Lawrence Berkeley National Laboratory

LBL Publications

Title

Benchmarking commercial EUVL resists at SEMATECH

Permalink

https://escholarship.org/uc/item/1sv636p5

Authors

Ma, Andy Park, Joo-on Dean, Kim <u>et al.</u>

Publication Date

2008-03-31

Benchmarking Commercial EUVL Resists at SEMATECH

Andy Ma, Joo-on Park, Kim Dean, Stefan Wurm and Patrick Naulleau*

SEMATECH * Lawrence Berkeley National Laboratory

SPIE-2008 Feb. 28, 2008

Accelerating the next technology revolution.

Advanced Materials Research Center, AMRC, International SEMATECH Manufacturing Initiative, and ISMI are servicemarks of SEMATECH, Inc. SEMATECH, and the SEMATECH logo are registered servicemarks of SEMATECH, Inc. All other servicemarks and trademarks are the property of their respective owners.

Outline

- Introduction
- Objective
- Methodology
- Benchmarking Data
- Summary

Introduction

- Extreme ultraviolet lithography (EUVL) is one of the leading candidates for next generation lithography technology for the 32 nm HP and beyond.
- The availability of EUV resists is one of the most significant challenges facing its commercialization.
- To accelerate EUV resist development, SEMATECH provides access to two exposure tools:
 - The EUV Resist Test Center (RTC) at SEMATECH at the University at Albany, SUNY, NY.
 - The SEMATECH microexposure tool (ALS-MET) at Lawrence Berkeley National Laboratory (LBNL).
- The results presented here were collected on the SEMATECH Berkeley MET with the same illumination and resist thickness.

Objective

- Evaluate resist samples from commercial suppliers with well defined protocols and specification targets.
 - Provide suppliers with a benchmarking data package using a consistent protocol for feedback and improvement.
 - Focus on resolution, LWR, and photospeed.

Specifications	2007 Goals
Resolution lines1:1 (nm)	32
Resolution lines 1:5 (nm)	25
Resolution contact holes 1:1 (nm)	45
Resolution contact holes 1:5 (nm)	45
Low frequency LWR (nm, 3 σ)	<2.5
Photospeed, EUV (mJ/cm ²)	10
Outgassing (molecules/cm ²)	6.5E+14

Assumptions: Resolution results confirmed with cross-sectional SEM. Resolution targets can be met with Y-monopole illumination. Photospeed target is for 1:1 lines. Outgassing spec is for 35-200 AMU excluding 44 AMU.

SPIE 2008- 6921-137 - 2/28/2008

Resist Benchmarking Protocol Procedure

SEM Top View

SPIE 2008- 6921-137 - 2/28/2008

Exposure Latitude (EL) @ 40 nm HP

Berkeley MET OR Rotated dipole

SPIE 2008- 6921-137 - 2/28/2008

Page 7

mm

Accelerating the next technology revolution.

MATECH

Resist A demonstrated 200 nm of DOF on 40 nm HP

Page 8

mmi 🏟

Berkeley MET OR Rotated dipole SEMATECH Accelerating the next technology revolution.

Summary of Dose/Focus Process Latitude at 40 nm HP

Resist Name	Resist THK (nm)	Illumination	Mask	Esize (mJ/cm²)	Exposure Latitude(%)	DoF (nm)	Ultimate Imaging (CD/LWR)
Resist A	50	Rot-Dipole	Horizontal Cleave	20.7	20.0	200	26.5/ 8.5
Resist B	50	Rot-Dipole	Horizontal Cleave	16.15	20.0	200	24.1/ 6.2
Resist C	50	Rot-Dipole	Horizontal Cleave	20.0	20.0	200	29.8/ 8.4
Resist D	50	Rot-Dipole	Horizontal Cleave	19.0	20.0	200	26.3/ 6.2
Resist E	50	Rot-Dipole	Horizontal Cleave	18.1	15.0	150	34.1/ 7.1

 Resist B demonstrated 20% of EL and 200nm of DOF @ 40nm HP with Esize 16.15 mJ/cm².

SPIE 2008- 6921-137 - 2/28/2008

Exposure Latitude (EL) at 30 nm HP

Resist A demonstrated 20.0% of EL at 30 nm HP

SPIE 2008- 6921-137 - 2/28/2008

Page 10

Depth of Focus (DOF) at 30 nm HP

Resists A and D demonstrated 200 nm of DOF at 30 nm HP

Accelerating the next technology revolution.

SPIE 2008- 6921-137 - 2/28/2008

Page 11

Summary of Dose/Focus Process Latitude at 30 nm HP

Resist Name	Resist THK (nm)	Illumination	Mask	Esize (mJ/cm2)	Exposure Latitude(%)	DoF (nm)	Ultimate Imaging (CD/LWR)
Resist A	50	Rot-Dipole	Horizontal Cleave	20.7	20	200	26.5/ 8.5
Resist B	50	Rot-Dipole	Horizontal Cleave	17.0	10	150	24.1/6.2
Resist C	50	Rot-Dipole	Horizontal Cleave	20.9	2.5	200	29.8/ 8.4
Resist D	50	Rot-Dipole	Horizontal Cleave	20.0	5	200	26.3/ 6.2

 Resist A demonstrated 20% of EL and 200nm of DOF @ 40nm HP with Esize 20.7 mJ/cm².

SPIE 2008- 6921-137 - 2/28/2008

Top View Images of Lines/Spaces

Resist B with under-layer materials resolution image comparison @ 26nm HP

Resist B w/ HMDS

12.0 10.0 8.0 LWR(nm) 90 4.0 2.0 0.0 40 45 50 25 30 35 55 20 Half Pitch(nm) ◆ Resist B HMDS ■ Resist B U/L-A ▲ Resist B U/L-B ● Resist B U/L-C Resist B w/ under-layer B

Resist B w/ under-layer C

- No visible LWR improvement from all under-layer materials, and slightly changed on photospeed.
- Observed resist collapse on under-layer A @26nm HP.

Berkeley MET

SPIE 2008- 6921-137 - 2/28/2008

Achieved 3.6 nm of LWR @ 26 nm resolution with PAB/PEB optimization and under-layer material

Resist B w/ HMDS 120C/ 100C

Resist B w/ under-layer- B 110C/ 100

LER / LWR

 Optimized PAB/PEB temperature with underlayer material improved LWR performance significantly (from 9.4 nm → 3.6 nm) with trade-off lower photospeed which increase Esize by 20%~ 50%

Rotated dipole

SPIE 2008- 6921-137 - 2/28/2008

Page 15

SEM Top-View Images for Contact Holes in Resist B

- Resist B 45 mJ/cm2
- Mask: LBNL mask 2007-02, contact cleave cell

50 nm HP

35 nm HP

SPIE 2008- 6921-137 - 2/28/2008

45 nm HP

30 nm HP

40 nm HP

Contact Hole Exposure Latitude (EL) and Focus Process Latitude (DOF) at 40 nm HP

Resist B demonstrated 10% of EL at 40 nm HP
Resist B demonstrated 100 nm of DOF at 40 nm HP

Berkeley MET

Annular 0.35-0.55

CD

Dose

SPIE 2008- 6921-137 - 2/28/2008

Page 17

Benchmarking conclusion (I)

Specifications	2007 Goals	Resist A	Resist B	Resist C	Resist D	Resist E
Resolution lines1:1 (nm)	32	28	26	30	26	32
Low frequency LWR (nm, 3 σ)	<2.5	6.0 @30 nm	5.5 @30 nm	7.5 @30 nm	8.2 @30 nm	N/ A
Photospeed, EUV (mJ/cm2)	10	17.25 @30 nm	17.0 @30 nm	20.9 @30 nm	20.0 @30 nm	N/ A
Outgassing (molecules/cm ²)	6.5E+14	pass	pass	pass	pass	pass

- Best process latitude @ 30-nm HP
 - Resist A: 200 nm DOF @ 20.0% EL
- Best LWR
 - Resist B: 5.5 nm (still ~ 2.2X larger than requirement)
 - 3.6 nm achieved @ 26nm HP (optimized PAB/PEB/BARC)
- Fastest resist with reasonable process latitude @ 30-nm HP
 - Resist B: 17mJ/cm2
- Best resolution
 - Resist A and B: 22 nm printing with rotated-dipole

Accelerating the next technology revolution.

Benchmarking conclusion (II)

- Imaging resolution meets 30 nm HP goal
 - 200-nm DOF @ 20% EL with Resist A
- LER/LWR remains primary challenge to meet needs for 32 nm HP pilot lines.
- Reasonable process latitude demonstrated for 40nm contact holes
- 35 nm contact hole printing demonstrated
 - High dose requirements (55 mJ/cm2) indicate major effort needed to meet 32 nm HP pilot line needs

SPIE 2008- 6921-137 - 2/28/2008

Acknowledgement:

SEMATECH: Matt Malloy and RTC staff for processing support.

ATDF: Don Frohock, Laurie Dennig, Emily Morales, and Arthur Calderon for their SEM support.

LBNL: Brian Hoef, Gideon Jones, Paul Denham, Chris Anderson, Jerrin Chiu, Ken Goldberg, and Dimitra Niakoula for MET support.

