
UC Berkeley
UC Berkeley Previously Published Works

Title
Reducing Communication in Graph Neural Network Training

Permalink
https://escholarship.org/uc/item/1sx4j5dv

ISBN
978-1-7281-9998-6

Authors
Tripathy, Alok
Yelick, Katherine
Buluç, Aydın

Publication Date
2020-11-19

DOI
10.1109/sc41405.2020.00074

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1sx4j5dv
https://escholarship.org
http://www.cdlib.org/

Reducing Communication in Graph Neural Network
Training

Alok Tripathy, Katherine Yelick, Aydın Buluç
∗ Electrical Engineering and Computer Sciences, University of California, Berkeley
† Computational Research Division, Lawrence Berkeley National Laboratory

samples are evaluated and then used to update the model in
a single step. Mini-batching has two purposes. First, it allows
the neural neural to train on a smaller memory footprint.
Second, it strikes a good balance between achieving high-
performance through higher arithmetic intensity and achieving
good convergence. Unlike images in a database, vertices of a
graph are dependent on each other, which is one reason behind
GNNs expressiveness. However in the case of GNNs, this
dependency makes it hard to process a mini-batch of vertices.
After only a few layers, the chosen mini-batch ends up being
dependent on the whole graph. This phenomenon, known as
the neighborhood explosion, completely nullifies the memory
reduction goals.

To overcome neighborhood explosion, researchers resort to
sophisticated sampling-based algorithms that can help GNN
training have a smaller memory footprint by reducing the
number of k-hop neighbors considered. Sampling algorithms,
however, come with approximation errors. Here, we use the
aggregate memory of a cluster or supercomputer to train
GNNs without mini-batching, similar to other work that use
distributed memory to train GNNs [34], [18]. In particular,
ROC [18] showed that (1) full gradient descent can be com-
petitive with mini-batching in terms of performance, and (2)
sampling based methods can lead to lower accuracy. We build
on this work by presenting distributed algorithms with reduced
communication. Our distributed algorithms are general and
while presented for full gradient descent, they can be easily
modified to operate on a mini-batch setting.

Training of GNNs can be memory limited on single node
machines, and we support training on distributed-memory
architectures where two primary challenges are communica-
tion costs and load balance. This paper primarily focuses on
minimizing communication costs for GNN training. Some of
the best algorithms presented in this paper, namely the 2D
and 3D algorithms, also automatically address load balance
through a combination of random vertex permutations and the
implicit partitioning of the adjacencies of high-degree vertices.

The primary contribution of our paper is the presentation of
parallel GNN training algorithms that reduce communication,
which are fundamentally different than existing approaches
for GNN training. On P processes, our 2D algorithm, which
consumes optimal memory, communicate a factor of O(

√
P)

fewer words than commonly utilized vertex-partitioning based
approaches. The 3D algorithm we describe reduces the number

Abstract—Graph Neural Networks (GNNs) are powerful and
flexible neural networks that use the naturally sparse connectivity
information of the data. GNNs represent this connectivity as
sparse matrices, which have lower arithmetic intensity and thus
higher communication costs compared to dense matrices, making
GNNs harder to scale to high concurrencies than convolutional
or fully-connected neural networks.

We introduce a family of parallel algorithms for training GNNs
and show that they can asymptotically reduce communication
compared to previous parallel GNN training methods. We im-
plement these algorithms, which are based on 1D, 1.5D, 2D, and
3D sparse-dense matrix multiplication, using torch.distributed on
GPU-equipped clusters. Our algorithms optimize communication
across the full GNN training pipeline. We train GNNs on over a
hundred GPUs on multiple datasets, including a protein network
with over a billion edges.

Index Terms—Graph neural networks, distributed training,
communication-avoiding algorithms

I. INTRODUCTION

Graph Neural Networks (GNNs) [25] are types of neu-
ral networks that use the connectivity information that is
natural in datasets that can be represented as graphs, such
as molecules, transportation and social networks, the power
grid, and proteins. The neighborhood connectivity informa-
tion in GNNs is unrestricted and potentially irregular giving
them greater applicability than convolutional neural networks
(CNNs), which impose a fixed regular neighborhood structure.
GNNs have been successful in many application domains
and often take advantage of specialized variations such as
recurrent GNNs, spatial-temporal GNNs, graph convolutional
networks, and graph autoencoders. High-quality surveys of
GNNs describe these variations and their applications in more
detail [30], [33]. GNNs are also provably quite powerful and,
for example, are known to be equivalent to the powerful
Weisfeiler-Lehman algorithm for graph isomorphism when the
GNNs’ underlying aggregation and combination operators are
sufficiently flexible [31].

Two dominant uses of GNNs are node embedding, which
predicts certain properties of individual vertices in a large
graph, and graph embedding, which predicts certain properties
of whole graphs. The presentation of this work follows the
node embedding case but the general techniques we introduce
are applicable to the graph embedding case as well.

As with CNNs, the training algorithms for GNNs are
based on variations of gradient descent, and typically use
the idea of mini-batching in which a small set of training

ar
X

iv
:2

00
5.

03
30

0v
3

 [
cs

.L
G

]
 2

 S
ep

 2
02

0

of words communicated by another factor of O(P 1/6) at
the expense of higher memory consumption. Finally, our
1.5D algorithm optimizes communication for a given memory
footprint, reducing communication volume by a factor of
O(c) and latency cost by a factor of O(c2) at the expense
of asymptotically increasing memory footprint by O(c). Our
work presents algorithmic recipes to get the fastest GNN
implementations at large scale.

Our distributed algorithms can be implemented in any
system that allows arbitrary divisions of tensors to processes,
such as Mesh-Tensorflow [26]. We opted to use PyTorch for
our demonstration due to its ubiquity and excellent support for
existing GNN models through PyTorch Geometric. All of our
experiments are run on the Summit supercomputer at the Oak
Ridge Leadership Computing Facility (OLCF). We used the
existing single-node kernel implementations in cuSPARSE that
are easily called from PyTorch. Faster implementations of key
kernels such as sparse matrix times tall-skinny dense matrix
(SpMM) exist [32], [2] and would decrease our overall run-
time. Faster single node kernels are equivalent from a relative
cost perspective to running on clusters with slower networks;
both would make our reduced-communication algorithms more
beneficial.

Our current implementations operate on the standard real
field, but they can be trivially extended to support ar-
bitrary aggregate operations to increase the expressive
power of GNNs [31]. For example, many distributed libraries
such as Cyclops Tensor Framework [27] and Combinatorial
BLAS [8] allow the user to overload scalar addition op-
erations through their semiring interface, which is exactly
the neighborhood aggregate function when applied to
graphs. Finally, we note that while our focus is on GNN
training, all of our algorithms are applicable to GNN infer-
ence. All of our code is available publicly as the CAGNET
(Communication-Avoiding Graph Neural nETwork) package
at https://github.com/PASSIONLab/CAGNET.

II. RELATED WORK

Parallelism opportunities in the training of deep neural
networks (DNNs) have been studied intensively in the re-
cent years [6]. For DNNs generally, the two broad cases
of parallelism are model and data parallelism. Data paral-
lelism replicates the DNN model in the memory of each
process and only partitions the data. Data parallelism can
be sub-classified into sample (also called batch) and domain
parallelism. In the particular case of convolutional neural
networks (CNNs), domain parallelism is often referred to as
spatial parallelism [12]. Model parallelism, on the other hand,
partitions the model explicitly. In the common case, each
DNN layer can be partitioned into all processes and layers
can be computed in their original order. Alternatively, inter-
layer pipeline parallelism can be exploited for certain parts of
the computation, but not all. For CNNs, further dimensions of
parallelism in the form of filter and channel are exploitable as
special cases of model parallelism [13].

This might seem like a daunting list of parallelism oppor-
tunities to consider for GNN training. Fortunately, as shown
in the next section, GNN training is simply a series of
algebraic transformations on sparse and dense matrices. Con-
sequently, one can achieve highly-parallel algorithms without
even considering the semantic meaning of the dimensions
that are partitioned by the algorithm. Ours is similar to an
approach taken in earlier work in parallelizing the training
of fully-connected and convolutional neural networks [15].
Differently for GNNs, the issues of sparsity and load balance
play a prominent role in performance and scalability. Our
paper provides several different classes of algorithms that
take advantage of many different parallelism opportunities
available. We asymptotically analyze the communication costs
of the algorithms we present, as well as potential alternatives.

Existing work in parallel GNN training implement their
algorithms in specialized frameworks [18], [22], [34]. This
requires practitioners to port their models and code to that
framework, which might be impossible given the lack of an
ecosystem to rapidly implement different GNN algorithms.
We implement our algorithms using Pytorch [24], utilizing
torch.distributed and PyTorch Geometric libraries. Given the
wide availability and popularity of PyTorch, not to mention
the vast set of GNN variants implemented in PyTorch Geo-
metric [14], any practitioner with access to a distributed cluster
can easily utilize our algorithms to scale their models.

The other PyTorch based distributed graph embedding li-
braries we are aware of are PyTorch-BigGraph (PBG) [21]
and Deep Graph Library (DGL) [29]. PBG’s website explicitly
says that it is not for use with models such as graph convo-
lutional networks and deep networks. Consequently, while it
presents some interesting ideas, PBG does not seem to have the
expressiveness required to implement GNNs. By contrast, our
distributed algorithms can be used to implement anything that
is supported by PyTorch Geometric, which already implements
a vast majority of top GNN models in the literature. On the
other hand, DGL is an active large-scale project that provides
a convenient graph-based interface instead of exposing sparse
matrices to the user, and it automatically fuses operations
to avoid unnecessary data movement and computation. Our
algorithmic work is complementary and can incorporated into
DGL in the future.

The details of data partitioning in various GNN training
systems are light. ROC [18] advocates a specialized graph
partitioning method, and shows that it scales better than
random vertex and edge partitioning. AliGraph [34] mentions
that it implements both a graph partitioning based approach
and a 2D partitioning approach, but does not give any details
or provide communication cost analyses.

III. BACKGROUND

A. Notation

Table I summarizes the notation used in our paper. There is a
unique sparse matrix A that represents the graph structure but
there are L distinct H and G matrices, indexed l = 0 . . . L−1,

https://github.com/PASSIONLab/gnn_training

TABLE I
LIST OF SYMBOLS AND NOTATIONS USED BY OUR ALGORITHM

Symbols and Notations
Symbol Description
A Modified adjacency matrix of graph (n× n)
Hl Embedding matrix in layer l (n× f)
Wl Weight matrix in layer l (f × f)
Yl Matrix form of ∂L

∂W l
ij

(f × f)

Zl Input matrix to activation function (n× f)
Gl Matrix form of ∂L

∂Zl
ij

(n× f)

σ Activation function
f Length of feature vector per vertex
fu Feature vector for vertex u
L Total layers in GNN
P Total number of processes
α Latency
β Reciprocal bandwidth

which are embedding matrices and their derivatives, respec-
tively. Finally there are L − 1 weight matrices W and Y,
indexed l = 0 . . . L − 2, because the number of transitions
between feature vectors are one less than the number of
embedding matrices.

When analyzing communication costs we use the α − β
model where each message takes a constant α time units
latency regardless of its size plus an inverse bandwidth term
that takes β time units per word in the message, to reach
its destination. Thus, sending a message of k words takes
α+βk time. In addition, we use nnz (A) when referring to the
number of nonzeros in the sparse adjacency matrix A, which
is equal to the number of edges in the graph with self loops
added. We also use d for the average degree of a vertex in A,
i.e. nnz (A) = dn.

B. Graph Neural Networks

Consider a dataset that is represented as a graph G(V,E),
such as a protein network, social network, grid transmission
network, or the union of tangled high-energy particle tracks.
Here, V is the set of vertices (nodes) and E is the set of
edges. We can consider the classification of the nodes or
the edges. Without loss of generality, we will describe a
GNN for node classification. The goal of the so-called node
embedding problem is to map the nodes of a graph into a
low-dimensional embedding space such that the similarity of
two nodes u, v ∈ V is approximated by their similarity in the
low-dimensional space zT

uzv . Here, zv , which is typically a k-
dimensional vector of floating-point values, is the embedding
of vertex v. In addition to node and edge classification, GNNs
can also be used to classify graphs or perform regression on
graphs. In this case, the input would be a set of graphs such
as the atomistic structures of a set of molecules.

Let A be the n × n sparse adjacency matrix of the graph
with added self-connections. The addition of self-connections
ensures that each node does not forget its embedding when
going from layer i to layer i + 1. The rows and columns
of A are also often normalized [19], so for an undirected
graph one actually uses D−1/2(A + I)D−1/2 due to its

favorable spectral properties. Here, I is the identity matrix
and D is a diagonal matrix of modified vertex degrees. To
avoid notational burden, we will still refer to this modified
adjacency matrix with A. We also distinguish between A
and its transpose AT explicitly in order to present a general
training algorithm that works for both directed and undirected
graphs. H0 is a dense n × d matrix of input node features.
These features are application dependent attributes on graph
nodes. A high-quality embedding can be achieved by using
a neural network that uses the topology of the graph. In
particular, the GNN forward propagation processes t he input
features matrix H(l) at level l using following simple equation:
H(l) = σ(ATH(l−1)Wl).

Here, W(l) is the trainable matrix that holds the model
parameters at the lth level of the neural network, and σ is the
activation function such as ReLU. Consequently, the most time
consuming operations are the multiplication of a sparse matrix
with a dense matrix (SpMM) and dense matrix multiply. Back-
propagation also relies on the same computational primitives.
We provide backpropagation derivations in Section III-D.

C. Forward Propagation

At each node, the product ATH(l−1) combines the (i−1)th
feature vectors of its neighbors while the subsequent multipli-
cation with Wl mixes the features and maps them into the new
feature space at the ith level. Finally, nonlinearity is achieved
via the σ() function on the output.

Zl = ATH(l−1)Wl

Hl = σ(Zl)

D. Backpropagation Derivations

Equation 1: Here we derive the gradient of the loss with
respect to ZL, leveraging the chain rule and that Zl = σ(H l).

∂L
∂ZL

ij

=
∑
u∈V

∑
v∈fu

∂L
∂HL

uv

∂HL
uv

∂ZL
ij

=
∂L
∂HL

ij

∂HL
ij

∂ZL
ij

(∂H
L
uv

∂ZL
ij

= 0 iff u 6= i and v 6= j)

=
∂L
∂HL

ij

σ′(ZL
ij)

GL =
∂L
∂ZL

ij

= ∇HLL � σ′(ZL)

Equation 2: Here we derive a recurrence to propagate the
gradient backwards through the neural network, leveraging the

chain rule and the lemma stated below.

Gl−1
ij =

∂L
∂Zl−1

ij

=
∑
u∈V

∑
v∈fu

∂L
∂Zl

uv

∂Zl
uv

∂Zl−1
ij

=
∑
u∈V

∑
v∈fu

∂Zl
uv

∂Zl−1
ij

Gl
uv

=
∑
u∈V

∑
v∈fu

W l
jvG

l
uvσ
′(Zl−1

ij)

(see lemma below)

Gl−1 = AGl(Wl)T � σ′(Zl−1)

Lemma for Equation 2:

Zl
uv =

∑
i∈N(u)

∑
j∈fi

H l−1
ij W l

jv

(See forward prop equations)

=
∑

i∈N(u)

∑
j∈fi

σ(Zl−1
ij)W l

jv

∂Zl
uv

∂Zl−1
ij

=W l
jvσ
′(Zl−1

ij)

Equation 3: This final equation represents the gradient Yl

of the loss with respect to the weights in the network, and this
gradient is used in gradient descent.

Yl−1 =

(
∂L
∂W l

)
ij

= (Hl−1)TAGl

Wl−1 = Wl−1 −Yl−1

The second step in Equation 3 is simply the gradient descent
step. This step does not require communication, so it is not
discussed in our analysis in the following section.

IV. COMMUNICATION SCHEMES AND THEIR ANALYSES

In this section, we present 1D, 1.5D, 2D, and 3D parallel
algorithms for GNN training and analyze their communication
costs. Table IV summarizes the matrix partitioning used by
these algorithms. The presented communication costs are for
one epoch, which is a single pass over the whole dataset.

Ideally, a distributed-memory parallel GNN training algo-
rithm consumes O(nfL + nnz (A)) total memory across all
processes. Our 1D and 2D algorithms achieve this bound up
to constant factors, while 1.5D and 3D algorithms, whose
exact memory consumption is provided in their respective
subsections, do not. To avoid expensive transposing, our 1D
and 1.5D algorithms stores both A and AT when the input
graph is directed. This decision does not increase storage costs
asymptotically and is currently immaterial due to almost all
GNN-based learning being performed on undirected graphs.

All pseudocodes (Algorithms 1,2,3) take the inputs
1) A ∈ Rn×n : sparse adjacency matrix,
2) Hl−1 ∈ Rn×f l−1

: dense input activations matrix,
3) W ∈ Rf l−1×f l

: dense training matrix,
and output Hl : Rn×f l

: dense output activations matrix.

A. A One-Dimensional (1D) Algorithm

In this regime, matrices AT and H are distributed to
processes in block rows, where each process receives n/P
consecutive rows. For example, given a matrix AT, we write
AT

i = AT(i(n/P) : (i + 1)(n/P) − 1, :) to denote the block
row owned by the ith process, assuming n/P is an integer.
To simplify the algorithm description, we use AT

ij to denote
AT

i (:, j(n/P) : (j+1)(n/P)−1), the jth block column of AT
i ,

although the whole block row is owned by a single process.

AT =

 AT
1

...
AT

p

 =

 AT
11 . . . AT

1p
...

. . .
...

AT
p1 . . . AT

pp

 ,H =

 H1

...
Hp

(1)

Let T be the intermediate product ATHl−1. For each
process P (i), the computation is:

Ti = Ti +AT
i H = Ti +

p∑
j=1

AT
ij Hj

The row-wise algorithm forms one row of output at a time,
and each process may potentially need to access all of H
to form a single row of T. However, only a portion of H
is locally available at any time in parallel algorithms. The
algorithm, thus, performs multiple iterations to fully form one
row of T. Algorithm 1 shows the pseudocode of the algorithm.

Algorithm 1 Parallel algorithm for GNN forward propagation,
which computes Hl ← σ(ATHl−1Wl), using the 1D block
row decomposition

1: procedure BLOCKROWFW(AT,Hl−1,W,Hl)
2: for all processes P (i) in parallel do
3: for j = 1 to p do
4: BROADCAST(Hl−1

j)
5: Tij ← AT

ijH
l−1
j

6: Zi ← TijW
7: Hl

i ← Hl
i + σ(Zi)

1) Equation Zl = ATHl−1Wl:
Communication is 1D Block Row: AT is partitioned by

rows, and Hl−1 is partitioned by rows. This yields a 1D Block
Row multiplication. Wl is fully-replicated on each process,
and is multiplied with ATHl−1 after communication. The first
multiplication is essentially a sparse matrix times (tall-skinny)
dense matrix, also known as sparse matrix times multiple
dense vectors (SpMM).

Our 1D algorithm moves the dense matrix in this SpMM
operation using a broadcast. The alternative approach of mov-
ing the sparse matrix would yield a similar communication
cost in practice because the dense feature matrices in GNNs
have approximately the same size (in terms of bytes) as the
graphs they are run on. As input and model trends change in
the future, a simple heuristic can determine the matrix to be
broadcasted in practice, without increasing code complexity.

TABLE II
DATA DISTRIBUTION FOR ALL THE ALGORITHMS CONSIDERED IN OUR PAPER

Matrix 1D Algorithm 1.5D Algorithm 2D Algorithm 3D Algorithm
A Block row Block row, replicated c times Block 2D Block Split 3D
AT Block row Block row, replicated c times Not stored Not stored
Hl Block row Block row, replicated c times Block 2D Block Split 3D
Gl Block row Block row, replicated c times Block 2D Block Split 3D
Wl Fully-replicated Fully-replicated Fully-replicated Fully-replicated

Alternatively, one could shift matrices as opposed to broad-
casting them. Point-to-point communication is still in beta in
NCCL, the library we use for communication. The cost of a
single broadcast of an m word message to P processes has a
lower bound of O(α lgP +βm) [9], but high-level algorithms
such as SUMMA [28] can avoid the lgP factor in the latency
term through pipelining. In fact, NCCL uses a pipelined ring
algorithm for its broadcasts, which in fact achieves the same
link utilization as matrix shifting when the message sizes are
large enough to fill the pipeline. Consequently, we will also
not spell out the additional lgP factor for our broadcasts.

The per-process communication cost is thus

Tcomm = α(P − 1) +
P − 1

P
β nf ≈ αP + β nf

2) Equation Hl = σ(Zl):
No Communication: Hl, the result of activation, is par-

titioned by rows as is Hl−1. No further communication is
necessary here to use Hl in Eq. 1 for layer l.

3) Equation Gl−1 = AGl(Wl)T � σ′(Zl−1):
Communication is 1D Block Row: Because we also

partition A in block rows, the communication pattern and the
cost is identical to the forward propagation. The intermediate
product AGl is naturally block row partitioned. The last step
of multiplying the block row distributed AGl with replicated
Wl to yield a block row distributed Gl−1 does not require
any communication.

4) Equation Yl−1 = (Hl−1)TAGl:
Communication is (small) 1D Outer Product: Alge-

braically, there are two matrix multiplications in this step of
the backpropagation. However, we can reuse the intermediate
product AGl that we computed in the previous equation at
the expense of increasing the memory footprint slightly. Then
the only task is to multiply (Hl−1)T and AGl, which is a
small 1D outer product that requires an all-reduce on low-rank
matrices of size f×f . This multiplication has communication
cost Tcomm = α lgP + β f2.

5) Total Communication of our 1D Algorithm: Given that
the embedding (i.e., feature vector) lengths are different for
each layer of the GNN, we use the superscript to denote the
length of the feature vector f l in layer l. This results in the
following communication bound.

Tcomm =

L∑
l=1

(
α(lgP + 2P) + β

(
nf l−1 + nf l + f l−1f l)

))

To reduce clutter, we can consider the “average” feature
vector length f , resulting in the simplified formula.

Tcomm = L
(
α(lgP + 2P) + β(2nf + f2)

)
6) Potential for graph partitioning: Since we are moving

dense matrices and keeping the sparse matrix stationary,
graph and hypergraph partitioning tools can be applied as
pre-processing to heuristically minimize communication. We
experimented with graph partitioning to evaluate its potential
for us. We ran Metis on the Reddit data, which is described
in Section V-A. For 64 processes, Metis’ partitions suggested
a 72% total communication reduction over random block
row distribution. However, the total runtime of our bulk-
synchronous algorithm would be dictated by the maximum
communication per process, which was only a 29% percent
reduction over random 1D block row partitioning. These num-
bers are actually optimistic and do not take into account the
need to perform individualized “request and send” operations
for exploiting the graph partitioning results.

For example, instead of relying on more efficient broadcast
operations as done in Algorithm 1, each process that owns
a part of A would (depending on its sparsity structure)
individually request a subset of rows of H from its owner
during forward propagation. This increases latency as well
as the bandwidth costs due to the communication of request
indices, and makes it impossible to benefit from collective
communication libraries such as NCCL and gloo. Further,
given the scale free nature of most graph datasets, graph
partitioning is unlikely to produce an asymptotic improvement
despite its added computational costs.

B. 1.5D Block Row Algorithm

For 1.5D algorithms [20], processes are organized in a rect-
angular P = P/c× c grid. Matrices are, however, partitioned
into block rows and columns as done in 1D. The difference
between 1D and 1.5D algorithms is that these partitions are
now replicated across process rows. For instance, processes
across the ith process row P (i, :) collectively store the ith
block row of AT. Because of this difference, while matrices
are partitioned into block rows and columns, there are only
P/c such blocks.

AT =

 AT
1

...
AT

p/c

H =

 H1

...
Hp/c

 (2)

Similar to 1D, each submatrix AT
i is further partitioned in

p/c block columns.
Let T be the intermediate product of ATHl−1. Each process

row P (i, :) computes the following:

Ti = Ti +AT
i H = Ti +

p/c∑
j=1

AT
ij Hj

However, each process computes a subset of the terms in the
above summation. These partial sums are then added within
process rows with a reduction on P (i, :). If q = p/c2, then
the computation done by process P (i, j) is

Ti = Ti +AT
i H = Ti +

(j+1)q∑
k=jq

AT
ik Hk (3)

These steps are outlined in detail in Algorithm 2. While our
pseudocode only outlines the special case where c2 perfectly
divides p, our implementation is more general, and assigns
more stages to the last process column if necessary.

Algorithm 2 Block 1.5D algorithm for GNN forward prop-
agation, which computes Hl ← σ(ATHl−1Wl) in parallel.
A and H are distributed on a p/c × c process grid, W is
replicated.

1: procedure BLOCK1.5DFW(AT,Hl−1,W,Hl)
2: for all processes P (i, j) in parallel do
3: s = p/c2 . number of stages
4: for k = 0 to s− 1 do
5: q = j s+ k
6: Ĥl−1 ← BCAST(Hl−1

qj , P (:, j))
7: Zl ← Zl + SPMM(AT

iq, Ĥ
l−1)

8: Ẑl ← ALLREDUCE(Zl, +, P (i, :))
9: Ĥl ← GEMM(Zl, Wl−1)

1) Equation Zl = ATHl−1Wl:
a) Communication: 1.5D Block Row.: Both AT and H

are partitioned by rows in a P/c × c process grid. We group
process rows into c “chunks”, with p/c2 process rows per
chunk. These chunks represent the block rows of H that a
particular process column accesses, as per Equation 3. To
compute a submatrix of ATH, we broadcast each block row
to a process column based on its chunk. If a block row is in
chunk i, we broadcast it to ith process column P (:, i). Since
there are p/c2 chunks with c blocks row each, each process
participates in only p/c2 broadcasts. After these iterations of
broadcasts complete, each process within a process row has
a partial sum for its submatrix. We run an all-reduction to
compute the final block row. Note that Wl is fully-replicated,
so we do not need to communicate data to multiply with Wl.
The overall communication cost for this equation is

Tcomm = α
(P
c2

lg
P

c2

)
+ β

(nf
c

+
nfc

P

)
2) Equation Hl = σ(Zl):

No Communication: Hl, the result of activation, is par-
titioned by rows as is Hl−1. No further communication is
necessary here to use Hl in Eq. 1 for layer l.

3) Equation Gl−1 = AGl(Wl)T � σ′(Zl−1):
Communication: 1.5 Block Row: Recall that A is par-

titioned by rows and stored separately from AT if graph is
directed. G is also partitioned by rows. Hence, we can apply
the same 1.5D algorithm used in Equation 1. We also need to
account for σ′(Zl−1). Recall that, as in Equation 2, this step
requires no communication as Zl−1 is partitioned by rows.
The communication cost for this equation is

Tcomm = α
(P
c2

lg
P

c2

)
+ β

(nf
c

+
nfc

P

)
4) Equation Y = (Hl−1)TAGl:

Communication: (small) 1.5D Outer Product: We store
the intermediate product AGl that was computed in the
previous step and reuse it here. Multiplying (Hl−1)T with
AGl is a dense 1.5D Outer Product on two matrices with
nf elements, resulting in a small f × f output. Because of
the small output, this outer product is neither compute nor
memory-intensive. The resulting communication cost is:

Tcomm = α
(
lg
P

c

)
+ β(f2)

5) Total Communication: Ignoring lgP latency terms and
f2 bandwidth terms, we have a total communication cost of

Tcomm =

L∑
l=1

(
α
(
2
P

c2
log

P

c2

)
+ β

(2nf
c

+
2nfc

P

))
While our 1D algorithm did not scale with increasing

process counts, we see here that our 1.5D algorithm scales in
proportion to the harmonic mean of P/c and c. This perfor-
mance benefit, however, comes at a memory cost. The input
for the 1.5D algorithm is replicated, evidenced by multiple
processes storing the same data across process rows. Formally,
the per-process memory and the total memory are

M1.5D
proc = L

(nnz (A)

p/c
+
nf

p/c

)
M1.5D

total = Lc(nnz (A) + nf)

The total input memory used by the 1.5D algorithm is c times
more than the input for 1D. This is not negligible, as GNN
models tend to be big. In addition, GPUs tend to have less
memory, making input replication prohibitive.

C. Block Two-Dimensional (2D) Algorithms

Processes are logically organized on a square P = Pr ×Pc

mesh, indexed by their row and column indices so that the
(i, j)th process is denoted by P (i, j). Matrices are assigned
to process according to a 2D block decomposition. For a given
n × m matrix, each process gets a submatrix of dimensions
n/Pr × m/Pc in its local memory. For example, AT is

partitioned as shown below and AT
ij is assigned to process

P (i, j).

AT =

 AT
11 . . . AT

1pc

...
. . .

...
AT

pr1 . . . AT
prpc

 (4)

The pseudocode for the general rectangular case is listed
in Algorithm 3. The first phase of the algorithm is based
on a variant of the Scalable Universal Matrix Multiplica-
tion (SUMMA) algorithm [28]. When BCAST(Aic, P (i, :)) is
called, the owner of Aic becomes the root and broadcasts
its submatrix to all the processes along the ith process row.
Symmetrically, BCAST(Hrj , P (:, j)) means that whomever
is the owner of Hrj broadcasts its submatrix along the jth
process column.

Variables lcols and lrows , which are significant only at the
broadcasting processes, are the local column and row ranges
for matrices that are to be broadcast. Here we used the colon
notation where the range i, i+ 1, . . . , i+ k is denoted by (i :
i + k) and empty colon (:) specifies the full possible range.
For example, M(:, j) denotes the jth column, and M(1 : k, :)
denotes the first k rows of any two-dimensional object M . The
SPMM and GEMM are local sparse-dense and dense-dense
matrix multiplications, respectively.

Algorithm 3 Block 2D algorithm for GNN forward propa-
gation, which computes Hl ← σ(ATHl−1Wl) in parallel.
A and H are distributed on a pr × pc process grid, W is
replicated. Blocking parameter b is required to evenly divide
f l−1/pr and f l−1/pc.

1: procedure BLOCK2DFW(AT,Hl−1,W,Hl)
2: for all processes P (i, j) in parallel do
3: for q = 1 to f l−1/b do . 1st SUMMA phase
4: c = (qb)/pc . broadcasting process column
5: r = (qb)/pr . broadcasting process row
6: actv = (qb : (q + 1)b) . active columns/rows
7: lcols = actv (mod (n/pc))
8: lrows = actv (mod (n/pr))
9: ÂT ← BCAST(AT

ic(:, lcols), P (i, :))
10: Ĥl−1 ← BCAST(Hl−1

rj (lrows, :), P (:, j))
11: Tij ← Tij + SPMM(ÂT, Ĥl−1)

12: for q = 1 to f l−1/b do . 2nd phase
13: c = (qb)/pc
14: actv = (qb : (q + 1)b)
15: lcols = actv (mod (n/pc))
16: T̂← BCAST(Tic(:, lcols), P (i, :))
17: colrange = (jf l/pc + 1 : (j + 1)f l/pc)
18: Hl

ij ← Hl
ij + GEMM(T̂,W(actv , colrange))

We start by analyzing the special pr = pc =
√
p case to

give the intuition. For each process P (i, j), the computation
of the intermediate product T = ATHl−1 is:

Tij =

√
p∑

k=1

AT
ik Hkj

1) Equation Zl = ATHl−1Wl:
Communication: 2D SUMMA SpMM + partial SUMMA:

Both AT and Hl−1 are partitioned into a
√
P ×
√
P process

grid. This yields a 2D multiplication which we can do with
an optimized SUMMA algorithm. To compute a submatrix of
ATHl−1, each process in the submatrix’s row must broadcast
their A and each submatrix’s column must broadcast their
Hl−1. Wl is fully-replicated on each process, and is multiplied
with T = ATHl−1 after communication. However, this also
requires communicating n× f sized T along the process row,
something we label as “partial SUMMA”.

Tcomm = α2
√
P + β

(nnz (A)√
P

+
2nf√
P

)
2) Equation Hl = σ(Zl):

Communication: All-Gather: Hl is partitioned in a 2D
process grid. When σ is element-wise, no communication is
needed. However, when σ is not element-wise, in particular
for log_softmax, each process needs to broadcast its Hl−1

with the entire process row.

Tcomm = α lgP + β
nf√
P

3) Equation Gl−1 = AGl(Wl)T � σ′(Zl−1):
Communication: 2D SUMMA SpMM + partial SUMMA

+ All-Gather: A and Gl are partitioned in a 2D process grid,
and results in the same communication pattern as Equation 1.
We also need to account for σ′(Zl−1). Recall that this needs
communication when σ is not elementwise. This has the same
communication pattern as Equation 2. The communication cost
is

Tcomm = α(2
√
P + lgP) + β

(nnz (A)√
P

+
3nf√
P

)
.

4) Equation Y = (Hl−1)TAGl:
Communication: 2D dense SUMMA + All-Gather:

Strictly speaking, there are two matrix multiplications here.
The first is multiplying A and Gl, which would have been
a 2D SUMMA SpMM. However, we can reuse the same
intermediate product from the previous equation, as we have
done in the case of 1D Block Row algorithm. This increases
storage by an additive nf/P term on each process. The inter-
mediate product AGl is already partitioned on a

√
P ×

√
P

process grid. The second multiplication, which is the only
multiplication we have to pay for computing this equation,
is between (Hl−1)T and the previously saved intermediate
product AGl. This is a 2D dense SUMMA on two matrices
with nf elements, resulting in a small f × f output. The final
allgather is to keep Y replicated. Overall, the communication
cost due to this equation is

Tcomm = α(
√
P + lgP) + β

(2nf√
P

+ f2
)
.

5) Total Communication:

=

L∑
l=1

(
α(5
√
P + 3 lgP) + β

(8nf l√
P

+
2nnz (A)√

P
+ (f l)2

))
≈ L

(
α(5
√
P + 3 lgP) + β

(8nf√
P

+
2nnz (A)√

P
+ f2

))
The communication volume scales with

√
p. However, the

constants in the 2D algorithm are significantly larger than the
constants in 1D and 1.5D algorithms. The latency cost of the
2D algorithm is asymptotically better than the 1D algorithm
but worse than the 1.5D algorithm when c=

√
p. Finally,

the 2D algorithm also moves the sparse matrix, creating
additional costs. This is not a problem asymptotically as long
as nnz (A) = O(nf) but can be a bottleneck if the graph is
larger than the aggregate embedding size across all vertices.

6) The Rectangular Grid Case: When the process grid is
non-square, the 2D SUMMA algorithm is still well-defined
and relatively easy to implement. Consider the forward prop-
agation equation where AT and H are 2D block partitioned
on a Pr × Pc grid. Each process needs to access (1/Pr)th
of AT and (1/Pc)th of H to form its own n/Pr × f/Pc

piece of the intermediate output T = ATH. However, we now
need to consider the communication due to the 2nd phase of
Algorithm 3, which communicates this T matrix along the
process row. The forward propagation communication cost
becomes:

Tcomm = α gcf(Pr, Pc) + β
(nnz (A)

Pr
+
nf

Pc
+
nf

Pr

)
,

where gcf denotes greatest common factor. This suggests that
if the average vertex degree of the graph is significantly larger
than the feature vector length, then there are potential savings
is terms of sparse matrix communication by increasing the
Pr/Pc ratio. However, this comes at the expense of increasing
the sum of other two terms, which correspond to dense matrix
communication. This is because the sum of two numbers
whose product is fixed is minimized when those numbers are
equal, or put differently, square has the smallest perimeter
of all rectangles of a given area. Consequently, given the
unclear benefit to cost ratio of using non-square grids, our
implementations focus on square grids in this work.

D. Block 3D algorithms

For ease of presentation, let us assume that processes are
logically organized on a 3D 3

√
P × 3
√
P × 3
√
P mesh, indexed

by three indices, though in general each of the three process
dimensions can be different. Our matrix to process mesh
assignment follows the Split-3D-SpGEMM approach of Azad
et al. [3]. We call our variation Split-3D-SpMM, because the
primary GNN operation is SpMM as opposed to SpGEMM.
Each 2D plane in this 3D process mesh is called a “layer”.

Considering a single SpMM such as the AHl−1 in forward
propagation, we note that two input matrices are split differ-
ently. After 3D distribution, each local submatrix Aijk of A

is of dimensions n/ 3
√
P ×n/ 3

√
P

2
. That means the number of

rows of each Aijk is 3
√
P times its number of columns. By

contrast, H is split along the rows across layers and each
local piece Hijk is of dimensions n/ 3

√
P

2 × f/ 3
√
P . This

data distribution choice makes each Hl−1
ijk shorter and fatter

than 2D distribution makes, potentially alleviating some of
the issues with local SpMM scaling we observe with our 2D
implementation.

We note that each process only holds (1/P)th of the input
matrices in Split-3D-SpMM, so there is no replication at the
input stage. The replication happens in intermediate stages, as
we explain in detail below.

1) Equation Zl = ATHl−1Wl:
Communication: One full and one partial Split-3D-

SpMM: The easiest way to think about a 3D multiplication
algorithm is to consider it as independent 2D algorithms
executing at each layer, followed by a reduction. To compute
a submatrix of ATHl−1, each submatrix in AT

:jk broadcasts
itself to the rest of the process row, and each submatrix Hi:k

broadcasts itself to the rest of the process column. In each 2D
SUMMA iteration, each process on a given layer receives a
submatrix from AT and a submatrix from Hl−1, multiplies
them, and adds them to a running sum.

Once these 2D SUMMA iterations that have been executing
independently at each layer complete, processes have partial
sums for ATHl−1 that need to be reduced across the third
process dimension (also called a “fiber”). The partial sums
after the 2D SUMMA iterations complete are n/ 3

√
P ×f/ 3

√
P

dense matrices, with nf/P 2/3 elements each. These partial
sums are then reduce-scattered along the fiber dimension to get
the product ATHl−1 in a Block Split 3D format. This results
in the following communication cost just to form ATHl−1:

Tcomm = α(P 1/3 + lgP) + β
(nnz (A)

P 2/3
+

2nf

P 2/3

)
Note that the aggregate memory consumption over all

processes prior to the fiber reduction would be P
(
nf/P 2/3

)
=

P 1/3nf , where P 1/3 is the well-known memory replication
cost factor of 3D algorithms [1], [5].

We now need to multiply this intermediate product ATHl−1

with Wl. Similar to the Block 2D case, we will perform
a partial 3D dense matrix multiply where the second input
matrix does not need to be communicated because it is
replicated. The total communication cost, with this partial step
added, is:

Tcomm = 2α(P 1/3 + lgP) + β
(nnz (A)

P 2/3
+

4nf

P 2/3

)
2) Equation Hl = σ(Zl):

Communication: All-Gather: Hl is partitioned in a 3D
process mesh. When σ is elementwise, no communication is
needed. However, when σ is not elementwise, in particular for
log_softmax, each process needs to broadcast its Hl with
the entire process row within a layer. This is equivalent to an
all-gather per layer. No cross-layer or cross-row communica-
tion is needed as the output of log_softmax for a row of
Z is only dependent on the values within that row.

Tcomm = α lgP + β
(nf

P 2/3

)

3) Equation Gl−1 = AGl(Wl)T � σ′(Zl−1):
a) Communication: One full and one partial Split-3D-

SpMM, and All-Gather: A and Gl are partitioned in a 3D
process grid, and results in the same communication pattern
as Equation 1. We also need to account for σ′(Zl). Recall
that this needs communication when σ is not elementwise.
This has the same communication pattern as Equation 2, hence
totalling:

Tcomm = α(2P 1/3 + 3 lgP) + β
(nnz (A)

P 2/3
+

5nf

P 2/3

)
4) Equation Y = (Hl−1)TAGl:

Communication: 3D dense SUMMA + All-Gather: We
store the intermediate product AGl that has been computed
in the previous step, and reuse it here as we have done in
other algorithms. Multiplying (Hl−1)T with AGl is a dense
3D SUMMA on two matrices with nf elements, resulting
in a small f × f output. Note that each of these inputs are
Block Split 3D. As before, the final allgather is to keep Y
replicated. The bandwidth cost of all-gather strictly dominates
the bandwidth cost of fiber reduction, so we do not include the
cost of fiber reduction in the bandwidth term. The resulting
communication cost is:

Tcomm = α2 lgP + β
(2nf

P 2/3
+ f2

)
.

5) Total Communication: Ignoring lgP latency terms that
are strictly dominated by the P 1/3 terms, we have

Tcomm ≈ L
(
α(4P 1/3) + β

(2nnz (A)

P 2/3
+

12nf

P 2/3

))
Although the 3D algorithm provides an asymptotic reduc-

tion in communication costs, it has several disadvantages
compared to the 2D algorithm, which are (1) its high constants,
(2) its implementation complexity, and (3) its need to do a
factor of 3

√
p replication in its intermediate stages.

The exact impact of this intermediate replication to the
overall memory consumption of GNN training depends on
several factors such as (1) the number of layers, (2) the ratio
of the maximum number of activations in a layer to the total
number of activations, and (3) the ratio of the number of
total activations to the number of edges (i.e. nnz (A)) in the
graph. An implementation of full-batch GNN training that
is optimal with respect to memory usage has the following
memory footprint:

M∗total = nnz (A) +

L∑
l=1

(
nf l
)
≈ nnz (A) + nfL

The memory consumption of the 2D algorithm asymptoti-
cally matches this bound and the only overheads are in the
communication buffers. However, the 3D algorithm replicates
the activations while processing a layer. The important point is
that this replication only impacts the current layer that is being
processed, either during forward or backward propagation,
because the intermediate matrices are discarded after layer-
wise reduction. Suppose the maximum number of activations

(e.g., features) is fmax = maxLl=1 f
l, and the layer with the

highest number of activations is k = argmaxLl=1 f
l. Then the

memory footprint of the 3D algorithm is

M3D
total = nnz (A) +

L∑
l=1,l 6=k

(
nf l
)
+ 3
√
p nfmax

≈ nnz (A) + nf(L− 1) + 3
√
p nfmax

When the network is deep or when the maximum number
of activations in a layer is much smaller than the input graph
size, this memory overhead is unlikely to be an impediment.
However, many existing GNN networks are rather shallow at
the moment.

V. EXPERIMENTAL SETUP

A. Datasets and Compute Platform

We ran our experiments on two of the largest datasets used
in GNN research previously, the Reddit and Amazon datasets.
In addition, we use a much larger protein similarity network
which pushes the boundaries of large-scale GNN traning.
This ‘protein’ network comes from the data repository of the
HipMCL algorithm [4]. It is an induced subgraph, which con-
tains 1/8th of the original vertices, of the sequence similarity
network that contained all the isolate genomes from the IMG
database at the time. The characteristics of the datasets are
documented in Table III. The feature (input) and label (output)
embedding lengths of the protein dataset largely follows the
literature on this topic [16] where the protein sequences are
assumed to be initially processed independently to obtain their
128-length embeddings (via CNNs or LSTMs) before running
GNNs on those embeddings. For load balancing, graph vertices
are randomly permuted prior to training.

TABLE III
DATASETS USED IN OUR EXPERIMENTS

Name Vertices Edges Features Labels
Reddit 232,965 114,848,857 602 41
Amazon 14,249,639 230,788,269 300 24
Protein 8,745,542 2,116,240,124 128 256

We use the same 3-layer GNN architecture presented by
Kipf and Welling [19] though deeper and wider networks
are certainly possible as done by ROC [18] given the similar
performance we achieve.

We verified that our parallel implementation not only
achieves the same training accuracy in the same number of
epochs as the serial implementations in PyTorch, but it also
outputs the same embeddings up to floating point accumulation
errors. Consequently, we only provide performance numbers
as the accuracy numbers are identical to the serial cases.

B. System details

All of our experiments are run on the Summit supercom-
puter at ORNL, which has IBM AC922 nodes with 6 NVIDIA
V100 GPUs. Each GPU has 16GB of HBM2 memory. Each
Summit node has two sockets, each with 1 POWER9 CPU
and 3 GPUs each. Within a socket, each GPU is connected to

each other and the host CPU with NVLINK 2.0 with 50GB/s
unidirectional bandwidth. Across sockets, Summit uses the
IBM X-bus interconnect with 64GB/s. Each socket has a
16GB/s link to the Network Interface Card (NIC). Across
nodes, Summit uses dual-rail EDR Infiniband with 25GB/s
node injection bandwidth [23], but each socket has access to
half (12.5GB/s) of this node injection bandwidth.

C. Implementation details

We implement our 3-layer GNN architecture mostly in
PyTorch Geometric (PyG) 1.3 [14]. Within PyG, we use
torch.distributed with a NCCL backend for our communication
primitives. NCCL implements broadcasts and reductions using
a ring algorithm, and splits an outgoing message to smaller
chunks for pipelining [10]. NCCL collectives have different
completion semantics than MPI. For example, when the broad-
casting process receives the delivery confirmation of its own
data from its peer process, its function call returns without
waiting for the completion of the broadcast on subsequent
nodes. This relaxed completion combined with pipelining
allows broadcasting using NCCL to be as high-performance
as using manual shifting when implementing matrix multipli-
cation, provided that the messages can be divided into enough
chunks to hide the latency of filling the pipeline.

For our SpMM calls, we separately call cuSPARSE’s
csrmm2 function in a C++ extension. We compile our C++
backend with CUDA 10.1. Recall each node on Summit has 6
GPUs. As such, our implementation is single-node multi-GPU
when P=4, but multi-node multi-GPU in all other cases. In
particular, a P process job allocates dP/6e nodes so that we
utilize all 6 GPUs except for the last node. We only deviate
from this setup for exposing the topological limitations of
Summit interconnect in Figure 2

For Reddit, we use the input feature vectors and training
split used by Hamilton et al. [17] as they are already provided
within PyG. For the Amazon and Protein datasets, we ran-
domly generate feature values for simplicity and use the whole
graph as the training set. This does not affect performance, and
in practice, users could use any values for the feature vectors.
We run Reddit and Amazon for 100 epochs and Protein for 10
epochs. We do not report numbers for Amazon on 4 devices
or numbers for Protein on 4 or 16 devices as the data does not
fit in memory for those configurations. Jia et al. [18] observed
the same behavior with PyG. We are unable to compare our
results directly with Neugraph or ROC because neither code
is currently publicly available.

VI. RESULTS

A. Performance of the 1D and 1.5D Implementations

The performance of 1D (c=1) as well as 1.5D implemen-
tations (c>1) are shown in Figure 1. Since our 1D and 1.5D
implementations only move the dense matrices, the commu-
nication volume is proportional to the product of the number
of vertices and the number of features. Due to its small vertex
count, GNN training on Reddit dataset is increasingly latency
bound at large concurrencies. Consequently when P is large,

increasing c directly translates into lower communication costs
for Reddit, due to quadratic decrease in latency costs. On
a single node, our 1.5D GNN training algorithm achieves
more than 20 epochs/sec throughput, higher than all previously
published results.

For Amazon and Protein, which are mostly bandwidth
bound, our analysis expects communication volume in the
broadcast stage to decrease linearly with increasing c. How-
ever, our results showed minimal decrease in broadcast time
when fully utilizing all 6 GPUs on each Summit node. Diving
into the specifics of Summit architecture [23], as explained
in Section V-B, we conclude this is due to sharing network
injection bandwidth. Recall that each socket on Summit has
3 GPUs and they share the same 12.5GB/s network injec-
tion bandwidth. Also recall that broadcasts in NCCL are
implemented using a pipelined ring algorithm. When only a
single broadcast is active (c=1 aka 1D), the whole 12.5GB/s
injection bandwidth is used by a single GPU because the last
GPU on the ith node is peered with the first GPU on the
(i + 1)th node. When c = 2, there are two simultaneous
broadcasts happening on two virtual rings. Two GPUs on
a socket now has to share the network injection bandwidth
to communicate with their peers on the neighboring node.
This cuts down the effective available bandwidth by half, so
even though the communication volume is reduced to half we
do not see any appreciable decrease in broadcast times with
increasing c from 1 to 2.

Further increasing c to 4 increases the load node injection
to its maximum where all 3 GPUs on the socket compete
for 12.5GB/s injection bandwidth. We confirmed that node
injection bandwidth is indeed the bottleneck by running our
1D and 1.5D implementations on 1 GPU/node configuration.
Figure 2 shows close-to-linear scaling for broadcast times
when c is increased, for the bandwidth-bound datasets Amazon
and Protein.

B. Performance of the 2D Implementation

The performance and scaling of our 2D implementation
is covered by both Figure 1 (comparing with the 1D and
1.5D implementations) and Figure 3 (comparing with the
3D implementation). Figure 1 covers the process counts
p=16, 36, 64, 100 and uses the default 16 middle layer dimen-
sion. Figure 3 covers the process counts p=25, 64, 121 and
uses 64 as the middle layer dimension. When comparing our
2D and 3D implementations in Figure 3, we used a middle
layer dimension of 64 instead of 16 because the 3D algorithm
needs to partition dimension 16 across P 2/3 processes in some
cases, which is impossible with P>64. Consequently, the av-
erage feature length f is ≈ 10% larger in Figure 3, translating
into a marginal runtime difference between Figures 1 and 3 for
p= 64. We note that dbcast is the total time to broadcast dense
matrices in any step of the 2D algorithm and is not restricted
to distributed GEMM calls. In fact, dbcast time is dominated
by the time it takes to communicate dense matrices (e.g., H
and G) during distributed SpMM calls.

4 16 36 64
reddit

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Tim

es
 (s

ec
.)

/ e
po

ch

c=
1

c=
1 c=

1 c=
1c=

2

c=
2

c=
2 c=
2

c=
4 c=

4

c=
4

c=
4

2D

2D

2D

2D

16 36 64 100
amazon

0.0

0.5

1.0

1.5

2.0

2.5

3.0

c=
1

c=
1

c=
1

c=
1c=

2

c=
2

c=
2

c=
2

c=
4

c=
4

c=
4

c=
4

2D

2D 2D 2D

36 64 100
protein

0.0

0.5

1.0

1.5

2.0

2.5

c=
1

c=
1

c=
1

c=
2

c=
2

c=
2

c=
4

c=
4

c=
4

2D 2D 2D

reduce
dbcast
local
sbcast

Fig. 1. 1D (c=1), 1.5D (c=2, 4), and 2D performance results when using all 6 GPUs on each node. The x-axis in each subplot is the number of GPUs used.
dbcast refers to the broadcast of dense embedding matrices, sbcast refers to the broadcast of sparse adjacency matrix (only for 2D), reduce is the allreduce
(only for 1.5D), local is the local computation including cuSPARSE SpMM calls, small DGEMM calls, transpose (only for 2D), and sparse matrix assembly
after communication (only for 2D). Missing bars for c=4, p=16 on Amazon and c=4, p=36 on Protein means that those runs ran out of memory.

16 36 64 100
amazon

0.0

0.5

1.0

1.5

2.0

Ti
m

es
 (s

ec
.)

/ e
po

ch

c=
1 c=

1

c=
1

c=
1

c=
2 c=

2

c=
2

c=
2

c=
4

c=
4

c=
4

c=
4

36 64 100
protein

0.00

0.25

0.50

0.75

1.00

1.25

1.50

c=
1

c=
1

c=
1

c=
2

c=
2 c=

2

c=
4

c=
4

c=
4

reduce dbcast local

Fig. 2. 1D (c=1), 1.5D (c=2, 4) performance results when only one 1 GPU is
used per node. The x-axis for each subplot is the number of GPUs used. dbcast
refers to the broadcast of dense embedding matrices, reduce is the allreduce
(only for 1.5D), local is the local computation including cuSPARSE SpMM
calls, small DGEMM calls

25/27 64 121/125
amazon

0.0

0.5

1.0

1.5

2.0

Ti
m

es
 (s

ec
.)

/ e
po

ch

2D

2D 2D

3D

3D

3D

25/27 64 121/125
protein

0

1

2

3

4

2D

2D

2D

3D

3D

3D

reduce sbcast dbcast local

Fig. 3. Runtime of 2D Implementation vs. 3D Implementations across GPU
counts. The x-axis for each subplot is the number of GPUs used. 2D was run
on perfect square process counts, while 3D was run on perfect cubes. reduce is
the allreduce (only for 3D), dbcast refers to the broadcast of dense embedding
matrices, sbcast refers to the broadcast of the sparse adjacency matrix,
and local is the local computation including cuSPARSE SpMM calls, small
DGEMM calls, transpose, and sparse matrix assembly after communication.

In terms of scaling with increasing process counts, the
2D algorithm shows noteworthy speedups up until 36 GPUs
on all three datasets. Beyond that, Reddit shows slowdowns
whereas Amazon and Protein stagnates. For Amazon and
Protein, dbcast time continues scaling but that is offset by the
increase in local computation and/or sbcast times. There are
two fundamental reasons why local SpMM does not scale with
increasing process counts. (1) SpMM performance degrades as

the matrix gets sparser. Yang et al. [32] demonstrate that when
the average number of nonzeros per row (i.e., degree, d =
nnz/n) goes down from 62 to 8, the sustained GFlops rates are
cut by a factor of 3. They specifically evaluated cuSPARSE’s
csrmm2 function, which is the same SpMM function we use,
but the performance degradation due to increased sparsity is
present for all SpMM implementations they evaluated. The
average number of nonzeros per row goes down when a sparse
matrix is 2D partitioned across larger device counts. This
phenomenon is known as hypersparsity [7] and decreases the
average degree of 2D partitioned submatrices by a factor of√
p. (2) Since the dense matrices (e.g., the activation matrix)

are also 2D partitioned, the number of columns in each local
dense submatrix also goes down by a factor of

√
p, making

the dense matrix “skinnier”. The performance degradation at
this extremely skinny regime is also well documented [2].

In terms of absolute performance, the 2D algorithm is never
faster than the 1.5D algorithm. This might come surprising
given the asymptotically better communication scaling per
analysis in Section IV-C5. However, even when considering
dbcast costs alone, the constants in the 2D algorithm are 4×
larger than the 1D and 1.5D algorithms. In addition, the 2D
algorithm has to communicate the sparse matrix, which has
packing and unpacking costs in addition to the costs associated
with actually moving the data.

C. Performance of the 3D Implementation

We run both 2D and 3D implementations on 20 epochs
for Amazon and 10 epochs for Protein. For 2D, we run on
process counts 25, 64, and 121. For 3D, we run on process
counts 27, 64, and 125. We specifically choose these counts to
permit a fair comparison. We also do not run the 3D algorithm
on Reddit as it was already latency-bound and, thus, cannot
leverage the benefits of the 3D algorithm.

Overall, we see that the 3D implementation enjoys a con-
sistent speedup on both datasets all the way until 125 GPUs,
unlike the 2D algorithm. While the 3D algorithms is slower
than the 2D for smaller process counts on Amazon, it matches

the 2D implementation when P = 121/125. For Protein, the
3D algorithm generally outperforms 2D. The difference here
lies in the computation. With 2D, as discussed above, scaling
computation to large process counts is difficult since the nnz
per row shrinks as P increases. While in 2D, each row is
partitioned across P 1/2 processes, in 3D they are partitioned
across P 2/3 processes. Thus, the average nnz per row is lower
in 3D than in 2D.

For both datasets, 3D communication scales roughly 5 −
10% better than 2D, to the point where they both perform
equally well at P = 121/125. While this is a small difference,
this trend is consistent with the analysis in Sections IV-C and
IV-D. While the bandwidth in 2D scales by a factor of P 1/2,
the bandwidth in 3D scales by P 2/3. The 3D analysis also
has larger constant factors. Coupled together, we expect the
3D implementation to scale only slightly better than the 2D
implementation. We expect that, for larger process counts,
the 3D implementation will leverage additional scaling to
outperform 2D for Amazon.

VII. CONCLUSIONS AND FUTURE WORK

We presented distributed-memory parallel GNN training
algorithms that asymptotically reduce communication costs by
dividing two or three dimensions (1.5D, 2D, or 3D) of the
iteration space across the training pipeline when compared
to the commonly used (1D) vertex partitioning methods. We
evaluated these algorithms on three datasets that differ in graph
size and structure, revealing a set of trade-offs in memory
use, local node efficiency, and communication volume, latency
(number of messages), and efficiency.

Our experimental results show that even simple variants
of our algorithms can be scalable when implemented using
off-the-shelf tools such as PyTorch and cuSPARSE. On a flat
execution model that uses only a single GPU per node, there
are clear benefits to the communication avoiding approach.
On the other hand, the memory hierarchy on a six-GPU node
leads to some surprising results due to issues such as injection
bandwidth limitations, and the anomalies suggest opportuni-
ties to improve collective communication through hierarchical
algorithms so that compute nodes’ injection bandwidth to the
network does not become a bottleneck. Overall, we show that
the 1.5D algorithm, which can scale with available memory in
the second dimension, is the most effective given the imple-
mentation environment on the Summit machine. We believe
our communication-avoiding algorithms will show their true
benefit on better connected architectures such as Perlmut-
ter [11] where each GPU gets its own 25 GB/s injection
bandwidth. At that point, new local SpMM implementations
whose throughput degrade more gracefully with increasing
sparsity will be crucial for scaling the computation part of
GNN training.

The memory consumption of GNNs can be high due to the
need to store activations generated during forward propagation
so they can be used for backpropagation. If full-batch gradient
descent is used or if graph sampling does not provide an
asymptotic reduction, the memory costs become O(nfL),

which is prohibitive for deep networks. Consequently, we
envision future work where our distributed training algorithms
are carefully combined with sophisticated sampling based
methods to achieve the best of worlds.

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation Graduate Research Fellowship un-
der Grant No. DGE 1752814 and by the National Science
Foundation under Award No. 1823034. This work is also
supported in part by the Advanced Scientific Computing
Research (ASCR) Program of the Department of Energy Office
of Science under contract No. DE-AC02-05CH11231, and in
part by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of the U.S. Department of Energy Office
of Science and the National Nuclear Security Administration.

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-00OR22725.

REFERENCES

[1] Ramesh C Agarwal, Susanne M Balle, Fred G Gustavson, Mahesh Joshi,
and Prasad Palkar. A three-dimensional approach to parallel matrix
multiplication. IBM Journal of Research and Development, 39(5):575–
582, 1995.

[2] H. Metin Aktulga, Aydın Buluç, Samuel Williams, and Chao Yang.
Optimizing sparse matrix-multiple vectors multiplication for nuclear
configuration interaction calculations. In Proceedings of the IPDPS.
IEEE Computer Society, 2014.

[3] Ariful Azad, Grey Ballard, Aydın Buluç, James Demmel, Laura Grigori,
Oded Schwartz, Sivan Toledo, and Samuel Williams. Exploiting multiple
levels of parallelism in sparse matrix-matrix multiplication. SIAM
Journal on Scientific Computing, 38(6):C624–C651, 2016.

[4] Ariful Azad, Georgios A Pavlopoulos, Christos A Ouzounis, Nikos C
Kyrpides, and Aydın Buluç. HipMCL: a high-performance parallel
implementation of the Markov clustering algorithm for large-scale
networks. Nucleic Acids Research, 46(6):e33–e33, 01 2018.

[5] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Min-
imizing communication in numerical linear algebra. SIAM Journal on
Matrix Analysis and Applications, 32(3):866–901, 2011.

[6] Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis. ACM Computing
Surveys (CSUR), 52(4):1–43, 2019.

[7] Aydin Buluc and John R Gilbert. On the representation and multipli-
cation of hypersparse matrices. In IEEE International Symposium on
Parallel and Distributed Processing, pages 1–11. IEEE, 2008.

[8] Aydın Buluç and John R Gilbert. The Combinatorial BLAS: Design,
implementation, and applications. The International Journal of High
Performance Computing Applications, 25(4):496–509, 2011.

[9] Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert Van
De Geijn. Collective communication: theory, practice, and experience.
Concurrency and Computation: Practice and Experience, 19(13):1749–
1783, 2007.

[10] NVIDIA Corporation. NCCL: Optimized primitives for collective multi-
gpu communication. https://github.com/NVIDIA/nccl, 2020.

[11] Jack Deslippe. Perlmutter - a 2020 pre-exascale gpu-accelerated system
for nersc. architecture and early application performance optimization
results. GPU Technology Conference, 2019.

[12] Nikoli Dryden, Naoya Maruyama, Tom Benson, Tim Moon, Marc
Snir, and Brian Van Essen. Improving strong-scaling of CNN training
by exploiting finer-grained parallelism. In International Parallel and
Distributed Processing Symposium (IPDPS), pages 210–220. IEEE,
2019.

https://github.com/NVIDIA/nccl

[13] Nikoli Dryden, Naoya Maruyama, Tim Moon, Tom Benson, Marc Snir,
and Brian Van Essen. Channel and filter parallelism for large-scale
CNN training. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–20,
2019.

[14] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on
Graphs and Manifolds, 2019.

[15] Amir Gholami, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydın Buluç.
Integrated model, batch, and domain parallelism in training neural net-
works. In SPAA’18: 30th ACM Symposium on Parallelism in Algorithms
and Architectures, 2018.

[16] Vladimir Gligorijevic, P Douglas Renfrew, Tomasz Kosciolek, Ju-
lia Koehler Leman, Kyunghyun Cho, Tommi Vatanen, Daniel Berenberg,
Bryn C Taylor, Ian M Fisk, Ramnik J Xavier, et al. Structure-based
function prediction using graph convolutional networks. bioRxiv, page
786236, 2019.

[17] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30, pages 1024–
1034. Curran Associates, Inc., 2017.

[18] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken.
Improving the accuracy, scalability, and performance of graph neural
networks with ROC. In Proceedings of Machine Learning and Systems
(MLSys), pages 187–198. 2020.

[19] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with
Graph Convolutional Networks. In Proceedings of the 5th International
Conference on Learning Representations (ICLR), 2017.

[20] Penporn Koanantakool, Ariful Azad, Aydın Buluç, Dmitriy Morozov,
Sang-Yun Oh, Leonid Oliker, and Katherine Yelick. Communication-
avoiding parallel sparse-dense matrix-matrix multiplication. In Proceed-
ings of the IPDPS, 2016.

[21] Adam Lerer, Ledell Wu, Jiajun Shen, Timothée Lacroix, Luca Wehrstedt,
Abhijit Bose, and Alexander Peysakhovich. PyTorch-BigGraph: A large-
scale graph embedding system. In Proceedings of the 2nd SysML
Conference, 2019.

[22] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong
Zhou, and Yafei Dai. NeuGraph: Parallel deep neural network computa-
tion on large graphs. In USENIX Annual Technical Conference (USENIX
ATC 19), pages 443–458, Renton, WA, 2019. USENIX Association.

[23] Tom Papatheodore. Summit architecture overview. Introduction to
Summit, 2019.

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. PyTorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems,
pages 8024–8035, 2019.

[25] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2008.

[26] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish
Vaswani, Penporn Koanantakool, Peter Hawkins, HyoukJoong Lee,
Mingsheng Hong, Cliff Young, et al. Mesh-tensorflow: Deep learning for
supercomputers. In Advances in Neural Information Processing Systems,
pages 10414–10423, 2018.

[27] Edgar Solomonik, Devin Matthews, Jeff Hammond, and James Demmel.
Cyclops tensor framework: Reducing communication and eliminating
load imbalance in massively parallel contractions. In 27th International
Symposium on Parallel and Distributed Processing, pages 813–824.
IEEE, 2013.

[28] Robert A Van De Geijn and Jerrell Watts. SUMMA: Scalable universal
matrix multiplication algorithm. Concurrency: Practice and Experience,
9(4):255–274, 1997.

[29] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye,
Mufei Li, Jinjing Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng
Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang Li, Alexander J.
Smola, and Zheng Zhang. Deep graph library: Towards efficient and
scalable deep learning on graphs. CoRR, abs/1909.01315, 2019.

[30] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and S Yu Philip. A comprehensive survey on graph neural net-
works. IEEE Transactions on Neural Networks and Learning Systems,
2020.

[31] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
powerful are graph neural networks? In International Conference on
Learning Representations, 2019.

[32] Carl Yang, Aydın Buluç, and John D Owens. Design principles for
sparse matrix multiplication on the GPU. In European Conference on
Parallel Processing, pages 672–687. Springer, 2018.

[33] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neural
networks: A review of methods and applications. arXiv preprint
arXiv:1812.08434, 2018.

[34] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai,
Yong Li, and Jingren Zhou. AliGraph: a comprehensive graph neural
network platform. Proceedings of the VLDB Endowment, 12(12):2094–
2105, 2019.

	I Introduction
	II Related Work
	III Background
	III-A Notation
	III-B Graph Neural Networks
	III-C Forward Propagation
	III-D Backpropagation Derivations

	IV Communication Schemes and their Analyses
	IV-A A One-Dimensional (1D) Algorithm
	IV-A1 Equation Zl = ATHl - 1Wl
	IV-A2 Equation Hl = (Zl)
	IV-A3 Equation Gl - 1 = AGl(Wl)T'(Zl - 1)
	IV-A4 Equation Yl-1= (Hl - 1)TAGl
	IV-A5 Total Communication of our 1D Algorithm
	IV-A6 Potential for graph partitioning

	IV-B 1.5D Block Row Algorithm
	IV-B1 Equation Zl = ATHl - 1Wl
	IV-B2 Equation Hl = (Zl)
	IV-B3 Equation Gl-1 = AGl(Wl)T'(Zl-1)
	IV-B4 Equation Y= (Hl - 1)TAGl
	IV-B5 Total Communication

	IV-C Block Two-Dimensional (2D) Algorithms
	IV-C1 Equation Zl = ATHl - 1Wl
	IV-C2 Equation Hl = (Zl)
	IV-C3 Equation Gl-1 = AGl(Wl)T'(Zl-1)
	IV-C4 Equation Y= (Hl - 1)TAGl
	IV-C5 Total Communication
	IV-C6 The Rectangular Grid Case

	IV-D Block 3D algorithms
	IV-D1 Equation Zl = ATHl - 1Wl
	IV-D2 Equation Hl = (Zl)
	IV-D3 Equation Gl-1 = AGl(Wl)T'(Zl-1)
	IV-D4 Equation Y= (Hl - 1)TAGl
	IV-D5 Total Communication

	V Experimental Setup
	V-A Datasets and Compute Platform
	V-B System details
	V-C Implementation details

	VI Results
	VI-A Performance of the 1D and 1.5D Implementations
	VI-B Performance of the 2D Implementation
	VI-C Performance of the 3D Implementation

	VII Conclusions and Future Work
	References

