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ABSTRACT OF THE DISSERTATION

Extended Wenger Graphs

By

Michael B. Porter

Doctor of Philosophy in Mathematics

University of California, Irvine, 2018

Professor Daqing Wan, Chair

Wenger graphs were originally introduced as examples of dense graphs that do not have

cycles of a given size. Graphs with similar properties were known at the time, but Wenger

graphs are based on algebraic relations in finite fields, and as such are easier to understand

and analyze.

Wenger graphs are bipartite, with the vertices consisting of two copies of the vector space of

dimension m+1 over the finite field of order q. These two sets of vertices are called points

and lines, with a point vertex connected to a line vertex if the equations pk + lk = l1fk(p1)

are satisfied for k = 2, 3, ..., m+1. In the original Wenger graph, the function fk(x) was

given by fk(x) = xk−1.

Since their introduction in 1991, the original Wenger graph concept has been extended to

include linearized and jumped Wenger graphs, and some results are known for extensions in

general. In this dissertation, another extension, the extended Wenger graph, is introduced

and analyzed, and a new result about polynomial root patterns is proven.

viii



Chapter 1

Introduction

Paul Erdös conjectured in 1964 that for every k there is a c such that any graph on n vertices

with cn1+ 1
k edges has a cycle of length 2k[16]. His conjecture was later proved by Bondy

and Simonovits[5]. Explicit constructions of graphs with no C4, C6, and C10 were given

by Reiman, Brown, and Benson[2, 6, 42], but these constructions all used finite projective

geometry.

Wenger graphs were initially introduced[51] to provide a construction based on simple alge-

braic equations. They have been studied extensively since then[1, 3, 5, 7, 10–15, 17–20, 25–

36, 39–41, 43–48, 53, 54]. Some extensions of Wenger graphs have been proposed[7, 47]. In

this dissertation, another extension, the extended Wenger graph, is introduced and analyzed,

and a new result about polynomial root patterns is proven.

I start by giving an overview of graph theory to define the terms and concepts used. This is

chapter 2. For a more thorough introduction, there are many good books on graph theory,

e.g. Bondy and Murty[4].

In chapter 3, some of the results from the literature on Wenger graphs (as originally de-
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fined) are given. They are, by design, examples of graphs with the maximum number of

edges without cycles of a given length. These original Wenger graphs have been extensively

analyzed, and results are given for the diameter, girth, and spectrum.

One idea for extending the equations of definition for Wenger graphs is by using functions of

the form xp
i
. The resulting graphs, called linearized Wenger graphs, are somewhat different

from the original Wenger graphs, and results from the literature for the diameter, girth, and

spectrum are in chapter 4.

In order to vary the properties of the graph like diameter and girth, it is important to have

parameters to vary. Both the original and linearized Wenger graphs have equations that are

fixed after choosing the size q of the field and the dimension m of the set of vertices.

In chapter 5 the extended Wenger graph is introduced. For fixed q and m, instead of just

one graph, there is a family of graphs indexed by the parameter d, which is introduced into

the last equation that defines the graph. The idea is that by allowing more flexibility in the

definition, we can have more control over the properties of the graph.

Recently, the jumped Wenger graph was introduced in [47]. Both the jumped and extended

Wenger graphs are treated in chapter 5.

The results for the spectrum of extended Wenger graphs are incomplete. The missing parts

of the spectrum depend on the distribution of polynomials with a given number of roots

over a finite field. I was not able to prove the result I needed to give an expression for

the rest of the spectrum. The result I need has to do with polynomials of the form xm +

(degree-n polynomial) with i roots, where i ≥ m.

I was able to prove a very interesting related result, which has to do with polynomials of the

form xm + (degree-n polynomial) with m roots. This analysis is given in chapter 6.

The equations of definition for Wenger graphs can be generalized even further, but less is

2



known about these more general extensions. Chapter 7 contains some ideas for future work

analyzing the various extensions of Wenger graphs.
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Chapter 2

Graph Theory Overview

This chapter contains graph-theoretical ideas used in later chapters.

2.1 Graph Definitions

A graph consists of set V of vertices, also called nodes, and a subset E ⊆ V × V of edges

between these vertices. We will require the sets V and E to be finite. For a graph G = (V,E),

the vertex set will be denoted V (G) and the edge set E(G). The order of a graph is the

number of vertices, and the size of a graph is the number of edges.

Note that the above definition does not allow two edges in the same direction between the

same two vertices. These are called multiple edges, which might be used, for example, to

model a pair of cities with two roads going from one to the other. To define a graph with

multiple edges, instead of E ⊆ V × V , we have a set E and a function E → V × V . We will

restrict ourselves to graphs without multiple edges.

Suppose that for each (v1, v2) ∈ E, (v2, v1) is also in E. This means that for every edge
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between two vertices, there is also an edge between the same two vertices going in the

opposite direction. In this case, we consider the pair of edges to be one undirected edge, and

the graph is called undirected.

Edges of the form (v, v) for some v ∈ V are called loops; they are edges from a vertex to

itself. If a graph is undirected and has no multiple edges or loops, it is called simple. We

will consider only simple graphs.

Figure 2.1: Example of a simple graph

A complete graph Kn is a graph with n vertices which has an edge from every vertex to

every other vertex.

A graph is bipartite if the vertex set is the disjoint union of two sets V1 and V2, and all of the

edges are between elements of V1 and elements of V2. So every edge coming from a vertex

in V1 goes to a vertex in V2; there are no edges between vertices in V1 or between vertices in

V2. A complete bipartite graph Kn,m is a bipartite graph with |V1| = n and |V2| = m, and

an edge from every vertex in V1 to every vertex in V2.

A path is a finite sequence v1, v2, . . . , vs of vertices for which there is an edge from vi to vi+1,

i = 1, 2, . . . , s− 1. A path is simple if all the vertices and edges are distinct; we will assume

that paths are simple. The length of a path is the number of its edges. A graph is connected
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Figure 2.2: Example of a bipartite graph

if there is a path from every vertex to every other vertex. It is easy to prove that a graph is

disconnected if and only if it can be partitioned into connected components.

The distance between two vertices vi and vj is the number of edges in the shortest path

joining vi and vj. If there is no path between vi and vj, the distance is undefined. Some

authors define the distance to be infinity in this case.

The diameter of a connected graph is the maximum distance between any two vertices. Note

that by our definition, the diameter of an unconnected graph is undefined. A graph with

diameter 3 is shown in Figure 2.3 with two paths of length 3.

A cycle is a path from a vertex to itself. Note that the length of a cycle must be at least

three. A cycle of length two would be a path from v1 to v2 and back to v1, which would not

have distinct edges. A cycle of length one would just be a loop. The girth of a graph is the

length of the shortest cycle in the graph. A graph with girth 4 is shown in Figure 2.4

6



Figure 2.3: A graph with diameter 3

Figure 2.4: A graph with girth 4

A connected graph with no cycles is called a tree. A forest is the disjoint union of finitely

many trees. The girth of a tree is undefined.

The degree of a vertex is the number of edges connected to it. A graph is regular if there

are the same number of edges connected to every vertex, i.e. the degree of every vertex is

the same. If the degree of every vertex is k, the graph is called k-regular. A 0-regular graph

is a set of disconnected vertices. A 1-regular graph is a set of disconnected edges, and a

2-regular graph is a set of disconnected cycles. For k ≥ 3, things get more interesting. A

3-regular graph is called cubic; an example is shown in Figure 2.5.
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Figure 2.5: A 3-regular, or cubic, graph

2.2 Subgraphs, Isomorphism, and Planarity

Let G = (V,E) be a graph. If V ′ ⊆ V and E ′ ⊆ E ∩ (V ′ × V ′), then H = (V ′, E ′) is a

subgraph of G. So a subgraph consists of vertices of the original graph and edges of the

original graph between those vertices. If H 6= G, it is called a proper subgraph, and if

V = V ′, it is called a spanning subgraph.

If H is a tree (so G is connected), H is called a spanning tree. Spanning trees are important

in many applications of graph theory.

Figure 2.6: A graph and one of its subgraphs

An isomorphism between two graphs G and H is a bijective map φ : V (G) → V (H) such
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that there is an edge between φ(v1) and φ(v2) if and only if there is an edge between v1 and

v2. An example of two isomorphic graphs is shown in Figure 2.7. An automorphism of G is

an isomorphism between G and itself. The automorphisms of a graph form a group under

composition.

Figure 2.7: Two isomorphic graphs

A simple example of a non-identity automorphism is for the cycle graph Cn with vertex set

Z/nZ and an edge between vertex i and vertex j whenever j = i + 1 (or i = j + 1). The

map that takes vertex i to vertex i+ k for some fixed k ∈ Z/nZ is an automorphism.

The Turán number ex(n,H) is the largest number of edges in a graph with order n containing

no subgraph isomorphic to H. Much is known about the Turán number when H is a complete

graph on k vertices. Wenger graphs were initially introduced as part of the investigation

into Turán numbers where H is the cycle graph, C4, C6, or C10. A Turán graph is a graph

with the maximum number of edges.

⇒
Figure 2.8: A subdivided edge

An edge can be subdivided by adding vertices of degree 2 along the edge. In many appli-

cations, this is essentially no change. For example, if the graph represents a map, where
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the edges are roads and the vertices are cities, subdividing an edge is equivalent to adding a

marker which says that you are halfway from one city to another. A graph is subdivided by

subdividing its edges.

X

X

X

Figure 2.9: A nonplanar graph with its subdivision of K3,3

A graph is planar if it can be drawn in the plane so that the edges only intersect at the

vertices. Planar graphs are characterized by Kuratowski’s theorem: a graph is planar if and

only if it does not contain a subgraph that is a subdivision of K5, the complete graph on five

vertices, or K3,3, the complete bipartite graph on two sets of three vertices. An example of

a nonplanar graph is shown in Figure 2.9 with its subdivision of K3,3.

2.3 Transitivity and Matrices

A graph is called vertex transitive if the automorphism group acts transitively on the vertices.

That is, for every pair of vertices v1 and v2, there is an automorphism that takes v1 to v2.

So all the vertices are equivalent in the sense that the graph looks the same when viewed

from each vertex. Note that all vertex transitive graphs are regular, but it is not necessarily

true that all regular graphs are vertex transitive.
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For Wenger graphs, the vertices are divided into two groups, points and lines. It is called

point transitive if the automorphism group acts transitively on the set of points and line

transitive if the automorphism group acts transitively on the set of lines. Note that a graph

can be both point and line transitive, but still not be vertex transitive.

A graph is called edge transitive if the automorphism group acts transitively on the edges.

So there is an automorphism that takes every edge to every other edge. Edge transitive

graphs look the same when viewed from every edge.

Figure 2.10: A graph that is vertex transitive but not edge transitive

The graph in Figure 2.10 is vertex transitive, since each vertex is the vertex of a triangle

which is connected by three edges to another triangle. It is not edge transitive, though, since

six edges are a side of a triangle, but the other three are not the side of a triangle.

It is not hard to construct a graph which is edge transitive but not vertex transitive, but it

can be difficult to construct such a graph if we also require it to be regular. Such graphs are

11



called semisymmetric.

A path in a graph that visits every edge exactly once is called an Euler path, and if it begins

and ends at the same vertex, it is called a Euler tour. A graph is called Eulerian if it has an

Euler tour, and semi-Eulerian if it has an Euler path but not an Euler tour. A connected

graph is Eulerian if and only if all vertices have even degree, and it is semi-Eulerian if it has

exactly two vertices with odd degree. In the latter case, the two vertices with odd degree

are the endpoints of the Euler path.

Figure 2.11: Graph for the bridges of Königsberg problem

The bridges of Königsberg problem is one of the oldest problems in graph theory[50]. The

town of Königsberg was built on both sides of a river, and there are two islands. Seven

bridges were built, and the problem is to plan a tour of the town crossing all seven bridges

exactly one time. The mathematical equivalent is to find an Euler tour of the graph in Figure

2.11 (note that the graph has multiple edges). Euler solved the problem in 1736, proving

that such a tour is impossible.

12



Figure 2.12: A graph with a Hamilton cycle

A path in a graph that visits every vertex exactly once is called a Hamilton path, and if it

begins and ends at the same vertex, it is called a Hamilton cycle. If a graph has a Hamilton

cycle, it is called Hamiltonian. A graph with one of its Hamilton cycles is shown in Figure

2.12. The computation of a Hamiltonian cycle is a well-known NP-complete problem, and

the traveling salesman problem, which is the weighted version of the same problem, has been

extensively studied.

Graphs can often be analyzed through use of an adjacency matrix. Every vertex is assigned

a row and the corresponding column. The (i, j) entry is 1 if there’s an edge from vertex i

to vertex j and 0 if there’s no edge from vertex i to vertex j. The matrix is symmetric (for

undirected graphs), so all the eigenvalues are real. The eigenvalues (with their associated

multiplicities) are called the spectrum of the graph.

13
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Figure 2.13: A graph with its adjacency matrix

2.4 Finite Fields

A field F is a set of elements for which addition and multiplication are defined with (F,+)

and (F − {0}, ∗) being abelian groups. Also, the distributive law a(b + c) = ab + ac must

hold for all a, b, c ∈ F . A finite field is a field with finitely many elements.

We can define a ring homomorphism Z → F by taking the multiplicative identity 1 and

adding it to itself n times. Since Z is infinite and F is not, the kernel can not be trivial,

but it must be a prime ideal since the image is a subring of a field and therefore an integral

domain. So the kernel must be of the form pZ for some prime p. This p is the characteristic

of the field F . In other words, the characteristic is the minimum number of times you have

to add 1 to itself to get zero as a sum.

Finite fields must have prime power order. Since 1 has order p in the group (F,+), p divides

|F |. Suppose there were a different prime q dividing |F |. Then there is an element x 6= 0

in F whose additive order is q. Then px = qx = 0, where kx represents x added to itself k

times. Since p and q are relatively prime, there are integers a and b such that ap + bq = 1.

But this means x = 1x = (ap + bq)x = apx + bqx = 0 + 0 = 0, a contradiction. Thus, p is

14



the only prime factor of |F |.

The integers modulo p, where p is a prime, form a field Fp. It can be shown that irreducible

polynomials of any degree over Fp exist, so let f(x) be an irreducible polynomial of degree

e over Fp. Then Fp/(f(x)) is a field of order q = pe. It can also be shown that all fields of

order q are isomorphic to this one. As a result, Fq can be described as ”the” finite field of

order q.

+ 0 1 x x+ 1 ∗ 0 1 x x+ 1

0 0 1 x x+ 1 0 0 0 0 0

1 1 0 x+ 1 x 1 0 1 x x+ 1

x x x+ 1 0 1 x 0 x x+ 1 1

x+ 1 x+ 1 x 1 0 x+ 1 0 x+ 1 1 x

Table 2.1: Addition and Multiplication in F4 = F2[x]/(x2 + x+ 1)

In the finite field construction in Table 2.1, the field elements have the form a = ae−1x
e−1 +

· · ·+a1x+a0. We can associate a vector



ae−1
...

a1

a0


with this field element. This assumes the

basis {1, x, x2, . . . , xe−1} is being used, but the definition that follows will be independent

of basis. Multiplication by a given field element b is then a linear transformation, which is

equivalent to multiplication by a matrix Mb. We then define the trace Tr(b) to be the trace

of Mb and the norm N(b) to be the determinant of Mb. An example is given in Table 2.2.

15



(x+ 1)(ax+ b) = ax2 + (a+ b)x+ b

= bx+ (a+ b)(
b

a+ b

)
=

(
0 1
1 1

)(
a
b

)

Tr(x+ 1) = Tr

(
0 1
1 1

)
= 1

N(x+ 1) = det

(
0 1
1 1

)
= −1 = 1

Table 2.2: Multiplication by x+ 1 in F4

16



Chapter 3

Wenger Graphs

Wenger graphs were introduced in 1991[51] as a family of graphs with many edges but no

small cycles. Let p be a prime, e a positive integer, and Fq the finite field with q = pe

elements.

The Wenger graph Wm(q) is defined as follows. It is bipartite with the two sets of vertices

being two copies P and L of Fm+1
q . There is an edge from P = (p1, p2, . . . , pm+1) ∈ P to

L = (l1, l2, . . . , lm+1) ∈ L whenever

l2 + p2 = p1l1

l3 + p3 = p21l1

...

lm+1 + pm+1 = pm1 l1

17



This creates a graph with 2qm+1 vertices and qm+2 edges. An example of a small Wenger

graph is shown in Figure 3.1. Two of the 27 edges are shown with the calculation corre-

sponding to the defining equation l2 + p2 = p1l1.

2 + 1 = 0 · 1

2 + 0 = 1 · 2

0

1p1

2

0

1l1

2

0 1

p2

2 0 1

l2

2

P L

Figure 3.1: Vertices of Wenger graph W1(3) with two example edges

It is possible to generalize the definition of Wenger graphs by replacing p1, p
2
1, . . . , p

m
1 with

other functions of p1. For example, the functions p1, p
p
1, p

p2

1 , . . . , p
pm−1

1 have been studied[7,

45, 54]. These are called linearized Wenger graphs, and some of the results are described in

Chapter 4.

For k = 2, 3, or 5, Wenger graphs are examples of graphs on a given vertex set with the

largest possible number of edges without a cycle of length 2k[12, 30, 51]. Cycles of length 2k

for k = 4 and k ≥ 6 are known to exist[43]. Wenger graphs are also known to be expander

graphs[12], which have found many applications[9, 21–23, 38, 52]. The diameter of Wenger

graphs, when they’re connected, is known to be 2m + 2[46]. The eigenvalues of Wenger

graphs are also known[12].

Wenger’s original paper[51] uses a different definition from the one above. He also assumed
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the field was a prime field Fp (i.e. e = 1). I will use the label Hk(p) for this description. The

vertices are two copies of Fkp with vertices (a0, a1, . . . , ak−1) and (b0, b1, . . . , bk−1) having an

edge between them if:

bj = aj + aj+1bk−1, j = 0, 1, . . . , k − 2

There is a third description by Lazebnik and Ustimenko[30]; I will use the label H ′n(q)

for this description. The vertices are two copies of Fn−1q with vertices (p2, p3, . . . , pn) and

(l1, l3, . . . , ln) having an edge between them if

lk − pk = l1pk−1, k = 3, . . . , n

All three of these representations are isomorphic. The isomorphisms are[12]:

φ : Hk(p)→ H ′k+1(p)

(a0, a1, . . . , ak − 1) 7→ (ak−1, ak−2, . . . , a0)

(b0, b1, . . . , bk−1) 7→ (bk−1, bk−2, . . . , b0)

and

ψ : H ′m+2(q)→ Wm(q)

(p2, p3, . . . , pm+2) 7→ (p2, p3, . . . , pm+2)

(l1, l3, . . . , lm+2) 7→ (−l1,−l3, . . . ,−lm+1)

The representationWm(q) first appeared in Lazebnik and Viglione[34]. This is the description

that is currently used. In terms of this description, Hk(p) is isomorphic to Wk−1(p) and H ′n(q)

is isomorphic to Wn−2(q). A comparison of the various descriptions is shown in Table 3.1.

Wenger’s original paper showed that for any prime p, W1(p) has no cycles of length 4, W2(p)

has no cycles of length 6, and W4(p) has no cycles of length 10. He also showed that W2(p)
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Wenger[51] Lazebnik & Ustimenko[30] recent papers

Name of Graph Hk(p) H ′n(q) Wm(q)
Size of Field p q = pe q = pe

Dimension of P and L k n− 1 m+ 1
Number of Vertices 2pk 2qn−1 2qm+1

Number of Edges pk+1 qn qm+2

Range of p-subscripts 0 to k − 1 2 to n 1 to m+ 1
Range of l-subscripts 0 to k − 1 1, 3 to n 1 to m+ 1

Table 3.1: Comparison of Wenger graph descriptions

has girth 8. Note that the graph Wk+1(p) has 2pk vertices and pk+1 edges.

It was shown in [30] that the automorphism group of Wm(q) acts transitively on the P

vertices, on the L vertices, and on the set of edges. In [34] it was shown that the automor-

phism group acts transitively on the whole set of vertices of W1(q) for all q and of W2(q) in

characteristic 2.

Another result of [34] is that Wm(q) is connected if 1 ≤ m ≤ q − 1, and if m ≥ q, it has

qm−q+1 components, each isomorphic to the graph with m = q − 1. For this reason, the

restriction m < q is often used.

In [43], it is shown that if m ≥ 2, given any integer l, l 6= 5, 4 ≤ l ≤ 2p and any vertex v in

Wm(q), there is a cycle of length 2l passing through v.

The Wenger graph with m = 2 and q = 3 is isomorphic to the Gray graph, shown in Figure

3.2. The Gray graph is constructed from a 3x3x3 grid of points, and the 27 lines parallel

to the coordinate axes through these points. There is a vertex for each point and each line,

and there is an edge between a point-vertex and a line-vertex if the corresponding point is

on the corresponding line. The Gray graph is the only cubic semisymmetric graph of order

2p3[40], and is the smallest cubic semisymmetric graph[39].
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v1
v2

this edge is
-5 for v2

this edge is
+4 for v1

54 vertices
divide into groups of 6
going clockwise, edge to
-25, 7, -7, 13, -13, 25
(+=clockwise, -=counterclockwise
±1=next-door neighbors)

Figure 3.2: The Gray graph, W2(3)[49]

It is shown in [34] that Wm(q) is semisymmetric if m ≥ 3 and q ≥ 3 or if m = 2 and q is

odd, and is vertex transitive if m = 1 or if m = 2 and q is even. The case q = 2, m ≥ 3 is

not mentioned.

It is shown in [30] that the girth of the Wenger graph Wm(q) is 8 for m ≥ 2. They also

extended Wenger’s original result that W4(p) has no cycles of length 10 from primes to

powers of primes.

For any integer k and any vertex v in the Wenger graph, there is a cycle of length 2k passing

through v if m ≥ 2, k 6= 5, and 4 ≤ k ≤ 2p[43].

The diameter of the Wenger graph is 2m+ 2 if 1 ≤ m ≤ q − 1[46].

The spectrum of Wenger graphs was calculated in [12]. Their result is:

Theorem 3.1. For all prime power q and 1 ≤ m ≤ q − 1, the eigenvalues of the Wenger

graph are ±q and ±
√
qi where 0 ≤ i ≤ m. The multiplicity of ±q is 1, and the multiplicity

of ±
√
qi is:
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(q − 1)

(
q

i

) m∑
d=i

d−i∑
k=0

(−1)k
(
q − i
k

)
qd−i−k

The proof is similar to the one given for a general Wenger graph (Theorem 5.5, or Theorem

2.2 of [7]). The multiplicities are calculated to be equal to the number of polynomials of

degree at most m having i distinct roots in Fq. The expression in the result comes from [24].

i eigenvalues multiplicity

- 3, -3 1, since 1 ≤ m ≤ q − 1

2
√

6, −
√

6 6

1
√

3, −
√

3 12
0 0 16

sum of multiplicities = 1+6+12+16+12+6+1 = 54 = # of vertices

Table 3.2: Spectrum of the Gray graph

As an example, the spectrum of the Gray graph is calculated. The results are shown in Table

3.2. The eigenvalues 3 and -3 are a special case: the multiplicity of q and −q is the number

of connected components, which is 1 if 1 ≤ m ≤ q − 1, and qm−q+1 if m ≥ q.

For
√

6 and −
√

6, the multiplicity is:

(3− 1)

(
3

2

) 2∑
d=2

d−2∑
k=0

(−1)k
(

3− 2

k

)
3d−2−k

= 6
0∑

k=0

(−1)k
(

1

k

)
3−k

= 6(1) = 6

For
√

3 and −
√

3, the multiplicity is:
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(3− 1)

(
3

1

) 2∑
d=1

d−1∑
k=0

(−1)k
(

3− 1

k

)
3d−1−k

= 6

(
0∑

k=0

(−1)k
(

2

k

)
3−k +

1∑
k=0

(−1)k
(

2

k

)
31−k

)

= 6(1 + (3− 2)) = 12

And for 0, we calculate:

(3− 1)

(
3

0

) 2∑
d=0

d∑
k=0

(−1)k
(

3− 0

k

)
3d−k

= 2

(
0∑

k=0

(−1)k
(

3

k

)
3−k +

1∑
k=0

(−1)k
(

3

k

)
31−k +

2∑
k=0

(−1)k
(

3

k

)
32−k

)

= 2(1 + (3− 3) + (9− 9 + 3)) = 8

but the formula gives a multiplicity for 0 and −0 separately, so the actual multiplicity of 0

is 16.

The following theorem is well-known:

Theorem 3.2. The diameter of a graph G is less than the number of distinct eigenvalues of

its adjacency matrix.

Proof. Let A be the adjacency matrix, and let φ be the minimal polynomial of A. Then

deg(φ) = k, the number of distinct eigenvalues. By the Cayley-Hamilton Theorem, φ(A) = 0,

so Ak is a linear combination of Ak−1, . . . , A, I. Suppose the diameter of G is greater than or

equal to k. Then there are vertices u and v such that the distance between u and v is exactly
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k. So the (u, v) component of Ak is positive, while the (u, v) components of Ak−1, . . . , A, I

are all zero. This contradicts Ak being a linear combination.

Since there are 2m+3 distinct eigenvalues and the diameter of the Wenger graph was shown

to be 2m+2, the Wenger graph has the minimum number of eigenvalues for a given diameter.
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Chapter 4

Linearized Wenger Graphs

If the functions fk of a Wenger graph are given by fk(x) = xp
k−2

, where p is the characteristic

of Fq, the Wenger graph is called a linearized Wenger graph. These graphs are studied in

[7]. An example of the calculations for an edge is shown in Figure 4.1.


1
x
0
1




x+ 1
1
x
x



L P

F4 = F2[x]/(x2 + x+ 1)

l1 = 1 so

p2 + l2 = x+ 1 l1p1 = p1 = x+ 1

p3 + l3 = 0 + x = x l1p
2
1 = p21 = x2 + 1 = (x+ 1) + 1 = x

p4 + l4 = 1 + x = x+ 1 l1p
4
1 = p41 = x2 = x+ 1

Figure 4.1: Example of edge in L3(4)
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The spectrum of linearized Wenger graphs is stated in the following two theorems, the first

by Cao et al.[7] for the case m ≥ e (where e is the exponent in q = pe) and the second by

Yan and Liu[53] for the case m < e.

Theorem 4.1. Let m ≥ e. The linearized Wenger graph has qm−e components. The eigen-

values are 0 and ±
√
qpi where 0 ≤ i ≤ e. The multiplicity of the eigenvalues ±

√
qpi is given

by:

qm−e+1

pi

∏e−i−1
j=0 (pe−pj)2∏e−i−1
j=0 (pe−i−pj)

and the multiplicity of eigenvalue 0 is given by:

2qm−e
∑e

i=1(p
e − pe−i)

∏e−i−1
j=0 (pe−pj)2∏e−i−1
j=0 (pe−i−pj)

The ”2” in the multiplicity of eigenvalue 0 is due to contributions from both +0 and −0.

For the second theorem, the Gaussian binomial coefficients are required:

(
n
k

)
q

=



∏k−1
t=0

qn−qt
qk−qt 1 ≤ k ≤ n

1 k = 0

0 k > n

where n and k are nonnegative integers. This is the number

of k-dimensional subspaces of Fnq .

Theorem 4.2. Let m < e. The eigenvalues of the linearized Wenger graph Lm(q) are:

0,±q,±
√
qpr, 0 ≤ r ≤ m− 1

Moreover, the multiplicities of the eigenvalues ±q are 1, the multiplicities of the eigenvalues

±
√
qpr are pe−rnr, and the multiplicity of the eigenvalue 0 is:

2
(
qm+1 − 1−

∑m−1
r=0 p

e−rnr
)

where
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nr =
(
e
r

)
p

∑m−r−1
i=0 (−1)ipi(i−1)/2

(
e−r
i

)
p
(qm−r−i − 1).

The spectrum of the linearized Wenger graph L3(4) is given in Table 4.1.

m = 3, p = 2, e = 2, q = 4

Nonzero eigenvalues: i eigenvalues multiplicity
0 ±2 96

1 ±2
√

2 72
2 ±4 4*

*double-check: there are qm−e = 4 components

eigenvalue 0 has multiplicity 84

double-check: number of eigenvalues = 96 · 2 + 72 · 2 + 4 · 2 + 84 = 512
number of vertices = 2qm+1 = 2 · 44 = 512

Table 4.1: Spectrum of L3(4)

As an example of the calculations involved, the multiplicity of ±2
√

2 is calculated as follows:

We have m = 3, p = 2, e = 2, so q = 4, and i = 1 so that the eigenvalue is
√
qpi = 2

√
2.

The multiplicity is calculated as:

qm−e+1

pi

∏e−i−1
j=0 (pe−pj)2∏e−i−1
j=0 (pe−i−pj)

= 42

21

∏0
j=0(p

2−pj)2∏0
j=0(p

1−pj)

= 8 (4−1)2
(2−1) = 72

For the diameter of the linearized Wenger graph, we have the following theorem[7]:

Theorem 4.3. If m ≤ e, then the diameter of the linearized Wenger graph is 2(m+ 1).

If m > e, then the linearized Wenger graph is not connected. Based on Theorem 4.1, it

has qm−e connected components. Each of these components is isomorphic to the graph with

m = e.
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All linearized Wenger graphs are 4-cycle free. The linearized Wenger graph with m = 1 is

the same as the (original) Wenger graph, and it is known to be free of 4-cycles[36]. The

authors also observed that adding functions to the list will not decrease the girth. As a

result, all linearized Wenger graphs have girth at least 6.

The results for girth of linearized Wenger graphs are given in the following two theorems

from [7]

Theorem 4.4. If p 6= 2, or if p = 2, m = 1, and e ≥ 2, then the girth of the linearized

Wenger graph is 6.

Proof. A cycle of length 6 is constructed for both cases. For p 6= 2,

P1 = (0, 0, . . . , 0)

L1 = (1, 0, . . . , 0)

P2 = (−1,−1, . . . , 0)

L2 = (−1, 2, . . . , 2)

P3 = (−2, 0, . . . , 0)

L3 = (0, 0, . . . , 0)

P1 = (0, 0, . . . , 0)

For the case p = 2, m = 1, and e ≥ 2, choose β 6= 0 with Tr(β) 6= 0. So there is a solution
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α 6= 0 to α2 + α = β. Then the cycle is:

P1 = (0, 0)

L1 = (0, 0)

P2 = (α2, 0)

L2 = (α−1β, αβ)

P3 = (β, β)

L3 = (1, 0)

P1 = (0, 0)

The cycle is shown in Table 4.2 for the case e = 3.

p = 2, m = 1, e = 3, q = 8

F8 = F2[x]/(x3 + x+ 1) α = x, β = x2 + x(
0
0

) (
0
0

) (
x2

0

) (
x+ 1

x2 + x+ 1

) (
x2 + x
x2 + x

) (
1
0

) (
0
0

)
P L P L P L P

l1p1: 0 0 x3 + x2 x3 + 2x2 + x x2 + x 0
= x2 + x+ 1 = 1

equation: p2 + l2 = l1p1

Table 4.2: Example of 6-cycle for L1(8)

Theorem 4.5. If p = 2, m = 1, and e = 1, or if p = 2 and m ≥ 2, then the girth of the

linearized Wenger graph is 8.

Proof. In the original paper by Wenger[51], it is shown that the Wenger graph with m = 1
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and e = 1 has no 4-cycles or 6-cycles. So by the observation in [36], the girth is at least 8

for e = 1 and m ≥ 1.

If there is no 6-cycle for p = 2, m = 2, and e ≥ 2, then by that same observation, this

extends to m ≥ 2, which is all the remaining cases. So we will show that there is no 6-cycle

for p = 2, m = 2, and e ≥ 2.

If there were a 6-cycle P1L1P2L2P3L3P1, then since P1 and P2 share a common neighbor L1,

setting c1 = l1 and u1 = p
(1)
1 − p

(2)
1 ) and remembering that xp − yp = (x− y)p, we get:

P1 − P2 = (u1, c1u1, c1u
p
1, . . . , c1u

pm−1

1 )

and similarly,

P2 − P3 = (u2, c2u2, c2u
p
2, . . . , c2u

pm−1

2 )

P3 − P1 = (u3, c3u3, c3u
p
3, . . . , c3u

pm−1

3 )

so that:

u1 + u2 + u3 = 0

c1u1 + c2u2 + c3u3 = 0

c1u
2
1 + c2u

2
2 + c3u

2
3 = 0

eliminating c1 in the last equation gives:

u1 + u2 + u3 = 0

c1u1 + c2u2 + c3u3 = 0

c2(u
2
2 − u2u1) + c3(u

2
3 − u3u1) = 0

Since we’re in characteristic 2 and u1 + u2 + u3 = 0, we have u22 − u2u1 = u2(u2 − u1) =
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(u1 + u3)(u1 + u3 − u1) = (u3 − u1)u3 = u23 − u3u1, so the expressions in parentheses are

equal, and must also be nonzero, since u22 − u2u1 = u2(u2 − u1) = u2u3 and u2, u3 6= 0. So

we have:

u1 + u2 + u3 = 0

c1u1 + c2u2 + c3u3 = 0

c2 + c3 = 0

But this means that c2 = c3, which would make L2 = L3. So there can be no 6-cycle.

We have shown that the girth is at least 8 in all cases, so it remains to be shown that the

girth is at most 8, i.e. that there is a cycle of length 8. Here is such a cycle:

P1 = (0, 0, . . . , 0)

L1 = (0, 0, . . . , 0)

P2 = (1, 0, . . . , 0)

L2 = (1, 1, . . . , 1)

P3 = (0, 1, . . . , 1)

L3 = (0, 1, . . . , 1)

P4 = (1, 1, . . . , 1)

L4 = (1, 0, . . . , 0)

P1 = (0, 0, . . . , 0)

Wang[48] was able to prove that cycles exist in the linearized Wenger graph with even lengths

between 6 and 2p2. Of course, odd cycles do not exist since Wenger graphs are bipartite.
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Theorem 4.6. Let q be the power of an odd prime p. For any integer k with 3 ≤ k ≤ p2,

Lm(q) contains cycles of length 2k.

Corollary 4.1. If p is an odd prime, L1(p) is Hamiltonian.

Proof. It has 2p2 vertices, and by the theorem, there is a path of length 2p2.

A Hamiltonian cycle for L1(5) (which is the same as W1(5)) is shown in Figure 4.2. Hamil-

tonian cycles are difficult to find in general (the decision problem is NP-complete), but

here I just constructed a path of length 10 from

 0

0

 to

 0

1

 using p1 = 1, 2, 3, 4 and

l1 = 0, 1, 2, 3, 4. Then I repeated the same p1 and l1 values, so that the p2 values are 1 greater

and the l2 values are 1 less. Repeating for a total of 5 of these blocks gives a path of length

50 with no vertices repeated, and ending at

 0

5

 =

 0

0

.

p1l1 = p2 + l2

00P
10L
22P
03L
42P
30L
34P
22L
10P
44L

01P
14L
23P
02L
43P
34L
30P
21L
11P
43L

02P
13L
24P
01L
44P
33L
31P
20L
12P
42L

03P
12L
20P
00L
40P
32L
32P
24L
13P
41L

04P
11L
21P
04L
41P
31L
33P
23L
14P
40L
00P

Figure 4.2: Hamiltonian cycle in L1(5)
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Chapter 5

Extended Wenger Graphs

In this chapter, the definition of Wenger graphs is extended by making minor adjustments

to the set of exponents of p1. There are two types of adjustments. In the first type of graph,

the exponent of p1 in the last equation is changed from m to m+d, where d is a nonnegative

integer. If m + d ≥ q, then m + d can be reduced (mod q − 1), so there is no harm in

assuming that m+ d < q. This first type of graph is called an extended Wenger graph, and

is denoted Gd(m, q). In the second type of graph, two ”jumps” are inserted in the list of

exponents, skipping xi and xj, so the functions f are given by (f1(x), f2(x), . . . , fm+1(x)) =

(1, x, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xm+2) where m + 2 < q. These are called jumped

Wenger graphs, denoted Jm(q, i, j), and are analyzed in [47].

Note that if d = 0, the extended Wenger graph becomes an original Wenger graph, described

in Chapter 3. Also, if 0 ≤ d ≤ 2, the extended Wenger graph can be interpreted as a jumped

Wenger graph. For d = 0, set (i, j) = (m+ 1,m+ 2), for d = 1, set (i, j) = (m,m+ 2), and

for d = 2, set (i, j) = (m,m+ 1).

We first look at the number of connected components of Gd(m, q). By Theorem 2.2 of [7],

the number of connected components is:
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qm+1−rankFq (1,x,x2,...,xm−1,xm+d)

where rankFq(1, x, x
2, . . . , xm−1, xm+d) is the rank of the (m+ 1)× q matrix consisting of the

values of these m + 1 functions for the q possible values of x. This will be 1, and therefore

the graph will be connected, if:

rankFq(1, x, x
2, . . . , xm−1, xm+d) = m+ 1

Since m+ 1 ≤ q, this is possible, and will happen when the functions 1, x, x2, . . . , xm−1, and

xm+d are linearly independent. This condition is stated in more general terms in [7].

In our case, since m−1 < q, the functions 1, x, x2, . . . , xm−1 are indeed linearly independent,

and since m ≤ m + d ≤ q − 1, the function xm+d is linearly independent of the others.

Therefore, Gd(m, q) is connected.

If m+ 2 < q the jumped Wenger graph Jm(q, i, j) is also connected for all i < j < m+ 1[47].

5.1 Diameter

In this section, the diameter of the graphs Gd(m, q) and Jm(q, i, j) is analyzed.

Two lines L = (l1, . . . , lm+1) and L′ = (l′1, . . . , l
′
m+1) that share a point P = (p1, . . . , pm+1)

will satisfy:

lk − l′k = (l1 − l′1)fk(p1)

and note that if l1 = l′1, the two lines are identical.

Two points P = (p1, . . . , pm+1) and P = (p′1, . . . , p
′
m+1) that share a line L = (l1, . . . , lm+1)

will similarly satisfy:
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pk − p′k = l1(fk(p1)− fk(p′1))

and similarly note that if p1 = p′1, the two points are identical.

Theorem 5.1. If the functions fk(p1) are linearly independent, the diameter of the Wenger

graph is at most 2(m+ 1).

Proof. Consider a path of the form L1P1 . . . Pm+1Lm+2. Since Lh+1 and Lh share the point

Ph,

l
(h+1)
k − l(h)k = (l

(h+1)
1 − l(h)1 )fk(p

(h)
1 ) for 1 ≤ h ≤ m+ 1 and 1 ≤ k ≤ m+ 1

Set th = l
(h+1)
1 − l(h)1 and xh = p

(h)
1 . Then Lh+1 − Lh = th


f1(xh)

...

fm+1(xh)



where Lh =


l
(h)
1

...

l
(h)
m+1

.

Summing over h gives

Lm+2 − L1 =
∑m+1

h=1 th


f1(xh)

...

fm+1(h)

 =


∑m+1

h=1 thf1(xh)

...∑m+1
h=1 thfm+1(xh)

 = M


t1
...

tm+1



where M =



f1(x1) f1(x2) . . . f1(xm+1)

f2(x1) f2(x2) . . . f2(xm+1)

...
...

. . .
...

fm+1(x1) fm+1(x2) . . . fm+1(xm+1)


.

The xi can be chosen so that the columns of M are independent, so M is invertible, and

there will be a solution for any (Lm+2, L1).
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A similar argument applies to paths of the form P1L1 . . . Lm+1Pm+2.

Now consider paths between a vertex P ∈ P and L ∈ L. Choose a vertex L1 adjacent to P ,

and look at paths from L1 to L that pass through P . This can be done by setting x1 to the

first coordinate of P . The rest of the xi can be chosen so that M is invertible, so there is

a path from L1 to L of length 2(m + 1) passing through P , and therefore a path of length

2m+ 1 from P to L.

Since a path exists in all three cases, the diameter of the graph is less than or equal to

2(m+ 1).

For Jm(q, i, j) with (i, j) = (m,m+ 1), (m,m+ 2), or (m+ 1,m+ 2), we consider a path of

length 2s where s ≤ m. Set Ls+1−L1 to



0

0

...

0

1


. The first s rows of M form a Vandermonde

matrix, and so the solution must have t1 = t2 = · · · = ts = 0. But this makes the last row

zero, so there is no solution. Therefore, there is no path from L1 to Ls+1 of length s, and

the diameter is exactly 2(m + 1). A similar argument applies to Gd(m, q), so the diameter

of Gd(m, q) is also exactly 2(m+ 1).

5.2 Girth

The girth of a wide class of Wenger graphs is less than or equal to 8, as shown by the

following theorem.

Theorem 5.2. Let G be a generalized Wenger graph given by the equations:
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l2 + p2 = l1p
e2
1

l3 + p3 = l1p
e3
1

...

lm+1 + pm+1 = l1p
em+1

1

where the ei are positive integers. Then the girth of G is less than or equal to 8.

Proof. A cycle of length 8 is given in Table 5.1.

L1 P1 L2 P2 L3 P3 L4 P4 L1

0 0 1 1 0 0 -1 1 0
0 0 0 1 -1 1 -1 0 0
...

...
...

...
...

...
...

...
...

0 0 0 1 -1 1 -1 0 0
0 0 1 0 0 0 -1 0

Table 5.1: Cycle of length 8

Since p1 is always 0 or 1, all powers are the same, so that in the equation to determine if an

edge exists becomes lk + pk = l1p1. The product l1p1 is zero except for the edges L2P2 where

it is 1, and L4P4 where it is -1. So the pk and lk are as given.

In characteristic 2, the same path works. Even though −1 and 1 are equal, the vertices are

distinct, and on the edge L4P4, l1p1 = lk + pk = 1.

There are cases where the girth of a jumped Wenger graph is 4 or 6. The girth is 4 if:

• m = 1, 2, q is not a power of 2, and (i, j) = (1, 3)

• m = 1, q − 1 is divisible by 3, and (i, j) = (1, 2)

and the girth is 6 if:
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• m = 1, q is a power of 2, and (i, j) = (1, 3)

• m = 1, q − 1 is not divisible by 3, and (i, j) = (1, 2)

• m = 1, q is not 2 or 3, and (i, j) = (2, 3)

• m = 2, q is neither 3 nor an odd power of 2, and (i, j) = (1, 2)

• m = 2, q is neither 3 nor an odd power of 2, and (i, j) = (2, 3)

• m = 2, q is not 2, 3, or 5, and (i, j) = (1, 4)

• m = 2, q is not 2, and (i, j) = (2, 4)

• m = 3, 4, 5, q − 1 is divisible by 3, and (i, j) = (1, 4)

• m = 3, 4, 5, 6, q − 1 is divisible by 3, and (i, j) = (2, 5)

The girth is 8 in all other cases. The proof can be found in [47]. I will give a few examples

of the special cases.

Set m = 1, (i, j) = (1, 3), and the characteristic is not 2. The girth should be 4. A cycle of

length 4 is given in Table 5.2.

Since (i, j) = (1, 3), the equation to determine if an edge exists is p2 + l2 = l1p
2
1. Since

p1 = ±1, this reduces to p2 + l2 = l1, which can be easily verified.

Note that if it were characteristic 2, P1 would be the same as P2 and L1 the same as L2, so

the cycle would just go back and forth between two vertices. But since the characteristic is

not 2, the four vertices are distinct.

Let m = 2, q = 7, and (i, j) = (1, 4). The girth should be 6. A cycle of length 6 is given in

Table 5.2.
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m = 1, p 6= 2, (i, j) = (1, 3)

P1 L1 P2 L1 P1

1 1 -1 -1 1
0 1 0 -1 0

1 1 -1 -1

m = 2, q = 7, (i, j) = (1, 4)

P1 L1 P2 L2 P3 L3 P1 P1 L1 P2 L2 P1

1 1 2 0 4 3 1 p1 l1 p2 l2 p1
0 1 3 4 3 3 0 0 a b c 0
0 1 0 0 0 3 0 0 — — — 0

1 4 0 0 6 3
1 1 0 0 3 3

Table 5.2: Cycles in jumped Wenger graphs

Since (i, j) = (1, 4), the equations to determine if an edge exists are p2 + l2 = l1p
2
1 and

p3 + l3 = l1p
3
1. For the cubes, 13 = 23 = 43 = 1 (mod 7), so p3 + l3 = l1 and the sequence of

p3 and l3 becomes 0, l
(1)
1 , 0, l

(2)
1 , 0, l

(3)
1 , 0.

The squares can be just calculated directly: p1 = 1, 2, 2, 4, 4, 1 and l1 = 1, 1, 0, 0, 3, 3, so the

sum p2 + l2 is l1p
2
1 = 1, 4, 0, 0, 6, 3, and the sequence of l2 and p2 is 0, 1, 3,−3, 3, 3, 0.

There can be no cycle of length 4. A cycle of length 4 would have to be as shown in Table

5.2. The latter two elements of P1 can be set to 0, 0 without loss of generality since the

calculation applies only to the sums p2 + l2 and p3 + l3. Thus:

a = l1p
2
1

b = l1p
2
2 − l1p21

c = l2p
2
2 − l1p22 + l1p

2
1

0 = l2p
2
1 − l2p22 + l1p

2
2 − l1p21
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A similar calculation for the third element gives the same equation with squares replaced by

cubes:

0 = l2p
3
1 − l2p32 + l1p

3
2 − l1p31

Combining terms in the two equations gives:

0 = (l2 − l1)(p21 − p22)

0 = (l2 − l1)(p31 − p32)

If l2 = l1, then L1 = L2 since they are both connected to P2 (and P1). So divide by l2 − l1

giving p21 = p22 and p31 = p32. But these imply p1 = p2, which means P1 = P2 since they are

both connected to L1 (and L2).

The following describes the girth of extended Wenger graphs Gd(m, q). The next theorem is

about generalized Wenger graphs.

Theorem 5.3. Given a generalized Wenger graph G of order 2qm+1 with equations:

p2 + l2 = g2(p1, l1)

p3 + l3 = g3(p1, l1)

...

pm+1 + lm+1 = gm+1(p1, l1),

suppose that there is a path in G of length k. Then the graph G′ of order 2qm given by

removing one equation from the equations for G has a corresponding path of length k. In

particular, if G has a cycle of length k, then G′ has a cycle of length less than or equal to k.

Proof. Without loss of generality, assume that the equation removed from the list for G

is the last one, since re-arranging the equations gives an isomorphism of the corresponding
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graphs. Consider an edge between



l1

l2
...

lm+1


and



p1

p2
...

pm+1


in G. There is a corresponding

edge in G′ between



l1

l2
...

lm


and



p1

p2
...

pm


in G′ since the defining equations are the same.

Edges with a common vertex in G will give corresponding edges in G′ that have a common

vertex, so a path in G corresponds to a path in G′.

A cycle in G with length k will give a cycle of length k in G′ if all the vertices remain

distinct. But two vertices in G might map to the same vertex in G′. Since P vertices map

to P vertices and L vertices map to L vertices, if this happens, the vertices in G must be an

even number of steps apart in the path. If the distance is always 4 or greater, then the cycle

in G maps to a set of cycles of length 4 or greater in G′. But if the distance can be 2, the

cycle can collapse: for example, the cycle P1L1P2L2P1 in G could map to P ′1L
′
1P
′
1L
′
1P
′
1 in G′,

which is not a cycle, but a trip back and forth twice on the same edge. So the distance-2

case needs to be resolved. Two vertices with distance 2 in a path can be of the form P1L1P2

or L1P1L2.

Suppose P1L1P2 is part of a cycle in G with P1 and P2 mapping to the same vertex in G′.

Then p
(1)
1 = p

(2)
1 , so that P1 = P2, contradicting that P1L1P2 is part of a cycle. A similar

argument applies to parts of a cycle of the form L1P1L2. Therefore, consecutive edges in G′

are still distinct, and true cycles are always created in G′. Of course, these cycles must have

length less than or equal to k.

All graphs Gd(m, q) have the 8-cycle which is given in Table 5.1, so that the girth is less
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than or equal to 8.

Since Wm(q) has girth 8 for m ≥ 2, Gd(m, q) has girth 8 for m ≥ 3. Also, since original

Wenger graphs have no 4-cycles, the girth is 6 or 8 for m = 2. So the cases to be analyzed

are cycles of length 4 or 6 with m = 1 and cycles of length 6 with m = 2.

Theorem 5.4. The graph Gd(1, q) has cycles of length 4 if and only if d+ 1 divides q − 1.

Proof. Consider a cycle P1L1P2L2P1 of length 4. Combine the defining equations to get:

l
(2)
2 − l

(1)
2 = (l

(2)
1 − l

(1)
1 )(p

(2)
1 )d+1

l
(1)
2 − l

(2)
2 = (l

(1)
1 − l

(2)
1 )(p

(1)
1 )d+1

If l
(1)
1 = l

(2)
1 then L1 and L2 are the same vertex. So l

(1)
1 6= l

(2)
1 , and dividing by l

(1)
1 − l

(2)
1

gives (p
(1)
1 )d+1 = (p

(2)
1 )d+1. But since P1 and P2 must be distinct, p

(1)
1 6= p

(2)
1 . This can only

happen if d+ 1 divides q − 1.

Conversely, if d + 1 divides q − 1, then there are nonzero p
(1)
1 and p

(2)
1 which are not equal

but their d+ 1 powers are equal. Then

P1 = (p
(1)
1 , 0)

L1 = (1, (p
(1)
1 )d+1)

P2 = (p
(2)
1 , 0)

L2 = (0, 0)

P1 = (p
(1)
1 , 0)

is a cycle of length 4.

Next to analyze are cycles of length 6 with m = 1 and characteristic 2.
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If d+ 1 6= q − 1, then a ∈ Fq can be chosen so that ad+1 6= 1, a 6= 0. Then there is the cycle

of length 6 given in Table 5.3.

The case d + 1 = q − 1 is a little strange. Since ad+1 = aq−1 = 1 when a 6= 0 and ad+1 = 0

when a = 0, the defining equation for the graph becomes:

p2 + l2 =

 l1, p1 6= 0

0, p1 = 0

If e 6= 1, then there is the 6-cycle given in Table 5.3.

When e = 1, q = 2, and the only choice for d is d = 0, so that d + 1 = q − 1. In this case,

the graph is the cycle graph with 8 vertices, so clearly there is no 6-cycle.

The next case is m = 1 and characteristic greater than 2. If d+ 1 is odd, there is the 6-cycle

given in Table 5.3.

When the characteristic is not 2, q − 1 is even, so when d + 1 is even, the strange case

d + 1 = q − 1 is one of the possibilities. If d + 1 6= q − 1, a ∈ Fq can be chosen so that

ad+1 6= 1 and a 6= 0. Then there is the 6-cycle given in Table 5.3.

In the d + 1 = q − 1 case, if q > 3, then there are three distinct non-zero elements of Fq, a,

b, and c. The 6-cycle is in Table 5.3.

In the last case, q = 3, d+ 1 = q − 1 = 2, there are not three distinct non-zero elements, so

the method above doesn’t work. In fact, there are no 6-cycles in this case.

The three entries p
(1)
1 , p

(2)
1 , and p

(3)
1 must be distinct, since otherwise the points P1, P2, and

P3 will not be distinct, but the vertices must be distinct to construct a 6-cycle. There are

only three elements in the field, and since the labels on the P -vertices can be rotated and

their order can be reversed, it is possible without loss of generality to assume that p
(1)
1 = 0,

p
(2)
1 = 1, and p

(3)
1 = −1. Now the vertices can be calculated, leaving p

(1)
2 , l

(1)
1 , l

(2)
1 , and l

(3)
1 as
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unknowns:

P1 = (0, p
(1)
2 )

L1 = (l
(1)
1 ,−p(1)2 )

P2 = (1, p
(1)
2 + l

(1)
1 )

L2 = (l
(2)
1 , l

(2)
1 − p

(1)
2 − l

(1)
1 )

P3 = (−1, p
(1)
2 + l

(1)
1 )

L3 = (l
(3)
1 , l

(3)
1 − p

(1)
2 − l

(1)
1 )

P1 = (0, p
(1)
2 + l

(1)
1 − l

(3)
1 )

To close the loop, l
(1)
1 − l

(3)
1 must be zero. But then −p(1)2 = l

(3)
1 − p

(1)
2 − l

(1)
1 , so L1 and L3

are the same vertex, a contradiction.

The last case is cycles of length 6 when m = 2. If p 6= 2 and d + 2 is odd, then the m = 1

case can be extended, so there is the 6-cycle in Table 5.4.

This fails when p = 2, since then −1 = 1 so that P3 = P2 and L3 = L1. So the cycle becomes

a round trip on a path of length 3.

The method also fails when p 6= 2 and d + 2 is even, since then l
(3)
1 (p

(3)
1 )d+2 is −1, not 1, so

the edge from P3 to L3 does not exist.

It seems likely that cycles of length 6 exist in most cases, but I have not been able to find a

proof. An example for the case q = 7 and d+ 2 = 4 is given in Table 5.4.

The existence of a 6-cycle is equivalent to the matrix


1 x1 x41

1 x2 x42

1 x3 x43

 =


1 2 5

1 3 4

1 4 3

 being
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singular, since in the first coordinate:

0 = (l
(3)
1 − l

(2)
1 ) + (l

(2)
1 − l

(1)
1 ) + (l

(1)
1 − l

(3)
1 ) = t3 + t2 + t1,

in the second coordinate:

0 = (l
(3)
1 − l

(2)
1 )p

(3)
1 + (l

(2)
1 − l

(1)
1 )p

(2)
1 + (l

(1)
1 − l

(3)
1 )p

(1)
1 = t3x3 + t2x2 + t1x1,

and in the third coordinate:

0 = (l
(3)
1 − l

(2)
1 )(p

(3)
1 )4 + (l

(2)
1 − l

(1)
1 )(p

(2)
1 )4 + (l

(1)
1 − l

(3)
1 )(p

(1)
1 )4 = t3x

4
3 + t2x

4
2 + t1x

4
1,

so that


t1

t2

t3

 is in the null space of the transpose.

Looking at it another way, (2, 5), (3, 4), and (4, 3) are on the same line in the x-y plane (if

(a b c)T is in the null space, then all three points satisfy a+ bx+ cy = 0).

It also corresponds to the fact that x4 + x+ 4 has 3 (or more) distinct roots. The powers of

the roots form the rows of the matrix, and the null space vector (4 1 1)T gives the coefficients.

Checking, (x− 2)2(x− 3)(x− 4) = x4 − 11x3 + 44x2 − 76x+ 48 = x4 + x+ 4 (mod 11), so

it’s x4 plus a linear polynomial.

If there were no polynomials of the form x4 + ax + b with 3 or more distinct roots, then

there would be no x1, x2, x3 that make the matrix singular, so there would be no nontrivial

solution to the coordinate equations, and therefore no cycle of length 6. As a result, the

girth would be 8.
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5.3 Spectrum

In this section, the spectrum of the extended Wenger graph Gd(m, q) is analyzed.

The degree of every vertex of Gd(m, q) is q. This is true since in the equations defining the

graph,

l2 + p2 = p1l1

l3 + p3 = p21l1

...

lm + pm = pm−11 l1

lm+1 + pm+1 = pm+d
1 l1

if p1, p2, . . . , pm+1 are given, then there are q possible values of l1, and then l2, l3, . . . , lm+1 are

uniquely determined. Similarly, if l1, l2, . . . , lm+1 are given, then there are q possible values

of p1, and p2, p3, . . . , pm+1 are uniquely determined. The jumped Wenger graphs Jm(q, i, j)

are also q-regular[47].

Since the graph is q-regular, the incidence matrix will have q ones in each row, with the rest

zero. Therefore the all-one vector will be an eigenvector with eigenvalue q. Furthermore,

since the graph is bipartite, the incidence matrix will have the form A =

 0 N

NT 0

 so

that the vector with the first half all 1 and the second half all -1 will be an eigenvector with

eigenvalue −q.
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Conversely, suppose that e =


e1
...

en

 is an eigenvector with eigenvalue q. Suppose that ei

is the largest element of e (i.e. that ej ≤ ei for all j). Then taking the i-th row of Ae = qe

gives
∑n

j=1Aijej = qei. Since ei is the largest and
∑n

j=1Aij = q, it must be that every ej for

which Aij = 1 is equal to ei. Since the graph is connected, the process can be continued to

show that every ei is equal, so the only eigenvector with eigenvalue q is the all-one vector.

A similar argument shows that the only eigenvector with eigenvalue −q is the vector with

the first half all 1 and the second half all -1.

The following is a very important result from [7] that equates the eigenvalue multiplicity

with the number of polynomials with a given number of distinct roots.

Theorem 5.5 (Theorem 2.2 of [7]). Let G be a generalized Wenger graph defined by the

equations:

p2 + l2 = l1f2(p1)

p3 + l3 = l1f3(p1)

...

pm+1 + lm+1 = l1fm+1(p1)

and assume that the mapping u 7→ (1, f2(u), . . . , fm+1(u)) is injective. Then the eigenvalues

of G are ±
√
qi, where 0 ≤ i ≤ q with multiplicity given by:

ni = |{w = (w1, w2, . . . , wm+1) ∈ Fm+1
q : NFw = i}|

where NFw = |{u ∈ Fq : Fw(u) = 0}| and Fw(u) = w1 + w2f2(u) + · · ·+ wm+1fm+1(u).

So to calculate the spectrum of a given Wenger graph, the functions Fw(u) are listed, and

the number of roots of each is calculated. Then the multiplicity of ±
√
qi is the number of
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functions with i roots.

The largest eigenvalues±q always have nonzero multiplicity since if w0 = w1 = · · · = wm = 0,

Fw will be identically zero and therefore have exactly q roots.

For eigenvalues other than ±q, it is not so easy to calculate the multiplicity. Since the degree

of Fw is m+ d, Fw can not have more than m+ d roots, and the multiplicity of eigenvalues

±
√
qi is zero if m + d < i < q. So the eigenvalues with the largest possible absolute value

are ±
√
q(m+ d).

The next result is about the multiplicity of the eigenvalues ±
√
q(m+ d). For the case d = 0,

the graph is the original Wenger graph Wm(q) and the multiplicity of ±√qm is given by

Theorem 3.1. So it is assumed that d > 0 in the following analysis.

Theorem 5.6. Let Gd(m, q) be an extended Wenger graph.

If q > ((m+ d)(m+ d+ 2)!)2 and m ≥ 2, then the second largest eigenvalue is ±
√
q(m+ d).

The multiplicity Nm+d of ±
√
q(m+ d) is bounded by:∣∣∣Nm+d − 1

qm

(
q

m+d

)∣∣∣ ≤ (q/p+(m−1)√q+m+d−1
m+d

)
For any ε > 0, there is a constant cε > 0 such that if d < ε

√
m+ d and 4ε2 ln2 q < m+d ≤ cεq,

then the second largest eigenvalue is ±
√
q(m+ d).

Proof. The eigenvalues ±
√
q(m+ d) have multiplicity given by:

nm+d = |{(w0, w1, . . . , wm−1, wm) ∈ Fm+1
q : Fw has m+d distinct roots in Fq}|

where Fw = w0 + w1x + · · · + wm−1x
m−1 + wmx

m+d. If wm = 0, then the polynomial has

degree m− 1, so it can not have m+ d roots. Dividing by wm gives:

nm+d = (q − 1)|{(a0, a1, . . . , am−1) ∈ Fmq : Fa has m+d distinct roots in Fq}|
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where now Fa = a0 + a1x + · · · + am−1x
m−1 + xm+d. If c1, c2, . . . , cm+d are the roots of Fa,

then since they can appear in any order:

nm+d =
q − 1

(m+ d)!
|{(c1, c2, . . . , cm+d) ∈ Fm+d

q :

(x− c1)(x− c2) . . . (x− cm+d) = xm+d + am−1x
m−1 + · · ·+ a1x+ a0, ci distinct}|

Setting Nm+d = (m+d)!
q−1 nm+d and re-arranging the polynomial gives:

Nm+d = |{(c1, c2, . . . , cm+d) ∈ Fm+d
q :

(1−c1x)(1−c2x) . . . (1−cm+dx) = 1+am−1x
d+1+· · ·+a1xm+d−1+a0x

m+d, ci distinct}|

Nm+d = |{(c1, c2, . . . , cm+d) ∈ Fm+d
q :

(1 − c1x)(1− c2x) . . . (1 − cm+dx) ≡ 1 (mod xd+1), ci distinct}|

If Nm+d > 0, then ±
√
q(m+ d) are the eigenvalues with the second largest absolute value.

The first result now follows from Cohen[13], and the other two results follow from Li and

Wan[37].

The following is an example of the spectrum of an extended Wenger graph: Gd(m, q) with
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m = 1, q = 3, and d = 1. The graph has 2qm+1 = 18 vertices. There is an edge from

 p1

p2


to

 l1

l2

 whenever p2 + l2 = l1p
2
1. The edges for the graph are computed in Table 5.5.

The adjacency matrix is easily calculated from this table, and it is A =

 0 N

NT 0

, where

N is given in Table 5.6.

A can be viewed as a matrix over the real numbers, and the eigenvalues and eigenvectors

can be calculated. Note that the matrix is symmetric, so all of the eigenvalues are real,

and the matrix is diagonalizable, so it should have a full complement of eigenvectors - in

this case, since it’s an 18x18 matrix, it will have 18 eigenvectors. The eigenvalues are

−1,−
√

6,−
√

3, 0,
√

3,
√

6, and 3 with multiplicities 1, 2, 2, 8, 2, 2, and 1, respectively. The

eigenvectors are given in Tables 5.7 and 5.8.

The multiplicity of the eigenvectors is related to the number of roots of polynomials over

Fw ∈ F3[u]. In this case, there are 9 polynomials to look at, and the number of roots of each

is in Table 5.9.

The multiplicity of ±3 is 1, the number of equations with 3 roots. The multiplicity of ±
√

6

is 2, the number of equations with 2 roots. The multiplicity of ±
√

3 is 2, the number of

equations with 1 root. There are 4 equations with no roots, so the multiplicity of 0 is 8,

since we count +0 and −0.

The following theorem shows that the multiplicities of the smaller eigenvalues of Gd(m, q)

are nonzero.

Theorem 5.7. Given an extended Wenger graph Gd(m, q), if i < m the multiplicities of the

eigenvalues ±
√
qi are nonzero.
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Proof. By Theorem 5.5, the multiplicity of ±
√
qi is given by

ni = |{(w0, w1, . . . , wm−1, wm) ∈ Fm+1
q |Fw has exactly i distinct roots in Fq}|

where Fw = wmx
m+d + wm−1x

m−1 + · · ·+ w1x+ w0.

For the multiplicity to be positive, there only needs to be one such Fw. So choose wm =

wm−1 = · · · = wi+1 = 0. Note that since i < m, this list is not empty.

Now choose any distinct x1, x2, . . . , xi ∈ Fq, and set wi = 1 and wi−1, . . . , w0 so that Fw =

(x− xi)(x− xi−1) . . . (x− x1). Clearly, then, Fw has exactly i roots.
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L1 P1 L2 P2 L3 P3 L1 m = 1, characteristic 2
0 a 1 0 ad+1 1 0 d+ 1 6= q − 1
0 0 ad+1 ad+1 ad+1 0 0

0 ad+1 0 0 ad+1 0

P1 L1 P2 L2 P3 L3 P1 m = 1, characteristic 2
1 0 x 1 x+ 1 x+ 1 1 d+ 1 = q − 1
0 0 0 1 0 x+ 1 0

0 0 1 1 x+ 1 x+ 1

P1 L1 P2 L2 P3 L3 P1 m = 1, p 6= 2
0 1 1 0 -1 -1 0 d+ 1 odd
0 0 1 -1 1 0 0

0 1 0 0 1 0

P1 L1 P2 L2 P3 L3 P1 m = 1, p 6= 2
0 1 a 0 1 ad+1 0 d+ 1 even
0 0 ad+1 -ad+1 ad+1 0 0 d+ 1 6= q − 1

0 ad+1 0 0 ad+1 0

P1 L1 P2 L2 P3 L3 P1 m = 1, p 6= 2
a 0 b 1 c -1 a d+ 1 = q − 1
0 0 0 1 0 -1 0

0 0 1 1 -1 -1

Table 5.3: Cycles of length 6 in Gd(1, q)
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P1 L1 P2 L2 P3 L3 P1 m = 2, p 6= 2
0 1 1 0 -1 -1 0 d+ 2 odd
0 0 1 -1 1 0 0
0 0 1 -1 1 0 0

0 1 0 0 1 0
0 1 0 0 1 0

P1 L1 P2 L2 P3 L3 P1 example
2 10 3 1 4 0 2 m = 2, q = 11
0 9 10 4 0 0 0 d+ 2 = 4
0 6 1 3 0 0 0

9 8 3 4 0 0
6 7 4 3 0 0

Table 5.4: Cycles of length 6 in Gd(2, q)

l1p
2
1 − p2 (= l2) connections

p1 p2 p21 l1 = 0 l1 = 1 l1 = 2 l1l2 =

0 0 0 0 0 0 00, 10, 20

0 1 0 2 2 2 02, 12, 22

0 2 0 1 1 1 01, 11, 21

1 0 1 0 1 2 00, 11, 22

1 1 1 2 0 1 02, 10, 21

1 2 1 1 2 0 01, 12, 20

2 0 1 0 1 2 00, 11, 22

2 1 1 2 0 1 02, 10, 21

2 2 1 1 2 0 01, 12, 20

Table 5.5: Calculations for edges of G1(1, 3)
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N = l1l2
00 01 02 10 11 12 20 21 22

00 1 0 0 1 0 0 1 0 0
01 0 0 1 0 0 1 0 0 1
02 0 1 0 0 1 0 0 1 0
10 1 0 0 0 1 0 0 0 1

p1p2 11 0 0 1 1 0 0 0 1 0
12 0 1 0 0 0 1 1 0 0
20 1 0 0 0 1 0 0 0 1
21 0 0 1 1 0 0 0 1 0
22 0 1 0 0 0 1 1 0 0

Table 5.6: Adjacency matrix for G1(1, 3)
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λ = −3:


−1
−1
−1
−1
−1
−1
−1
−1
−1
1
1
1
1
1
1
1
1
1



λ = 3:


1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1



λ =
√

6:


0
0
0
0√
6/2

−
√

6/2
0√
6/2

−
√

6/2
0
−1
1
1
0
−1
−1
1
0





0
0
0√
6/2
0

−
√

6/2√
6/2
0

−
√

6/2
1
−1
0
0
1
−1
−1
0
1


λ = −

√
6:



0
0
0
0

−
√

6/2√
6/2
0

−
√

6/2√
6/2
0
−1
1
1
0
−1
−1
1
0





0
0
0

−
√

6/2
0√
6/2

−
√

6/2
0√
6/2
1
−1
0
0
1
−1
−1
0
1



λ =
√

3:


−
√

3
0√
3

0
0
0
0
0
0
−1
1
0
−1
1
0
−1
1
0





−
√

3√
3

0
0
0
0
0
0
0
−1
0
1
−1
0
1
−1
0
1



Table 5.7: Eigenvectors for G1(1, 3)
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λ = −
√

3:


√
3

0

−
√

3
0
0
0
0
0
0
−1
1
0
−1
1
0
−1
1
0





√
3

−
√

3
0
0
0
0
0
0
0
−1
0
1
−1
0
1
−1
0
1



λ = 0:


−1
−1
−1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0





0
0
0
−1
0
0
1
0
0
0
0
0
0
0
0
0
0
0


λ = 0



0
0
0
0
−1
0
0
1
0
0
0
0
0
0
0
0
0
0





−1
−1
−1
1
1
0
0
0
1
0
0
0
0
0
0
0
0
0





0
0
0
0
0
0
0
0
0
−1
−1
−1
1
1
1
0
0
0





0
0
0
0
0
0
0
0
0
−1
−1
0
0
1
0
1
0
0





0
0
0
0
0
0
0
0
0
1
0
0
−1
−1
0
0
1
0





0
0
0
0
0
0
0
0
0
−1
0
−1
1
0
0
0
0
1



(cont.):

Table 5.8: Eigenvectors for G1(1, 3)
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w ∈ F2
3 Fw(u) roots in F3

00 0 3
01 u2 1
02 2u2 1
10 1 0
11 u2 + 1 0
12 2u2 + 1 2
20 2 0
21 u2 + 2 2
02 2u2 + 2 0

Table 5.9: Number of Roots of Fw
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Chapter 6

Polynomial Root Patterns

Li and Wan[37] calculated Nm(k, b), the number of products (1 + x1t)(1 + x2t) . . . (1 + xkt)

with distinct xi which are congruent to 1 + b1t + · · · + bmt
m (mod tm+1). In this chapter,

their result is extended to the case where the xi are not necessarily distinct. The Li and

Wan result is presented in Section 6.1 and the new result is in Section 6.2.

6.1 Distinct Roots

Let D be a finite set, and X ⊆ Dk. So the elements of X are of the form (x1, x2, . . . , xk)

with xi ∈ D. Let X be the set of elements with distinct xi (so xi 6= xj if i 6= j).

For any τ ∈ Sk, let (i1i2 . . . ia1)(j1j2 . . . ja2) . . . (l1l2 . . . las) be its disjoint cycle representation.

Then define Xτ = {(x1, x2, . . . , xk) ∈ X : xi1 = · · · = xia1 , . . . , xl1 = · · · = xlas}, the set of

components of X which are invariant under τ .

Theorem 6.1 (Theorem 1.1 of [37]). The number of elements of X is given by

|X| =
∑

τ∈Sk sign(τ)|Xτ |
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If X is invariant under permutation of the coordinates xi, then the sum can be grouped by

conjugacy class:

|X| =
∑

τ∈Ck sign(τ)C(τ)|Xτ |

where Ck is the set of conjugacy classes of Sk, and C(τ) is the number of permutations in

Sk conjugate to τ .

They use this theorem to count Nm(k, b), the number of un-ordered k-tuples x = (x1, . . . , xk)

with distinct coordinates xi ∈ Fq such that 1 + b1t+ · · ·+ bmt
m ≡

∏k
i=1(1 +xit) (mod tm+1).

Theorem 6.2 (Theorems 1.3 and 1.4 of [37]). For all b ∈ Fmq ,

|Nm(k, b)− 1
qm

(
q
k

)
| ≤

(
q/p+(m−1)√q+k−1

k

)
Furthermore, for any ε > 0, there is a constant cε > 0 such that if m < εk1/2 and 4ε2(ln q)2 <

k ≤ cεq, then Nm(k, b) > 0 for all b ∈ Fmq .

6.2 General Case

As in the beginning of Section 6.1, let D be a finite set, and X ⊆ Dk.

Let p = {S1, S2, . . . , Sl} be a partition of {1, 2, . . . , k}, so that S1∪S2∪· · ·∪Sl = {1, 2, . . . , k}

and Si ∩ Sj = ∅ for i 6= j.

Theorem 6.3. The number of elements of X for which xi = xj if and only if i and j are in

the same set in p is given by:

|Xp| = |Xl| =
∑
τ∈Sl

sign(τ)|Xτ | (6.1)
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where if (i1i2 . . . ia1) . . . (j1j2 . . . jas) is the cycle decomposition of τ , Xτ = {(x1, . . . , xl) ∈

Xl|xi1 = xi2 = · · · = xia1 , . . . , xj1 = xj2 = · · · = xjas}.

If the elements of Xp are invariant under the action of Sl,

|Xp| =
∑
τ∈Cl

sign(τ)C(τ)|Xτ | (6.2)

where Cl is a set of representatives of the conjugacy classes of Sl and C(τ) is the size of the

conjugacy class containing τ .

Proof. Let αi = |Si| for i = 1, 2, . . . , l, so that
∑l

i=1 αi = k.

Consider the set X(p) = {(x1, x2, . . . , xk) ∈ X|xi = xj if i and j are in the same set in p}.

Let Xp = {(x1, x2, . . . , xk) ∈ X|xi = xj if and only if i and j are in the same set in p}. The

difference between X(p) and Xp is that X(p) has ”if” in the definition, and Xp has ”if and

only if”. So |Xp| ≤ |X(p)| since we have removed elements for which xi = xj even though i

and j are in different sets in p.

Let Xl be the set X(p) with the elements corresponding to each Si in p collapsed into one

element. There is clearly a bijective relationship between Xl and X(p). Let Xl be the subset of

Xl for which the coordinates (x1, x2, . . . , xl) are distinct. There is also a bijective relationship

between Xl and Xp since corresponding elements are removed.

By Theorem 6.1,

|Xp| = |Xl| =
∑

τ∈Sl sign(τ)|Xτ |

If the elements of Xp are invariant under the action of Sl, the terms can be grouped by
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conjugacy classes to get

|Xp| =
∑

τ∈Cl sign(τ)C(τ)|Xτ |

The following is an example of Theorem 6.3.

Let X = F6
3 and p = {{1, 3, 4}, {2, 5}, {6}}. So D = F3, and X is everything in D6. And

|Xp|, the result of the calculation, is the number of X for which x1 = x3 = x4, x2 = x5, with

the xi being otherwise distinct. Note that l = 3, the number of sets in p.

There are 36 = 729 elements in X, and fixing x3 = x1, x4 = x1, and x6 = x2 brings this

down to 27 elements in X(p) and Xl. They look like:

X(p) = (a, b, a, a, b, c) with a, b, c ∈ F3

Xl = (a, b, c) with a, b, c ∈ F3.

τ |Xτ | sign(τ)
1 27 +1

(12) 9 -1
(13) 9 -1
(23) 9 -1
(123) 3 +1
(132) 3 +1

Table 6.1: Size of Xτ for τ ∈ S3

The results for |Xτ | are in Table 6.1 for τ ∈ S3. As an example, if τ = (12), we choose

the elements of Xl with x1 = x2 (or a = b). So there are 9 elements, and since (12) is the

product of 1 transposition, sign((12)) = −1.

Plugging in to Equation 6.1 gives |Xp| = 27− 9− 9− 9 + 3 + 3 = 6 and there are indeed 6

elements in Xp:
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(0, 1, 0, 0, 1, 2)

(0, 2, 0, 0, 2, 1)

(1, 0, 1, 1, 0, 2)

(1, 2, 1, 1, 2, 0)

(2, 0, 2, 2, 0, 1)

(2, 1, 2, 2, 1, 0)

This completes the example. The following is an analysis of polynomials with a given pattern

of roots.

Theorem 6.4. Let Nm(k, b, p) be the number of ordered k-tuples (x1, . . . , xk) ∈ Fkq such that

k∏
i=1

(1 + xit) ≡ 1 + b1t+ · · ·+ bmt
m (mod tm+1) (6.3)

and xi = xj if and only if i and j are in the same set in p. Set b(t) = 1 + b1t + · · · + bmtm

and let l be the number of sets in p. In the symmetric group Sl, for any permutation τ , let

r be the number of cycles of τ , and let ci be the sum of the αi corresponding to cycle i of τ ,

i = 1, 2, . . . , r. Then:

qmNm(k, b, p) =
q!

(q − l)!
+
∑
χ 6=1

χ−1(b(t))
∑
τ∈Sl

sign(τ)
r∏
i=1

∑
a∈Fq

χci(1 + at) (6.4)

As an example of the definition of r and ci, if τ = (13)(245)(6) ∈ S6, r = 3, and c1 = α1+α3,

c2 = α2 + α4 + α5, and c3 = α6. Note that
∑r

i=1 ci =
∑l

j=1 αj = k.
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Proof. Let A = Fq[t]/(tm+1), and let A∗ be the group of units of A. A character is a group

homomorphism χ : A∗ → C∗ into the nonzero complex numbers. The characters form a

group Â∗ under multiplication ((χ1χ2)(a) = χ1(a)χ2(a)). Let G be the subgroup for which

χ(F∗q) = 1. Note that |G| = qm. In Theorem 6.3, set:

X = Fkq ,

X(p) = {(x1, . . . , xk) ∈ X|xi = xj if i and j are in the same set in p},

Xp = {(x1, . . . , xk) ∈ X|xi = xj if and only if i and j are in the same set in p}.

Xl = {(x1, . . . , xl) ∈ Flq|xi distinct}

So |X| = qk, |X(p)| = ql, and |Xp| = q!
(q−l)! . Note also that there are bijections between X(p)

and Flp and between Xp and Xl. Thus:

Nm(k, b, p) =
1

qm

∑
x∈Xl

∑
χ∈G

χ

(
(1 + x1t)

α1 . . . (1 + xlt)
αl

1 + b1t+ · · ·+ bmtm

)

=
1

qm

∑
x∈Xl

∑
χ∈G

χ−1(1 + b1t+ · · ·+ bmtm)χ(
l∏

i=1

(1 + xit)
αi)

For χ ∈ G, set fχ(x) = χ
(∏l

i=1(1 + xit)
αi

)
so

qmNm(k, b, p) =
∑

χ∈G χ
−1(b(t))

∑
x∈Xl fχ(x1, . . . , xl)

Applying equation 6.1 gives:
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qmNm(k, b, p) =
∑
χ∈G

χ−1(b(t))
∑
τ∈Sl

sign(τ)Fτ (χ)

=
q!

(q − l)!
+
∑
χ 6=1

χ−1(b(t))
∑
τ∈Sl

sign(τ)Fτ (χ)

where

Fτ (χ) =
∑
x∈Xτ

fχ(x1, . . . , xl) =
∑
x∈Xτ

χ

(
l∏

i=1

(1 + xit)
αi

)
(6.5)

Equation 6.5 factors into:

Fτ (χ) =
∑
x∈Xτ

l∏
i=1

χαi(1 + xit)

=

∑
a∈Fq

χc1(1 + at)

∑
a∈Fq

χc2(1 + at)

 . . .

∑
a∈Fq

χcl(1 + at)


=

r∏
i=1

∑
a∈Fq

χci(1 + at)

Substituting this in gives the required result.

This is an exact result for Nm(k, b, p).

As an example, the triples (x1, x2, x3) ∈ F3
3 with x1 = x2 6= x3 for which

∏3
i=1(1 + xit) ≡ 1

(mod t2) are counted.
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So p = {{1, 2}, {3}}, k = 3, m = 1, l = 2, α1 = 2, and α2 = 1.

And A = F3[t]/(t
2) and |A| = qm+1 = 9. The group of units A∗ consists of everything with

nonzero constant term, |A∗| = qm(q−1) = 6, A∗ ∼= Z/2Z×Z/3Z. We can use the generators

2 and t+ 1 with orders 2 and 3 to generate the group.

Defining ω = e2πi/3, χ(2) is either 1 or −1, and χ(t + 1) is 1, ω, or ω2. So the group of

characters has order 6 as expected. The subgroup G = {χ ∈ A∗|χ(2) = 1} has only 3

elements. We have τ ∈ Sl = S2 = {1, (12)}.

12 · 1 = 1 (t+ 1)2 · 1 = 2t+ 1 (2t+ 1)2 · 1 = t+ 1
12 · (t+ 1) = t+ 1 (t+ 1)2 · (t+ 1) = 1 (2t+ 1)2 · (t+ 1) = 2t+ 1
12 · (2t+ 1) = 2t+ 1 (t+ 1)2 · (2t+ 1) = t+ 1 (2t+ 1)2 · (2t+ 1) = 1

Table 6.2: Calculation of Nm(k, b, p) example

Nm(k, b, p) can be calculated directly, as shown in Table 6.2. It is zero, since the product is

1 only when all three factors are equal.

Now Nm(k, b, p) will be calculated using Equation 6.4. The calculation of Fτ (χ) for all τ ∈ Sl

and all χ ∈ G is done in Table 6.3.

τ r c1 c2 Expression for Fτ (χ)

1 2 α1 = 2 α2 = 1
(∑

a∈F3
χ2(1 + at)

) (∑
a∈F3

χ(1 + at)
)

(12) 1 α1 + α2 = 3 -
∑

a∈F3
χ3(1 + at)

χ(1) χ(t+ 1)
χ(2t+ 1) = ∑

a∈F3
χ(1 + at)

∑
a∈F3

χ2(1 + at) F1(χ) F(12)(χ)
χ(t+ 1)2

1 1 1 3 3 9 3
1 ω ω2 0 0 0 3
1 ω2 ω 0 0 0 3

Table 6.3: Calculation of Fτ (χ)

Note that sign(1) = 1 and sign((12)) = −1. The first term is q!
(q−l)! = 3!

(3−2)! = 6. The other
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term is
∑

χ 6=1

∑
τ∈Sl sign(τ)Fτ (χ) =

∑
χ 6=1(F1(χ) − F(12)(χ)) = −6. So the result is zero as

expected.

The next step is to estimate the right-hand side of Equation 6.4.

Corollary 6.1. Using the notation in this chapter, and assuming m+ 1 ≤ √q,∣∣∣Nm(k, b, p)− q!
qm(q−l)!

∣∣∣ < l!(m+ 1)l−
k
p q

l
2
+ k

2p

Proof. In Equation 6.4, if χci = 1, then
∑

a∈Fq χ
ci(1 + at) = q, and if χci 6= 1, the Weil

bound:

|
∑

a∈Fq χ
ci(1 + at)| ≤ (m+ 1)

√
q

can be used. Removing χ−1(b(t)) and sign(τ) further bounds the sum:

∣∣∣qmNm(k, b, p)− q!
(q−l)!

∣∣∣ ≤∑χ 6=1

∑
τ∈Sl

∏r
i=1

 q, χci = 1

(m+ 1)
√
q, χci 6= 1

Since the group is a p-group, the order of χ 6= 1 is at least p. Since
∑r

i=1 ci = k, there are at

most k
p

values of ci for which χci is trivial. Since q is greater than (m+ 1)
√
q, this gives:∣∣∣qmNm(k, b, p)− q!

(q−l)!

∣∣∣ ≤∑χ 6=1

∑
τ∈Sl q

k
p ((m+ 1)

√
q)r−

k
p

Since r ≤ l,∣∣∣qmNm(k, b, p)− q!
(q−l)!

∣∣∣ ≤∑χ 6=1

∑
τ∈Sl q

k
p ((m+ 1)

√
q)l−

k
p = (qm − 1)(l!)q

k
p ((m+ 1)

√
q)l−

k
p

Replacing qm − 1 with qm and dividing by qm gives:∣∣∣Nm(k, b, p)− q!
(q−l)!qm

∣∣∣ < l!((m+ 1)
√
q)l−

k
p q

k
p = l!(m+ 1)l−

k
p q

l
2
+ k

2p
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Chapter 7

Future Work

In this chapter, I will outline the some of the things that are still unknown about Wenger

graphs. I will start with some of the cases where I have not yet found results for extended

Wenger graphs.

For the girth of extended Wenger graphs, m = 2, there are two cases remaining:

• characteristic 2

• p > 2, d+ 2 even

The case p > 2, d + 2 even is an interesting case. It essentially asks the following question:

Given a set of polynomials xn + ax+ b ∈ Fq[x], can one with 3 roots in Fq always be found?

The results for the spectrum of extended Wenger graphs are incomplete. For eigenvalues

with i < m, Theorem 5.7 states that the multiplicity is positive, but it would be nice to have

a formula for the multiplicity. It would also be nice to have results in the i ≥ m case. To

make progress, a result about polynomials similar to the one needed for the girth seems to

be required.
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I have recently become aware of a paper by Cesaratto et al. [8] which seems to address this

question about roots of polynomials. Specifically, consider the set of monic polynomials of

degree n in Fq[x]. Let λ = (λ1, λ2, . . . , λn) be a set of positive integers satisfying λ1 + 2λ2 +

· · · + nλn = n. A polynomial is said to have factorization pattern λ if it has exactly λi

irreducible factors with degree i, 1 ≤ i ≤ n. Let T (λ) be the proportion of permutations

in Sn with cycle pattern λ (i.e. permutations which are the product of λi disjoint cycles

of length i). Let A be the subset of monic polynomials of degree n with the coefficients of

xi1 , xi2 , . . . , xim fixed (so |A| = qn−m), and Aλ the subset of A with factorization pattern λ.

Then their result is:

|Aλ| = T (λ)qn−m +O(qn−m−1)

where the constant implied by O(qn−m−1) is given in terms of λ and i1, i2, . . . , im.

The authors of [8] use methods from algebraic geometry to get some of their results. Even if

their results are not directly applicable, it might be useful to think of the problem differently,

i.e. instead of counting polynomials in a subset of Fq[x] with a given number of roots, think

about counting Fq-rational points on an algebraic variety.

There are a few questions that would be good to answer about existing versions of Wenger

graphs:

• The diameter of most Wenger graphs is known, which gives the maximum distance

from vertex to vertex, but what is the distribution of distances between vertices? For

any even number between 2 and the diameter, is there always a pair of vertices with

that distance?

• Under what circumstances is a Wenger graph Hamiltonian? There are a few results in

the literature, but they are not extensive. Is there an example of a non-Hamiltonian

Wenger graph?
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• There is little known about the automorphism groups of Wenger graphs.

• As far as I know, there are no results on the spectrum of jumped Wenger graphs.

There is a natural connection between Wenger graphs and certain linear codes. For example,

Theorem 3.1 can be interpreted in terms of the Hamming weight enumerator of a certain

Reed-Solomon code. Many of the references mention coding as a possible application for

Wenger graphs, and the paper by Yan and Liu [53] takes advantage of this connection to

prove results for both Reed-Solomon codes and Wenger graphs. This is an interesting topic

for future study.

The defining equations of the graphs can be generalized. First, allow the use of any power

of p1, so the equations become:

p2 + l2 = l1p
e2
1

p3 + l3 = l1p
e3
1

...

pm+1 + lm+1 = l1p
em+1

1

with the exponents ei being any nonnegative integers.

The theorem that gives a cycle of length 8, Theorem 5.2, is at this level of generality.

Note that if two of the powers are the same, there are just q copies of the graph without one

of the redundant powers. For example, if we have equations l3 + p3 = l1p
5
1 and l4 + p4 = l1p

5
1,

then l3− l4 = −(p3−p4), so that this is a constant over a connected component. Thus, there

is a connected component for each possible value.

The following is an example to show how vertices are connected with this type of graph. Let

q = 7 and m = 5. So the vertices correspond to 5-tuples of elements taken from F7, giving
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2 ∗ 75 = 33614 vertices. The following equations will be used to define an edge:

p2 + l2 = l1p
5
1

p3 + l3 = l1p1

p4 + l4 = l1p
4
1

p5 + l5 = l1p
3
1

Table 7.1 lists the edges connected to an example ”L” vertex and an example ”P” vertex.

connections to P1 =


4
3
2
4
2


l1 li + pi L-vertex

0 0000 (04535)
1 2441 (16206)
2 4112 (21640)
3 6553 (33311)
4 1224 (45052)

p51 = 2 p1 = 4 p41 = 4 p31 = 1
5 3665 (50423)
6 5336 (62164)

connections to L1 =


2
1
6
4
0


l1fi(p1) =

p1 2p51 2p1 2p41 2p31 P-vertex
0 0 0 0 0 (06130)
1 2 2 2 2 (11352)
2 1 4 4 2 (20502)
3 3 6 1 5 (32045)
4 4 1 1 2 (43242)
5 6 3 4 5 (55405)
6 5 5 2 5 (64655)

Table 7.1: Edges connected to two example vertices

Now a path will be calculated between two vertices, specifically a path of length 10 between
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the vertices L0 =



1

6

1

1

2


and L5 =



5

2

5

1

3


. The calculation is done two steps at a time,

using the combined equations lk − l′k = (l1 − l′1)fk(p1). Define f1(x) to be the constant 1

function, so the values for fk(p1) are in Table 7.2.

p1
k fk(x) 0 1 2 3 4 5 6
1 1 1 1 1 1 1 1 1
2 x5 0 1 4 5 2 3 6
3 x 0 1 2 3 4 5 6
4 x4 0 1 2 4 4 2 1
5 x3 0 1 1 6 1 6 6

Table 7.2: Values of fk(p1)

These columns are a spanning set of F5
7, so there is a path. The difference between the start

and end vector is L5 − L0 =



4

3

4

0

1


. This can be expressed as:



4

3

4

0

1


= 4



1

0

0

0

0


+ 5



1

1

1

1

1


+ 3



1

4

2

2

1


+ 3



1

5

3

4

6


+ 3



1

2

4

4

1


The rest of the calculations are in Table 7.3.
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coefficients = l
(k)
1 − l

(k−1)
1

4 5 3 3 3
l1 = 1 5 3 6 2 5

vectors → p1 values 0, 1, 2, 3, 4

Path:
L0 P0 L1 P1 L2 P2 L3 P3 L4 P4 L5

1 0 5 1 3 2 6 3 2 4 5
6 1 6 6 4 1 2 0 3 1 2
1 6 1 4 6 0 5 6 0 1 5
1 6 1 4 6 0 5 5 3 5 1
2 5 2 3 0 3 3 5 0 2 3

Table 7.3: Calculations for path from L0 to L5

The next level of generalization is from powers of p1 to any function of p1, and the equations

become:

p2 + l2 = l1f2(p1)

p3 + l3 = l1f3(p1)

...

pm+1 + lm+1 = l1fm+1(p1)

There has been some progress in evaluating the spectrum of a Wenger graph in this case.

This proposition is from [7].

Proposition 7.1. The general Wenger graph is q-regular, that is, every vertex has degree q.

Proof. Given a vertex P = (p1, p2, . . . , pm+1) and l1 ∈ Fq, the rest of the lk are given by

lk = l1fk(p1)− pk. Since l1 can be chosen freely, there are q L-vertices connected to P .

Similarly, given L = (l1, l2, . . . , lm+1) and p1 ∈ Fq, the rest of the pk are given by pk =

l1fk(p1)− lk.
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The main theorem about eigenvalues and roots of polynomials, Theorem 5.5, and the theorem

giving an upper bound on the diameter, Theorem 5.1, are at this level of generality.

Unless all the functions are constant, the girth is less than or equal to 8. Table 7.4 gives

the calculation. Since not all the functions are constant, there are p0 and p1 such that for

some i, fi(p0) 6= fi(p1). So the path in Table 7.4, is valid if the vertices are distinct. If the

characteristic is not 2, this is pretty clear since f(p1)− f(p0) is not zero. In characteristic 2,

1 = −1, but still L2 and L4 are distinct, since f(p1)− f(p0) = f(p1) + f(p0) is not zero.

L1 P1 L2 P2 L3 P3 L4 P4 L1

0 p1 1 p0 0 p1 -1 p0 0
0 0 f(p1) f(p0)− f(p1)− f(p0)− −f(p0) 0 0

f(p1) f(p0) f(p1)

0 f(p1) f(p0) 0 0 −f(p1) −f(p0) 0

Table 7.4: Cycle of length 8 in generalized Wenger graph

In fact, the girth is 4 if all the functions are constant. If fi(x) = ci, then a cycle of length 4

is:

L1 = (1, 0)

P1 = (0, ci)

L2 = (0,−ci)

P2 = (1, ci)

L1 = (1, 0).

The final generalization is to any function of p1 and l1. The equations are now:

p2 + l2 = g2(l1, p1)

p3 + l3 = g3(l1, p1)

73



...

pm+1 + lm+1 = gm+1(l1, p1)

There is a result known for this type of graph. If the girth of the graph with functions

g2, g3, . . . , gk is known to be g, then the girth of the graph with functions g2, g3, . . . , gk, gk+1, . . . , gm

is at least g, regardless of how the functions gk+1, . . . , gm are chosen[36]. Theorem 5.3 also

compares paths in smaller graphs to those in larger graphs.
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