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Plant photosynthesis plays a major role in ecosystem-climate feedback. Drought-induced

declines in photosynthesis and associated forest die-off events have increased considerably

in the past decades due to climate warming. Currently, there is substantial uncertainty in

understanding ecosystem vulnerability to drought. This impedes an accurate projection of

climate change impact on ecosystem’s capability to store carbon and to provide services to

humans. Many ecosystems such as forests and shrubs tend to have deep root systems. During

droughts, they could access water beyond the groundwater table. Therefore, to understand

the drought response in an ecosystem would require information of moisture supply in the

deep soil. However, existing observations of underground water supply over large areas are

limited to a shallow soil depth (<5 cm). In this dissertation, we establish a framework that

uses terrestrial water storage (TWS) from the Gravity Recovery and Climate Experiment

(GRACE) to complement other atmospheric and shallow surface drought indictors (e.g.,

precipitation, temperature, surface soil moisture) by providing information about both root

zone soil moisture and groundwater changes. We use this framework to study the corre-

spondence between vegetation status and drought intensication as it moves from early-stage

precipitation shortage to shallow and deep soil layers. In addition to droughts, we evaluate

how ecosystems respond to shifts in long-term mean moisture supply and demand condi-

tions. Finally, we evaluate human ecological restoration impact on total terrestrial water

xvi



storage in northern China. This work demonstrates that GRACE TWS is a reliable proxy

for total plant-available water supply and advances our understanding of large-scale plant

water relations from space.
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Chapter 1

Introduction

Vegetation connects terrestrial water, carbon flux, and energy cycles, and has major economic

and ecological implications[e.g. Field et al., 2012]. Climatic factors such as temperature, ra-

diation, and water supply interact to impose complex and varying constraints on vegetation

growth in different parts of the world[Nemani et al., 2003; Seddon et al., 2016]. Character-

izing vegetation response to these climatic constraints are not only important for evaluating

and mitigating climatic change impacts on ecosystem functions and services, but also to

determine the feedback mechanisms that ecosystem response may generate on the climate

itself[e.g. Richardson et al., 2013].

During the past decades, observations reveal that global vegetation has changed signifi-

cantly in response to the warming climate and changing precipitation patterns[e.g. Myneni

et al., 1997; Allen et al., 2010; Xu et al., 2013]. However, current land surface models have

large uncertainties in capturing these changes. This is partly due to our limited knowledge

of climatic constraints on ecosystem phenology and productivity[Randerson et al., 2009;

Richardson et al., 2012]. Recent studies show that we might have underestimated the role

of water in comparison to temperature in controlling vegetation phenology and productivity
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as well as carbon turnover rate in land surface models[Carvalhais et al.; Forkel et al., 2015;

Humphrey et al., 2018]. Thus, we need to improve our understanding of climatic constraints,

especially water stress on vegetation growth on a global scale.

Observations of water availability for plant use are rare and come with large uncertainties. In-

situ measurements of soil moisture are sparse and limited to a shallow soil depth where plant

roots can penetrate deep in the soil and use groundwater and rock moisture[Fan et al., 2017;

Rempe and Dietrich, 2018]. Microwave remote sensing observations of soil moisture are also

limited to a shallow soil depth (usually top few centimeters) and perform poorly in densely

vegetated regions[e.g. Njoku and Entekhabi , 1996]. Due to the lack of direct observations,

drought indices are often used as proxies of plant water availability to assess plant-water

relations on a global scale [e.g. Vicente-Serrano et al., 2013]. Commonly used drought

indices such as the Palmer Drought Severity Index (PDSI) have various limitations, for

instance model bias in approximating terrestrial water balance and uncertainties associated

with reanalysis precipitation datasets[e.g. Keyantash and Dracup, 2002]. In addition, many

of the drought indices include temperature in their calculations (e.g., PDSI), which makes it

difficult to separate the effect of temperature anomaly from water stress on vegetation. These

drought indices are generally sensitive to only a few hydrological components such as snow,

surface water, soil moisture, or groundwater, and cannot provide a complete representation

of water deficit during droughts. Observing all the relevant hydrological components is

important for characterizing drought propagation, recovery, and their impacts on ecosystems,

especially on deep-rooted vegetation[e.g. Van Loon, 2015a]

Since 2002 the Gravity Recovery and Climate Experiment (GRACE) mission and GRACE

Follow-On mission have provided continuous regional estimates of monthly changes in ter-

restrial water storage (TWS)[Tapley et al., 2004a]. These changes include variations in both

soil moisture affecting vegetation growth and deeper groundwater influencing soil moisture

recharge and drought recovery. GRACE TWS estimates have been used to investigate re-
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gional impacts of ecological disturbances[Maness et al., 2013; Chen et al., 2013], and to study

water constraints on global CO2[Humphrey et al., 2018], as well as on vegetation growth in

Australia[Yang et al., 2014], Eurasia[A et al., 2015], and tropical forests[Guan et al., 2015].

GRACE TWS differs from other Earth surface soil moisture observations (such as those from

microwave remote sensing) in that GRACE measures changes in Earths gravity field that are

caused by the redistribution of water mass both at and underneath the Earth surface[Wahr

et al., 1998a]. As long as the water mass change signal is strong enough over a large region,

GRACE can detect it no matter at which soil depth it occurs.

This work uses monthly GRACE TWS as an indicator of plant-available water supply based

on the following two justifications:1) Using GRACE TWS as a proxy for land water supply,

we show that on a global scale, vegetation productivity increases with land water supply but

levels off in regions with ample land water supply, such as in forest-dominated ecosystems

(Chapter 2). This demonstrates that GRACE TWS captures the non-linear characteris-

tic response of vegetation growth to water availability[Huxman et al., 2004; Ponce-Campos

et al., 2013]. 2) We develop a new drought severity index solely based on GRACE data

(GRACE-DSI). This index shows favorable agreement with traditional drought monitoring

tools including the United States Drought Monitor (USDM), PDSI, standardized precipita-

tion and evapotranspiration index (SPEI), as well as remote sensing surface soil moisture

estimates, and in-situ groundwater observations (Chapters 3 and 4). This index also cap-

tures drought impacts on a multitude of vegetation characteristics, such as canopy greenness,

productivity, and phenology (Chapters 3 and 4).

The overarching goal of this work is to use GRACE TWS measurements in conjunction with

other observation-based hydrometeorological and ecological datasets to improve the process-

based understanding of water stress impact on terrestrial ecosystems to better inform model

developments. In chapter 2, we characterize how the spatial pattern of long-term mean

vegetation productivity is shaped by the mean annual land water supply and atmospheric
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moisture demand across the global climate gradient. We use these observations to evaluate

the CMIP5 Earth system model (ESM) outputs. We find large inter-model discrepancies

and all models fail to reproduce our observed relationship. We discuss the potential causes

of these discrepancies and suggest priorities in the next generation ESM developments. In

chapter 3, we develop a new drought severity index from GRACE (GRACE-DSI) and use it

to study the seasonal drought impact on canopy greenness in the Continental United States.

In chapter 4, we evaluate GRACE-DSI with multiple existing drought monitoring tools and

characterize GRACE-DSI uncertainty on a global scale. We also combine GRACE-DSI with

other satellite environmental datasets to improve the characterization of vegetation response

to the 2000s Australia Millennium Drought at shallow surface and subsurface soil layers.

In chapter 5, we separate the human ecological restoration impacts on TWS from natural

climate variability for a restoration hotspot in northern China using GRACE and multiple

other satellite observations, government reports, and eco-hydrological modeling.
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Chapter 2

Interactive effect of land water supply

and atmospheric moisture demand on

natural vegetation productivity

2.1 Abstract

The water cycle strongly controls the spatial pattern of terrestrial ecosystem productivity.

Previous studies mostly rely on sparse observations of precipitation to evaluate how water

supply affects the mean condition of plant productivity neglecting the role of atmospheric

moisture demand. Studies that separate the impacts of water supply versus atmospheric

demand on productivity are limited to hourly to interannual timescales; therefore, they do

not account for the longer-term constraint on productivity. Here, we use satellite observations

of terrestrial water storage, vapor pressure deficit, and solar-induced chlorophyll fluorescence

to identify the relative control of land water supply versus atmospheric demand on the spatial

pattern of mean vegetation productivity during 2007-2015. On a global scale, we find that
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productivity increases with rising water supply but saturates at high supply level. High

atmospheric demand suppresses productivity in warmer regions but benefits productivity

in colder regions through the relaxation of low temperature constraint. In warmer regions,

observations show that water supply exerts a stronger control on the spatial variations of

productivity and its importance increases with rising atmospheric demand. Atmospheric

demand is a weaker control than water supply alone, however its importance increases with

depleting water supply. We use these observations to evaluate the CMIP5 Earth system

models. We find large inter-model discrepancies and all models fail to reproduce our observed

relationship. Our study provides an effective means to evaluate water stress sensitivities

simulated in the upcoming CMIP6 ESMs.

2.2 Main

With rising temperatures and shifting rainfall patterns, heatwaves and droughts are increas-

ing in frequency and intensity and are exerting devastating impacts on the functioning of

terrestrial ecosystems[Reichstein et al., 2013]. For example, the 2003 European heatwave

and drought reduced gross primary productivity (GPP) over Europe by 30% and released

0.5PgC yr−1 CO2 to the atmosphere, which was equivalent to four years of net ecosystem

carbon sequestration[Ciais et al., 2005]. Nevertheless, heatwave and drought impacts on

terrestrial ecosystems are difficult to predict because ecosystem water and carbon fluxes re-

spond to atmospheric dryness (high atmospheric moisture demand) and soil dryness (low

land water supply) in complex ways[McDowell and Allen, 2015; Williams et al., 2013]. High

atmospheric moisture demand induces stomatal closure to save water, which reduces CO2

diffusion in leaves and thus CO2 supply for photosynthesis[Novick et al., 2016]. Low land

water supply not only causes stomatal closure but also impairs the biochemical capacity for

photosynthesis[Stocker et al., 2018]. Atmospheric moisture demand and land water supply
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also co-regulate the optimal stomatal behavior across biomes and influence the spatial dis-

tribution of vegetation types[Lin et al., 2015]. An accurate understanding of how these two

constraints affect vegetation is imperative for the mechanistic understanding of ecosystem

vulnerability to drought as well as for the projection of climate change impact on terrestrial

ecosystems[Rogers et al., 2016].

At shorter timescales (i.e., from hourly to year-to-year), previous studies, on forest and

grassland ecosystems in the United States, find that stomatal conductance and vegetation

productivity are more sensitive to atmospheric moisture demand than to available land water

supply[Novick et al., 2016; Konings et al., 2017; Sulman et al., 2016]. Space for time sub-

stitution approach is commonly used to study the vegetation response at longer timescales

(decadal to centennial and beyond) over which ecosystems adjust to climate change through

shifts in population density and community composition[e.g. Pickett , 1989]. Studies based

on site-level measurements focus on the impact of mean annual precipitation on vegetation

productivity[Huxman et al., 2004; Ponce-Campos et al., 2013; Sala et al., 2012]. They find

that precipitation explains a large portion of the spatial variability of vegetation productiv-

ity[Huxman et al., 2004; Ponce-Campos et al., 2013; Sala et al., 2012]. However, they do

not examine the impact of atmospheric moisture demand nor the impact of mutual interac-

tion between atmospheric moisture demand and available land water supply on the spatial

pattern of vegetation productivity. Still these effects should be considered to characterize

climate change impact on plant growth at decadal to centennial timescales.

Separating the impacts of these two constraints is difficult. Both in-situ and satellite-based

studies suffer from the lack of appropriate observations of land water supply. In-situ measure-

ments of soil moisture are sparse and limited to a shallow depth[Novick et al., 2016; Sulman

et al., 2016; Stocker et al., 2018] whereas plant roots can penetrate deep in the soil and

use groundwater and rock moisture[Fan et al., 2017; Rempe and Dietrich, 2018]. Satellite-

based studies generally use precipitation as a proxy for available water supply[Konings et al.,
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2017; Giardina et al., 2018]. However, precipitation can be significantly different from avail-

able land water supply, especially in regions with significant drainage and soil evapora-

tion[Seneviratne et al., 2010]. In addition, the use of precipitation or shallow soil moisture

in conjunction with atmospheric moisture demand often leads to co-linearity issue. Precip-

itation covaries with atmospheric humidity and thus correlates with atmospheric moisture

demand[Seneviratne et al., 2010; Giardina et al., 2018]. Shallow soil moisture is corre-

lated with atmospheric demand at timescales of weeks to years[Novick et al., 2016]. Thus,

in-situ observational studies are restricted to separating their impacts at hourly or daily

timescales[Novick et al., 2016; Sulman et al., 2016; Stocker et al., 2018].

Terrestrial water storage (TWS) changes observed from the Gravity Recovery and Climate

Experiment (GRACE) satellites have been successfully used as a proxy for vegetation avail-

able water supply to investigate water constraints on land photosynthesis and CO2 assimi-

lation[Guan et al., 2015; Humphrey et al., 2018]. GRACE observations track water storage

variations in the entire soil column, and effectively capture changes in land water supply

at all timescales[?Zhao et al., 2017a]. Hence these data provide unique water supply infor-

mation that is decoupled from the transient atmospheric moisture conditions. Here we use

TWS from GRACE JPL mascon solutions[Watkins et al., 2015] as a proxy for plant avail-

able land water supply, vapor pressure deficit (VPD) from the Atmospheric Infrared Sounder

(AIRS)[Aumann and Pagano, 1994] as an indicator of atmospheric moisture demand, and

solar-induced fluorescence (SIF) from GOME-2[Joiner et al., 2013] as a proxy for vegetation

productivity. We use these data to characterize the spatial pattern of vegetation productiv-

ity averaged during 2007-2015 as a function of available land water supply and atmospheric

moisture demand over the global natural vegetation domain. We use these observations to

evaluate water stress sensitivities simulated in the Coupled Model Intercomparison Project

Phase 5 (CMIP5) ESMs and we discuss the implications of these results for the projection

of climate change impact on terrestrial ecosystem productivity.
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2.3 Spatial dependence of vegetation productivity on

land water supply and atmospheric moisture de-

mand

We investigate how water supply and atmospheric demand shape the spatial distribution

of mean vegetation productivity during 2007-2015. This 9-year period is the longest pe-

riod for which all the satellite data sets are available at high quality. We use the annual

maximum SIF (SIFmax) as a proxy for the annual maximum gross primary productivity

(GPPmax). GPPmax represents the seasonal maximum capacity of CO2 uptake and re-

flects plant physiological constraint on annual productivity across biomes[Xia et al., 2015;

Zhou et al., 2016]. SIF has been shown to covary with GPP at large spatial and temporal

scales[Guanter et al., 2014; Sun et al., 2017]. Multi-year average SIFmax is linearly cor-

related with multi-year average GPPmax derived from the FLUXCOM global carbon flux

data set[Tramontana et al., 2016] with R2 = 0.80 (Figure 2.1). We use the annual GRACE

TWS change (∆TWS) as a proxy for the available land water supply. ∆TWS quantifies

the amount of water storage that is released from land annually. Thus, ∆TWS represents

the maximum available land water supply for plant use[Guan et al., 2015; Gao et al., 2014].

We use annual maximum VPD (V PDmax) as a proxy of the highest atmospheric demand

constraint on vegetation growth during the growing season[Giardina et al., 2018]. Figure

2.2 provides an conceptual description of the analyzed metrics. GRACE data consist of a

set of 3° × 3° mascon blocks[Watkins et al., 2015]. Although observed at a coarser reso-

lution than the other datasets we use, the GRACE TWS estimates can effectively capture

the water supply pattern across the global climate gradient[Humphrey et al., 2018]. For

consistency we average all datasets to the GRACE spatial footprint (see Methods). As we

are interested in characterizing the spatial patterns of and linkages between the mean con-

ditions during the analyzed period, we calculate the 9-year average of SIFmax (SIFmax),
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VPDmax (V PDmax), and annual water storage change (∆TWS) (Figure 2.3).

For the natural vegetated mascons over the globle (see Methods), we find that SIFmax

increases with ∆TWS, but this effect saturates for higher ∆TWS values (Figure 2.4a).

This is consistent with the fact that in wet regions water availability is not anymore a

limitation for vegetation growth, and other factors such as nutrients and light might be

constraining SIFmax[Huxman et al., 2004]. The relationship between SIFmax and ∆TWS

is consistent with the non-linear productivity-precipitation relationship obtained from site-

level observations which show that productivity increases with mean annual precipitation but

saturates at sites with higher mean annual precipitation[Huxman et al., 2004; Ponce-Campos

et al., 2013].

On a global scale, we observe that SIFmax increases with V PDmax when V PDmax is

lower than 1.67kPa while SIFmax decreases with V PDmax when V PDmax is higher than

1.67kPa (Figure 2.4b and see Methods). We find that this V PDmax threshold corresponds

to a mean annual maximum temperature (Tmax) of 24°. We define Tmax=24°as the temper-

ature threshold that divides the analyzed domain into two groups with monotonic SIF-VPD

relationships (See Methods and Figure 2.4c). VPD suppresses growth in warmer mascons

(Tmax >24°) but benefits productivity in colder mascons (Tmax <24°) (Figure 2.4b-c).

To analyze the impact of the selection of the Tmax threshold, we vary the threshold from

22°to 26°and find that the selection of this threshold within this range does not impact our

conclusions (see Methods). The colder mascons are generally at high latitudes or in high

mountain regions (Figure 2.4c) where the ecosystem productivity is mostly temperature and

radiation constrained[Seddon et al., 2016; Nemani et al., 2003]. The warmer mascons are

located in arid, semi-arid, temperate and tropical regions where water supply affects plant

growth[Guan et al., 2015; Seddon et al., 2016; Nemani et al., 2003]. In the colder mascons,

SIFmax and ∆TWS are small with low spatial variability and show no clear correspon-

dence (Figure 2.4d). In contrast, in the warmer regions, SIFmax and ∆TWS have a much
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larger variability (Figure 2.4e) and show a relationship similar to that obtained using all the

natural vegetated mascons in the world (Figure 2.4a).

To investigate if ∆TWS or V PDmax is the dominant driver that determines the spatial

distribution of productivity, we regress SIFmax against ∆TWS and V PDmax separately.

We interpret the regression slopes as the water supply and atmospheric demand sensitivity,

respectively. We focus our analysis in the warmer regions, because in the colder regions

atmospheric demand is not a constraint on long-term plant growth (Figure 2.4b), and here

we do not identify a clear relationship between water supply and plant productivity (Figure

2.4d). Before the regression analysis, we log-transform ∆TWS to linearize the productivity

versus water supply relationship (Figure 2.4e). To obtain unitless slopes, which allows direct

comparison of the sensitivities, we calculate the z-scores of all variables by subtracting the

mean and dividing by the standard deviation. The z-score normalization also converts both

explanatory variables to a unit range of variance such that the variable with a larger mag-

nitude of regression slope will be the dominant driver of SIF spatial variation. ∆TWS has

negligible collinearity with V PDmax (Figures 2.5a-b), hence these two proxies can be used

to separate the impacts of water supply and atmospheric demand on photosynthesis. Note

that while precipitation is frequently used as a proxy for available water supply together

with VPD to separate the water supply and atmospheric demand control on vegetation

growth[Konings et al., 2017; Giardina et al., 2018], we find that the long-term mean annual

precipitation is significantly correlated with VPDmax in warm mascons (Figures 2.5c-d).

This indicates that precipitation is not suitable to separate the relative control of land water

supply from atmospheric demand on the spatial pattern of mean vegetation productivity.

The regression slope between SIFmax and TWS, i.e. the water supply sensitivity, is 0.58±0.07

(hereafter all errors indicate 95% confidence level), and the atmospheric demand sensitiv-

ity is -0.33±0.07. Hence land water supply is the dominant driver of the multi-year mean

vegetation productivity across the climate gradient in the warm regions. Previous studies
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find that atmospheric demand is the dominant driver of daily to inter-annual variations of

vegetation growth and leaf level carbon/water fluxes both at the site scale and for the grass-

land biome in the mid latitudes[Novick et al., 2016; Sulman et al., 2016; Konings et al.,

2017]. Temporal studies reflect transient vegetation response to short-term perturbations in

water supply and atmospheric demand[Sala et al., 2012; Lauenroth and Sala, 1992]. Spatial

studies reflect long-term response of the ecosystem functions and structures to the mean wa-

ter supply and atmospheric demand conditions[Sala et al., 2012; Lauenroth and Sala, 1992;

Pickett , 1989]. For instance, although stomatal regulation occurs quickly upon exposure to

high VPD, for some species, acclimation of stomata to long-term exposure to high VPD can

counteract the short-term responses and sustain or even increase plant water and carbon

fluxes[Marchin et al., 2016; Grossiord et al., 2017]. Short-timescale observational studies

are likely neglecting these acclimation processes occurring at longer timescales. In addition

they do not account for the deeper soil moisture impact on vegetation growth as deeper soil

moisture changes occur at longer timescales than shallow soil moisture[Zhao et al., 2017a;

Wang et al., 2007].

2.4 Interactive effect of water supply and atmospheric

demand

Previous studies suggest that the daily variability of certain tree species growth is governed

by an interaction between soil water deficit and excessive atmospheric demand, i.e. the

sensitivity of growth to one of the stressor differs depending on the level of the other stres-

sor[Perez-Martin et al., 2009; Sulman et al., 2016]. We investigate whether this interaction

exists at longer time scales and across large spatial climate gradients. To do so, we first di-

vide the warmer mascons into three V PDmax quantiles, denoted as low, medium, and high

demand groups. Within each quantiles, we regress SIFmax against ∆TWS. We interpret
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the resulting slopes as the vegetation sensitivity to water supply for different stress levels of

atmospheric demand. We use the same approach to estimate the vegetation sensitivity to

atmospheric demand for different water supply levels.

We find that SIFmax decreases as ∆TWS decreases but the regression slope, i.e. the water

supply sensitivity, changes with atmospheric demand (Figure 2.6a). Water supply sensitivity

is significantly (p<0.05) larger in the high atmospheric demand group than in the low demand

group (Figure 2.6b). We attribute this change in sensitivity to the different plant physiology

and traits across climate gradients. For instance, we analyze a global plant rooting depth

dataset upscaled from in-situ measurements[Schenk et al., 2009], and we find that plants

grown under higher atmospheric demand tend to grow deeper roots (Figure 2.7), which may

explain their larger sensitivity to soil water supply. These results imply that the expected

increase in VPD under a warming climate can make natural plants more dependent on

water supply for example by changing plant functional and structural traits such as rooting

depth and shifting species composition[McDowell and Allen, 2015; Fan et al., 2017]. We

find that SIFmax decreases as V PDmax increases (Figure 2.6c). The plant sensitivity to

V PDmax is significantly (p<0.05) larger in the low water supply group than in the high

supply group where the sensitivity is not significant (p>0.05) (Figure 2.6d). This indicates

that higher water supply may alleviate and potentially negate the expected productivity

decline associated with the increase of atmospheric moisture stress.

These results document the interactive effects of long-term mean water supply and atmo-

spheric demand on the spatial variability of vegetation productivity. We characterize the

vegetation sensitivities to the climate gradient across natural ecosystems, spanning a larger

spatio-temporal range than in previous in-situ short-timescale studies[Sulman et al., 2016]

and manipulated experiments[Perez-Martin et al., 2009]. Current projections of climate

change impact on vegetation productivity suggest that VPD will play a dominant role in

limiting future carbon fluxes[Williams et al., 2013; Novick et al., 2016; Restaino et al., 2016;
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McDowell and Allen, 2015; McDowell et al., 2016]. However, our results indicate that a

potential rise in future VPD will enhance vegetation sensitivity to available land water sup-

ply, emphasizing the increasing importance of land water supply constraint on carbon fluxes

under a warming climate. In addition, we find that vegetation sensitivity to VPD variations

depends on the available land water supply. Hence, given the large uncertainty in predict-

ing future terrestrial water supply patterns[Lemordant et al., 2018; Berg et al., 2017], it is

challenging to accurately project the VPD impact on productivity.

2.5 Assessment of Earth system models

We use our results to evaluate vegetation sensitivity to water stress simulated in the CMIP5

ESMs (Table 2.1). In the previous section we separately evaluate the vegetation sensitivities

to water supply and atmospheric demand as a function of different ranges of atmospheric

demand and water supply, respectively (Figure 2.6). We now simultaneously estimate these

sensitivities using a linear regression model that includes a multiplicative interaction term:

y ∼ β0 + β1x1 + β2x2 + β3x1x2 (eq.1), where x1, x2 and y are available land water supply,

atmospheric moisture demand and vegetation productivity respectively. The interactive term

x1x2 accounts for the water supply sensitivity dependence on atmospheric demand, and vice

versa. We use this regression model to compare the sensitivities from the observational

record and the CMIP5 ESMs. For the models, we use GPP in lieu of SIF. As CMIP5 ESMs

do not have an explicit TWS field, we calculate TWS from model hydrological fluxes (See

Methods). In the regression analysis we use z-scores for all variables. Figure 2.8a shows the

water supply sensitivity (β1 + β3x2) as a function of atmospheric demand and Figure 2.8b

the atmospheric demand sensitivity (β2 + β3x1) as a function of water supply.

All models fail to reproduce the observed sensitivity and we find large differences between the

model sensitivities (Figure 2.8). These results imply major model uncertainties in character-
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izing the plant sensitivity to land water supply and atmospheric demand. In addition, most

of the models underestimate the sensitivity to water supply under high atmospheric moisture

demand and overestimate the sensitivity to water supply under low atmospheric moisture

demand (Figure 2.8a). They also underestimate the atmospheric demand sensitivity in low

water supply conditions and overestimate the atmospheric demand sensitivity in high wa-

ter supply conditions (Figure 2.8b). Five of the nine ESMs show much larger collinearity

between land water supply and atmospheric demand than the observations (Supplementary

Table 2). This suggests that these CMIP5 ESMs overestimate the spatial coupling of long-

term mean conditions of land water supply and atmospheric demand. These results indicate

that most CMIP5 ESMs do not correctly represent the interactions between photosynthesis

response, land water supply and atmospheric demand.

2.6 Conclusion

This work expands on prior site-level studies by using state-of-the-art satellite observations

to separate the impact of land water supply vs. atmospheric moisture demand on the spatial

distribution of the natural vegetation productivity. Our spatial model includes changes in

water supply, atmospheric demand, vegetation structure, density, community composition,

and biogeochemistry along large climate gradients. We show that at the ecosystem scale,

during 2007-2015, vegetation productivity is more sensitive to available land water supply

than to atmospheric moisture demand in warmer regions (mean annual maximum tempera-

ture higher than 24°C). We find that mean available land water supply and mean atmospheric

demand conditions interact to shape the spatial pattern of vegetation productivity. We show

that most of the CMIP5 ESMs do not capture this interaction and underestimate the water

supply sensitivity under high atmospheric demand conditions. Given the fact that CMIP5

ESMs project a universal increase in VPD by the year 2100 under the Representative Con-
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centration Pathways 8.5 experiment[Lemordant et al., 2018], our results imply that CMIP5

ESMs can underestimate the land water supply impact on future ecosystem productivity.

We present a new methodology to evaluate Earth system models on a global scale that can

be used to assess the upcoming new generation of CMIP6 ESMs that include more realistic

physical processes to better simulate vegetation water stress sensitivities such as an explicit

representation of plant hydraulic processes linking water supply and atmospheric demand

variations[Bonan et al., 2014; Sperry and Love, 2015; Xu et al., 2016].

2.7 Method

2.7.1 Satellite Data Sets

We use satellite data for the period 2007-2015 which is the longest period for which all satel-

lite data are available at high quality. We use monthly GRACE terrestrial water storage

(TWS) anomalies from the Jet Propulsion Laboratory (JPL) RL05 version 2 Mascon solu-

tions[Watkins et al., 2015]. Each mascon solves for the monthly gravity field averaged over

an equal-area 3° × 3° mass concentration block (mascon). Every mascon is uncorrelated

with neighboring mascons. Missing month in the GRACE solutions are interpolated from

previous and following months’ values using a quadratic spline. We use the amplitude of

the annual TWS change (∆TWS=TWSmax-TWSmin, Figure 2.2) as a proxy for annual

available water supply. The mean water supply condition, ∆TWS, is calculated as the av-

erage of the ∆TWS over the study period. By propagating the uncertainty of the GRACE

TWS observations[Watkins et al., 2015], we find an average relative error of about 5% for

∆TWS(Figure 2.9).

We use level-3 SIF retrievals on a 0.5° × 0.5° grid from the GOME-2 optical spectrometer

on board the MetOP-A (version 26)[Joiner et al., 2013]. We use SIFmax as a proxy for
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vegetation productivity. Compared to the annual sum of SIF values, SIFmax retrieval has

the largest signal-to-noise ratio and is less likely contaminated by clouds and aerosols. We

use 1° × 1° gridded level-3 monthly near-surface relative humidity (RH, unit: %) and near-

surface air temperature (T, unit: Celsius) from the ascending (daytime) orbit of the AIRS

platform[Aumann and Pagano, 1994] to compute annual maximum vapor pressure deficit

(VPDmax, unit: kPa) and annual maximum air temperature (Tmax). We calculate monthly

VPD using the Clausius-Clapeyron equation: V PD = (1−RH)× 0.61078× e
17.27×T
T+237.3 (eq. 2).

We use multi-year mean VPDmax (V PDmax) rather than the growing season mean VPD or

annual mean VPD because V PDmax yields the largest explanatory power on SIFmax. T,

VPD and SIF data sets are spatially averaged to match the GRACE resolution, i.e. 3° × 3°

mascon. This spatial averaging procedure reduces the noise in AIRS and GOME-2 data by

a factor of 3 and 6, respectively. Multi-year average in the calculation of Tmax, V PDmax

and SIFmax further minimizes the impact of satellite measurement error on our analysis.

We calculate the areal extent of each land cover type within every 3° × 3° mascon using

the MODIS International Geosphere-Biosphere Programme (IGBP) land cover classification

product (MCD12Q1)[Friedl et al., 2010]. Because anthropogenic interventions such as culti-

var improvements and irrigation can have a significant impact on photosynthesis and water

resources in agricultural regions[Haddeland et al., 2014; Lobell et al., 2014], we only consider

589 mascons (Figure 2.4c) with over 75% area extent covered by natural vegetation types

(i.e. land cover types excluding water bodies, barren or sparsely vegetation grounds, crop-

lands, urban and built-up lands, cropland/natural vegetation mosaics and permanent snow

and ice).
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2.7.2 V PDmax and Tmax threshold

We first evaluate the V PDmax threshold that divides the overall SIF-VPD relationship

into two monotonic ones (Figure 2.4b). To do so, we calculate the regression of SIFmax

against V PDmax using a 2-segment piecewise linear model, and we define the turning point

of the piecewise model as the V PDmax threshold. We then evaluate the correspondence

between V PDmax and Tmax across all the mascons, which approximates an exponential

form (Figure 2.10); we define the Tmax threshold as the mean annual maximum temperature

corresponding to the V PDmax threshold. We find a V PDmax threshold of 1.67 ± 0.06kPa

(mean ± 1 standard error) from the piecewise linear regression, which corresponds to a Tmax

threshold of 24° C (Figure 2.10). We also test a range of Tmax thresholds from 22° C to

26° C and find that the choice of the threshold within this range does not affect our results

(Figure 2.11).

2.7.3 Ancillary Data Sets

We use global rooting depth estimates from the International Satellite Land Surface Cli-

matology Project Initiative (ISLSCP) II Data Collection[Schenk et al., 2009] to explore the

potential association between rooting depth and vegetation sensitivity to water supply. The

ISLSCP rooting depth estimates are up-scaled from a global database of over 500 point mea-

surements of vertical root profiles using global gridded datasets of land cover, climate, and

soil characteristics. We use the depth that contains 95% of all roots at 1° grid resolution.

We aggregate the dataset to GRACE 3° × 3° mascon resolution. We split warmer mas-

cons (Tmax >24°) into three quantiles, corresponding to low, medium, and high V PDmax

groups. We calculate the average rooting depth within each group in Figure 2.7.

We use mean annual precipitation from the ERA-Interim[Dee et al., 2011] to illustrate the

strong co-linearity between mean annual precipitation and V PDmax (Figure 2.5). Mean an-

18



nual precipitation is averaged over the same period as V PDmax and aggregated to GRACE

footprint prior to analysis. Because of the co-linearity, we can not use mean annual precip-

itation and V PDmax to disentangle the relative impacts of water supply and atmospheric

demand on plant growth.

2.7.4 SIFmax-GPPmax relationship

We use GPP estimates from the FLUXCOM global carbon flux data setTramontana et al.

[2016] to evaluate the relationship the spatial patterns of SIFmax and GPPmax on a global

scale. The FLUXCOM GPP is estimated based on three machine learning algorithms. These

algorithms are then forced with gridded input driver data to estimate carbon fluxes at a 0.5°

grid and daily time step. We use the mean GPP from the three algorithms and calculate the

GPPmax during 2007-2013, a common period with the GOME-2 SIF retrievals. We find

that SIFmax shows a strong linearity with GPPmax across space (2.1)

2.7.5 CMIP5 model simulations

We use monthly ESM Representative Concentration Pathway 8.5 (RCP8.5) outputs from an

individual ensemble member (r1i1p1) of the CMIP5 collection. We use GPP in lieu of GOME-

2 SIF. Because CMIP5 models do not output an explicit TWS field, we calculate TWS by

accumulating model fluxes of precipitation, evapotranspiration and totoal runoff[Rodell et al.,

2004]. We calculate VPD from model outputs of near-surface relative humidity and near

surface air temperautre using eq.2. We only use models that output all analyzed variables

(Table 2.1). For consistency we aggregate model outputs to GRACE spatial footprint before

analysis. We average GPPmax, ∆TWS, and Tmax over the same period as the observational

record. We select warm mascons (modelled Tmax >24°C) and use the same regression model

(eq.1) to quantify the water stress sensitivitiy simulated in ESMs. The regression results
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are summarized in Supplementary Table 2. We also calculate the modelled water stress

sensitivity using the warm mascons as defined from observations (aqua colored mascons in

Figure 2.4c) and we find this does not change our conclusions drawn from Figure 2.8.

20



Table 2.1: Summary of analyzed CMIP5 models

Modeling Center (or group) Institute ID Model Name
Beijing Climate Center, China
Meteorological Administration

BCC BCC-CSM1.1

College of Global Change and
Earth System Science, Beijing
Normal University

GCESS BNU-ESM

Canadian Centre for Climate
Modelling and Analysis

CCCMA CanESM2

National Center for Atmospheric
Research

NCAR CCSM4

NOAA Geophysical Fluid Dy-
namics Laboratory

NOAA GFDL GFDL-ESM2M

NASA Goddard Institute for
Space Studies

NASA GISS GISS-E2-H

Institute for Numerical Mathe-
matics

INM INM-CM4

Institut Pierre-Simon Laplace IPSL
IPSL-CM5A-LR
IPSL-CM5A-MR
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Table 2.2: Eq.1 Regression results of observations and CMIP5 RCP8.5 model outputs. All
errors represents the 95% confidence level.

β1 β2 β3
Regression
Model R2

Collinearity
between
land avail-
able water
supply
and at-
mospheric
demand,
R2

Observed 0.60±0.07 -0.29±0.07 0.22±0.08 0.59 0.08
BCC-CSM1.1 0.27±0.09 -0.55±0.09 -0.07±0.10 0.40 0.001
BNU-ESM 0.75±0.06 -0.34±0.05 -0.11±0.05 0.80 0.13
CanESM2 0.56±0.09 -0.06±0.09 0.07±0.09 0.35 0.14
CCSM4 0.59±0.06 -0.35±0.06 -0.19±0.05 0.85 0.37
GFDL-
ESM2M

0.82±0.07 -0.05±0.07 -0.06±0.07 0.65 0.001

GISS-E2-H 0.89±0.07 -0.03±0.07 -0.07±0.06 0.81 0.44
INM-CM4 0.40±0.08 -0.58±0.08 -0.04±0.08 0.76 0.34
IPSL-CM5A-
LR

1.01±0.06 0.29±0.06 0.15±0.04 0.83 0.41

IPSL-CM5A-
MR

1.03±0.06 0.30±0.06 0.14±0.04 0.82 0.42
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Figure 2.1: SIFmax- GPPmax relationship. (a) is multi-year average annual maximum
SIF from GOME-2. (b) is multi-year average annual maximum GPP from the FLUXCOM.
(c) is joint probability density function between and for global 0.5 grid cells with over 75%
area extent covered by natural vegetation.
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Figure 2.2: Time series example at a location in western US centered at (-115.28W, 42N) for
2012. GRACE does not measure absolute water storage. GRACE data are anomalies relative
to the 2004.0-2009.999 time-mean baseline. Rather, we use ∆TWS, i.e., TWSmax-TWSmin,
to represent the maximum land water supply for plants. Large ∆TWS likely suggest heavy
consumption of water supply from storage such as from deeper soil or groundwater storages.
Similar concept has been used by Gao et al. [2014]; Guan et al. [2015].

24



Figure 2.3: SIFmax mW/m2/sr/nm (a), ∆TWS cm water equivalent (b), and V PDmax
kPa (c) during 2007-2015.
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Figure 2.4: Global distribution of vegetation productivity in relation to land water supply
and atmospheric moisture demand. a, scatterplot of ∆TWS and SIFmax. All natural
vegetation dominant GRACE mascons are grouped into 40 equal-sized bins based on ∆TWS.
Circle and error bar denote the mean and standard deviation of SIFmax within each bin,
respectively. Color represents the mean Tmax within each bin. Dashed line is a LOWESS
smoothing curve[Cleveland , 1979]. b, same as a but replacing ∆TWS with V PDmax. c,
global distributions of cold mascons (magenta) and warm mascons (aqua) based on a Tmax
threshold of 24°C. The base map is land cover map from the MODIS MCD12Q1 product.
d-e, scatterplots of ∆TWS and SIFmax for cold and warm mascons, respectively. Cold
and warm mascons are grouped into 20 equal-sized bins.
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Figure 2.5: Co-linearity analysis. a and b are the scatterplots between log(∆TWS) and
SIFmax for warm and cold mascons, respectively, based on a Tmax threshold of 24°C.
c and d are the scatterplots between mean annual precipitation (MAP) and SIFmax for
warm and cold mascons, respectively, based on a threshold of 24°C. MAP is derived from
the ERA-Interim.
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Figure 2.6: Interactive effect of water supply and atmospheric demand on vegetation pro-
ductivity. a, scatterplot of z-scores of log(∆TWS) and SIFmax for three warm mascon
groups characterized by V PDmax quantiles, denoted as low (red), medium (green) and
high (blue) demand groups. b, barplot of the regression slope for each group in a, i.e., water
supply sensitivity at different stress levels of atmospheric demand. c, scatterplot of z-scores
of V PDmax and SIFmax for three warm mascon groups characterized by log(∆TWS)
quantiles, denoted as low (red), medium (green) and high (blue) supply groups. d, barplot
of the regression slope for each group in c, i.e., atmospheric demand sensitivity at different
stress levels of land water supply. Solid lines in a and c represent linear regression models
with 95% confidence intervals (shaded colors). Error bars in b and d represent the 95%
confidence levels of the sensitivities.
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Figure 2.7: Rooting depth in relation to atmospheric moisture demand. We split global
warm mascons into three quantiles, corresponding to low, medium, and high V PDmax
groups. Each gray column represents the average depth that contain 95% of all roots and
the corresponding error bar represents one standard deviation of the rooting depths within
each group.
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Figure 2.8: Comparison of vegetation sensitivity to water stress between observational and
Earth system model results. a, sensitivity to water supply conditioned on various atmo-
spheric demand levels, i.e., β1 + β3 ∗ Z(V PDmax) from eq.1. b, sensitivity to atmospheric
demand conditioned on various water supply levels, i.e., β2 +β3 ∗Z(log(∆TWS)) from eq.1.
Shaded color represents the 95% confidence level of the estimated sensitivity.
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Figure 2.9: Error of ∆TWS. Each dot represents ∆TWS and its error at each mascon.
We estimate the error of ∆TWS by Monte Carlo simulation. At each mascon, we generate
an ensemble of 1000 normally distributed zero mean random noise time series ( σ=GRACE
error provided by JPL). We compute the ∆TWS for each of those 1000 simulations and set
the one standard deviation of resulting simulations as the error of ∆TWS.

31



Figure 2.10: The relationship between V PDmax and Tmax. All analyzed mascons are
binned based on Tmax. Circle and error bar denote the mean and standard deviation
of V PDmax within each bin, respectively. The horizontal dashed red lines indicate the
V PDmax threshold (± 1 error) that divides the global SIF-VPD relationship (Figure 2.4a
in the main text) into two monotonic ones.
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Figure 2.11: Temperature threshold sensitivity test. (a) is the distribution of cold mascons
(magenta) and hot mascons (aqua) based on a Tmax threshold of 22°C. (b) is the same
as (a) but for a Tmax threshold of 26°C. (c-d) is the relationship between SIFmax and
∆TWS for cold mascons in (a-b), respectively. (e-f) is the relationship between SIFmax
and ∆TWS for hot mascons in (a-b), respectively. Dashed lines are LOWESS smoothing
curves. (g) is the regression coefficient of eq. 1 in the main text as a function of threshold
ranging from 22°C to 26°C.
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Chapter 3

Satellite observations of regional

drought severity in the continental

United States using GRACE-based

terrestrial water storage changes

As appears in:

Zhao, M., G. A, I. Velicogna, and J.S. Kimball, “Satellite Observations of Re-

gional Drought Severity in the Continental United States Using GRACE-Based

Terrestrial Water Storage Changes,” Journal of Climate, 30, 6297-6308, 2017.

Available under a Creative Commons Attribution 3.0 license
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3.1 Abstract

Drought monitoring is important for characterizing the timing, extent, and severity of

drought for effective mitigation and water management. Presented here is a novel satellite-

based drought severity index (DSI) for regional monitoring derived using time-variable terres-

trial water storage changes from the Gravity Recovery and Climate Experiment (GRACE).

The GRACE-DSI enables drought feature comparison across regions and periods, it is unaf-

fected by uncertainties associated with soil water balance models and meteorological forcing

data, and it incorporates water storage changes from human impacts including groundwa-

ter withdrawals that modify land surface processes and impact water management. Here,

the underlying algorithm is described, and the GRACE-DSI performance in the continental

United States during 2002–14 is evaluated. It is found that the GRACE-DSI captures doc-

umented regional drought events and shows favorable spatial and temporal agreement with

the monthly Palmer Drought Severity Index (PDSI) and the U.S. Drought Monitor (USDM).

The GRACE-DSI also correlates well with a satellite-based normalized difference vegetation

index (NDVI), indicating sensitivity to plant-available water supply changes affecting vege-

tation growth. Because the GRACE-DSI captures changes in total terrestrial water storage,

it complements more traditional drought monitoring tools such as the PDSI by providing in-

formation about deeper water storage changes that affect soil moisture recharge and drought

recovery. The GRACE-DSI shows potential for globally consistent and effective drought

monitoring, particularly where sparse ground observations (especially precipitation) limit

the use of traditional drought monitoring methods.
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3.2 Introduction

Drought indices are convenient ways to characterize drought because they compress the com-

plexity of the drought phenomenon into a single number. Commonly used indices are gener-

ally sensitive to only a few hydrological components and cannot provide a complete represen-

tation of the water deficit during drought. For instance, the Palmer Drought Severity Index

(PDSI) is sensitive to atmospheric moisture demand and near-surface soil moisture content,

and has been frequently used as a measure of meteorological and soil moisture drought[Mishra

and Singh, 2010; Trenberth et al., 2014]. Observing all relevant hydrological variables (i.e.,

snow, surface water, soil moisture, and groundwater) is important for fully characterizing

drought propagation and recovery, and associated ecosystem impacts[Van Loon, 2015b].

Previous studies have used Gravity Recovery and Climate Experiment (GRACE)-derived

terrestrial water storage (TWS) estimates to examine regional-scale droughts[Yirdaw et al.,

2008; Chen et al., 2009; Leblanc et al., 2009; Long et al., 2013; Castle et al., 2014; Cao

et al., 2015] and to quantify drought-induced water storage deficits[Thomas et al., 2014].

The drought index for Texas in McCandless [2014] combines TWS, precipitation, and the

satellite-based normalized vegetation difference index (NDVI) and it is sensitive to vegeta-

tion drought response over semiarid areas. These methods are not suitable for comparing

drought features for different locations and time periods as they do not account for the

spatiotemporal variability of local hydroclimate. For example, the same amount of water

deficit may have a larger impact on arid and humid biomes than on semiarid and semihumid

biomes[Vicente-Serrano et al., 2013]. The same amount of water deficit may also induce

more severe damage to vegetation during reproductive growth stages than during green-up

and senescence[Ji and Peters , 2003]. Houborg et al. [2012] accounted for these differences by

deriving region-specific cumulative distribution of dry and wet conditions from GRACE data

assimilation system, but this approach may not be readily useable outside North America.

To overcome these limitations, we develop a new standardized drought severity index (DSI)
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based solely on GRACE TWS estimates, herein referred to as GRACE-DSI. Here, we in-

troduce the GRACE-DSI algorithm, evaluate how it captures the space and time evolution

of documented regional drought events during 2002–14, compare it with the PDSI and the

U.S. Drought Monitor (USDM), and demonstrate its synergistic use with traditional drought

monitoring tools across the continental United States (CONUS). The CONUS domain was

selected owing to a dense surface station network, reliable PDSI, and diverse climate and

vegetation conditions. We also compare the GRACE-DSI against the NDVI from the Mod-

erate Resolution Imaging Spectroradiometer (MODIS) used as a proxy for vegetation growth

changes. Finally, we discuss the merits of combining the GRACE-DSI with other datasets

for drought characterization and potential applications for monitoring water supply and

ecosystem interactions in other areas.

3.3 Data and Methodology

3.3.1 Data

We use release-05 GRACE gravity solutions in the form of spherical harmonic coefficients

truncated to degree 60, from the Center for Space Research at the University of Texas, for

the period April 20022014. The GRACE-derived C20 coefficients are replaced with satellite

laser ranging estimates[Chen et al., 2013]. We include degree-1 coefficients calculated as in

Swenson et al. [2008]. We correct the glacial isostatic adjustment signal using A et al. [2013].

To reduce correlated errors, we filter each monthly field following Swenson and Wahr [2006].

We smooth the Stokes coefficients using a 350-km radius Gaussian averaging function [Wahr

et al., 1998a] and calculate regular 1° × 1° latitudemonthly TWS mass anomalies relative to

the 2002–14 mean.

We use the monthly self-calibrated PDSI from Dai [2011] on a global 2.5° grid. The PDSI
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uses a two-layer bucket model to assess soil water balance by accounting for water supply and

demand[Palmer , 1965]. Dai et al. [2004] found good correlations of PDSI with soil moisture

observations over the United States, the former Soviet Union, Mongolia, and China, and

with streamflow over major global river basins.

We use remotely sensed monthly soil moisture (SM) data from the European Space Agency

Climate Change Initiative[Liu et al., 2011, 2012]. The SM record employs passive and active

microwave satellite data with improved spatial and temporal coverage and resolution.

We use the cloud-free MODIS monthly Climate Model Grid 0.05° NDVI product (MOD13C2;

Huete et al. [2002]) as a measure of vegetation activity. We only use data from the growing

season (April–October) to avoid snow-related NDVI noise[Ji and Peters , 2003; Karnieli et al.,

2010; Mu et al., 2013; A et al., 2015].

We use the USDM weekly shapefiles distributed by the National Drought Mitigation Center

(http://droughtmonitor.unl.edu). The USDM integrates information from many existing

drought indicators, including the PDSI, along with local reports from state climatologists

and observers across the country. The shapefiles are converted to monthly raster composites

in a 1° grid. For computational purposes, the USDM drought classes are mapped to numerical

values with no drought assigned a value of 0, D0 = 1 (abnormally dry), D1 = 2 (moderate

drought), D2 = 3 (severe drought), D3 = 4 (extreme drought), and D4 = 5 (exceptional

drought).

3.3.2 GRACE-DSI

For each 1° grid cell, we calculate the GRACE-DSI as the standardized anomalies of GRACE

TWS for month j and year i, as GRACE-DSIi,j=(TWSi,j-〈TWSj〉)/σj, with i ranging from

2002 to 2014, where 〈TWSj〉 and σj are the mean and standard deviation of TWS anomaly
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for month j, respectively. The global GRACE-DSI follows a pseudo-standard normal distri-

bution. We classify the GRACE-DSI into five drought categories (Table 3.1) by matching

their ranking percentiles to thresholds used by the USDM (i.e., 30%, 20%, 10%, 5%, 2%)[Svo-

boda et al., 2002]. For example, the cumulative relative frequency for GRACE-DSI less than

-2.0 is 2%; therefore, we set -2.0 as the upper cutoff value for exceptional drought. The

GRACE-DSI detects both drought and abnormally wet events (Table 3.1).

3.3.3 GRACE-DSI evaluation

Because of the truncation and smoothing applied to reduce short scale errors, each GRACE-

DSI grid cell represents conditions averaged over a 350-km radius footprint. For consistency,

all datasets are processed as the GRACE datathat is, converted in spherical harmonic,

truncated to degree 60, filtered, smoothed using a 350-km Gaussian averaging function, and

converted in the spatial domain on a 1° × 1° lat/lon grid. This process preserves the time

and spatial variability of the original signal but reduces its amplitude[Velicogna and Wahr ,

2006]. To minimize the impact of these changes on the data comparisons, we standardize

PDSI and SM data relative to the GRACE-DSI period (2002–14), herein referred to as PDSI-

Z and SM-Z, and we employ the same drought classification scheme as for the GRACE-DSI

(Supplementary Materials).

We compare the spatial patterns of GRACE-DSI, PDSI-Z, and USDM during the record-

setting 2011–12 drought[Hoerling et al., 2014]. We examine the temporal correspondence

between the GRACE-DSI and PDSI-Z over the CONUS using correlation analysis. The

USDM is a discrete metric and does not characterize wetter-than-average conditions, pre-

venting a rigorous comparison with GRACE-DSI through correlation analysis. Instead, we

map continuous GRACE-DSI to categorical series following the classification scheme in Ta-

ble 1 and convert the positive side of GRACE-DSI to the no-drought category. At each
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grid cell, we calculate the ratio of the number of months for which both GRACE-DSI and

USDM have the same drought category, relative to the total number of months. We rescale

GRACE-like processed USDM using the method described in Landerer and Swenson [2012]

and round the rescaled value up to the nearest drought category.

We calculate the correlation coefficients between GRACE-DSI and NDVI for each growing

season month separately, as the vegetation drought response varies considerably within dif-

ferent phenological stages and thus cannot be adequately represented by simple correlation

or time series comparison without accounting for the seasonal effect[Ji and Peters , 2003;

Karnieli et al., 2010; A et al., 2015; Forkel et al., 2015].

In the GRACE-DSI algorithm, we normalize the TWS deficit by the regional hydroclima-

tological variability to account for the fact that a TWS deficit of a given magnitude may

indicate different drought levels in an arid or humid region. To illustrate this, we show that

the same USDM-classified drought severity level corresponds to different TWS deficits de-

pending on the regional hydroclimatology. We focus on the 2011–12 drought and at each grid

cell we define for each month the corresponding drought category using the USDM drought

classification (D1-D4 drought categories). We then categorize the months into four groups

each corresponding to one of the drought classifications. For each group, we identify the

month when the maximum TWS deficit occurred, and we calculate the corresponding TWS

standard deviations using the entire analyzed period, 2002–14. We investigate the spatial

patterns of the maximum TWS deficit in relation to the monthly TWS standard deviation

and the regional precipitation climatology.
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3.4 Results

The GRACE-DSI captures documented regional drought events during the past decade in

the CONUS (Supplementary Materials and Figure 4.8). We also find a remarkable agree-

ment in spatial pattern between the GRACE-DSI, PDSI-Z, and USDM over different seasons

and across a wide range of land covers, despite the fact that vegetation, snow, and other

cold season land surface processes are not explicitly treated in the PDSI model[Dai , 2013;

van der Schrier et al., 2013]. In 2011, GRACE-DSI and PDSI-Z capture similar drought and

wet spatial extent across the CONUS especially from February to August (Figure 5.1). The

USDM does not provide wetter-than-average information and thus does not reflect the wet-

ting pattern in 2011. When dry weather conditions expand northward after August[NOAA,

2012], the PDSI-Z and USDM detect dryness in the western Great Lakes, upper Mississippi

Valley, parts of the northern plains, and the far West, whereas the GRACE-DSI indicates

above- or near-normal underlying TWS in these regions. In 2012, a strong heat wave hit

the CONUS[Wang et al., 2014]. The PDSI-Z and USDM indicate severe drought condi-

tions for all of 2012. In contrast, the GRACE-DSI shows a persistent water storage surplus

throughout the year in the Northwest.

We compare GRACE-DSI and PDSI-Z monthly time series at six drought locations repre-

senting different land cover and climate zones (Figure 5.2). While we find overall favorable

correspondence between GRACE-DSI and PDSI-Z across the CONUS, the two indices also

provide complementary information regarding surface and total water supply conditions. In

California (location 4), both indices capture the water deficit during 2007–09 and the excep-

tional drought starting in 2012 (Figure 5.2e). In late 2014, the PDSI returns to normal values

after a short-term rainfall increase[NOAA, 2015], while the GRACE-DSI is still indicative of

exceptional drought conditions, in agreement with the ongoing groundwater crisis and the

extraordinary cumulative precipitation deficit[Famiglietti , 2014; Savtchenko et al., 2015].
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The monthly GRACE-DSI and PDSI-Z correlation is significant (p < 0.01) over the en-

tire CONUS (Figure 5.3a). The correlation is strongest in the South and Southeast and

has relatively smaller magnitude over the northwestern plains, consistent with the spatial

and temporal comparisons in Figs. 1 and 2. To investigate the relatively lower correla-

tion in the northwestern Plains, we compare both indices with the satellite SM record and

water table measurements from three wells in the USGS groundwater climate response net-

work (http://groundwaterwatch.usgs.gov) (Figure 5.3a). These locations are not impacted

by pumping or injection, have 10 years of measurements, and the well records are good

representatives of regional groundwater variability in the Missouri watershed[Reager et al.,

2015]. The GRACE-DSI and PDSI-Z show overall consistent temporal variations, but with

a time lag and a shift in magnitude (Figures 5.3b). In 2004–08, following the 2000–04

drought[Schwalm et al., 2012], the PDSI-Z indicates an overall wetting with episodic dryness

consistent with the SM variations, whereas the GRACE-DSI indicates drier-than-normal con-

ditions in alignment with observed negative anomalies in groundwater level during this time

period despite the difference in spatial scale of GRACE-DSI and well measurements. This is

in agreement with a previous study[Anderson et al., 2013] of the northwestern Plains Snake

River subarea, where long-term hydrological drought persisted during 2004–08 as shown

by the USDM despite increasing surface SM and decreasing evapotranspiration deficit from

temporary surface wetting.

Following the warming trend in early 2012[Wang et al., 2014], the PDSI-Z decreases and

reaches exceptional drought in the summer while SM declines later and remains above normal

until spring (Figs. 3b). The GRACE-DSI decreases later than the PDSI-Z and by a smaller

amount, which is consistent with the near-normal to positive groundwater levels throughout

2012.

We evaluate the agreement between GRACE-DSI, PDSI, and USDM in terms of drought

severity classification. We calculate the percentage of the number of months for which the
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USDM and GRACE-DSI (Figure 5.4a), USDM and PDSI-Z (Figure 5.4d), and USDM and

PDSI (Figure 5.4g) display the same drought category. We repeat the same calculation

with the USDM index biased by one (Figures 5.4b,e,h) and two drought categories (Figures

5.4c,f,i) to determine the percentage of the total number of months for which GRACE-DSI,

PDSI-Z, and PDSI underestimate the USDM drought classification by one or two categories

respectively (note that the original no-drought observations remain the same). We find that

the GRACE-DSI, PDSI-Z, and original PDSI all tend to underestimate USDM-classified

drought by one to two categories in the western United States (Figure 5.4).

The GRACE-DSI and NDVI correlation (Figure 5.5) is stronger and more widespread during

June–September than at the beginning (April–May) or the end (October) of the growing

season. At lower latitudes, the correlation becomes significant earlier and extends later in

the year compared to higher-latitude areas.

Figure 4.6 shows the spatial distribution of the maximum TWS deficit for each USDM-

classified drought category during 2011–12 and the corresponding monthly TWS standard

deviation. We find that it takes a larger TWS deficit to reach the same USDM-classified

drought category in the East, where the climate is humid and the TWS variability is large,

than in the West where the climate is drier and the TWS variability is small. This spatial

pattern agrees with the eastdecreasing gradient in long-term mean and variability of annual

precipitation (Figure 4.9), illustrating that it is important to normalize TWS deficit with

regional hydroclimatological variability in the GRACE-DSI algorithm for drought severity

categorization and drought comparison across space and time.
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3.5 Discussion

The GRACE-DSI is based on direct measurements of soil water balance that account for

water supply and demand, which enables a globally consistent hydrological drought moni-

toring. The GRACE-DSI differs from Thomas et al. [2014] and other indices using GRACE

alone because it accounts for the regional variability in TWS that directly affects the char-

acterization of drought (Figure 4.6). For instance, Thomas et al. [2014] observe a peak TWS

deficit of 66 km3 in southeastern United States in November 2007 and a peak TWS deficit

of 68 km3 in Texas in January 2013, both of which equal about a 9-cm water-equivalent

deficit. The January TWS variability is larger in Texas than November TWS variability in

southeastern United States, which means that Texas naturally experiences a wider range of

dryness and wetness in January than the southeastern United States in November. There-

fore, the GRACE-DSI ranks the same 9-cm water-equivalent deficit one to two categories

milder in Texas than in the southeastern United States (Figures 5.2b,c). This result agrees

with the USDM classification of these two drought events (Figure 4.10).

The GRACE-DSI provides consistent and complementary information to the PDSI that

strengthens the analysis of drought conditions. The GRACE-DSI is sensitive to terres-

trial water storage changes, whereas the PDSI is responsive to surface SM and atmospheric

moisture deficitsDai [2011]. The GRACE-DSI can lag the PDSI by 1 month in detecting

drought onset and recovery (e.g., Figures 5.2g), which is consistent with the different re-

sponse time of near-surface conditions and overall water storageVan Loon [2015b]. During

the 2012 drought in the northwestern Plains, the PDSI decreased earlier than SM prob-

ably because of warming-induced atmospheric moisture stress as the PDSI is sensitive to

air temperature[Hu and Willson, 2000]. In contrast, the GRACE-DSI decreases later than

SM, indicating more rapid depletion of surface SM than deeper groundwater. An apparent

drought recovery is also detected by both GRACE-DSI and PDSI in spring 2013, consistent

with previous studies[Hoerling et al., 2014; Wang et al., 2014]. During the analyzed period,
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GRACE-DSI and PDSI also detect different trends in the northwestern Plains associated

with changes in overall and shallow-depth water balance, respectively (Figures 5.3b). We

find that for location 1 (Figure 5.3b), for instance, their temporal correlation increases from

0.25 (p < 0.01) to 0.44 (p < 0.001) after prewhitening (Supplementary Materials and Figure

4.11). For the rest of the CONUS, correlation between prewhitened GRACE-DSI and PDSI

time series is significant but generally of smaller magnitude compared to those shown in

Figure 5.3, indicating that both drought indices capture consistent trends.

The GRACE-DSI and PDSI-Z both underestimate the severity of USDM-classified drought

by one to two categories in the western United States (Figure 5.4). The mismatch pattern

between the original PDSI (normalized using 1950–79 as the baseline period) and USDM

is consistent with the patterns between PDSI-Z and USDM and between GRACE-DSI and

USDM. This indicates that the short normalization baseline period (2002–14) in GRACE-

DSI and PDSI-Z does not account for their differences with USDM. Instead, the composite

nature of USDM and the inclusion of subjective information from local experts might account

for its mismatch with GRACE-DSI and PDSI[Anderson et al., 2011; Hao and Singh, 2015].

The favorable GRACE-DSI and NDVI correspondence indicates that GRACE-DSI is sensi-

tive to water supply constraints influencing vegetation growth. The correlation is higher in

the middle of the growing season than during green-up and senescence when solar radiation

and temperature are important factors controlling vegetation growth[Ji and Peters , 2003;

Karnieli et al., 2010; Forkel et al., 2015]. The GRACE-DSI also captures the characteristic

latitudinal shift of the vegetationrelationship[Karnieli et al., 2010; Yi et al., 2010], whereby

the NDVI correlation weakens from lower to higher latitudes due to increasing cold tem-

perature and energy constraints on vegetation growth. Similar correlation patterns are also

found between the PDSI-Z and NDVI (Supplementary Materials and Figure 3.12).

The 2002–14 period may be too short to characterize the full range of dryness and wetness

for which a climatology of at least 30 years is desired. We use Levenes test[Levene, 1960]
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to evaluate the difference in PDSI variability of the 13-yr (2002–14) period from a 33-yr

(1982–2014) climatology. We find that in 40% of the CONUS, the standard deviations of

PDSI are different between the two periods (p < 0.1); these regions have experienced a

narrower range of wetness and dryness in 2002–14 than in 1982–2014. We calculate the root-

mean-square error between PDSI-Zs referenced to those two periods. We find that, using

the 13-yr climatology, we underestimate the drought by one category in 40% of the CONUS

due to the fact that the 2002–14 period is drier than 1982–2014 (Figure 4.7a). Therefore, we

infer that using the 13-yr period to calculate GRACE-DSI does not affect drought category

characterization in the majority of the CONUS.

Because of the relatively short data record, using all available GRACE solutions to estimate

the monthly TWS climatology mean and standard deviation in GRACE-DSI calculation is

currently optimal. This limitation may change the characterization of past drought events

when new GRACE solutions become available. To understand how the baseline affects

the GRACE-DSI results, we calculate seven alternative GRACE-DSI records using the TWS

mean and standard deviation calculated from baseline lengths ranging from 6-yr (2002–07) to

12-yr (2002–13) sequentially. The spatial patterns of these alternative GRACE-DSI records

are very similar in the CONUS. Figures 4.7b and c show the area-weighted annual spatial

correlation coefficients (R) and Nashefficiency coefficients (NS; [Nash and Sutcliffe, 1970])

between these alternative GRACE-DSIs and the 2002–14 baseline GRACE-DSI over the

CONUS. When there are at least 9 years of GRACE record, the GRACE-DSI does not

change significantly over longer baseline periods. In other words, the characterization of

a drought event in 2010 using the 2002–10 baseline would not change significantly when

the GRACE-DSI is updated four years later using the 2002–14 baseline. The GRACE-DSI

can eventually be normalized to a fixed baseline when the GRACE record will expand to a

climatological length.
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3.6 Conclusions

We present a novel drought severity index (DSI) derived solely from GRACE satellite ob-

servations. The large footprint of GRACE-DSI makes it useful for regional- to global-scale

hydrological drought assessment. We demonstrate that the GRACE-DSI complements tra-

ditional drought metrics such as the PDSI by providing complementary information about

deeper water storage changes which affect soil moisture recharge and drought recovery. This

is of potential use in drought propagation research, the knowledge of which is imperative

to the prediction of hydrological drought[Van Loon, 2015b]. This is also of potential use

in developing and improving composite and multi-indicator drought models[AghaKouchak

et al., 2015], such as the USDM, with which the GRACE-DSI has good spatial agreement

in drought detection. In addition, the GRACE-DSI includes moisture variations from the

plant root zone and the correspondence between GRACE-DSI and MODIS NDVI over the

CONUS manifests spatial and seasonal characteristics of water supply constraints influenc-

ing vegetation growth. The GRACE-DSI can therefore be useful to study waterrelations.

The GRACE-DSI also captures human impacts on drought and water resource management,

which makes it advantageous to study drought in the Anthropocene[Sivapalan et al., 2012;

Van Loon et al., 2016]. Combing GRACE-DSI with traditional drought metrics might enable

a partition of drought impact into natural and anthropogenic components. The GRACE-

DSI is also of use to the hydrologic modeling community because it provides an independent

observation benchmark for evaluating model-based drought monitoring tools. Currently,

GRACE rapid solutions are generated using the L1B data product within 24 h of data ac-

quisition, but with limited data availability. For the GRACE Follow-On mission scheduled

for launch between December 2017 and January 2018, this product will become a stan-

dard level 3 product, thereby providing near real-time information for operational drought

monitoring.
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3.7 Supplementary Materials

3.7.1 Standardization of PDSI

Original self-calibrated PDSI[Dai , 2011] is normalized with respect to the long-term clima-

tology from 1950 to 1979, and hence cannot be directly compared to GRACE-DSI which is

normalized to the period from 2002 to 2014. To account for this inconsistency, we standardize

the PDSI relative to the same period used for GRACE-DSI, i.e. we define the standardized

PDSI for year i and month j as PDSI-Zi,j=(PDSIi,j-〈PDSIj〉)/σj, where 〈TWSj〉 and σj are

the monthly mean PDSI value and standard deviations calculated from the same years and

months used for GRACE-DSI.

The global PDSI-Z calculated relative to 2002-2014 follows a pseudo normal distribution

similar to the one for the global GRACE-DSI, therefore we can use the same drought clas-

sification scheme for both indices. This standardization process has been employed in other

drought index studies, e.g. Anderson et al. [2011, 2013]; Mu et al. [2013]. The PDSI-Z

can underestimate drought intensity by up to one category compared to the original PDSI

because the 2002-2014 period is relatively dry compared to the CONUS long-term climatol-

ogy[Anderson et al., 2011; Dai , 2013].

3.7.2 Examination of past drought events using the GRACE-DSI

Figure 4.8 shows the monthly GRACE-DSI from 2002-2014. The index captures the 2002

drought over much of the CONUS eastern seaboard, northwest, central and northern Plains.

From 2003 to early 2004, the index detects the continuing drought and its recovery across

much of the west, the central and northern Plains and the central Great Lakes. In 2004, the

GRACE-DSI captures the protracted hydrological drought in the western USSchwalm et al.
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[2012] even though this multiyear hydrological drought is not well delineated by climate-

based indices including the PDSI[Anderson et al., 2011]. The index captures the onset of

wetter conditions over much of the west by the end of 2004. The index also detects a winter

drought in the Pacific Northwest and northern Rockies in early 2005 and the consequent

severe drought conditions for most of the year. Other documented droughts detected by

the index include southern Plains and lower Great Lakes (2005-2006), West and South-

east (2007), Southeast and northwest Great Lakes (2008) and Southwest (2009) areas[Luo

and Wood , 2007]. The GRACE-DSI also captures the extended (2011-2014) Southern US

drought, the severe California drought starting in 2012, and the 2012 central Great Plains

drought[?Hoerling et al., 2014]. The GRACE-DSI also detects abnormally wet periods, such

as the 2005-2006 California wetting[Parrett and Hunrichs , 2006], 2007 Southern Great Plains

flooding[Dong et al., 2011] and the 2010/2011 Mississippi River basin flooding[Villarini et al.,

2013].

3.7.3 The GRACE-DSI correlation with the PDSI-Z after pre-

whitening

The GRACE-DSI and the PDSI-Z represent respectively the overall and shallower-depth

water balance, and therefore can capture different trends and persistence (i.e. autocorrela-

tion signature) due to different variations in overall and near-surface water components. To

evaluate this, we pre-whiten both time series using an autoregressive integrated moving av-

erage (ARIMA) model with a first-degree difference and a first-order autoregressive process.

This pre-whitening procedure retains the monthly and inter-annual variability but remov-

ing the trend and autocorrelation in both time series[Chatfield , 1975]. We show correlation

result using the pre-whitened time series in Figure 4.11. We find significant correlation

(p<0.01) over the entire CONUS. The strength of correlation enhances in the northwest-

ern Plains compared to the un-pre-whitened result (Fig 3a), indicating that in that region
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the GRACE-DSI and the PDSI-Z capture different trends and persistence in overall and

near-surface water balance. For the rest part of the CONUS, the pre-whitened result shows

smaller magnitude of correlation, implying that both indices capture consistent trends and

persistence signatures.

3.7.4 Growing season correlation of PDSI with NDVI

Similar to GRACE-DSI, PDSI-Z captures the seasonal timing and latitudinal dependency

of water constraints on NDVI. Generally, PDSI-Z has a slightly stronger correlation with

NDVI than GRACE-DSI, because PDSI-Z is sensitive to surface moisture conditions that

are more directly related to vegetation growth. GRACE-DSI complements PDSI by provid-

ing continuous estimates of bulk water changes. These changes include variations in both

soil moisture affecting vegetation growth and deeper groundwater influencing soil moisture

recharge and drought recovery. Therefore, combining GRACE-DSI with existing observa-

tions/estimates of plant-available water (such as PDSI) may improve the characterization of

drought evolution as well as its impact on terrestrial ecosystems.
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Table 3.1: Dynamic range and relative categories for wet (W) and dry (D) conditions of
GRACE-DSI and PDSI-Z. The drought classification scheme is consistent with the USDM

Category Description GRACE-DSI and PDSI-Z
W4 Exceptionally wet 2.0 or greater
W3 Extremely wet 1.60 to 1.99
W2 Very wet 1.30 to 1.59
W1 Moderately wet 0.80 to 1.29
W0 Slightly wet 0.50 to 0.79
WD Near normal 0.49 to -0.49
D0 Abnormally dry -0.50 to -0.79
D1 Moderate drought -0.80 to -1.29
D2 Severe drought -1.30 to -1.59
D3 Extreme drought -1.60 to -1.99
D4 Exceptional drought -2.0 or less
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Figure 3.1: Spatial comparison of monthly GRACE-DSI, PDSI-Z, and USDM dur-
ing 2011–12. Months with missing GRACE data are skipped. Color bar shows the
drought/wetting categories defined in Table 3.1. PDSI-Z and GRACE-DSI use the same
classification scheme. The drought classification scheme is consistent with the USDM. Note
that USDM does not provide wetter-than-average information.
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Figure 3.2: (a) Land cover map of the CONUS from MODIS land cover type
(MCD12Q1)[Friedl et al., 2010]. (b)–(g) Time series of GRACE-DSI (red) and PDSI-Z
(black) at six locations shown in (a), respectively: (35°N, 82°W); (32°N, 99°W); (35°N,
112°W); (37°N, 120°W); (45°N, 105°W); and (41°N, 92°W). In (b)–(g), dots are index values
and lines are smoothed values using a quadratic polynomial filter with a 13-month window.
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Figure 3.3: (a) Temporal cross-correlation coefficient between monthly GRACE-DSI and
PDSI-Z during study period. (b)–(d) Times series of GRACE-DSI (red), PDSI-Z (black),
satellite-retrieved SM-Z (green), and standardized groundwater depths (blue) for locations
1 to 3 in (a). Geographic coordinates for locations 1, 2, and 3 are (45.09°N, 112.64°W),
(47.37°N, 111.19°W), and (44.30°N, 103.44°W), respectively. All lines are smoothed values
using a quadratic polynomial filter with a 13-month window.
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Figure 3.4: (a) The ratio of the number of months for which GRACE-DSI and USDM yield
the same drought category to the total number of months considered. (b) As in (a), but
with the USDM series biased by one category milder (i.e., USDM-1) at every grid cell. (c)
As in (b), with the USDM series biased by two categories milder (i.e., USDM-2). Note that
the no-drought category minus one or two categories is still considered no-drought. (d)-(f)
As in (a)–(c), but replacing GRACE-DSI with PDSI-Z. (g)–(i) As in (a)–(c) but replacing
GRACE-DSI with the original PDSI.
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Figure 3.5: Monthly GRACE-DSI and MODIS NDVI correlation coefficients during the
growing season (April). Correlation coefficient higher than 0.5 is significant at 90% confidence
level.
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Figure 3.6: (a)–(d) The maximum TWS deficit observed in regions where D14 drought,
respectively, has been reported by the USDM in 2011. (e)–(h) The TWS standard deviation
for the calendar month when the maximum TWS deficit is observed in 2011, as seen in
(a)–(d). (i)–(l) As in (a)–(d), but for 2012. (m)–(p) As in (e)–(h), but for 2012.
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Figure 3.7: (a) In the gray regions, PDSI-Z underestimates drought by one category when
using the 2002–14 climatology rather than the 1982–2014 climatology. (b) The area-weighted
annual spatial correlation coefficients between the 2002–14 baseline GRACE-DSI and seven
alternative GRACE-DSI calculated from varying baselines. (c) As in (b), but for the Nash-
efficiency coefficients.

58



Figure 3.8: Monthly GRACE-DSI over the CONUS from 2002-2014. Months with missing
GRACE data are left blank. Color schedule is the same as Figure 5.2 in the main text.
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Figure 3.9: a) is the annual mean precipitation over CONUS from 1979-2009, derived from
the Global Precipitation Climatology Project. b) is the standard deviation of annual mean
precipitation.
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Figure 3.10: USDM drought monitoring maps for November 2007 and January 2013.
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Figure 3.11: Correlation coefficient between prewhitened GRACE-DSI and PDSI-Z time
series. The correlation is significant over the entire CONUS at 99% confidence level.
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Figure 3.12: Monthly PDSI-Z and MODIS NDVI correlation coefficients during the growing
season (April to October). Correlation coefficient higher than 0.5 is significant at 90%
confidence level.
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Chapter 4

A global gridded dataset of GRACE

drought severity index for 2012-14:

Comparison with PDSI and SPEI and

a case study of the Australia

Millennium drought

As appears in:

Zhao, M., G. A, I. Velicogna, and J.S. Kimball, “A Global Gridded Dataset of

GRACE Drought Severity Index for 2002-14: Comparison with PDSI and SPEI

and a Case Study of the Australia Millennium Drought,” Journal of Hydrome-

teorology, 2017. Available under a Creative Commons Attribution 3.0 license
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4.1 Abstract

A new monthly global drought severity index (DSI) dataset developed from satellite-observed

time-variable terrestrial water storage changes from the Gravity Recovery and Climate Ex-

periment (GRACE) is presented. The GRACE-DSI record spans from 2002 to 2014 and

will be extended with the ongoing GRACE and scheduled GRACE Follow-On missions. The

GRACE-DSI captures major global drought events during the past decade and shows overall

favorable spatiotemporal agreement with other commonly used drought metrics, including

the Palmer drought severity index (PDSI) and the standardized precipitation evapotran-

spiration index (SPEI). The assets of the GRACE-DSI are 1) that it is based solely on

satellite gravimetric observations and thus provides globally consistent drought monitoring,

particularly where sparse ground observations (especially precipitation) constrain the use of

traditional model-based monitoring methods; 2) that it has a large footprint ( 350 km), so

it is suitable for assessing regional- and global-scale drought; and 3) that it is sensitive to

the overall terrestrial water storage component of the hydrologic cycle and therefore com-

plements existing drought monitoring datasets by providing information about groundwater

storage changes, which affect soil moisture recharge and drought recovery. In Australia, it

is demonstrated that combining GRACE-DSI with other satellite environmental datasets

improves the characterization of the 2000s Millennium Drought at shallow surface and sub-

surface soil layers. Contrasting vegetation greenness response to surface and underground

water supply changes between western and eastern Australia is found, which might indicate

that these regions have different relative plant rooting depths.
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4.2 Introduction

Drought indices are convenient tools for evaluating drought and its social and ecological

impacts, as well as for decision-making in drought prevention and mitigation. Many global

gridded drought indices such as the Palmer drought severity index (PDSI) and the standard-

ized precipitation index (SPI) rely on the accuracy of meteorological inputs and/or simple

water balance models. They become unreliable where ground observations (especially precip-

itation and soil properties) are sparse. Therefore, satellite remote sensing of drought-related

variables such as normalized difference vegetation index (NDVI), surface soil moisture (SM),

and terrestrial water storage (TWS) have been proposed for complementing more traditional

meteorological drought indices[Anderson et al., 2011; Mu et al., 2013; Thomas et al., 2014;

AghaKouchak et al., 2015].

Drought indices are generally sensitive to a specific part of the hydrological cycle. The PDSI

is sensitive to atmosphere moisture demand and near-surface soil moisture content and has

been frequently used as a measure of meteorological and soil moisture drought[Mishra and

Singh, 2010]. The SPI measures accumulated precipitation deficits over varying time scales.

Shorter time scales are sensitive to surface SM variability, medium scales are sensitive to

streamflow and reservoir levels, and longer time scales are sensitive to groundwater varia-

tions[McKee et al., 1993]. However, this sensitivity pattern varies by region and land cover,

which might complicate the choice of SPI time scale in characterizing drought onset, dura-

tion, and recovery[Zeng et al., 2008; Wang et al., 2015]. An index that reflects total water

storage changes in the hydrological cycle is desired for fully characterizing drought evolution

and ecosystem response to water supply variations[Van Loon, 2015b].

TWS estimates derived from the Gravity Recovery and Climate Experiment (GRACE) have

been widely used to examine regional-scale droughts worldwide[Yirdaw et al., 2008; Leblanc

et al., 2009; Chen et al., 2010a; Long et al., 2013]. Li et al. [2012] assimilated GRACE TWS
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into a land surface model to monitor drought in Europe. Thomas et al. [2014] proposed

a framework to quantify drought-induced water storage deficits. However, previous stud-

ies did not consider the spatial and temporal variability of local hydroclimatology, which

is important for drought comparison across space and time[Zhao et al., 2017b]. Houborg

et al. [2012] account for this issue by deriving local cumulative distribution of dry and wet

conditions from the GRACE data assimilation system; however, this system may not be

readily available outside of North America. Recently, Zhao et al. [2017b] developed a new

drought severity index (DSI) based solely on GRACE TWS estimates. Compared to previous

GRACE TWS-based drought studies, the GRACE-DSI is calculated without model assimi-

lation and considers spatial and temporal variability of local hydroclimatology. Zhao et al.

[2017b] evaluate the performance of the GRACE-DSI in the continental United States, where

robust drought characterization is available attributed to dense surface observation network

and reliable PDSI estimates, whereby GRACE-DSI shows significant agreement with the

PDSI and overall favorable spatiotemporal correspondence with satellite retrievals of NDVI

and SM.

Here we present a global gridded GRACE-DSI record derived from the standard spherical

harmonic approach extending from 2002 to 2014. We compare the GRACE-DSI record with

traditional drought indices including the PDSI and the standardized precipitation evapo-

transpiration index (SPEI; [Vicente-Serrano et al., 2010a]) over the global domain, exclud-

ing Antarctica and Greenland. We also exclude the barren or sparsely vegetated land cover

based on the Moderate Resolution Imaging Spectroradiometer (MODIS) land-cover type

data product (MCD12Q1; [Friedl et al., 2010]) because these regions have low hydroclimatic

variability and large DSI error[Dai , 2011]. We conduct a regional case study of the 2000s

Millennium Drought in Australia[van Dijk et al., 2013] to evaluate potential synergy between

the GRACE-DSI and other satellite environmental data records, including SM and NDVI,

for monitoring drought-related impacts on terrestrial ecosystems. We quantify the uncer-

tainty of GRACE-DSI in characterizing drought. We evaluate the impact of using a 13-yr
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reference period on climatology estimates rather than a longer record. We also discuss DSI

results derived from the GRACE mascon solutions.

4.3 Data and Methodology

We use Release-05 (RL05) Center for Space Research (CSR) GRACE gravity solutions in

the form of spherical harmonic coefficients truncated to degree 60 for the period from April

2002 to October 2014. We substitute the GRACE-derived C20 (degree 2 order 0 spherical

harmonic coefficient) coefficients with monthly estimates from satellite laser ranging[Cheng

et al., 2013b]. We include degree-1 coefficients calculated as in Swenson et al. [2008] and

correct the glacial isostatic adjustment signal following [A et al., 2013]. To reduce correlated

errors, we filter each monthly field following [Swenson and Wahr , 2006]. We convolve the

filtered coefficients with a 350-km radius Gaussian averaging function[Wahr et al., 1998b]

and calculate the monthly TWS mass anomalies relative to the 2002-14 mean on a 1° × 1°

latitude-longitude grid.

We use the 2.5°global self-calibrated PDSI developed by Dai [2011]. The PDSI uses a two-

layer model to assess soil water balance by accounting for both water supply and demand

[Palmer , 1965]. The PDSI values correlate with top 1-m depth soil moisture observations

over the United States, the former Soviet Union, Mongolia, and China, and with streamflow

over major global river basins[Dai et al., 2004; Dai , 2011].

We use the 0.5°global SPEI developed by Vicente-Serrano et al. [2010a]. The SPEI eval-

uates accumulated precipitation minus potential evapotranspiration (PET) over multiple

time scales up to 48 months[Vicente-Serrano et al., 2010b]. The SPEI extends the SPI by

incorporating PET in determining drought and shows advantages over the SPI in capturing

temperature impact on water demand[Vicente-Serrano et al., 2014].
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In the Australian case study, we use remotely sensed 0.25°SM data from the European Space

Agency Climate Change Initiative[Liu et al., 2011, 2012]. The SM record employs satellite

passive and active microwave sensor data with improved spatial and temporal coverage and

resolution. We also use the MODIS monthly Climate Model Grid 0.05°NDVI (MOD13C2;

[Huete et al., 2002]) as a proxy for drought-sensitive vegetation growth changes. Previous

studies have shown that, at the site scale, changes in NDVI are sensitive to root-zone SM

variations in dry regions[e.g. Wang et al., 2007; Schnur et al., 2010]. Recent studies con-

firmed this result at the regional scale in Australia[Chen et al., 2014; Yang et al., 2014;

De Keersmaecker et al., 2017].

For each grid cell, the GRACE-DSI is defined as the standardized anomalies of GRACE

TWS as follows:

GRACE−DSIi,j =
TWSi,j − TWSj

σj
(4.1)

where i is year ranging from 2002 to 2014; j is month ranging from January to December;

and and are the mean and standard deviation of TWS anomalies in month j, respectively.

The GRACE-DSI is a dimensionless quantity that detects both drought and abnormally wet

events: less than 2.0 is an exceptional drought, from 1.99 to 1.60 is an extreme drought, from

1.59 to 1.30 is a severe drought, from 1.29 to 0.80 is a moderate drought, from 0.79 to 0.50

is abnormally dry, from 0.49 to 0.49 is near normal, from 0.50 to 0.79 is slightly wet, from

0.80 to 1.29 is moderately wet, from 1.30 to 1.59 is very wet, from 1.60 to 1.99 is extremely

wet, and higher than 2.0 is exceptionally wet.

Because of the truncation and filtering applied to reduce short-scale errors in GRACE, each

GRACE-DSI grid cell represents conditions averaged over a 350-km radius footprint[Velicogna

and Wahr , 2006, 2013]. For consistency, all datasets are processed the same as the GRACE

data, that is, expanded in spherical harmonic, truncated to degree 60, filtered, spatially
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smoothed, and projected onto a 1° × 1° grid[Velicogna et al., 2012]. To bring the data

comparison to the same reference period, we standardize the PDSI, SPEI, SM, and NDVI

relative to the GRACE-DSI period (2002-14), herein referred to as PDSI-Z, SPEI-Z, SM-Z,

and NDVI-Z using the following equation:

Xi,j =
Xi,j −Xj

σj
(4.2)

where X represents PDSI, SPEI, SM, or NDVI and and are the monthly mean and standard

deviation of X calculated from the same years and months used for the GRACE-DSI. This

standardization process has also been employed in previous drought index studies[Anderson

et al., 2011, 2013; Mu et al., 2013].

We calculate the GRACE-DSI uncertainty due to GRACE measurement error and leakage

error. At every grid cell, we estimate the GRACE measurement error following Wahr et al.

[2006] and the leakage error following Landerer and Swenson [2012]. A synthetic TWS field

from the Community Land Model, version 4.5 (CLM4.5), is used as a realistic representa-

tion of the observed TWS signal. The leakage error is defined at each grid cell as the RMS

difference between the original and the GRACE-like processed CLM4.5 TWS time series

(i.e., converted into harmonics, truncated to degree 60, de-striped, spatially smoothed, and

converted to 1° × 1° regular longitude-latitude grids). The total GRACE error is the sum-

mation of the measurement and leakage error in quadrature. We then use a Monte Carlo

simulation to estimate the DSI error. At each grid cell, we generate an ensemble of 1000

normally distributed zero mean random noise time series (σ = total GRACE error). We

compute the GRACE-DSI for each of those 1000 simulations and calculate the sample dis-

tances from their monthly sample means. The resulting sample distances follow a normal

distribution, and we set the one standard deviation of the sample distances as the error of

GRACE-DSI. Our GRACE-DSI uncertainty estimate is conservative as it assumes that all

nonannual and nonsemiannual variations in GRACE data are due to measurement errors.

70



This assumption overestimates the GRACE-DSI error in regions where large nonseasonal

variability is observed, for instance due to extreme drought and flooding[Wahr et al., 2006;

Tiwari et al., 2009]. For the Australian case study, we adopt the same approach to provide

a conservative error estimate for the NDVI-Z and SM-Z records.

4.4 Results

Figure 5.1 shows the global distribution of GRACE-DSI, PDSI-Z, and SPEI-Z at selected

time scales for July 2010, a month in which major drought conditions occurred world-

wide[AghaKouchak et al., 2015]. The three indices show agreement in the intensity and

spatial distribution of drought conditions in western Russia, Southeast Asia, and northern

India. Differences are observed in regions including northern China and mainland Australia.

The GRACE-DSI and 1-month SPEI-Z show severe drought in northern China, whereas

the PDSI-Z and longer-time-scale SPEI-Z (> 6 months) show only moderate drought or

near-normal conditions. In mainland Australia, the GRACE-DSI shows a similar drought

pattern as the 36-month SPEI-Z, but more severe and widespread drought than the PDSI-Z.

In the Amazon, the GRACE-DSI and PDSI-Z capture similar drought intensity and extent.

The SPEI-Z also detects drought in the Amazon, but with varying extent and intensity

for different time scales. Wet events are also observed by these indices, but with different

extents and magnitudes. For instance, all indices capture the flooding in China except the

36-month SPEI-Z. The GRACE-DSI, PDSI-Z, and shorter-than-15-months SPEI-Z observe

the wetting in Pakistan[Webster et al., 2011], whereas the long-time-scale SPEI-Z does not

detect this wetting event. The GRACE-DSI characterizes the southern Africa wetting as a

very wet to extremely wet event, which is consistent with other observation-based drought

indices[AghaKouchak et al., 2015]. This event, however, is missed by the PDSI-Z and short-

time-scale SPEI-Z (<6 months).
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Figure 5.2 shows time series of the GRACE-DSI, PDSI-Z, and SPEI-Z at selected time

scales for four locations where major drought events have been reported. The GRACE-DSI

shows generally close agreement with the PDSI-Z, with a 1-month delay behind PDSI-Z in

response to drought evolution for the 2010 western Russian drought (Figure 5.2a; [Yoshida

et al., 2015]) and the 2005-06 vegetation drought in East Africa (Figure 5.2c; [Rulinda et al.,

2012]). In the Amazon, the GRACE-DSI is concurrent with the PDSI-Z and captures the

extraordinary 2005 and 2010 droughts in this region as well as the exceptional 2009 flooding

(Figure 5.2b; [Zeng et al., 2008; Chen et al., 2010b; Lewis et al., 2011]).

The GRACE-DSI agrees well with the 6-12-month SPEI-Z (Figures 5.2i-p). The GRACE-

DSI also captures drought events detected by the shorter-time-scale SPEI-Z. For instance,

the GRACE-DSI captures the short-term 2005/06 winter drought in western Russia (Figures

5.2e,i,m). This event is well captured by the 1-12-month SPEI-Z but is missed by the 24-

0month SPEI-Z. The GRACE-DSI captures the severe short-term 2010 drought and the

2011/12 winter drought in northern China[Barriopedro et al., 2012], which are both missed

by other indices except for the 1-month SPEI-Z (Figure 5.2h). In the Amazon, the GRACE-

DSI agrees better with the SPEI-Z at time scales shorter than 6 months (Figures 5.2f,j).

Figure 5.3 shows the spatial distribution of monthly GRACE-DSI correlations with the

PDSI-Z and SPEI-Z at selected time scales. The correlation between the GRACE-DSI and

PDSI-Z is significant at the 95% confidence level over 91% of our study domain with an area-

weighted mean correlation coefficient of 0.54 (Figure 5.3a). The 1-month SPEI-Z has a low

correlation with the GRACE-DSI in most regions (Figure 5.3b). The correlation increases

in magnitude and spatial extent at time scales of 3-18 months and weakens at time scales

of 18-48 months (Figures 5.3c-i). The GRACE-DSI correlation with SPEI-Z is significant at

the 95% confidence level over 90% of our study domain at time scales from 5 to 10 months

with area-weighted average correlation coefficients above 0.43. Generally, the GRACE-DSI

and SPEI-Z have the highest correlation at time scales of 6-18 months (Figures 5.3d-f).
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Distinct rainfall and drought patterns were documented between western and eastern Aus-

tralia during the Millennium Drought period[Beard et al., 2011; van Dijk et al., 2013]. Figures

5.4b and c show the time series of the GRACE-DSI, SM-Z, and NDVI-Z for western Aus-

tralia (location 1) and eastern Australia (location 2). The GRACE-DSI and NDVI-Z have

much smaller uncertainty than SM-Z. These satellite-based metrics show overall consistent

temporal variations, but differences in trends and magnitude. From 2002 to late 2009, the

GRACE-DSI shows statistically significant drying trends in both locations (0.27 ± 0.03 yr1,

p < 0.001 for western Australia and 0.07 ± 0.02 yr1, p < 0.005 for eastern Australia). A

significant NDVI-Z decreasing trend (0.08 ± 0.04 yr1, p < 0.05) is observed in western Aus-

tralia but not in eastern Australia. The SM-Z shows no trend in either location. During the

extreme 2010/11 La Nina-induced flooding[Beard et al., 2011], the SM-Z increases earlier

than GRACE-DSI at both locations. The NDVI-Z increases concurrently with GRACE-DSI

in western Australia but responds simultaneously with SM-Z in eastern Australia. For the

entire study period, the GRACE-DSI has consistently good agreement with NDVI-Z at both

locations with a correlation coefficient R of 0.80 and root-mean-square error (RMSE) of 0.60.

SM-Z has good agreement with NDVI-Z in eastern Australia (R = 0.84, RMSE = 0.57) but

less agreement with NDVI-Z in western Australia (R = 0.53, RMSE = 0.96).

Figure 5.5 shows the GRACE-DSI uncertainty in drought category caused by GRACE mea-

surement and leakage errors. We find that GRACE-DSI characterizes drought severity with

an uncertainty less than one category (i.e., DSI error < 0.4, one drought category interval)

in 47% of our study domain (all land regions excluding Antarctica, Greenland, and bar-

ren grounds), with one category uncertainty (0.4 ≤ DSI error < 0.8) in 51% and with two

categories uncertainty (DSI error ≥ 0.8) in 2%.
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4.5 Discussion

4.5.1 GRACE-DSI comparison with PDSI and SPEI

The three indices adopt different water balance concepts and address different hydrological

processes. The GRACE-DSI is based on direct measurements of water balance that account

for water supply from precipitation and water demand from actual evapotranspiration and

runoff. The PDSI also accounts for the net water changes but through a simplified two-layer

bucket model, which usually represents the water balance of shallow soil depthDai [2011].

The GRACE-DSI captures total water supply conditions while PDSI-Z captures conditions

relative to the shallow-depth water storage. For instance, in July 2010 over eastern Australia

(Figure 5.1), the GRACE-DSI captures the groundwater deficit near the end of the Millennial

Drought[van Dijk et al., 2013; Leblanc et al., 2009, 2012] while the PDSI shows surface water

replenishment from the 2010 La Nina event[Beard et al., 2011]. The difference in water

balance concepts causes the two indices to capture different long-term trends in surface or

deeper water storage; this is the case for northern China (Figure 5.2b) where the GRACE-

DSI indicates a drying trend in overall water storage from 2002 to 2012 while the PDSI-Z

suggests a surface wetting trend from 2006 to 2014. This agrees with the observation from

Qin et al. [2015] in the same area that surface soil moisture and NDVI are increasing during

our study period despite significantly decreasing annual precipitation trend. For this reason,

we find a low temporal correlation in this region between GRACE-DSI and PDSI-Z for the

entire time series (R = 0.29, p < 0.05) while the correlation between the detrended time

series increases to 0.50 (p < 0.05).

In addition, the response time of shallow soil moisture to drought can be shorter than the

overall water storage[e.g. Van Loon, 2015b]. This explains the 1-month lag delay between the

GRACE-DSI and PDSI-Z for the 2010 western Russian drought and the 2005-06 East Africa

drought (Figures 5.2a,c; [Rulinda et al., 2012; Yoshida et al., 2015]). Groundwater pumping
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and agricultural irrigation can also delay the response of GRACE-DSI to natural drought

evolution, which would affect its agreement with PDSI in heavily irrigated areas[Dai , 2011].

The SPEI-Z assesses the climatic water balance (precipitation minus potential evapotranspi-

ration) over multiple time scales[Vicente-Serrano et al., 2010a]. The GRACE-DSI represents

moisture variations from all hydrological components. The response time of these compo-

nents to climatic water balance generally lengthens as they go deeper into the ground[McKee

et al., 1993; Vicente-Serrano et al., 2010a]. Therefore, the component that dominates changes

in the hydrologic cycle will determine at which time scale SPEI-Z agrees with GRACE-DSI.

For instance, the GRACE-DSI only has good agreement with 1-month SPEI-Z in detect-

ing the northern China drought (Figure 5.1), indicating that shallow-depth water storage

deficit dominates this drought event, in agreement with Barriopedro et al. [2012] describing

this event as short-term drought caused by transient summer precipitation shortage. In Aus-

tralia (Figure 5.1), where the GRACE-DSI is dominated by severe deep-water depletion near

the end of the Millennium Drought[e.g. Leblanc et al., 2012; van Dijk et al., 2013], GRACE-

DSI shows a better agreement in terms of spatial pattern with SPEI-Z for time scales longer

than 30 months (Figure 5.1). In the Amazon we find a maximum correlation for 6-month

SPEI-Z (Figures 5.2j, 5.3k), indicating that surface and shallow soil moisture dominates the

changes in the hydrologic cycle, in agreement with earlier studies in the same area[Han et al.,

2009; Kim et al., 2009; Frappart et al., 2012, 2013]. These results demonstrate that the time

scale at which the SPEI-Z achieves maximum temporal correlation with the GRACE-DSI

(optimal time scale) is of potential use to constrain the relative depth of the water component

that dominates the overall changes in the water cycle at a specific location. For instance,

the optimal time scale in northern and western Australia is much smaller than in south-

eastern Australia (Figure 5.3k). This result suggests that a relatively shallower hydrologic

component dominates the overall changes in the water cycle in northern and western Aus-

tralia compared to southeastern Australia, where severe groundwater depletion dominates

the changes in TWS during the Millennium DroughtLeblanc et al. [2009, 2012]. We evaluate
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this hypothesis using NDVI-Z as a proxy for root-zone soil moisture variations[Chen et al.,

2014; Yang et al., 2014; De Keersmaecker et al., 2017]. We calculate the optimal time scale

between SPEI-Z and NDVI-Z in Figure 4.6a. In northern and western Australia, we find

that the optimal SPEI-Z time scale for NDVI-Z is consistent with the optimal time scale

for GRACE-DSI (Figure 4.6b), suggesting that root-zone soil moisture variability dominates

the overall changes in the water cycle over these regions. This result therefore confirms that

changes in the water cycle in northern and western Australia are dominated by a relatively

shallower hydrologic component (root-zone soil moisture) than in southeastern Australia

(groundwater).

The optimal time scale (Figure 5.3k) shows large spatial variability. This variability is con-

sistent among different GRACE processing approaches (see Fig. S3b in the supplemental

material). We also find that the spatial pattern of Figure 5.3k is insensitive to GRACE

measurement errors. Therefore, the result of Figure ?? is robust. The large spatial variabil-

ity highlights the geographical complexity of the translation of climatic water balance into

hydrologic system[Tallaksen et al., 2009; Teuling et al., 2013; Van Loon et al., 2012, 2014;

Van Loon, 2015b]. This large spatial variability is also observed in previous studies com-

paring SPEI with PDSI at global scale[Vicente-Serrano et al., 2010b] and comparing SPEI

and SPI at local and regional scales with hydrological drought proxies using groundwater

and streamflow observations[Bloomfield and Marchant , 2013; López-Moreno et al., 2013; Li

and Rodell , 2015; Kumar et al., 2016]. We observe very long time scales (>40 months)

over regions such as western Africa; southern Africa; southern South America; and parts of

Australia, western Russia, and North America (Figure 5.3k). During the analyzed period,

those regions have experienced persistent trends in TWS[Long et al., 2017], mainly driven

by long-term changes in climatic conditions such as the sustained wetting trend in western

and southern Africa[Maidment et al., 2015] and persistent drought conditions in southern

South America and Australia[Chen et al., 2010a; van Dijk et al., 2013]. In those regions,

the GRACE-DSI is largely influenced by long-term accumulation of climatic water balance,
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therefore achieving maximum correlation with long-time-scale SPEI-Z.

4.5.2 Australian case study

From 2002 to late 2009, surface soil moisture (SM-Z) shows no trends but GRACE-DSI indi-

cates significant drying trends in both western and eastern Australia. This suggests gradual

depletion of deeper water storage, which is beyond the depth that microwave satellites can

sense, such as root-zone moisture and groundwater. Our analyses for location 2 agree with

the results from Leblanc et al. [2009, 2012] and van Dijk et al. [2013] in the Murray-Darling

basin, where soil moisture droughts stabilize at low levels since 2002 while groundwater levels

gradually decline until late 2009. Leblanc et al. [2012] also observe a small increase in total

water storage from 2007 to 2008 and estimate that about two-thirds of this increase is used

to replenish the shallow surface soil moisture reservoir. This is highly consistent with our

results in eastern Australia (Figure 5.4c). The small increase in total water storage in 2008

greatly reduces the magnitude of the drying trend in eastern Australia from 2002 to late

2009.

The NDVI-Z has different degrees of agreement with SM-Z in western and eastern Australia,

but has an overall good and consistent agreement with GRACE-DSI in both locations. This

suggests that the GRACE-DSI is a more consistent indicator of plant water availability than

surface soil moisture across Australia, in agreement with earlier studies[e.g. Chen et al., 2014;

Yang et al., 2014; Wu et al., 2015]. From 2002 to late 2009, although SM-Z has no trend,

NDVI-Z shows a decreasing trend in western Australia that coincides with the drying trend

in GRACE-DSI. This possibly reflects increasing water stress on plants as the drought prop-

agates from the shallow surface to the deep underground. During and after the 2010/11 La

Nina-induced extreme wetting, NDVI-Z closely follows GRACE-DSI in western Australia.

These together suggest that deep-rooted and groundwater-dependent plants might dominate
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vegetation greenness in western Australia. In contrast, NDVI-Z does not show significant

decreasing trend from 2002 to late 2009 in eastern Australia, suggesting that vegetation

might not be influenced by the gradual depletion of deeper water storage. Overall, NDVI-Z

agrees better with SM-Z both in magnitude and temporal variation than with GRACE-DSI

in eastern Australia, indicating that shallow-rooted plants might dominate vegetation green-

ness in this region. This contrasting NDVI response pattern is consistent with the regional

distribution of drought-sensitive vegetation in eastern Australia and drought-resistant vege-

tation in western Australia where water-table depth is much deeper than in the east[Khan

et al., 2008; Fan et al., 2013; De Keersmaecker et al., 2015; Seddon et al., 2016].

4.5.3 Short data record length

The initial GRACE-DSI period (2002-14) may not be long enough to sample the full range

of wetness and dryness required for a climatological index, for which a climatology of at

least 30 years is preferred. To evaluate the potential impact of short data record length on

drought characterization, we calculate the RMSE between two PDSI-Z records normalized

to 2002-14 and 1982-2014, respectively, using equation4.2. We find that using the 13-yr

climatology, PDSI-Z underestimates drought by one category over 15% of the study domain

(all land regions excluding Antarctica, Greenland, and barren ground) and by two categories

over 1% of the study domain (Figure 4.7). These regions experienced a significantly drier

mean climate during 2002-14 than during 1982-2014. We also find that using the 13-yr

climatology, PDSI-Z overestimates drought by one category over 12% of the study domain

where the 13-yr mean climate is much wetter and/or the hydroclimatic variability is much

smaller than the 33-yr climatology. Therefore, when using GRACE-DSI in these regions,

we suggest that the stakeholders correct for the category bias to mitigate the short baseline

issue. When comparing the GRACE-DSI with other long-term drought metrics, the bias

can also be effectively removed by referencing to the 2002-14 period using the normalization
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method employed in this study.

4.5.4 GRACE-DSI calculated from JPL mascon solutions

We also calculate GRACE-DSI using the Jet Propulsion Laboratory (JPL) RL05 Mascon

solutions[Watkins et al., 2015]. Each mascon solves for the monthly gravity field averaged

over an equal-area 3°spherical cap mass concentration block. The spatial representation of

the GRACE-DSI from the mascon is therefore different from the spherical harmonics-derived

GRACE-DSI for which each 1°grid cell represents conditions averaged over a 350-km radius

footprint. We repeat the drought index intercomparison for the mascon-derived GRACE-

DSI (see supplemental material for details). Overall, the mascon results are in agreement

with the spherical harmonics results except in the Amazon rain forest, where for over a few

months we observe north-south stripes (e.g., Figure 4.8) in regions characterized by larger

errors in the mascon[Watkins et al., 2015; Wiese et al., 2016]. The stripes are not visible

in the spherical harmonics-derived GRACE-DSI and in the other drought indices (Figures.

4.9,4.10,4.11).

4.6 Conclusions

We present a new monthly global DSI developed from satellite-observed time-variable terres-

trial water storage changes from GRACE. The initial global GRACE-DSI record extends from

2002 to 2014 and will be updated on a regular basis when newly processed GRACE solutions

become available. Although currently not in real time, the GRACE-DSI has potential to

provide near-real-time drought monitoring capability with the launch of the GRACE Follow-

On mission in 2017. Moreover, the GRACE-DSI has several unique advantages that make it

valuable to study drought-related processes and socioecological impacts. The GRACE-DSI
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is unaffected by uncertainties associated with traditional model-based indices (e.g., PDSI,

SPI, and SPEI), such as dependency on sparse weather station observations or uncertainty

from the use of simple water balance models or reanalysis meteorological data. Therefore, it

provides an independent observation benchmark for evaluating model-based drought moni-

toring tools while providing drought information even where sparse ground observations may

constrain other approaches.

The GRACE-DSI is sensitive to changes in the bulk terrestrial water storage component

of the hydrologic cycle extending from a plants root-zone soil moisture to deeper ground-

water. In contrast, PDSI represents the water balance of shallow soil depth, and SPEI-Z

assesses the climatic water balance (precipitation minus potential evapotranspiration) over

multiple time scales. We interpret the differences between GRACE-DSI and those tradi-

tional drought indicators in terms of which hydrological component dominates the drought

signal. For instance, the low correlation between GRACE-DSI and PDSI-Z in northern

China is due to the difference in trend between TWS and shallow water storage. The time

scales of maximum correlation between GRACE-DSI and SPEI-Z indicate which component

dominates the hydrologic cycle: maximum correlation occurs with short-time-period SPEI-Z

when the hydrological cycle is dominated by changes at shallow depth; maximum correlation

occurs with longer-period SPEI-Z when the hydrological cycle changes at depth. For east-

ern and southeastern Australia, for instance, maximum correlation between GRACE-DSI

and SPEI-Z occurs on a longer time scale because the Millennium Drought is dominated by

deep-water depletion. The synergistic use of GRACE-DSI with other existing environmental

data and drought monitoring tools therefore has potential for improving the characteriza-

tion of drought (e.g., propagation and recovery) and associated ecological impacts at regional

and global scales. In this paper, we demonstrate that combing the GRACE-DSI with other

satellite environmental records improves the characterization of the 2000s Australia Millen-

nium Drought, as well as associated vegetation response to water supply changes at surface

and subsurface soil layers. A caveat to the application of GRACE-DSI is that it should be
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used with caution in glaciated areas where the GRACE-DSI might contain ice mass change

signals[Jacob et al., 2012].

4.7 Supplementary Materials

We repeat our drought index inter-comparison using DSI calculated from GRACE mascon

solutions. We use NASA JPL version 2 mascon data with no Coastline Resolution Improve-

ment (CRI) filter applied (RL05M 1.MSCNv02, [Watkins et al., 2015]). Each mascon solves

for monthly gravity field averaged over an equal-area 3-degree spherical cap mass concen-

tration blocks. For consistency in spatial scale, we process other drought indices for each

mascon by averaging all index values within the same mascon.
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Figure 4.1: Global patterns of the GRACE-DSI, PDSI-Z, and SPEI-Z drought metrics at
selected time scales (1,3,6,9,12,15,24,and 36 months) for July 2010.
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Figure 4.2: Time series of the GRACE-DSI (red), PDSI-Z (black), and SPEI-Z (blue) at
selected time scales at four locations annotated with 350-km radius footprints in the map.
The geographic coordinates are (54°N, 46°E), (8°S, 72°W), (0°, 38°E), and (44°N, 116°E)
for locations 1-4, respectively. Note that the GRACE-DSI is the same for all plots in the
same location. Error bar on GRACE-DSI represents the GRACE-DSI uncertainty due to
GRACE measurement and leakage errors. Pearson correlation coefficient of each comparison
is shown on top of each plot. Correlation coefficients larger than 0.17 are significant at the
95% confidence level.
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Figure 4.3: Correlation between monthly (a) GRACE-DSI and PDSI-Z and (b)-(i) GRACE-
DSI and SPEI-Z at time scales of 1, 3, 6, 12, 18, 27, 36, and 48 months, respectively. (j)
Max correlation between monthly GRACE-DSI and SPEI-Z at various time scales. (k) Time
scale of SPEI-Z in which the max correlation in (j) is recorded. Insignificant correlation
coefficients (p > 0.05) are masked out in (a)-(j).
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Figure 4.4: (a) Time series of GRACE-DSI (red), satellite-retrieved SM-Z (yellow), and
NDVI-Z (green) for two locations in mainland Australia annotated with 350-km footprints
in the land-cover map. (b) Location 1 (27°S, 121°E) in western Australia and (c) location 2
(28°S, 148°E) in eastern Australia. Time series are smoothed using a quadratic polynomial
filter with a 13-month window[Savitzky and Golay , 1964]. Uncertainties of these satellite
records are shaded in corresponding colors. The errors of SM-Z and NDVI-Z are estimated
conservatively in a similar manner as the GRACE-DSI considering both measurement error
and leakage error.
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Figure 4.5: Global distribution of GRACE-DSI uncertainty in drought category excluding
Antarctica, Greenland, and barren grounds.
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Figure 4.6: (a) Time scale by which NDVI-Z achieves max correlation coefficient with SPEI-
Z. (b) The Australia subregion in Figure 5.3, that is, the time scale by which GRACE-DSI
achieves max correlation coefficient with SPEI-Z. Note that a large area of (b) saturates at
time scales over 20 months. Corresponding max correlation coefficients are significant at the
99% confidence level for both plots.
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Figure 4.7: Drought category overestimation (positive value) and underestimation (negative
value) using the 2002-14 reference period rather than the 1982-2014 reference period for the
PDSI-Z drought index.
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Figure 4.8: Global patterns of the mascon GRACE-DSI and PDSI-Z for July 2010. Color
scheme is the same as Figure 5.1 in the main text.
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Figure 4.9: (a) is the correlation between mascon GRACE-DSI and PDSI-Z. (b) is the
correlation between spherical harmonic GRACE-DSI and PDSI-Z (same as Figure 5.3a in
the main paper).
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Figure 4.10: (a) is the maximum correlation between mascon GRACE-DSI and SPEI-Z at
various time scales. (b) is the time scale of SPEI-Z in which the maximum correlation in
(a) is recorded. (c) and (d) are similar to (a) and (b) respectively except for the spherical
harmonic processing.
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Figure 4.11: (a-e) are time series inter-comparisons of the mascon GRACE-DSI (red), PDSI-
Z (black), and SPEI-Z (blue) at selected time scales for a mascon close to the location 2 in
the Amazon annotated in the top panel of Figures 5.2. (f-j) are similar to (a-e) respectively
except for the spherical harmonic processing. Note that the spatial representation of a
mascon and a one-degree grid cell is different. Dots are original index values and lines
are smoothed values using a quadratic polynomial filter with a 13-month window[Savitzky
and Golay , 1964]. Pearson correlation coefficient is shown on top of each plot. Correlation
coefficient larger than 0.17 is significant at 95% confidence level.
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Chapter 5

Ecological restoration impact on total

terrestrial water storage

As appears in:

Zhao, M., G. A, J. Zhang, I. Velicogna, C. Liang, Z. Li, “Ecological restoration

impact on total terrestrial water storage,” Nature Sustainability 4, 56-62, 2021.

Available under a Creative Commons Attribution 3.0 license

5.1 Abstract

Large-scale ecological restoration (ER) has been successful in curbing land degradation and

improving ecosystem services. Previous studies have shown that ER changes individual

water flux or storage, but its net impact on total water resources remains unknown. Here

we quantify ER impact on total terrestrial water storage (TWS) in the Mu Us Sandyland of

northern China, a hotspot of ER practices. By integrating multiple satellite observations and

government reports, we construct a TWS record that covers both the pre–ER (1982–1998)
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and the post-ER (2003–2016) periods. We observe a significant TWS depletion (P<0.0001)

after ER, a substantial deviation from the pre–ER condition. This contrasts with a TWS

increase simulated by an ecosystem model that excludes human interventions, indicating

that ER is the primary cause for the observed water depletion. We estimate that ER has

consumed TWS at an average rate of 16.6 ± 5.0 mm yr−1 in the analysed domain, equivalent

to a volume of 21 km3 freshwater loss during the post-ER period. This study provides a

framework that directly informs the water cost of ER. Our findings show that ER can exert

excessive pressure on regional water resources. Sustainable ER strategies require optimizing

ecosystem water consumption to balance land restoration and water resource conservation.

5.2 Introduction

Since 1998, China has been implementing multiple ecological restoration (ER) programmes

to combat desertification, air pollution and climate change[Bryan et al., 2018; Ouyang et al.,

2016]. These policy-driven programmes, covering over 6.24 million km2 of land, have con-

tributed to a strong greening trend and desertification reversion in China[Bryan et al., 2018;

Ouyang et al., 2016; Chen et al., 2019; Tong et al., 2018; Lu et al., 2018]. Meanwhile,

they have exerted a notable influence on regional water balance[Ouyang et al., 2016; Feng

et al., 2016; Jia et al., 2017; Chen et al., 2015; Tong et al., 2020]. Previous studies have

primarily focused on evaluating how ER influences hydrological fluxes (for example, evapo-

transpiration or runoff)[Feng et al., 2016; Jackson et al., 2005] or an individual water storage

component (for example, soil moisture)[Jia et al., 2017; Chen et al., 2015; Tong et al., 2020].

Changes in these individual fluxes and storage components affect the land water budget in

different directions, leaving their net impact on total water resources unknown (Figure 5.1).

For example, recent studies have shown that revegetation increases evapotranspiration (ET)

and decreases soil moisture[Feng et al., 2016; Jia et al., 2017; Tong et al., 2020]; however,
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the total amount of freshwater resources may remain stable if vegetation recovery increases

precipitation (potential ecosystem feedback to climate)[Li et al., 2018; Green et al., 2017;

Branch and Wulfmeyer , 2019], enhances soil infiltration through root development, and thus

increases groundwater recharge and decreases runoff[Ellison et al., 2017]. Quantifying the

changes in total water resources is essential for monitoring and understanding the overall

water constraint on ER practices[McDonnell et al., 2018; Rodell et al., 2018]. It also directly

informs sustainable land and water management for balancing the needs of socioeconomic

development and the protection of limited water supply to humans and ecosystems. How-

ever, due to limited observations, few studies have detected changes in total water resources

before and after ER. Climate variability and other human activities such as groundwater

pumping also complicate the attribution of changes in total water resources to ER[Rodell

et al., 2009; Scanlon et al., 2018].

In this study, we quantify ER impact on total water resources using direct measurements from

the Gravity Recovery and Climate Experiment (GRACE) satellites[Tapley et al., 2004b, 2019]

in conjunction with multiple other environmental observations. GRACE measures monthly

changes in Earths gravity field with unprecedented precision[Tapley et al., 2004b, 2019]. The

primary process driving the measured gravitational variations at monthly timescales is the

redistribution of water[Tapley et al., 2004b]. This allows GRACE to monitor changes in total

terrestrial water storage (TWS), where TWS = groundwater + soil moisture + surface wa-

ters + snow + ice, that were impossible to measure before its launch in 2002. Since GRACE

directly measures gravity changes, it integrates the impacts of both natural climate and hu-

man activities on TWS[Tapley et al., 2019]. Using GRACE measurements, other available

environmental observations such as a long-term vegetation index and a water balance ap-

proach, we construct a continuous TWS record covering both the pre- and post-ER periods.

To separate the impact of ER on TWS changes, we simulate climate- and atmosphere-driven

TWS changes using a dynamic vegetation model that excludes anthropogenic influences.

We then remove the simulated climate and atmospheric impact from the constructed TWS
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record to estimate the contribution from ER.

We focus our analysis on the Mu Us Sandyland and its surrounding areas in northern China

(Figure 5.2a,b and Methods) because they are among the most successful examples of reveg-

etation and reversing desertification[Tian et al., 2015; Zhang and Huisingh, 2018]. Climate

change combined with human activities such as over-grazing contributed to the desertification

of these semiarid regions in history[Huang et al., 2009]. Since 1999, multiple policy-driven

ER programmes, such as ‘Grain for Green’, ‘Three-North Shelter Forest’ and the afforesta-

tion subsidy policy, have reduced grazing pressure and promoted grassland restoration[Lu

et al., 2018] and desertification reversion in this region[Xu et al., 2010]. Multi-satellite obser-

vations of the normalized difference vegetation index (NDVI) reveal that these regions have

experienced a strong vegetation growth since the early 2000s (Figure 5.2c). Several studies

suggest that ER programmes and favourable climate conditions jointly drove this trend[Yan

et al., 2015; Li et al., 2016; Xu et al., 2018]. Based on global annual land-cover maps from

the European Space Agency Climate Change Initiative (ESA CCI)[Poulter et al., 2015], bare

and sparsely vegetated areas were rapidly restored to grassland during 1999–2002 (Figure

5.2d). We thus use 1999–2002 as a divider for the pre- and post-ER periods.

ER is the most prominent human practice in our study region since the late 1990s. To sta-

bilize dune fields, local communities create ‘checkerboards’ of straw or sticks, within which

they plant vegetation (such as Artemisca ordosica, Caragana microphylla, Sabina vulgaris

and Salix spp.)[Xu et al., 2015]. Aerial seeding is also used to increase vegetation cover[Yan

et al., 2015], and small-sized croplands such as liquorice are cultivated for economic return.

These revegetation activities are expected to enhance the consumption of soil moisture and

groundwater via the ET process[Cheng et al., 2013a; Yu et al., 2018]. Outside of ER, other

human impacts on water resources are negligible. There is no water diversion or large reser-

voir construction in this region. Groundwater pumping for crop irrigation in the analysed

domain is negligible due to the small area of cultivated croplands[Feng et al., 2016] (Figure
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5.2b and Supplementary Discussion). It is not affected by intense groundwater pumping in

the North China Plain because the aquifer underneath our study region is disconnected from

the aquifers in that plain[Li et al., 2013] (Supplementary Discussion). The impact of coal

mining on groundwater consumption is also shown to be small[Xie et al., 2018]. These con-

ditions make the Mu Us Sandyland and its surrounding areas an ideal region to investigate

the impact of ER on TWS.

5.3 Observed TWS for the post-ER period (2003-2016)

The GRACE satellite mission was launched in March 2002 and therefore provides direct

TWS observations for the post-ER period. We observe an average TWS depletion rate of

7.1±0.6 mm yr−1 (hereafter, all uncertainties are reported as 1 σ errors) equivalent water

thickness for our study region from 2003 to 2016 (Figure 5.3a and Methods).

The post-ER period is wetter than average (Figure 5.6); and the impact of drought on

ecohydrology appears to cover a limited time span. For instance, 2005 recorded the lowest

annual precipitation in the period (Figure 5.6). In 2007, NDVI and ET had returned to

above their pre-drought levels (Figure 5.2c and 5.7), consistent with previous studies that

have shown transitory drought impact on semiarid ecosystems[Griffin-Nolan et al., 2018;

Poulter et al., 2014; Ahlström et al., 2015]. For the GRACE TWS trend analysis, excluding

2005 leads to a trend of −7.0 mm yr−1. Excluding 2005 and 2006 leads to a trend of −7.3 mm

yr−1. These estimates are consistent with what we find using the entire post-ER period (−7.1

mm yr−1). These results indicate that climate variability and drought are not responsible

for the observed decreasing trend in the post-ER TWS.
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5.4 Estimated TWS for the pre-ER period (1982-1998)

We estimate the changes in TWS during the pre-ER period based on the balance between

precipitation (P), runoff (R) and ET. We use P estimates from the Climate Research Unit

(CRU) because they agree well with rain gauge measurements (Figure 5.6b). We calculate

R from river gauge measurements. We calculate pre-ER ET by first calculating the post-ER

ET using GRACE TWS and the water balance approach (Methods and Figure5.7). We

build an empirical relationship between GRACE-derived ET and the NDVI, and use this

relationship to extrapolate pre-ER ET (Methods and Figures 5.7 and 5.8). By accumulating

P-ET-R on annual scales, we find a TWS trend of 6.8 ± 10.8 mm yr−1 during 1982–1998

(Figure 5.3 and Methods).

The estimates of ET in the pre-ER period rely on the ET-NDVI relationship derived from

the post-ER period, which reflects water-use efficiency for the restored grassland. Compared

with its natural counterpart, restored grassland is actively selected by ER practitioners

and probably features a higher water-use efficiency[Cho et al., 2019]. For this reason, the

extrapolation might underestimate the actual ET and lead to an upper-bound estimate of the

TWS trend in the pre-ER period. To complement this analysis, we simulate TWS variations

using a dynamic vegetation model Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-

GUESS) and find an increasing TWS trend of 3.4 ± 4.8 mm yr−1 for the pre-ER period

(Figure 5.4a and Methods). The model has a limited water storage capacity and tends

to underestimate TWS trends under natural conditions[Scanlon et al., 2018; Swenson and

Lawrence, 2015](Methods). Therefore, the two methods (one using LPJ-GUESS, the other

ET-NDVI extrapolation) provide lower- and upper-bound estimates of the pre-ER TWS

trend.
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5.5 Separation of ER impact

Our calculations show a significant depletion of TWS (P<0.0001) during the post-ER period

(Figure 5.3a), a substantial deviation from the pre-ER condition (Figures 5.3b and 5.4a).

This change is a result of combined climate and human influences. To isolate the human

impact, we simulate the climate-driven variations in TWS using LPJ-GUESS. The model

accounts for climate forcing, rising levels of CO2 and nitrogen deposition, but it does not

account for revegetation (Methods). The simulation produces a TWS trend of 9.5 ± 5.0 mm

yr−1 in the post-ER period, which is driven by increasing precipitation (Figure 5.6) and an

underestimated vegetation productivity in the absence of human interventions (Figure 5.4b).

By removing the simulated TWS trend from the GRACE results, we estimate that ER has

depleted TWS at an average rate of 16.6 ± 5.0 mm yr−1 during 2003-2016. This estimate is

conservative since LPJ-GUESS probably underestimates the TWS trend due to insufficient

storage capacity[Scanlon et al., 2018; Swenson and Lawrence, 2015] and the model forcing

might be subject to a dry bias since 2011 (Methods).

5.6 Restoration strategies and future TWS trend

Whether the current TWS decreasing trend will continue depends on the interactions between

ER strategies and local hydrometeorological conditions, which we illustrate in Figure 5.5.

The study domain experienced a gradual increase in precipitation (Figure 5.6), and model

results show that natural conditions favoured an increase in TWS since the late 1990s (Figure

5.4a). Ecosystem water consumption associated with initial revegetation would be offset

by precipitation, and TWS would increase or remain stable (regime I in Figure 5.5). As

ER intensifies, water consumption would surpass the input from precipitation, and TWS

would decline (regime II in Figure 5.5). This phase describes the current status of ER in
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the study domain, where the sustained greening is at the expense of TWS. Depending on

the socioeconomic cost and benefit of trading TWS for revegetation, the local stakeholders

may opt to (1) reduce ER practices and regulate plant water uptake by monitoring plant

water-use efficiency and thinning densely vegetated areas[Chen et al., 2015]; (2) maintain

the current level of ER practices; or (3) elevate revegetation efforts. Strategy (1) will reduce

ecosystem water consumption and slow down or reverse the current TWS trend (that is, a

shift towards regime I; Figure 5.5). On the other hand, strategies (2) and (3) are expected

to exacerbate water consumption, and the current trend in TWS would probably continue.

A sustained decrease in land water supply will elevate plant water stress, undermining the

normal functioning of the existing plant community. The adoption of these two strategies

will therefore require active monitoring of local water table depth and plant survival rates.

A decrease in survival rates may indicate that vegetation density is approaching or exceeding

the maximum capacity that the local environment can carry[Feng et al., 2016] (regime III

in Figure 5.5). At that point, further revegetation will impair both water resources and ER

achievements. Regional climate models predict future warming and wetting in the study

area[Guo et al., 2017], which is expected to promote both TWS replenishment and plant

growth. This will probably provide more room for ER to function under regime I and favour

a strategy with reduced human revegetation but more natural regeneration.

5.7 Discussion

We compare our broader spatial and longer timescale results with ground-level observations.

Our TWS trend calculations for the pre- and post-ER periods are in line with groundwater

statistics in Yellow River Resource Bulletins. Yellow River Resource Bulletins report shal-

low aquifer water storage changes for two subregions occupying about 15,000 km2 of our

study region (Table 5.1). The cumulative change in total shallow aquifer storage of the two
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subregions was 0.043 km3 from 1980 to 2003, equivalent to an average increase rate of 0.12

mm yr−1. In contrast, the cumulative change from 2003 to 2017 was 0.553 km3, equivalent

to an average rate of 2.45 mm yr−1. This number is smaller than the TWS depletion rate

observed by GRACE (7.1 mm yr−1), indicating that soil moisture is probably depleting at

a mean rate of 4.7 mm yr−1. This soil moisture depletion rate is consistent with previous

research which has shown that the top 4 m total soil moisture content declined at a mean

rate of 5.1 mm yr−1 from 2004 to 2012 due to human plantations in Shenmu County of Mu

Us Sandyland[Jia et al., 2017]. In addition, we show that ER has depleted TWS at a rate

of 16.6 mm yr−1, equivalent to a total water depletion of 232 mm during 2003-2016. The

decrease in TWS is accompanied by an increase of NDVI from about 0.16 to 0.20 in the study

area (Figure 5.2c). The correspondence between TWS loss and NDVI gain is consistent with

field-level results from [Gong et al., 2017] (Table 5.2 and Supplementary Discussion).

Previous studies discussing anthropogenic influences on TWS have often considered un-

sustainable groundwater use for crop irrigation, water diversion and reservoir construc-

tion[Rodell et al., 2009; Feng et al., 2013]. For our study region, we conservatively estimate

that ER has depleted TWS at a mean rate of 16.6 ± 5.0 mm yr−1 during 20032016. This

rate is comparable to groundwater depletion in the nearby North China Plain (22 ± 3 mm

yr−1 from 2003 to 2010) and Californias Central Valley (20.4 ± 3.9 mm yr−1 from 2003 to

2010), both of which are heavily influenced by groundwater pumping for crop irrigation[Feng

et al., 2013; Famiglietti et al., 2011]. Therefore, we argue that large-scale policy-driven eco-

logical restoration is an important anthropogenic contributor to TWS changes. China has

been implementing over 16 policy-driven ER programmes covering two-thirds of its terri-

tory[Bryan et al., 2018; Ouyang et al., 2016]. For instance, the ‘Three-North Shelter Forest’

programme (planned until 2050), covering our study region and 13 provincial regions in

northern China, is restoring degraded land via grassland conservation, forest plantations,

mountain closure and sandy area revegetation[Lu et al., 2018]. Recent studies have shown

strong decreasing trends in surface soil moisture and TWS[Rodell et al., 2018; Wang et al.,
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2018; Chen et al., 2016] despite increasing precipitation trends over these regions[Peng and

Zhou, 2017]. Our results indicate that ER may be one of the important factors that drive

these decreasing trends. Currently, hydrological models do not consider ER impact on water

resources[Scanlon et al., 2018] and therefore they may be underestimating future human

stress on freshwater resources.

In summary, we propose an analytical framework to study ER impact on TWS by achieving

three objectives: (1) calculate the change in TWS before and after the implementation of

ER; (2) isolate climate change and other human influences on the calculated TWS change;

and (3) inform the potential impacts of different restoration strategies on future TWS trend.

Applying this framework with independent datasets (based on different satellite platforms,

dynamic vegetation modelling and government reports), we conclude that ER programmes

are the primary cause of the sustained TWS decrease in the Mu Us Sandyland and its

surrounding areas. On a global scale, restoring deforested and degraded land is an increas-

ingly popular tactic to enhance carbon sequestration and mitigate climate change[Ellison

et al., 2017; Grassi et al., 2017; Griscom et al., 2017; Bastin et al., 2019]. The impact of

ER on different hydrological fluxes and storage components differs by soil type, biome and

climate zone; therefore, their net impact on total terrestrial water storage also varies by

region. Future work is needed to understand how different environmental settings influ-

ence ERs impact on total freshwater availability. Our proposed framework is applicable to

other restoration-intensive regions for this purpose, which is essential to ensure sustainable

utilization of freshwater resources in restoration practices[Rodell et al., 2018].
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5.8 Methods

5.8.1 GRACE data and the trend estimate

We use monthly GRACE TWS anomalies from the Jet Propulsion Laboratory (JPL) RL06

version 1 mascon solutions from 2003 to 2016[Watkins et al., 2015]. The mascon solutions

are represented on a 0.5°longitude-latitude grid. Each mascon solves for the monthly gravity

field averaged over an equal-area 3°× 3°mass concentration block (mascon). The Mu Us

Sandyland extends over two mascons (Figure 5.9). To best represent the Mu Us Sandyland,

we define a 3°× 3°region (∼ 86,000 km2) that best covers our study area while maintaining

the native resolution of a single mascon (Figures 5.2a,b). We calculate the TWS time series

of our defined region by averaging the two mascons. We linearly interpolate GRACE missing

months from the nearest previous and following non-missing GRACE values[Rodell et al.,

2018]. We calculate GRACE TWS error by propagating the error estimates of JPL mascon

solutions[Wiese et al., 2016]. We also evaluate the potential signal leakage to our study

domain from the groundwater depletion in the North China Plain and find the leakage effect

negligible (Figure 5.10 and Supplementary Discussion).

We calculate the TWS trend by simultaneously fitting an annual and a semiannual signal, a

linear trend, and a constant to the GRACE time series. From the best fit model, the regres-

sion error of the trend is 0.39 mm yr−1. We use a Monte Carlo simulation to estimate the

trend error caused by GRACE error. We generate an ensemble of 1,000 normally distributed

pseudo GRACE time series with zero mean random noise (σ = GRACE error). We compute

the linear trend for each of those 1,000 simulations. The resulting sample trends follow a

normal distribution, and we set the 1 s.d. of the sample trends as the trend error caused by

GRACE error, which is 0.45 mm yr−1. The overall error of the calculated TWS trend is the

summation of the s.d. and regression error in quadrature, namely 0.60 mm yr−1.
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5.8.2 NDVI and land cover change

NDVI, calculated as the ratio of the difference between near-infrared and red visible re-

flectance values to their sum, measures canopy greenness and represents the composite

property of leaf area, fractional vegetation cover, canopy structure and total chlorophyll

content[Myneni et al., 1995]. Therefore, NDVI is a good proxy for photosynthesis and evap-

otranspiration, which are driven by light absorption at the top of the canopy, especially in

arid and semiarid ecosystems[Gong et al., 2017; Glenn et al., 2007].

Two NDVI datasets are used to calculate the annual mean NDVI, namely the Moderate Res-

olution Imaging Spectroradiometer (MODIS) Collection 6 MOD13C2 and the latest Global

Inventory Modeling and Mapping Studies 3rd generation (GIMMS-3g). MOD13C2 NDVI

is available monthly from February 2000 to the present with a spatial resolution of 0.05°.

We only use high-quality pixels with pixel reliability of ‘good data’ or a usefulness value of

‘0010’ or better according to the user manual. GIMMS-3g NDVI is generated from the Na-

tional Oceanic and Atmospheric Administration’s Advanced Very High Resolution Radiome-

ter data, available bi-monthly on a 0.083°grid from July 1981 to December 2015. These data

have been corrected for various deleterious effects, such as calibration loss, orbital drift and

volcanic eruptions[Pinzon and Tucker , 2014]. We only use pixels without apparent issues.

We linearly interpolate missing pixel values from nearby time points for both MODIS and

GIMMS-3g datasets. To obtain a consistent NDVI record over the entire study period, we

calibrate the GIMMS-3g NDVI values to the MODIS reference using a simple linear regres-

sion (R2= 0.97) between their annual values from 2003 to 2015[Fan and Liu, 2018]; we use

this consistent record for our analysis.

We quantify the land cover change using global annual land-cover maps from the ESA CCI.

CCI land-cover maps (v2.0.7) range from 1992 to 2015 with a spatial resolution of 300m.

These maps are produced by combining global daily surface reflectance observations from
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five satellite systems in a consistent manner[Poulter et al., 2015].

During the 1999-2002 period, the NDVI shows large variability due to the 1999-2000 drought

(Figures 5.2c and 5.6). Revegetation in this period is captured by the land conversion from

bare and sparsely vegetated to grassland (Figure 5.2d). From the early 2000s to present, the

land cover distribution in the study area remains stable while NDVI gradually increases. In

general, NDVI reflects changes in plant structure and states; it can capture restoration efforts

both on barren land[Xu et al., 2015] and in pre-existing vegetated regions[Yan et al., 2015].

NDVI is therefore a more comprehensive metric than land cover to quantify the impact of

ER on biomass.

5.8.3 Precipitation

We obtain monthly precipitation measurements from six stations located within our study

region (Figure 5.2b) for the period 1985-2016 from the National Meteorological Administra-

tion of China (http://data.cam.cn). For an extended spatial coverage, we evaluate the

gridded monthly precipitation data from the Tropical Rainfall Measuring Mission (TRMM)

3B43 product (available after 1998 on a 0.25°grid)[Huffman et al., 2007] and CRU TS v.4.03

(available after 1901 on a 0.5°grid)[Harris et al., 2020]. We average each dataset over the grid

cells that contain the six stations and compare the aggregated time series with the station

average. We find that the TRMM data agree with the station average in the post-ER period,

while the CRU data agree in the pre-ER period; but it is too dry since 2011 (Figure 5.6b).

We therefore adopt the CRU and the TRMM data to represent the pre-ER and post-ER

precipitation, respectively, in the water budget analysis. We quantify the uncertainties in

the gridded precipitation datasets using their mean absolute error relative to the station

measurements.
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5.8.4 Runoff

Half of our study region is contained within the Ordos endorheic region, where water does

not drain outside the region[Wang et al., 2018] (Figure 5.11a). A quarter of our study region

drains to the Yellow River, and another quarter drains to the Wuding River, a tributary of the

Yellow River. We obtain annual runoff during 1982-2013 from the Baijiachuan hydrological

station that gauges total runoff out of the Wuding River Basin[Zhou et al., 2013] (Figure

5.11a). However, runoff data is unavailable for the quarter that directly drains to the Yellow

River. We estimate its runoff to be 65% of Wuding River runoff because its long-term mean

precipitation is 65% of that in the quarter region that drains to the Wuding River. We

interpolate for 20142016 by using the 2013 runoff value. We assume a ±50% error on our

final runoff estimates (Figure 5.11b). Because the annual runoff is negligible (less than 5%

of annual total precipitation amount), even assuming a ±100% error on the final runoff

estimates does not change our conclusions despite slightly increasing our error estimates.

5.8.5 Calculation of 2003-2016 evapotranspiration

We calculate ET for the post-restoration period (2003-2016) as the residual of the water

budget equation:

ET = P −R− dTWS/dt (5.1)

where P is precipitation, R is runoff, and dTWS/dt is the change in terrestrial water storage

(TWS) for a given period[Rodell et al., 2004]. The dTWS/dt rate on monthly timescales

has a low signal-to-noise ratio due to the large month-to-month GRACE error. We therefore

calculate ET on annual scales using equation 5.1. To reduce the influence of seasonal vari-

ability on dTWS/dt, for a given year we calculate dTWS/dt as the linear trend of a model
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that simultaneously fits an annual, a semiannual and a linear trend to the 12 monthly points.

The error of dTWS/dt is approximated by the summation of model trend statistic error and

GRACE annual error in quadrature. We calculate annual P from TRMM because it has no

bias compared to station measurements during 2003-2016 (Figure 5.6b). The error of ET

is then approximated by the summation of dTWS/dt error, TRMM precipitation error and

runoff error in quadrature (Figure 5.7).

5.8.6 Calculation of 1982-2002 ET

To estimate annual ET before 2003, we first build a regression equation that relates water

balance ET and NDVI values during 20032016 (ET ≈ slope × NDVI + intercept; slope =

2886.6 ± 559.7, intercept = 191.4 ± 98.1, R2 = 0.7) (Figure 5.8). We input annual NDVI

from 1982 to 2002 into the regression equation to calculate annual ET as well as its 1σ

prediction error. We propagate post-ER ET errors to pre-ER ET estimates using a Monte

Carlo simulation. We generate an ensemble of 1,000 normally distributed post-ER ET time

series with zero mean random noise (σ = our estimated post-ER ET errors). For each

simulation, we build the regression equation and input pre-ER NDVI values to simulate

pre-ER ET. We set the one s.d. of the 1,000 sample pre-ER ET values at each year as

post-ER ET error impact. The final errors of pre-ER ET estimates are approximated by the

summation of post-ER ET error impact and 1σ prediction error in quadrature (Figure 5.7).

Here the analysis employs the NDVI values calibrated by the MODIS data. If we use the

original GIMMS-3g NDVI as an additional test, we estimate the regression slope, intercept

and R2 to be 2715.8±727.1, 159.3±125.5 and 0.6, respectively, for the 20032015 period,

consistent with what we find using the MODIS-calibrated data.
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5.8.7 The TWS trend before ER

We calculate annual TWS before restoration by accumulating P from CRU, R from river

gauge measurements and our ET estimates during 1982-1998 using equation 5.1 (Figure

5.3b). We estimate the TWS trend by fitting a simple linear model to the annual TWS time

series. We propagate errors of P, R and ET to TWS using a Monte Carlo simulation. We

generate an ensemble of 1,000 normally distributed pseudo P, R and ET time series with

zero mean random noise (σ = our estimated errors for P, R and ET, respectively). For

each simulation, we accumulate P, R and ET to get a pseudo annual TWS time series and

calculate its linear trend. We then calculate the s.d. of the 1,000 sample trends. Finally, we

approximate the overall TWS trend error as the summation of the s.d. and trend regression

error in quadrature. The large error bar of the estimated TWS trend results from the

accumulation of errors when integrating P, ET and R to calculate TWS.

5.8.8 Dynamic vegetation modelling

We simulate the response of ecohydrology to climate and atmospheric drivers using the dy-

namic vegetation model LPJ-GUESS[Gerten et al., 2004]. We select LPJ-GUESS because it

has been used to effectively disentangle climate and atmosphere drivers from the ER impact

on carbon sequestration[Tong et al., 2018] and ET[Feng et al., 2016] in China. LPJ-GUESS

considers 11 plant functional types for natural vegetation and simulates the occurrence of

each plant functional type within a grid cell based on the bioclimatic limits and vegetation

dynamics including establishment, growth, succession, competition, mortality and distur-

bances[Smith et al., 2014]. LPJ-GUESS accounts for the hydrological effects of dynamic

changes in vegetation structure and functioning, including potential physiological effects of

increasing CO2[Haxeltine and Prentice, 1996]. Policy-driven ER is an emerging human land

use and is not represented in the global models[Chen et al., 2019; Tong et al., 2018; Prestele
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et al., 2017]. For instance, previous research has demonstrated that global models (including

LPJ-GUESS) substantially downplay the impact of human restoration on recent greening

trends in China despite historical land use data being used to drive these models[Piao et al.,

2018]. Therefore, we turn off the land use and land use change module, and only use the

model to simulate the impact of climatic forcing on natural vegetation dynamics. The simula-

tions are performed for 1920 to 2016 by applying gridded monthly climate data (temperature,

precipitation, sunshine and rain days) from CRU TS 4.03, monthly nitrogen deposition[Tian

et al., 2018] and annual mean atmospheric CO2 concentration[Etheridge et al., 1996; Keeling

et al., 1995] as forcing. The model is run from ‘bare ground’ for 500 years to create an

equilibrium state of vegetation. For this spin-up, we use climate forcing from 19201949 to

capture realistic climatic variations; we use 1920 values for CO2 concentration and nitrogen

deposition. The simulated vegetation type is predominantly grassland, which is consistent

with observations. Although LPJ-GUESS has a fixed soil layer depth of 1.5 m, we find that

the water balance (equation 5.1) is closed at each grid cell by substituting total soil moisture

for TWS. Therefore, we use total soil moisture to approximate TWS in our study region.

We calculate the simulated TWS trend in the same way as for the observations. We assume

that the error of the simulated TWS trend is ±50% of the simulated TWS trend itself. This

is equivalent to assuming the width of the simulated TWS trend uncertainty interval is equal

to the simulated TWS trend itself. The final simulated TWS trend error is approximated

by the summation of the ±50% error and trend regression error in quadrature.

Aquifers in our study domain have good connections with soil[Cheng et al., 2013a]. Because

LPJ-GUESS does not simulate groundwater, it may lack sufficient storage capacity to ac-

commodate the full range in TWS trend[Scanlon et al., 2018; Swenson and Lawrence, 2015].

This might lead to an underestimate of the TWS trend under natural conditions[Scanlon

et al., 2018]. Removing the model simulated trend from the GRACE results will therefore

provide a conservative estimate of the ER-induced TWS depletion rate. Moreover, we use

a self-consistent multivariate climate dataset from the CRU to drive LPJ-GUESS. The dry
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bias since 2011 in the CRU precipitation (Figure 5.6) may lead to an underestimate of the

post-ER TWS trend under natural conditions.

5.9 Supplementary Materials

5.9.1 Human water use

Human water use is slight in our study region. According to the Yellow River Resource

Bulletins (available in Chinese at http://www.yrcc.gov.cn/other/hhgb/), from 2003 to

2017, the average human water use from surface and subsurface water storage (including

from deep aquifers) is 8.4 mm yr−1 for the Ordos endorheic basin (Figure 5.11a). Within

this figure, water use for crop irrigation is 5.7 mm yr−1. These numbers are less than 3% of the

annual total ET flux in our study region, suggesting human water use is negligible, consistent

with previous research[Feng et al., 2016]. These numbers are also small compared to the

nearby Northern China Plain[Feng et al., 2013], where groundwater irrigation is estimated

to be 60 mm yr−1.

5.9.2 Potential GRACE signal leakage from the North China Plain

(NCP)

For the JPL mascon solution (3°by 3°) at high latitudes, there is nominally no leakage be-

tween two adjacent mascons. This is based on the analysis of the posteriori covariance matrix

(David N. Wiese, NASA JPL, personal communication). At lower latitudes, mascon leakage

is generally negligible but not in all cases, and the posterior covariance matrix should be

examined (David N. Wiese, NASA JPL, personal communication). As the posteriori covari-

ance matrix is not publicly available, we evaluate the potential leakage from the NCP signal
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into mascon #822 and #823 using a synthetic as described below. We uniformly distribute

over the NCP region a groundwater mass loss trend of -18.8 mm yr−1 (Figure 5.10a), which

was calculated based on in-situ groundwater measurements by ref1. To estimate the leak-

age effect of this signal in mascons #822 and #823, we converted this signal into spherical

harmonics and truncated to degree 75 (corresponding to the spatial scale of a 3°JPL mas-

con), and converted the signal back in the spatial domain on a half-degree grid consistent

with the mascon representation. We then averaged all the half-degree grid cells within each

mascon to obtain the averaged leakage from the NCP region. Note that having equal-area

3°by 3°mascons as basis functions imply an inherent smoothing function on the data. This

is equivalent to applying a de-striping and a 300 km smoothing to the spherical harmonic

solutions4,5. We find a potential leakage on the trend over mascons #822 and #823 of -0.07

mm yr−1 and +0.67 mm yr−1, respectively, from the NCP (Figure 5.10b). These leakage

estimates are very small compared to the observed TWS trends of -3.1 mm yr−1 and -11.2

mm yr−1, respectively (Figure 5.9). Therefore, the signal leakage from NCP into our ana-

lyzed JPL mascons is negligible. In addition, recent research have shown that JPL mascon

solution reproduced NCP groundwater depletion rate calculated from in-situ observations

with no leakage correction[Gong et al., 2018]. This suggests that the JPL mascon solution

is successful in minimizing the leakage effect in the broader regions of NCP.

5.9.3 TWS loss and ET and NDVI gain from field-level results

We show that ER has increased multi-year mean annual ET by 42.9 mm from the pre-ER

period to the post-ER period (Figure 5.7) and has depleted TWS at a rate of 16.6 mm

yr−1, equivalent to a total of 232 mm water depletion during 2003-2016. The decrease in

TWS is accompanied by an increase of NDVI from about 0.16 to 0.20 in our study area.

These results are consistent with field knowledge from in-situ study at Yulin eddy covariance

flux tower site located in the Mu Us SandylandGong et al. [2017]. Gong et al. monitored
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variations of ET due to land use/cover change during a four-year period (from July 2011 to

June 2015) at a grassland site. Within the tower footprint (∼ 1km by 1km), land degraded

from year 1 to year 2. However, the degraded land was gradually restored from year 3 to year

4 with growing season peak NDVI increasing from about 0.21 to 0.25. This NDVI increase is

associated with 40.1 mm increase in growing season ET (Table 5.2). Meanwhile, land water

storage has reduced by about 333.2-199.8 = 132.4 mm (ET minus Precipitation; Table 5.2).

This contrasts with the situation in year 3 where ET minus Precipitation is -38.1 mm. This

suggests that ER could have depleted 132.4+38.1 = 170.5 mm potential land water storage.

Outside the growing season, Gong et al. find a similar depletion rate in soil moisture and

groundwater storage as in the growing season (Figure 5 from Gong et al. 2017). If we

linearly extrapolate the growing season depletion rate to the non-growing season, we get an

annual land water storage depletion of 170.5/(5month/12month) = 409.2 mm. This number

likely represents an upper bound on water storage depletion because vegetation activity (and

ET) during the non-growing season is expected to be smaller than that during the growing

season. Therefore, field knowledge from Gong et al. (2017) implies that annual peak NDVI

change from about 0.21 to 0.25 can induce land water storage depletion in the range of 170.5

to 409.2 mm. Our larger spatial and temporal scale estimate is well within this range.
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Table 5.1: Shallow aquifer water storage changes for two subregions of our study region.
Data are adopted from the Yellow River Resource Bulletins (YRRB) prepared Yellow River
Conservancy Commission of Ministry of Water Resources of the Peoples Republic of China
(available in Chinese at http://www.yrcc.gov.cn/other/hhgb/)

Ordos Plateau along Yellow River Northern Shaanxi Sandy Beach

year
area
(km2)

annual
change
(108 m3)

cumulative
change
(108 m3)

area
(km2)

annual
change
(108 m3)

cumulative
change
(108 m3)

1980 to 2003 2150 2.248 126322 -1.820
2003 2150 0.396 12632 0.435
2004 2150 0.154 12905 -1.89
2005 2150 -0.512 12905 -0.736
2006 2150 0.03 12905 -0.27
2007 2150 -0.17 12905 0.851
2008 2150 0.069 12905 -2.529
2009 2150 -0.277 12905 0.361
2010 2150 -0.214 12905 0.778
2011 2150 -0.314 12905 -2.602
2012 2150 -0.082 12905 1.25
2013 2150 -0.402 12905 -0.336
2014 2150 -0.08 12905 0.1
2015 2150 -0.37 12905 0.07
2016 2150 0.12 12905 1.45
2017 2150 -0.27 12905 -0.54
2003 to 2017 2150 -1.922 12905 -3.608
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Table 5.2: In-situ measurements taken from Tables 1 and 2 in [Gong et al., 2017]. These
values are growing season (May 1st to Sep 30th) totals at Yulin eddy covariance flux tower
site

Measurement Year 3 Year 4
Precipitation (mm) 330.2 199.8
ET (mm) 292.1 332.2
0-160cm soil moisture (m3 m−3) 0.075 0.064
Groundwater level -3.0 -3.5
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Soil moisture

Soil infiltration
and      

groundwater 

Precipitation

Evapotranspiration

Runoff

Total terrestrial 
water storage

Ecological 
restoration (ER)

Vegetation Feedback 

High

Medium

Low

Agreement in the literature

Potential impact on TWS

Increase

Decrease

ER impact on reservoirs 
and water flows

Increase

Decrease

Figure 5.1: Agreement in the literature is analysed from [Feng et al., 2016; Jia et al.,
2017; Chen et al., 2015; Tong et al., 2020; Jackson et al., 2005; Li et al., 2018; Branch
and Wulfmeyer , 2019; Ellison et al., 2017]. The question mark after total TWS suggests
that the impact of ER on it is unknown.
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Figure 5.2: (a) Location of our study region (red polygon) within Chinas Loess Plateau
(white polygon). (b) Land-cover types of our study region in 2015 from ESA CCI land-cover
maps. Red stars represent rain gauge stations. The black polygon represents the Mu Us
Sandyland. (c) Annual mean NDVI time series from MODIS and GIMMS-3g averaged over
our study region. (d) Time series of major land-cover conversions within our study region
from 1992 to 2015 based on ESA CCI land-cover maps. Other land-cover types in b do not
change substantially from 1992 to 2015. Credit: Google EarthImage: Landsat/Copernicus;
Data: SIO, NOAA, US Navy, NGA, GEBCO; Image: IBCAO (a); European Space Agency
Climate Change Initiative (b).
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Figure 5.3: (a) GRACE TWS time series from JPL Mascon RL06 solutions from 2003 to
2016. The shaded grey area represents 1 error of TWS. The dashed line represents the best fit
linear trend. (b) Estimated TWS time series from 1982 to 1998 calculated by accumulating
P, R and our estimated ET using equation (1). The shaded grey area represents 1 error of
our estimated TWS. The increasing error band results from the accumulation of errors in P,
R and ET when we accumulate PETR to get TWS. The dashed line represents the best fit
linear trend.
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Figure 5.4: (a) GRACE TWS time series from JPL Mascon RL06 solutions from 2003 to
2016. The shaded grey area represents 1 error of TWS. The dashed line represents the best fit
linear trend. (b) Estimated TWS time series from 1982 to 1998 calculated by accumulating
P, R and our estimated ET using equation (1). The shaded grey area represents 1 error of
our estimated TWS. The increasing error band results from the accumulation of errors in P,
R and ET when we accumulate PETR to get TWS. The dashed line represents the best fit
linear trend.
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Figure 5.5: The black line illustrates the TWS trends at different revegetation regimes under
the current climate in the Mu Us Sandyland. Regime I (blue shade) represents a low level
of ER efforts when TWS increases or remains stable. Regime II (yellow shade) presents
a higher level of revegetation efforts when plant water consumption exceeds water storage
replenishment; TWS declines. Regime III (red shade) occurs when the level of revegetation
exceeds the maximum carrying capacity of the local environment. The arrows on the black
line illustrate how the TWS trend changes under (1) reduced ER efforts; (2) ER maintained
at the current level; and (3) elevated efforts. The blue and red dotted lines illustrate how
the TWS trend would shift under a wetting and a drying climate, respectively.
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Figure 5.6: (a) GRACE TWS time series and domain-averaged annual total precipita-
tion from the Climate Research Unit (CRU) and the Tropical Rainfall Measuring Mission
(TRMM). (b) Gridded precipitation data (TRMM and CRU) with precipitation time series
averaged at six weather stations (Figure 5.2b). The correlation coefficients of station vs.
CRU and station vs. TRMM are 0.8 and 0.9, respectively.
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Figure 5.7: ET estimates from 1982–2016. Error bars represent 1-σ errors.
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Figure 5.8: Scatterplot of interannual MODIS NDVI values and GRACE water budget-based
ET estimates during 2003–2016. The dashed line represents the best fit regression line.
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Figure 5.9: (a) The location of JPL mascons (that is #822 and #823) that include Mu Us
Sandyland. The land-cover legend is the same as in Figure 5.2b. (b) and (c) are GRACE
TWS time series for the two mascons, respectively. The shaded blue area represents 1σ error
of TWS.
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Figure 5.10: Potential signal leakage from the groundwater depletion in North China Plain
(NCP) to our study domain. (a) NCP groundwater depletion rate derived from previous
research. (b) Mascon representation of (a). The two black boxes in (b) represent JPL
mascon #822 and #823.
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Figure 5.11: (a) Drainage basins in our study region. The green basin is the Ordos endorheic
basin. The red basin is the Wuding River drainage basin. Baijiachuan is a hydrological gauge
station that measures the total runoff out of the Wuding River basin. The background raster
represents the long-term mean annual total precipitation from TRMM during 1998–2018. (b)
Time series of estimated runoff for our entire study region.
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Chapter 6

Conclusions

Terrestrial ecosystems connect land water, carbon flux, and energy cycles, and have major

economic and ecological implications. Terrestrial ecosystems are maintained by complex bi-

ological, physical, and chemical processes such as photosynthesis and nutrient cycling which

are profoundly affected by the climate. Characterizing these ecological processes are not

only important for evaluating and mitigating climate change impacts on ecosystem func-

tions and services, but also to determine the feedback mechanisms that ecosystem response

may generate on the climate itself. This work uses satellite remote sensing observations in

conjunction with state-of-the-art Earth system models (ESMs) to explore how terrestrial

ecosystems respond and feed back to climate.

Atmospheric moisture demand and soil water supply co-regulate the opening of leaf stomata

and constrain the land photosynthetic CO2 assimilation during periods of drought. High at-

mospheric moisture demand induces stomatal closure, which reduces CO2 diffusion in leaves

and thus CO2 supply for photosynthesis. Low soil water supply not only causes stomatal clo-

sure but also impairs the biochemical capacity for photosynthesis. Accurate understanding of

the effects of soil water supply and atmospheric moisture demand on vegetation productivity
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is key for the mechanistic understanding of ecosystem vulnerability to drought. Separating

the effects of these two constraints is difficult because 1) we lack appropriate observations

of terrestrial water supply, and 2) soil water supply and atmospheric moisture demand are

often co-linear in time. To overcome the first difficulty, this work calculates a novel soil water

supply metric from GRACE TWS. To circumvent the second difficulty, this work analyzes

the spatial functional response of global vegetation productivity to atmospheric moisture

demand and GRACE-derived water supply metric. This work finds that vegetation produc-

tivity is more sensitive to soil water supply than to atmospheric moisture demand. This

work also finds an important interaction between soil water supply and atmospheric mois-

ture demand in shaping the spatial distribution of global natural vegetation productivity.

This global scale observation-based analysis reflects slow-changing controls on plant-water

relations such as vegetation structure, density, community composition, and biogeochemistry

that are determined by long-term exposure to hydroclimate.

Due to the process complexity and the lack of observational constraints for model valida-

tion, the effects of atmospheric moisture demand versus soil water supply on photosynthesis

are parameterized in distinct ways in ESMs. This contributes a large model divergence in

projecting climate change impact on terrestrial ecosystem productivity. This work uses the

global scale observation-based analysis described in the previous paragraph to evaluate vege-

tation water stress sensitivities simulated in ESMs from the Coupled Model Intercomparison

Project Phase 5 (CMIP5). This work shows that most CMIP5 ESMs fail to reproduce the

observation-based water stress sensitivities mainly because they underestimate the interac-

tion between soil water supply and atmospheric moisture demand. The next generation

of ESMs are including more realistic physical processes to better simulate vegetation wa-

ter stress sensitivities such as including explicit representation of plant hydraulic processes

linking water supply and atmospheric moisture demand variations. My work provides an

effective means to benchmark these model developments.
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Climate change such as more frequent heatwaves and drought is threatening our food security

and ecosystem by reducing water availability to plants. Characterizing how plants will

respond to this changing water availability is imperative for predicting the state of ecosystem

under a warming climate. Such characterization is not well-known on a global scale partly

because observations of underground water over large areas are limited to shallow soil depth

(about 5 centimeters from the surface). These observations are not suitable for studying

drought impact on deep-rooted plants such as tropical rainforests and shrubs which can

draw water from tens of meters deep into the ground. To overcome this shortfall, I develop a

new satellite-based drought severity index (DSI) using the time-variable total water storage

estimates (TWS) from the Gravity Recovery and Climate Experiment mission (GRACE).

I establish a framework for combing GRACE-DSI with other drought metrics to better

characterize hydrological drought, including its propagation, duration, and recovery. I show

that GRACE-DSI complements existing proxies of plant water availability by providing

information about both root zone soil moisture and deeper groundwater. In combination with

other satellite-derived surface soil moisture observations, GRACE-DSI can help elucidate the

role of rooting depth in plant-water relations. This work is highlighted in the 2018 March

issue of the Bulletin of American Meteorology Society. GRACE-DSI record is now available

to the public at https://www.ess.uci.edu/~velicogna/drought_data.php.

Large-scale ecological restoration (ER) such as tree planting is an increasingly popular hu-

man practice to combat land degradation and climate change. Meanwhile, ER projects

have exerted a notable influence on regional water balance. Previous studies show that ER

increases evapotranspiration and decreases soil moisture. However, the total amount of fresh-

water resources may remain stable if vegetation recovery increases precipitation (potential

ecosystem feedback to climate) or enhances soil infiltration through root development. To

demystify the ER impact on water resources, we must know its effects on total terrestrial

water storage. Using GRACE and multiple other satellite observations, government reports,

and eco-hydrological modeling, I separated the ER impacts from natural climate variability
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for an ER hotspot in northern China. I observed an ERinduced water consumption rate

of 16.6 ±5.0 mm yr−1 from 2003 to 2016, an alarming rate comparable to that caused by

groundwater pumping for irrigation in Californias Central Valley. This study has important

implications for future ER policy development.
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