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Abstract: The emergence of infectious diseases presents a significant global health, economic, and
security risk. Climate change can unexpectedly lead to the spread of pathogens, vectors, or hosts
into new areas, contributing to the rise of infectious diseases. Surveillance plays a crucial role in
monitoring disease trends and implementing control strategies. In this study, we document the first
discovery of Heterobilharzia americana, a parasitic schistosome of mammals and its intermediate hosts
Galba cubensis and Galba humilis along the banks of the Colorado River in California. We conducted
multiple samplings of snails from various locations in the region with a previous history of canine
schistosomiasis. Nucleotide sequencing of the multiple regions of the snails’ and parasites’ DNA
revealed the coexistence of G. cubensis and G. humilis, both infected with H. americana. Phylogenetic
analyses further validate the presence of H. americana in California, suggesting a wider distribution
than previously reported. Our findings have implications for public health, veterinary medicine,
and biodiversity conservation, contributing to developing effective control strategies to prevent the
spread of this emerging infectious disease.

Keywords: range expansion; pathogen; schistosome; Heterobilharzia americana; Galba cubensis; Galba
humilis; Colorado River; biodiversity; canine schistosomiasis

1. Introduction

The rise of new and infectious diseases poses a substantial and increasing risk to
global health, the worldwide economy, and international security [1]. Most emerging
infectious diseases are zoonotic and originate from domesticated animals and wildlife [2,3].
Climate change resulting in vector and intermediate host range expansion may have
widespread effects on the emergence of infectious diseases [4,5]. Examples of this include
the outbreak of canine schistosomiasis in Utah [6] and the range expansions of various
diseases, such as ticks and the meningeal worm Parelaphostrongylus tenuis [7–9]. Another
potential source for the emergence of new diseases is the encounter of a particular pathogen
or parasite with immune-compromised hosts. Examples include the recent infection of
the nematode Ophidascaris robertsi in a woman’s brain and the horizontal transmission of
cancerous tapeworm cells from Hymenolepus nana to a man’s lungs [10,11]. Disease and
pathogen surveillance is a critical component of the health system because it provides
timely information to monitor disease trends, evaluate health outcomes, and set parasite
control and elimination strategies before they cause widespread disease. Here, we outline
the discovery of a pathogenic schistosome infecting both wild and domestic mammals,
along with its intermediate hosts, on the banks of the Colorado River in California.
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Heterobilharzia americana is a schistosome trematode endemic to the Gulf Coast and
South Atlantic region of North America, infecting raccoons, marsh rabbits, dogs, horses,
nutria, bobcats, mountain lions, opossums, and other mammals [12,13]. Nevertheless, there
is a growing number of reports documenting the incidence of parasite infection across
various new states, including Indiana [14], Tennessee [15], Oklahoma [13,16], Arkansas [13],
Kansas [17], and, most recently, Utah [6]. The life cycle of H. americana is that of a typical
digenic trematode within the family Schistosomatidae (Figure 1). Mammals that wade
or swim in freshwater areas, such as marshes, mudflats, ponds, and canals, are exposed
to H. americana [18]. The intermediate host snails release the free-swimming cercariae
into the water, which then penetrate the definitive host’s skin. Once inside the skin, the
parasite transforms into a juvenile form called a schistosomula. The young schistosomes
first migrate to the lungs, where they can cause hemorrhaging [19]. Afterward, they reach
the liver and undergo development into both male and female. The male and female
migrate to the mesenteric veins, mate, and lay spine-free eggs. Eggs make their way into
venules, penetrating the intestinal wall, and are then released into the intestinal lumen.
They are eventually excreted in feces. Upon reaching freshwater, the eggs hatch rapidly,
releasing ciliated miracidia that swim to locate a suitable snail host. In infected snails,
asexual development leads to the formation of both mother and daughter sporocysts and
cercariae which then migrate to the hepatopancreas/digestive gland. It takes approximately
68 days post-infection to observe eggs in the feces of the definitive host [15,19].
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Figure 1. Life cycle of Heterobilharzia americana. Two-host life cycle contains six distinct stages: adult,
egg, miracidium, sporocyst, cercaria, and schistosomula.

The schistosome H. americana has been reported to infect a wide range of mammalian
species in various regions of the United States. However, for a long time, the only snail
species believed to be a natural intermediate host for H. americana was the small amphibious
lymnaeid, Galba cubensis [20]. In 2021, a new species of snail host, Galba humilis, was
recorded as testing positive for natural infection with this pathogen [6], and in 2023,
another snail species, Galba schirazensis, was reported to be a compatible intermediate host
of H. americana [21]. Similarly, Pseudosuccinea columella [22], a widely distributed aquatic
lymnaeid, is experimentally susceptible [23], but it has not been observed with natural
infection. In the United States, Galba cubensis has been recorded in Alabama, California,
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Florida, Georgia, Louisiana, Mississippi, North Carolina, New Mexico, South Carolina, and
Texas [24]. The historical range of H. americana appears to match the occurrence of this
snail in most of these states. Populations of G. cubensis have also been recorded from South
America, Mexico, the West Indies, and Europe [25,26]. Another intermediate host, Galba
humilis, also has a wide geographical distribution within the USA from Alaska to Florida
and worldwide including Canada, Japan, and South America [6,20,27–30].

Dogs, when exposed to H. americana, manifest symptoms such as dermatitis (caused
by penetrating cercariae), vomiting, coughing, fever, bloody diarrhea, anorexia, weight loss,
lethargy, polyuria, and polydipsia, ultimately leading to collapse. Granulomatous reactions
provoked by H. americana eggs are notable in organs including the lungs, liver, pancreas,
and intestine. Common clinicopathologic observations in infected dogs include anemia,
dehydration, hyperglobulinemia, hypoalbuminemia, hypercalcemia linked to elevated
parathyroid hormone-related protein levels, and eosinophilia [15,31–34]. Similar symptoms
are observed in H. americana-infected raccoons and horses [35,36]. In dogs, H. americana
infections are treated with high-dose praziquantel or fenbendazole, with variable outcomes
ranging from complete cure to treatment ineffectiveness [32]. The prolonged nature of
the disease, poor treatment response, and diagnostic challenges often lead to euthanasia,
and the clinical signs associated with schistosomiasis can mimic those of tumors and other
diseases, requiring expensive and invasive procedures that may delay definitive diagnosis
and appropriate therapy [31,34]. Veterinarians consistently emphasize that H. americana
is frequently overlooked in diagnoses and is becoming a growing concern, particularly in
dogs, horses, and other mammals [13–16,37,38].

The discovery of H. americana and its natural intermediate hosts in the Colorado River
is noteworthy. Understanding the pathogen’s dissemination should prompt preemptive
control strategies. This becomes particularly crucial in averting substantial damage to dog
populations and other natural mammalian communities. In the subsequent section, we
explore the discovery of H. americana within its natural hosts, Galba cubensis and Galba
humilis, coexisting along the banks of the Colorado River in California. This discovery
serves as compelling evidence of westward expansion of H. americana in the United States.

2. Materials and Methods
2.1. Collection and Screening of Snails

Snails were collected from the banks of the Colorado River multiple times. The
first sampling of the snail population was conducted on 1 March 2023, among 2 sites
(Mayflower County Park (33.67119, −114.53319) and Quechan Park (33.60725, −114.53104)).
The second sampling of the snails took place on 4 April 2023, with samples collected
from four different sites: First Leavy Park, Quechan Park, Mayflower County Park, and
Hidden Beaches (33.6566, −114.51738). The third sampling was carried out on 16 July 2023,
specifically from the 2 sites (Quechan Park, and Hidden Beaches) where many snails were
found during the second sampling. The collection of snails involved using handled kitchen
strainers, which were swept through aquatic vegetation near the shoreline, or snails outside
of shorelines at or above the waterline were picked using hands. Snails were washed,
isolated in individual wells of 24-well plates, and left overnight in the dark before screening
to identify individual snails shedding cercariae. Snails were re-screened the next morning.
Snails that did not shed cercariae were maintained in the laboratory and re-evaluated every
day for two weeks. Snails releasing cercariae were photographed, and both the individual
snails and their cercariae were subjected to molecular identification.

2.2. DNA Extraction for Molecular Identification of Snails and Cercariae

Snail populations from individual surveys were grouped based on shell morphology,
and DNA extraction was performed on each morphotype for molecular identification. Total
DNA was extracted from the foot tissue of the snails. Each snail was placed under the
microscope, and a small piece of foot tissue was cut using a sharp scalpel. The tissue was
then placed in 30 µL of extraction buffer in a 200 µL microcentrifuge polymerase chain
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reaction (PCR) polypropylene tube, mixed with 27 µL of 10 mM Tris, 1 mM EDTA pH
8.0 (Thermo Fisher Scientific, Fair Lawn, NJ, USA), 1.5 µL of 2% Triton X, and 1.5 µL of
Proteinase K (20 mg/mL, New England Biolabs, Ipswich, MA, USA). The snail tissue was
disrupted by freezing and thawing five times using liquid nitrogen, and then the tissue
was incubated overnight at −20 ◦C. The following day, the frozen lysate was incubated
at 56 ◦C for 1 h, followed by 95 ◦C for 10 min. DNA from cercariae was extracted using a
similar technique as described above. Approximately 100 cercariae were placed in 20 µL
of extraction buffer in a 200 µL microcentrifuge PCR tube, mixed with 18 µL of 10 mM
Tris, 1 mM EDTA pH 8.0 (Thermo Fisher Scientific, Fair Lawn, NJ, USA), 1 µL of 2% Triton
X, and 1 µL of Proteinase K (20 mg/mL, New England Biolabs, Ipswich, MA, USA). A
similar protocol was followed to disrupt the cell and extract DNA as described for snail
tissues above.

2.3. DNA Amplification and Sequencing

Amplification of multiple loci in snail and cercariae DNA was performed using
different primer sets. We used 1 µL of the DNA extract as a template for a 25 µL
PCR reaction, using 12.5 µL of Taq polymerase (Promega, Madison, WI, USA), 1 µL
each of forward and reverse primer, and 9.5 µL of nuclease-free for all the PCR tests.
Snail ITS1 was amplified using Lim1657 (forward) 5′-CTGCCCTTTGTACACACCG-
3′ , ITS1-RIXO (reverse) 5′-TGGCTGCGTTCTTCATCG-3′ [20]. Snail ITS2 was ampli-
fied using NEWS2 (forward) 5′-TGTGTCGATGAAGAACGCAG-3′ and ITS2-RIXO
(reverse) 5′-TTCTATGCTTAAATTCAGGGG-3′ [39]. Thermocycling conditions for snail
ITS1 (Lim1657, ITS1RIXO) were as follows: 94 ◦C for 6 min; 3 cycles for each annealing
temperature, 60–56 ◦C then 20 cycles at 55 ◦C with denaturation at 94 ◦C for 30 s and
extension at 72 ◦C for 2 min, and a final extension at 72 ◦C for 7 min. Similarly, the PCR
conditions for ITS2 consisted of an initial denaturation step at 94 ◦C for 2 min. This was
succeeded by 32 cycles, with intervals of 30 s at 94 ◦C, 30 s at 50–58 ◦C, and 30 s at 72 ◦C.
The process concluded with a final extension step of 7 min at 72 ◦C. The COX 1 gene of the
snails was amplified using LCOI490 (forward) 5′-GGTCAACAAATCATAAAGATATTGG-
3′ and HCO2198 (reverse) 5′-TAAACTTCAGGGTGACCAAAAAATCA-3′ [40]. The PCR
condition for the amplification of the COX I gene was denaturation at 94 ◦C for 2 min,
30 cycles of 30 s at 94 ◦C, 30 s at 52 ◦C, and 2 min at 72 ◦C, followed by a final 7 min
extension at 72 ◦C.

For the parasite DNA, amplification of mitochondrial cytochrome oxidase subunit
1 (CO1) was conducted using Cox1_schist_5 (forward) 5′-TCTTTRGATCATAAGCG-3′ ,
Cox1_schist_3 (reverse) 5′-TAATGCATMGGAAAAAAACA-3′ [41] and CO1
F15 (forward) 5′-TTTNTYTCTTTRGATCATAAGC-3′ , and CO1R15 (reverse) 5′-
TGAGCWAYHACAAAYCAHGTATC-3′ [42]. The amplification of the CO1 gene used the
same PCR conditions as described above for the amplification of the CO1 gene in the snails.
Amplification of the large subunit region was performed using the primers C1 (forward)
5′-ACCCGCTGAATTTAAGCAT-3′ and D2 (reverse) 5′-TGGTCCGTGTTTCAAGAC-3′ [43].

PCR results were visualized on 1% agarose gel stained with 0.0003% ethidium bromide,
along with a 1 kb plus DNA ladder (New England Biolabs, Beverly, MA, USA). Gel
purification of the PCR products was performed using the QIAquick® Gel Purification Kit
(Qiagen, Germantown, MD, USA), following the manufacturer’s protocol. Subsequently,
the purified PCR products were sent for Sanger sequencing using both the forward and
reverse strands at the UCR Core Instrumentation Facility, according to the manufacturer’s
protocol. The chromatogram sequence uncertainties in both the forward and reverse
sequences for each locus underwent visual inspection and assembly through SeqManII
software (DNASTAR Inc., Madison, WI, USA). The sequences generated as part of this
work have been deposited in NCBI GenBank with their corresponding accession for snail
and H. americana sequences (Supplementary Materials).
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2.4. Identification and Phylogenetic Analysis

Identification of closely related species for each amplicon from snails and Heterobil-
harzia americana was conducted using the Basic Local Alignment Search Tool (BLAST)
within the National Center for Biotechnology Information (NCBI) database. Based on the
blast result, different closely related species of snails and H. americana species were used
to construct the phylogeny. All sequences were aligned using MAFFT [44] with default
parameters and the aligned sequences were visualized using Clustal W in MEGA 1; any
alignment inconsistencies were corrected manually [45]. The IQ-Tree program [46] was
used to choose the best model utilizing the ‘find best model’ function and to construct
a maximum likelihood (ML) phylogenetic tree, incorporating ultrafast bootstrap branch
support with 1000 replicates.

3. Results
3.1. Survey Results

From the first sampling, we collected 524 snails. Those snails were divided into four
different groups based on the shell morphology (Figure 2). For all our surveys, the first
and predominant category (comprising more than 90%) of snails were right-handed cone-
shaped snails with very high shell spires, round and unobtrusive tentacles, and a foot that
was yellowish to light olive. The second group of snails had spiral whorls, giving the shell
a uniform wood-brown or fawn-colored appearance, with the last whorl swollen at the
end. The third group of snails was composed of left-handed cone-shaped snails with a
size like that of the snails in the first group but with longer tentacles. The fourth group of
snails had larger shell sizes compared to all the snails collected during our survey, with
a large, inflated body whorl and a short shell. During our second and third surveys, we
collected 664 and 788 snails, respectively. Since the only recorded hosts of H. americana are
cone-shaped snails, our focus was solely on this type of snail, and we exclusively gathered
specimens of this kind.
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Figure 2. Different morphologies of snails collected during the snail survey. (A) Right-handed
cone-shaped snail (Galba spp.). (B) Spiral-shaped snails (Polygyra spp.). (C) Left-handed cone-shaped
snails with long tentacles (Physella acuta). (D) Big cone-shaped snails (Succinea spp.).

For the second survey, we extracted DNA from four randomly selected snails at each
of the three locations (Hidden Beach, First Leavy Park, and Mayflower County Park) in
group A. For group B snails, we randomly selected four individuals. In group C, all four
left-handed snails collected during the survey underwent DNA extraction. Additionally,
three snails were selected from group D. The amplification and sequencing of the cy-
tochrome oxidase subunit I (COX1) genes generated fragments ranging in size from
594 to 680 base pairs (bp). The Basic Local Alignment Search Tool (BLAST) analysis
of the sequenced genes revealed that the majority of snails from group A were identified as
two snail species, Galba humilis and Galba cubensis, with identity ranging from 98.76% to
100%. All the snails from group B were identified as Polygyra spp., with identities ranging
from 96.74% to 99.83%. Snails from group C were identified as Physella acuta, with identities
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ranging from 98.23% to 99.56%. Similarly, snails from group D were identified as Succinea
spp., with identities ranging from 99.50% to 99.83% (Supplementary Materials).

During our third survey, we focused solely on collecting cone-shaped snails (Galba
spp.) from group A, with the majority obtained from Hidden Beach (33.6566, −114.51738).
We collected 788 snails, and among them, four were shedding schistosome cercariae. These
four snails underwent DNA extraction and sequencing (Figure 3 and Supplemental Videos).
The sequencing of the COX I gene produced sequences ranging in size from 486 to 642 bp.
BLAST analysis identified three snails as Galba cubensis, with identities ranging from 98.14%
to 98.68%. Another fragment, measuring 655 bp in length from the fourth snail, was
identified as Galba humilis with an identity of 99.52% in the database. We performed DNA
extraction from four cercariae, amplifying the partial large subunit (28S) and cytochrome
oxidase subunit I (COX1) gene. The 28S fragment lengths ranged from 897 bp to 902 bp,
and the COX I gene fragment lengths ranged from 463 bp to 955 bp. BLAST results of the
28S sequences showed high similarity to the Heterobilharzia americana Utah strain, with a
percent identity ranging from 99.56% to 99.89%. Similarly, BLAST results of the COX I
gene for the California cercariae were highly similar to the H. americana Utah strain, with a
percent identity ranging from 97.69% to 99.17%.
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Figure 3. Images of three Galba cubensis from the top and one Galba humilis from the bottom that shed
cercariae. The cercaria of H. americana had two eyespots, a tail, and swam freely as a morphological
feature on the lower left panel. The codes S1, S2, S3.4, and S3.5 represent individual isolates of snails
that were shedding cercariae.

3.2. Phylogenetic Analysis of the Snail

For the phylogenetic analysis involving the cytochrome oxidase subunit I (COX1)
gene of snails, we incorporated sequence data from both the second and third surveys. In
the second survey, we included snails from three locations, selecting 4 snails from each
site, resulting in a total of 12 snail samples. In the third survey, we specifically consid-
ered the sequence information from four snails that were shedding cercariae. Utilizing
the BLAST results from NCBI for the sequenced snails, we identified 60 distinct snail
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isolates for comparison in constructing the phylogeny. In total, 86 sequences from differ-
ent species were used for sequence alignment using MAFFT, and the IQ-Tree program
determined K3Pu+F+I+G4 as the most fitting model for constructing a maximum likeli-
hood (ML) phylogenetic tree. In the COX1 phylogeny, Pseudosuccinea columella from South
Africa, Maryland, and New Mexico, with accession numbers MN601428, MK308112, and
MW233387, respectively, were employed as an outgroup (Figure 4).
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Based on the COX1 phylogeny, all the lymnaeid from group A were divided into
two clades: Galba cubensis and Galba humilis. Species of snails in the Galba cubensis clade
collected from California are strongly supported, as they clustered with representatives
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of this species from geographically distant regions within the United States, Canada, and
South America. Similarly, Galba humilis species collected during our study group with
strong statistical support, aligning with other snail species collected in the United States,
such as Utah, New Mexico, and North Carolina. This robust support for the two clades
suggests that these freshwater snails coexist in the same habitat along the banks of the
Colorado River in California (Figure 4).

In another phylogenetic analysis of snails, we sequenced the partial Internal Tran-
scribed Spacer 1 (ITS1) genes of four snails that were shedding cercariae. By utilizing
the BLAST results from NCBI for these sequenced snails, we identified 23 distinct snail
isolates for comparison in constructing the phylogeny. In total, 27 sequences from different
species were used for sequence alignment using Mega 11, and the IQ-Tree program deter-
mined TPM2+G4 as the most fitting model for constructing a maximum likelihood (ML)
phylogenetic tree based on the Bayesian Information Criterion (BIC). Different isolates of
Ladislavella elodes, with accession numbers MW979408, MW879713, and MW879714 were
employed as an outgroup (Figure 5).
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A phylogenetic study of H. americana was conducted using the cytochrome oxidase
subunit I (COX1) and the 28S region of the large subunit. For the phylogenetic tree based
on COX1, we sequenced three isolates of cercariae and, based on the BLAST results in
NCBI, identified 36 different isolates for the phylogenetic study. Based on the alignment of
39 sequences, the IQ-Tree program determined GTR+F+I+I+R4 as the best fitting model
for constructing a maximum likelihood (ML) phylogenetic tree, based on the Bayesian
Information Criterion (BIC) (Figure 6). The determination of the outgroup was conducted
based on the previous analyses [6].
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Heterobilharzia americana cercariae collected during our study clustered together and
were placed next to H. americana collected in Utah. Furthermore, all the strains of H. ameri-
cana were clustered together in the same clade next to Schistosomatium douthitii, suggesting
close relationships between H. americana and S. douthitti. The results also revealed that
isolates of H. americana from California are more similar to those from Utah and Texas than
to an isolate from Louisiana (Figure 6).

Sequencing of the 28S region of H. americana and BLAST analysis on GeneBank resulted
in the identification of 28 different species of Schistosomatidae. A total of 31 sequences
were aligned for the study of their interrelationship. The IQ-Tree program determined
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TVM+F+G4 as the most fitting model for constructing a maximum likelihood (ML) phyloge-
netic tree based on the Bayesian Information Criterion (BIC). The outgroup was determined
as Chimaerohemecus trondheimensis based on a previous study [41]. All the isolates of the H.
americana were placed together in the same clade next to Schistosomatium douthitii, confirm-
ing their close relationship and validating the maximum likelihood tree based on the COX1
gene (Figure 7).
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4. Discussion

In 2023, the Los Angeles County of Public Health issued an advisory confirming
11 cases of canine schistosomiasis in dogs from three Southern California counties: Los
Angeles, Orange, and Riverside, between 2018 and 2023. The parasite had not previously
been reported as endemic to Southern California. Travel history of the infected dogs
indicated that before their diagnosis, all 11 dogs had been in the Colorado River [37]. This
finding led us to conduct our survey [12,14,17,18,22,31,32,35]. Based on our study, we were
able to recover H. americana cercariae from two naturally occurring snails, Galba cubensis
and Galba humilis, coexisting together along the banks of the Colorado River. This finding
helps to support the notion that the infected dogs likely contracted H. americana from
the Colorado River. This finding is also the most westerly report of this endemic North
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American schistosome, suggesting that this parasite has a wider range than previously
speculated and is expanding its distribution beyond what was previously reported [6].

Initially, G. cubensis was exclusively considered to be the natural host of H. ameri-
cana [18,20]. Another species, G. humilis from Michigan, showed marginal susceptibility
upon experimental exposure to H. americana [12]. However, in 2021, G. humilis was dis-
covered to be naturally infected with H. americana in a human-made pond in Moab, Utah.
This discovery was recorded at Mulberry Grove Pond, which receives water from Mill
Creek, one of the tributaries of the Colorado River. This pond is approximately 280 feet
from Mill Creek, and the shore of the Colorado River is approximately 2.17 miles away
from the pond [6]. The newly identified natural host had a 77.5% positive infection rate
following experimental exposure of H. americana, suggesting increased compatibility with
G. humilis, which is widely distributed across North America [6]. Recently, another snail
species Galba schirazensis was newly reported to be a compatible host of H. americana [21].
Our study provides the first report of the coexistence of two snail species, G. cubensis and
H. humilis, in the same location during multiple samplings, both naturally infected with H.
americana. This validates a wider distribution of H. americana than previously speculated
(Figure 6). Galba is a genus of small-shelled freshwater snails that primarily originated in
the Americas and subsequently invaded Asia, Africa, and Europe [47–51]. Their capacity to
endure periods of drought and reproduce through self-fertilization enables them to spread
across extensive distances and establish new populations from individual snails [47,52].
Their high invasiveness may be one reason for the broader expansion of the parasite associ-
ated with these snails [53]. Our phylogenetic analysis, which revealed other Galba species
closely related to G. cubensis and G. humilis, combined with the identification of diverse
snail species in our survey, indicates the potential for other snail species to be potential
hosts of H. americana. Our finding of H. americana on the shore of the Colorado River in
the southernmost part of the United States leads us to hypothesize that the spread of this
parasite is throughout the Colorado River and among its tributaries. This is because the
Colorado River and its watershed area harbor a diversity of mammals that can serve as
hosts for this parasite, contributing to the maintenance of H. americana populations [54].
In-depth studies are required to investigate the extent of parasite infestation along the
banks of the Colorado River and its tributaries in the United States and Mexico to gain a
clear understanding of the parasite’s infection (Figure 8).

Our primary sampling site is located on the banks of the Colorado River in a popular
spot for recreation. The area is also abundant in vegetation, attracting various mammals
such as raccoons, bobcats, and rabbits. The identification of H. americana from this location
suggests that these naturally occurring mammals may be infected with this parasite, con-
tributing to its population maintenance. The extent of infection in the natural mammal
population in this area remains unknown. Further investigation is needed to understand
the impact of this parasite on our biodiversity, as it poses a potentially severe threat. A sur-
vey in Texas emphasized the severity of H. americana infection among raccoons, indicating
a prevalence of up to 47% in raccoons of all ages and up to 85% in older raccoons [55]. This
high prevalence was suspected to be the cause of H. americana infection in horses in the
same locality [36].

The study of H. americana biology presents a unique challenge due to limited informa-
tion about the identification and distribution of the intermediate host, coupled with scant
details about the schistosome itself. Schistosoma, a genus of blood flukes, is responsible for
causing schistosomiasis—a widespread and challenging disease affecting both humans
and animals. Approximately 200 million people are infected with schistosomes, and an
estimated 500–600 million individuals in various tropical and subtropical countries are at
risk of contracting the disease [56]. Furthermore, the penetration of cercariae from animal
schistosomes into human skin can result in irritating outbreaks of cercarial dermatitis,
commonly known as swimmer’s itch [57]. There are at least 13 identified genera and
more than 100 species of schistosomes to date. The larval stage of these schistosomes
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infects intermediate host snails and parasitizes a variety of organisms, including birds and
mammals [58,59].
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The schistosome identified in our survey, H. americana, is primarily a parasite of
domestic and wild mammals. The exact host range of this parasite is not known; further
studies are required to validate the susceptibility range. A study conducted in 1967, where
H. americana was experimentally introduced into humans, revealed that the parasite caused
vesicles at the infection site, and the rash subsided 5–8 days postinfection. In infected
rhesus monkeys, no eggs were recovered from the feces; however, young schistosomules
were retrieved from the liver 21 days after exposure, and pre-adults were observed in
the liver of a second monkey 45 days after exposure [22]. Another study revealed a
variable range of susceptibility among primates [60]. There is much more to explore
regarding the pathogenicity and host range of this parasite, highlighting the need for
further experimentation.

5. Conclusions

In our study, we successfully confirmed the presence of Heterobilharzia americana
for the first time along the shores of the Colorado River, infecting two species of snails,
Galba humilis and Galba cubensis. This significant finding marks the westernmost record
of this endemic North American schistosome in the United States. The identification of
the parasite in an area with a documented history of canine schistosomiasis emphasizes
the persistence and potential expansion of this parasitic threat. This parasite’s presence
in the area suggests a broader distribution than previously reported, highlighting the
need for a better understanding of its geographical range. Such information is critical
given the potential impact on natural biodiversity, domestic pets, and human health. The
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threat posed by H. americana, with its complex life, warrants careful consideration and
proactive measures. Future research should focus on understanding the severity of the
infestation, the dynamics of the parasite’s life cycle, and its interactions with various hosts.
An in-depth understanding of these aspects is crucial for formulating effective strategies
to manage and control the spread of H. americana. To conclude, our study sheds light on
the expanding range of H. americana. These findings underscore the need for continued
research, surveillance, and strategic planning to mitigate the potential ecological, veterinary,
and public health impact of this parasite.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pathogens13030245/s1, Figure S1: Images of Galba cubensis and Galba humilis
collected during our second survey that were used for DNA extraction and successive identification;
Tables: A detailed table delineating taxonomic information for each DNA sample extracted during
our work from snails and Heterobilharzia americana. Table S1: Datasheet containing all information on
sequenced snail DNA samples. Table S2: Data sheet with all information about Heterobilharzia americana
DNA sequences; Videos: Videos S1 and S2 freely swimming Heterobilharzia americana released from
individual snails collected during the third survey.
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