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ABSTRACT 

The equilibrium and quasi-equilibrium properties of a system of 

interacting bosons are studied from a microscopic point of view. For 

equilibrium, the model of Bogolyubov is generalized to finite temperature 

by using the grand partition function. The thermodynamic properties and 

the pair-correlation function are calculated. The statistical mechanics 

for moving systems is then developed and applied to the problem of a 

rotating fluid. For quasi-equilibrium, general transport equations are 

derived from first principles, independent of statistics and model. For 

the Bogolyubov model, the familiar two-fluid hydrodynamics is then derived, 

leading to the phenomena of first and second sound. 



UCRL-9149 

* STATISTICAL MECHANICS FOR THE NONIDEAL BOSE GAS 

t 
AG EG Glassgold, A. N. Kaufman, and K. M. Watson 

Lawrence Radiation Laboratory and Department of Physics 
University of California, Berkeley, California 

April 4, 1960 

I. INTRODUCTION 

Although useful phenomenological schemes have been developed to 

describe the propenties of liquid helium at very low temperatures, no 

quantitative microscopic theory exists at present. Nevertheless, significant 

progress has been made towards solving, from first principles, the model 

problem of a low-density system of interacting bosons in equilibrium. The 

first step was made by Bogolyubov in 1947.
1 

More recently, Lee and Yang 

and their collaborators have extended this work to the case of hard-sphere 

interactions. 2 The attractive feature of the low-density theory is that it 

unifies two ideas which are probably essential for the understanding of liquid 

helium: the condensation phenomenon associated with the ideal Bose-Einstein 

gas, 3 and the collective ex~itations which are the basis of the two-fluid 

model. 4 

The first objective of this paper is the generalizati.on of Bogolyubov's 

theory to finite temperature. The method of the grand canonical ensemble 

is used for this purpose. In Section II, the ideas of Bogolyubov and of 

Lee and Yang are applied to the basic operator in this theory, H - ~N, 

where H, ~, and N are the Hamiltonian, the chemical potential, and 

the operator for the total number of particles, respectively. Section III 

* This work was done under the auspices of the u.s. Atomic Energy Commission. 

t 
Address: Lawrence Radiation Laboratory, Livermore, California. 
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is devoted to a full discussion of the equilibrium statistiqal mechanics of 

such a system, with particular emphasis on the evaluation of the chemical 

potential, ~ , and the mean occupation of the unperturbed ground state, N0 • 

In Section IV, the pair correlation function is calculated for finite 

temperature. 

The equilibrium statistical mechanics for moving systems is described 

in Section V, and natural definitions of the normal and superfluid velocities 

are made. The normal density may be defined either by the effective mass for 

drift or for rotation, as was originally asserted by Landau. 4 Our result 

differs from Landau's work in that it is based on a microscopic calculation 

using Bogolyubov's model. 

A general transport theory is developed in Section VI, starting only 

from the equations of motion for the density matrix and the statistical 

average of any operator. These quantum hydrodynamic equations, derived from 

first principles, are of the same form as in classical physics. The only 

essential assumption is that of local equilibrium, i.e.,equilibrium is, 

established in regions whose linear dimensions are small on a macroscopic 

scale. Application to liquid helium is then made by using the Bogolyubov 

theory for the various equilibrium quantities that appear in the transport 

theory. In Section VII it is shown how the usual two-fluid hydrodynamic 

equations may be derived from the general transport theory of Section VI and 

the definitions of Section V. The paper is concluded with a discussion of 

first and second sound. Y 
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II. MANY-BOSON HAMILTONIAN 

We consider N bosons interacting inside a volume , in the 

limit that the particle density n ::: i/2/ remains finite 'as 'N and 

~ become infinite. The pertinent operator in the density·matrix f'or 

the grand canonical ensemble is 

1 "11-1 
+ - II 2 

(2.1) 

The second-quantized operators ~ and ~t destroy and create, respectively, 
,.., ,.., 

free-particle states of momentum ~ , and satisfy the usual commutation rules 

for bosons. The quantities H, ~, and N are, respectively, the Hamiltonian, 

the chemical potential, and the operator for the total number of particles: 

N = ~ 
k ,.., 

( 2.2) 

Because of' the inclusion of !iN in Eq. (2.1), Ek is an "effective kinetic 
5 

energy" for the state k (-1!' = 1): ,._ 

~ . 
The bosons are assumed to interact through a central two-body potential 

V(r), whose Fourier transform is 

ik•r 
v(k) - = e "'"' V(r) (2.4) 

1 
An essential simplification; due to Bogolyubov, is to regard the 

t t t b 1 t NOJ/2 • The zero-momen urn opera ors a0, a0 as c num ers equa o 

parameter N0 is the occupation number of the free-particle (unperturbed) 

ground state. Its average value is supposed to be of the same order of 
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magnitude as N The Bogolyubov method consists of keeping in Eq. (2.1) only 

terms containing at least two zero-momentum operators, and of making the 

replacement a
0

, a
0 
t -+ N

0 
Y2

• Thus we have 

H - ~N = (~ - ~) + V' , ( 2.5) 

where 

-~No+ ~ N0
2 

21-l v(o) + ~'[fk ~+ ak + ~ ~(~+ a_k+ + ~ a_k)]. 
k I'W IV ,.._, 4"'IJ "' "' .... 

(2.6) 

In Eq. (2.6) we have 

and (2.7) 

The "Bogolyubov operator," ~ - ~' is quadratic in operators referring to 

excited free-particle states, while V' contains products of three and four 

such operators; V' , will be ignored in this paper. 

As is well known, 1 '
6 the truncated Hamiltonian ~ - ~ can be 

diagonalized by a linear transformation with real coefficients that depend 

only on k = 1~1 , 

(2.8) 

(:for ~ 7 0). The new operators ~' .J..I 
~ destroy and create excitations 

"' "' 
or quasiparticles of momentum k • 

"' 
In order that these operators conform to the boson commutation rules, 

the transformation coefficients must satisfy the equation 

~I 
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= 1 ( 2.9) 

This type of transformation is possible if fk > 1~1 . It is not difficult 

to show that the choice of coefficients that diagonalizes HB - ~ is 

2 ,1 [1 + (fk/~)] ~ = 2 

2 1 [-1 (f/~)] vk = + 2 
( 2.10) 

2uk vk = - v€k 

with 

(2.11) 

The diagonalized Bogolyubov operator then has the form 

(2.12) 

where ~ is the excitation energy of a quasiparticle of momentum ~· The 

"ground-state energy" is 

( 2.13) 

We note that the ~'s are functions of the parameters ~ and N0 through 

fk and ~ • The volume b/ is also a parameter, but it will be held 

fixed for the present considerations. 

The above discussion, which follows Bogolyubov's original paper,
1 

is restricted to weak interactions and low densities. Lee and Yang have 
. 2 

obtained a similar result for the dilute hard-sphere gas at absolute zero. 

To obtain their result in our formulation would require a study of the 
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effects of V' , the part of the Hamiltonian that we neglect. In this paper 

we emphasize the extension of Bogolyubov's method to finite temperature, 

rather than the improvement of the model for strong interactions. 
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III. STATISTICAL MECHANICS 

The statistical mechanics of the system will be studied with the grand 

partition function 

Tr[ e-13(H- JJ,N)] (:3.1) 

·where Tr indicates the usual trace for the grand ensemble7 and 9 -1 
13 

is the absolute temperature times Boltzmann's constant. The statistical 

average of any operator F will be indicated by F and is given by the 

expression 

( 3.2) 

In this work, the Bogolyubov approximation is used, and the grand partition 

function is. therefore 

-13(H - 1-1N) 
Tr[ e B ] • ( 3-3) 

According to Section II, ~ - ~ is diagonal in the quasiparticle 

representation, i.e., the representation characterized by definite values 

for the quasiparticle occupation operators )k = ~r Ok • Therefore, the 
,., "' "' 

grand partition function may be written as the sum over quantum states of 

the entire s,ystem which are characterized by the parameter N
0 

and the 

occupation numbers -Jk -
1:: exp( -13 ~ .Jk) y ,.. 
~ 

-1 
{1- exp[·I3~(1J., N0)] ) 

Rewriting this result as a single sum over N0 , we have 
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(:;.4) 

where 

-1 ( -~ tn z ~, N
0

, ~) 

( 3.5) 

The average number of particles may be found by taking the statistical 

average of Eq. (2.2). When this equation is rewritten in the quasiparticle 

representation, it becomes 

N = No + 1:' [vk2 + (uk2 + vk2).Jk + ~ vk(~/ o:_kt + ~ o:_k ) ] 
k .... "" - - --

Terms that are not diagonal in the quasiparticle representation do not 

contribute to the statistical average, and so N is simply 

where 

1 

exp(~~) - 1 

Using Eq. (2.10), we finally find that8'9 

N 1) ( 3. 7) 

At absolute zero there are no excitations ( ~k = 0) and the last term 
.... 

vanishes. This is not true of the second term. In other words, the 

interactions cause N and N
0 

to be different even at absolute zero.9 

Because the summand of Eq. (3.4) is a rapidly varying function of. 

N0 with a sharp maximum at (N0), say, it will be a good approximation to 

' 
retain only the largestter.m in the sum: 

. .. 
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( 3.8) 

The condition that this term is the largest is 

or, if we solve for ~ , 

~ ( 3·9) 

On the other hand, if we use Eq. (3.2) with F = N0 and Eq. (3.4), 

the mean value N
0 

of the parameter N
0 

is 

In the present (saddle-point) approximation, characterized by Eq. (3.8), this 

is 

If we refer to Eq. (3.8) for 

the same as (N
0

) 

~ , it follows that the mean value N0 is 

Let us now evaluate ~ , the chemical potential, by using Eqs. (3.9), 

(3.5), and (2.13): 

~ = n
0 

v(O) 1 0 
- 2 I:' dl.i[" (fk -

k 0 .... 

( 3.10) 
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From Eqs. (2.7) and (2.11) we then obtain 

1 

N-N - 0 

UCRL-9149 

N=N 
0 

( 3.11) 

Initially-we assume that the first term of Eq. (3.11) is a good approximation 

for ~ • Later we shall investigate the conditions for this to be so. 10 We 

therefore write 

( 3.12) 

where 

Then ~ is given approximately by the last two terms of Eq. (3.11) with 

~ replaced by ~O • 

When ~0 replaces ~ , the expressions for fk and ~ [Eq~. (2.7) 

11 and (2.11)] become 

k2 
fk = 2m + n0 v{k) 

and 

k 2 J/2 
~ = 2m [k + 4m n0 v{k)] (3.13b) 

As Bogolyubov showed, the excitations for small k are phonons with energy 

~ = ck, (3.14) 

and sound velocity 

c _ < I )1;2 
:::. ~0 m ( 3.15) 

,;· 
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For large k , the excitations have a single-particle character. The transition 

between these limits depends on the form of v(k). 

For purposes of calculation, it is useful to represent v(k) by a 

simple step function: 

v(k) = 
v(O) 

0 

k< 

k> 

-1 
a 

-1 a 

where a is the range of the interaction. It is also convenient to introduce 

a coupling constant by the equation 

v(o) = (3.17) 

In these terms, the condition· for low density, which we assume in this paper, 

is 

' 

since a is the same order of magnitude as the size of the atom. The 

condition for weak coupling, which we also assume, is 

2 
g m a << 1 

The first-order chemical potential of Eq. (3.12) may now be written as 

J.J.o = 

Since we assume weak coupling and low density, we have 

!J. << g << 
-1 

2 (ma ) 

( 3.19) 

( 3. 20) 

If we wish to compare our results with calculations using hard spheres, 
2 -1 

we must set g = 4~(ma ) and interpret a as the diameter of the hard 
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sphere. However, this transcription works only to lowest order. 6 

and 

for 

For the interaction (3.16), the expressions (3.13) become 

€ = 
k 

-1 k<a ,and 

k 2 
0 4m n0 v(O) = 4m ~O 

-1 for k > a • The parameter 

For weak coupling and low density, k
0 

a << 1 

k 2 
0 

(3.2la) 

(3.2lb) 

is 

( 3· 22) 

With this model ~ can be calculated from Eq. (3.11) with the result: 

~ • -~: {1- 3k0 a[5+6U1(7)-87U]_
0

(7)-20U3(7)]}, 

where the functions U (r) are defined in Appendix A, and 
n 

( 3.23) 

( 3. 24) 

Since we are using ~0 as an approximation to ~ , we must require that 

The first term of Eq. (3.23) evidently satisfies this from condition (3.19); 

the second term determines the temperature range for which (3.25) is valid. 

Using the "high-temperature"asymptotic form of U ( r) given in Eq. (A.3) 
n 

of Appendix A, we obtain the requirement for 8 = ~-l 

( 3.26) 
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2 -1 2 ~5 3 ~5 
(ma ) ( grna ) (n0a ) ( 3.27) 

Using conditions (3.18) and (3.19) and Eq. (3.20), we conclude that e
0 

is 

( 
2 -1 restricted by the inequalities ~0 << eo << ma ) • Note that, as the 

density n or the interaction strength g vanishes, the allowed temperature 

range vanishes too. 

The thermodynamic properties of the system can now be studied with 

the model just described. For example, the fractional occupation of the 

unperturbed ground state, s = N~ , is. readily calculated from Eq. (3.7) 

to be 

1 - ( 3.28) 

From conditions (3.18) and (3.19), it follows that 

1 - s << 1 ( 3. 29) 

so that we are able to discuss states where only a small (but macroscopic) 

fraction of the particles are out of the zero-momentum stateo Using Eq. (A.3) 

for the asymptotic form of u1(r) at low temperatures (r >> 1), it can now be 

shown that the depletion of the unperturbed ground state increases as the 

second power of the temperature. (The value at absolute zero agrees with the 

12 older work of Lee, Huang, and Yang, but the temperature dependence is at 

2 variance with the recent paper by Lee and Yang. ) Because of the restriction 

(3.29), the possibility of a phase change corresponding to s ~ 0 can not 

be discussed with this theory, which is restricted to temperatures much less 

than the transition temperature. In Appendix B we give a discussion which 
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approaches the transition from above, using linked diagram expansions for the 

grand partition function. 13 We show there that a slightly impetfect gas at 

low density does have a phase transition. 

Next, we may evaluate €0(~, N0 ) from Eq. (2.13), obtaining 

1 , I 1 -2 2 16 
€0 = 2 (! no ~o [ 1 - 2 rc ( gma ) ( 1 - 15 ko a) ] (3.30) 

After further algebra, expression (3.5) then becomes 

( 3. 31) 

The thermodynamic potential Q(~, ~' v/) and the pressure p(~, ~) follow 

immediately, from Eq. (3.8): 

( 3.32a) 

= -1 ( - ~ .en Z ~, 

p(~, ~) = 
f) J-l 

- () Q 

( 3.32b) 

In the first two terms of p , let us express n
0 

in terms of ~ and ~ , 

by Eq. (3.12). We find that the first-order terms in ~ cancel, and we 

obtain to first order in ~ 

p(~, ~) = _21 ~2;fv(O) + _41 rc-2 ~2 ma-l ( 1- 32 ~1/2 ml/2 a[l- 5 U (r)] } 
15 3 

(3.33) 



UCRL-9149 

-16-

From the pressure we may obtain the particle density n(~, ~), 

n ?/
-1 

N = 

and the entropy density _J ( ~, ~) 

n/-1 
II s = - 'J-1 d~ 

de 

e 
( 3.34a) 

( 3.34b) 

When we calculate the particle density from Eqs. (3.34) and (3.33), and express 

the result in terms of n0 by means of Eqs. (3.12) and (3.23), we are led to 

Eq. (3.2~) for s = no/n • (This provides a ch~ck on the algebra and the 

consistency of our approximations.) The calculation of entropy density yields 

7/2 3/2 
16 ~ m 2 [.. u I 3(7) ] • 

3 :J( e 
( 3· 35) 
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IV. PAIR CORRElATION FUNCTION 

We shall now calculate the pair correlation function, for finite 

temperature, in the Bogolyubov approximation. Lee, Huang, and Yang have 

-de"termined this -function:- at absolute -zero-for the dilute hard-sphere gas. 12 

We define the pair correlation operator as 

D(;tl' ~) -2 wt(;t1 ) wt(~) w(~) w(;t1 ) = n 
' 

( 4.1) 

with 

v-i/2 ik•r 
w(r) 

,.... ,.... 
= I: ~ e ,.... 

k ,... 
(4.2) 

,..., 

Substitution leads to 

D(!'_
1

, r.,..,) = (N)-
2 

I: exp { i[(p- n')•r + (q- q')·rt'")J }a ,t a ,t a a 
·- --c. ,.., ~ -1 "' ,.., ,..,:;.. p q q p pp'qq' ,..., ,.., "' ---

As in Section II, we replace 

zero-momentum states by the c number 

D(£:t, .!{,) = (ii) -2 { N2 + NO 

( 4.3) 

the operators aot 

N J/2 bt .. 
0 , o a~n~ng 

and a
0 

for the 

I:' 
pq 

at at a a~ (4.4) 
£ 51 £ 511 .....,... 

-1 
Here we have dropped terms of relative order N , and also terms containing 

an odd number of operators, since their expectation values vanish in the 

quasiparticle representation. 

' 
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In expression (4.4), we make the Bogolyubov transformation (2.8) to 

the quasiparticle representation, and then take the statistical average. 

The algebra is straightforward; we present only the result: 

-( 2 2 . Dr)= 1 + 2 ~ [F(r) + G(r)] + F (r) + G (r) 

where 

r 

F(r) -
a<.r) 

:;::;. Jr1 

-1 
- (N) 

-1 
== (N) 

- r21 

I:' 
k 
;v 

I:' 
k ,..., 

e 

' 
ik•r -"' uk vk(1 + 

ik·r ..... ,.... 
e 

and ~ = No/N , as before. 

2 yk) ' 

0 

' 
( 4.5) 

( 4.6) 

For the evaluation of F and G, we use Eqs. (2.10) and (2.11) for 

~ and vk , and obtain, for r j 0 , 

-1 ik·r ~( 1 
F(r) -(N) .... - y'k ) I:' e - + ' ,..., 

e:k 2 k ,..., 
(4.8a) 

and 
-1 ik•r fk 1 

G(r) (N) 
.... ,..., 

( )7k ) = I:' e + .... 
~ 2 k 

(4.8b) 

""' 

By Eq. ( 3. ~1)' these expressions become 

F(r) 
...2 2 a 

J(o:, r) = -1! (gma)(-) r (4.9a) 

and 

F(r) G(r) -2( 2 ( a ) ?P J(o:, r) + = -21! g m a ) - cri ' r (4.9b) 

where 
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J(a, y) = J dx sin ax (-
2
1 + (exp[)'X(l + x2)Jj2 ] _ 1 }-1) 

0 (1 + x2)~2 

( 4.10a) 

1 ()) 2 -J/2 1 2 112 
= 2 J dx(l + x ) (sin ax) ctnh [ 2 y x (1 + x ) , 

0 

.(4.10b) 

and 

a ;;;;: k0 r ( 4.11) 

We shall evaluate J(a, y) in some limiting cases: 

( la) y >> a >> 1. The condition y >> 1 means e << ~0 , or 

a temperature so low that enly phonons are excited. The condition 'Y >>a 

allows us to consider the limiting case of y ~co for finite a , or 

absolute zero at finite r • 

(lb) a >> y >> 1. This differs from (la) in that we may consider 

r ~ oo for finite temperature. 

(2) a >> 1 >> y. The condition y << 1 means e >> ~0 , or 

a temperature high enough to excite free-particle states. Of course, we 

still require e << eo ' so that 1 - ~ << 1 • 

In these limitingcases we find for J(a, y) the following forms, by 

integrating by parts for (la) and (lb), and deforming a contour for (2): 

( la) J(a, y) = 2~ + (J..a-3) + CF(a 'Y-2) J 

(lb) 1t 1 AVi 5 + .c..-·(rv -v-2 e-2a/r), J(a, y) = 21' + 2a3 + v (a- ) L/ '""' , 

( 2) rt 1 1/2 . .·/... J./2 ~ 2 J(a, y) = 21' + 2 exp [ -a(1t/'Y) ] sin[a(1t/'Y) . .]( 1 + u {!' ) ) 

(4.12) 
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In these cases, we obtain the following expressions for. 2(F + G), 

from Eq. (4.9), which are to be .inserted in Eq. (4.5) for D(r),. 

1 -2 4 2 -1/2 ~3/2 
( la) 2(F + G) = - 2 rt (ajr) (g m a ) (n a3) + ... 

6 -3/2 -5/2 
( lb) 2(F + G) = 3 -2 / 2 3 - 4 rt (a r) (g m a ) (n a ) + •• 0 

(2) 2(F + G) = +2m e ·rK 
rt n r e + • • • ' 

(4.13) 

where 

( 4.14) 

is .tl:e thermal wavelength. The leading terms in F2 + G2 are 

(la) F2 + G2 
4 -l 2 2 3 -l 

= ( 8rc ) ( a/r) ( g m a ) ( n a ) + ... 

F2 + G2 
-1 me )2 ( lb) = (8rt2) ( + ( 4.15) nr 

(2) F2 + G2 (8rt2fl ( me )2 + 
nr 

The limiting cases are such that each of·the expressions in (4.13) 

and (4.15) is much less than unity in magnitude, so that In - 11 << 1 . 

Let us now discuss each case separately. 

Case (la) leads to a correlation function independent of temperature, 

and includes absolute zero as a special case. In this case, 

2(F + G) >> F2 + G2 , so that only 2(F + G) need be kept in D - 1. 

-4 The result, with an r dependence, is in agreement with the calculation 

12 of Lee, Huang, and Yang for absolute zero. 

In case (lb), the term 2(F + G) 
2 2 predominates over F + G at 

finite r as g ~ 0 or n ~ 0, while F2 + G2 predominates as r ~ oo. 
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In the latter limit, the correlation is independent of the strength of the 

interaction for a given temperature, but the allowed temperature range depends 

on g [see Eq. (3.26)]. In any case the dependence on r is as an inverse 

power of r • 

In case (2), the term 2(F +G) predominates as g approaches 0 

(because the allowed temperature range depends on g ), while F2 + a2 

predominates as n approaches 0 or r approaches oo. In the former 

case, the dependence on r is exponential. 

There is some question as to the propriety of keeping the quadratic 

terms (F2 + G2 ) in D , inasmuch as they arise from terms in Eq. (4.4) 

which are quadrilinear in the a operators. Such terms have been omitted 

in making the Bogolyubov approximation in the Hamiltonian. A final resolution 

of this point probably depends on a more accurate treatment of the Hamiltonian. 
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V. STATISTICAL MECHANICS FOR MOVING SYSTEMS 

In the previous sections, we have considered the system under 

discussion to be at rest. We shall now study the fluid motion of. this 

system. Fi~st, we shall generalize our treatment to include flow at a 

uniform, constant.velocity. This will provide a means for defining "normal" 

and "superfluid" components and introducing their respective flow velocities. 

Next, a discussion of rotation with a uniform angular velocity will provide 

an evaluation of the moment of inertia. Finally, in the last two sections 

of this paper we shall derive the hydrodynamic equations for nonuniform flow. 

In the statistical treatment given earlier, we have made a plausible 

assumption that it is the zero-momentum state that is macroscopically 

occupied. Galilean invariance, of course, implies that any momentum state 

can be so chosen. For the evaluation of the partition function ~ , we 

should, strictly speaking, have chosen a general state, say k , as 
""S 

macroscopically occupied. Then we should have summed ~ over all ~s , 

subject to the constraint that the mean momentum of the entire system be 

specified. A saddle-point evaluation of the sum over k 
""S 

would then lead 

us back to a specific choice for 

fluid at rest. 

k ' -s k 
""'S 

0 being appropriate for a 

A state of uniform motion of the entire system can then be obtained 

in a trivial manner from the state of the system when at rest. A Galilean 

transformation, changing the macroscopically occupied state from k = 0 
"' 

to k = k , will accomplish this. The total momentum of the system is just "' ' -s 

G = N k 
"' -s 

We can obtain a state of uniform motion with total momentum G ,.... 

in an alternative way, however. We can still maintain the constraint 
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that k = 0 labels the state of macroscopic occupation even though G is 
,., -

not z~ This constraint, which means that the system is not in true 

thermodynamic equilibrium but only in quasi-equilibrium, is possible because 

of the lack of coupling in the Bogolyubov model between the zero-momentum 

state and the excitations. This lack of coupling leads to the two-fluid 

14 
model, as we shall see. 

To allow for a value of G differing from zero, we utilize the ,., 

generalized partition function 

= 

of Eq. (2.5) and require that N
0 

is macroscopic. The total-momentum operator Q is 

(5.3) 

Under the BogolyUbov transformation (2.8), this becomes 

G = 1: k ,., ,., ' 
(5.4) 

k ...., 

so the elementary excitation corresponding to ~t does indeed carry 
...., 

momentum k • -
Because Q is diagonal in ~t ~ , the evaluation of Eq. (5 .. .2) 

"" ,., 
proceeds just as before, the only change being that now ~ is replaced by 

(~ - w•k) • -,., (5.5) 

we now have 

f3, w) ,., = 



UCRL-9149 

-24-

where 

( 5. 7) 

and N
0 

is determined by 

ll = (5.8) 

The mean momentum is found from 

(5-9) 

We shall assume that I ~ I is sufficiently small that we can neglect terms 

in I W 1
2 

or higher order. 
<V 

Then, since the thermodynamic functions such 

as !l and N0(!l, ~' w) must be even in w by symmetry, it is sufficient in 
"' "' 

Eq. (5.9) to differentiate only the terms in which w appears explicitly, 
"' 

so that 

Here we have 

--
~(€ - W•k) 

(e k "'"' 
-1 

- 1) 

Upon expanding Eq. (5.10) to first order in 

G = ,., - w 1:' 
"' k 

"" 

where the derivative is evaluated for w = o. 
"" 

Let us define the quantity p by 
n 

( 5.10) 

(5.11) 

w , we obtain 
<V 

(5.12) 
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G - (5.13) 

We evaluate pn from Eq. (5.12) and obtain 

-1 1 k2 
d )ik 

Pn = -Y L: 
k 3 d~ -

orl5 

1 -1 
k2 pn = t3 v L: :fk(l + ,7k) 

3 k 
(5.15) 

,..., 

On evaluation of Eq. ( 5.15)' we find 

p n 8 3 1/2 2 3/2 
P = 3re2 (n a) (g m a) r[-w;(r)] ( 5.16) 

where W (r) is defined in Appendix A. Here p is the mass density m n j 
n 

the quantity pn is called the "density of the normal fluid." It is 

customary also to define the "density of the superfluid" ps by 

(5.17) 

Of course, ps is not to be interpreted as the density of the particles in 

the zero-momentum state. 

Let us now change to a new frame of reference moving with a velocity 

-v relative to the old frame. In the new frame, the macroscopically -s 

occupied state has momentum k = m v , and the system has the total -s -s 

momentum 
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G Mv + pn ~ tl "' "'S 

- ( P Xs + Pn ~) V 
= [ Ps Xs + P n ( Xs + ~) ] V ' 

by ( 5 .13) and ( 5.15) • We may now introduce the notation 

v - v + w 
"1:1. ""S -

so that 

G = ( Ps Xs + Pn "Zn) ·-1 - (5.20) 

This form suggests calling v and v the "velocities of the superfluid 
""S "1:1. 

and normal fluid," respectively. We note that the parameter ~ , introduced 

in (5.2), is just the "relative velocity of the two·fluids." 

Using Eq. (5.20) we may write the mean momentum density as 

+ (5.21) 

The definitions of the normal and superfluid components, introduced above, 

will be supplemented in Sections VI and VII with the derivation of appropriate 

equations of motion. 

We next consider the fluid to be confined in a cylindrical bucket 

which rotates at angular velocity ro about its symmetry axis 

partition function for thermal equilibrium is now16 

Tr ( exp[-~(H- ~N- roL)] } 
' 

n • 
"' 

The 

(5.22) 

where L is the projection of the total angular momentum operator L 
"' 

along n • - The mean value of L is 
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-1 
'L = l Tr 

{ L exp [ -~(H - ~ - roL) ] ) (5.23) 

The moment of inertia is defined in the usual way from 

L(ro) I(ro)ro (5.24) 

Following the method of Blatt, Butler, and Schafroth, 17 we consider the. 

limit 

I(O) lim 
ro-+0 
~ = oa'L~ro) I 

. ro=O 

(5.25) 

In differentiating L in Eq. (5.23), the dependence of l on ro may be 

neglected in the limit ro-+ 0 , since ;f· is an even function of ro • 

For a cylindrical bucket, H and L commute, so we have 

t(o) 
-1 2 

= ~ 'J Tr ( L exp[ -~(H - roL - ~)] } 

ro=O 

-1 2 
= t3 l Tr ( L exp[ -~(H - ~) ] } 

Thus, I(O) is proportional to the fluctuations of the angular momentum 

operator for a stationary system: 17 

I ( 0) = ~ (~2 ) • ( 5. 27) 

The calculation of the moment of inertia in the Bogolyubov approximation 

is now straightforward. We first write the projection of the total angular 

momentum along the symmetry axis in second quantized form as 

L (5.28) 



where 

w(r) -
Thus we have 

L = 

and 

= 

I: 
k k 1 -,.., 

-i 
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-ik•r ik 1 •r 
e "' - ( R.. r, ,X 'V) e "' "' (5.30) 

The matrix element ~~ is real and symmetric; some other of its essential 
""" 

properties are that ~O = 0 , 

and L 
-k,-k' ,.., "' 

-
- ~lk ...., ..., 

~, = o 1r 1-:~ I 
"""' 

From E q. ( 5. 29 ) , we can write · 

t 
a.£ a.£' 
"' ..., 

I ~I I 

(5.31) 

We now introduce the quasiparticle transformation of Eq. (2.8) for each 

operator in this expression. Only the terms diagonal in the quasiparticle 

representation need be kept, since the off-diagonal elements vanish when 

the statistical average is performed. Using the above properties of the 

matrix elements ~k' and the definitions of 'k and vk , we find that -
(5.32) 

Introducing a rectangular coordinate system for which z is 

2 paralle 1 to the symmetry axis, -vre may show from E q. ( 5 • 30) that L kk , 

averaged over the directions of ~ , is17 
,..,..., 
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(4~)-1 J dQk (L2)kk -
where 

2 2 
( X + y ) 

.-l 3 2 2 
{/ J d r (x + y ) 

z; 
The final expression for the moment of inertia I(O) 

UCRL-9149 

18 is therefore 

The corresponding moment of inertia for a rigid body is 

Using Eq. (5.15), we find the ratio 

(5.33) 

(5.34) 

(5.35) 

(5.37) 

Landau stated this result in his original paper on superfluidity. 4 It is 

reassuring to derive this formula from a microscopic point of view. 

Equation (5.37) is convenient for calculation, and from it one 

easily obtains the well-known result for the ideal Bose gas: 17 

I(O) 
Io 

-1 
N 1:' :)k 

k 
"' 

N 

In this case the ratio approaches zero as the 3;12 power of the temperature. 

At very low temperatures, one finds for the Bogolyubov Hamiltonian that4 

= (5.39) 
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VI. GENERAL TRANSPORT. THEORY 

In this section we shall derive hydrodynamic and thermodynamic 

equations for the fluid motion of a single-component, quantum-mechanical 

system, applicable for either Fermi-Dirac or Bose-Einstein statistics. 

Conventional treatments in kinetic theory employ the Boltzmann equation 

(for the single•particle distribution function), ~hich is based on the 

assumption of molecular chaos. Their applicability is thus limited to ideal 

gases. Because our discussion is to be applied to liquids and nonideal 

gases, we shall use the many-particle density matrix R_(t) , whose time 

development is given by the quantum Liouville equation19 

= i .. ~ti· [ H, p ( 6.1) 

-vrhere H is the many-particle Hamiltonian. 

As in the Chapman-Enskog method of solution of the Boltzmann 

equation, we shall assume that the fluid is in local thermodynamic equilibrium, 

an assumption that requires that macroscopic physical quantities (such as 

pressure and density) vary appreciably only over macroscopic distances. 

(In the next section, we shall modify this assumption to that of local 

quasi-equilibrium to treat the Bogolyubov Hamiltonian.) In accordance -vrith 

this assumption, we write 

p = 
iv £eq + op 

"" 
) 

where £eq is the density matrix appropriate to local thermodynamic 

equilibrium, and op is a small correction. 

(6.2) 

The present discussion will be restricted to a consideration of 

reversible flow, for which only p is to be used. The corrections due to op 
~q ~ 
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give rise to irreversible phenomena; they will be discussed in a future 

bl . t• 20 pu 1.ca 1.on. Thus, in the remainder of this section, the density matrix p 
"' 

is to be understood to mean p 
.-..eq 

• We shall make explicit use of the property 

of £eq that, in the neighborhood of any point r and in a coordinate system 
"' 

moving with the local fluid velocity xCv t), the momentum distribution of 

the particles is isotropic. That this is so follows from the definition of 

£eq as representing local equilibrium. 

For any operator A, the mean value A is 

A(t) = Tr(p(t)A) (6.3) 
"' 

The time rate of change of A is, if A is time-independent, 

dA Tr ( i [ H,. p ]A ) dt ---h 

i Tr ( [H, A] ) = -15.' p -
i ([H, A] ) • = .R (6.4) 

This equation, applied to various operators, yields the hydrodynamic equations 

of change. The Hamiltonian H is that of Eq. (2.1): 

H = K + V 
' 

where 

K = ( 6.5) 

and 

v = 
-1 

~ 11 (6.6) 
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We shall assume that the interaction v depends upon (k - n)
2 

only. 
"' "' 

Consider first the operators for particle density n(r) and momentum 

density ./J (r):. 
,-,.) -

-1 i(k- k')•r 
n(r) r ak,t - "' "' = E ~ e - kk' - "' 

( 6. 7) 

"""' 

Jcr) y-1 
.!(k + k 1 )a t 

i(k-k')•r - - -= E ak e 
,....,, -

kk' 2"'- k' 
"' "' 

( 6.8) 

"""' 

The equation of change for the mean density, 

n(r, t) = Tr [p(t) n(r)] 
"' "' "' 

is obtained from Eq. (6.4). The evaluation of [K, n(r)] 
"' 

is accomplished by 

Eq. (C.2) of Appendix C: 

. -1 
[K, n(£)] = (2m /J) 

i(k- k')•r - "' -e 

(6.9) 

' 

while, from Eq. (C.4), we have 

[V, n(r)] = 0 
"' 

( 6.10) 

Equation (6.4) then yields 

dn(r, t) 
"' ( 6.11) 

d t 
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We may define the fluid mass density and velocity by 

p(r, t) 
"' 

m n(r, t) 
"' 

(6.12) 

and 

p v( r, t) J;( r, t) 
,..., ,..., .-_.- ....._., I"W 

( 6.13) 

We thus obtain the conventional continuity equation 

... \7• ( p v) 
"' 

(6.14) 

l 
We next apply the same procedure to ~ (r), to obtain the equation 

,..,__, "' 
of motion. 

[K, Lr(r)] 
-...' "' 

and 

The relevant commutators are, from Eqs. (C.2) and 

= 
-1 

i ·h( 4 m 2/) \7• [ E 
kk' 
""" 

(~ + ~')(~ + ~')ak,t ~ 
"" "' 

(c.4), 

i(k-k')·rJ "' "' "' e· 

(6.15) 

[V, iJ(r)] 
1 -2 
2 {I ata/a,a p p q q 

i(q + q' - p - p')·r 

"' /V 

= E 
PP.'.qq' 
~~ 

,..., ,..., ,..., I"!,J ,....., 

e 
,..., ""'-~ 'V ,..., 

X { v(p- q)(p- q] + v(p'- q')[p'- q']}. 
I'V 'V,...,,..., ,..., "",...,,...., 

(6.16) 

To simplify Eq. (6.16), we recall our assumption that macroscopic 

quantities vary appreciably only over macroscopic distances. That is, when 

Tr { £[V, ~(£)]} is taken, the dependence on £ is slow. Therefore we 

may replace this quantity by its average over a small macroscopic volume. 

But the integration over volume vrill, because of the exponential in Eq. (6.16), 

have contributions only for 

;e + E' """ q + q' 
"' "' 

(6.17) 
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It is thus convenient to expand v(p' q') in the small quantity 
;'>./ ..-./ 

(p + p' - q - q') 
#IV 'V I'V "'J 

dv(p - q) 
v(£' - q') = v(p- q) + 2(p + p' 

~ ~ ~ ~ N 
q- q')·(p' .... .... "" 

q') - - ,..., + 
d(;e - s)2 

( 6.18) 

The expression in braces inEq. (6.16) is then 

( 6.19) 

where I is the unit dyadic. We insert expression (6.19) in Eq. (6.16) and .... 
remove the factor (p + p' - q- q') as a spatial gradient, because of the 

"" ,..., ,..., ,..., 

exponential. Also, because of the assumed isotropy of the momentum 

distribution (in the local rest frame) implied by p , we may average -
·. over . solid angle and replace it by 1 2 - (p ... a) I 

3 .... ;Q -

We then obtain 

+ ... (6.20) 

where 

1 t/2 at a ,t 
i( q + q' -p-p')·r 

veff(£) 1: 
IV IV - - -2 a ' a e 

pp'qq' p p s s ..... ...., 
....,.., ,...,..., 

[v(p - q) 
2 2 dv ] (6.21) X + - (p - q) 

q)2 
. .... ,..., 3 - ...., d(p -..... ..... 

Higher-order terms in the expansion, represented by •• 0' lead to higher-
. . \ 

order gradients and are dropped in accordance with our assumption that the 

gradients are small. 
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Let us now return to (6.15). Here it is convenient to introduce the 

momentum 

k - m v(r, t) 
IV ,..._ #V 

(6.22) 

i.e., the momentum measured in the local rest frame. Upon using Eq. (6.22) 

in Eq. (6.15), we obtain 

[K, /;; (r)] = rv __, 

-1 i(K • K1 )•r 
+ ( 4m ?I ) K ~I ( ~ + !t I ) ( !t + !t I ) atr ~ e IV IV IV ] J 

-
where fJ 1 

( £) is the momentum density operator in the local rest frame, i.e., 

with k replaced by K • When we take the statistical average, lJr vanishes, 
"' "' ~ 

since J 1 

~ 
p v' = 0, and (K + K1 )(K + K1

) can be replaced by ,.., "-- ,..., ,..., """' . 

l
3 

(K + K1 )
2 I • We then have 

rv IV IV 

' 

where 

(6.23) 

Because we are allowed to average over a small microscopic volume, /t may 

be written as 

-1 

71' (~, t) = v 2 
K 

2m 
(6.24) 

showing that /t is the local kinetic-energy density. Equations (6.23) 

and (6.20) may now be combined to yield the equation of change (6.4) for ~ 
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= - 'V·(p ~ ~) ( 6.25) 

We shall now show that the combination is just the 

thermodynamic pressure p 

2 97 -
P = 3 IL + veff (6.26) 

Our proof will be restricted to our present approximation p = p , ,.,. ;.,eq -
for which the expressions ?t 
to include 

and veff were defined. 

20 
8 p will be given in another paper. 

"' 

The generalization 

For a system at rest and in thermodynamic equilibrium, the pressure 

is defined as 

p 

where 

} = 
-f3(H - f,LN) 

Tr e 
' 

' 

(6.28) 

and the volume (of quantization) is to be varied infinitesimally. Thus we 

have 

-1 o H p = 1 Tr [ -d e 

or 

p = _( o H ) 
oY ' 

since for thermodynamic equilibrium 

p = ,.,. 
-1 

'} 
-f3(H - f,LN) 

e 

-f3(H - f,LN) 

(6.29) 



In calculating 

d K 
-= 

1 
2m 

UCRL-9149 

-37-

we must realize that the values of k are determined by the quantization 
"' 

volume ?I ' 
so that, for a given set of quantum numbers, we have 

k2 c.{; // 
-2/3 

It follows immediately that 

d K 2 K 

()7/ 3 y (6.30) 

Let us consider ;/ as a small macroscopic volume of the fluid. In accord 

with the assumption of thermodynamic equilibrium in that volume, the fluid 

is at rest in the local rest frame. Hence, from Eqs. (6.30) and (6.24), we 

have 

d K 

< d }/ 
) = 2 

3 7( ( 6.31) 

To calculate dV;fd~ from Eq. (6.6), we note not only the explicit 

dependence on 7/ , but also the implicit dependence from v(~ - £) , 

since, as just noted, the values of k depend upon ~ • A short 
"' 

calculation yields 

< 
·.() K ) = -

- veff ()'?/ 
(6.32) 

Upon summing Eqs. (6.32) and (6.31), we see that Eq. (6.29) leads to Eq. (6.26). 

Thus the equation of motion (6.25) can be written 
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= -V·(pvv) 
,.....,_ 

- \7 p ' ( 6. 33) 
0 t 

or, with the use of Eqs. (6.13) and (6.14), 

dv 
p = -Vp 

' (6.34) 
dt 

where djdt = o/Ot + x·V . Equation (6.34) is the Eulerian equation 

of motion, derived from the Liouville equation. 

To complete the set of hydrodynamic equations, we need an equation 

for the entropy flow~ For this purpose we introduce the energy-density 

operators: 

(6.35) 

where 

--
-1 

2/ 
i(k-k')·r 

"' "' N e 

(6.36) 

and 

i(q + q' - p- p~)·r 
v( p' - q) a t a t a a e ""' "' ""' "' "' 

"" "' p p' q' 9: ,..., ,.,. "" ~-

(6.37) 

are the total kinetic-energy-density and potential-energy-density operators, 

respectively. 

To find o~ot from Eq. (6.4), we need the commutators of ~K 
and ~ with K and v. Evaluating these by the relations of Appendix C 

and methods used above, we find 
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[K, ~] + == i -11( 2m 

i( q + q' -p-p')•r dv .'!,lH~ + .'!,l} Xe "' "' "' "' "' [v(p ~)!, + (p - q)(p -
q)2 "' d(p - "' "' "' 

"' "' 
(6.38) 

-1 i k' + k k'2 k2 i(k - k') •r J 
[K, UK] i 11 7/ \1. I: ( "' 

,.., 
)( + - ,.., "' 

== 4m 2m + 2m )ak,r ~ e . 
kk' ,.., 

"' -
and (6.39) 

In these expressions we make the rest-frame transformation (6.22), and 

take the statistical average. Our assumptions of slow spatial variation and 

local isotropy in the rest frame then yield, after some algebra, 

- \1. [ < u + P )z] ' 
(6.40) 

the equation of change for energy density, ~' the equation of state. To 

convert Eq. (6.40) into more conventional form, we subtract from ~{ the 

hydrodynamic energy density: 

1 2 
- - p v 2 -- (6.41) 

so that Uth is the thermal energy density. Introducing the specific 

thermal energy u by uth ~ p u , we may write Eq. (6.41) as 

- p\1 •v ' 
"' 

( 6 .42) 

with the help of the continuity equation (6.14) and the equation of 

' 

' 
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motion (6.34). This equation is equivalent to 

du d '"1 
+ p _e__ 

dt dt 
= 0 ' 

or 

ds 
crt 0 = ' . (6.43) 

where s is the specific entropy. Finally, the last equation, which 

expresses conservation of entropy, can be written in terms of the entropy 

density ../ = p s as 

(jJ + 'V•(v j) 
dt "' 

= 0 ' 
( 6.44) 

a continuity equation. 
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VII. APPLICATION OF TRANSPORT THEORY TO THE 

DEGENERATE BOSE-EINSTEIN SYSTEM 

The discussion of the previous section is quite general. It applies 

to the reversible flow of any single-component quantum fluid in local 

thermodynamic equilibrium. In studying the Bogolyubov model of liquid helium, 

however, we have to consider instead quasi-quilibrium situations, as discussed 

in Section V. We recall that in the Bogolyubov model the existence of an 

unperturbed state with macroscopic occupation leads naturally to a two-fluid 

model. The velocity of the superfluid component is just vs = k~m , where 
..... ..... 

k is the momentum of the macroscopically occupied state. The normal s -velocity v represents the drift velocity of the excitations with respect 
"'n 

to this state. To derive the equations of change for these velocities, we 

shall have to modify some of the discussion in the previous section. 

First of all, the equation of continuity (6.11) is still valid, 

but for 

and 

d p 
dt = 

p and 

p = Pn + 

11 = pn ~ rv 

( 7 .1) 

we shall now use expressions (5.17) and (5.21): 

ps ( 7 .2) 

+ ps Xs ( 7. 3) 

Next we note that the equation of motion (6.33), which was based on the 

assumption of local isotropy, is no longer valid in quasi-equilibrium. 

The term vp should be generalized to the divergence 9•p of a stress ..... 

tensor p , which will have a nonscalar part proportional to w w , where .......... 

w = v - v 
"' "'n "'S 

We shall, however, limit our discussion to small-amplitude 
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disturbances, with velocities so small that terms quadratic in them can be 

neglected. The equation of motion then reduces to 

o£ 
0 t 

-'Vp 
' 

where the pressure is to be evaluated for ~ = 0 , i.e., true local equilibrium. 

Finally, we will modify Eq. (6.44) for the conservation of entropy 

and use in its place, 

= 0 (7 .5) 
0 t 

The appearance of v in this equation may be qualitatively described with 
Nil 

the statement, "the entropy is associated only with the normal fluid." In 

Appendix D, a proof will be given of Eq. (7.5) in the Bogolyubov approximation, 

subject only to the condition that the normal and super velocities, v and 
Nil 

v are small. 
"'S ' 

One more equation is neede~ to determine the change with time of the 

relative velocity w == v v This may be obtained by considering 
.... - "".n "'6 

the momentum-density operator~ (r) (6.8) in a frame moving locally with 
-../ .... 

the superfluid velocity. In that frame the momentum of 

occupied state k is zero; we denote·~ (r) for that 
-s ,...r "' 

and have, from Eq. (5.21), 

v ) 
"'S 

the macroscopically 

frame as .1J ( r), ,....,.n,... 

Interpreting the momentum label k in Eq. (6.8) as referring to the moving 
"' 

frame, we may apply the Bogolyubov transformation (2.8), and obtain an 

expression for JJ in terms of a. , 
""n k 

+ ak , the quasi-particle operators. - "' 
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Terms independent of ~' ak+ vanish by symmetry, while those in ~· ~ 
~ ~ ~ ~ 

+ + and ~· ~ do not contribute to the equation of change, as may be 
~ -

verified directly. Keeping only the terms which do contribute, we have 

= 7) -1 1 + 
!: 2 (~· + ~)~, ~ 

kk' - --
i(k- k')·r 

"' - - ( 7. 7) e 

(Alternatively, this expression could have been deduced from Eq. (5.4).) 

Now in the laboratory frame the equation of change for g is 
~ 

[from Eq. (6.4)] 

= i ( [H, }J ] ) 
0 t "'""' 

Since N commutes with iJ (before the Bogolyubov transformation), we may 
~ 

replace H by H - ~N in the commutator above. Then we go to the superfluid 

rest frame, replacing .4, by ~n , and make the Bogolyubov approximation, 

replacing H - ~ by HB - ~ 

= i ( [HB - ~N, dl.nJ ) ( 7.8) 
0 t 

(The transformation of o~t involves a correction of order ~s·~ ' which 

we neglect.) Because ~- ~N is just 

plus terms independent of ~ , the commutator of Eq. (7.8) is easy to -
evaluate, by Eq. (C.2): 
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i(k- k')•r ...... -e 

= i \1• { (/ -l E 
kk' -

under the assumption of slow spatial variation. We then use the assumption 

of isotropy (in the small-amplitude limit), and obtain for Eq. (7.8) 

ol1 /Vn 
-\lp = 

0 t n 

where 

2 v-1 
pn 3 

Upon evaluation, this is 

-1 
2 

p = 8( 31! ) 
n 

E k2 d~ 
)7k dk.2 k .... 

in the notation of Appendix A. We note that pn is the last term in 

expression (3.33) for p • 

( 7 .9) 

( 7 .10) 

(7 .11) 

We now have a complete set of equations of change--Eqs. ( 7.1), ( 7. 4), 

(7.5), and (7.9)--to describe the small-amplitude motions of the fluid. 

They are supplemented by the thermodynamic expressions, Eq. (3.33) for 

pressure, 

1 2;, 
p = 2 J.l./ v(O) 1 -2 2 -1 ( l- 32 ,l/2 112 ( )] } + 4 ~ J.J. m a 15 ~ m a[l - 5 u3 r , 

( 7 .12) 

Eq. (3.35) for entropy density, . 

( 7 .13) 



Eq. (5.16) for p , 
n 
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2 -1 3 :t/2 2 3/2 
p = 8(31! ) p( n a ) (g m a ) r[ - W' '(r)] , 
n 3' 

(7 .14) 

Eq. (7.11) for p , and the algebraic relations (7.2), (7.3), and (7.6). 
n 

Let us simplify these equations, making further use of the small-

amplitude assumption. Equations (7.1) and (7.4) combine to yield 

Equation (7.5) becomes 

= ( 7 .16) 

and Eqs. (7.9) and (7.6) yield 

0 
p ""'\"""'-;:'t (v -v) = -\lp n o 1:; "'-"!1 -s n ( 7 .17) 

It is convenient to consider temperature and density as the dependent 

variables. We thus write 

0 p d p 
\lp n \78 n 'Vp 'd'"6 + dP n (7.18) 

p e 

From Eqs. (7.11) and ( 7 .13) we note that 

0 p 

~' n 
~ = 

p 
( 7.19) 

while the second term of Eq. (7.18), when evaluated, can be shown to give a 

negligible contribution to the results to be obtained below in the temperature 

range of Eq. (3.26) where our theory is valid. Dropping that term, then, we 
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may write Eq. (7.17) as 

( 7.20) 

The three equations (7.15), (7.16), and (7.20) are now identical with those 

21 of the phenomenological two-fluid theory. 

In analogy to Eq. (7.18), we may express vFp in Eq. (7.15) as 

ife + };\ vFp 
P e . 

in the small-amplitude limit, and can now show that the first term makes a 

negligible contribution (to lowest order) because the temperature dependence 

of p in Eq. (7.12) is weak at low temperatures. Equation (7.15) then becomes 

?:P p c 2 if p ' 
0 t

2 I (7.21) 

where 

c 2 0 p 

le 
-1 2 

= dp =::: m llo = c I ( 7 .22) 

Thus density fluctuations propagate with a wave velocity equal to the 

phonon velocity of the small-momentum excitations. For these waves ("first 

sound") the temperature fluctuations are negligible, and, by Eq. (7.20), 

the two "fluids" are in phase: 

( 7. 23) 

Temperature waves, or "second sound," involve negligible density 

fluctuations, but appreciable temperature fluctuations. For these modes, 

by Eq. (7.1) ~ is negligible, so· that by Eq. (7.3) we have 
,-.J 
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But in our theory, we have p << p n s [see Eq. (7.14)], so that for second 

sound we have 

v >> v n s ' 

in contrast to 

ov 
"'.n 

Pn 
0 t 

and in Eq. ( 7 .16)' 

p 

to obtain 

o2 e 
0 t 2 = 

where 

CII 
2 

(7.23) for first sound. 

= -J 'V e 

we replace 

0 9 

0 t 

CII 
2 

~2 

if 

Pn ~1[ 

' 

e 

lp 

' 

oJ'ot by 

' 

(7.24) 

Thus Eq. (7.20) becomes 

( 7.25) 

( 7 .26) 

( 7 .27) 

(It should be pointed out that the various approximations made after Eq. (7.17) 

are not necessary. One could solve Eqs. (7.15) to (7.17) directly for the 

normal modes, and then note from the final results for the two propagation 

velocities that these approximations are indeed valid.) 

We may evaluate CII' from Eq~ (7.13) and (7.14), as a function of 

temperature. For the two limiting cases, (1) e << ~0 and (2) ~0 << 9 << e0, 
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we find 
:• 

( 1) CII 
2 1 c 2 = 3 I .. 

a familiar result, and 

2 16 ~( 2 ) llo c 2 ( 2) CII 
2 

= 15 ~( 2 ) ' e I 
2 

(7.29) 

where ~ is the Riemann zeta function. 
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APPENDIXES 

A. Integrals 

A discussion of the statistical mechanical properties of the Bogolyubov 

Hamiltonian involves the functions 

()) n 
u (r) J dy X (A.l) = n 

0 e'YY - 1 

where x = kjk0 
and y = 2 l/2 x(x + 1) , ko and ')' having been defined by 

Eqs. (3.22) and (3.24), respectively. In the "low temperature" limit 

(r >> 1), we have x ~ y , and the Debye functions are obtained. In the 

"high temperature" limit (r << 1), we have x~ yJ/
2

, and these functions 

go over to the Bose-Einstein integrals. The functions U (r) 
n 

can therefore 

be obtained in these limits in terms of the Riemann s functions: 

= 

for 'Y << 1 and 

r( ~ . + 1) ~( ~ ·. + 1) 

n/2 + 1 
')' 

u (r) = r(n + 1) ~(n + 1) 
n n+l 

')' 

for 7 >> 1. 

A similar function that is needed is 

w (r) = n 

ro n 
f dy X 

0 e1Y - 1 

1 

(2x2 + 1)-1 d For large 'Y , the extra factor may be ignore , and the 

asymptotic form is the same as U (r): 
n 

(A.2) 

(A.3) 

(A.4) 

(A.5) 
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For small y , the extra factor is 2 -1 ( 2x ) . ; so we have · · 
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B. Statistical Properties above the Transition Temperature 

Using the recently developed linked-diagram expansions, 13 we shall 

briefly discuss the properties of the system above the transition temperature. 

In this method, the grand partition function is written 

J = ~6 exp(~ + ~ + . . . ) 

where Jo is the function for an ideal gas, 

Jo = '11 (1 + )/k) ' k ..., 

and Q1, ~' ••• give the effect of interactions in a linked-diagram 

perturbation series. 

(B.l) 

(B.2) 

In our case of a dilute gas with weak interactions, we need keep only 

the leading term Q1 , which is13 

-1 
Q = - l: 13 if I: [ v( k - k 1 

) + v( 0) ] )}.k. );!.k 1 

1 2 k kl ..., -
_,_ (B.3) 

Upon evaluating the mean number of particles N = o~~ , we obtain 

I: [ V( ~ - ~I ) + V( 0) ] '))k I ( 1 + ~ t ) ) 

k' - (B.4) 

At low temperatures we may approximate 

v( k - k' ) ~ v( 0) - -
and then can express (B.5) in terms of the Bose-Einstein integral22 
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dz z:y'2 

z+a 
e - 1 

and the thermal wave length A. = 21t -K [ Eq. ( 4.14) ] : 

The quantities a and A are 

a = - ~ 1-L 

and 

UCRL-9149 

, .... , :\ ~ 

(B.5) 

(B.6) 

(B.7) 

A = 2n ~ v(O) A.- 3 (B.8) 

Equation (B.6) has a solution for all temperatures e g!eater than 

some "transition" temperature e , determined by 
c 

n A. 3 = 
c (B.9) 

For the ideal gas, A vanishes, and one finds22 for the transition temperature 

(B.lO) 

For weak repulsive interactions, the maximum occurs at non-zero a . From 

22 the expansion of a : 

- 3.545 a 1/ 2 + 2.612 + 1.460 a - 0.104 a 2 + ••• 

(B.ll) 
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we find that the maximum is at 

From Eqs. (B.7), (B.8), and (B.lO), this implies that, just above 9 ' c 

1-1. ~ - n v(O) 

and, from (B.9) and (B.ll), that the shift in 9 is c 

e - e c ci 
9ci 

= 4.45 (~ . n v(0))71
2 

Cl. 

(B.l2) 

(B.l3) 

(B.l4) 

We have thus shown that a Bose gas with weak repulsive interactions has a 

phase transition at a temperature slightly higher than that for an ideal 

gas. 
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C. Commutation Relations 

We list here several commutation relations which are .needed in 

Sec. VI. Let be two functions of momentum k . We define 

and 

1: 
kk' -

Using the relation 

,., 

. ( c .1) 

which is valid for either Bose-Einstein or Fermi-Dirac statistics, we find 

that 

1 
= 2 

Next we define 

-1 

21 
-1 

1 
2 tl v(p - q) a t a t 

- ,., p p' a ' ~ 

and obtain 

1 
= 4 

££'~' 

- ,.., 

at a t 
p p' ,.., ,.., 

+ v(n' - a')(sq + s 
~ ..0 p+p'-q' 

a ' q 

s 
p 

-

-

a 
q -

a 
q ,.,. 

e 

i(k-k')·r ,.,. ,..., ,.., 
e 

(C.2) 

8 
p+p'' q+q' "' ,.., ,.., ,..., ' ( C.3) 

i(q + q' - p- p')•r 
I"V ,.,., ,.., ,.., ""' 

c.4) 
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One more operator which has to be considered is 

1: 
pplqql --

v(p - q)a t a t 
.... - p pi - - a I q -

Its commutators with n1 and n2 are 

= 
1 
2 

21-1 l: 

pp'qql --
v(p - q) a t a t 

- .... p pi - -

a 
q -

a I q -

e 

UCRL-9149 

i(q + q 1 
- p- p 1 )•r 

,.., rv #'1/J ~ ,..., 

a (e + e 1 - e - e ) q p p q ql 
N I'V iiv "' "' 

i(q + q 1 
- p- p 1 )•r 

X e N rv "' #"tw ,.., ( c.6) 

and 

(C.7) 



.. 
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D. The Equation for Entropy Change 

We give here a direct proof of Eq. (7.5), using the Bogolyubov model. 

In obtaining this, we shall assume that the velocities v ·'and· v are small, 
""S "'!1 

so second-order terms in them may be dropped. 

We need first a general form for HB - ~ . 
be written as 

Let a momentum state k 

}S = Jt + m~ (D.l) 

where ~ = 0 refers to the macroscopically occupied state. The kinetic 
"' 

energy of a particle is therefore 

2 
~ 
- + 2m 

to first order. This expression leads to the Bogolyubov "Hamiltonian" 

' 

where the ground-state "energy" has been omitted. 

(D.2) 

(D.3) 

"' 

The density matrix £ for the case :¥:n I Xs /. 0 can be obtained 

from Eq. (5.2), which pertains to the case v = o, 
""'8 

0 The former 

case can be obtained from the latter by means of a Galilean transformation, 

which leads to the replacement17 

• 

The density matrix is thus 

'-1 
p = ? exp[ -~ (~- ~- v •G)] 
"' -n..., 

-1 
(D.4) 

= l exp[ -~ !:' ( E - W•~ )o; + o; ] 
' ~ .... "' ~ ~ 

~ .... "' "' 

)-
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and ~ is determined by 

Tr p= 1. ,.., 

The entropy of the system is 

S(w) = - Tr(p £n P) .... ,.., ,.., 

- I:' £n[ 1 .. 
K .... 

where 

-1 
- 1] • (D.6) 

For small w I , we expand S(w) to linear terms, perform some integrations - .... 
by parts, and write 

S(w) = ,.., I:' I(~, ~) :;JK(~) ' K ,.., .... 
where 

I(K, w) ,.., .... 

Using Eq. (D.7) as a guide, we define the operator 

-1 

J =::'Z/ I: 
KK 1 ,..,.., 

1 - [I(K 1 w) 2 .... ' ,.., 

with the property that its average, 

' 
is the entropy density for equilibrium p • 

"' 

(D.7) 

-~e: 
e K ) -1 • (D.8) 

i(K- K 1 )•r ,.., .... "' e 

(D.9) 
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\ 
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-
The equation of change for ~is [see Eq. (7.8)] 

d .J CJ dt = i ( ( l13 - f-ill, .d ) ) ( D .10) 

where Eqs. (D.3) and(D.9) are to be used in the commutator. The evaluation 

proceeds as in Sections VI and VII, and we obtain 

= 
-1 

- \1• { ?/ E ( 
K - • 

(D.ll) 

(The parameter Xs that appears here is now a function of position and time, 

because of the statistical averaging with p .) The second term in the curly 
"' 

bracket of (D.ll) is just Xs .-J by Eq. (D.9). From Eq. (D.8), the first 

/ term is, to lowest nonvanishing order, 

-13€ 
( K )-1 .-r 

€ W•K 1 - e Y.. 
K ""..., Jt 

Upon averaging over the directions of K in the sum, we obtain .... 
-1 1 132 

d€ -13€ 
w-J' '[f E K ( K -1 w K € 1 - e ) ))K = 

3 "' dK K IN 

~ "" 

so that Eq. (D.ll) is 

(D.l2) 

= 

as stated in Eq. (7.5). 
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FOOTNOTES 

1. N. N. Bogolyubov, J. Phys. (U. S. S. R.) 11, 23 (1947) •. 

2. T. D. Lee and C. N. Yang, Phys. Rev. 112, 1419 (1959), and previous papers 

cited there. 

3. F. London, Phys. Rev. 54, .947 (1938). 

4. L. D. Landau, J. Phys. (U.S.S.R.) L' 71 (1941). 

5· In most of this paper the following conventions will be adopted. First, 

~ will be set equal to unity. A bar or angular brackets will mean 

statistical average, as defined in Section 3. A prime after a summation 

symbol, such as occurs in Eq. (2.6), indicates that the term for k = 0 -
is to be omitted. 

6. See also L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon 

Press, London, 1958), Chap. VII, p. 240. 

1· See for example p. 105 of reference 6. 

8. Equation (3.7) may also be obtained from the familiar formula 

-1 o.%· 
N = e J · d;T , which may be obtained from Eq. ( 3.2) for F = N. 

9. In the limit of zero temperature, Eq. (3.7) agrees with the result of 

Lee, Huang, and Yang [Phys. Rev. 106, 1135 (1957)]. However, the third 

term of Eq. (3.7), which is important at finite temperatures, differs 

significantly from the recent result of Lee and Yang [reference (2)]. 

These authors use the equation 

which implies that the number of excitations, + 
~· ~- ~ , equals - ,... 

the number of particles in excited unperturbed states, 't"l + 
u ak ~ • 
k ,... ,.., 
""' In a consistent theory this is strictly true only if the interactions 

are completely ignored. 
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10. This is the lowest-order chemical potential obtained by N. M. Hugenholtz 

and D. Pines [Phys. Rev. 116, 489 (1959)]. Although these authors did 

not study the thermal behavior of the system, they used essentially the 

same statistical procedure used here to determine ~ and N . 

11. In order to simplify the notation, the bar will henceforth be omitted 

from n0 and N0 , as in Eq. (3.13). 

12. T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135 (1957). 

13. C. Bloch and C. de Dominicis, Nuclear Phys. ], 459 (1958); A. E. Glassgold, 

W. Heckrotte, and K. M. Watson, Phys. Rev. 115, 1374 (1959). 

14. This is essentially the point of view of Landau [reference (4)] and more 

recently, T. D. Lee and c. N. Yang [Phys. Rev. 113, 14o6 (1959)]. 

/ 15. The latter form, Eq. (15.5), is due toR. B. Dingle, Advances in Physics, 
I 

l, ];:, 112 ( 1952). 

16. See, for example, paragraph 34, p. 103, of reference 6. 

17. J. B. Blatt, S. T. Butler, and M. S. Schafroth, Phys. Rev. 100, 481 (1955). 

) 18. A similar result holds for Fermi~Dirac particles interacting through 
/ 

pairing forces, as in. the theory of superconductivity. The only difference 

is the replacement of minus signs in Eq. (5.35) by plus signs. 

19. In this section only, we do not set -b'/ = 1. 

20. A. E. Glassgold, A. N. Kaufman, and K. M. Watson, in preparation. 

21. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Chapter XVI. (Pergamon 

Press, London, 1959). 

22. F. London, Superfluids (John Wiley and Sons, Inc., New York, N.Y., 1955). 
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