2n+1+

(λ2)(2J0(B)J2n+1(C)) cos (ϕ0)]

(3.94)

Using the expressions in equations (3.90)–(3.93)to solve equation (3.94),

a(1)2n =
−1

(2nω)2
([C1 −

α2

(2nω)2 + α2
(C1 −

(2nω)

α
C2)](sin (ϕ0)

��)

− 2(λ2)[J0(C)J2n(B) + J0(B)J2n(C)] sin (ϕ0))

b(1)2n =
−1

(2nω)2 + α2
[(C2 +

α

2nω
C1) sin (ϕ0)

��

− 2(λ2)[J0(C)J2n(B) + J0(B)J2n(C)] sin (ϕ0)

(3.95)

a(1)2n+1 =
1

((2n+ 1)ω)2 + α2
[

�
αC3

(2n+ 1)ω
− C4

�
cos (ϕ0)

��

+

�
αλ2

(2n+ 1)ω
(2J0(B)J2n+1(C)) + λ2(2J0(C)J2n+1(B))

�
cos (ϕ0)]

b(1)2n+1 =
−(αC3 + C4)

((2n+ 1)ω)2 + α2
cos (ϕ0)

��

+
(2n+ 1)ω

((2n+ 1)ω)2 + α2

�
2αλ2

((2n+ 1)ω)2
(J0(C)J2n+1(B))

− 2λ2(J0(B)J2n+1(C))
�
cos (ϕ0)

(3.96)

Rewriting b(1)2n , b
(1)
2n+1, a

(1)
2n+1,

a(1)2n+1 = D1(α, ω; 2n+ 1) cos (ϕ0)
�� +D2(α, ω; 2n+ 1) cos (ϕ0)

b(1)2n = −D3(α, ω; 2n) sin (ϕ0)
�� +D4(α, ω; 2n) sin (ϕ0)

b(1)2n+1 = −D5(α, ω; 2n+ 1) cos (ϕ0)
�� +D6(α, ω; 2n+ 1) cos (ϕ0)

(3.97)
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Use these expressions in the slow term equation (equation (3.81) rewritten here),

ϕ̈0 − ϕ��
o = −αϕ̇0 − (λ2)[[J0(B)J0(C)−

J0(C)
�

m

J2m−1(B)a(1)2m−1 + 2
�

m

(−)mJ2m(B)J2m(C)] sin (ϕ0)+

[(J0(C)
�

n

J2n(B) + J0(B)
�

n

J2n(C))b(1)2n+

(J0(B)
�

J2n−1(C)b(1)2n−1)] cos (ϕ0)]

(3.98)

To solve for the static solution, the time derivatives of ϕ0 are set to zero. The

remaining terms are only dependent on ϕ0, ϕ�
0. (The factors of Zi are constants only

dependent on α, ω)

ϕ��
0 = (Z1) sin (ϕ0) + (Z2) cos (ϕ0)

�� sin (ϕ0) + (Z3) cos (ϕ0) sin (ϕ0)

+ (Z4) sin (ϕ0)
�� cos (ϕ0) + (Z5) sin (ϕ0) cos (ϕ0)

(3.99)

The terms proportional to sin (ϕ0) cos (ϕ0) are rewritten as double-angle terms.

ϕ��
0 = (Z1) sin (ϕ0) + (Z2) cos (ϕ0)

�� sin (ϕ0)

+
(Z3 + Z5)

2
sin (2ϕ0) + (Z4) sin (ϕ0)

�� cos (ϕ0)
(3.100)

Using the same methods as in section 3.2.1, multiplying both sides of the

equation above by ϕ�
0 and integrating by parts, allows the equation to be rewritten as a

collection of complete derivatives (using the fact that g�(x)g��(x) = 1
2(g

�(x)2)�).

ϕ��
0ϕ

�
0 = (Z1) sin (ϕ0)ϕ

�
0 + (Z2) cos (ϕ0)

�� (− cos (ϕ0))
�

+
(Z3 + Z5)

2

�
−1

2
cos (2ϕ0)

��
+ (Z4) sin (ϕ0)

�� (sin (ϕ0))
�

(3.101)

1

2
((ϕ�

0)
2)� = −(Z1)(cos (ϕ0))

� − (Z2)
1

2
([cos (ϕ0)

�]2)�

− (Z3 + Z5)

2

�
1

2
cos (2ϕ0)

��
+ (Z4)

1

2
([sin (ϕ0)

�]2)�
(3.102)

This expression is easily integrated,

1

2
((ϕ�

0)
2) = −(Z1)(cos (ϕ0))− (Z2)

1

2
(cos (ϕ0)

�)2

− (Z3 + Z5)

2

�
1

2
cos (2ϕ0)

�
+ (Z4)

1

2
([sin (ϕ0)

�]2)
(3.103)

and simplified to identify terms proportional to (ϕ0)�,

1

2
((ϕ�

0)
2) = −(Z1)(cos (ϕ0))− (Z2)(sin (ϕ0)

2)
1

2
((ϕ�

0)
2)

− (Z3 + Z5)

4
(cos (2ϕ0)) + (Z4)(cos (ϕ0)

2)
1

2
((ϕ�

0)
2)

(3.104)

51



1

2
((ϕ�

0)
2)
�
1 + (Z2)(sin (ϕ0)

2)− (Z4)(cos (ϕ0)
2)
�

= −(Z1)(cos (ϕ0))−
(Z3 + Z5)

4
(cos (2ϕ0))

(3.105)

We arrive an the final expression for the effective potential,

Ueff = −(
1

2
)(ϕ�

0)
2

=
(Z1)(cos (ϕ0)) + (Z3 + Z5)

1
4 (cos (2ϕ0))

1 + (Z2)(sin (ϕ0)
2)− (Z4)(cos (ϕ0)

2)
,

(3.106)

which has a similar for as the undamped effective potential in equation (3.61),

U(ϕ0) = −1

2
(ϕ�

0)
2 =

λ2J0
�
F0
ω2

�
cos (ϕ0) +

�
A1+A3

4

�
cos (2ϕ0) + C

1 +A2 sin (ϕ0)
2 +A4 cos (ϕ0)

2 (3.107)

To fully evaluate the effective potential, the explicit forms of the coefficients

Zi, Di, Ci are needed. Beginning with Z1 which is the collection of terms in the slow

dynamics equation, independent of an, bn:

Z1 = λ2
�
J0(B)J0(C) + 2

�
(−)mJ2m(B)J2m(C)

�
, (3.108)

It is seen that as the damping vanishes, Z1 reduces to A0 in the undamped equations.

The remaining coefficients are also found,

Z2 = −λ2
�
J0(C)

�
J2m−1(B)D1(α, ω, 2m− 1)

+ J0(B)
�

J2m−1(C)D5(α, ω, 2m− 1)
�
,

(3.109)

Z3 + Z5 = −λ2
�
J0(C)

�
J2m−1(B)D2(α, ω, 2m− 1)

�

+ λ2
�
J0(B)

�
J2m−1(C)D6(α, ω, 2m− 1)

�
+ λ2

�
J0(C)

�
J2m(B)D4(α, ω, 2m)

+ J0(B)
�

J2m(C)D4(α, ω, 2m)
�
,

(3.110)

and

Z4 = −λ2
�
J0(C)

�
J2m(B)D3(α, ω, 2m) + J0(B)

�
J2m(C)D4(α, ω, 2m)

�
. (3.111)

The coefficients Di are found:

D1(α, ω, 2n− 1) =
� 1

((2n− 1)ω)2 + α2

�� αC(2n−1)
3

(2n− 1)ω
− C(2n−1)

4

�
(3.112)

D2(α, ω, 2n− 1)

=
� 1

((2n− 1)ω)2 + α2

�� αλ2

(2n− 1)ω
(2J0(B)J2n−1(C) + 2λ2J0(C)J2n−1(B))

�
(3.113)
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D3(α, ω, 2n) =
� 1

(2nω)2 + α2

��
C(2n)
2 +

α

2nω
C(2n)
1

�
(3.114)

D4(α, ω, 2n) =
� 1

(2nω)2 + α2

��
2λ2(J0(C)J2n(B) + J0(B)J2n(C))

�
(3.115)

D5(α, ω, 2n− 1) =
(αC(2n−1)

3 − C(2n−1)
4 )

(((2n− 1)ω)2 + α2)
(3.116)

D6(α, ω, 2n− 1)

=
(2n− 1)ω

[((2n− 1)ω)2 + α2]2

� 2αλ2

((2n+ 1)ω)2
(J0(C)J2n−1(B)− 2λ2J0(B)J2n−1(C))

�
(3.117)

Also, the coefficients Ci:

C(2n)
1 =

(−αλ2)

(2nω)3 + α2(2nω)

�
2[J0(C)J2n(B) + J0(B)J2n(C)])

�
(3.118)

C(2n)
2 =

(αλ2)

(2nω)2 + α2

�
2[J0(C)J2n(B) + J0(B)J2n(C)])

�
(3.119)

C(2n−1)
3 =

�
λ

(2n+ 1)ω

�2

(2J0(C)J2n+1(B))

−
�

α

(2n+ 1)ω

��
λ2

((2n+ 1)ω)2 + α2

��� α

(2n+ 1)ω

�
(2J0(C)J2n+1(B))

− (2J0(B)J2n+1(C))
�

(3.120)

C(2n−1)
4 =

�
λ2

((2n+ 1)ω)2 + α2

��� α

(2n+ 1)ω

�
(2J0(C)J2n+1(B))

− (2J0(B)J2n+1(C))
� (3.121)

3.2.5 Numerical simulations with varying dissipation term

The driven Sine-Gordon model and a stable soliton can easily devolve into

chaotic motion. Numerical simulations of the soliton solution were done using the driven

model with a time-dependent, decaying damping term. The initial waveform was taken

to be a straight line. Since the solution varies slowly over the period of the driving torque,

the soliton form was plotted after several periods of the driving torque had elapsed and

the total driving time of the system was 99 driving periods. The time-dependence of

the dissipation term was determined by varying the amplitude at t = 0 and decay rate.

Other parameters, such as: system size, driving amplitude, driving frequency and mass

term were kept constant and chosen to correspond to the period doubling seen in the

effective potential. The driving torque parameters were F0 = 3.7972, ω = 1.2566 and the
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coupling constant λ = 0.25132. The system was driven for many periods of the driving

torque, sufficient time to develop a quasi-equilibrium state.

The values for F0, ω, λ were chosen such that J0(
F0

ω2
) ≈ 0 , and

λ

2ω
= 0.1. The

dissipation constant, α, is a function of time and decays over the course of the simulation

(see figure 3.3). Four functions for α(t) were used, and defined with the parameters: n

an index, and k the size of the time step (k = 0.005). The decay rate was determined

proportional to the total run time tf = 500.

α1(t) = α0

α2(t) = α0 exp

�
−n ∗ k

25.0

�

α3(t) = α0 exp

�
− n ∗ k
200.0

�

α4(t) = α0 exp

�
− n ∗ k
500.0

�

(3.122)

At the end of the simulation, the strength of α(t),

α
(t
)

(t)

Figure 3.3: Time dependence of the dissipation coefficient
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α1(t = 500) = α0,

α2(t = 500) = 0,

α3(t = 500) = (0.28)α0,

α4(t = 500) = (0.36)α0.

(3.123)

Five values were used for the initial strength of α0:

α0 = 0.1 (α0 < λ < F0)

α0 = 1.5 (λ < α0 < F0)

α0 = 2.9 (λ < α0 < F0)

α0 = 5.0 (λ < F0 < α0)

α0 = 15.0 (λ < F0 � α0).

(3.124)

Systems with α0 = 2.9, α0 = 5.0, α0 = 15.0 did not exhibit 2 π-solitons.

The systems with α(t) slowly decaying or constant (α1, α3, α4) converged to single

solitons. The system with the rapidly decaying dissipation (α2) did not converge

to a soliton, or any stable solution. The time average of the soliton was computed,

u(x) =
1

T

�
T

0 (u(x, t))dt (integration over 1 period of the driving torque T =
2π

ω
). The

initial shape of the soliton is a straight line (u(x, t = 0) = (
2π

2000
) ∗ (n ∗ h)). n is an

index and h is the size of the step in x (h = 0.01).

The final shape of the solitons are shown with the initial dissipations values:

α0 = 0.1 (see figure 3.4), α0 = 1.5 (see figure 3.5). For the smaller initial value for α0,

the system reaches a stationary soliton that is quite broad. With the larger initial value

of α0 it is seen that the system reaches a stationary state that has a narrow soliton

shape.

For the curve in Figure 3.4, with dissipation term α3(t), many solutions reach

a steady state with a broadened soliton. The soliton’s evolution over several periods of

the driving torque is shown in Figure 3.6.

3.3 Conclusions

Through the derivation of an effective potential, the driven Sine-Gordon model

can be recast as motion of a single particle. It was shown that in the presence of a driving

torque, it is possible to significantly alter the dynamics of the particle. In the absence

of driving, there are well defined minima at ϕ = {0,±2π}. The particle will reach an
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�ϕ
(x
)�

τ

(x)

Figure 3.4: Stationary solution reached after several periods of driving for α0 = 0.1 and
the dissipation constant has the decay rates given in equation(3.122): α1(t) (purple),
α2(t) (red) , α3(t) (green), α4(t) (blue).

�ϕ
(x
)�

τ

(x)

Figure 3.5: Stationary solution reached after several periods of driving for α0 = 1.5 and
the dissipation constant has the decay rates given in equation(3.122): α1(t) (purple),
α2(t) (red) , α3(t) (green), α4(t) (blue).
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(x)

�ϕ
(x
)�

τ

Figure 3.6: Time evolution of a soliton over several periods of the driving torque τ , with
α = α3 from Figure 2 at 0τ (red), 10τ(green), 50τ (dk blue), 79τ (purple), 99τ (lt blue)

equilibrium position at those minima. If it is weakly driven out of equilibrium, the

particle will rapidly return to those stable points. In the presence of a strong driving

torque, it is seen that the particle is moving in an effective potential and also that it is

possible to drive the particle far from the initial stable points at ϕ = {0,±2π, . . . } and

additionally new minima are formed at points which were previously unstable.
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Chapter 4

Two-band delocalization

There are many connections between the classical Sine-Gordon model and

quantum systems. The dynamical stabilization possible in the driven Sine-Gordon

model (see Chapter (3)) suggests the possibility of dynamical effects in a driven gapped

quantum system, particularly those with a gapped, hyperbolic spectrum. This chapter

describes work done on interacting electrons on a lattice in hyperbolic and sinusoidal en-

ergy spectra and also a continuum model of a series of parabolic spectra. In the Hartree

approximation, the interaction between particles opens a gap between neighboring levels

and such gapped systems are driven by a large amplitude, highly oscillatory external

field. The gap is treated as a perturbation and the system is studied in the interaction

representation. The periodic nature of the driving force leads to the analysis of dynami-

cal effects in the system as a gradual renormalization of the Floquet quasi-energy bands

and the primary effect of the driving field is the gap suppression in a two-band system.

Three systems are considered: a multi-band, continuum model with a parabolic energy

spectrum, and two-band lattice models with either a linear spectrum or a sinusoidal

spectrum. Numerical studies of the lattice models show the gap suppression due to the

external field. It is also studied how gap suppression affects the electrical current that

can be generated by an external field. For a system driven by a strong AC field in the

gap suppression regime, a DC field is gradually introduced. For a single particle driven

through the system as the gap is suppressed, the Bloch oscillations undergo a doubling

of the period as the periodicity of the energy band is doubled. For a gapped system

initially prepared as a filled band, the closure of the gap leads to a half-filled band and

as a result a non-zero net current is generated by the DC field. A brief discussion of dis-

sipation and temperature dependent effects are discussed, the Linblad operator model is

introduced as an extension of the two-band model which will include phonon scattering.

The full effects of phonon scattering is not considered in this work.
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4.1 Introduction

In Chapter (3), a group of driven coupled pendulum exhibited unique stabi-

lization effects. Similar to the driven vertical pendulum, it was possible to create a

stable equilibrium point at points which are unstable in the un-driven system. Quan-

tization of the Sine-Gordon model corresponds to a bosonic system with a gap due to

back-scattering. The connection between the quantized Sine-Gordon model and a sys-

tem of non-interacting particles with backscattering, leads to the work discussed in this

chapter: an investigation into the dynamical effects of a driven two-band model. Since

the back-scattering term leads to a gap in the quantized Sine-Gordon model, the two-

band model studied in the chapter has a gap introduced by a weak, time-independent

perturbation. The period doubling seen in the driven Sine-Gordon model is expected to

occur in the two-band model as the suppression of the band-gap.

In Sections (2.2) and (2.3), the characteristics of a one-dimensional, strongly in-

teracting system were discussed. Of importance is the metal-insulator transition present

for interactions of any magnitude. In a one-dimensional lattice at half-filling, the intro-

duction of interactions leads to the Peirels’ shift, which destroys the original translation

symmetry of the lattice (see Figure (4.1)). The doubling of the lattice spacing leads to a

halving of the Brillouin zone and creates an insulating system. Instead of the Fermi liq-

a 2a

(a) (b)

Figure 4.1: The instability of the one-dimensional lattice to interactions. In (a) the half-
filled non-interacting system is shown. As interactions are introduced the symmetry of
the original system is lost (shown in (b)). The instability is present no matter how small
the interaction between particles.

uid picture, one-dimensional systems can be represented in the Luttinger liquid picture.

Excitations in this representations are not quasi-particles, as in the Fermi liquid, but

rather are density waves in the charge (CDW) or spin (SDW) degrees of freedom. The

propagation of density waves through a correlated system is similar to the propagation of

a soliton in the Sine-Gordon model. In a system with high repulsion between electrons,

two ground states are possible (see Figure (4.2)(a)). When an excitation of a CDW is

present, it travels through the lattice as a soliton moves through the Sine-Gordon model,

as a narrow region of disturbance which connects regions in ground state configurations

(see Figure (4.2)(b)). Both the soliton energy spectrum and the interacting electron
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spectrum exhibit a gapped hyperbolic spectrum.

(a)

(b)

Figure 4.2: The connection between soliton waves and charge density waves in the one-
dimensional lattice. In (a) the two periodic ground states for a strongly interacting
lattice are shown with unit cells highlighted (blue dashed frames). In (b) the excitation
of a CDW is shown and its connection to a soliton shape is highlighted: far from a
narrow region of disturbance (solid blue frame) regions are in either ground state (blue
dashed frames).

The quantized Sine-Gordon model can be mapped to a spinless fermion model

[12, 157] through bosonization (discussed in Section (2.3.1)). A final note about the

classical Sine-Gordon model is made here, to further highlight the similarities of the

soliton energy spectrum and the Luttinger liquid spectrum. From the Sine-Gordon

Lagrangian density discussed Section (3.1),

L =
1

2
(∂ϕ)2 − VSG(ϕ) (4.1)

VSG(ϕ) = λ2(1− cos (ϕ)) (4.2)

the Hamiltonian density is defined with the canonical momentum p = δL/δϕ�,

H =

�
p

�
δL
δϕ�

�
− L

�

=

�
1

2
(∂ϕ)2 + VSG(ϕ)

�
.

(4.3)

The variables are shifted into a moving reference frame through the Lorentz transfor-

mation ξ = λγ(x± vt) (where γ = (1− v2)−1). The change of variables does not affect

the potential VSG(ϕ) and the derivatives are transformed as follows,

1

2
(∂ϕ)2 =

1

2
(∂tϕ(x, t))

2 +
1

2
(∂xϕ(x, t))

2

=
(λγ)2

2

�
1 + v2

��∂ϕ(ξ)

∂ξ

�2

.
(4.4)
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The final transformed Hamiltonian is,

H =

�
dξ

λγ
H =

�
dξ

λγ

�
(λγ)2

2

�
1 + v2

��∂ϕ(ξ)

∂ξ

�2

+ λ2(1− cos (ϕ))

�
. (4.5)

To highlight the similarities of the Sine-Gordon and the Luttinger spetrum, the Hamilto-

nian (energy density) is further manipulated to give an expression in terms of an integral

over the field variable ϕ. Using the Euler-Lagrange equations of motion, an expression

for ∂ϕ/∂ξ is defined. First found in the (x, t) coordinates,

∂2ϕ

∂x2
− ∂2ϕ

∂t2
= VSG(ϕ)

�, (4.6)

then transformed to the coordinate ξ = x± vt,
�
λ2

2

�
d2ϕ

dξ2
= VSG(ϕ)

� (4.7)

the equations of motion are integrated by parts to find an expression for dϕ/dξ. Multi-

plying by dϕ/dξ on each side and rewriting the left-hand side as a total derivative, gives

an expression for (dϕ/dξ)2 that can be integrated:

�
dϕ

dξ

�
d2ϕ

dξ2
=

�
dϕ

dξ

�
1

λ
VSG(ϕ)

� (4.8)

1

2

�
d

dξ

��
dϕ

dξ

�2

=

�
dϕ

dξ

�
1

λ
VSG(ϕ)

� (4.9)

the ξ-integration follows directly;

1

2

�
dϕ

dξ

�2

= VSG(ϕ) (4.10)

and finally an expression for dϕ/dξ is found,
�
dϕ

dξ

�
=

�
2VSG(ϕ) (4.11)

Replacing the term VSG(ϕ) in the Lorentz transformed Hamiltonian is now possible,

H =

�
∂ϕ(ξ)

∂ξ

�2

+ λ2(1− cos (ϕ))

= 2

�
∂ϕ(ξ)

∂ξ

�2

.

(4.12)

Finally, the energy density of a stationary soliton is given as an integral over ϕ:

E =

�
dϕ(ϕ)� = ±

�
dϕ2

�
2VSG(ϕ) (4.13)

when the Sine-Gordon potential is substituted above, it is seen that the stationary

soliton has a gapped spectrum near the points where cos (ϕ) vanish. This gap has a
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width proportional to λ2. From the studies of dynamical stabilization in Chapter (3)

it was seen that stabilization occurs when the parameter λ is renormalized and may

be suppressed. This suggests that a gapped spectrum may exhibit gap suppression.

Additionally, in the vicinity of the gap, the soliton spectrum has a hyperbolic shape,

similar to that of the Luttinger liquid.

As discussed in Sections (2.2) and (2.3), a system of strongly interacting elec-

trons in one dimension can be described using a model of spin-less fermions in a gapped

spectrum. The general form of the Hamiltonian of these systems is as follows:

H = −J
�

i

�
a†
i
ai+1 + a†

i+1ai
�
+

V

2
(�ni�ni+1 + ni�ni+1�) . (4.14)

The gap width V is not determined self-consistently, what is presented in this chapter

are phenomenological results. The gap width is chosen to be small compared to the

bandwidth (V � J), and the additional modifications to the hopping parameter due to

Hartree-Fock terms are incorporated into J , which describes hopping between adjacent

lattice sites.

The systems under consideration all share the following characteristics: a sys-

tem in a periodic spatial potential of period x0 = 2π/k is subjected to a weak perturba-

tion of amplitude V0 which is periodic with period x0/2 = π/k. The weak perturbation

will cause a gap to open in the energy spectrum of the original system, the lowest order

gap will be determined by the amplitude of the perturbation δ = 2V0.

With the addition of an oscillating driving force the gap between the two lowest

bands will be effectively closed through a renormalization of the bandwidth. The gap

closure will be seen explicitly in the energy spectrum and implicitly through the field

generated electric field. Temperature dependence enters in the discussion of the electric

current and finally a discussion of how these results could be extended to a simple model

of an open quantum system is discussed.

4.2 Continuum model: parabolic model

The system in this section is a modification to the two-band model. It consists

of an unperturbed parabolic spectrum, a weak periodic perturbation and a strong AC

driving force. This effectively describes single particles isolated in wells separated by a

spatial distance of 2k and oscillating about the bottom of the well. It can be considered

a system of single particles in a deep sinusoidal potential, where the inter-well tunneling

energy is much higher than the kinetic energy of the bound electrons. The weak per-

turbation adds a small barrier at the midpoint of the original band, which back-scatters
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the electrons. When the weak perturbation is added to the system, the energy spectrum

exhibits the same gap opening at the band midpoint as in two-band model. However it

is not exactly 2V0. For a system of N wells the matrix representation of the Hamiltonian

will be N ×N .

Without any perturbations, the system has a series of parabolic spectra (see

Figure (4.3a) with exact crossings between the bands. With the weak perturbation

(of amplitude V0) present, a gap opens between the two lowest lying energy bands (see

Figure (4.3b)). Additional gaps open at higher band crossings but have narrower widths.

�8 Π �6 Π �4 Π �2 Π 2 Π 4 Π 6 Π 8 Π

1

�8 Π �6 Π �4 Π �2 Π 2 Π 4 Π 6 Π 8 Π

1

�� 2Vo

Figure 4.3: Development of gap in parabolic spectra: a subset of undriven parabolic
spectra are shown. (a) In the absence of the periodic perturbation, there are exact
crossings between the bands. Shown are the spectra for particles in wells at k = 0
(black) and the adjacent wells at k± 4π (red). (b) With the weak perturbation present,
the crossings between the lowest bands (red, blue lines) are not exact and have gap
width of approximately 2V0. The crossing between the second and third band (blue,
orange) is also gapped but has a narrower width.

The general system discussion in Section (2.3.2) shows how the weak perturba-

tion leads to the gap opening in the energy spectra. In the case of the parabolic spectra,

the matrix for H is not 2× 2. The full system describes a system of N particles and as

a result the full matrix will be N ×N . The form of such a matrix will be quite simple,

with the diagonal terms describing the momentum for each particle and the off-diagonal

terms describing the weak perturbation.

H =





. . . V0
2 0 0 . . .

0 V0
2 �(p− k) V0

2 0 0 . . .

. . . 0 V0
2 �(p) V0

2 0 0 . . .

. . . 0 0 V0
2 �(p+ k) V0

2 0 . . .

. . . . . . 0 0 V0
2 �(p+ 2k) V0

2 . . .

. . . . . . 0 0 V0
2

. . .





, (4.15)
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The eigenvalues for the N × N system can be found and the spectrum will

show a gap opening. In Figure (4.3b) the energy spectrum for a 3× 3 system is shown,

calculated from the eigenvalues of the matrix Hamiltonian.

The full system Hamiltonian contains three terms, describing the original sys-

tem (H0), the driving force (HD(x̂, t)) and the weak spatial perturbation caused by

interactions (HP (x̂)):

Hsys(p̂, x̂, t) = H0(p̂) +HD(x̂, t) +HP (x̂),

=
(p̂)2

2m
+ F0x̂ cos (ωt) + V0 cos (kx̂).

(4.16)

Where the momentum operator p̂ is defined to be invariant under translations of p+2k

and the spatial perturbation shifts the momentum by p+k. As discussed in Chapter (2)

the interaction representation can be used to describe the time evolution of this system

in the presence of a weak perturbation. First, the driving force is incorporated into the

momentum through a gauge transform. For a gauge field α(x̂, t) = F0x̂/ω sin (ωt), the

gauge-transformed Hamiltonian is given by:

H(p, t) =
p̄2

2m
=

�
p̄+ dα

dx

�2

2m

=
1

2m

�
p̂2 + 2

F0

ω
p̂ sin (ωt) +

�
F0

ω

�2

sin (ωt)2
�
.

(4.17)

The unitary operator U(t) is built from the operators U0(t) and S(t):

U(t) = e−i
� t
0 dt

�(H(p̄,t)+HP (x̂,t)) (4.18)

S(t) = e−i
� t
0 dt

�
HI(t�) (4.19)

U(t) = U0(t)S(t) (4.20)

Where U0 is defined with the gauge transformed Hamiltonian in Equation (4.17), and

S(t) is dependent on the interaction representation of the weak periodic potential HI ,

a term which will expanded in a perturbation series. With the unitary operator U0(t):

U0 = e−i
� t
0 dt

�
H(p̄,t�), (4.21)

= e
−i

1
2m [p̂2t−2

F0
ω2 p̂(1−cosωt))+

�
F0
ω

�2
( t
2−

1
2 sin (2ωt))], (4.22)

the interaction representation is found:

HI = U †
0HPU0 (4.23)

= V0 cos (k

�
x+

1

m
pt+

F0

mω2
[1− cos (ωt)]

�
). (4.24)
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The unitary operator for the time evolution of the system:

U(t) = ei
� t
0 dt

�
Hsys(t�) (4.25)

can be evaluated directly with the full system Hamiltonian. Due to the complex time-

dependence we will evaluate U(t) through a perturbative expansion, as outlined in Chap-

ter (2).

From the interaction form of the Hamiltonian (see Equation (4.25)), the first

order terms are easily found by averaging over one period of the driving force (τ = 2π/ω)

to fine �HI�τ . First, the momentum representation of HI given in (4.24) is determined:

HI(p, p
�) = �p|HI |p��

= �p|V0 cos (k

�
x+

1

m
pt+

F0

mω2
[1− cos (ωt)]

�
)|p��

=
V0

2

�
ei(

kt
m p

�+ k2t
2m+

F0k

mω2 [1−cos (ωt)])δp,p�+k

+ e−i( ktm p
�− k2t

2m+
F0k

mω2 [1−cos (ωt)])δp,p�−k

�

=
V0

2

�
eiθ1(p

�
,t)δp,p�+k + e−iθ2(p�,t)δp,p�−k

�
.

(4.26)

After the delta function is evaluated the exponential arguments become,

θ1(p, t) =
kt

m
(p− k) +

k2t

2m
+

F0k

mω2
[1− cos (ωt)]

=
kt

m

�
p− k

2

�
+

F0k

mω2
[1− cos (ωt)]

θ2(p, t) =
kt

m
(p+ k)− k2t

2m
+

F0k

mω2
[1− cos (ωt)]

=
kt

m

�
p+

k

2

�
+

F0k

mω2
[1− cos (ωt)]

(4.27)

The time dependence of the scalar term is sinusoidal but can be written in terms of

Bessel functions. The terms eiC cos (ωt) (where C = F0
mω2 ) are rewritten :

e±iC cos (ωt) =
�

n

(in)Jn(C)e(inωt) (4.28)

and as a result the time dependence in the first order terms can be easily integrated and

the time averaged first term of the perturbation series is found;

�
τ

0
dtHI(p) =

�
τ

0
dt(

V0

2
)(e(iC))ei

kt
m (p− k

2 )

�
�

n

(in)Jn(C)e(inωt)
�

+

�
τ

0
dt(

V0

2
)(e(−iC))(e−i

kt
m (p+ k

2 ))

�
�

n

(in)Jn(C)e(inωt)
� (4.29)
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So the first order term in the perturbation series is found as a sum over Floquet modes

(nω):

�HI(p)� =
V0

2τ
(e(iC)

�

n

(−i)nJn(C)

�
(e(i

k
m(p− k

2 )τ) − 1)

(i(kp
m

− k2

2m + nω)

�
)+

V0

2τ
(e(−iC)

�

n

(i)nJn(C)

�
(e(−i

k
m(p+ k

2 )τ) − 1)

(−i(kp
�

m
− k2

2m − nω)

�
)

(4.30)

Near the location of the gap, when the momentum has value p� = ±k

2 , the n = 0 term

becomes very large and dominate the sum over n. Additionally, if the driving amplitude

and frequency are chosen such that the term C = F0
mω2 corresponds to the root of the

J0 Bessel function, the first order term can be suppressed completely. A plot of the

gap suppression in a parabolic model is shown in Figure (4.6), found by numerically

integrating the exact time evolution operator.

For completeness the second order terms are presented here, determined by the

commutator of HI(t) at different times (t1, t2). The commutator is evaluated from the

expansion of HI into exponential terms and the Baker-Campbell-Hausdorff method of

expanding exponentiated operators. The second term becomes (where the subscript (I)

will be omitted for the remainder of the derivation),

[H(t1), H(t2)] =

�
V0

2

�2

[(ei(α̂+β̂(t1))eiγ(t1) + e−i(α̂+β̂(t1))eiγ(t1)),

(ei(α̂+β̂(t2))eiγ(t2) + e−i(α̂+β̂(t2))eiγ(t2))]

= [ei(α̂+β̂(t1))eiγ(t1), ei(α̂+β̂(t2))eiγ(t2)]

+ [ei(α̂+β̂(t1))eiγ(t1), e−i(α̂+β̂(t2))e−iγ(t2)]

+ [e−i(α̂+β̂(t1))e−iγ(t1), ei(α̂+β̂(t2))eiγ(t2)]

+ [e−i(α̂+β̂(t1))e−iγ(t1), e−i(α̂+β̂(t2))e−iγ(t2)]

(4.31)

The argument of the cosine function was separated in to operator (α̂, β̂(t)) and scalar

terms (γ(t)). The scalar terms commute ([α̂, γ(t)] = [β̂(t), γ(t)] = [γ(t), γ(t)] = 0) and

can be simply separated from the operator terms:

ei(α̂+β̂(t)+γ(t)) = ei(α̂+β̂(t))eiγ(t). (4.32)

With the scalar terms pulled out of the commutators,

[H(t1), H(t2)] = [ei(α̂+β̂(t1)), ei(α̂+β̂(t2))]ei(γ(t1)+γ(t2))

+ [ei(α̂+β̂(t1)), e−i(α̂+β̂(t2))]ei(γ(t1)−γ(t2))

+ [e−i(α̂+β̂(t1)), ei(α̂+β̂(t2))]e−i(γ(t1)−γ(t2))

+ [e−i(α̂+β̂(t1)), e−i(α̂+β̂(t2))]e−i(γ(t1)+γ(t2))

(4.33)
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The operator sums in the exponential terms can be separated,

ei(α̂+β̂(t)) = eiα̂eiβ̂(t)e−
1
2 [α̂,β̂(t)] (4.34)

and since α̂, β̂ are dependent on x̂, p̂, their commutator will generate an additional scalar

term.

[H(t1), H(t2)] = [eiα̂eiβ̂(t1), eiα̂eiβ̂(t2)]ei(γ(t1)+γ(t2))e−
1
2 ([α̂,β̂(t1)]+[α̂,β̂(t2)])

+ [eiα̂eiβ̂(t1), e−iα̂e−iβ̂(t2)]ei(γ(t1)−γ(t2))e−
1
2 ([α̂,β̂(t1)]−[α̂,β̂(t2)])

+ [e−iα̂e−iβ̂(t1), eiα̂eiβ̂(t2)]e−i(γ(t1)−γ(t2))e
1
2 ([α̂,β̂(t1)]−[α̂,β̂(t2)])

+ [e−iα̂e−iβ̂(t1), e−iα̂e−iβ̂(t2)]e−i(γ(t1)+γ(t2))e
1
2 ([α̂,β̂(t1)]+[α̂,β̂(t2)])

(4.35)

Note the operator α̂ is time-independent and dependent on the position oper-

ator kx̂ only. When the commutator terms above are fully expanded, terms which are

proportional to eiα̂eiα̂ = ei2α̂ or e−iα̂e−iα̂ = e−i2α̂ will be generated. In the momen-

tum representation this operator would correspond to scattering between p → p ± 2k

which would allow particles to scatter into adjacent wells. The second term expansion

is restricted to terms which conserve the momentum of the electrons, scattering into

adjacent wells is suppressed by dropping terms which correspond to momentum transfer

of ±2k.

The final form of the second order term is,

[H(t1), H(t2)] =

iV 2
0 sin

�
3k2

2m
(t2 − t1)

���
cos

�
kp

m
(t1 − t2)

�
cos

�
F0k

mω2
(cos (ωt2)− cos (ωt1))

��

−
�
sin

�
kp

m
(t1 − t2)

�
sin

�
F0k

mω2
(cos (ωt2)− cos (ωt1))

���

(4.36)

In the perturbation series, the second order is integrated over the time variables t1, t2,

�[H(t1), H(t2)]� =
�

τ

0
dt1

�
t1

0
dt2 [H(t1), H(t2)] (4.37)

and can be evaluated numerically, but a closed analytic form is not found. It is noted

that in the momentum representation, the second order term is a diagonal term. The

first order term is sufficient to investigate the parameters for gap suppression.

The parabolic spectrum gives an approximation of a Hartree-Fock system and

an initial demonstration of a gap in a system that can be suppressed by a driving force.

However it is of limited applicability. The singularity present in the first term �HI�
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can cause the gap to increase to a very large size. The ambiguity in the definition of a

bandwidth for a parabolic spectrum makes it difficult to define driving parameters that

will ensure the Floquet spectrum has both well-separated quasi-energies and is driven

at a frequency which will avoid chaotic motion. The many-well parabolic model will be

replaced by a model of a generic two-band system with a gap.

4.3 Driven two-band tight-binding model

4.3.1 Undriven tight-binding model

The tight-binding model is a theoretical description of negatively-charged par-

ticles moving through a lattice of positive ions. It is built upon the idea that negatively

charged particles will be localized near the positive ions. Each ion is labeled as a site

by the index (i).

For a system of non-interacting electrons moving through a lattice, the tight-

binding model Hamiltonian is expressed in terms of the creation and annihilation oper-

ators for the electrons,

Htb = −J
�

i

(a†
i+1ai + h.c). (4.38)

The factor (J) denotes the hopping energy, the energy required to go between adjacent

sites. From this Hamiltonian, the electronic energy spectrum can be derived,

Etb(k) = −2J cos (ka). (4.39)

The parameters (k,a) are the quasi-momentum of the electrons and the lattice spacing,

respectively. In the remainder of this section, it will be assumed the lattice has unit

spacing (a = 1) .

Without the driving force present, and without the weak perturbation applied,

we consider a modification of the system: where it consists of two species of sites, labeled

(A) and (B). The particles moving between (A) sites and (B) sites do not interact. Such

a system has a matrix representation similar to that of the two band model:

HAB = Etb(k)σ
z (4.40)

The system is diagonal and scattering between the two bands is not possible.

4.3.2 Driven tight-binding model

The driving force is incorporated into the tight-binding model through an ap-

propriate gauge definition. It is seen that the quasi-momentum of the electrons can be

shifted to include the vector potential of the applied electric field: k� = k +A(t).
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In the tight-binding Hamiltonian, the addition of the gauge field appears as a

phase term:

Hdriven = −t
�

i

(e(iA(t))a†
i+1ai + h.c), (4.41)

where A(t) is the vector potential. Choosing an appropriate gauge transform allows the

vector potential to be defined by A(t) = ∇
�
dtFDC(t) = −e

�
dtE(t). It is seen that

the addition of the field modifies the energy spectrum:

Etb(k
�) = −2J cos (k�) = −2J cos (k +A(t)). (4.42)

For the alternating lattice described in Section (4.3.1) the matrix becomes:

HAB(t) = Etb(k +A(t))σz (4.43)

4.3.3 Perturbed system

The weak perturbation applied to the system introduces scattering between A

and B sites. A spatial perturbation is defined which will shift the on-site energies of (A,

B) sites by a constant amount V0.

H = −J
�

i

�
e(iA(t))a†

i+1ai + h.c.
�
+ V0

�

i

(−1)ia†
i
ai (4.44)

The result of this perturbation is a gap opening at the point k = π

2 . In terms

of the matrix representation,

H = Etb(k
�)σz + V0σ

x =



Etb(k�) V0

V0 −Etb(k�)



 . (4.45)

From the eigenvalues of this matrix, the driven, perturbed energy spectrum will be,

�(k�, V0) =
�

V 2
0 − 2J cos (k +A(t)), (4.46)

and the spectra are shown in Figure (4.4). As has been done in the previous sections,

the interaction representation for the perturbed system is defined. The terms H0 and

H1 are defined from the full system:

Hsys(t) = HAB(t) +H1

= (−2J cos (k +A(t))σz) +

�
V0

2
σx

� (4.47)
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Figure 4.4: A segment of the undriven tight-binding spectra in the presence of weak
spatial perturbations. In the absence of the perturbation, exact crossings between the
left and right movers (black solid, black dashed) exist at the midpoint of the bands.
With the perturbation present, a gap of width of 2V0 opens at the band midpoint (red,
blue).

The interaction representation is found as described in Section (2.5):

HI = ei
�
dt

�
H0(t�)H1e

−i
�
dt

�
H0(t�)

= ei
�
dt

�(−2J cos (k+A(t))σz)

�
V0

2
σx

�
e−i

�
dt

�(−2J cos (k+A(t))σz)

= eiφk(t)σz

�
V0

2
σx

�
e−iφk(t)σz

(4.48)

In the final line the time integral of the energy band is replaced by a time-dependent

phase. To evaluate the commutator between the Pauli spin matrices, the exponential

operators are expanded,

eiφk(t)σz
= (cos (φk(t))1+ iσz sin (φk(t))) (4.49)

and the expression forHI becomes a combination of simple products with Pauli matrices.

The final step in evaluating HI involves reducing multiple Pauli matrix products to a

simple operator, which is easily done using the relation:

σiσj = i �ijk σk (4.50)
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Thus the evaluation of HI reduces and simplifies as follows,

HI = ei
�
dt

�
H0(t�)H1e

−i
�
dt

�
H0(t�)

= eiφk(t)σz

�
V0

2
σx

�
e−iφk(t)σz

= (cos (φk(t))1+ iσz sin (φk(t)))
V0

2
σx (cos (φk(t))1− iσz sin (φk(t)))

=
V0

2
[cos (2φk[t])σ

x − sin (2φk[t])σ
y] .

(4.51)

The time dependence in HI comes in the time integral of the driven energy bands. As

before, the full time evolution of the system is given exactly by integrating Hsys or

through the perturbative expansion with HI ,

U(t) = e−i
�
dt

�
Hsys(t�)

U(t) = U0(t)S(t)

S(t) = 1 +

�
dt�HI(t

�) + . . . .

(4.52)

where perturbative expansion for S(t) will be carried out to the second order.

For a cosine spectrum, a closed analytical description of the gap suppression

cannot be found. The full solution for gap closure will be found numerically, either by

direct numerical integration of the unitary operator defined by the driven Hamiltonian in

Eq. (4.47) or by numerically integrating the unitary operator defined by a perturbative

series in the interaction Hamiltonian (Eq. (4.51)).

Presented here is an approximation to the cosine phase, showing how gap

closure is possible. From the definition of the phase and the vector potential,

φk(t) =

�
t

0
dt��[k +A(t�)]

A(t) = −F0

ω
cos (ωt)

(4.53)

and using the tight-binding energy spectrum,

�[k +A(t)] = (−2J) cos

�
k − F0

ω
cos (ωt)

�
(4.54)

the nested trigonometric functions complicate the time integrations necessary to define

the Floquet spectrum. These can be expanded using the Jacobi-Anger expansion. In

the phase term,

φk(t) = (−2J)

�
cos (k)

�
t

0
dt� cos [A(t)]− sin (k)

�
t

0
dt� sin [A(t)]

�

= (−2J)

�
cos (k)

�
J0

�
F0

ω

�
t+ 2

∞�

n=1

J2n

�
F0

ω

�
sin (2nωt)

2nω

�

− sin (k)

�
−2

∞�

n=1

(−1)nJ2n−1

�
F0

ω

�
sin ([2n− 1]ωt)

[2n− 1]ω

��
(4.55)
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if the driving frequency is very large, then the J0
�
F0
ω

�
term dominates. Truncating the

series expansions results in an approximate expression,

φk(t) ≈ (−2J) cos (k)J0

�
F0

ω

�
t (4.56)

which is linear in time. The first order term is simply the time average of the interaction

representation (the time averaging is done with respect to the period of the driving force):

�HI� =
1

τ

�
τ

0
dt� − kσz + cos (2

�
F0

ω

�
sin (ωt�))σx + sin (2

�
F0

ω

�
sin (ωt�))σy. (4.57)

The interaction representation of the driven tight-binding model given in eq. (4.51)

can be used for any system with a Hamiltonian given in the general form:

Hsys = �(k, t)σz +
V0

2
σx. (4.58)

The only modification required is the generalization of the definition of φk(t):

φk(t) =

�
t

0
dt��(k, t�) (4.59)

This general form will be of use in the following section, where the Floquet analysis is

applied to a linear spectrum.

4.4 Driven lattice model: linear spectrum

For the driven tight-binding model, the previous section considered the effect

of the driving force on all electrons trapped in a given band. For the case of a system

with half-filled bands, the addition of the perturbation causes the system to transition

from a metallic state to an insulating state. The gap closure in the driven system can

be studied by focusing on the electrons which are localized near the Fermi surface,

those have momenta close to the Fermi momentum. By restricting the system to these

electrons, the Hamiltonian of the full tight-binding model can be linearized.

4.4.1 Undriven lattice model

From the unperturbed tight-binding model on a modified lattice, given in equa-

tion (4.39), the energy spectrum was defined with a cosine function. For a partially filled

band, the Fermi-momentum is located at kFa = π/2, if the band is half filled, this occurs

at the midpoint of the band. When the perturbation term is present, the gap opens at

the middle of the band. Linearizing the cosine spectrum at the Fermi-momentum gives
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a linear spectrum for those electrons localized near the Fermi surface. Equation (4.39)

is linearized as follows:

�(k = kF + δ) ≈ �(kF ) + (δ)
∂�(k)

∂k

����
k=kF

(4.60)

so near the Fermi momentum the linear spectrum is:

�(k) = ±2Ja(k). (4.61)

The positive (negative) sign differentiates between right (left) movers. In the absence

of the perturbation, again the two branches have an exact crossing. As above, the two

band system consists of two non-interacting species of particles: left and right movers

with linear spectra.

It was shown in Section (2.3.2) that the original terms with left and right

movers has a diagonal matrix representation. The energy spectra for the left and right

movers are not gapped. The addition of a weak perturbation term results in scattering

between branches and results in a gap opening at the midpoint of the Brillouin zone.

4.4.2 Driven linear model

The Hamiltonian of the driven, perturbed system is separated into two terms:

Hsys = H0 +H � (4.62)

H0 = 2Ja

�
k +

F0

ω
cos (ωt)

�
σz (4.63)

H � =
V0

2
σx (4.64)

with the same form as the full tight-binding system in equation (4.51). The analysis of

Sections (4.3.2) and (4.3.3) is applied to the linear spectrum. This results in the same

condition for delocalization:

�cos (2φk(t))� = 0 (4.65)

The result for the linear spectrum differ from those of the cosine spectrum only in a

modification to the phase term:

φk(t) =

�
t

0
dt��(k, t�) (4.66)

= 2Ja

�
kt+

F0

ω2
sin (ωt)

�
. (4.67)

For the linear spectrum, a closed form for the gap suppression can be found,

J0

�
2Ja

F0

ω2

�
= 0. (4.68)
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One of the motivations for studying a gapped linear spectrum is the close

connection to Sine-Gordon dynamics, particularly the similarities in the energy spectra.

It was seen in Chapter (3) that dynamical stabilization for a soliton occurred at driving

parameters that lead to a suppression of the cos (ϕ0) term in the effective potential,

where J0
�
F0
ω2

�
vanished. With a similar hyperbolic spectrum, it is seen that the linear

spectrum has dynamical gap suppression where J0
�
2JaF0

ω2

�
vanishes.

4.5 Numerical results: gap suppression

Two series of numeric simulations were carried out. The first investigated the

gap closure in each of the three systems described above (the parabolic, cosine, and

linear spectra), driving each system with only an AC field. The second investigated how

driving a system into a gap suppressed state would affect the electric current generated

by an additional DC field.

Studying the gap closure in each of the three spectra previously discussed

was done by numerically integrating the unitary time operator. Then, after finding its

time average over one period of the driving force, the average Floquet quasi-energies

were defined. The unitary operator for a system was defined by the exact expression,

involving the full driven Hamiltonian, and also through a perturbative expansion using

the interaction Hamiltonian.

The perturbation series expansion of the operator U(t) solves for the matrix

U(t) using the second order expansion of S(t),

U(t) = U0(t)(111 + �HI(t)�+
i2

2
�[HI(t1), HI(t2)]�+ . . .

≈ U0(t)(111 + �HI(t)�+
i2

2
�[HI(t1), HI(t2)]�),

(4.69)

where the integration Hamiltonian (HI) is averaged over one period of the driving force.

The driving force was implemented in the numeric system as a combined AC

and DC field, rather than with a time-dependent AC field amplitude. With the DC field

present the overall driving force had an envelope form with the overall amplitude of the

field gradually increased over a fixed time interval.

4.5.1 Parabolic spectrum

For the simulation of the gap closure, the unitary operator U(t) was numer-

ically integrated from the full Hamiltonian. From the full unitary operator U(t) the

energy spectrum was found from the eigenvalues of the system. The matrix U(t) can be
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diagonalized with elements given by,

Uii(t) = eiMiτ (4.70)

with Mi the Floquet quasi-energy of the i-th level. In the momentum representation

the first order term of the perturbation series connected states of different momenta and

contributed to the gap. The conditions for gap closure were determined from Equation

(4.30) where resonance in the n = 0 term at p = ±k/2 lead to gap suppression at the

root of the Bessel function (J0(F0k/mω2) = 0). In Figure (4.6), the possibility of gap

closure is investigated for different driving frequencies. Defining the driving amplitude

in terms of (k,m, ω),

F (ω) =
(2.4048)mω2

k
(4.71)

it is seen that gap closure occurs if the driving frequency is large enough to ensure the

Floquet spectrum has well-separated levels. Shown in Figure (4.5), the system used for

numeric simulation was designed with a small gap compared to the width (J) of the

lowest band.

�8 Π �6 Π �4 Π �2 Π 2 Π 4 Π 6 Π 8 Π

1

3

5

(p)

�(p)

Figure 4.5: Shown is the gapped energy spectrum of an N = 5 parabolic well system.
The parameters of the system k = 4π and V = 0.05 were chosen to ensure the width of
the lower band formed was much larger than the gap.

4.5.2 Cosine spectrum

For the simulation of the gap closure, the unitary operator U(t) was numerically

integrated from the full Hamiltonian. These results were compared to the perturbation
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Figure 4.6: The gap width predicted from the first order perturbation expansion. For
ω � J (a,b) the gap closes at the value predicted by F0(ω). For ω ≈ J (c) or ω < J (d)
the possibility of gap closure is ambiguously defined and complicated by the overlap of
Floquet levels.
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series results. At the root of the Bessel function J0(z) = 0 it was seen that gap suppres-

sion occurred. From the time averaged eigenvalues of the full unitary operator U(t) the

energy spectrum was found.

(k)
�2 Π �Π Π 2 Π

�(k)

Figure 4.7: Shown is the energy spectrum found from exact integration of Hsys, showing
the gap suppression near k = ±π. The gap of ∆ = ω/4 is shown (black dotted). At
F = .00235 the gap is suppressed (green solild) and at F = 0.00421 the gap is present
(red solid). The other parameters for the system are J = 0.0013 eV, a = 0.5 nm,
ω = 1eV. The y-axis is marked at ±ω/2

4.5.3 Linear spectrum

At the root of the Bessel function J0(z) = 0 it was seen that gap suppression

occurred. From the full unitary operator U(t) the energy spectrum was found from the

eigenvalues of the system. Only a single gap at p = ka

2 was considered, and was shifted

to the origin. As demonstrated in the parabolic model, the dependence on the driving

amplitude is observed (shown in Figure (4.11)) in both the cosine and linear spectra.

4.6 Numerical results: combined field driving

It is seen that a small gap caused by interactions between two electron bands

can be effectively suppressed due to a strong AC field. The study of the two-band is

concluded by observing how driving a system toward gap closure affects the dynamics

of a single electron or a collection of electrons. With the parameters for gap closure

identified, the sinusoidal spectrum was driven by both an AC field which would close a
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�2 Π �Π Π 2 Π

�(k)

Figure 4.8: Shown is the energy spectrum found from integration of the perturbation
series derived fromHI , showing the gap suppression near k = ±π. The gap of ∆ = 0.15ω
is shown (black dotted). At F = .0005 the gap is present (green solild) and at F = 0.0054
the gap is suppressed (red solid). The other parameters for the system are J = 0.02 eV,
a = 0.5 nm, ω = 1eV. The y-axis is marked at ±ω/2.

� Π16
Π
16

�(k)

(k)

Figure 4.9: Shown is the gapped energy spectrum near k = 0, found from exact integra-
tion of Hsys. The gap of ∆ = ω/2 is shown (red dotted). At approximately zero driving,
the spectrum is gapped (black dashed). At F = .00084 the gap is reduced (blue solild)
and at F = 0.00156 the gap is suppressed (black solid). The other parameters for the
system are vF = 2J/a = 0.0067, ω = 0.003eV
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Figure 4.10: Shown is the gapped energy spectrum near k = 0, found from integration
of the perturbation series derived from HI . The gap of ∆ = ω/2 is shown (red dotted).
At F = .00084 the gap is reduced (green solid) and at F = 0.00165 the gap is suppressed
(black solid). The other parameters for the system are vF = 2J/a = 0.0067, ω = 0.003eV
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Figure 4.11: Shown is the dependence of the renormalized gap width on the driving
amplitude. Gap widths for both the cosine (red) and linear (blue) are shown, both
generated from systems with parameters J = 2.0, ω = 0.75, ∆0 = 0.25.
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band gap, and a weak DC field. The DC field with weak amplitude was turned on first

and the AC field amplitude is gradually increased. Within several driving periods the

system would be driven under both AC and DC fields. It was expected that a particle

in the system would first exhibit motion due to the weak DC field and the gap. As the

AC field gradually increases in amplitude, the gapped system would be driven into a

gap-less system and it was investigated if the dynamics changed accordingly.

Two systems were prepared for the tight-binding model, a single electron and

a collection of electrons. A single electron in the sinusoidal spectrum, under DC field

driving, would exhibit Bloch oscillations. A collection of electrons would behave as

a metal or an insulator depending on whether the band was completely filled or only

partially filled. Shown in Figure (4.12)(a,b) are the expected results as a system is driven

through a dynamical band closing. Also shown in Figure (4.12)(c) is a simplification

of the combined field vector potential. The time dependence of the vector potential is

chosen such that the DC field is gradually turned on, then the AC field is gradually

turned on. The result is that the system is initially driven by only the DC field, then a

combined AC and DC field. The AC field is turned off first, followed by the DC field.

4.6.1 Period doubling

The sinusoidal spectrum was driven with a combination AC-DC field. With

the gap present it is expected that in the presence of only the DC field, the system will

demonstrate Bloch oscillations in the gapped spectrum. As the AC field is tuned to the

amplitude which corresponds to gap closure, it is expected that the system will undergo

Bloch oscillations in the un-gapped spectrum.

Bloch oscillations were observed by calculating the electric current generated

by a single particle oscillating in the periodic potential. The effective field generated

by the motion of a single particle was discussed in Section (2.7). To study the motion

of a particle rather than the shape of the energy bands, we solved for the two-state

wave-functions of the initial Hamiltonian. These wavefunctions were used to define the

density matrix of the two-band system. With a state initially prepared in the lower

band, the density matrix was evolved in time with the DC and AC fields gradually

turned on.

As the particle is driven to the edge of a Bloch band and reflected, the current

is oscillatory with period given by the period of Bloch oscillations τB = 2π/eEa, where

the electric field is the DC field and a is the lattice spacing. With the gap present, the

period of Bloch oscillations is τg = 2π/eEag, and if the gap is closed, the period of Bloch
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Figure 4.12: The expected dynamics of a system under AC and DC field driving. Shown
in (a) are the single particle dynamics and the period doubling of Bloch oscillations.
Initially an electron would oscillate with a period determined by Bloch oscillations in
the lower band (red solid, dashed lines). As the gap is closed the electron would oscillate
with a period determined by Bloch oscillations in the full band (black solid, dashed lines).
Shown in (b) is the transition of a filled band (insulating) system becoming metallic as
the bandwidth increases due to gap closure. Shown in (c) is a simplification of the
combined AC and DC field vector potential.
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oscillations would double to τg = 4π/eE(ag).

i(t)

(t)

Figure 4.13: The current generated by a single particle driven by DC and AC fields.
With initially only the DC field present, the current shows oscillations with a Bloch
frequency determined by the width of the gapped band (black frame). As the AC field
drives the system into gap closure, the period of oscillation doubles due to the doubling
of the Brillouin zone width (red frame). As the AC field is turned off the current returns
to it initial period of oscillation (green frame).

4.6.2 Driven net current

When the gap is present, the system is prepared in an initial state which is

an insulator. The lower band is completely filled and it is expected that no net current

will be generated by the external driving fields. However as the system is driven to a

suppressed gap, the final state is metallic and a net current is expected.

4.7 Conclusions

Coherent destruction of tunneling is a perturbative effect which predicts the

localization of a particle in an AC field. This localization is based on suppression of

level splitting. We considered the suppression of a gap due to interactions between

electrons in a one-dimensional system. Defining a perturbative expansion of the time-

evolution operator, the effects of a strong AC driving force on the Floquet quasi-energy

spectrum was investigated. It was seen that for a tight-binding model, certain driving

parameters will lead to gap suppression, specifically those which satisfied �cos (2θ(t))� =
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Figure 4.14: Net current generated with both AC and DC field driving. For zero AC
driving (green dashed) the system remains in an insulating state and there is no net
current. At AC driving the gap closure, the system has a net nonzero current for long
enough driving (red).

0. An analytical form was found for the linearized spectrum, near the Fermi momentum.

Additionally, a continuum model of parabolic wells was studied.

The possibility of gap suppression is due to the hybridization of Floquet levels.

For the tight-binding lattice model, Floquet levels were well separated and did not

overlap.

To further investigate how gap closure affects a system, a weak DC field was

added to the driving force. It was observed through numerical simulation that the

dynamics of a single electron, or a many-electron system, showed the effects of gap

closure. For a single electron driven through a gap closure, the Bloch oscillations due

to the DC field showed a doubling of period. For a gapped system prepared with a

full band, an insulating system, driving such a system through gap closure led to the

creation of a half-filled, metallic state. The net current for this system became nonzero

when the gap was closed.

The work done on gap suppression for a two-band model was done on closed

systems only. Heating by phonons was not considered. The long driving times needed

to ensure gap closure would likely result in runaway phonon heating and the robustness

of these results is questionable.
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Chapter 5

Continuous third harmonic

generation in a terahertz driven

modulated nanowire

The material in this chapter was submitted for publication in ACS Nanoletters

and has been published on the arXiv [158].

The driven single band system is a continuum model describing the effects

of a strong driving force on electrons in a conduction band. Combining the Floquet

quasi-energy spectrum with the Keldysh Green’s function technique, we derive a phe-

nomenological model of the semiclassical master equation for a one-dimensional band

of strongly and rapidly driven electrons in the presence of weak scattering by phonons.

When the strong driving force is present, the bandwidth of the energy spectrum is renor-

malized. The amplitude of the driving force can be used to create a flat band, in which

no current will be generated. It is also possible to invert the energy band. With an

inverted band, the system will equilibrate at points which were unstable in the absence

of the driving force. This inverted distribution of particles leads to continuous higher

harmonic generation, specifically the amplification of the third harmonic and the sup-

pression of the primary harmonic. The system is derived as a closed system and also

in the presence of dissipation. In the absence of scattering, the quantum efficiency of

frequency tripling for such a system can be as high as 93%. Higher harmonic generation

remains stable in a dissipative system, provided the phonon modes are dominated by

surface modes of a nearby (higher-dimensional) substrate. The power absorbed from the

driving field is continuously dissipated by phonon modes, leading to a quasi-equilibrium

in the electron distribution. We use the Kronig-Penney model with varying effective
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mass to establish growth parameters of an InAs/InP nanowire near optimal for third

harmonic generation at terahertz frequency range.

5.1 Introduction

When electrons in a crystal band are driven by an external time-independent

electric field, they move periodically across the Brillouin zone, creating characteristic

Bloch oscillations [37, 159–162]. The frequency of the oscillations, ωB = eEa/�, where
a is the unit cell size, coincides with the energy separation between neighboring states

localized on a Wannier-Stark ladder [162, 163]. The effect has been observed for elec-

trons/holes in semiconducting superlattices [164, 165], for atoms trapped in a periodic

optical potential [166], and for light propagating in a periodic array of waveguides, with

gradient of the temperature or of the refraction index working as an effective electric

field [167–169].

Combining the effects of a strong, time-periodic driving field, with the non-

linearity of the Bloch oscillations leads to higher harmonic generation of the driving

frequency [62, 170, 171]. This effect has recently been observed in bulk ZnO crystals

strongly driven by a few-cycle pulsed infrared laser [64]. The application of the infrared

field in short, 100-femtosecond, pulses was necessary to ensure that the absorbed energy

could be transferred to the lattice and dissipated.

Semiconductor superlattices are an ideal system in which to observe these high-

field effects. The transport of carriers through these structures can be described in terms

of coherent motion through minibands in the energy spectrum [172]. Subsequently, the

effects of intense driving fields can be described based on the modification of these

minibands [173]. The mechanisms of charge transport in semiconductor superlattices in

the presence of strong fields has been extensively studied in terms of miniband transport,

Wannier-Stark hopping and photon-assisted transport [174,175].

In this work, we suggest that frequency multiplication due to periodically-

driven Bloch oscillations could also be observed in a steady-state setting, e.g., a pe-

riodically modulated nanowire (or an array of such nanowires) continuously driven by

high-amplitude terahertz radiation (see Fig. 5.1). In the weak-scattering limit, the quan-

tum efficiency of frequency tripling for such a system can be as high as 93%. The high

efficiency of third harmonic generation presents a novel means of Thz radiation and has

been previously studied for GaAs superlattices [176,177].

For a nanowire in mechanical contact with an insulating, optically transpar-

ent substrate, a quasi-equilibrium electron distribution will be reached as the power
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absorbed from the driving field will be continuously dissipated into phonon modes.

This distribution can be quite different from the initial, equilibrium Fermi distribution.

In particular, at the driving field amplitude which is optimal for third harmonic gen-

eration, the distribution can be both broadened and inverted. The inversion of the

distribution occurs once the driving field amplitude exceeds the dynamical localization

threshold [57,178].
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Figure 5.1: (a) A nanowire made with alternating InAs/InP regions. (b), (c) Schematic
of the third harmonic generation with a planar array of such nanowires. The driving field
is s-polarized so that the electric field E1 be parallel to the nanowires. The generated
third harmonic will have the same polarization but propagate at a different angle.

In our analytic derivation, we combine the Floquet quasi-energy description

with the Keldysh Green’s function technique to obtain the semiclassical master equation

for a one-dimensional band of strongly and rapidly driven electrons in the presence of

weak scattering by phonons. We solve these equations numerically to find the electron

distribution function for a cosine energy band at a given driving field frequency (fixed

at Ω/2π = 1THz) and the field amplitude chosen to suppress the generation of the

principal harmonic. This electron distribution is used as an input for calculating the

time-dependent current and the intensity radiated at different harmonics of the driving

field frequency. We use these results to find the optimal dimensions of a periodically

modulated InAs/InP nanowire, which would yield the most efficient frequency tripling

of 1THz radiation.
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5.2 Nonequilibrium driven system

We consider a single-band one-dimensional metallic wire driven by a harmonic

electric field with the amplitude E0 and frequency Ω, and coupled to substrate phonons,

H = H0 +He−ph +Hph, (5.1)

where the electron, electron-phonon, and phonon Hamiltonians are, respectively

H0 =
�

k

ε
�
k +A(t)

�
c†
k
ck, (5.2)

He−ph = V −1/2
�

q,k

Mq,kc
†
k+q�

ck(bq + b†−q), (5.3)

Hph =
�

q

ωqb
†
qbq. (5.4)

Here ck (c†
k
) is the annihilation (creation) operator for an electron with one-dimensional

momentum �k and energy ε(k). To apply our results to a periodically modulated

nanowire, we assume a tight-binding model with the electronic spectrum,

ε(k) = −2J cos(ka), (5.5)

where J is the hopping matrix element and a is the period of the potential along the

chain. The electric field is incorporated into the Hamiltonian through the vector po-

tential A(t) = A0 sinΩt with A0 = eE0/�Ω representing the vector potential of the

driving field. Phonon annihilation (creation) operators bq and b†q are labeled with the

three-dimensional wavevector q ≡ (q�,q⊥) and ωq is the phonon frequency (electron

spin and phonon branch indices are suppressed). The factors Mq,k = αq,k(�/2ωq)1/2

are the matrix elements for electron-phonon scattering.

We ignore the effects of disorder or electron-electron interactions, and consider

lattice phonons in thermal equilibrium at temperature �/kBβ. We do not include di-

rectly the scattering by phonon modes of the nanowire, assuming that they are strongly

hybridized with those of the substrate, with the corresponding effects incorporated in the

matrix elements Mq,k. The electron-phonon coupling is considered to be weak, meaning

that the phonon scattering time is long compared to the period τ ≡ 2π/Ω of the driving

field.

The dynamics of the strongly-driven electrons with the Hamiltonian (5.2) is

characterized by non-monotonous phases

ϕk(t) =

�
t

0
dt�ε

�
k +A(t�)

�
. (5.6)
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The phase accumulated over a period, ϕk(τ), can be expressed in terms of the average

particle energy with the momentum �k,

�ε(k +A)� ≡ τ−1
�

τ

0
dt ε

�
k +A(t)

�
; (5.7)

clearly, this energy can be also identified as the Floquet energy of a single-electron state.

While Eq. (5.7) does not include the usual additive uncertainty mΩ, this particular

choice has the advantage that in the weak-field limit, A0 → 0, �ε(k + A)� recovers the

zero-field spectrum ε(k).

The average energy (5.7) also coincides with that introduced in the theory of

dynamical localization [57,178]. Dynamical localization occurs when the effective band

becomes flat, i.e., �ε(k+A)� → 0. The corresponding condition is most easily obtained

in the special case of tight-binding model with the spectrum (5.5),

�ε(k +A)� = −2 �J cos(ka), �J ≡ J J0(A0a), (5.8)

where J0(z) is the zeroth order Bessel function. With the driving field amplitude in-

creasing from zero the bandwidth is gradually reduced; it switches sign at the roots of

the Bessel function, A0 a = ζ0n. The first time this happens corresponds to the electric

field E0 = ζ01�Ω/ea, where ζ01 ≈ 2.405.

We obtain the instantaneous current by averaging the canonical velocity oper-

ator ∂H/∂A over the electron distribution function fk ≡ �c†
k
ck�,

i(t) = Cf (t) sinA(t)a+ Sf (t) cosA(t)a, (5.9)

where we assumed the tight-binding spectrum (5.5) and used the definitions

Cf (t) ≡ 2J

�
dk

2π
cos(k)fk, Sf (t) ≡ 2J

�
dk

2π
sin(k)fk. (5.10)

In the limit of weak scattering, the distribution function fk is time- indepen-

dent and always symmetric, f−k = fk. Thus, Sf (t) = 0 while Cf (t) = Cf is a time-

independent pre-factor. The Fourier components of the current are obtained directly,

i(t) = 2Cf

�

m=1,3,5,...

Jm(A0a) sin(mΩt), (5.11)

where the summation is over the odd harmonicsm. By choosing A0a = ζ11 ≈ 3.8317, the

first harmonic can be fully suppressed, which leaves the third harmonic dominant. The

maximal value for the fraction of the energy emitted into the third harmonic (93.34%)

is found in close vicinity of this amplitude, see Fig. 5.2.
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Figure 5.2: Normalized magnitude squared of the Fourier harmonics of the instanta-
neous current, |Im|2, for m = 1 (red dashed), m = 3 (black, solid), and m = 5 (blue,
dotted) plotted as a function of the dimensionless amplitude of the vector potential of
the driving field, see Eq. (5.2). The intensities |Im|2 correspond to the power emitted
in the corresponding harmonics when multiple nanowires are used in a planar geometry,
see Fig. 5.1 (b),(c).

We use the Keldysh non-equilibrium Green’s function (GF) formalism [70, 72,

73, 179] along with a perturbation theory expansion with respect to the entire time-

dependent electron Hamiltonian (5.2); the corresponding evolution is solved exactly

in terms of the phases (5.6). Previously, related approaches have been used, e.g., for

describing ionization of atoms [180,181] and the high-order harmonic generation [63] in

the field of ultrashort laser pulses. Here, instead of solving the corresponding equations

numerically, we take the limit of weak electron-phonon coupling and analytically derive

the semiclassical master equation for electron distribution function averaged over the

period of the driving field, see Eqs. (5.17) and (5.18). The same master equation can

also be derived from the formalism by Konstantinov and Perel’ [182] with the help of

an appropriate resummation of the perturbation series [183].

In the interaction representation with respect to the time-dependent Hamilto-

nian (5.2), the electron operators acquire time-dependence e−iϕk(t)ck with quasiperiodic

phases (5.6). We separate these phases by defining the “lower-case” GFs

gk(t2, t1) = e−iϕk(t2)Gk(t2, t1)e
iϕk(t1), (5.12)

where the “upper-case” Gk(t2, t1) is any of the conventional GFs introduced in the

Keldysh formalism [70,72,73,179]. These phases introduce rapid oscillations in the self-

energy, making the direct Wigner transformation difficult. We notice, however, that

in the limit of weak electron-phonon coupling, the GFs (5.12) are expected to change

only weakly when both time arguments are incremented by the driving period τ . This
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implies that in the following decomposition,

gk(t2, t1) =
�

m

gk,m(t, T )e−imΩT , (5.13)

t ≡ t2 − t1 is the “fast” time, while T ≡ (t2 + t1)/2 is the “slow” time when it appears

as an argument of thus defined Floquet components gk,m(t, T ) of the GF. The Dyson

equations for thus defined Keldysh gK
k,m

and retarded gR
k,m

GFs [73] have the form

(i∂T +mΩ)gK
k,m

(t, T ) = IKcoll, (5.14)

i∂tg
R

k,m
(t, T ) = δm,0 δ(t) + IRcoll, (5.15)

where IKcoll and IRcoll are the collision integrals originating from the corresponding self-

energy functions. The collision integrals being relatively small, both gK
k,m

and gR
k,m

are

dominated by the m = 0 components.

5.3 Master equation derivation

To derive the semiclassical master equation, we write the equations for the

m = 0 components of the “lesser” g< and “greater” g> GFs [73], perform the Wigner

transformation replacing the fast time variable t by the frequency ω, and use a version

of the Generalized Kadanoff-Baym approximation [184,185]

g<
k,0(ω, T ) = iAk,0(ω, T )fk(T ), . (5.16)

The corresponding spectral function, Ak,0(ω, T ) = i[g<
k,0(ω, T )−g>

k,0(ω, T )] = 2 ImgR
k,0(ω, T ),

is not solved for self-consistently, we assume a sharply peaked Lorentzian function in

order to obtain a phenomenological study of the driven system and define the non-

equilibrium electron distribution function fk(T ) from the function g<. The width of the

Lorentzian Γ is a phenomenological constant and it not solved for self-consistently. It is

assumed to be much smaller than the bandwidth of the system and much smaller than

the frequency of the driving field (Γ � 4J , Γ � Ω).

The use of the Kadanoff-Baym approximation restricts us to systems with

momentum-independent scattering. Additionally the particle distribution must be sharply

peaked. This requires that the electron-phonon coupling be weak, the bandwidth of the

renormalized energy is sufficiently larger than the self-energy, and assumes that the

electron spectrum renormalization has been included in the Hamiltonian (5.2).

The resulting master equation for weak electron-phonon interactions has the
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following standard form

d

dt
fk(T ) =

�
dk�

2π

�
Γk,k� [1− fk�(T )]fk(T )

−Γk�,k fk�(T )[1− fk(T )]
�
, (5.17)

where the transition rates are

Γk,k� = 2
�

m

|Sk,k�(m)|2
� ∞

0
dωWk,k�(ω)

×
�
(nω + 1)δ(∆ε(m)

k,k� − �ω) + nωδ(∆ε(m)
k,k� + �ω)

�
. (5.18)

Here Wk,k�(ω) is the phonon spectral function (density of states weighted by the square

of the coupling) for a given momentum q� = k� − k along the wire, see Eq. (5.3),

nω ≡ [exp(βω)− 1]−1 is the phonon distribution function, and the energy increment

∆ε(m)
k,k� ≡ �ε(k +A)� − �ε(k� +A)� −m �Ω, (5.19)

is the energy carried in or out by phonons, depending on its sign. Note that this energy

includes m quanta of the driving field, emitted or absorbed, depending on the sign of

m = 0,±1, . . .. The matrix elements Sk,k�(m) are the Fourier expansion coefficients of

the product of the two phase factors, eiδϕk(t)−iδϕk� (t), where δϕk(t) ≡ ϕk(t)− t�ε(k+A)�
is the periodic part of the phase. They satisfy the sum rule

∞�

m=−∞
|Sk,k�(m)|2 = 1. (5.20)

Clearly, the equilibrium Fermi distribution for fk is only obtained in the limit of small

electric field amplitudes, such that Sk,k�(m) withm = 0 gives the dominant contribution.

5.4 Numerical simulation

The following results have been obtained by numerically finding the station-

ary solution of the discretized version of the master equation (5.17) with transition

rates (5.18). A simple model for the phonon spectral function, Wk,k�(ω) = γ2 θ(ω −
s |k − k�|), was used, with the sound speed s = 5 × 103m/s as appropriate for typical

3D acoustical phonons. Since we assume no other scattering mechanisms, the quasi-

equilibrium distribution functions fk and other results do not depend on the magnitude

of the electron-phonon coupling γ2. Additional results are found using a more compre-

hensive phonon model is used which includes both acoustic and optic phonons similar

to the model used in Wacker’s review paper [174]. For sufficiently sharp optic phonon

modes, the qualitative behavior of the third harmonic is unaffected (Γopt ∼ 1K).

91



We fix the phonon temperature at 4.2K, the lattice period a = 8.64 nm, the

average electron filling at 1/2 and choose the driving field frequency Ω/2π = 1012 Hz

(energy �Ω ≈ 4.14meV). Also, the amplitude A0a = ζ11 ≈ 3.8317 is fixed, which

corresponds to the point where the first harmonic generation is fully suppressed [see

Fig. 5.2]. At this point the effective coupling is �J = J J0(ζ11) ≈ −0.403 J , which creates

an inverted and somewhat narrowed band. The effective bandwidth is smaller than �Ω
for J < 2.57meV.

In Fig. 5.3, we show the intensity |I3|2 of the radiated third harmonic (in

arbitrary units) as a function of the tight-binding hopping parameter J . The overall

upward trend reflects the linear scaling of the current with J . The plot has a series of

pronounced maxima and minima related to the structure of the distribution function fk,

see Fig. 5.4. Indeed, at the first maximum of the radiated intensity |I3|2, J = 2.7meV,

the distribution function has a well-defined minimum at k = 0 and symmetric maxima

at k = ±π/a [Fig. 5.4(b)]; notice the population inversion consistent with negative �J .
On the other hand, the distribution in Fig. 5.4(c) corresponding to the first minimum of

radiated intensity, J = 4.5meV, is much flatter. This flattening can be traced to a sharp

increase of the transition rates connecting the regions of momentum space near k = 0

and k = π/a. This is illustrated in Fig. 5.5, where transition rates between k = 0 and

k = π/a are shown. The corresponding phases δϕπ/a = −δϕ0 have only even harmonics

mΩ, m = 2, 4, . . ., and the threshold values of J for different m correspond to sharp

maxima of Γ0,π/a.

In Fig. 5.6, we show how the average power P radiated into the phonon modes

scales with the tight-binding parameter J . While general dependence on J is monotonic,

at J = 4.5meV, where the third harmonic has a minimum, P changes slope.

5.5 Proposed nanowire design

The simulation results discussed above suggest that the optimal system for

third harmonic generation would be a one-dimensional metallic conductor with an un-

renormalized bandwidth close to 2.6 times the energy �Ω of the driving field quanta

(bandwidth of about 11meV for Ω/2π = 1THz is needed), and a wide gap to reduce

the absorption of the generated harmonics. One option to satisfy these requirements is

to use modulated semiconductor nanowires. Here we estimate the growth parameters
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Figure 5.3: Magnitude squared of the third harmonic of the instantaneous current (ar-
bitrary units), plotted as a function of the tight-binding parameter J , computed with
Nk = 37, 43, 47, 51 discrete momentum points as indicated in the caption. See text for
other simulation parameters. The pronounced minima are caused by the flattening of
the distribution function near thresholds of m-photon-assisted scattering between the
vicinities of k = 0 and k = ±π/a, with m even.

of an InAs/InP nanowire [186], which would have a near optimal band structure for

generating the third harmonic of a 1THz driving field.

We calculate the band structure of the modulated nanowire modeling it as

a stack of cylinders with isotropic (bulk) electron effective masses m∗
InAs = 0.073me

and m∗
InP = 0.027me for the InAs and InP carriers respectively, as appropriate for

the nanowire diameter we used [187]. We used the barrier height of V0 = 0.636 eV,

found from the four-band model simulations, which is close to experimentally observed

[186, 188] 0.6 eV. To ensure a relatively large gap, we chose the nanowire diameter d =

20nm, and InAs well width w = 6.0 nm. Separating the radial and angular parts of the

corresponding wave functions, we obtained a version of the Kronig-Penney model with

effective mass modulation, and effective barrier dependent on the transverse momentum

�κnl. We plot the first few allowed energy bads as a function of InP barrier width b in

Fig. 5.7.

In particular, we conclude that an InAs/InP nanowire of diameter d = 20.0 nm,

well width of w = 6.0 nm, and barrier width of b = 2.64 nm [Fig. 5.1 (a)] would have the

lowest band with a width of approximately 10.9meV. The next band would be separated

by a gap of 280meV [Fig. 5.7]. These parameters are near optimal for third harmonic

generation at Ω/2π = 1THz.

One possible device design could involve depositing of a number of parallel
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Figure 5.4: Solid lines: the stationary distribution functions obtained by solving dis-
cretized versions of Eqs. (5.17), (5.18) with Nk = 51 momentum points and the tight-
binding parameters J as indicated. See text for other simulation parameters. Dashed
lines: equilibrium Fermi distribution functions.
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Figure 5.5: The transition rate (5.18) (arbitrary units) for scattering between the sites
at k = −π/a and k = 0 (black, solid) and the individual contributions from m-photon
assisted processes as indicated. The vertical dashed line at J = 5.1meV indicates the
threshold for the m = 2 transition, |4 �J | = 2�Ω; the peaks to the left and to the right of
this point correspond to phonon emission and absorption, respectively.
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Figure 5.6: Scaling of the average power (arbitrary units) dissipated into the phonon
modes as a function of the tight-binding parameter J . The four curves on top of each
other correspond to the same numbers of discrete momentum points Nk as in Fig. 5.3.
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Figure 5.7: Energies of the three lowest bands computed using the Kronig-Penney model
with effective mass modulation corresponding to an InAs/InP nanowire with diameter
d = 20nm, InAs well width w = 6.0 nm, plotted as a function of InP barrier width,
b. The labels indicate the radial n and angular l quantum numbers of dimensional
quantization. The dashed line at b = 2.64 nm gives a bandwidth 10.9meV, or tight-
binding parameter J = 2.7, corresponding to the first maximum of the third harmonic
in Fig. 5.3.
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modulated nanowires on a substrate, with an s-polarized driving field incident on the

surface at angle θ so that the electric field of the wave be directed along the nanowires

[Fig. 5.1 (b),(c)]. Then both the reflected signal and the first harmonic are going to

be propagating at the same reflection angle θ, while the propagation direction of the

third harmonic can be found from the Snell’s law, sin θ = 3 sinφ, which accounts for the

wavelengths ratio.

To derive the semiclassical master equation, or a one-dimensional band of

strongly and rapidly driven electrons, we combine the Floquet quasi-energy descrip-

tion with the Keldysh Green’s function technique. The result is the master equation for

a strongly driven system weakly coupled to phonon modes. We solve these equations

numerically to find the electron distribution function for a cosine energy band at a given

driving field frequency (fixed at Ω/2π = 1THz) and the field amplitude chosen to sup-

press the generation of the principal harmonic. This electron distribution is used as an

input for calculating the time-dependent current and the intensity radiated at different

harmonics of the driving field frequency.

We do not consider the effects of disorder or electron-electron interactions, and

only consider lattice phonons in thermal equilibrium at temperature �/kBβ. We do not

include the scattering by phonon modes of the nanowire, assuming that they are strongly

hybridized with those of the substrate. The electron-phonon coupling is considered to be

weak, meaning that the phonon scattering time is long compared to the period τ ≡ 2π/Ω

of the driving field. The Hamiltonian of the system under consideration is given in Eq.

(5.1).

5.6 Robustness of results to spectral function broadening

To derive the semiclassical master equation, the Kadanoff-Baym ansatz was

used to define the electron distribution function from the zero-mode function g<,

g<
k,0(ω, T ) = iAk,0(ω, T )fk(T ), . (5.21)

The corresponding spectral function, Ak,0(ω, T ) = i[g<
k,0(ω, T )−g>

k,0(ω, T )] = 2 imgR
k,0(ω, T ),

was approximated as a delta function.

We derive the master equation using a phenomenological model that has a

spectral function with finite width. Beginning with the left-right subtracted Dyson
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equations,

[g−1
0 , g<

k
(ω, T )] =

�
dqdη

�

M

|Sk,k−q(M)|2D>

q (η)g
>

k−q
(��k� − ��k−q�+MΩ− ω − η, T )g<

k
(ω, T )

−
�

dqdη
�

M

|Sk,k−q(M)|2D<

q (η)g
<

k−q
(��k� − ��k−q�+MΩ− ω − η, T )g>

k
(ω, T ),

(5.22)

the model is revised to include a broadened spectral function. As in the Kadanoff-Baym

ansatz, we assume the functions g<,> can be connected to the electron distribution func-

tion through the spectral function. From the general definition of the spectral function

Ak,0(ω, T ) = i[g<
k,0(ω, T ) − g>

k,0(ω, T )], the imaginary part of the Green’s functions is

kept finite as Γ and the redefined spectral function becomes ak(ω, T ) =
2Γ

(ω)2 + Γ2
. The

width is a phenomenological constant and it not solved for self-consistently.

After substituting for the functions g<,> in the Dyson equations, the equation

is integrated over the transferred energy ω. The left-hand side of the Dyson equation is

the same as when the Kadanoff-Baym ansatz is used;

�
dω

2π
[g−1

0 , iak(ω, T )fk(T )] = i
∂

∂T
fk(T ). (5.23)

On the right-hand side, the convolution of the spectral functions alters the transition

rates,

Γk−q,k = π2
�

dη
d�

2π

�

M

|Sk−q,k(M)|2D>

q (η)
�
ak−q(��k� − ��k−q�+MΩ− ω − η,Γ)ak(ω,Γ)

�

Γk,k−q = 4π2
�

dη
d�

2π

�

M

|Sk,k−q(M)|2D<

q (η)
�
ak(��k� − ��k−q�+MΩ− ω − η,Γ)ak−q(ω,Γ)

�

(5.24)

From this model it is possible to obtain phenomenological results for the driven system

and define a non-equilibrium electron distribution function fk(T ) from the function g<.

We show the effect of the width of the electron spectral function on the third

harmonic amplitude is shown in Fig. 5.8. The results presented were calculated with a

the spectral function modeled as a Lorentzian function, sharply peaked at the transferred

energy ω and with finite width Γ. The width is assumed to be much smaller than the

bandwidth of the system and much smaller than the frequency of the driving field

(Γ � 4J , Γ � Ω). The intensity |I3|2 of the radiated third harmonic (in arbitrary

units) is plotted as a function of the tight-binding hopping parameter J . Acoustic

phonon modes are the only scattering mode included. The width of the electron spectral

97



������������
���
���
��
��
��
��
��
��
���
���
���
�����
�������������������������

��
�
�
�
��
�
���
�
��
���
��
�
���
��
��������

������������
���
���
��
��
��
��
��
��
���
���
����
�����
�������������������������

��
��
��
�
��
���
��
��
�
����
���
���
�����

������������
���
���
��
��
��
��
��
��
���
���
����
�����
�������������������������

�
��
��
�
���
����
��
��
��
��
����
���
��
��

�
�
� � � � �

�

�

�
� �

� �
�

�

�

�
�
�

� �
�

�

�

�
�
�

� �
�

�

2 4 6

0.5

1.0

1.5

2.0
|I3|2

J(meV)

●
●
●Γ = 10−4

Γ = 1 meV
Γ = 10−1

Figure 5.8: Magnitude squared of the third harmonic of the instantaneous current (ar-
bitrary units), plotted as a function of the tight-binding parameter J , computed with
Γ = 10−4 meV,10−1 meV,1 meV as indicated in the caption. See text for other simula-
tion parameters. The results are overlaid on the results discussed in Section (5.4).

function is varied and it is seen that for spectral widths less than the driving frequency,

the qualitative shape of the third harmonic amplitude is unaffected.

The phonon spectral function W (ω) is determined by the modes used to ther-

malize the system. The results in the main text were obtained with a simple model

for the phonon spectral function, Wk,k�(ω) = γ2 θ(ω − s |k − k�|), was used, with the

sound speed s = 5 × 103m/s as appropriate for typical 3D acoustical phonons. We in-

clude results for when the model is thermalized with acoustic and optic phonon modes.

The optic mode is modeled as a Lorentzian distribution of width σ and peaked at a

given energy ωopt. The spectral function is modified as, Wk,k�(ω) = Wacous + Wopt =

γ2 θ(ω − s |k − k�|) + αL(ω − ωopt, σ). For sufficiently sharp optic phonon modes, the

qualitative behavior of the third harmonic is unaffected (σ ∼ 1K). Additionally, the

intensity of the optic mode cannot be too large without severely affecting the third har-

monic amplitude. The constant α is included to ensure the relative intensities of the

acoustic and optic mode are of the same order.

We fix the phonon temperature at 4.2K, the lattice period a = 8.64 nm, the

average electron filling at 1/2 and choose the driving field frequency Ω/2π = 1012 Hz

(energy �Ω ≈ 4.14meV). Also, the amplitude A0a = ζ11 ≈ 3.8317 is fixed, which

corresponds to the point where the first harmonic generation is fully suppressed. At this

point the effective coupling is �J = J J0(ζ11) ≈ −0.403 J , which creates an inverted and

somewhat narrowed band. The effective bandwidth is smaller than �Ω for J < 2.57meV.

In Fig. 5.9, we show the intensity |I3|2 of the radiated third harmonic (in

arbitrary units) as a function of the tight-binding hopping parameter J . The optic mode
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amplitude α is determined by the relative intensities between the optic and acoustic

modes, �
ωopt

0
dω Wacous(ω) = α

�
ωMAX

0
dω L(ω − ωopt, σ), (5.25)

and modeled as a Lorentzian distribution with σ = 0.4 meV.

In Fig. 5.10, we show the intensity |I3|2 of the radiated third harmonic (in

arbitrary units) as a function of the tight-binding hopping parameter J . The optic

mode amplitude is fixed at 2.5% of the acoustic mode amplitude and modeled as a

Lorentzian distribution of width 0.4 meV.
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Figure 5.9: Magnitude squared of the third harmonic of the instantaneous current (ar-
bitrary units), plotted as a function of the tight-binding parameter J , computed with
ωopt =

Ω
3 ,

2Ω
3 ,Ω, 4Ω3 , 2Ω as indicated in the caption. The scaling amplitude of the optic

mode is dependent on the relative intensity of the optic and acoustic modes. See text
for other simulation parameters. The results are overlaid on the results discussed in the
previous sections.

5.7 Conclusions

In this work we suggest a possibility that frequency multiplication due to

periodically-driven Bloch oscillation may be possible in a quas-istationary setting, with

the help of a narrow-band one-dimensional conductor. A quasi-equilibrium electron dis-

tribution is possible because the energy absorbed from the driving field is continuously

dissipated by the bulk phonons.

For a periodically modulated InAs/InP nanowire with the period a = 8.64 nm,

and the driving field frequency Ω/2π = 1THz, the emission of the first harmonic is

suppressed with the dimensionless vector potential amplitude A0 a ≈ 3.83, which gives
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Figure 5.10: Magnitude squared of the third harmonic of the instantaneous current
(arbitrary units), plotted as a function of the tight-binding parameter J , computed with
ωopt =

Ω
3 ,

2Ω
3 ,Ω, 4Ω3 , 2Ω as indicated in the caption. The scaling amplitude of the optic

mode is fixed at 2.5% of the acoustic mode. See text for other simulation parameters.
The results are overlaid on the results discussed in previous sections.

the electric field amplitude E0 = �ΩA0/e ≈ 1.8 × 106V/m, corresponding to the en-

ergy flux of about 0.5MWt/cm2. At this kind of power, many effects could lead to

eventual run-away overheating of the system, e.g., direct absorption by the substrate,

or even a relatively weak disorder scattering in the nanowire. We hope that a quasi-

continuous operation would still be possible, with the driving field pulse duration of a

few microseconds, as opposed to few picoseconds in the experiment [64].
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Chapter 6

Percolation theory

In a given space, either continuous or discrete, percolation can be defined by

the probability that a random process will generate a connected object (cluster) that

is infinitely large or contains a significant fraction of vertices. A connected discrete d-

dimensional space is known as a graph and can be finite or infinite. It is defined by two

sets, one a set of integers labeling points called vertices and another a set of Zd vectors

labeling the connections between vertices, called edges. The two sets fully describe a

graph, G = (V,E). This chapter introduces the language used to describe percolation

on graphs, and the methods used to find the threshold of the percolation transition.

6.1 Definition of percolation on graphs

For a given graph G = (V,E) a probability measure can be associated with

either the vertex set or the edge set, which describes the probability that a given vertex

is open or closed, or whether a given edge is open or closed. If the probability measure

is associated with the elements of the vertex set being open or closed, then the process

being described is that of site percolation. Whereas if the probability measure is asso-

ciated with the elements of the edge set being open or closed, then the process is that

of edge percolation. The two processes can be related to each other, if an edge is open,

that can be mapped to the equivalent probability that two adjacent vertices are open.

Adjacency on a graph is defined by whether an edge exists between two vertices.

The full set of connections on a graph can be catalogued and arraigned into a matrix,

called the adjacency matrix which is helpful in studying percolation on graphs and will

be further discussed in Section (6.3). Additionally, two vertices which are not adjacent

may be connected by a connected set of edges, called a path. Finally, a vertex may be

connected to itself if a path returns to the starting vertex, this path is called a cycle.
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These concepts are shown in Figure (6.1). For site percolation, the vertices of a graph

(a) (b)

(c)

Figure 6.1: Generic graph definitions: (a) A generic graph G = (V,E) with a pair of
adjacent vertices highlighted (red). (b) Connection of two non-adjacent vertices by a
path (blue). (c) Connection of a vertex to itself by a cycle (green).

can be assigned to the state ’open’ with a probability (p) and ’closed’ with probability

(1 − p). For the general background given in this section, it will be assumed that all

vertices have the same independent probability to be open or closed. In later sections the

situation where probability is site-dependent is explored and also the situation where

the probability of adjacent vertices being open is no longer independent (correlated

percolation). When a percolation process is defined on a given graph, the result is a

random sub-graph where p|V | of the original vertices are retained. It is possible for the

random graph generated after a percolation process to have a group of vertices which

nearly cover the original graph. If adjacent vertices are both open, they form a group

known as a cluster C(n). The size of a cluster (n) is equal to the number of vertices

contained in it. Shown in Figure (6.3)(a) are clusters of size C(n = 1), C(n = 2) and in

Figure (6.3)(b) C(n = 7). As is seen in Figure (6.2) it is possible for a cluster of open

vertices to contain nearly all the vertices of the original graph. Such a cluster is said to

span the graph. The percolation transition is defined in terms of the probability that

such a spanning cluster exists, or in the instance of an infinite graph, the existence of

an infinitely large cluster. For an infinite graph, where sites are open with probability

102



(a) (b)

(c)

Figure 6.2: Generic percolation definitions (a) A generic graph G = (V,E) before perco-
lation. (b) After a process where p|V | of the original vertices are opened. (c) Depending
on the value of (p) is it possible that a large majority of the original vertices are retained,
and for a group which nearly covers the original graph.

(a) (b)

Figure 6.3: (a) Vertices on a graph may be open (yellow) or closed (black) and may be
adjacent or not. If adjacent vertices are open they form a cluster. (b) A large cluster of
open vertices.
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(p) percolation is defined as the existence of an cluster of infinite size, C(n = ∞) .

To describe this event, an additional probability quantity is defined, θ(p) which is the

probability that percolation occurs. Explicitly,

θ(p) = Pp(C(n = ∞)). (6.1)

It is easy to identify two values for θ(p). For (p = 0), θ(p = 0) = 0, that is if no

vertices are open there is zero probability percolation occurs. Likewise for (p = 1) then

θ(p = 1) = 1, if all vertices are open then percolation occurs with unit probability. Of

interest is what happens to θ(p) as the probability of a vertex to be open is increased

from 0 → 1. Specifically, is there a value for pT for which p < pT there is probability of

an infinite cluster, whereas for p > pT an infinite cluster occurs almost certainly.

6.2 Mean field theory

Mean field (MF) theory is a method for calculating macroscopic quantities of

complex systems, fundamentally by only including complexity in immediate vicinity of

a given point. First defined for polymerization, mean field theory was used to find the

percolation threshold on trees [74,105–107]. The approach on a tree begins with defining

the probability of a branch of finite length growing from a given root, arbitrarily chosen

in a tree. The further growth of the branch is dependent only on the neighboring vertices

of the root, and whether they are open or closed. The overall complexity of the tree

graph is not considered, but the MF approach provides a lowest order approximation to

complex graphs. In Chapter 7 the mean-field approach is extended to include second-

generation connections.

6.3 Percolation threshold and adjacency matrix

Two vertices are adjacent if an edge exists between them. On a graph, the

full set of connections can be arranged into a matrix A, with nonzero elements aij if an

edge exists between the vertices (i) and (j). The rows of A are defined by all vertices

(j) that are connected from a given vertex (i) and the columns of A are defined by all

vertices (i) that connect to a given vertex (j). Undirected edges (i, j) allow paths from

i → j and j → i, and the adjacency matrix A is symmetric. If the edges of a graph

(i, j) only allows for a path to travel from i → j, then the graph is directed and A is

not symmetric. Undirected graphs will be distinguished as G and directed graphs as D.

In Chapter (7) a mean field theory is derived using non-backtracking, directed graphs.

In Chapter (8) the process of correlated percolation is explored on undirected graphs.
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From an adjacency matrix, the conditions that define a percolation threshold

can be established. The average size of a connected cluster on a graph can be defined by

higher orders of the adjacency matrix. As stated above, the elements of A are non-zero

if a connection between vertices (i,j). The elements of A × A . . .A = An defines the

number of n-length walks between vertices (i,j).

A random graph G = {V,E} can be generated from an original graph G0 =

{V0, E0} by selectring random vertices of the original graph to be open with a pre-

defined probability measure. As a result, the adjacency matrix of G is the adjacency

matrix A defined from G0 with the elements weighted by p. The scaled matrix gives the

connections possible from a given vertex (i) which is known to be open. The connections

i → j are dependent on the probability that vertex (j) is open.

For uncorrelated, unweighted percolation, the probability measure is indepen-

dent for all vertices and also equivalent for all vertices. Thus,

A(G) = A(G0)p. (6.2)

The n-order productAn gives the n-length walks between any two vertices of G0. Replac-

ing the original adjacency matrix with the scaled expression Anpn gives the n-length

walks between any two vertices and is dependent on the probability all intermediate

vertices on the walk are open.

Following the method in Ref. [125], the adjacency matrix is used to define the

average cluster size. An N-length, normalized, vector is defined,

|1� = 1√
N

|11 . . . 11�, (6.3)

where N = |V0|. Using the scaled adjacency matrix and the all-one vector, all possible

endpoints of an n-length walk beginning from all possible initial points can be defined,

Anpn|1�. Including the probability that the initial point is open,

�1|pAnpn|1�, (6.4)

gives the probability that a cluster of size n exists on the graph G. The sum over all

cluster sizes defines the average cluster size:

�n� =
�

n

�1|pAnpn|1�. (6.5)

The sum over n is the sum over the spectral norm of An,

�

n

�1|pAnpn|1� = pn+1|An|2

≤ pn+1|A|n2 = pn+1ρ(A)n
(6.6)
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If ρ(A)p < 1 is true, the sum converges and a bound on the average cluster size is

established:

�n� ≤ p

(1− λmax(A)p)
. (6.7)

The spectral norm (ρ(A)) has been replaced by the maximum eigenvalue of A. This

method is applied to weighted and correlated percolation in Chapter (8) with appropriate

re-definitions of the scaled adjacency matrix.

In Eq. 6.7 the average cluster size has a finite bound if the probability and

the spectral radius of A satisfy pρ(A) < 1. If pρ(A) = 1 the average cluster size is

unbounded and the system is above the percolation threshold.

Equivalently, the average cluster size can be expressed as a sum over a proba-

bility distribution,

�n� =
�

n

nf(n). (6.8)

If a threshold cluster size is established by a finite fraction of vertices being contained

in a cluster:

6.4 Site dependent and correlated percolation

Site percolation, as described in Section (6.1) considers how likely an infinite

cluster will form on a graph when individual sites are independently opened or closed.

That is, the probability that a vertex is open (or closed) is the same for all vertices and

independent of whether neighboring site are open or closed. It is also possible to have

percolation processes where each vertex is assigned a specific probability to be open (or

closed), (vi ∈ V) is open with probability pi. This leads to the process of site-dependent

percolation. Its effect on the percolation threshold is described in Section (8.5).

It is possible to consider a process by which percolation occurs with correlated,

site-dependent probabilities. Instead of considering whether single sites are open or

closed, a set of vertices of size (n) and a specific shape are defined as a animal. If an

animal is placed on a given vertex, it is immediately known that the (n) vertices in the

animal are all open. Percolation occurs by the overlap of animals. The growth of a

cluster through the overlap of animals is shown in Figure (6.4).

6.5 Line graphs

In Chapter (7) a tighter bound is established which relies on the Hashimoto’s

matrix [189], defining the connections possible in a line digraph which has no backtrack-
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(a) (b)

Figure 6.4: (a) Generic animals of size n = 3 and n = 4. (b) Growth of a cluster of size
n = 6 by overlapping animals, overlapping vertex highlighted (red).

ing paths. The adjacency matrix discussed in Section (6.3) is defined by the adjacencies

between vertices, there is also a matrix which describes the adjacent edges of a graph.

Such a matrix is defined by a line graph and is well-known in graph theory [190]. From

an initial graph G = {V, E} the line graph L(G) has a vertex set defined from the edge

set E . Now adjacencies are defined by undirected edges which are incident on the same

vertex, or for the case of directed graph, two directed edges are adjacent if one is incident

on a vertex while the second is incident from the same vertex. The Hashimoto’s matrix

is a specific class of line digraph which has no symmetric pairs and paths can only be

defined in a forward direction.

The method of single cycle unwrapping, discussed in Chapter (7) generates a

forward only line digraph (FOLD), such a matrix has adjacencies defined in a Hashimoto’s

matrix. From an initially undirected graph with cycles, a directed graph is defined by

replacing all undirected edges with a symmetric pair of directed edges. Symmetric di-

rected edges will generate symmetric pairs of edges in a line graph. From the directed

graph, a line digraph is formed and symmetric edges are removed such that only for-

ward paths are possible. After cycle unwrapping is done the result is a tree graph with

directed edges that has no back-tracking paths.
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Chapter 7

Tight lower bound for percolation

threshold on an infinite graph

(The material in this section was submitted for publication in Physics Review

Letters and a version of this paper has been published on the arXiv [191])

We construct a tight lower bound for the site percolation threshold on an

infinite graph, which becomes exact for an infinite tree. The bound is given by the inverse

of the maximal eigenvalue of the Hashimoto matrix used to count non-backtracking

walks on the original graph. Our bound always exceeds the inverse spectral radius of

the graph’s adjacency matrix, and it is also generally tighter than the existing bound in

terms of the maximum degree. We give a constructive existence proof in the case of a

connected infinite quasi-transitive graph, a graph-theoretic analog of a translationally-

invariant system.

7.1 Introduction

An ability to process and store large amounts of information lead to emergence

of big data in many areas of research and applications. This caused a renewed interest in

graph theory as a tool for describing complex connections in various kinds of networks:

social, biological, technological, etc. [192–196] In particular, percolation transition on

graphs has been used to describe internet stability, spread of contagious diseases, and

emergence of viral videos. Percolation has also been applied to establish the existence

of the decoding threshold in certain classes of quantum error-correcting codes [197].

A degree of a vertex in a graph is the number of its neighbors. Degree distri-

bution is a characteristic easy to extract empirically. A simple approach for network

modeling is to study random graphs with the given degree distribution [110, 198–201].
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In the absence of correlations, the site percolation threshold on such a random graph

is [110,198–200]

pc =
�d�

�d2� − �d� , (7.1)

where �dm� ≡
�

i
dm
i
/n is the m-th moment of the vertex degree distribution and the

graph order, n, is the number of vertices in the graph. While this result is very ap-

pealing in its simplicity, Eq. (7.1) has no predictive power for any actual network where

correlations between degrees or enhanced connectivity (“clustering”) of nearby vertices

may be present. Substantial effort has been spent on attempts to account for such

correlations [202–205] in random graphs. However, such approaches can only account

for local correlations and are flawed when applied to artificial networks like the power

grid, which may have a carefully designed robust backbone (e.g., as in Example 7.1).

Such strong correlations make Eq. (7.1) or its versions accounting for local correlations

seemingly irrelevant.

There are only a handful of results on percolation for general graphs [111,206].

These include the exact lower bound for the site percolation threshold for any graph

with the maximum vertex degree dmax [207],

pc ≥ (dmax − 1)−1, (7.2)

which coincides with that for the bond percolation (Theorem 1.2 in reference [111]. Both

bounds are achieved on d-regular tree Td. Unfortunately, for graphs with wide degree

distributions, Eq. (7.2) may by far underestimate the percolation threshold.

An estimate of the percolation threshold for dense graphs (with some condi-

tions) as the inverse spectral radius of the graph, ρ(G) ≡ ρ(AG), defined as the maximum

magnitude of an eigenvalue of its adjacency matrix, AG , has been suggested in Ref. [208].

Unfortunately, the conditions are rather restrictive, and the estimate is clearly not very

accurate for sparse degree-regular graphs where the spectral radius ρ(G) = d, as this

estimate never reaches the lower bound in Eq. (7.2).

Example 7.1. Consider a tree graph T ≡ Td;r,L constructed by attaching r chains of

length L to each vertex of a d-regular tree Td, see Fig. 7.1. The percolation threshold

coincides with that of Td, pc = pc(Td) = (d − 1)−1. On the other hand, Eq. (7.1) gives

pc → 0 if we take L = 1, r large, and pc → 1 if we take r = 1, L large. Similarly, the

spectral radius is ρ(Td;r,1) = d/2 + [(d/2)2 + r]1/2 (we took L = 1); the corresponding

estimated threshold varies in the range 0 < [ρ(G)]−1 ≤ 1/d, while the lower bound (7.2)

varies in the range 0 < pmin
c ≤ (d− 1)−1.
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(a) (b)(a) (b)

Figure 7.1: (a) A d-regular tree used for the backbone of the graph in Example 7.1. (b)
The tree Td;r,L is grown from the backbone by placing r chains of fixed length L (shown
d = 3, r = 1, L = 2) at each vertex of the backbone.

Thus, Eq. (7.1), the lower bound (7.2), or the inverse spectral radius [ρ(G)]−1

do not give accurate estimates of the percolation threshold for this graph family.

In this work we suggest a tight lower bound for the site percolation threshold

pc on an infinite graph. It is given by the inverse maximum eigenvalue of the linearized

mean-field (MF) equations, pc ≥ p(min)
c = 1/λmax. These equations relate probabilities

that neighboring bonds lead to infinite clusters; they are exact for tree graphs which

do not have cycles. The matrix H corresponding to the MF equations was first intro-

duced by Hashimoto [189] to generate non-backtracking walks on graphs. The infinite-

dimensional matrix H is not symmetric; it is non-trivial that the maximum eigenvalue

λmax ≡ λmax(H) be real or non-zero. We show that the eigenvalue λmax(H) gives a

physically meaningful bound 0 < p(min)
c ≤ 1 and can be obtained as a solution of a finite

eigensystem for any connected infinite quasi-transitive graph G, a graph-theoretic analog

of a translationally-invariant system with a finite number of inequivalent vertices. For

such graphs we also give a constructive proof that our threshold is indeed a lower bound,

by building a tree T locally equivalent to the original graph G, except that a cycle on

G is mapped to an open path connecting two equivalent vertices on T . We also show

that the inverse spectral radius ρ(G) of the original graph gives a smaller (inexact) lower

bound for the percolation threshold,

pc ≥ p(min)
c ≡ 1/λmax(H) > 1/ρ(G). (7.3)

7.2 Definitions

A graph G = (V, E) with vertex set V ≡ V(G) and edge set E ≡ E(G) is called
transitive iff for any two vertices i, j in V there is an automorphism (symmetry) of G
mapping i onto j. Graph G is called quasi transitive if there is a finite set of vertices
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V0 ⊂ V such that any i ∈ V is taken into V0 by some automorphism of G. We say that

any vertex which can be mapped onto a vertex i0 ∈ V0 is in the equivalence class of i0.

Let Γ be a group of automorphisms of a graph G. The quotient graph G/Γ
is the graph whose vertices are equivalence classes V(G)/Γ = {Γi : i ∈ V(G)}, and an

edge (Γi,Γj) appears in G/Γ if there are representatives i0 ∈ Γi and j0 ∈ Γj that are

neighbors in G, (i0, j0) ∈ E(G). Same definition also applies in the case of a digraph D,

except that we need to consider directed edges, e.g., (i0 → j0) ∈ E(D).

In site percolation on a graph G, each vertex is open with probability p and

closed with probability 1− p; two neighboring open vertices belong to the same cluster.

Percolation happens if there is an infinite cluster on G. When graph is not connected,

percolation happens independently on different connected components. In the following,

we will only consider connected graphs.

7.3 Mean field equations

Let us first consider an infinite tree T , a graph with no cycles. We will assume

that the vertex degrees are bounded, so that according to Eq. (7.2), the corresponding

percolation threshold be strictly non-zero, pc ≡ pc(T ) > 0. The percolation threshold

can be found exactly by constructing a set of recursive equations starting with some

arbitrarily chosen root [105–107]. For a given pair of neighboring open vertices i and

j (denoted i ∼ j), let us introduce the probability Qij that i is connected to a finite

cluster through j. The corresponding recursive equations have the form

Qij =
�

l∼j:l �=i

(1− p+ pQjl), (7.4)

where the product is taken over all neighbors l of j such that l �= i so that only so far

uncovered independent branches be included. The growth of a branch into an infinite

cluster is impeded by the site l being closed (probability 1 − p), or being open but

connecting to a finite branch (probability pQjl).

Below the percolation threshold, p < pc, Eqs. (7.4) are satisfied identically with

Qij = 1. Right at the percolation threshold, we expect the probability of an infinite

cluster to be vanishingly small, and the probabilities Qij can be expanded

Qij = 1− �ij , i ∼ j, (7.5)

where �ij is infinitesimal. Expanding Eqs. (7.4) to linear order in �ij , we obtain the

following eigenvalue problem at the threshold, p = pc,

λ�ij =
�

l∼j:l �=i

�jl, λ ≡ 1/pc. (7.6)
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The percolation threshold corresponds to the largest real eigenvalue λ = λmax corre-

sponding to a non-negative eigenvector, �ij ≥ 0. To ensure the probability pc ≤ 1, the

eigenvalue needs to be sufficiently large, λmax ≥ 1.

Extending Eqs (7.4) to an arbitrary connected graph G, we obtain a mean-

field approximation to percolation. The probabilities Qij correspond to directed edges

in G, meaning that generally Qij �= Qji, and this pair of variables is defined iff the

corresponding component of the adjacency matrix is nonzero, Aij �= 0. Let us introduce

a symmetric digraph G̃ with the same adjacency matrix A. Namely, G̃ has the same

vertex set V(G̃) as G and the set of directed edges E(G̃) ⊆ V ⊗ V where each undirected

edge (i, j) ∈ E(G) of the original graph G is replaced by a pair of directed edges i → j

and j → i. Then the matrix H of the eigensystem (7.6) has the components labeled by

the directed edges of G̃

Hu,v = δjj�(1− δli), u ≡ i → j, v ≡ j� → l, (7.7)

where the second term in the product accounts for the non-backtracking condition i �= l.

Matrix H was originally introduced by Hashimoto [189] to generate non-backtracking

walks on a digraph. This matrix can also be interpreted as the adjacency matrix of

the oriented line (di)graph [209] (OLG) associated with the digraph G̃. To simplify the

notations, we will associate the Hashimoto matrix H ≡ HG in Eq. (7.7) directly with

the graph G.
In the presence of cycles, the probabilities Qjl and Qjl� for different branches

leading to l �= l� are no longer independent. Both branches could lead to the same finite

or infinite cluster. As a result of these correlations, the probability that both j → l

and j → l� lead to finite clusters is generally smaller than the product of corresponding

probabilities computed independently. Respectively, Eqs. (7.4) may have a non-trivial

solution already for some p < pc(G). This implies that in the presence of cycles, the

maximum eigenvalue λmax of Eqs. (7.6) would give a lower bound on the percolation

threshold, pc(G) ≥ 1/λmax(H), which is the first part of the inequality in Eqs. (7.3).

It is easy to check that the spectral radius ρ(A) of the graph adjacency matrix

A [which by definition equals to the spectral radius of the graph, ρ(G) ≡ ρ(AG)] cannot

be smaller than any eigenvalue λ of H corresponding to a non-trivial solution �ij ≥ 0 of

Eqs. (7.6), which implies λ ≥ 0. Indeed, for a non-empty graph, A is a symmetric non-

negative matrix with some non-zero matrix elements, thus ρ(A) > 0, and we only need

to check the case λ > 0. Starting with the corresponding non-trivial solution �ij ≥ 0,

we introduce vertex variables xj ≡
�

i:i∼j
�ij and yj ≡

�
l:j∼l

�jl where summation is

over all edges incident to and incident from j, respectively. Summing Eqs. (7.6) over all
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j neighboring with i, we obtain

yi = Aijyj − xi, (7.8)

where the second term in the r.h.s. accounts for non-backtracking condition l �= i. Now,

by assumption the solution �ij ≥ 0 is such that �i0j0 > 0 for some edge (i0, j0). Eq. (7.6)

then implies that also �j0l0 > 0 for some l0 ∼ j0, so that at the vertex j0 both xj0 > 0

and yj0 > 0. If we multiply Eq. (7.8) by yi and sum over all i, we get

λ �y�2 = yiAijyj − yixi < yiAijyj ≤ ρ(A) �y�2 , (7.9)

where �y�2 ≡ y2
i
> 0. This proves [cf. Eq. (7.3)]:

Theorem 7.2. The spectral radius of the adjacency matrix AG of any connected non-

empty graph G is strictly larger than the maximum eigenvalue of the Hashimoto matrix

HG corresponding to a non-zero eigenvector with non-negative components, ρ(AG) >

λmax(HG).

7.4 Results for quasi-transitive graphs

The discussion of the MF equations (7.6) was at the “physical” level of rigorous-

ness. We argued that the percolation threshold for an arbitrary infinite connected graph

should be bounded from below by the inverse maximum positive eigenvalue λmax(H) of

Eqs. (7.6) corresponding to �ij ≥ 0, and proved that this bound is in turn larger than

the inverse spectral radius of the graph.

Yet some questions remain: Eigensystem (7.6) has a non-symmetric matrix

H. Under what conditions do we expect to get a real-valued eigenvalue λmax(H) ≥ 1

which would correspond to a valid percolation threshold? Could we obtain λmax(H) as

a solution of some finite eigenvalue problem, or at least as a limit of some sequence of

such problems? If yes, what are the convergence conditions? As an example, Theorem

7.3 states that for any finite tree Eqs. (7.6) give λmax(H) = 0. Of course, this makes

perfect sense since these equations are exact on any tree, and the probability to have an

infinite cluster on a finite tree is zero. However, the downside is that, at least in the case

of an infinite tree graph, it is not sufficient to consider percolation on finite subgraphs.

In the following, we concentrate on the special case of infinite connected quasi-

transitive graphs, and show that the maximum real eigenvalue λmax(H) of the corre-

sponding Hashimoto matrix (7.7) is finite, lies in the physical range λmax(H) ≥ 1, and

can be obtained by solving a single finite-dimensional spectral problem.
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Let us first consider the eigensystem (7.6) for a finite graph G. While the

Hashimoto matrixHG in Eq. (7.7) is non-symmetric, it is finite-dimensional and has non-

negative matrix elements. The properties of the maximal real-valued eigenvalue λmax

of such matrices is addressed by the Perron-Frobenius theory of non-negative matrices

[210–212]. In particular, an eigenvalue corresponding to a non-negative eigenvector

always exists and it equals to the spectral radius of H, λmax(H) = ρ(H), although in

general one could have ρ(H) = 0.

For any m×m matrix H with non-negative matrix elements, a sufficient condi-

tion to have ρ(H) > 0 is expressed [212] in terms of the digraph DH of order m with the

adjacency matrix corresponding to non-zero elements of the square matrix H. Namely,

there is a directed edge u → v whenever Huv > 0 (or a loop u → u in the case of a

diagonal matrix element Huu > 0). In the case of the Hashimoto matrix, this graph is

the OLG associated with the original graph, see discussion below Eq. (7.7). The spectral

radius of H is positive, ρ(H) > 0, if the digraph DH is strongly connected. This requires

that for any pair of vertices u, v, there must be a directed path (u0 = u, u1, . . . , uf ≡ v)

connecting u and v such us−1 → us, s = 1, . . . , f is in the edge set of DH . In such a

case, we also know that the eigenvalue λmax = ρ(H) is non-degenerate, it is the only

one with the magnitude equal to the spectral radius, |λ| = ρ(H), and the corresponding

eigenvector has all positive components [210–212].

We prove the following

Theorem 7.3. For any finite connected graph G, the spectral radius of the Hashimoto

matrix HG is zero iff G contains no cycles. Otherwise, ρ(HG) ≥ 1. The eigenvector

corresponding to λ ≡ λmax = ρ(HG) is non-negative.

The interpretation is simple: on a finite tree, any non-backtracking walk even-

tually terminates at a leaf (degree-one vertex) with no outgoing edges; thus Eq. (7.6)

with λ �= 0 has only trivial solutions �ij = 0. With one or more cycles present, recur-

sively plucking off any leaves, we arrive at a backbone graph B with minimum degree

dmin(B) ≥ 2; the corresponding Hashimoto matrix HB is strongly connected and its

spectral radius is limited from below by ρ(HB) ≥ dmin(B) − 1 ≥ 1. Putting the leaves

back recovers the original graph, but does not affect the spectral radius of the Hashimoto

matrix.

Proof of Theorem 7.3 . For a finite tree, any non-backtracking path eventually termi-

nates at a leaf (degree-one vertex) with no outgoing edges; thus Eq. (7.6) with λ �= 0

has only trivial solutions �ij = 0, which gives zero spectral radius of HG . Generally, it

is easy to see that leafs on G have no effect on ρ(HG). Indeed, if dj = 1 and i ∼ j is
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the only neighbor on G, then Eq. (7.6) gives �ij = 0 regardless of its values elsewhere.

Similarly, �ji is determined by λ and the values �il on the bonds neighboring with i, but

this value has no effect on the components of the eigenvector elsewhere. Thus, removing

a leaf does not change the eigenvalues of Eqs. (7.6) and therefore the spectral radius of

the Hashimoto matrix HG , see Eq. (7.7).

Define a backbone B of a graph G, a result of the recursive removal of all

degree-one vertices. The spectral radius of the Hashimoto matrix associated with the

backbone is the same as that for the original graph, ρ(HB) = ρ(HG). For any finite tree

the backbone is empty, in which case ρ(HG) = 0. Otherwise, the backbone B satisfies

dmin(B) > 1. If G is a connected graph, so is B. For the backbone, the lower bound on

the spectral radius of the m × m Hashimoto matrix H ≡ HB can be found using the

Collatz-Wielandt formula [see Eq. (8.3.3) in Ref. [212]]: ρ(H) = maxx f(x), where the

maximum is taken over all vectors with non-negative components and

f(x) = min
1≤i≤m,xi �=0

[Hx]i
xi

. (7.10)

Indeed, if we take the vector x with the components xi = 1, i = 1, . . . ,m, Eq. (7.10)

gives f(x) = min1≤i≤m

�
m

j=1[H]ij = dmin(B)− 1. Backbone has no degree-one vertices,

thus ρ(HB) ≥ dmin(B) − 1 ≥ 1. The final statement of the Theorem is merely the

reiteration of the Perron-Frobenius theorem for generic non-negative matrices, see p.

669 in Ref. [212].

We are not aware of an extension of the Perron-Frobenius theory to infinite

matrices. However, in the case of a quasi-transitive graph which only has a finite set of

inequivalent vertices, it is reasonable to expect that the solution �ij ≥ 0 of Eqs. (7.6)

has the same symmetry as the original graph. Namely, for any pair of directed edges

i → j and i� → j� which can be mapped to each other by an automorphism of G, we
request

�ij = �i�j� . (7.11)

Such an ansatz reduces Eqs. (7.6) to a finite-dimensional eigensystem. Depending on

the details, the corresponding matrix M may have elements which are greater than

one, or non-zero elements along the diagonal. As we discuss in the proof, the non-zero

elements of M uniquely correspond to non-zero elements of the Hashimoto matrix HG/Γ

corresponding to the quotient graph G/Γ with respect to the group Γ of automorphisms

of G. When the original infinite graph is connected, G/Γ necessarily has cycles. We

prove
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Theorem 7.4. Consider an infinite connected quasi-transitive graph G with the group

of automorphisms Γ. The invariant ansatz (7.11) with �ij ≥ 0 gives a valid solution of

the MF Eqs. (7.6). The corresponding eigenvalue λ = ρ(M) satisfies the inequalities

λmax(HG) = ρ(M) ≥ ρ(HG/Γ) ≥ 1. (7.12)

Proof. The ansatz forces identical values on any pair of directed edges which can be

mapped into each other by an automorphism of G. For a vertex-transitive graph, this

leaves a finite eigensystem with a matrix M whose non-zero elements correspond to the

Hashimoto matrix of the quotient graph G/Γ. This latter graph cannot be a tree: it has

to have at least one cycle (or a loop) since any non-backtracking walk on the infinite

connected graph G has to eventually arrive to a point equivalent to that already in the

walk. According to Theorem 7.3, this implies λmax(HG/Γ) = ρ(HG/Γ) ≥ 1, with the

corresponding eigenvector having non-negative components, �ij ≥ 0. In general, the

corresponding matrix elements of M are greater or equal those of the adjacency matrix

AG/Γ, M ≥ AG/Γ. According to Perron-Frobenius theory [210–212], this implies that M

also has an eigenvector with non-negative components and the eigenvalue λmax(M) =

ρ(M) ≥ ρ(HG/Γ) ≥ 1. By construction, the obtained invariant symmetric eigenvector

is also a non-negative eigenvector of the Hashimoto matrix HG corresponding to the

original MF Eqs. (7.6), which implies λmax(HG) ≥ λmax(M). On the other hand, any

non-negative eigenvector of HG corresponding to λmax(HG) can be rendered to satisfy

the invariant ansatz (7.11) by symmetrizing over the automorphisms group Γ. The

resulting eigenvector is non-zero and corresponds to the same eigenvalue, which proves

the equality in Eq. (7.12).

Finally, we give a constructive proof of the first part of the inequality (7.3).

Theorem 7.5. The percolation threshold for any infinite connected quasi-transitive

graph G is bounded from below by the inverse maximum eigenvalue of the corresponding

Hashimoto matrix corresponding to a non-negative eigenvector, pc(G) ≥ 1/λmax(HG).

The approach is to construct a tree graph T which is locally indistinguishable

from the original graph G, except that a closed walk on G goes over to a walk connecting

equivalent points on T . This is done by repeated application of single cycle unwrapping

(SCU):

Definition 7.6 (SCU). Given a connected graph G and a bond b ≡ (u, v) ∈ E(G), such
that the two-terminal graph G� ≡

�
V(G), E(G) \ b

�
with source at v and sink at u is

connected, define the cycle-unwrapped graph CbG as the series composition of an infinite
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chain of copies G�
i
, i ∈ Z, of the graph G�, with the source of G�

i
connected to the sink of

the G�
i+1.

The SCU is illustrated in Fig. 7.2. Notice that for a graph with more than

one cycle, unwrapping at b removes one cycle but creates an infinite number of copies of

the remaining cycles. Nevertheless, for a locally finite graph, we prove that a countable

number of SCUs is needed to remove all cycles. Further, we prove that an SCU does

not change the maximum eigenvalue of the Hashimoto matrix, λmax(HG) = λmax(HCbG),

whereas the percolation threshold cannot go up. Overall, this gives a constructive proof

of Theorem 7.5.

G�
u v
(b)(a)

Gu v

b = (u, v)

(c)
i i + 1i− 1

Figure 7.2: Illustration of SCU: (a) A graph G with a non-bridge bond b ≡ (u, v) high-
lighted; (b) Two-terminal graph G�; (c) The resulting graph CbG is a series composition
of an infinite chain of copies of G�.

We give a constructive proof of Theorem 7.5, by building a tree graph T which

is locally indistinguishable from the original graph G, except that a closed walk on G
goes over to a walk connecting equivalent points on T . We show that the maximal

eigenvalues of Eqs. (7.6) corresponding to non-negative eigenvectors, �ij ≥ 0, are the

same for the original graph and the tree, λmax(HT ) = λmax(HG), while the percolation

threshold on the tree cannot exceed that on G, thus pc(G) ≥ pc(T ) = 1/λmax(HG).

The tree is built by a sequence of SCUs, see Definition7.6 and Fig. 7.2. For

any connected graph, removal of a bridge bond creates a disconnected graph; each SCU

must be done at a non-bridge bond. Notice that for a graph with more than one cycle,

SCU at a non-bridge bond b removes one cycle but creates an infinite number of copies

of the remaining cycles. Nevertheless, for a locally finite graph, a countable number of

SCUs is needed to remove all cycles:

Lemma 7.7. For a locally finite graph G0 ≡ G, a sequence of SCUs Gm+1 ≡ Cbm+1Gm

can be chosen so that in the m → ∞ limit the resulting graph is a tree, T ≡ C∞G =

limm→∞ Gm.

Proof. Consider SCU Cb at a non-bridge bond b ∈ E(G). The cycle-unwrapped image

of any path on G that does not include b will remain entirely within a single copy of
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G�. Thus, if at each SCU step we choose a bond b at distance rb from some fixed origin

vertex, such that only bridge bonds can be found closer to the origin, r < rb, any copy

of the remaining non-bridge bond introduced by the SCU is going to be at a distance

r > rb. Thus, each SCU reduces the number of non-bridge bonds at rb, and does not

introduce such bonds at r < rb. For a locally finite graph, a finite number of SCUs is

required to remove all non-bridge bonds at each of r = 0, 1, 2, . . .. We arrive at a tree

graph T = C∞G in the limit r → ∞, after a countably many SCUs.

The final theorem we prove establishes the spectral radius of the quasi-transitive

graph, or the Hashimoto’s matrix, is invariant under SCU.

Lemma 7.8. For any simple quasi-transitive graph G, SCU does not change the spec-

tral radius of G, ρ(G) = ρ(CbG), or the maximum eigenvalue of the Hashimoto matrix

(7.7) corresponding to a non-negative eigenvector in Eqs. (7.6), �ij ≥ 0: λmax(HG) =

λmax(HCbG).

Proof. The symmetry of CbG implies that an eigenvector e can always be chosen to

diagonalize both its adjacency matrix A ≡ A(CbG), Ae = λe, and the translation

generator T , Te = µe. Translation group being Abelian, its representations are all

one-dimensional, with µ = eik, with 0 ≤ k < 2π. Let e0 with non-negative com-

ponents be the eigenvector of the matrix A with the eigenvalue equal to its spectral

radius, λmax = ρ(A) [Adjacency matrix is symmetric, and it is easy to see that Perron-

Frobenius theorem applies]. Symmetrizing e0 over Z, gives a non-negative eigenvector e

corresponding to the same λmax and k = 0. This corresponds to the symmetric ansatz

(7.11), thus ρ(M �) = ρ(ACbG) ≡ ρ(CbG), where M � is the reduced matrix corresponding

to the symmetric eigenvector of A, cf. discussion below Eq. (7.11). Further, for a simple

(di)graph G, the matrix elements of M � satisfy M �
ij
∈ {0, 1}, thus M � = AG , which gives

ρ(G) ≡ ρ(AG) = ρ(CbG), instead of the inequality in Theorem 7.4. The proof in the case

of HCbG is identical, except that we do not assume the applicability of Perron-Frobenius

theorem and instead start with a non-negative eigenvector �ij ≥ 0 corresponding to

λmax(HCbG).

Proof of Theorem7.5. Quasi transitivity of G implies that a finite maximum degree ex-

isits; according to Lemma 7.7, G can be transformed to a tree T by a series of SCUs.

Each step of the sequence can be undone by a graph quotient, Gm = Gm+1/Z. Accord-

ing to Theorem 1 in Ref. [206], the percolation threshold of a graph quotient cannot

be below that of the original graph, thus pc(Gm) = pc(Gm+1/Z) ≥ pc(Gm+1); the entire

sequence gives pc(G) ≥ pc(T ). On the other hand, Eqs. (7.6) are exact for the tree, they
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give pc(T ) = 1/λmax(HT ). Moreover, each of the intermediate graphs of the sequence

is vertex transitive and simple, thus the maximum eigenvalues of the corresponding

Hashimoto matrices remain the same after each step, and λmax(HT ) = λmax(HG), see

Lemma 7.8.

7.5 Conclusions

In conclusion, we suggested a spectral MF lower bound for the threshold of site

percolation on an infinite graph. This bound accounts for local structure of the graph,

and should be asymptotically exact for graphs with no short cycles. This bound goes

over to the known lower bound (7.2) for degree-regular graphs, and otherwise improves

on Eq. (7.2). We also demonstrated that the inverse spectral radius of the graph which

was suggested previously as an estimate for the percolation threshold is always strictly

smaller than our lower bound. In the case of a quasi-transitive graph, a graph-theoretical

analog of a translationally-invariant system, we proved that the bound is in a physically

meaningful range and can be found as a solution of a finite spectral problem.

Our results can be easily extended to the cases of Bernoulli (bond), combined

site-bond, or non-uniform percolation, where the probabilities to have an open vertex

may differ from site to site. A similar technique can also be used to prove the conjecture

on the location of the threshold for vertex-dependent percolation on directed graphs

[213].

After the original version of our manuscript appeared at the electronic archive

[191], we were alerted to a forthcoming work by Newman, Karrer, and Zdeborova [125],

who arrived at some of the same results using different arguments.
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Chapter 8

Correlated percolation

In this chapter, the results from Chapter (7) and the methods of [125, 208]

are extended to systems with correlated percolation. To define correlations in our sys-

tem, we use connected sub-graphs, defined as lattice animals. Correlated percolation,

as described in this chapter, is the random placement of lattice animals on a graph and

defines a process where not just single sites are open or closed, but connected clusters

of sites are simultaneously affected. By placing an animal on a vertex, if it is known

that the given vertex is open, there is a set of connected neighbors that are also open.

Three examples of correlated percolation are studied: correlated percolation on a reg-

ular lattice, correlated percolation on a random graph, and a combined process of site

(uncorrelated) and correlated percolation on a random graph. A lower bound on the

percolation threshold on general undirected graphs is defined using the spectral radius

of the adjacency matrix(ρ(A)), where the matrix A will be modified to include contri-

butions from correlations. Also the diameter of the largest cluster on a graph is found

to be finite below the threshold. The presence of correlations in a percolation system

is found have a threshold dependent on the average animal size �n2�. Finally, a discus-

sion of weighted percolation shows how the methods for correlated percolation can be

extended to vertex-dependent percolation.

8.1 Introduction

In the study of percolation on graphs, trees or discrete systems, the processes

of site or bond percolation are defined by independent probabilities [74,214]. There are

many examples of systems where percolation is achieved by probabilistic processes which

are not based on independent probabilities. In Section (1.3) many physical examples

of percolation by clusters were given. Percolation on biological or sociological networks
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may be defined by processes which affect specific subsets of the population simultane-

ously. Applying graph theory to computational systems involves the possibility of small

sub-graphs being open simultaneously [215]. An initial approach is given in contin-

uum systems, where percolation by overlapping shapes is the standard Poisson-Boolean

model [216, 217] and can be considered as a process which affects a subset of points

simultaneously. In continuum percolation it has been studied how the finite volume or

area of a connected cluster can define the threshold of percolation [112,218].

In our work we approach correlated percolation as percolation by overlapping

lattice animals. The first approach approximates all lattice animals on a graph in

Zd as d-dimensional spheres and defines a connected cluster through the overlapping

of random-sized spheres. This connects the continuum results to a discretized space

and only requires the redefinition of a disk in terms of graph theoretic distances. A

percolation threshold is established in terms of the average disk size.

On a graph which is not regular, either a tree or a random graph, the lattice

animals on a graph can be approximated by adding vertices to a graph which are known

to be open. These auxiliary vertices provide all the connections that are possible through

connection to an animal. This approach avoids the exponential scaling encountered on

sparse graphs.

8.2 Definitions

The discussion of correlated percolation and the methods used are based in con-

tinuum percolation concepts [112] and the adjacency matrix methods found in [125,208].

For a graph G = {V,E}, the adjacency matrix is defined by the graph’s connections.

The matrix elements aij �= 0 if there is an edge connecting vertex (i) to vertex (j). For

undirected graphs, the adjacency matrix is symmetric. A random graph G� can be gen-

erated from G through a process which retains vertices with probability, p. Initially the

probability will be considered vertex-independent. Edges are retained if both endpoints

are open in G�. When the probability is defined for independent vertices, this process

will be defined as uncorrelated percolation. On G� there are clusters of open vertices,

and if a cluster exists which spans or nearly covers the entirety of G then the system is

above a threshold value of p, called the percolation threshold.

This chapter will focus on correlated percolation where the probability of a ver-

tex being open is affected by its neighbors and the effect of correlations on the percolation

threshold. Referring back to Section (6.4), a lattice animal is defined as a sub-graph.

The overlap of animals leads to connected open clusters. For our definitions, the over-
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lap of a single vertex between animals is sufficient. Weighted percolation is defined

by vertex-dependent probabilities, p = {pi}, pi = p(vi). Using the methods described

in Chapter (6), and methods used in continuum percolation models, the threshold for

percolation will be established through a bound on the average cluster size.

8.3 Correlated percolation on a regular lattice

In Ref. [112], the existence of a percolation threshold was found to be dependent

on the average size of shapes covering a space. Percolation was defined by a connected

component, created by the overlap of random-sized objects, which spans the entire

continuum space. For a system of d-dimensional space with randomly distributed spheres

of random radii, the percolation threshold was defined by the finiteness of λ�rd�, where
λ is the density of spheres in the system and �rd� is the average volume of a sphere.

For two-dimensional disks in R2 the average area of a disk determines the threshold.

We show these results are obtainable by distributing random-sized shapes of dimension

D < d, in d-dimensional space, starting from finite-width rings in R2 and continuing

to one-dimensional rings (shown in Figure (8.5)). The ability to define a connected

component for lower-dimensional objects is applied to discrete space (shown in Figure

(8.6)). We assert then that percolation on a regular lattice can be defined similarly by

placing random-sized disks on a lattice, where the average area and radius of a disk are

defined by lattice points and the Manhattan distance (see Figure (8.2)).

(a) (b) (c)

Figure 8.1: Correlated percolation on a regular graph using lattice animals: (a) A
selection of lattice animals that can be formed, (b) placement of random-sized animals
on the lattice (c) approximating the number of covered vertices using disks.
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Figure 8.2: The interpretation of a solid disk on a lattice, using the Manhattan disk.
The area of a disk is the number of points contained inside a disk of Manhattan radius
r = 3 is (r+1)2 + r2 (red and blue points). The circumference of a disk of radius r = 3
consists of 4r points (blue).

8.4 Auxiliary vertex model: approximate correlated per-

colation on a random graph

In the previous section it was shown that the covered area of a disk can be

applied to a regular graph and interpreted as the number of lattice points which are

equidistant from the disk center. Using the graph theoretic distance it was seen that

the area scaled as n2, where n is the radius of a given disk. On a tree graph, this

approach fails as the number of lattice points equidistant from a central vertex scales

exponentially, rather than as a power law (see Figure (8.3)). Beginning with a simple

Figure 8.3: Exponential scaling of covered area on a degree regular tree. A r = 0 disk
contains the central vertex (black dashed), r = 1 contains z+1 vertices (red solid), r = 2
contains 1 + z + z(z − 1) vertices. The r = d disk would contain at least zd vertices.

fixed-degree tree, the number of points which are contained in a disk of radius d is

given by the number of points contained in d-generations of growth away from a central
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vertex. The number of vertices in the rth generation is bounded above by zr (or zdmax

for a degree-limited tree). An upper bound to the average size of a disk would require

calculating,

�|B2(0, r)|� ≤
�

zrν(dr), (8.1)

which leads to an exponentially small value for the threshold for percolation. In order

for λ�zr� to be finite the density of random-sized objects would be vanishingly small

λ � 1.

We define an alternative approach to percolation by lattice animals, where a

random animal is replaced with an auxiliary vertex which provides the same connections

on the graph as the animal (see Figure (8.4)). It was established in [200] that a random

network has a percolation threshold given by �z�/(�z2� − �z�) where the averages are

taken with respect to the degree distribution of the original graph. With the addition

of auxiliary vertices, the average degree �z� is taken over the new degree distribution.

(a) (b)

(c)

Figure 8.4: Percolation with lattice animals using auxiliary vertices. (a) Lattice animals
distributed on a random graph, (b) Random graph with auxiliary vertices approximating
lattice animals, (c) Detail of effects on the degree of a vertex (blue) by adding connections
to the auxiliary vertex (red solid line) and allowing connections through the auxiliary
vertex (blue dashed line).

The bound on the average cluster size is calculated first with a simplified model:

a single lattice animal species (a connected subgraph containing � vertices) randomly
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distributed on a fixed degree tree. Considering the tree to contain N -total vertices, the

N1 lattice animals will cover �N1-total vertices, an expression for the average degree can

be written as,

�z� =
�

n

z(n)f(n) ≤ 1

N

�
(N −N2)z +N1z

� +N2(z�)
�
, (8.2)

where N1 is the number of higher-degree vertices added, and N2 is the total number

of vertices contained in all lattice animals and neighbors. Of the original graph’s (N)

vertices, the (N − N2) vertices which are neither in an animal nor are neighboring

an animal will have unchanged degree. The connections due to a lattice animal is

approximated by a single vertex of degree z�, connected to all the lattice animal vertices

and neighbors. In Figure (8.4)(b), the degree of the animal of size (�) is bounded by,

z� ≤ �z. The number of vertices contained in all animals, and all neighbors is N2 and

these have a degree bounded by z�: increased by the connection to the auxiliary vertex of

degree z�, and by the additional connection to each other made possible by the (known

open) auxiliary vertex (see Figure (8.4)(c)). Finally, it is noted that N2 < N1(z�).

Together these give a bound on the average degree of a graph with a single lattice

animal species:

�z� =
�

n

z(n)f(n) ≤ 1

N +N1

�
Nz +N1�z +N1(�z)

2
�

≤
�
(1− λ)z + λ(�z + (�z)2)

�
.

(8.3)

The percolation threshold scales as pT ∼ 1/(λ(�)2) where λ is the probability of a vertex

being connected to an animal (N1/(N+N1)) and � is the animal size. For a collection of

lattice animals, with sizes distributed with a probability distribution f(�) the percolation

threshold scales as pT ∼ 1/(λ�(�)2�).

8.5 Weighted percolation

The auxiliary vertex model establishes an approximate lower bound to the cor-

related percolation threshold. Using the adjacency matrix of a system with percolation

by lattice animals, a more exact bound will be found in the next section. In this sec-

tion the general problem of weighted percolation is studied with the adjacency matrix

method, which introduces vertex-dependent probabilities to a percolation process. The

flexibility of the adjacency matrix approach is highlighted here.

In Section (6.3) the general method for deriving a percolation threshold from

the nth-order product of a graph’s adjacency matrix was given. The general form only
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considered unweighted, uncorrelated percolation. Before discussing the complex prob-

lem of correlated percolation, the process of weighted (vertex dependent) percolation

is considered. For specific graphs (fixed degree and degree limited) the percolation

threshold is determined.

Beginning with a graph G0, a random graph G� is generated from a random

subset of vertices and edges. In unweighted percolation, the probability that a vertex is

chosen to be in G� is independent of the vertex. For weighted percolation, this probability

becomes vertex-dependent. Each vertex vi has a probability pi and there is no guarantee

that two vertices (vi, vj) have the same probability of being included in G�.

The adjacency matrix of G� is labelled B, and is derived from the adjacency

matrix of G0 (A). The connections of the original graph may not exist on G�, their

existence is dependent on the existence of both endpoints in G�. To incorporate the

conditional nature of connections on G�, the adjacency matrix of G0 is scaled by a

diagonal matrix P = diag(p1, p2, . . . , pN ), defined by the vertex-dependent probabilities.

The adjacency matrix of G� is defined as: B = AP.
The number of n-length walks on G� from a known open vertex (vi) to another

vertex (vj) is given by (Bn)ij and is dependent on the probability of vj existing in G�.

Defining the average cluster size as outlined in Section (6.3), requires a weighted matrix

M rather than a scalar probability (p) and includes the probability that vi needs to be

open:

�n� =
�

n

�1|PT (AP)n |1� =
�

n

�1|P1/2
�
P1/2AP1/2

�n

P1/2|1�,

=
�

n

�1|P1/2 (M)n P1/2|1�.
(8.4)

The matrix norm of P1/2 (M)n P1/2 can be calculated using the spectral norm.

�P1/2 (M)n P1/2�2 ≤ �P1/2�2� (M)n �2�P1/2�2

≤ �P1/2�2� (M) �n2�P1/2�2 = ρ
�
P1/2

�
ρ (M)n ρ

�
P1/2

� (8.5)

The spectral radius of the probability matrix is pmax, the largest probability a vertex is

included in G�, and the average cluster size is defined by the spectral radius of M:

�n� =
�

n

�P1/2MnP1/2�

≤
�

n

pmaxλmax(M)n = pmax

�
1

1− λmax(M)

�
.

(8.6)

Again, the equivalence of the spectral radius and the maximum eigenvalue of a matrix

has been used, and the final sum over (n) is possible only if λmax(M) < 1.
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8.5.1 Weighted percolation threshold on graphs with known degree

distributions

Equation (8.6) established that the average cluster size diverges when λmax(M) =

1. For certain graphs a bound on the spectral radius can be found using the rank-1 ma-

trix norm, which is the maximum column sum:

λmax(M) ≤ �M�1 =
�

j

mij . (8.7)

Recalling the definition of the weighted matrix M rewrites the column sum over mij as

a column sum over aij , the connections of the original graph.

�M�1 = �P1/2AP1/2�1 ≤ (pmax)�A�1. (8.8)

In a fixed-degree graph, all vertices have the same degree (z) and the rank-

1 norm is the same for all columns of A. For a fixed-degree graph with weighted

percolation:

�M�1 ≤ (pmax)�A�1 = pmaxz, (8.9)

and the threshold for percolation is pmaxz < 1. In a degree-limited graph, the degree of

a vertex is bounded by a maximum value zmax, which determines the rank-1 norm of

A. For a fixed-degree graph with weighted percolation:

�M�1 ≤ (pmax)�A�1 = pmaxzmax, (8.10)

and the threshold for percolation is pmaxzmax < 1. As discussed in Chapter (7), the

threshold for these models can be skewed by an single vertex of very high degree, or by

a single vertex of very high probability.

8.6 Correlated and uncorrelated percolation on a random

graph

In Section (8.5) the adjacency matrix of a random graph was used to define a

bound on the average cluster size. The divergence of the average cluster size established

a threshold for percolation. The process of correlated percolation is similar to weighted

percolation, the probability of a vertex being randomly chosen from G0 is no longer inde-

pendent of the vertex but is more complicated than just vertex-dependent probabilities.

Correlated percolation is percolation by overlapping shapes (lattice animals) placed on

a random graph. Vertices which are covered by lattice animals are automatically in-

cluded in the random graph G�. The method used in this section is based on how the
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connections of G� relate to the adjacency matrix of G0 and the results given will be a

more exact threshold bound then the results of Section (8.4).

Beginning with a connected graph G0, a random graph G� is generated by

randomly selecting vertices with a vertex-independent probability (p) or by selecting

groups of vertices by placing a lattice animal over them. On a graph, the entire set of

lattice animals are defined as a set of vectors {c} where each vector represents a specific

animal placed on a specific set of vertices of the original graph. The probability (q(c))

is the probability that the animal represented by c exists on the vertices contained in c.

On G� the connections that exist are the elements of the matrix B,

bij = aijp+
�

c

q(c)(M(c)) (8.11)

which is dependent on a matrix M(c) defined by an animal covering a set of vertices in

the graph. A lattice animals of size (�) is a connected sub-graph of G0 and the vertices

it contains can be expressed as the weight-� vector c that is non-zero at entries vi where

the animal is located. For c the matrix M(�) is,

M = ccT − diag(c). (8.12)

The last term is necessary to ensure that self-loops are not created. The terms in

Eq. (8.11) contributing to a connection between two vertices (vi, vj) in the graph G� are:

(aijp) an edge connecting i ↔ j in G0 and vertex vj included, or, an animal exists which

contains both vertices.

Defining the average cluster size is done by the same method used in Sections

(6.3), (8.5). This introduces a simplification to the correlated system, in finding the n-

length walks from i ↔ j it is assumed that vertex (i) will be selected by an uncorrelated

process only. The average cluster size is still defined by the spectral radius ρ(B) but

due to the complexity of the connections in B, the bound on �B�2 by the rank-1 norm

is used. The general result for the average cluster size on G� is:

�n� ≤ p

1− pρ(B)
. (8.13)

Again a threshold for a finite average cluster size is defined by pρ(B) < 1. However,

evaluating the spectral norm ρ(B) requires summing over the probabilities qi(�) for all

possible animals on all vertices. A bound exists on the spectral norm which is easier to

evaluate:

�B�2 ≤
�
�B�1�B�∞ = �B�1 (8.14)

On a symmetric graph, the rank-1 and rank-∞ norms are equivalent. The evaluation of

�B�1 is the maximum value of the column sum of B. Each column of B describes all
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connections which include a fixed initial vertex (i), thus the column sum is expressed as:

�

j

bij =
�

j

aijp+
�

j

�

�

q(�)(M(�))ij (8.15)

where the sum over the lattice animals is restricted to the subset of animals ci ∈ {c}
which contain vertex i and the probability of an animal existing is (q(�)) the probability

of vertex i being in an animal of weight �. The expression is completed by rewriting

q(�) = �q(�) to account for the fact that vertex (i) can be any of the vertices in a weight-�

animal:

�B�1 =
�

j

aijp+
�

j

�

�

�q(�)(M(�))ij . (8.16)

In the second term, the matrixM is non-zero only on the (�−1) entries which correspond

to lattice animal vertices, omitting the self-connections. Thus the sum over the columns

is invariant of i:

�

j

�

�

�q(�)(M(�))ij =
�

�

�q(�)
�

j

(M(�))ij

=
�

�

�(�− 1)q(�)

= (��2� − ���)

(8.17)

8.6.1 Correlated percolation threshold on graphs with known degree

distributions

The adjacency matrix method established a threshold for percolation through

a bound on the average cluster size. If �n� is finite then no percolation occurs. In

Section (6.3) it was seen that the geometric sum over ρ(B)n must converge, leading to

the condition ρ(B) < 1. In Section I8.5) the matrix B included terms due to vertex-

dependent probabilities and in Eq. ((8.11)) the connectivity in a system with correlated

percolation was found. To evaluate ρ(B) exactly would require the inclusion of all

possible positions of all possible weight-� animals on a graph. This was reduced due

to an upper bound established by the rank-1 norm. The summation over all animals

which contain a specific vertex can be taken, but the column sum over the adjacency

matrix A still remains to be evaluated. For specific classes of graphs, degree-limited

and degree-fixed, these column sums can be found.

For a fixed-degree graph, the column sum
�

j
aij is independent of the vertex

(i). For unweighted percolation, this reduces
�

j
aijp to pz. Additionally, the results of

Section (8.5) can be used, for a system with weighted percolation,
�

j
aijp ≤ zpmax. For
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a degree-limited graph, the column sum is bounded by zmaxp for unweighted percolation

and is bounded by zmaxpmax for weighted percolation.

Combining these results gives a lower bound on the percolation threshold for

two kinds of systems which generate random graphs using two processes: unweighted

percolation plus correlated percolation, or weighted percolation plus correlated percola-

tion. Stating the results for unweighted percolation first, the threshold on a fixed-degree

graph is established by,

�B�1 = zp+ (��2� − ���) < 1, (8.18)

and for a degree-limited graph,

�B�1 = zmaxp+ (��2� − ���) < 1. (8.19)

For a system with weighted percolation plus correlated percolation, the threshold on a

fixed-degree graph is,

�B�1 = zpmax + (��2� − ���) < 1, (8.20)

and for a degree-limited graph,

�B�1 = zmaxpmax + (��2� − ���) < 1. (8.21)

8.7 Covered fraction with lower-dimension shapes

An inconsistency is now apparent in the models of correlated percolation. In

the continuum model discussed in Ref. [112], the covered volume of the space was derived

using shapes with the same dimensionality as the system. In R2 the space was covered

by circular disks and the percolation threshold was determined by the finite bound on

λ�r2�. In Section (8.3), the percolation threshold for a regular lattice covered by solid

disks was found using Manhattan disks and radii to approximate lattice animals. The

average shape size was found to be dependent on the dimension of the lattice (�n� ∝ r2),

agreeing with the results in Ref. [112]. However, using the approximation of auxiliary

vertices, or the exact method derived from the adjacency matrix, for a random graph

the threshold was dependent on �n2�. Applying this result to the regular lattice would

correspond to a threshold dependent on λ�r4�, much lower than the initial result based on

Manhattan disks. In this section we investigate if a threshold of λ�r2� can be obtained in

the continuum and regular lattice models. We replace the solid disks by lower dimension

objects in the continuum model, or by lighter weight objects on the regular lattice.

Beginning with the continuum model: instead of solid, two-dimensional disks

on R2, the space will be covered using finite-width rings (see Figure (8.5)(a,b)). Perco-

lation in a continuum system can be defined by a cluster with an unbounded diameter,
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and the derivation in Ref. [112] was based on the overlap of solid shapes. This lead to a

bound on the connected cluster determined by the finiteness of a shape’s d-dimensional

volume. The entire area which is contained inside the connected cluster was included.

For a distribution of rings with random radii it may be possible to form a connected

cluster which has an unbounded diameter, though the area will not be explicitly covered.

A connected cluster is formed by solid disks when there is a non-empty region

which is covered by both disks. The minimum amount the disks must overlap and

contribute to non-zero growth of a cluster is localized near the perimeter of the disks.

For example, a smaller disk which is nested inside a larger disk will not change the

diameter of the larger disk. Likewise, the diameter of the cluster will be affected by

rings which overlap by their outer radii, a ring nesting inside another will not contribute

to the growth of a cluster with infinite diameter. Therefore the cluster formed by

overlapping rings, and its dependence on the average are of a ring can be generalized

to a system of overlapping circles by only considering the area swept out by the outer

radius of a ring (see Figure (8.5)(c)). In the system of overlapping circles, only a single

point is necessary to connect disks.

(b)(a) (c)

Figure 8.5: The connected cluster with solid, narrow and empty objects: (a) cluster
generated by overlap of random-sized, two-dimensional disks in continuum system, (b)
cluster generated by overlap of random-sized finite-width rings in discrete system, (c)
cluster generated by overlapping circles.

In Figure (8.5) the connected component due to random-sized disks, rings and

circles are shown. The space shown is R2 and the average size is given by �r2� =
�
r2ν(dr). This is the result given in [112] for d = 2. In Figure (8.5)(b), the solid disks

are replaced with rings of random radii but finite width �. Following the derivation

in [112] the percolation threshold depends on the the area of a random shape. For a
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ring of radius (r) and width � centered at the origin, the Euclidean volume is

|B2(0, r)| = π
�
(r + �)2 − r2

�
, (8.22)

and the average area of a system with random rings will be proportional to �r2�. To

study the system of interlocking rings the limit of zero width is taken. In Eq. (8.22),

|B2(0, r)|�→0 = 2π�r (8.23)

the area of a ring vanishes, but the connected component can still have an infinite

diameter. The bound for an infinite cluster’s diameter will be dependent on the average

circumference of a ring, and the percolation threshold determined by the finiteness of

λ�2πr�.
On a regular lattice, the Manhattan disks defined in Section (8.3) are replaced

by Manhattan rings. The connected cluster size still has a diameter which can grow to

infinity. In Figure (8.6) it is shown how a connected cluster is formed by solid Manhattan

(a) (b)

Figure 8.6: Percolation with lighter weight shapes on a regular lattice: (a) connected
cluster formed by overlapping Manhattan disks, (b) connected cluster formed by over-
lapping Manhattan rings.

disks or by Manhattan rings. Previously the average animal size scaled with the area of

a disk, �n� ∝ �r2�. For the regular lattice with lattice animals, but approximating their

shape by Manhattan rings, the average animal size scales with the circumference of a

ring: �n� ∝ �r�. Now when the adjacency matrix results are applied to a regular lattice

the dependence on �n2� corresponds to �r2�.
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8.8 Conclusions

The work discussed in this chapter derived methods for establishing the thresh-

old for percolation in correlated systems. Three methods were discussed, all studying

the threshold of percolation in systems where vertices are covered by lattice animals,

rather than individually chosen to be open or closed. The size of the lattice animals was

determined to be an important factor in establishing the percolation threshold, though

the final section discussed whether the same results could be obtained with lighter weight

objects.

First, the method of covered fraction, derived from continuum percolation mod-

els, was applied to regular lattices. The covered fraction was defined using objects with

the same dimensionality as the lattice, specifically solid disks, and the results agreed

with the continuum model results, a percolation threshold could be defined based on

the covered area. However, applying these methods to random graphs or trees lead to

limited usability. On a tree or random graph the number of points covered by a disk of

radius scaled as zr, leading to a percolation threshold that could only be defined for a

distribution of objects with very low density.

The covered fraction approach was replaced by an approximation model for de-

scribing correlated percolation on random graphs. A random graph with lattice animals

covering sets of vertices was approximated by a graph with additional vertices, account-

ing for the connections of the animal. The average degree of a graph with additional

vertices was calculated and used to approximate the percolation threshold, following

from previous known results for random graphs. For a simple system with only one

animal species, it was seen that the average degree scaled with the size of the lattice

animal.

Finally, the percolation threshold was studied from the adjacency matrix ap-

proach, focusing on how the connections generated by correlated percolation affected

the average cluster size. An upper bound on the average cluster size was found, and

included the uncorrelated percolation result plus a correction due to the lattice animal

connections. The correction due to correlations was proportional to the animal size �n2�.
Attempting to reconcile the random graph results and the continuum perco-

lation results is hindered by the regular lattice. Covering the regular lattice by solid

objects leads to a threshold which agrees with the continuum results, �n� ≈ �r2�. How-
ever, applying the random graph results to the regular lattice would result in a threshold

�n2� ≈ �r4�. The use of solid disks or objects to approximate lattice animals overesti-

mates the size of an animal and leads to a lower estimate on the percolation threshold.
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In order for both the continuum results and the random graph results to be true

on a regular lattice, the mechanism of how an infinite cluster is grown was investigated.

As the growth of a connected component due to lattice animals only depends on the

overlap of vertices located on the perimeter of the animal, we returned to the models of

covered fraction in a continuum and regular lattice and investigated whether the same

results could be obtained by objects with lower weight. These objects are closer in

nature to the lattice animals on a random graph, which contain many points but do

not cover much area. On the regular lattice, approximating lattice animals by empty

rings lead to a percolation threshold �n� ≈ �r� which was dependent on the circumference

(length) of the rings. The continuum and random graph results could now be connected,

�n2� ≈ �r2�.
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Chapter 9

Conclusions

The work discussed in this dissertation developed the study of nonlinear effects

in correlated systems along two directions: gradual changes in strongly driven many-

body systems and the sudden changes of percolation. In the dynamical systems, the

strong driving fields lead to gradual effects which resulted in dynamical stabilization,

delocalization and band inversion. For the quantum systems which showed delocaliza-

tion and band inversion, further driving by weak, static fields led to observation of a

dynamical period doubling of Bloch oscillations, a dynamical insulator-metal transition,

and higher harmonic generation.

Transport in quantum systems can also be described in terms of percolation

on random graphs. In addition to the gradual changes of driven systems, the large-scale

changes due to correlated effects were studied on random graphs. First, a connection

between mean-field theory on a tree graph and random graphs was established. The

mapping of a graph with cycles to a tree graph was done through a cycle-unwrapping

scheme. Then, percolation by lattice animals was used to define correlated percolation

on regular lattices and random graphs.

Turning to the phenomena of dynamical localization, which is possible under

short pulse driving, and from the results that the behavior of a driven particle could be

determined by an AC modified Floquet band, then the effects of driving a particle in

an inverted band was studied. From the known effect of dynamical localization, which

is a collapse of the Floquet band, the system driven into an inverted band was further

driven and the possibility of third harmonic generation was studied. In the presence

of a dissipative force (coupling to phonons) such frequency tripling was observed and

additionally it was seen that the intensity of the frequency tripling was affected by

phonon resonances. The phenomenological model established in Chapter (5) proved

robust to a variety of phonon modes.
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9.1 The driven Sine-Gordon model: dynamical stabiliza-

tion

The analysis of strongly driven particle dynamics was made possible by analyz-

ing the evolution of these driven systems along two separate time scales. This separation

of time scales was first studied in the derivation of an effective potential for a strongly

driven semiclassical system and was later applied to the evolution of Floquet states in

strongly driven quantum systems. In the semiclassical Sine-Gordon model, it was es-

tablished (refer to Chapter (3)) that strong driving will lead to period doubling and

stabilization of a correlated system in previously unstable configurations.

In Chapter (3) the effects of a strong, rapidly-oscillating external driving force

on a Sine-Gordon system was studied. The problem grew from the concept of dynamical

stabilization in a vertical pendulum [1–3], where a pendulum is driving rapidly and oscil-

lates with an equilibrium point above the support. It was determined that a horizontal

series of coupled pendulums could exhibit dynamical stabilization. From the classical

field theory of the Sine-Gordon model, the external driving field was first incorporated

through time-dependent shift in the field variable ϕ(x, t) = ϕ0(x, t) + ξ(t), moving the

system into a moving reference frame. In this lowest order approximation a renormal-

ization of the system parameter �λ = λ2J0(F0/ω2) based on the strength and frequency

of the driving force (F0, ω).

The next order expansion of the system expanded the field variable in a full

series of the driving field harmonics. Once the full harmonic expansion was used in the

Euler-Lagrange equations of motion, the slow and fast time dynamics were separated.

Separating the field variable, ϕ(x, t) = ϕ0(x, t) + ξ(x, ω, t), the function ϕ0(x, t) evolved

gradually over each period of the driving force, while the function ξ(x, ω, t) rapidly

oscillated. However, the form of ξ was chosen such that the average value �ξ� vanished
over the driving period.

To fully evaluate the effective potential, the coefficients of the harmonic series

were determined by a set of self-consistent equations. To lowest order they were as-

sumed to be stationary. First order corrections were also found. In the final expression

of the effective potential, it was seen that the driven system has a dominant term pro-

portional to cos (ϕ0), the same periodicity of the undriven potential, and a secondary

term proportional to cos (2ϕ0). The amplitudes of the dominant and secondary terms

depend on the driving amplitude and frequency and when these parameters are tuned

to F0/ω2 ≈ 2.4048 the dominant term can be suppressed.

When working with a stationary solution of the Sine-Gordon model, the equa-
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tion of motion can be recast as a particle moving in the Sine-Gordon potential. This

reasoning was extended to the driven model to explore the dynamics. From the effective

potential it is seen that as the driving amplitude and frequency are tuned closer to 2.4048

the particle will travel slower as it passes through the inverted position (relative angle

θ = π). Eventually, when the dominant term is suppressed, the system develops a stable

point at the inverted position. The evolution of the stable point at the inverted position

implies dynamical stabilization would be possible in the coupled pendulum system.

The solution of the un-driven Sine-Gordon model is a soliton, a twisted wave-

form that corresponds to a set of pendulum rotated from θ = 0 through θ = π and

over to θ = 2π. With minimal or no driving only a few pendulum are at the θ = π

position. As the system is driven and tuned toward the inverted system the number of

pendulum that can be kept in the inverted position is increased. Previous studies of

driven solitons have established the concept of a π-soliton [14,149], possible for strongly

driven Sine-Gordon systems with high driving frequencies. In our work we study the

possibility of a system to generate two π-solitons. We identify the driving parameters

that lead to period doubling in the effective potential as the same that generate two

π-soliton solutions.

The stationary waveform in a system driven with parameters in the period

doubling regime was solved for numerically. Since the driven Sine-Gordon model can

exhibit chaotic motion a slowly decaying dissipation term was included and the initial

state was taken to be a straight line. By taking a time average over the period of the

driving force, the slow dynamics could be isolated. Any effects due to the driving force

accumulates over several periods of the driving force.

It was seen that with a dissipation term with weak initial amplitude (α0 =

0.1) that slowly decays a soliton form could be generated with a significant fraction of

pendulum stable in the θ = π position. This waveform emerges after many periods of

the driving force (t > 10τ) and is stable once established.

The width of the driven two π-soliton can be interpreted as a broadening

of a domain wall in a ferromagnetic system. From the results of the classical field

theory, and based on the connection of the quantized Sine-Gordon model and fermionic

systems [12,35,138], the next system studied was a correlated electron system.

9.2 Driven two-band model: dynamical delocalization

The hyperbolic shape and gapped spectrum of the Sine-Gordon soliton and the

interacting Luttinger liquid led to studies of strongly driven many-body systems (refer
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to Chapter (4)). Period doubling in the Sine-Gordon model was due to the suppression

of the term λ, which corresponded to a reduction in the energy spectrum gap. It

was seen that for strong amplitude, high-frequency AC field driving, the width of an

interaction-induced gap in a two-band model of spinless fermions can be reduced and

suppressed. Additionally, it was seen that a particle driven through the regime of gap

closure will show dynamics of the suppressed gap band. However, the length of driving

times required to observe such effects leaves these results vulnerable to heating effects,

which were not included in the model.

Three such models were investigated, a continuum model and two models on a

lattice. The gap-suppression was observed in the lattice models but not in the continuum

model. Using the Hartree-Fock approximation, all three models were systems of spinless

fermions, with a small interaction-induced gap, and driven with a strong external field.

The strong driving field was incorporated through a simple gauge transformation, the

gap was treated as a perturbation and an interaction representation of the systems

were found, and used to define perturbative expansions of the time-evolution operators

U(t). The effects of the strong driving field were observed in the gradual changes to

the Floquet spectrum. Gap suppression is identified by the suppression of the first-

order term in the perturbation series expansion of U(t), defined by the time-averaged

interaction Hamiltonian.

Driving of electron systems with rapidly oscillating forces has been extensively

studied as a system that demonstrates localization of particles. Two such phenom-

ena are known: coherent destruction of tunneling (CDoT) and dynamical localization

(DL). In the Floquet representation, CDoT is a perturbative effect that is linked to the

suppression of tunneling between sites. For a system with degenerate energy levels, a

perturbation which leads to level splitting can be suppressed through strong AC field

driving [53]. In contrast, DL is an exact effect where the bandwidth of a driven system

is effectively suppressed. This band collapse leads to suppression of a particle’s kinetic

energy [53]. The main results known for quantum systems in strong AC driving fields

are renormalization effects, either gap renormalization or band renormalization. The

first effect was the basis for the studies of strongly driven two-band systems and the

second is the basis for the study of strongly driven single-band systems.

Building from the phenomena of CDoT, we investigate the suppression of a

perturbation in a two-band system. In contrast to CDoT, where the perturbation sup-

pressed the level splitting and results in localization, the weak perturbation we consid-

ered is due to interactions between electrons. The result of this interaction is a gap

opening at band crossings, leading to localization in the absence of driving. Through
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the strong driving force it was seen that in the Floquet representation, a small gap can

be suppressed, leading to delocalization of particles.

The first model was a continuum, many-body system consisting of nearly free

electrons weakly bound to ions of a one-dimensional lattice. In the absence of per-

turbations, the electrons travelled in parabolic energy bands. With the addition of

interactions, a gap opened where neighboring wells overlap. The continuum model pro-

vided an initial investigation into how a small gap can be suppressed. In the first order

perturbation term, the interaction Hamiltonian is dependent on the sum over Floquet

modes, and was found to have a singularity in the N = 0 term. The presence of such

a singularity lead to an approximation of �HI�, since the N = 0 term would domi-

nate. When this term was suppressed, the gap was effectively suppressed, leading to the

condition for gap closure: J0(F0k/mω2) = 0.

Once it was established that gap closure could exist, the continuum model was

not studied further. There were many aspects of the parabolic spectrum which rendered

it of limited use: primarily, the ambiguous definition of a bandwidth in the parabolic

system lead to difficulty in showing gap closure except for very large driving frequencies.

In the Floquet spectrum, multiple bands would overlap and the condition that a particle

scatter within a single band (N = 0 term) could not be met. An additional complication

was due to the singularity in the first order perturbation term. While such a singularity

was useful in identifying the driving parameters which lead to gap closure, driving the

system even slightly away from those parameters lead to significant increase in the gap

size. This lead to a narrow range of driving amplitudes that would lead to reduction of

a gap. Further study of the parabolic well model was not done.

The next models were Luttinger liquids, lattice models of spinless fermions

with interaction-induced gaps. Two energy spectra were considered, sinusoidal bands

(corresponding to a tight-binding model) and linear (corresponding to the linearized

system near the Fermi points). From the interaction representation it was established

that gap suppression would be possible. For the linear spectrum an exact expression for

gap suppression was derived. For the sinusoidal spectrum a closed form could not be

found. Further studies of these systems was done through numerical simulation.

Numerical simulations of all three systems involved exact evaluation of the

time-evolution operator U(t). Integrating for U(t) using the original, time-dependent

Hamiltonian Hsys(t), lead to an expression which when diagonalized would given the

Floquet spectrum of the driven system. In all three systems, gap closure was observed

(see Figures (4.6), (4.11)). Additionally, the gap closure was observed in the Floquet

spectrum of the lattice models (see Figures (4.7), (4.9)). Numerical simulation of the

139



perturbative expansion of U(t) was also done for the lattice models. For a perturbation

series up to second order, it was seen that gap closure was observed for both systems

and showed strong agreement with the exact results (see Figure (4.8), (4.10)).

The expected dynamics of a particle in a sinusoidal potential were used to

further establish the existence of the gap closure. In a tight-binding model with a

sinusoidal spectrum, a weak DC field was added to the AC field driving. A particle

driven by such a field is expected to undergo Bloch oscillations with a period determined

by the Brillouin zone’s periodicity. The DC field was applied to the system first, and the

motion of the particle exhibited Bloch oscillations as expected. While the DC field was

present, the amplitude of the AC field was gradually turned on. As the gapped spectrum

was driven into a gapless spectrum, it was observed that the Bloch oscillations underwent

a period doubling, consistent with the existence of gap closure.

The second investigation of the gap closure was done with a collection of elec-

trons in a gapped sinusoidal potential. When the system was initially prepared in an

insulating state, with a completely filled band below the gap. Driving such a system

resulted in a zero net current, as expected. When the driving field was supplanted with

an AC field, it was seen that a non-zero current could be generated. When the gap is

suppressed, a band which is initially a band insulator is driven into a metallic system.

Gap closure was investigated for three systems, all which were closed. In the

dynamics of electrons in bands driven through a gap closure, the effects of Bloch oscil-

lation period doubling, or nonzero net current were observed only for very long driving

times. This was necessary to ensure that the system could reach a quasi-stationary

state. However, the effects of long driving times with very strong fields cannot be suffi-

ciently explained without the addition of heating. It is likely such a system driven to a

gapless spectrum would be beset by runaway heating, and the DC effects would become

unobservable.

9.3 Driven single-band model: dynamical harmonic gen-

eration

The two-band model demonstrated that gap closure could be achieved with long

driving times. However such systems would likely be affected by heating, which wasn’t

included in the models. The next driven system investigated included phonon scattering

and also investigated an effect which would be achievable with shorter driving pulses:

harmonic generation in band inverted systems. As the two-band effect was inspired

by CDoT effects, the band inverted systems are a continuation of the physics involved
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in dynamical localization. DL is due to complete band suppression in the Floquet

spectrum, leading to a zero mean for a particle’s kinetic energy. The renormalized

bandwidth is proportional to the Bessel function J0(z) and suppression occurs at the

root. In the single-band model, we considered a system which is driven past the point

of band suppression, and into the regime where J0(z) < 0.

A single conduction band in a semiconductor was driven by an external AC

field and dissipation through phonon scattering was present. In the Floquet quasi-energy

spectrum the driving field leads to a renormalization of the bandwidth. Dynamical

localization occurs when the Floquet energies have effectively flat bands and in our

work we focused on driving amplitudes and frequencies beyond the localization regime.

The parameters for an AC field required to invert the band were determined from the

Floquet quasi-energies. Since the inversion of a band requires high-amplitude and high-

frequency fields, the dynamics of an electron in an inverted conduction band were derived

from non-equilibrium Green’s functions. The driving fields were incorporated through

a quasi-periodic phase term φk(t). This phase lead to a redefinition of the electron

operators and recast the Green’s functions and self-energy functions in terms of a set of

slow and fast time scales. Most importantly, it lead to the identification of terms which

would evolve gradually over the driving period. It was these slowly evolving terms which

provided a connection to a quantum kinetic equation, which was used to determine the

driven current of the system.

When driven by both an AC and DC field, the conduction band system would

drive an electrical current dependent on the inverted band. Based on harmonic analysis

of the generated current: in the absence of scattering it was expected that an inverted

band system could lead to a suppression of the fundamental driving field harmonic, and

the amplification of higher harmonics of the driving field. Specifically the amplification

of the third harmonic was studied.

The introduction of phonon scattering would result in a broadening of the

electron distribution function, leading to a reduction in the higher harmonic generation.

When phonon scattering was introduced, the amplification of higher harmonics was

observed and not completely destroyed by thermalization. Additionally, it was seen

that the total amplification of the third harmonic did not depend linearly on the initial

bandwidth, which was expected. Rather the amplification had a dependence on the

renormalized bandwidth and depending on the driving frequency a dramatic flatting

of the band was possible when phonon scattering was resonant. The derivation was

modified to include different phonon modes, and the third harmonic amplification was

still observed.
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Experimental parameters for a physical system which could be used to study

higher harmonic generation were found. By designing a modulated nanowire which

consists of alternating regions of InAs and InP, the initial bandwidth could be tuned.

The remaining challenge would be to establish a device which could suspend such wires

close enough to a substrate, such that the phonon modes responsible for scattering were

surface modes of the substrate. The inclusion of phonon scattering was fundamental to

dissipating the heat generated by the strong driving field. Due to the high-amplitude

of the driving force and the likelihood of runaway heating, continuous driving of such a

device would not be feasible. Instead, short pulsed driving fields are needed.

The harmonic generation in an inverted band was the last system studied with

strong driving fields. In the systems studied, it was seen that strong driving fields result

in significant changes in the dynamics of correlated systems. For the classical system,

the results were the (partial) inversion of coupled linear pendulums. For the two-band

system, the results were delocalization of electrons due to suppression of interaction-

induced gaps. In the single band, the results were generation of harmonics as electrons

reach equilibrium in an inverted band.

Finally, regarding the discussion of dynamical effects in quantum systems: the

structure of the renormalized Floquet spectrum was integral to these results. The dy-

namical effects described in this dissertation are dependent on a large driving frequency,

larger than the gap or the original system bandwidth. This results in the dominance of

the fundamental Floquet mode, meaning an electron would most likely scatter within

a single Floqeut band, rather than between bands. When there was overlap between

bands, as in the parabolic well spectrum in Section (4.2), gap suppression was difficult

to obtain.

9.4 Percolation on random graphs

Percolation theory focuses on the growth of clusters which are of infinite size,

length or contain a significant fraction of points in a system. The random nature by

which these clusters are generated leads to difficulty in determining a threshold for the

percolation transition. A mean-field approach is applicable to tree graphs, where the

lack of cycles reduces the possibility of a branch returning to itself. Through a process

of “single cycle unwrapping,” we established a mapping between graphs with cycles and

an associated tree graph. On this tree graph an extended mean-field theory was defined,

through the connectivity of the edges.

In the study of percolation on trees, the mean-field result leads to a strong
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approximation to the percolation threshold. On random graphs the presence of loops

leads to complications when describing the probability a process grows to infinite size,

since it is possible to connect back to itself. We established a lower bound on the

percolation threshold of a graph based on an unwrapping process call “single cycle

unwrapping.” Using this method, a graph of undirected bonds was extended into a

quasi-transitive graph by removing bridge bonds of cycles and re-directing them to a sub-

graph defined by the graph. The process of cycle unwrapping defines a quasi-transitive

graph from the original graph. By connecting multiple copies of an unwrapped graph,

it was possible to remove all cycles.

A lower bound on the percolation threshold was established through an ex-

tended mean-field calculation. This was defined on the graph resulting from unwrapping

all cycles, and using the probability of an infinite branch growing from an arbitrary ver-

tex. Branch growth is hindered by closed vertices and those connected to finite branches.

The connections from a given vertex also included second generation connections.

It was seen that through the adjacency matrix a percolation threshold can be

established by determining conditions for a finite average cluster size. These results

were used to study correlated percolation.

9.5 Correlated percolation

Correlated percolation was defined as a random process which affects connected

subsets of vertices simultaneously. Rather than defining a process in terms of probabil-

ities that single sites are open or closed, the probability that groups of connected sites

are all open simultaneously is introduced and defined through the placement of lattice

animals on a graph. The correlated percolation process was described in three cases:

correlated percolation on a lattice, percolation on a random graph with lattice animals

only, and percolation on a random graph with site percolation and lattice animals pro-

cesses. In these three examples the exact percolation threshold was not determined,

rather a lower bound on the threshold was established.

Based on the methods used in continuum percolation, the correlated percola-

tion model was described by overlapping spheres on a given lattice or graph. Following

methods which defined a threshold of percolation through the continuum system’s aver-

age covered volume, we used analogous arguments to define an average covered volume

of a discrete system. On a regular lattice, such an approach lead to covered volumes

which scaled as �n2�, the average size of a sphere in the discrete space. A non-trivial

percolation threshold can be defined from this covered volume.
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However, the same approach lead to limited results when applied to random

graphs or trees. On such networks, the volume of a sphere scales exponentially as

its radius increases. This results in a vanishingly small percolation threshold. On

a random tree or graph percolation was considered to occur by lattice animals only,

and the percolation threshold was defined using the average degree of the graph. To

account for the long-range connections created by lattice animals, the average degree

was defined using an auxiliary vertex model, which replaced animals by a single vertex

of high connectivity.

To define a percolation threshold in a system which has both site (uncorrelated)

and correlated percolation, the average length of a path connected to an arbitrary vertex

was investigated. If such a path can be bounded, the system is below the percolation

threshold. Using a modified adjacency matrix (which included contributions due to

lattice animals) allowed for such a bound to be defined. Currently this method was

only applied to fixed-degree or degree limited graphs. On these specific examples, when

correlations are added the percolation threshold due to site percolation has a correction

which is proportional to �n2�, the average lattice animal size.

The more exact bound established through the average cluster size, calculated

with the adjacency matrix, leads to a threshold which is dependent on �n2�, which

agrees with the approximation based on auxiliary vertices. On random graphs, the

lattice animals which lead to correlated percolation contain many vertices, but do not

cover a large area. The animal shape which dominates the cluster growth is branch-like

is shape.

Applying this result to a regular lattice covered by disks would result in a

threshold dependent on �r4�. On a regular lattice, the approximation of lattice animals

as disks over-estimates the number of points needed to grow a cluster of infinite length

and results in a lower percolation threshold. In order for the continuum results and the

random graph results to agree, the regular graph is covered with shapes similar to the

random graph animals. An empty disk (ring) on the regular lattice would contain many

points but cover a small amount of area. The percolation threshold on a regular lattice

is re-derived using empty object to cover many points but a minimal amount of area.

A connected cluster of the same size can be derived as in the case of solid disks, but

the number of points needed is dependent on the circumference of a ring, �n� ∝ �r�.
Connecting the continuum and random graph results is now possible, the dependence

�n2� = �r2� holds.
The studies of correlated percolation establish a connection between contin-

uum systems and discrete systems represented by regular lattices or random graphs.
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Randomly distributed lattice animals on a regular lattice were approximated as random

sized disks. This established the dependence of the percolation threshold on the average

animal size. Applying this approach to random graphs led to a trivially small percola-

tion bound. Through the auxiliary vertex model,which treated a random shape placed

on a random graph as a single (open vertex) of high connectivity, a lower bound on the

percolation threshold for a random graph was found which also showed a dependence on

the average animal size. The results on a random graph were further refined through an

auxiliary matrix treatment. The disagreement between the regular lattice and random

graph was rectified by covering the regular lattice with lower weight objects. By defining

random shapes of lighter weight on a lattice, a bound on the average connected cluster

size can be established in terms of the average random shape size, which maps to the

bound on the average shape size in continuum systems.
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83, 1999.

[168] R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg.
Experimental observation of linear and nonlinear optical bloch oscillations. Phys.
Rev. Lett., 83:4756–4759, Dec 1999.

[169] Demetrios N Christodoulides, Falk Lederer, and Yaron Silberberg. Discretizing
light behaviour in linear and nonlinear waveguide lattices. Nature, 424(6950):817–
823, 2003.

[170] Ashish Kumar Gupta, Ofir E. Alon, and Nimrod Moiseyev. Generation and control
of high-order harmonics by the interaction of an infrared laser with a thin graphite
layer. Phys. Rev. B, 68:205101, Nov 2003.

[171] D. Golde, T. Meier, and S. W. Koch. High harmonics generated in semiconductor
nanostructures by the coupled dynamics of optical inter-and intraband excitations.
Phys. Rev. B, 77, 2008.

[172] L. Esaki and R. Tsu. Superlattice and negative differential conductivity in semi-
conductors. IBM Journal of Research and Development, 14, 1970.

[173] M. Holthaus. Collapse of minibands in far-infrared irradiated superlattices. Phys-
ical Review Letters, 69, 1992.

[174] A. Wacker. Semiconductor superlattices: a model system for nonlinear transport.
Physics Reports, 357, 2002.

[175] G. Platero and R. Aguado. Photon-assisted transport in semiconductor nanos-
tructures. Physics Reports, 395, 2004.

[176] C. Wanke, M., A. G. Markelz, K. Unterrainer, S. J. Allen, and R. Bhatt. Hot
carriers in semiconductors. Plenum Press: New York, 1996.

[177] X. L. Lei. Current suppression and harmonic generation by intense terahertz
fields in semiconductor superlattices. Journal of Applied Physics, 82(2):718–721,
Jul 1997.

[178] F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi. Coherent destruction of
tunneling. Phys. Rev. Lett., 67, 1991.

[179] A. Kamenev. Nanoscopic quantum transport. Lectures notes for 2004 Les Houches
Summer School on Nanoscopic Quantum Transport. 2004.

156



[180] P. L. DeVries. Calculation of harmonic generation during the multiphoton ioniza-
tion of the hydrogen atom. J. Opt. Soc. Am. B, 7, 1990.

[181] C. J. Joachain, N. J. Kylstra, and R. M. Potvliege. Atoms in Intense Laser Fields.
Cambridge University Press: Cambridge, UK, 2011.

[182] O. V. Konstantinov and V. I. Perel. Zh. Exp. Teor. Fiz., 39, 1960.

[183] L. P. Pryadko and P. Sengupta. Quantum kinetics of an open system in the
presence of periodic refocusing fields. Phys. Rev. B, 73:085321, 2006.

[184] L. P. Kadanoff and G. Baym. Quantum Statistical Mechanics. Benjamin: New
York, 1962.
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[211] G. Frobenius. Über Matrizen aus nicht negativen elementen. Sitzungsber. Königl.
Preuss. Akad. Wiss., pages 456–477, 1912.

[212] Carl Meyer. Matrix analysis and applied linear algebra, chapter 8. SIAM, 2000.

158



[213] Juan G. Restrepo, Edward Ott, and Brian R. Hunt. Weighted percolation on
directed networks. Phys. Rev. Lett., 100:058701, Feb 2008.

[214] M. Newman. Networks: An Introduction. OUP Oxford, 2010.
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