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RESEARCH ARTICLE
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Abstract

Alternative splicing is a co-transcriptional mechanism that generates protein diversity by

including or excluding exons in different combinations, thereby expanding the diversity of

protein isoforms of a single gene. Abnormalities in this process can result in deleterious

effects to human health, and several xenobiotics are known to interfere with splicing regula-

tion through multiple mechanisms. These changes could lead to human diseases such as

cancer, neurological disorders, autoimmune diseases, and developmental disorders.

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant generated as

a byproduct of various industrial activities. Exposure to this dioxin has been linked to a wide

range of pathologies through the alteration of multiple cellular processes. However, the

effects of TCDD exposure on alternative splicing have not yet been studied. Here, we inves-

tigated whether a single po. dose of 5 μg/kg or 500 μg/kg TCDD influence hepatic alternative

splicing in adult male C57BL/6Kou mouse. We identified several genes whose alternative

splicing of precursor messenger RNAs was modified following TCDD exposure. In particu-

lar, we demonstrated that alternative splicing of Cyp1a1, Ahrr, and Actn1 was significantly

altered after TCDD treatment. These findings show that the exposure to TCDD has an

impact on alternative-splicing, and suggest a new avenue for understanding TCDD-medi-

ated toxicity and pathogenesis.

Introduction

Dioxins are a group of environmentally persistent contaminants, which include polychlori-

nated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and 11 dioxin-

like polychlorinated biphenyls (PCBs). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the

most toxic dioxin and is a product of anthropogenic activity generated from waste incinera-

tion, chlorine paper bleaching and pesticide manufacture [1]. Human exposure to TCDD has
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been linked to a variety of malignancies, such as chloracne and hepatotoxicity [2]. In animal

models, TCDD exposure produces an exceedingly broad range of toxic effects including wast-

ing syndrome, thymic atrophy, endocrine disruption, immune suppression, behavioral alter-

ations, teratogenicity, cancer and death [3, 4]. The precise mechanisms through which TCDD

induces toxicity are not fully understood; however, almost all of its effects are mediated

through the aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor that is a

member of the bHLH-PAS (basic-helix-loop-helix-Per-ARNT-Sim) superfamily. Upon bind-

ing to TCDD, AhR activates two pathways. The genomic pathway as a transcription factor,

binding to xenobiotic response elements (XREs) located in the promoter regions of its target

genes, resulting in an up- or down-regulation of the abundance of a battery of genes encoding

xenobiotic-metabolizing enzymes [5] among many others [6–8]. And the nongenomic path-

way, exerted through a variety of ways, including crosstalk with other transcription factor

(such as estrogen receptor alpha, androgen receptor, NF-κB, and ß-catenin) [9–12], altering

histone marks or DNA methylation patterns [13, 14], modifying the activation of Src tyrosine

kinase [15], or increasing the intracellular calcium concentration [16].

Benzo[a]pyrene, an AhR agonist, disrupt nephrogenesis by modulating the splicing of

Wilms’s tumor suppressor [17]. Moreover, CD44 splicing variants were found after Benzo[a]

pyrene treatment [18]. On the other hand, the effects of TCDD exposure on alternative splicing

mechanisms have not been investigated, nor more broadly has the influence of AhR activation.

However, there are some observations that suggest it. Human ALDH3 gene present three alter-

native splice acceptor sites at the 3’-end of intron 1. Interestingly, the splice variants derived

from these sites were observed in controls but not in HepG2-TCDD treated cells, suggesting

that this dioxin might modify alternative splicing [19]. Alternative splicing occurs co-transcrip-

tionally and increases protein diversity by including or excluding exons in different combina-

tions, resulting in the production of a diverse array of proteins from a single gene. In humans,

~92–94% of genes are alternatively spliced, allowing for the generation of more than 100,000

protein isoforms [20, 21]. This process is carried out by the splicing code, which consists of

three elements: the cis-acting elements of the transcript, the spliceosome (which assembles step-

wise on the precursor mRNA (pre-mRNA) substrates), and auxiliary factors. Each of these com-

ponents can be targeted by external agents, causing modifications to the alternative splicing of

pre-mRNAs. In particular, xenobiotics can interfere with splicing through multiple mechanisms

including inhibition of spliceosome assembly, interference with the recognition of alternative

exons, or modification of the abundances of splicing factors [22]. Alterations in the splicing pro-

cess can result in significant deleterious effects on human health. In particular, alternative splic-

ing abnormalities have been linked to cancer, neurological disorders, autoimmune diseases, and

developmental disorders, among others [23, 24]. Therefore, identifying agents with the potential

to alter alternative splicing is crucial for understanding many human health problems.

To address this, we have investigated the effects of TCDD exposure on alternative splicing

using a mouse model known to be sensitive to TCDD toxicities. In particular, we have evalu-

ated the transcriptome of liver from adult male mice exposed to a low or high dose of TCDD

(5 or 500 μg/kg) or vehicle control, focusing on differential abundance of alternatively spliced

transcripts. We identified several genes whose splicing processes were modified by TCDD

exposure and performed validation of key findings using real-time quantitative PCR (qPCR).

Materials and methods

Animal handling

Male C57BL/6Kou mice at the age of 13–15 weeks were obtained from the National Public

Health Institute, Division of Environmental Health Institute, Kuopio, Finland. The animals
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were housed in a pathogen-free facility at 21˚C with 50 ± 10% relative humidity and artificial

illumination on a 12/12 hour light/dark cycle and tap water ad libitum. This study was

approved by the Finnish National Animal Experiment Board (Eläinkoelautakunta, ELLA; per-

mit code: ESLH-2008-07223/Ym-23).

Experimental design

Animals were divided into 3 groups of 4 mice each and treated by oral gavage with a 5 μg/kg

or 500 μg/kg dose of TCDD dissolved in corn oil or corn oil alone (10 mL/kg). Mice were

observed 2 times after exposure for their general appearance and behavior. Animals were

euthanized at 19 hours post-treatment with carbon dioxide followed immediately by cardiac

exsanguination. Livers were immediately excised and frozen in liquid nitrogen. The overall

experimental design is outlined in Fig 1.

Fig 1. Experimental design. Twelve total male C57BL/6Kou mice at the age of 13–15 weeks were divided into 3 groups

of 4 mice each, and treated by oral gavage with a 5 or 500 μg/kg dose of TCDD dissolved in corn oil or corn oil vehicle

alone (10 mL/kg). Liver tissue was collected 19 h post-treatment. Affymetrix Mouse Exon 1.0 ST Arrays were used to

assess RNA abundance. Data were normalized using RMA and homogeneity assessed; no outliers were detected.

Alternative splicing events were predicted using an entropy base measure (ARH), and transcripts with significantly

differential abundance were validated using RT-qPCR.

https://doi.org/10.1371/journal.pone.0219747.g001

Fig 2. Alternative splicing observed following TCDD exposure. ARH analysis was performed to identify differentially spliced transcripts between 500 μg/Kg TCDD-

treated mice and controls. Thirty six genes with ARH values of 0.5 or higher were identified.

https://doi.org/10.1371/journal.pone.0219747.g002

TCDD and alternative splicing

PLOS ONE | https://doi.org/10.1371/journal.pone.0219747 August 6, 2019 4 / 18

https://doi.org/10.1371/journal.pone.0219747.g001
https://doi.org/10.1371/journal.pone.0219747.g002
https://doi.org/10.1371/journal.pone.0219747


TCDD and alternative splicing

PLOS ONE | https://doi.org/10.1371/journal.pone.0219747 August 6, 2019 5 / 18

https://doi.org/10.1371/journal.pone.0219747


RNA isolation and exon array hybridization

Liver samples were ground to a fine powder in liquid nitrogen using a mortar and pestle, fol-

lowed by homogenization in a lysis buffer using a Polytron. RNA was isolated using an RNeasy

Mini Kit (Qiagen, Mississauga, Canada) following the manufacturer’s instructions. RNA was

quantified using a NanoDrop UV spectrophotometer (Thermo Scientific, Mississauga, Can-

ada) and its integrity verified using RNA 6000 Nano chips on an Agilent 2100 Bioanalyzer

(Agilent Technologies, Mississauga, Canada). All samples with an RNA integrity number

(RNI)� 8.5 were used for subsequent analysis. RNA was assayed on an Affymetrix Mouse

Exon 1.0 ST Array at the Center for the Applied Genomics at the Hospital for Sick Children

(Toronto, Canada) according to manufacturer’s protocols.

Exon array preprocessing

Raw array data (CEL files) were loaded into the R statistical environment (v3.1.2) using the

oligo package (v3.6) from the Bioconductor library [25]. Gene and ProbeSet annotation was

performed using moex10sttranscriptcluster.db (v3.6) and moex10stprobeset.db (v3.6) pack-

ages. Data were normalized using the RMA algorithm [26]. Data were assessed for distribu-

tional homogeneity and visualized using the BPG package [27] with the lattice (v0.20–33) and

latticeExtra (v0.60–26) packages in R. Raw data is available in GEO at GSE126328, and in the

TCDD transcriptomics package (v2.2.5) for R (download from: https://labs.oicr.on.ca/

boutros-lab/tcdd-transcriptomics)[28].

Alternative splicing and statistical analysis

Only ProbeSets with annotation core databases were used for the analysis. Differential abun-

dance analysis was performed using the limma package (v3.2) for R. Linear modeling was per-

formed to contrast each TCDD dose to control. Standard errors of coefficients were adjusted

using an empirical Bayes model. Model-based t-tests were applied to test for significance, fol-

lowed by false discovery rate adjustments for multiple testing. To detect alternative splicing

events, an entropy base measure for splicing prediction was performed using the ARH package

as well as the exon variations within a gene [29].

Real-time quantitative PCR (qPCR) analysis

Complementary DNA (cDNA) for the qPCR assay was prepared from 3 μg of total liver RNA

using random primers and SuperScript First-Strand Synthesis (Invitrogen, Carlsbad, CA,

USA). The real-time polymerase reaction (PCR) was performed in a StepOne Real-Time PCR

System with TaqMan Universal PCR Master Mix (Applied Biosystems, Branchburg, NJ, USA)

according to the manufacturer’s protocol. Relative transcript abundance was quantified using

the comparative threshold cycle (Ct) method. The probes used for each exon were obtained

from Integrated DNA Technologies (IDT, Skokie, IL, USA). The gene encoding the 18S

Fig 3. Analysis of the effect of TCDD on exonic abundances of Cyp1a1. A) Localization and normalized abundances of ProbeSets targeting distinct

exons within the Cyp1a1 gene. Upper panel: chromosome 9 structure and Cyp1a1 localization (red line). Middle panel: Log2 of the intensities for each of

the probes targeting regions within this gene, control (gray lines), low dose TCDD 5 μg/kg (fuchsia lines) and high dose TCDD 500 μg/kg (brown lines).

Bottom panel: Comparative structure of known Cyp1a1 isoforms. Gene reference, including direction of the transcription (yellow), transcripts as

reported by Ensembl (blue) and Affymetrix microarray ProbeSets (green). B) RNA abundance of each ProbeSet was contrasted between TCDD treated

mouse liver (5 or 500 μg/kg separately) and controls. Dotmap shows the differential abundances for each ProbeSet for each group; such that red dots

show reduced abundance following TCDD exposure, while blue shows increased abundance. Dot size represents the magnitude of change. Background

shading indicates significant of change, as quantified by the bottom gray bar (FDR adjusted p-value). Top green covariate bar represents the ARH value

(with darker shading indicating higher intensity).

https://doi.org/10.1371/journal.pone.0219747.g003

TCDD and alternative splicing

PLOS ONE | https://doi.org/10.1371/journal.pone.0219747 August 6, 2019 6 / 18

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126328
https://labs.oicr.on.ca/boutros-lab/tcdd-transcriptomics
https://labs.oicr.on.ca/boutros-lab/tcdd-transcriptomics
https://doi.org/10.1371/journal.pone.0219747.g003
https://doi.org/10.1371/journal.pone.0219747


Fig 4. Validation of TCDD effects on exon abundances. Total mRNA was extracted from the liver from mice treated with corn oil or TCDD (500 μg/kg). A)

Cyp1a1 exon 1 (ProbeSet 4721931) and exon 3 (ProbeSet 5421133). B) Ahrr exon 3 (ProbeSet 4469533), exon 6 (ProbeSet 5258969) and exon 13 (ProbeSet

4848271). C) Serpine1 exon 1 (ProbeSet 4403932), exon 2 (ProbeSet 5024287), exon 9a (ProbeSet 4354131), exon 9b (ProbeSet 5079297) and exon 9c (ProbeSet

5082204). D) Kirrel3 exon 19a (ProbeSet 5043467), exon 19b (ProbeSet 5047088), and exon 19c (ProbeSet 4806289). E) Actn1 exon 5 (ProbeSet 5008356) and

exon 14 (ProbeSet 5597164). mRNA levels were determined by RT-qPCR and normalized to 18S ribosomal RNA. The results are expressed as the mean ± S.E.

of samples from three different mice. �p< 0.05, treatment vs. control. ȹp< 0.05, between treatments.

https://doi.org/10.1371/journal.pone.0219747.g004
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ribosomal RNA (rRNA, endogenous) with identification number ID Mm00507222_s1 (IDT)

was used to normalize the results.

Statistical analysis

Real Time quantitative PCR results are presented as the mean values ± standard deviation (S.

D.) of three replicates. The statistical significance of the data was evaluated using the Student’s

t-test. In all cases, the differences between groups were considered to be statistically significant

when the p value was less than 0.05.

Results

Alterations in the splicing process can result in significant deleterious effects on human health.

Therefore, identifying agents with the potential to alter alternative splicing is necessary. TCDD

are known to impact the transcriptome, however the effects on alternative splicing are unclear.

To address this, exon arrays were used to evaluate the alternative splicing of livers from adult

male mice exposed to TCDD. The experimental outline is presented in Fig 1.

After pre-processing the data, splicing assessment was performed via ARH analysis. Using

a threshold of� 0.5, we identified 36 genes with differential splicing (Fig 2).

From this list, several genes whose abundances were known to be regulated by AhR were

identified, including cytochrome P450s 1a1 (Cyp1a1), 1a2 (Cyp1a2), 1b1 (Cyp1b1), NAD(P)H

quinone dehydrogenase (Nqo1), TCDD inducible poly(ADP-ribose) polymerase (Tiparp), aryl

hydrocarbon receptor repressor (Ahrr) and serum amyloid A (Saa) [30, 31]. From these gene

sets we determined whether TCDD modified the alternative splicing of the pre-mRNAs of

Cyp1a1 and Ahrr. The Cyp1a1 gene is known to be highly induced following exposure to

TCDD. It is composed of 8 exons, 6 of which are coding exons (NCBI) and has been reported

to have two different transcripts, Cyp1a1-201 with 7 exons (6 coding exons) and

NM_009992.4 (also named Cyp1a1-202) also with 7 exons (6 coding exons) (Fig 3A).

According to our analysis, at both high and low dose of TCDD (5 and 500 μg/kg), we

detected consistently increased abundance of all Cyp1a1 exons. Interestingly exon 1 showed

considerably lower abundance than other exons (Fig 3B), indicating that TCDD treatment

changed the relative abundance of the splice variant predominantly to variant 2

(NM_001136059.2). This variant excluded exon 1, which alters the 5’ UTR. These results may

also suggest an alternative transcriptional start site located between exon 1 and exon 2; how-

ever, in silico analysis failed to identify XREs in this region (ALGGEN PROMO database

[http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3], TH = 85).

Validation of the exon abundance was done via qRT-PCR using probes for exons 1 and 3. As

Fig 4A shows, 500 μg/kg TCDD treatment resulted in ~6,000-fold induction of exon 3. In con-

trast, less than 20-fold induction was observed for exon 1, confirming the exon array results.

Another interesting gene identified as differentially abundant by ARH was Ahrr. The Ahrr
gene is encoded by 13 exons (Fig 5A), and Ensembl, identified 7 different splice variants for

Fig 5. Analysis of the effect of TCDD on exonic abundances of Ahrr. A) Localization and normalized abundances of ProbeSets targeting distinct

exons within the Ahrr gene. Upper panel: chromosome 13 structure and Ahrr localization (red line). Middle panel: Log2 of the intensities for each of

the probes targeting regions within this gene, control (gray lines), low dose TCDD 5 μg/kg (fuchsia lines) and high dose TCDD 500 μg/kg (brown

lines). Bottom panel: Comparative structure of known Ahrr isoforms. Gene reference, including direction of the transcription (yellow), transcripts as

reported by Ensembl (blue) and Affymetrix microarray ProbeSets (green). B) RNA abundance of each ProbeSet was contrasted between TCDD treated

mouse liver (5 or 500 μg/kg separately) and controls. Dotmap shows the differential abundances for each ProbeSet for each group; such that red dots

show reduced abundance following TCDD exposure, while blue shows increased abundance. Dot size represents the magnitude of change. Background

shading indicates significant of change, as quantified by the bottom gray bar (FDR adjusted p-value). Top green covariate bar represents the ARH value

(with darker shading indicating higher intensity).

https://doi.org/10.1371/journal.pone.0219747.g005

TCDD and alternative splicing

PLOS ONE | https://doi.org/10.1371/journal.pone.0219747 August 6, 2019 9 / 18

http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3
https://doi.org/10.1371/journal.pone.0219747.g005
https://doi.org/10.1371/journal.pone.0219747


TCDD and alternative splicing

PLOS ONE | https://doi.org/10.1371/journal.pone.0219747 August 6, 2019 10 / 18

https://doi.org/10.1371/journal.pone.0219747


this gene. Based on differential abundance of ProbeSets, we observed preferential expression

following TCDD treatment of a splice variant that excluded exons 1 and 3, but included exon

13 (Fig 5B).

This transcript does not correspond to any reported splice variant, so may represent a novel

isoform, or a complex combination of isoforms. The RT-qPCR verifies that after TCDD treat-

ment the abundance of exon 3 is indeed lower than that of exons 6 and 13 (Fig 4B).

In addition to known AHR-core genes, ARH detected significant differential splicing of 29

other genes. Of these, Serpine1 and Kirrel3 demonstrated the highest ARH index. The Serpine1
gene encodes for plasminogen activator inhibitor 1. It contains 9 exons, and two transcripts

for this gene have been reported, Serpine1-001 and Serpine1-201 (Fig 6A).

The splice variant corresponds to a cassette-exon 9 skipping. Exon array analysis indicates

that TCDD treatment increased abundance of all ProbeSets, excluding the 4403932 ProbeSet

located at exon 1 and the 5079297 ProbeSet at exon 9 (Fig 6B). Results from qRT-PCR valida-

tion demonstrated that TCDD increased the abundance of all exons tested, including exons 1,

2 and 9. The latter was determined by the use of three different ProbeSets. With respect to the

magnitude of their induction, no significant differences were observed between the exons ana-

lyzed (Fig 4C).

Kirrel3 represents the most complex gene on which we focused. The protein encoded by

the Kirrel3 gene is Kirrel-like nephrin family adhesion molecule 3. It contains 19 exons, and 9

different splice variants have been identified (Fig 7A).

Exon array data indicated that TCDD treatment only induced the abundance of the

5047088 ProbeSet located at exon 19. In contrast, ProbeSets 4806289 and 5043467, located in

the same exon adjacent to 5047088 ProbeSet, did not exhibit any change after TCDD treat-

ment (Fig 7B), suggesting that dioxin treatment induced the alternative splicing of exon 19.

However, the RT-qPCR analysis indicated that TCDD treatment resulted in a decrease in the

abundance of all three regions located on exon 19, without differences between them (Fig 4D).

Finally, the effect of TCDD on α-Actn1 alternative splicing was evaluated. α-Actn1 gene

encodes for alpha actinin 1, and contains 22 exons and has 7 identified splicing variants (Fig

8A).

The exon array data suggested that TCDD induced the abundance of a α-Actn1 variant con-

stituted predominantly by the region encompassing exons 11 to 20 (Fig 8B). These results were

supported by RT-qPCR, which indicated a 6-fold induction of exon 14 upon TCDD exposure,

while no effect was observed on exon 5 (Fig 4E).

Discussion

Exposure to TCDD results in a wide range of deleterious effects on human health by altering

cell processes, such as the cell cycle and differentiation [32], among many others. To date, it

has not been shown whether toxicants like TCDD can alter splice site selection and lead to

changes in transcript variant abundances. In the current study, the effect of TCDD on alterna-

tive splicing was evaluated through the use of exon arrays. ARH analysis of the exon arrays

Fig 6. Analysis of the effect of TCDD on exonic abundances of Serpine 1. A) Localization and normalized abundances of ProbeSets targeting

distinct exons within the Serpine 1 gene. Upper panel: chromosome 5 structure and Serpine 1 localization (red line). Middle panel: Log2 of the

intensities for each of the probes targeting regions within this gene, control (gray lines), low dose TCDD 5 μg/kg (fuchsia lines) and high dose

TCDD 500 μg/kg (brown lines). Bottom panel: Comparative structure of known Serpine 1 isoforms. Gene reference, including direction of the

transcription (yellow), transcripts as reported by Ensembl (blue) and Affymetrix microarray ProbeSets (green). B) RNA abundance of each

ProbeSet was contrasted between TCDD treated mouse liver (5 or 500 μg/kg separately) and controls. Dotmap shows the differential abundances

for each ProbeSet for each group; such that red dots show reduced abundance following TCDD exposure, while blue shows increased abundance.

Dot size represents the magnitude of change. Background shading indicates significant of change, as quantified by the bottom gray bar (FDR

adjusted p-value). Top green covariate bar represents the ARH value (with darker shading indicating higher intensity).

https://doi.org/10.1371/journal.pone.0219747.g006
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indicated that the alternative splicing of several liver mouse transcripts was modified by dioxin

exposure (Fig 2). Several genes that are transcriptionally regulated by the AhR in response to

TCDD exposure were determined to have altered splicing. Two of these (Cyp1a1 and Ahrr),
were selected for validation using RT-qPCR. In humans, several CYP1A1 splice variants have

been identified, some with functional effects. A variant with deletion of exon 6 has been identi-

fied in the human brain, but not in the liver, and it is unable to bioactivate PAHs [33]. In con-

trast, a CYP1A1 splice variant formed via excision of an 84-bp intron within exon 2 is

enzymatically active and is localized exclusively in the nucleus and mitochondria [34]. In mice,

a variant that affects the functionality and/or localization of the protein has not yet been

reported. The present data indicates that TCDD promotes the abundance of transcript

Cyp1a1-201, but it also induces the abundance of the 5’ UTR variant (Cyp1a1-202). Both tran-

script variants generate the same protein; therefore CYP1A1 enzyme function should remain

the same.

Regarding Ahrr, it has been reported a human splice variant resulting in modifications of

AHRR functions. This variant, not yet included in NCBI database, has been identified as the

active form of this protein and lacks exon 8. It is present several tissues, including human liver,

lung, heart, spleen, kidney and brain [35]. No report has indicated that any of mouse splice

variants result in modifications of Ahrr functions. Based on the exon array analysis and the

RT-qPCR data indicates that after TCDD treated samples have lower abundance of exon 3

than that of exons 6 and 13, suggesting a novel Ahrr splice variant. The functional conse-

quences of this variant require future investigation.

According to the exon array analysis, TCDD treatment also modifies α-Actn1 alternative

splicing, favoring production of a variant lacking the first 8 exons. This observation was par-

tially confirmed by RT-qPCR, which showed that TCDD induces exon 14 abundance 6-fold

compared to untreated samples, while no effect was observed for exon 5.

α-Actinin1 is coded by α-Actn1 gene. Through its ability to interact with actin filaments, α-

Actinin1 plays an important role in the regulation of intracellular infrastructure, and therefore

in cell adhesion, cytokinesis and cell migration [36]. Calcium binding to the EF-hand domain

reduces its affinity for actin filaments. Splicing at the EF-hand domain results in 2 splice vari-

ants. Inclusion of exon 19a, but not 19b leads to expression of the non-muscle α-Actinin1 with

an active EF-hand domain. In contrast, when exon 19b, but not 19a is included, the calcium-

insensitive smooth muscle isoform is expressed [37], which has been associated with cancer

cells [38] [39]. As indicated above, TCDD promotes the expression of an α-Actinin1 variant

without exon 5, which is located at the N-terminal actin binding-domain region [40]. Recently,

it has been reported that mutations in the actin-binding domain of α-Actinin1 increase its

association with actin [41]. Therefore, the TCDD-induced splice variant might have altered α-

Actinin1-actin interactions.

ARH analysis also predicted that TCDD treatment increased the abundance of exon 19

splice variants of Kirrel3. However, validation was not consistent with this result. Moreover,

RT-qPCR assays indicated that TCDD treatment resulted in a decrease in exon 19 abundance

Fig 7. Analysis of the effect of TCDD on exonic abundances of Kirrel3. A) Localization and normalized abundances of ProbeSets targeting

distinct exons within the Kirrel3 gene. Upper panel: chromosome 9 structure and Kirrel3 localization (red line). Middle panel: Log2 of the

intensities for each of the probes targeting regions within this gene, control (gray lines), low dose TCDD 5 μg/kg (fuchsia lines) and high dose

TCDD 500 μg/kg (brown lines). Bottom panel: Comparative structure of known Kirrel3 isoforms. Gene reference, including direction of the

transcription (yellow), transcripts as reported by Ensembl (blue) and Affymetrix microarray ProbeSets (green). B) RNA abundance of each

ProbeSet was contrasted between TCDD treated mouse liver (5 or 500 μg/kg separately) and controls. Dotmap shows the differential

abundances for each ProbeSet for each group; such that red dots show reduced abundance following TCDD exposure, while blue shows

increased abundance. Dot size represents the magnitude of change. Background shading indicates significant of change, as quantified by the

bottom gray bar (FDR adjusted p-value). Top green covariate bar represents the ARH value (with darker shading indicating higher intensity).

https://doi.org/10.1371/journal.pone.0219747.g007
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relative to control samples. Although no splicing event was detected, clearly TCDD treatment

altered Kirrel3 abundance. Kirrel3, also known as Neph2, is localized in the pre- and post-syn-

apse in the hippocampus. In particular, Kirrel3 regulates the output specificity of hippocampal

DG axons [42], and disruption of its locus has been associated with neurodevelopmental disor-

ders [43]. Kirrel3 null mice present a reduction in mossy fibers filipodia formation in the hip-

pocampus, resulting in the hyperexcitability of CA3 neurons [44]. Furthermore, a previous

study showed that TCDD decreased the side of the pyramidal mossy fiber field of the hippo-

campus [45]. Therefore, our current results suggest that the effect of TCDD on the mossy fiber

field of the hippocampus is through decreasing Kirrel3 abundance.

Validation of Serpine1 by qRT-PCR did not show a splicing event as the ARH analysis pre-

dicted. However, TCDD treatment induced the expression of exons 1, 2 and 9 more than

50-fold when compared to nontreated samples. The Serpine1 gene encodes the plasminogen

activator inhibitor type I (PAI-1), which inhibits the activation of plasminogen into plasmin,

and therefore the proteolysis of proteins in connective tissue, basement membranes and blood

clots. The present data suggest that TCDD, through the induction of Serpine1, might alter

mechanisms involved in tissue remodeling, contributing to the development of several patho-

logic processes, such as metastasis and intravascular thrombosis [46] [47].

Finally, although the ARH method correctly predicted the alternative splicing of some pre-

mRNAs, the analysis also resulted in false positive data as with Kirrel3 and Serpine1, pointing

out the need for the improvement of the prediction methods used to evaluate alternative splic-

ing when exon arrays are used. RNA sequencing is also used for the identification of alterna-

tive splicing. Both methods have advantages and disadvantages. Nazrev and collaborators in a

comparative analysis conclude that combining the use of both platforms for the identification

of alternative splicing will be more reliable [48].

In conclusion, this study demonstrated that TCDD exposure leads to modify the alternative

splicing of several transcripts. The mechanism of these effects is still unknown and will require

future investigation focused on the effects of TCDD on spliceosome assembly, on the recogni-

tion of alternative exons, and/or on the levels of splicing factors. Additionally, more studies

will be necessary to elucidate whether the AhR plays a role in these splicing changes.
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