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Abstract

The impact of increasing resistance of mosquitoes to conventional pesticides has led to investigate various 
unique tools and pest control strategies. Herein, we assessed the potency of flupyradifurone, a novel pesticide, 
on fourth instar larvae of Culex quinquefasciatus Say. Further, we evaluated the synergistic action of piperonyl 
butoxide (PBO) and the octopamine receptor agonists (OR agonists) chlordimeform (CDM) and amitraz (AMZ) 
on the toxicity of flupyradifurone in comparison with sulfoxaflor and nitenpyram to increase their toxicity on 
Cx. quinquefasciatus. Results demonstrated that flupyradifurone was the most potent pesticide followed by 
sulfoxaflor and nitenpyram. Further, the synergetic effect of PBO, CDM, and AMZ was significant for all selected 
pesticides especially flupyradifurone. However, AMZ had the most significant effect in combination with the 
selected pesticides followed by CDM and PBO. The toxicity of the pesticides was time-dependent and increased 
over time from 24, 48, to 72 h of exposure in all experiments. The results indicate that flupyradifurone is a 
promising component in future mosquito control programs.

Key words: flupyradifurone, Culex quinquefasciatus, mosquito control, piperonyl butoxide (PBO), octopamine receptor agonists 
(OR agonists)

Culex quinquefasciatus Say is a peridomestic mosquito which 
easily feeds on plenty of hosts including avian and human (Lopes 
et al. 2019). It is considered the principal vector of numerous viral 
pathogens such as West Nile Virus (WNV), lymphatic filariasis, 
avian malaria, St. Louis encephalitis, Western equine enceph-
alitis, and Zika (Kothera et  al. 2019, McInnis et  al. 2019). For 
many decades, pesticides are remaining the most efficient practice 
in mosquito control (Sadanandane et  al. 2018, Rai et  al. 2019). 
Unfortunately, the great increase in the use of conventional pesti-
cides causes great concern about their effect on human health and 
safety (Ahmed and Othman 2020). However, pesticide resistance 
is considered a serious and growing problem worldwide (Kothera 
et al. 2019, Yuan et al. 2019, Ahmed and Vogel 2020). In this in-
terim, developing new chemical classes of pesticides for efficient 
mosquito control is of utmost importance to overcome resistance 
issues (Ahmed and Vogel 2016a, b).

Flupyradifurone is a new pesticide stimulated by the 
butenolide scaffold naturally occurring in stemofoline (Nauen 

et al. 2015). Further, flupyradifurone’s mode of action is similar to 
neonicotinoides acting as an agonist on the insect nicotinic acetyl-
choline receptor (nAChR) in the nervous system (Ihara et al. 2017, 
Bell et al. 2020). However, it displayed an excellent and fast action 
against a wide spectrum of sucking pest insects, plus, it exhibits 
a powerful action toward certain pests that developed a pesticide 
resistance population such as selected neonicotinoid-resistant pests 
(whiteflies and aphids that expressing metabolic resistance mechan-
isms) (Roditakis et al. 2017, Liang et al. 2019). Interestingly, in spite 
of flupyradifurone’s common mode of action with neonicotinoids 
and sulfoximines, it is chemically different in which it is the first 
nAChR insecticide containing the stemofoline-derived (natural 
compound) butenolide pharmacophore that affects the insects’ 
nAChR (Nauen et al. 2015).

Importantly, flupyradifurone is an effective pesticide against 
numerous pest insects feeding on the underside of leaves for in-
stance, Aphis gossypii and Myzus persicae (Raupach et  al. 2012). 
Furthermore, flupyradifurone demonstrated an excellent potency 
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against whitefly species in laboratory bioassays compared to 
neonicotinoids and other homopteran feeding blockers (Smith et al. 
2016, Liang et al. 2019).

In this study, we evaluated the toxicity effects of flupyradifurone 
in comparison with nitenpyram and sufloxaflor against the fourth 
instar larvae of Cx. quinquefasciatus mosquitoes under laboratory 
conditions. Further, we assessed the synergistic actions of piperonyl 
butoxide (PBO) and octopamine receptor agonists (OR agonists), 
amitraz (AMZ) and chlordimeform (CDM), on these pesticides 
to demonstrate the possibility of maximizing their toxicity on Cx. 
quinquefasciatus mosquitoes.

Materials and Methods

Mosquitoes
The laboratory colony (susceptible colony) of Cx. quinquefasciatus 
was obtained from the laboratory of Prof. Walter Leal, University 
of California Davis (UC Davis) which was used for all experiments. 
However, the original of this colony was from a laboratory colony 
started from adult mosquitoes collected in Merced, CA, in the 1950s 
and maintained by Dr. Anthony Cornel in the Kearney Agricultural 
Center, University of California. The Davis colony has been reared 
at Davis under a photoperiod of 12:12 (L:D) h, 27 ± 1°C and 75% 
RH (Zeng et al. 2018, Ahmed and Vogel 2020). Because of the UC 
Davis Institutional Review Board (IRB) ruled that this study did not 
meet the requirements for human subject research, the IRB approval 
was not requested.

Chemicals
Flupyradifurone (99.5%) and sulfoxaflor (99.6%) were purchased 
from Chem Service, Inc. (West Chester, PA). Nitenpyram (99.9%), 
PBO (99%), CDM (99.8%), AMZ (96.8%) were purchased from 
Sigma-Aldrich Co. (St. Louis, MO).

Acute Toxicity Bioassay
The acute toxicity bioassays were performed as described by Paul 
et al. (2006). In brief, 20 from fourth instar larvae of homogenous 
size were placed in 140-ml glass cups containing 99 ml of distilled 
water and 1 ml of pesticide (in acetone) solution. controls were only 
added by 1 ml of acetone. Furthermore, five concentrations (500, 50, 
5, 0.5, and 0.05 ng/ml) were used for all assays for each pesticide, 
and each assay was held at 25°C. Three replicates were preceded 
for each concentration. Approximately 0.5 g dog food powder was 
added per replicate.

larvae were considered dead if they were not responding to the 
touching of a probe or if they could not reach the surface of the 
water. Because of the slow-acting response of these pesticides, mor-
tality was determined after 24, 48, and 72 h of exposure due to the 
delay of the acute toxicity that needs to be effective.

Synergistic Action Bioassay
The synergistic action bioassays were assessed as reported by Ahmed 
and Matsumura (2012). Importantly, our previous study showed 
that PBO and OR agonists (CDM and AMZ) at a concentration of 
20 µg/ml and 10 µg/ml, respectively, were the maximum concentra-
tions that did not cause mortality during the 72-h posttreatment on 
fourth instar larvae of Cx. quinquefasciatus. Five different concen-
trations of each pesticide were used for all bioassays which were at 
least repeated twice. Percentage mortality was recorded after 24-, 
48-, and 72-h posttreatment.

Analysis
Corrected mortality was regulated based on Abbott’s formula 
(Abbott 1925). Data analysis, for instance LC50, 95% CL values, 
slope, X2, and g- values; were analyzed by using IBM SPSS Statistics 
Version 25 software (SPSS Inc., Chicago, IL). However, synergistic 
action was considered to be significant (P ≤ 0.05) when the 95% CIs 
for the LC50 values for fourth instar larvae treated by the pesticide 
alone and did not overlap with those for larvae exposed to pesticide 
+ synergist. Synergistic ratio (SR) was determined by dividing the 
LC50 value of the test pesticide by the LC50 that acquired for the 
combined effect of pesticide + synergist. However, toxicity index es-
timated as [(LC50 of the most toxic tested pesticide/LC50 of the tested 
pesticide) × 100].

Results

The toxicity data of flupyradifurone in comparison with sufloxaflor 
and nitenpyram on fourth instar larvae of Cx. quinquefasciatus 
after 24, 48, and 72  h of exposure are presented in Table  1. 
Flupyradifurone was the most potent pesticide among the tested pes-
ticides (LC50 = 10.64, 2.45, and 0.87 ng/ml after 24, 48, and 72 h 
of exposure, respectively). However, nitenpyram was the least toxic 
one (LC50 = 302.54, 61.93, and 15.82 ng/ml after 24, 48, and 72 h 
of exposure, respectively).

The effects of the synergistic action of PBO on flupyradifurone 
are shown in Table 2. PBO synergized all selected pesticides es-
pecially flupyradifurone (SR  =  3.69-, 4.02-, and 5.44-fold after 
24, 48, and 72 h of exposure, respectively). Further, sulfoxaflor 
was the least synergized by PBO (SR = 3.18-, 3.82-, and 4.37-fold 
after 24, 48, and 72  h of exposure, respectively). In combina-
tion with the selected pesticides, CDM synergized all these pesti-
cides. However, after 24 h of exposure, flupyradifurone was the 
most synergized pesticide followed by nitenpyram and sufloxaflor 
(SR = 10.23-, 9.27-, and 8.79-fold, respectively). The same trend 
was observed after 48 and 72 h of exposure (Table 3). The results 
of the synergistic action of AMZ with selected pesticides are dem-
onstrated in Table 4. AMZ was synergized by all pesticides espe-
cially flupyradifurone (SR = 20.08-, 29.63-, and 31.07-fold after 
24, 48, and 72 h of exposure, respectively). Further, sulfoxaflor 
was considered the minimal synergized pesticide among the 
selected pesticides (SR = 15.34-, 18.24-, and 23.06-fold after 24, 
48, and 72 h of exposure, respectively).

The most notable trend was that AMZ was most synergized 
by all selected pesticides followed by CDM and PBO. Further, 
flupyradifuron was the most synergized pesticide followed by 
sulfoxaflor and nitenpyram. Furthermore, the synergistic action was 
increased based on time-dependent changes as assessed 24, 48, and 
72 h after pesticides initial exposure.

Toxicity index of flupyradifurone in comparison with sulfoxaflor  
and nitenpyram alone and plus PBO, CDM, and AMZ was pre-
sented in Fig.  1. After 24  h of exposure, flupyradifurone was 
more toxic than sulfoxaflor and nitenpyram by 8.31- and 28.41-
fold, respectively (Fig.  1A). However, in combination with PBO, 
flupyradifurone was more potent than sulfoxaflor and nitenpyram by 
9.64 and 29,85-fold, respectively (Fig. 1D). Further, flupyradifurone 
plus CDM, it was more toxic than sulfoxaflor and nitenpyram by 
9.66- and 31.35-fold, respectively (Fig. 1G). Whereas, in combina-
tion with AMZ, flupyradifurone was more toxic than the rest of 
selected pesticides by 10.87- and 32.05-fold, respectively (Fig. 1J). 
The same pattern of toxicity was observed after 48 and 72 h of ex-
posure (Fig. 1).
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Discussion

Pesticide resistance has been a long-time issue in mosquito con-
trol. However, facilitating new strategies will be paramount. In this 

regard, the discovery of new pesticides that have distinctive chemical 
and physical properties as well as unique mode of action is con-
sidered substantial. In this interim, flupyradifurone is considered 
a novel pesticide that acts on nAChRs in insect’s nervous system. 
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Fig. 1.  Toxicity index of flupyradifurone in comparison with sulfoxaflor and nitenpyram alone (A, B, and C), plus PBO (D, E, and F), CDM (G, H, and I), and AMZ 
(J, K, and L) on fourth instar larvae of Culex quinquefasciatus after 24, 48, and 72 h of exposure. Toxicity index = [(LC50 of the most toxic tested pesticide/LC50 of 
the tested pesticide) × 100].
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In our study, flupyradifurone revealed a significant toxicity against 
fourth instar larvae of Cx. quinquefasciatus in comparison with the 
selected pesticides.

To date, there are no reliable data focusing on the efficacy of 
flupyradifurone on Cx. quinquefasciatus. However, flupyradifurone’s 
potent toxicity has been shown toward several different insect pests, 
particularly, the sap-feeding pests which could be due to its physical 
and chemical properties. Ma et al. (2019) found that flupyradifurone 
was the most toxic pesticide among the tested pesticides and the 
LC50 values which was 1.88 and 201.91 mg/l for the SS and SulR 
strains, respectively, on A. gossypii adults. In another study on the 
same insect pest, Liang et al. (2019) demonstrated that the time of 
development of the fourth instar and the preadult as well as the 
total prereproductive period of A. gossypii adults were significantly 
prolonged, plus, their fecundity was significantly decreased after 
treated with LC25 of flupyradifurone after 48 h. Further, Tang et al. 
(2019) reported that flupyradifurone was very toxic on M. persicae 
adults with a 48-h LC50 of 8.49  mg/l. Smith et  al. (2016) found 
that flupyradifurone was the most potent pesticide and LC50 values 
from field populations of Bemisia tabaci adults ranged from 0.01 
to 1.47 ppm for flupyradifurone, 0.04 to 3.35 ppm for dinotefuran, 
0.90 to 24.95  ppm for imidacloprid, and 0.97 to 24.43  ppm for 
thiamethoxam.

Interestingly, PBO, CDM, and AMZ enhanced the toxicity of the 
selected pesticides. In the presence of the synergists, PBO, CDM, and 
AMZ, toxicity increased dramatically, especially after 48 and 72 h of 
exposure. However, many studies focused on the synergistic action of 
PBO on pesticides that disrupts the insect nAChR. Paul et al. (2006) 
found that PBO increased the toxicity of imidacloprid by 7.8-fold 
after treatment of 72 h on the fourth instars of Aedes aegypti and 
by ˃2,000-fold on adult female of Ae. aegypti after 48 h of exposure. 
Moreover, Ahmed and Vogel (2016a) evaluated the synergistic ac-
tion of PBO on seven selected neonicotinoid pesticides (imidacloprid, 
dinotefuran, thiamethoxam, thiacloprid, acetamiprid, clothianidin, 
and nitenpyram) on Ae. aegypti adults after 72 h of exposure and 
found that the SRs were 363-, 813-, 941-, 607-, 504-, 517-, and 
815-fold, respectively. Further, in a different study, Ahmed and Vogel 
(2016b) demonstrated that PBO enhanced the toxicity of sulfoxaflor 
pesticide on Ae. aegypti fourth instar larvae and adults after 72-h 
exposure by 10.3- and 8.3-fold, respectively. Ahmed and Othman 
(2020) revealed that PBO significantly synergized imidacloprid and 
its nanoformulations. The most synergistic effects were found with 
IMD03 (nanoform) and the lowest was imidacloprid itself on fourth 
instar larvae of Cx. pipiens. In our study, the effect of PBO on the 
toxicity of selected pesticides was considerably different in terms of 
the degree of synergism. The synergistic effects could be affected by 
the different expression of the cytochrome P450 enzymes that are 
involved in the metabolism of these pesticides.

Importantly, CDM and AMZ showed significantly synergistic 
action toward the tested pesticides particularly flupyradifurone. 
Ahmed and Matsumura (2012) stated that the synergistic action 
that occurs via the OR agonists was greatest with AMZ on selected 
neonicotinoid pesticides (SR ranged from 1.6- to 11-fold) and was 
most apparent after 72 h of exposure on fourth instar larvae of Ae. 
aegypti. Ahmed and Vogel (2016b) found that AMZ plus sulfoxaflor 
had the greatest synergism, especially on fourth instar larvae and 
adults after 72  h of treatment (SR  =  16.3- and 29.6-fold, respec-
tively). The synergistic effects of the OR agonists by the selected pes-
ticides are likely based on the suppression of detoxification enzymes, 
enhancing the penetration or uptake, and/or depression related to 
the activities of the nervous system (Ahmed and Matsumura 2012; 
Ahmed and Vogel 2016a,b). However, other physiological processes 

affected by the OR agonists could be responsible for the synergism 
that occurred. For instance, OR agonists may interact with endog-
enous hormones such as neurotransmitters, neuromodulators, and/
or neurohormones which are known to regulate diverse physiolog-
ical and behavioral processes in insect pests (Roeder 2005). Further, 
Ismail and Matsumura (1992) and Ahmed et al. (2015) explained 
that the synergistic action of OR agonists is likely due to its effects 
on the elevation of blood-sugar levels which leads to strong excita-
tion that causes anorexia in insect pests and results in acceleration of 
the process of energy exhaustion in insects treated with the selected 
pesticides.

In summary, we demonstrated that flupyradifurone repre-
sents an effective pesticide in controlling Cx. quinquefasciatus. 
Flupyradifurone mediate its effects differently from that of other 
neonicotinoid and sulfoximine pesticides in that it reversibly binds 
to nAChRs and lacks metabolization by cytochrome P450 enzymes 
in sucking insect pests that resistant to neonicotinoid pesticides. 
Thus, it demonstrates unique and fast action against a broad spec-
trum of sucking pests especially that exhibits resist to neonicotinoid 
pesticides. Therefore, efforts should continue to understand the bio-
chemical and molecular mode of action and the toxicological effects 
of flupyradifurone on Cx. quinquefasciatus mosquitoes.
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