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ABSTRACT OF THE DISSERTATION 

 

From Open Data to Knowledge Production: 

Biomedical Data Sharing and Unpredictable Data Reuses 

 

by 

 

Irene Pasquetto 

Doctor of Philosophy in Information Studies 

University of California, Los Angeles, 2018 

Professor Christine L. Borgman, Chair 

 

Using a US consortium for data sharing as the primary field site, this three-year 

ethnographic research project examines the socio-technical, epistemic, and ethical 

challenges of making biomedical research data openly available and reusable. Public 

policy arguments for releasing scientific data for reuse by others include increasing trust 

in science and leveraging public investments in research. In most types of scientific 

research, data release occurs in parallel with associated publications, after peer-review. In 

the consortium studied for this project, datasets may also be released independently 

without an associated publication. Such research datasets are conceptualized as 

“hypothesis free” resources from which novel knowledge can be extracted indefinitely. 

Among the findings of this project are that biomedical researchers do not download and 

re-analyze “hypothesis free” research data from open repositories as a regular practice. 

Data reuse is a complex, delicate, and often time-consuming process. Metadata and 
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ontology schemas appear to be necessary but not sufficient for data reuse processes. For 

scientists to test new hypotheses on “old” data, they depend on access to peer-reviewed 

primary analyses, pre-existing trusted relationships with the data creators, and shared 

research agendas. Data donors (patients, study participants, etc.), on the other hand, retain 

little control over how open research data are reused. Findings suggest that, in practice, it 

is impossible to predict – and consequently to regulate – how datasets might be reused 

once made openly available. Unintended consequences of reusing this consortium’s open 

data already are emerging, to the concern of some participants. 
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1. Introduction 

 

“Fungibility” is the property of a good or a commodity to be freely exchangeable or replaceable, in whole 

or in part, for another of like nature or kind. Oil is fungible. 

 

The primary goal of this study is to construct an account of how biomedical 

researchers evaluate and reuse “open data” – specifically data they did not collect 

themselves – to produce novel scientific knowledge, and to show how this delicate 

process is connected to issues such as scientific credibility, academic capital, and the 

effective creation of novel scientific hypotheses. In this project, I use the expression open 

data to refer to publicly funded research data made freely available in open repositories 

for anyone to reuse. 

 

Funding bodies in the biomedical domain want to know how the scientists reuse open 

data. Historically, biomedical research is a data rich domain (García-Sancho, 2015; 

Leonelli, 2016; Strasser, 2012). In the last few decades, the field heavily invested in the 

collection and accumulation of “data resources” that the research community uses to 

advance biomedical knowledge. Examples include the many databases and tools 

accessible through the National Center for Biotechnology Information (NCBI) website. 

Today, the National Institutes of Health (NIH), the major US funding agency for 

biomedical research, increasingly promotes and encourages the reuse of existing open 
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data resources (National Institutes of Health, 2017a). The NIH’s focus on data reuse is 

motivated first of all by the fact that maintaining many, large, and diverse sets of data 

(i.e., Big Data) “alive” is extremely expensive, time consuming, and requires a 

specialized workforce. NIH’s 2018 Strategic Plan for Data Science identified a set of 

current challenges for the advancement of biomedical research (National Institutes of 

Health (NIH), 2018). At the top of the list are the growing costs of managing biomedical 

large-scale datasets, and the difficulties to integrate “siloed” data resources (Wilkinson et 

al., 2016). Initiatives such as the NIH Big Data to Knowledge (BD2K) and the NIH Data 

Commons programs aim at making sure that novel knowledge is harvested from NIH-

funded data repositories (Margolis et al., 2014). 

 

The main case study of this dissertation project is a NIH-funded consortium for data 

sharing that I refer to as the DataFace Consortium (DF). I use the fictional name 

“DataFace” to protect the confidentiality of the research participants. The researchers 

participating in DataFace collect experimental and observational biomedical craniofacial 

data from humans and three model organisms. Data types include facial images, facial 

measurements, metrics and statistics for facial traits analysis, gene/RNA expression data, 

whole-genome sequences, association results from Genome-Wide Association Studies 

(GWAS), and results from function-validation studies. I refer to these data as 

“craniofacial research data.” In collaboration with “the DataFace engineering hub,” the 

researchers release the datasets in open access after data collection. The datasets are 

available in a digital repository for anyone to reuse, in both research and commercial 

settings. I employ this case study to investigate the following research questions: 
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1. What motivates the design of policies and infrastructures for open research data? 

2. How do researchers reuse open research data for knowledge production? 

3. What are the societal implications of making available and reusing open 

biomedical data across contexts of production? 

 

This is a multi-layer investigation of interdisciplinary nature. First, this project brings 

to surface the existence of different “data governance regimes” that regulate how and 

when biomedical research data are made publicly available for reuse. By engaging with 

the literature from the history of science and the social studies of science, I examined the 

emergence of multiple data governance regimes in the biomedical domain during the 

twentieth-century in the US (De Chadarevian, 2004; Hilgartner, 2017; Kelty, 2012; 

Stevens, 2013; Strasser, 2011). This analysis suggests that the biomedical domain is 

shifting from a “semi-openness” toward a “radical openness” regime for data sharing. In 

a radical openness regime, research data are conceptualized as “hypothesis free” 

resources and made available in open repositories, sometimes prior to the publication of 

the associated primary analyses. As I discuss, this regime is challenging well-established 

data practices and community norms on several fronts. 

 

Second, this study examines the socio-technical and epistemic factors that scientists 

take into account when they reuse others’ data available in the public domain. I employed 

concepts and methodologies from the interdisciplinary field of data studies to develop a 

typology of data reuse practices for biomedical research data (Borgman, 2015; Leonelli, 

2016; Wallis, Rolando, & Borgman, 2013). Scholars in the field of data studies posed the 
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question: How do scientists trust others’ data? In my examination, I take a step back and I 

ask: How do scientists reuse others’ data? From the analysis of observational and 

interview data, I derive a typology of data reuse practices, which differentiates between 

“background” and “foreground” reuse of others’ data. This typology is used to explain 

how the epistemic and socio-technical challenges of data reuse vary depending on the 

purpose of the reuse. The vast majority of data reuse is for background purposes such as 

comparing experimental data to validated measures from trusted sources. Researchers 

conduct reviews of datasets much as they conduct literature reviews, and often assemble 

summary-level datasets and literature in combination. Reanalyzing a “raw dataset” or 

integrating data from multiple sources is a much more complex endeavor and done much 

less often (i.e., foreground reuse). When scientists wish to reanalyze data from other 

laboratories to produce novel knowledge, which is foreground use, they typically 

collaborate directly with the data creators, coauthoring papers. 

 

Third, my investigation adds a critical lens to the current debate on the public benefits 

of open research data. Often, open data initiatives symbolize a reaction against the view 

of scientific knowledge production as an esoteric, technical and overspecialized process 

and promote the idea that scientific knowledge can and should be investigated as a whole 

(Leonelli, 2016). Also, making data freely and legally available is seen as a way to foster 

public trust in science as a source of reliable knowledge and legitimate source of 

information (Borgman, 2015). In the hype for open data, it is important to recognize that 

there could be unforeseen societal burdens to making research data openly available, 

especially when research data are collected from human subjects. Beyond obvious issues 
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of privacy, data reusers need to face novel questions of data ownership and control 

(Radin, 2017b, 2017a). DataFace human subjects datasets (DNA samples and 3D facial 

images) are being reused to train machine-learning algorithms that associate human facial 

features to genetic markers. In turn, these algorithms inform research on the design of 

Forensic DNA Phenotyping (FDP) technologies, which are employed by law 

enforcement agencies to reconstruct faces of suspects from DNA samples left at the 

crime scenes. The use of FDPs services in criminal investigations has been criticized by 

scholars in several fields, including biomedicine, bio ethics, legal studies, and the social 

studies of science (Toom et al., 2016). By “following the data,” I examined the process 

through which novel analyses of few DataFace datasets informed research on DNA-based 

facial reconstruction, and I further discuss the scientific debate surrounding this case 

study. My findings show that it is impossible to predict how research data will be reused 

once these are made openly available. 
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2. Theoretical framework 

Scientific knowledge does not originate in a vacuum, but is constructed in a net of social 

relationships, artifacts, technical innovations, and personal and collective interests (Kuhn, 

1970). In this project, the expression “knowledge infrastructure” (KI) refers to the 

complex socio-technical environment in which scientific knowledge is produced, shared, 

used and reused (Borgman, Darch, Sands, & Golshan, 2016; Bowker, 2005; P. N. 

Edwards, 2010; Star, 1995). In what follows, I describe the characteristics of a KI, and of 

how it differs from other types of infrastructures. I then summarize few useful 

conceptualizations of what constitute “research data,” and of how research data might be 

distinguished from other types of data. Finally, I operationalize three expressions that 

constitute the building blocks of this project: Data Reuse, Data Sharing, and Open Data. 

Knowledge infrastructures in science 

In social science, “infrastructure” is defined as a relational entity that emerges for 

people in practice and structure (Star & Ruhleder, 1994). In a foundational paper, Star 

and Ruhleder (1994) provided a list of key features that characterize infrastructures. 

Infrastructures are relational and distributed systems. Different perspectives, standards, 

conventions of practice, and cultural and organizational challenges need to be in place for 

the infrastructure in order to function. An infrastructure is built upon other layers, and, at 

the same time, is shaped and constrained by its relations to them. In this sense, 

infrastructures are embedded in other structures, social arrangements and technologies. 

To actively participate in an infrastructure is neither “natural” nor “automatic” for 

participants, but is something that is learned as a part of a membership within particular 

professional, social or cultural communities. In order to function, an infrastructure needs 
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to be woven into the daily practices of the workers. Because technologies, humans and 

policies involved in the infrastructure constantly change, also infrastructures themselves 

keep evolving. Indeed, infrastructures are unstable systems. Reformulating Castells and 

Hughes’ work in the history of science and technology, researchers developed a general 

model for understanding the evolutions of infrastructures over time (P. N. Edwards, 

2010; Hughes, 1983; Jackson, Edwards, Bowker, & Knobel, 2007; Castells, 1996). 

Scholars showed that infrastructures are initially about the accomplishment of scale, as 

they grow into networks. During their formation, infrastructures are sites of intense 

conflict. Discrepancies in the fundamental experience and vision of infrastructures start to 

emerge and materialize especially in the relation to designer assumptions and user 

expectations (Bowker, Baker, Millerand, & Ribes, 2009). Also, developing 

infrastructures can disconnect existing institutional, legal, and property regimes. If they 

survive this initial phase, infrastructures go through an intermediate phase in which they 

adapt and mutate, to finally become heterogeneous systems linked to each other via the 

consolidation of agreed upon gateways (e.g. standardizations). Once in place, provisional 

winners and losers are established. At this stage the infrastructure may reach a moment of 

apparent stability; it is in this stage that the infrastructure “disappears,” and their products 

are taken for granted (Bowker, 2005; P. N. Edwards, Jackson, Bowker, & Knobel, 2007). 

To provide an example, let us consider a scientific database as an element of an 

infrastructure. Once a database is widely adopted, as in the case of GenBank in the life 

science domain, it may be taken for granted because scientists know they can rely on it. 

However, once the database breaks down or stops functioning as expected, its existence 

suddenly “reappears” to its users. During moments of breakdown or upheaval, different 
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layers of the infrastructure are exposed. These phases represent unique opportunities for 

scholars who study infrastructures. By going backstage to observe the infrastructure in its 

making, practicing, and breaking, scholars analyze the relationships across its multiple 

components, a process often refers to as the method of infrastructural inversion (Bowker, 

2005). Finally, I want to draw attention to the concept of momentum, which signifies the 

necessary condition under which the infrastructure develops in trajectories and path 

dependencies (Jackson, Ribes, & Buyuktur, 2010). Because KIs evolve in path 

dependencies, once the infrastructure takes a direction for its grow it is hard to change it 

(Jackson et al., 2010). 

 

Infrastructures can be of many types. In this dissertation, I analyze how data are 

shared and reused in a “knowledge infrastructure” (KI) in the biomedical science. 

Contrary to cities’ infrastructures, a KI’s main goal is not to move cars or metro cabins, 

but to allow the production and flows of knowledge. Beyond science, the notion of KI 

can be used to study knowledge production and circulation in a variety of contexts, such 

as in finance, education, and so on. In here, I employ Edwards’s definition of a KI (2010, 

p. 17): “Robust networks of people, artifacts, and institutions that generate, share and 

maintain specific knowledge about human and natural worlds.” In a knowledge 

infrastructure, participants often adopt computer-based technologies to move knowledge 

around. KIs’ goals can include to organize and provide online access to digital resources 

(data, code, visualization tools etc.), foster multidisciplinary collaborations, and allow 

remote work interactions (Borgman, Wallis, Mayernik, & Pepe, 2007; Jackson et al., 

2007; Olson & Olson, 2000). In science computer-based KIs, technologists and domain 
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experts need to collaborate to make knowledge flowing. In a KI, those who are in charge 

of building the technical infrastructure (computer engineers, software developers, data 

managers etc.) need to collaborate and exchange information with those who will be 

using the information to produce knowledge (scientists, clinicians etc.) (Bowker et al., 

2009; Ribes & Bowker, 2009). 

 

Sometimes, KIs are referred to as Cyberinfrastructures (CIs), especially in US 

scientific parlance (Bietz, Baumer, & Lee, 2010; Borgman, Bowker, Finholt, & Wallis, 

2009; Jackson et al., 2007; Ribes & Lee, 2010). In policy and technological 

environments, CI is sometimes used to refer exclusively to the physical or technological 

aspects of an infrastructure (Atkins et al., 2003). Also, while “CI” is mostly an American 

terminology, in Europe researchers often refer to science collaborative projects as e-

science projects (Atkins et al., 2010; Carusi et al., 2010; David & Spence, 2003). 

 

In studying scientific KIs, researchers in information studies and in the social studies 

of science adopt a “socio-technical approach” to the analysis of the work practices of the 

scientists and their artifacts, such as notebooks, datasets, software, and so on. The term 

“socio-technical” is used to refute the idea that social and technical phenomena are 

distinct and contradictory (Star, 1995). By taking distance from this dichotomy, social 

researchers aim to acknowledge that social and technical problems and solutions always 

exist in a relation of co-dependency. As Bowker et al. (2009) pointed out, in studying 

scientific practices, instead of wondering whether a problem is of a social or technical 

nature, we should focus on understanding if the proposed solution, for any give problem, 
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is primarily social, technical, or a combination of both. Sociotechnical analyses of 

scientific practices normally rely upon qualitative methods for data collection and 

analysis, typically ethnographic observations and interviews. 

Research data and evidentiary power 

To provide an in-depth analysis of the notion of “data” is beyond the scope of this 

dissertation project. However, it is in its interest to discuss whether research data are in 

any ways different from other kinds of data. 

Scholars in the social studies of science investigated what is called “the demarcation 

problem” for a very long time. The demarcation problem refers to the possibility of 

defying scientific knowledge as in any way different from non-scientific knowledge. 

While this is an open and complex debate (Collins & Evans, 2008), we can at least say 

that – generally – scientific knowledge is researched by social scientists as a kind of 

knowledge that is produced and “certified” by individuals that are generally recognized 

as “experts” in a field of research. Building on this general statement, we can define 

research data as “entities used as evidence of phenomena for the purposes of research or 

scholarship (i.e., science)” (Borgman, 2015, p. 29). Theoretically, as Borgman observes, 

any artifact can be a used as a piece of research data; it all depends on what counts as a 

piece of evidence in the first place. In the biomedical community, data are certainly 

treated as a piece of evidence when they are published along with peer-reviewed 

academic publications. Indeed, the whole point of replication studies is to re-calculate 

others’ data to verify consistency of results. It is in this sense that research data are used 

as evidence for reproducible knowledge. 
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The key role that certified biomedical knowledge plays in our everyday lives does not 

need much explanation. If a group of non-experts creates a new drug with their own Do It 

Yourself (DIY) biology kit, and they want to sell it, they can’t. Obviously, to be 

commercialized, drugs need, among other things, to be approved by the Food and Drugs 

Administration (FDA) agency. Similarly, if I want to try that new shiny drug I saw in a 

TV commercial the other day, I need a prescription from my primary care physician. The 

FDA and the physicians rely on certified medical knowledge – peer-reviewed 

publications – to decide whether to approve or not a drug for commercial use, or to 

prescribe or not a drug to a patient. The final evidence that a certain drug does what it is 

supposed to do rests in the research data (and in the research design) underlying these 

publications. 

 

We can then think that the defining trait of research data – as opposed to any other 

kind of data – is that they perform as evidence for certified knowledge, which means 

knowledge that is peer-reviewed and published. However, the majority of data used for 

research purposes, especially raw and negative data, are not available in public repository 

and cannot be consulted as pieces of evidence. Most research data never leave private 

laptops and universities servers (Wallis et al., 2013). Indeed, only the result data are 

usually published along with academic publications (Borgman, 2015). Under certain 

circumstances (e.g. data abundance), researchers share their “unpublished” data with their 

colleagues prior to publication, traditionally in the context of closed collaborations. 
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One could also suppose that there is no stable defying trait in any kind of data, 

including research data. Following a well-established tradition in the social studies of 

science, scholars have argued that all types of data are imperfect and arbitrary 

representations of facts in the world. As pointed out by media scholars Gitelman and 

Jackson (2013), data are always “cooked,” which means subjected to human 

manipulation and, consequently, data are in a way or another biased interpretations and 

not objective representations of reality. Following this argument, we can then affirm that 

knowledge is always produced rather than innocently discovered (Gitelman, 2013, p. 4). 

Deriving from Daston and Galison’s (2007) conceptualization of mechanical objectivity, 

Gitelman and Jackson argued that objectivity is historically situated and culturally 

specific: “It comes from somewhere and it is the result of ongoing changes to the 

conditions of inquiry, conditions that are material, social and ethical” (Gitelman, 2013, p. 

4). Sociologists of science famously argued that scientists use data as “rhetorical devices” 

to validate, certify and mobilize knowledge (Day, 2014; Latour, 1987; Rosenberg, 2013). 

Science data are then “cooked” by individuals working in highly specialized cultures of 

practice (Galison, 1987; Knorr-Cetina, 1999; Rheinberger, 1997). It has also been argued 

that “translating” data between contexts requires a compromise on issues of quality and 

accuracy. In this perspective, data go through a process of simplification and 

approximation to be shared and reused by scientists operating in different communities 

(Bowker & Star, 1999; H. M. Collins, Evans, & Gorman, 2007; Latour, 1987). 

 

In her latest book “Data-centric Biology,” Leonelli (2016) proposes that research data 

do not have stable defying traits, but their evidentiary power lies instead in the ways in 
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which these are “packaged” for reuse. For Leonelli, who specifically writes about biology 

data produced in the context of animal model communities, the evidentiary power of 

research data does not lie in their apparent “immobility,” as Latour and Rheinberger 

argued (Latour, 1987; Rheinberger, 1997), but it lies in the possibility of repurposing 

them to ask novel research questions, across different experimental settings. Interestingly, 

Leonelli observes, the fact that a given research dataset can be used “to prove” the 

existence of multiple biological phenomena at once does not take anything away from its 

intrinsic validity. Indeed, Leonelli argues, researchers are well aware of the fact that 

research data are not simply “found” in nature, but they are “crafted” in ways that make 

them usable for research purposes. Data creators craft, or cook, the data themselves, and 

they do so intentionally. The trick lies in being aware of how data are crafted, knowing 

how they are crafted allow us to make judgment about their validity. In this frame, the 

data’s evidentiary power, and their potential for reuse, is strictly dependent on how the 

data are described by use of metadata and ontologies. By using ontologies and metadata, 

data professionals describe and characterize data in ways that make them potentially 

useful to ask a number of questions, by a number of researchers. This means that multiple 

“facts” can be associated to a single dataset at once. 

Terminology specifications: data reuse, data sharing, open data 

As it is often the case, data reuse can mean many different things, for different 

people. The most fundamental problem in defying data reuse is to distinguish between a 

“use” and a “reuse.” In the simplest situation, data are collected by one individual, for a 

specific research project, and the first “use” is by that individual to ask a specific research 

question. If that same individual returns to that same dataset later, whether for the same 
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or a later project, that can be considered a “reuse.” However, this is not the kind of 

“reuse” that I aim to study in this dissertation. When that dataset is contributed to a 

repository, retrieved by someone else, and deployed for another project, I then consider it 

a case of “data reuse.” Not by chance, in the common parlance of data practices studies, 

reuse usually implies the usage of a dataset by someone other than the originator (Carlson 

& Anderson, 2007; Rung & Brazma, 2012; Zimmerman, 2008). 

 

This type of data reuse – reuse by others – is probably the most troublesome of all 

data reuses. This is because it implies that researchers need to trust data that have been 

collected by someone else, data whose production they did not personally witness. While 

data reuse is a well established practice in certain research communities, such as among 

model organism communities (Leonelli, 2016), it is perceived as a real challenge among 

others. Socio-technical studies on data reuse practices unpacked patterns of data reuse for 

open repositories (or digital archives) of research data. This line of research showed that 

scientists carefully evaluate others’ data in order to take decisions on whether reusing 

them, or not. Scientists need to be able to “understand” and especially “trust” others’ data 

in order to reuse them (Faniel & Jacobsen, 2010; Zimmerman, 2007). Several factors play 

key roles in enabling understanding and trust of others’ data, such as the popularity of the 

repository in which data are stored, the granularity and accuracy of data curation, and the 

perceived reliability of the individuals who collected the data in the first place (Yoon & 

Kim, 2017). Overall, granular and detailed “data curation” (i.e., use of metadata to 

describe and characterize others data) is perceived as a main factor that enables data reuse 
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(Wilkinson et al., 2016). Also tools for data discovery and analysis might encourage data 

reuse (Goodman et al., 2014). 

 

People can reuse others’ data for many purposes, such as for outreach, in the context 

of replication studies, etc. In this dissertation project, I look at how scientists reuse others 

data for knowledge production, and, in particular, to ask novel research questions. The 

possibility of re-purposing old data to squeeze out new knowledge is endemic of the “big 

data” imaginary (boyd & Crawford, 2012). This is what Leonelli refers to as the promise 

of making data “fungible,” meaning “interchangeable units” that travel from context to 

context, from research questions to research questions, by carrying infinite potential for 

novel knowledge extraction (Leonelli, 2016). In biomedical research, and in particular in 

policy context, the act of re-analyzing others’ data to run novel research questions is 

referred to as “secondary analysis” of data (National Institutes of Health, 2017a). The 

“primary analysis” is the analysis conducted by the data creator herself, in relation to the 

research question the data were originally collected for. In this context, “secondary” does 

not have a demeaning connotation. 

 

Another problematic term is data sharing. Data sharing generally refers to the act of 

releasing data in a form that can be used by other individuals. Data sharing thus 

encompasses many means of releasing data, but says little about the usability of those 

data. Examples of data sharing in science include private exchanges between researchers; 

posting datasets on researchers’ or laboratory websites; depositing datasets in archives, 

repositories, domain-specific collections, or library collections; and attaching data as 
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supplemental materials in journal articles (Wallis et al., 2013). A relatively newer 

practice in many fields is to disseminate a dataset as a “data paper.” Methods of data 

sharing vary by domain, data type, country, journal, funding agency, and other factors. 

The ability to discover, retrieve, and interpret shared data varies accordingly (Borgman, 

2015; Leonelli, 2016; Palmer, Weber, & Cragin, 2011). In this dissertation project, I use 

“data sharing” to refer to the act of scientists consensually and intentionally sharing data 

within each other, upon-request and in the context of inter-laboratories collaborations. 

 

I am especially eager to differentiate “data sharing” from “open data.” Open data is a 

problematic term given the array of concepts and conditions to which it may refer (Levin, 

Leonelli, Weckowska, Castle, & Dupré, 2016; Pasquetto, Sands, Darch, & Borgman, 

2016; Pomerantz & Peek, 2016). Baseline conditions for making scientific data “open” 

usually refer to “fewest restrictions” and “lowest possible costs.” Legal and technical 

availability of data are also mentioned (Open Knowledge Foundation, 2015; Organisation 

for Economic Co-operation and Development, 2007). The OECD specifies 13 conditions 

for open data, only a few of which are likely to be satisfied in any individual situation 

(Organisation for Economic Co-operation and Development, 2007). Examples of “open 

data initiatives” in the academy include repositories and archives (e.g.,, GenBank, Protein 

Data Bank, Sloan Digital Sky Survey), federated data networks (e.g.,, World Data 

Centers, Global Biodiversity Information Facility; NASA Distributed Active Archive 

Centers), virtual observatories (e.g.,, International Virtual  Observatory  Alliance, Digital 

Earth), domain repositories (e.g.,, PubMedCentral, arXiv), and  institutional repositories 

(e.g.,, University of California eScholarship). However, in these projects, openness varies 
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in many respects. Public data repositories may allow contributors to retain certain 

intellectual property rights over the deposited. Data may be open, but interpretable only 

with proprietary software. Data may be created with open source software, but require 

licensing for data use. Open data repositories may have long-term sustainability plans, 

but many depend on short-term grants or on the viability of business models. Keeping 

data open over the long term often requires continuous investments in curation to adapt to 

changes in the user community (Baker, Duerr, & Parsons, 2015). A promising new 

development to address the vagaries of open data is the FAIR standards – Findable, 

Accessible, Interoperable, and Reusable data (NIH, 2016). These standards apply to the 

repositories in which data are deposited. The FAIR standards were enacted by a set of 

stakeholders to enable open science, and they incorporate all parts of the “research 

object,” from code, to data, to tools for interpretation (NIH, 2016; Wilkinson et al., 

2016). Beyond idiosyncratic features of specific open data initiative, in here I employ the 

term “open data” to refer to those initiatives in which data are contributed to a repository 

of some sort, as opposed to “shared” upon request in between individuals and labs. 
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3. Literature review 

The analysis of literature relevant to this dissertation project is divided in three 

sections. First, I review the emergence of different data sharing regimes in the field of 

biology during the twentieth-century. As observed by Hilgartner (2017) in his latest book 

on this topic, this story has received little attention compared to that paid to the 

concomitant rise of intellectual property rights. Hilgartner (2017) pointed out that the 

twentieth-century led to a profound historical transformation in the life sciences, namely 

the development of public access and data-sharing policies. Before the advent of the 

“genomics revolutions” in the late 80s, biomedical research data used to be made 

available in open repositories “post publication.” Specialized communities of researchers 

(e.g., model organism communities) would curate and reuse these data in their daily 

research practices. The scientists would submit the data to the open repositories either on 

a voluntary basis, or – later – as a requirement for publication. Data would be shared 

“prior to publication” solely within semi-closed collaborations in which scientists would 

retain some control – and credit – over the reuses of their data. In the late 90s, the 

genomics research community saw the emergence of what Hilgartner refers to as the 

“knowledge-control regime” of Unpublished in Journal, Available in Databases (UJAD) 

research data. Toward the completion of the Human Genome Project, the NIH started to 

require scientists to deposit their sequence data in publicly available repositories right 

after data collection, which often meant “prior to publication,” as a requirement for 

ensuring continuous funding. In what follows, I examine some of the factors that led to 

the adoption of policies for depositing research data in open repositories prior to 

publication, in the US. 
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In the second section I examine what it means to reuse research data “ethically,” the 

problems of data ownership, and of the limits of Informed Consent. Finally, I conclude 

this literature review with an analysis of the epistemic implications of recent innovations 

in human genetics – “personalized medicine” and “population genetics” – that are used 

by the craniofacial researchers to engage and make sense of the DataFace datasets. I also 

review some ethical concerns that scholars in the fields of the social studies of science are 

raising in relation to these emerging methodologies. 

Pre-genome perspectives on data sharing and reuse 

I start my analysis by reviewing some “classics” in the history and anthropology of 

science that narrate the ways in which science stakeholders would regulate the practices 

of data sharing and reuse before the advent of the “genomics revolution” in the late 80s. 

The co-presence of two competing perspectives on “how and when” biomedical 

researchers should share and reuse data characterized the early practices of genetics 

research and, later, molecular biology. On one hand, some science actors promoted the 

idea of knowledge production as a collective effort, and of research data as “collective 

properties.” Promoters of research data as collective properties would make data 

available in semi-open systems in which only those who belong and contribute to the 

community would have access to the data. On the other hand, the promoters of full open 

access to research data would argue that anyone should have access to anyone’s data at 

all time, and that academic credit should go to those able to exploit the data, not to those 

who collected it. In this sense, research data are resources that anyone should be able to 

access and exploit – a logic similar to the one of free market and open competition. In 
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this regime of “full openness,” the merit for the data analysis goes to the individual 

scientists, not to a collective of scientists. Importantly, while my analysis show the co-

presence of different perspective on open data before the genomics era, it also pointed out 

at the fact that neither was at this point formalized in official policies for data sharing. 

The drosophila community: a practice-driven openness 

Practices of organizing, disseminating, and reusing data have long characterized 

biology research (Kelty, 2012; Clarke & Fujimura, 2014; De Chadarevian, 2004). 

Biologists, especially those working in model organism communities, have been sharing 

their data in between labs since the early days of molecular biology. Robert Kohler 

famously narrated the rise of data sharing and reuse practices among the members of the 

drosophila community in the USthroughout the first half of the 20th century (Kohler, 

1994). At the time, the creation of the laboratory-standard fruit fly (i.e., the drosophila) 

reconfigured biology methodology and profession. The drosophila was one of the most 

productive of all laboratory animals. From 1910 to 1940, the center of Drosophila culture 

in America was the school of Thomas Hunt Morgan and his students Alfred Sturtevant 

and Calvin Bridges. Morgan’s lab first created the standard flies, through inbreeding, and 

then organized a network for exchanging stocks of flies in between labs that spread their 

practices around the world. By rearticulating Edward Palmer Thompson’s work, Kohler 

(1994, p. 12) argued that the drosophila research community had a “moral economy” of 

openness, defined as “a set of moral conventions that regulates the access to tools of trade 

and the distribution of credit and rewards for achievement.” As explained by Kohler, the 

drosophila scientists were managing resources, such as stocks, tools, storage practices, 
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and data, in ways that allowed other labs working on the heredity research to access the 

same resources. 

 

In the drosophila community, data sharing and reuse practices were implemented as a 

response to practical needs, and, at the same time, they functioned as a promotional 

means for spreading novel research methodologies. The drosophila community was 

producing a great amount of mutants to be examined, more than enough for everybody to 

study; openness helped to optimize this analysis. Most importantly, among drosophila 

researchers, sharing tools and reusing each other’s data became a sign of affiliation with 

that community. Access and diffusion of the technical tools and data brought their 

inventors visibility, trust, and prestige, and the drosophila exchange system became the 

material basis for recruitment, employment and communication within the discipline. As 

a result, the free availability of drosophila helped to establish the epistemic consolidation 

of the new practice of “genetic mapping” as the dominant form of experimental heredity 

research. The drosophila community moral economy of openness was mainly motivated 

by practical needs of convenience and efficiency, the labs were simply producing more 

data than they could possibly analyze, and eventually became a widely adopted ethical 

standard across the whole drosophila community. 

Competition and collaboration in semi-open communities 

Among drosophila labs, research data and other materials “were regarded as 

communal property” (Kohler, 1994, p. 133). By employing the Drosophila Information 

Service (DIS) newsletter as “model” to study open science ethos, Kelty (2012) revealed 

interesting details behind this understanding of research data as “communal proprieties.” 
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In the twentieth-century, drosophila scientists were using the DIS newsletter to 

communicate and monitor progress in the field. Kelty argued that the newsletter was 

regulated by a strategy of information sharing that was, at the same time, both open and 

closed. The newsletter, and its information, was not open “to just anyone.” DIS’s 

subscribers would have unrestricted access to others’ flies, techniques, results and other 

information only at the condition that they would first share a list of mutants fruit flies 

available in their labs, and thereby were willing to share these mutants by mail or in 

person with other labs. By contributing with their own mutants, tools, and concepts, the 

DIS subscribers would become “actively engaged” members of the community. At the 

same time though, this mechanism isolated those geneticists who were not primarily 

working with drosophila and didn’t have anything to contribute with. Kelty observed that, 

precisely because this semi-open strategy for information sharing was in place, “the 

newsletter became the de facto locus for the construction of a recognizable and stable 

research collective – a community, a paradigm, a tradition and so on with stable concepts 

and epistemic objects contributed by and collectively owned by Drosophila labs around 

the world” (Kelty, 2012, p.147). 

 

Significantly, as Kelty pointed out, this mixed open/close regime for data sharing 

made the newsletter a relatively “safe place” for the scientists to share preliminary 

experimental results before these would be “good enough” for official publications. In 

Kelty’s words: “Scientists could signal each other about problems they owned without 

fear of getting scooped” (Kelty, 2012, p. 147). Because subscribers were requested to 

share their data with the whole DIS community as a condition to access others’ data, 
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power and vulnerability were equally distributed among all members of the community. 

At any time, anyone could scoop anyone else. In this context, a sort of “do not do unto 

others what you do not want others to do unto you” ethos was preventing scientists from 

reusing each other data in ways that could be perceived as unfair. 

 

The notice printed front and center on the newsletter’s cover seemed to reinforce such 

ethos: “This is not a publication – Unpublished material presented in this circular must 

not be used in publications without the specific permission of the author.” As discussed 

by Kelty, the newsletter editors made explicit that the newsletter was a tool to 

disseminate information privately among the community members, but not to the general 

public, and that the newsletter would not engage, for this specific reason, in the practices 

of scholarly citations. Interestingly, Kelty noticed that already in the foreword of second 

number of the newsletter’s editors felt the need of re-articulated the cover statement. Few 

readers apparently interpreted the request for permission before using others’ material in 

publications as a barrier to the open circulation of knowledge, and, for this reason, as 

being in contradiction with the main goal of the newsletter itself. In the foreword, the 

authors asked to the subscribers to share only material and information that they would 

feel confortable sharing “by mail with another Drosophila worker.” Most importantly, 

they specified that, actually, explicit permission from the authors for data and information 

reuse in novel publications was not needed, and that acknowledgment of the “source” of 

the material was enough. During the following years, norms and expectations concerning 

free exchange and acknowledgements would be frequently repeated in the foreword of 

the DIS. At the same time, no copyright notice was ever added to the DIS, and the 
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informal rule of acknowledgment successfully regulated the exchange of info via the DIS 

for over 50 years. The DIS became so popular that it was officially turned into a journal 

toward the end of the century. 

 

As discussed by Kelty, at the heart of the success of the DIS it was its feature of being 

open and closed at the same time, of sharing data and materials only with “actively 

engaged” DIS members (i.e., members who were willing to share their materials in the 

first place). This “partial porousness” – as Kelty’s calls it – of the DIS community 

allowed the scientists to work, at the same time, in an environment of both 

competitiveness and cooperation. In this particular knowledge-control regime, DIS 

scientists would manage the sharing and access to research data and materials as 

“collective proprieties.” 

 

Kelty also compared the moral economy of the DIS with the moral economy of the 

contemporary synthetic biology community. He found some similarities, especially the 

fact that also synthetic biology relies on a similar open/closed regime of knowledge 

access. However, Kelty explains, in the case of synthetic biology the mixed open/closed 

regime is motivated by a different ethos. Synthetic biology is indeed a “commercially 

driven science” whose data sharing and reuse practices are highly impacted by the 

pressures of contemporary intellectual property-saturated biotechnology market. To do 

their work, Kelty argues, synthetic biologists must depend on the biotechnology industry 

for tools and financial investments. The biotechnology industry is dominated by patents, 

as opposed to copyright, and a structured system of investment and return. In this frame, 
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data and other research objects are not “collectively owned” by synthetic biology 

communities, but by individuals and investors. He explains: 

Whereas the closure of newsletters was intended to facilitate the creation of collectively 

owned concepts in the service of a cumulative science, the intellectual property system recognizes 

no such thing: all concepts, techniques, objects, practices, must be individually owned – subject to 

the intellectual property regime’s definition of an individual and his/her/its rights. Even though the 

intent of the intellectual property system may once have been to balance individual gain with 

public benefit (Boyle, 2008; Hyde, 2010), the reality of the system as implemented is that 

everything, down to the very mutant fly and its sequenced gene, must be individually owned in 

order to serve the growth of a competitive market (Kelty, 2012, p. 162). 

Centralized open collections and community databases 

Starting with the second half of the twentieth-century, the organization of biology 

knowledge in digital databases played a central role in enabling data distribution and 

reuse practices in the field (Kelty, 2012, p. 162). Strasser (2011) argued that 

contemporary biology inherited the practice of organizing research outputs into structured 

knowledge representation schemas, such the digital databases, from the natural history 

tradition of collection and cataloguing “natural facts” about world. Natural history 

approach relied on “collections” as primary means for knowledge production. Bringing 

specimens together in a single place and organizing them in a systematic way made 

comparisons among different sets of data possible. By facilitating analogical reasoning, 

databases enabled the identification and inscription of “differences” between datasets into 

broader theoretical systems. It is in the natural history tradition that the idea of bringing 

the specimens dispersed in the world to a central location originated, a knowledge 

organizational schema that still guides the design of biology data repositories today, 
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including the design of the DataFace repositories. The impetus for the creation of biology 

databases was parallel to that for the founding of so many natural history collections. It 

was a reaction to a perceived “information overload,” augmented by a new recognition of 

the scientific promise of the knowledge such a database would contain and the potential 

for individual and institutional prestige that would accompany its development. 

Databases, as Strasser observed, are so essential to modern experimental practices, but at 

the same time they belong to a “natural historian” way of knowing that relies on the 

collection and comparison of natural facts, often across many species – like in the case of 

the DataFace Consortium. 

 

The twentieth-century saw the rise of many different collections of experimental data 

organized in databases. Well before the sequence databases, model organism 

communities were pioneers in the creation and maintenance of  “community databases,” 

such as the FlyBase, the WormBase, and the Mouse Genome Informatics. These resources 

are still highly used for data sharing and deposit today, and constitute necessary means 

for knowledge production (Leonelli, 2016). Community databases bring together several 

data types, organized by kind of model organism. As in the case of the drosophila 

community, most model organism communities are have a strong sense of affiliation, a 

moral economy of openness, and a way of thinking about research data as “collective 

properties” (Leonelli, 2016). 

 

Traditionally, the organization of research data in community databases follows a 

quite specific workflow that originated in second half of the last century, but still remains 
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the same for most community databases today. It is this workflow that enabled the wide 

adoption of community databases as primary means for knowledge representation and 

production among model organism communities. I want to bring attention to two specific 

constitutive features of this workflow. First, community databases are made of 

collections of research data made available “post publication.” Second, these collections 

go through a process of granular curation and integration that makes their reuse quit 

effective. 

 

In model organism communities, the organization of scientific knowledge in the 

community databases enables the production and wide distribution of what Sabina 

Leonelli calls “small facts.” The database staff harvests scientific information and sets of 

research data from the academic publications. In alternative, the researchers themselves 

submit to the database their data. Once the data are submitted to the platform, a team of 

“bio-curators” organizes and describes the datasets. The bio-curators “curate” the data so 

these will meet the specific needs of specialized communities. It is this process of data 

curation that allows biology small facts to “journey” from one research situation to the 

next. Bio-curators are responsible for guaranteeing the “effective packaging” of biology 

data, which is achieved by describing research data through “relevance and reliability 

labels.” These labels are, respectively, bio-ontologies and metadata. When biologists 

download reuse others’ data to ask new research questions, data go through a process of 

both de-contextualization and re-contextualization. Relevance labels make data attractive 

to users in new contexts (bio-ontologies) by associating datasets with their “object of 

research” (the biological entity under study) and the known datasets. Reliability labels 
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provide information about the “quality” of the data, such as information about the data 

format, the organism used in the experiment, the instrument and methods used, and the 

laboratory conditions under which the data were obtained (Leonelli, 2016). When 

successfully applied, these labels allow biology data to work as boundary objects: objects 

that are both plastic enough to adapt to local needs and constraints of the several parties 

employing them, yet robust enough to maintain a common identity across sites (Star & 

Griesemer, 1989). 

Data sharing in the molecular lab: pre and post-publication practices 

Centralizing data from distributed datasets into centralized databases constitute one 

way in which scientists make their data available (Wallis et al., 2013). We know that a lot 

of data sharing also happen in between labs “upon request.” As pointed out by the 

Hilgartner (2017), before the rise of genomics the molecular biology lab was 

characterized by two quite distinct data sharing practices. On one hand, the labs working 

on similar issues would share within each other data and material underlying published 

papers. Typically, this type of reuse would come with no strings attached, other than a 

courtesy citation to the data creators’ previous work. On the other hand, sometimes labs 

would want to reuse others’ data when the related papers were not published yet. In this 

case, labs would share and reuse each other data in the context of a collaboration, which 

would result in co-authorship. 

 

In her study of the epistemic culture of molecular biology, Karin Knorr-Cetina 

famously described the organization of knowledge production in laboratories in the 80s 

(Hilgartner, 2017, p. 65; Knorr-Cetina, 1999). In Knorr-Cetina’s representation, 
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molecular biology is a highly individualized culture. Research takes place in small 

laboratories, typically consisting of a laboratory head and few postdoctoral researchers, 

graduate students, and technicians. People work mostly independently at their “lab 

benches,” where “bench-work” requires careful manipulation of small tools and volatile 

material. This type of work practice is typically referred to as “wet lab” work. The “head” 

of the laboratory is entitled to direct the research program, select and manage personnel, 

allocate projects to subordinates, authorize the expenditure of resources, and make 

internally authoritative judgments about the epistemic quality of knowledge objects. In 

simple terms, the head of the laboratory “speaks” for it. The head of the lab assigns 

postdoctoral researchers to projects. Graduate students and the technicians assist postdocs 

in the development of the projects. 

 

As discussed by Hilgartner, “the head of the laboratory would enjoy strong 

managerial privileges over transfers of knowledge and resources, and holds a legitimate 

monopoly on representing the laboratory and its accomplishments to the wider world” 

(Hilgartner, 2017, p. 65). For example, during the race to find a gene, the head of the lab 

would decide whether or not to publish “intermediate results” that could help rivals. The 

head of the lab also decides whether, how, and under what circumstances to share the 

lab’s data with other labs. In this “typical” lab framework, the most common way of 

sharing data “inter-laboratories” was to request data and material underlying published 

papers. Sharing data of published papers is the least problematic way of sharing data, and 

scientists perceived it as a duty: it allows other qualified scientists to verify or build on 
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the authors’ published work. Similar ways of sharing “published” data include presenting 

at meetings, conferences, and workshops. 

 

Hilgartner showed that, in the molecular biology lab, while published data would be 

shared easily, biologists would share their “unpublished data” mainly in the context of 

formalized “labs collaborations.” Hilgartner suggests that labs collaborations enable 

scientists to conduct cutting edge research without loosing control over “unpublished” 

resources. Hilgartner defines “collaboration” as a “genre of knowledge-control regime,” 

which is based on an agreement among specific agents to participate in some joint 

projects or activities (Hilgartner, 2017, p. 82). Collaboration often forms when two or 

more laboratories possessed potentially complementary resources. Prospective 

collaborations typically identify a domain-specific project and relevant resources that the 

parties possess. Typically, collaborations would end in co-authorships, and collaborators 

would be middle-authors. The setting in which collaborations take shape – phone calls, 

side conversations at meetings, were “sporadic and elusive” and that “matters of 

compatibility and trust figured into interlocutors’ thinking when assessing prospective 

collaborations.” Pre-existing animosities, Hilgartner points out, sometimes impede the 

formation of collaborations. In this collaborative framework, scientific credit typically 

concentrated in the “first author” (usually the postdoc who ran the project) and “last 

author” (usually the laboratory head). “Middle authors” were often the graduate students, 

and the collaborators who helped by providing a “service,” for example other labs 

supplying biomaterials or unpublished research data, or other labs performing specialized 

analyses (Hilgartner, 2017, p. 53). 
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The “genomics revolution:” the rise of unpublished open data 

In his latest book Reordering Life: Knowledge and Control in the Genomics 

Revolution, Hilgartner (2017) argued that the design, constitution, and implementation of 

the Human Genome Project (HGP) – an international consortium for large-scale 

sequencing – introduced a novel regime of “knowledge-control” in the biomedical 

community (late 80s – early 2000). To revise the features of this regime is of particular 

interest for this dissertation project because, as I will discuss later, the DataFace 

Consortium shared some similarities with the HGP. In many ways, DataFace reproduced 

the vision for data sharing and openness that emerge during the HGP – which I refer to as 

“radical openness” regime for data sharing. However, in the context of DataFace, this 

regime was applied to a research community fairly new to genomics’ methodology and 

the ethos of openness. 

 

In the US, the HGP leadership included members of the National Center for Human 

Genome Research (NCHGR) within the NIH, and members of the Office of Biological 

and Environmental Research (OBER) within the DOE. Several scholars studied the 

history and the politics of the HGP (Keller, 2002; M’Charek, 2005; Reardon, 2017; 

Stevens, 2013), which is often described as the epitome of the “genomics revolution.” For 

the scope of this dissertation, it is enough to highlight the main traits that characterized 

what Hilgartner calls the “genomics vanguard.” The HGP had three main goals: a) to map 

and sequence the genome of the human and several model organisms; b) to make all the 

sequence data freely and technically available in public databases; c) to develop tools and 

methods for gene hunting and whole genome analysis (Hilgartner, 2017, p. 31). While 
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discussing to what extent the practices of genomics actually constituted a methodological 

revolution in biology is beyond the scope of this dissertation project, it seems reasonable 

to agree with Hilgartner on its observation the HGP ultimately promoted a “paradigm 

shift” in biology that aimed at making the field more computational. Through the HGP, 

the genomics vanguard sought to center data analysis on massive quantities of sequence 

data, from many organisms and individuals. 

 

Before the HGP, single laboratories were mainly focused on locating and analyzing 

one by one genes related to specific disease or to human variation. This kind of work was 

extremely time consuming. The HGP aimed at providing a set of “reference maps” of the 

whole human (and certain animals) genome that would simplify and speed up the process 

of gene hunting. In order to build these reference maps, scientists would need to first 

sequence, locate, and map the location of each protein-coding piece of DNA on the whole 

genome. In the US – Hilgartner pointed out – a strong leadership was overseeing the 

HGP program. This “informal” but powerful leadership, which included funding officers 

and few selected science advisors, was in charge of coordinating the mapping and 

sequencing process in the US. The HGP leadership distributed the work of sequencing 

and mapping genes to over 20 laboratories. The selected laboratories were named 

“genome centers” and they received funding to accomplish the HGP’s goals, especially 

sequencing and mapping genes. Hilgartner observed that the HGP leadership particularly 

emphasized accountability, stressing that genome centers should be tightly focused on 

achieving HGP goals (p. 97). Rapid data release was a persistent priority from the 
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beginning of the project. Centers would indeed often release datasets “prior to 

publication,” as a way to show compliance with the agencies’ requirements. 

 

This transformation of molecular labs into genome centers resulted in few challenges. 

As discussed by several commentators, genome centers resembled factory-like data 

production facilities (García-Sancho, 2015; November, 2012; Stevens, 2013). In these 

“mapping facilities” young researchers would be assigned to high-throughput data 

production, which involved hundreds of robots and machines in a highly automated 

manufacturing process. Already during the HGP, Hilgartner (2017, p. 55) reported to 

have heard “complains from some of the postdocs about spending time on “routine” 

mapping work rather than on career-enhancing projects and grumbling about doing the 

work of “mere technicians.” People were concerned over how could young scientists 

working on long-term, collective projects such as genome mapping, stand out as 

individuals who had made notable contributions. In other words, young researchers 

wanted to dedicate their time to the analysis of the sequence data – to find specific 

variants that code for disease, for example – not only to the design of reference maps. 

 

Another related challenge was the expectation, and eventually requirement, of 

depositing sequence data right after data collection in public databases, prior to 

publication. As I will discuss in the next section, after long debates, the HGP leadership 

decided to require genome centers to release sequences as soon as these were collected. 

While some scientists raised concerns over loosing merit and “being scooped,” this 

requirement was not seen as particularly controversial by the leadership and by senior 
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scientists promoting open access. As discussed by Hilgartner, behind the sharing 

requirement lied the assumption that sequence data do not constitute complete “research 

data.” From the HGP leadership point of view, sequences of ATCG, often shared with 

minimal annotations on biological functions, constitute “hypothesis free” resources from 

which knowledge can be extracted – somewhat how fuel is extracted from oil. Hilgartner 

called these data Unpublished in Journals, but Available in Databases (UJAD) research 

data. Differently from curated research data that are deposited – after publication – in 

community databases (i.e., “small facts”), and also differently from research data shared 

in between labs “upon request,” sequence UJAD are intended to work as “fungible” 

resources: research commodities whose individual units are essentially interchangeable 

(Leonelli, 2016). 

The HGP: competing regimes for data sharing and open data 

In his account of the knowledge-control regimes before, during, and after the HGP, 

Hilgartner (2017, p. 91) argues: “The rise of a self-consciously revolutionary research 

program such as the Human Genome Project created a context in which the settlements 

that govern scientific knowledge and data became susceptible to renegotiation.” For 

Hilgartner, the HGP sponsored and enacted a novel mode of exerting control over 

genomics knowledge and data. Interestingly, the author argues that the US and Europe 

promoted quite different control regimes. The US program intentionally opted for a 

distributed system in which independent genome centers were hold accountable for the 

collection and the distribution of genomics maps. Productivity metrics, data reporting, 

and release requirements, unusual in molecular biology at the time, were used to hold 

genome centers accountable. In the US, the HGP leadership aimed to establish strong 
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control over the data producing centers. The data sharing process consisted in a one-way 

flow of data: from the centers to everybody. In this context, “technologies,” such as the 

“Sequence-tagged Site” (STS) standard, were used to free users from needing 

connections to the centers, or to each other, to interpret, compare, and reuse maps. 

 

As pointed out by Hilgartner, the UK proposed a quite different model of knowledge 

distribution. Like Dayhoff few years earlier (see next chapter), and like the editors of the 

drosophila newsletter, the European leadership imagined a central laboratory as a vital 

hub that integrated individual laboratories’ datasets into a collective knowledge-

producing network. The central laboratory would house everyone’s data centrally while 

providing data to the users “on request.” Where the US system sought to speed the one 

way-flow of data, the UK system sought to compel outside laboratories to contribute with 

their own data to the project, and, in exchange, it would provide access to all data. In this 

sense, the UK regime resembles the open/closed systems of model organism communities 

(Kelty, 2012). While the central lab would demand authorship in exchange for reuse, it 

would also retain some control over who would get access to the sequence data and 

when. We can see how, once more, the scientific community was divided between a 

regime of collective semi-openness (UK) and one of individualistic full-openness (USA). 

 

These two different regimes of “knowledge-control” originated in two different ways 

of imagining the scientific community. The scholar argues that “it would not be much of 

an exaggeration to say that the US regime was premised on an imaginary of the scientific 

community as a population of autonomous laboratories, disconnected agents interested in 
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maximizing their individual freedom of action. As opposed to the UK model, in which 

the scientific community was imagined as a group of laboratories bound together by 

common goals, technologies, and materials and interested in maximizing heir collective 

achievements” (Hilgartner, 2017, p. 122). 

Sequence databases: open vs. proprietary 

The debates leading to sequence databases creation and governance – especially in 

relation to issues of attribution of credit and authorship, and the proprietary nature of 

knowledge – illuminate the different moral economies at work in the life sciences during 

the genomics revolution. These stories offer perspective on the recent wide spread of 

policies for full and immediate access to research data. 

 

Similar to paper newsletters, the governance of sequence databases – since their very 

early conception – have been debated between competing visions of data credit, 

knowledge production, and data ownership. From the perspective of attribution of credit 

for collection and reuse, some sequence database creators stressed the idea that sequence 

databases added value to “raw data” via data curation and annotation techniques. In some 

cases, database managers would also retain the right of mining collections of others’ data, 

and publish the resulting analyses. Others believed that database managers had no rights 

over the data collections, stressing the “molecular lab” ideology of individualistic 

knowledge production. These normally pushed for the total open access of the data 

submitted by the scientists to the databases. From the perspective of data ownership and 

proprietary issues, some sequence database managers promoted the idea of organizing 

collection in proprietary databases that could become a sort of revenue. This could be 
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done by partnering with private companies and by patenting certain sequence data. 

Promoters of full open access strongly opposed the possibilities of creating proprietary 

databases out of publicly funded data collections. In this section, I briefly summarize the 

debates around the constitution of two distinct sequence databases. The first one is the 

famous controversy behind the creation of GenBank. The second one is the less famous 

but quite illuminating case of the dbEST database in the context of the Human Genome 

Project, which was recently brought to attention to the scholarly community by 

Hilgartner. 

 

GenBank, a public database of nucleic acid sequences officially funded by NIH 

starting from 1982, is arguably the largest and most frequently accessed collection of 

experimental knowledge in the world. The creation of GenBank, as Strasser (2011) 

pointed out, represented a significant historical turning point in the organization of 

biological knowledge. In the early 80s, while the proposal for HGP was being discussed, 

the scientific community started to pressure for the creation of a centralized sequence 

database. A comprehensive database of DNA sequences seemed indispensable for 

making sense of the abundant new data that was being produced. When, toward mid 80s, 

the NIH finally opened a call for funding opportunity for the constitution of a centralized 

database, two institutions were particularly well positioned to take the lead in developing 

such a facility in the United States. On one hand, the National Biomedical Research 

Foundation (NBRF) led by Margaret O. Dayhoff, and, on the other hand, the Los Alamos 

Scientific Laboratory, led by Walter B. Goad. As discussed by Strasser, the two very 

different proposals submitted by the institutions revealed competing ways of thinking 
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about the value of research data for knowledge production, attribution of credit and 

authorship, and ownership of the data. 

 

On one hand, Dayhoff, an experienced data collector, proposed a system by which 

researchers who had determined sequences would share them voluntarily with her in a 

computer-readable format (e.g., tapes) for inclusion in her database. In exchange, her 

database would provide access to all the data, but at the condition of reserving proprietary 

rights over the data once the contract with NIH would terminate. Dayhoff’s proposal put 

great emphasis on verifying the data for accuracy and on having the sequences “certified” 

by several experts, including the original authors. She argued that a carefully verified 

collection was “more economical in the long run than a ‘quick and dirty’ collection,” a 

clear allusion to other sequence collectors who didn’t put the same effort into verifying 

the data. Dayhoff would also reserve the right to mine the data deposited in the database, 

mirroring, according to Kohler, a specific natural historian tradition in which creators of 

collections own the items that compose the collection. 

 

On the other hand, the theoretical physicist Goad proposed that journals would 

require scientists to submit their data to a centralized database as a pre-condition for 

publishing. His plan was going to be implemented with the help of the journal editors. He 

also specified that data would be made available to all researchers with no restrictions for 

reuse. Unlike Dayhoff, Goad had no experience in collecting sequences, but at Los 

Alamos he had access to an increasingly globalized networks of computers (the Internet) 

that he proposed to use to distribute and collect data from labs around the world. On 30 
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June 1982, the NIH contracted Los Alamos for the creation of what became GenBank, 

providing $3.2 million over five years to set up and maintain a nucleic acid sequence 

database. As Strasser observed, one main factor that influenced this decision was the 

different ways in which Dayhoff and Goad thought about credit attribution for data reuse 

and data ownership. The scholar argued that Dayhoff’s standards of knowledge 

ownership were unacceptable to many experimentalists, who considered the data they 

produced to be their own and therefore to be published, distributed, and used only with 

their agreement. Dayhoff had a history of data management that crashed with the open 

access ethos of experimentalists. Indeed, few years before she made available a 

preliminary nucleic acid sequence database for free over the telephone network, while 

requiring researchers accessing the data were requested to sign an agreement not to 

redistribute the data. Lacking funding support, she also tried to set up a partnership with a 

private company to finance her data collections, which didn’t work out, and eventually 

opted for selling access to the collections through a subscription. On the contrary, Goad’s 

open access ethos matched the essential values of the experimental sciences’ moral 

economy: namely, that the production of knowledge deserves individual, not collective, 

credit. As discussed by Strasser: “The creation of GenBank did more than just reflect the 

current moral economy of the experimental sciences and the culture of computer 

scientists: it served as a model and as a resource to promote open access to scientific 

knowledge.” The debates leading to its creation–about the collection and distribution of 

data, the attribution of credit and authorship, and the proprietary nature of knowledge– 

illuminate the challenges of making a natural historical practice compatible with the 

moral economy of the experimental sciences in the late twentieth century. 
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The constitution of the GenBank database is only one example of how biomedical 

data collections have ben contented between the private and the public domain. I will 

give a second example taken from Hilgartner’s latest book (Hilgartner, 2017). During the 

1980s, the congress implemented a series of policy measures that expand the scope of 

patentable subject matter to include genetically engineered that have been isolated and 

cloned (Michael Fortun, 2001). Since the end of the 1970s, new policies in the US aimed 

at increasing national economic competitiveness by capturing commercial advantages 

from research. The 1980 Bayh-Dole Act famously enabled universities to file for patents 

on inventions that their scientists produced. Consequently, universities started to establish 

technology-transfer offices dedicated to secure rights to and licensing inventions (Lessig, 

2001; Mirowski, 2011; Ramello, 2005). One of challenge of the HGP was to establish 

which parts of the human and animal genome to sequence. At the outset of the HGP, 

some members of the genomic community asked for sequencing only those parts of the 

DNA that codes for proteins, the so called “cDNA” (i.e., “cloned” DNA, clones made 

from DNA that codes from proteins). In their view, it was unnecessary to code the entire 

human genome. In the United States, the HGP leadership rejected the cDNA strategy: no 

one knew with certainly that noncoding regions of no apparent significance were really 

“junk DNA.” This may still have vital but unknown biological functions. In the early 90s, 

Craig Venter found a way to “package” cDNA fragments in a way that can be used to 

identify genes, creating what is know as the “Expressed Sequence Tags” (ESTs). Venter 

and NIH sustained that these tags contained enough information to search GenBank for 

matching genes that had already been found, and made the statement that the EST could 
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find all the human genes for a fraction of the costs of the Human Genome Project. With 

full support of NIH, Venter filed for patenting the EST sequences. The patenting process 

took few years and raised strong opposition by the HGP leadership. NIH was eventually 

able to obtain a partial patent on the EST sequences. The patent stimulated the spread of 

“genomic companies.” The Human Genome Sciences (HGS) created a proprietary EST 

database in collaboration with Smithkline Beecham. University researchers were granted 

access to the data in exchange for granting the company exclusive rights in any 

discovery. 

 

The Human Genome Sciences’s strategy of using its EST database to leverage query-

based collaborations in exchange for patents rights met some resistance form academic 

scientists, who argued that this model could slow down the discovery process. In 

response to the HGS business model, the Human Genome Project leadership opposed 

using the HGS database in genome project work and partnered with Merk, a Smithkline 

competitor, to independently generate vast number of ESTs and establish an open-access 

EST database. Like GenBank, dbEST made its information available to any and all with 

no strings attached. 

 

It seems to be that while similar to some extent, these two cases are also quite 

different. Both Dayoff and Venter thought that it was right for them to retain some IP 

rights over their “creative work” of curating and packaging data. However, Dayoff – at 

least in Strasser’s account – is motivated by a natural historian ethos of ownership over 
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curated collections, while Venter – at least in Hilgartner’s account – is driven by the 

explicit intention of monetizing “his discovery.” 

The birth of “UJAD” open data 

Hilgartner’s (2017) discussed that the genomics revolution eventually led to the 

diffusion of what he defined as “unpublished in journal, available in databases” (UJAD) 

research data. The scholar examined the process that gave birth of UJAD open data from 

the 1970s, when DNA sequence databases were first established, to 2003, when the HGP 

was officially completed. As I will discuss later, the DataFace Consortium decided from 

the very beginning of the project to make all the produced data and resources 

immediately and freely available to the scientific community at large. The story narrated 

by Higartner is particularly relevant because it allows me to trace back the origin behind 

the idea of making all data immediately available right after data collection to the very 

constitution of the HGP. 

Before the HGP: the “staff-driven collecting” regime 

 

Before the HGP, scientists would sequence DNA in connection to specific biological 

research projects that featured sequencing as a step in a broader analysis of biological 

functions or mechanisms. In this specialized research framework, DNA sequence served 

as data for supporting knowledge claims (García-Sancho, 2015). At this point, very few 

laboratories were “sequencing for the sake of sequencing,” and the volume of sequence 

data in the published literature was relatively small. As we have seen, few research 

groups – especially those operating in model organism communities – grew interested in 

gathering together the available sequences, and collect them from scientific journals. 
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These researchers started to develop software and database tools for managing, searching, 

and analyzing these data. I have explained how GenBank became the first nationally 

charted, federally funded database to provide an archive of all published sequenced data. 

Hilgartner called the GenBank initial model for data collection and curation as “staff-

driven collecting:” databases’ employees searched the scientific literature for papers 

containing nucleic acid sequences, identified the sequences and other relevant 

information (i.e., annotation from the literature regarding the known biological functions 

of each given sequence), and entered them manually in the database. Once inserted in the 

database, sequence data would be open to any and all, made available on magnetic tape 

and online, with no restrictions on use or redistribution. Hilgartner noted that this 

collection was initially conducted independently from journals and authors. Database 

professionals, in order to ensure sequence quality, would type each sequence twice and 

spend a long time consulting the literature to annotate the data with the most updated 

information. 

Dealing with the HGP data deluge: the “direct data submission” regime 

The exponential growth in the number of published sequences that started to occur in 

the mid-80s destabilized this knowledge-control regime. At this point, scientists heavily 

rely on GenBank’s sequences for their research projects, and, as reported by Hilgartner, 

“they wanted access to their colleagues’ data immediately after publications, not months 

late” (Hilgartner, 2017, p. 158). By the second half of the 80s, “a sense of crisis 

dominated workshops and advisory committee meeting were the future of GenBank was 

discussed” (Hilgartner, 2017, p. 159). In order to keep up with the data publishing rates, 

GenBank staff started to add new sequences without internal annotation, scarifying the 
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quality of data and the completeness of coverage of the literature. Toward the end of the 

80s, GenBank started to develop a system through which scientists would submit 

sequences directly to the database and annotate their own data whenever they would 

submit a paper to a journal. Initially, “direct submission” was completely voluntary, and 

it resulted in low participation. However, the rate of data submission increased rapidly 

when databases started to equip the scientists with tools that would enable them to easily 

prepare data submissions and annotations. For example, Genbank introduced a “friendly 

if not seductive annotation software” called AUTHORIN, which was designed to easy 

submission and automatically check for errors (Hilgartner, 2017, p. 161). A big boost in 

data submissions arrived when journals started to make sequence data submission 

mandatory for publication. The first journal to do so was the Nucleic Acid Research 

(NAR) journal, in 1988. As reported by Hilgartner, by 1992, at least 36 natural science 

journals required sequences to be submitted to the databases as a pre-condition of 

publication. This mandatory direct submission of data would soon be called “electronic 

data publishing.” Significantly, the phenomenon of electronic data publishing created for 

the first time the distinction between “sequence data” (all data sequenced by a lab) and 

“results data,” coupled with the conviction that results goes into the journal, and sequence 

data in the database. Hilgartner observes that: “Since the very beginning, electronic data 

publishing did not have the same academic credit as a paper. […] Indeed GenBank 

defined its role as maintaining a bibliographic record of how had submitted what, not 

evaluating the significance of the contribution” (Hilgartner, 2017, p. 163). 

A rationale for immediate release: sequencing data as “a service” 
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A main issue that emerged with mandatory data publishing was what Hilgartner refers 

to as “the when question:” the right timing for making the data accessible for reuse. 

Initially, Genbank offered to hold the data submitted in confidence until a related paper 

appeared in print. However, some communities vividly argued for making the sequence 

data open right after data collection. Significantly, those who argued that sequence data 

should be made available right after collection sustain that sequence data was not, indeed, 

experimental data, it was more like a “service” type of activity, rather than “real 

research.” Defenders of the idea that sequence producers retained no residual rights 

suggested that sequencing centers were being funded to produce and submit information, 

not to analyze it. Particularly vocal were the scientists running the sequencing of C. 

elegans worms, whose moral economy resembled those of the Drosophila community 

(De Chadarevian, 2004; Kelty, 2012; Kohler, 1994). However, not everybody agreed on 

making all data available right after data collection. While laboratory heads wanted to 

submit the data quickly to show productivity, among younger PhDs in HGP laboratories 

questions about personal credit were acutely felt matters, they needed to make distinctive 

personal contributions in order to produce a viable scientific identity. Indeed, in the lab, 

young researchers wanted to have time to do a career-enhancing analysis of the data. For 

them, it was not just service work. 

The Six-Month Rule and the “overview papers” 

Because scientists perceived that some colleagues were strategically releasing data 

with delays, in the early 1990s the HGP community called for a standard rule aimed at 

preventing genome project laboratories from engaging in such practices. In the United 

States, the initial idea that gained traction was a rule specifying that data and materials 
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should be made publicly available within six months of being generated. According to 

Hilgartner’s analysis, most of the sequencing groups would submit their sequence 

information to the databases in order to demonstrate productivity. The quantity of data 

submitted was for them the most visible indicator of a laboratory output. At the same 

time, these six months were used by the sequencing projects to publish broad “overview” 

papers in which they would describe what had been sequenced, outlined the method used, 

and provided a preliminary analysis of biological features such as the number and density 

of density of genes. Publishing a primary overview paper became what genome scientists 

still view as the traditional way for large-scale sequencers to get credit for their work. 

The “Bermuda Principles” and the rise of “unpublished open data”  

The six-month strategy worked for few years. However, as Hilgartner reported, once 

the HGP laboratories started to transition more and more from mapping to sequencing in 

the mid 1990s, the HGP leadership had to come up with a new rule to coordinate the 

request of data access and the competition among the sequencing centers. In February 

1996, the HGP leadership met in Bermuda to develop a new plan for data release. The 

new Bermuda Principles imposed extremely stringent data-release requirements on large-

scale human sequencing centers (F. S. Collins, Morgan, & Patrinos, 2003). Newly 

generated “preliminary” sequences would be released as soon as possible, on a daily 

basis. “Finished sequences” had to be submitted to replace the preliminary data, right 

after the cleaning process was over. Beyond specific scientific progress, the Bermuda 

principle served as a means to demonstrate that the large sequencing centers were 

behaving responsibly, as an accountability mechanism. Hilgartner called this data sharing 

regime the “rapid publication” regime, which brought the practice of depositing and 
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reusing “unpublished in journals and available in databases” (UJAD) data into biology 

research. 

 

The diffusion of UJAD challenged the data producers in few ways. As we have seen, 

data producers had the expectation to publish overview papers by analyzing their own 

data. This expectation was embedded in the ongoing practices, but not codified in any 

rule. Hilgartner reported that, in several instances, “sequencers were shocked to find out 

that other research groups had downloaded the UJAD sequence information from a nearly 

finished project, analyzed it, and published overview papers” (Hilgartner, 2017, p. 176; 

Rowen, Wong, Lane, & Hood, 2000). People would engage in this practice are 

sometimes referred to as “data parasites” (Friedberg, 2016; Longo & Drazen, 2016). 

Secondary data analyses of others data is indeed a very controversial practice that sees 

scientists divided between sustainers and firm opponents of such practice. Sequencers 

who participated to the Human Genome Project would argue that yes, they are providing 

a service, but they are also running the service “for a reason,” namely that they were 

scientists and that as such were naturally interested n analyzing the data that they 

produced (Hilgartner, 2017, p. 177). The HGP leadership eventually decided to update 

their data –release policy, in a very significant way: 

“NHGRI believes that a reasonable approach is to recognize the opportunity and 

responsibility for sequence producers to published the sequence assembly and large-scale 

analyses, while not restricting the opportunities of other scientists to use the data freely as the 

basis for publication of all other analyses” (NHGRI, 2000) 

It is very important to highlight that in this update the HGP stated that scientists 

should get access to the sequencers’ data, but at the condition that they would use the 
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data to run a “all other” analyses. This meant that scientists are asked not to use their 

colleagues’ data in ways that could directly hurt their colleagues’ careers. 

The Fort Lauderdale Agreement 

In January 2003, a group of 40 people including representatives from GenBank, from 

the sequencing centers, journal editors and computational biologists interested in the 

reuse of large-scale sequence datasets, met in Fort Laurerdale, Florida to discuss ways of 

extending practice of immediate release of sequence data beyond the HGP. The meeting 

resulted in the 1800 document called “The Fort Lauderdale Agreement.” The Agreement 

draw a set of informal rules that aim at finding a balance between providing access to 

sequence data, and, at the same time, ensuring academic credit for the data producers, and 

the quality of the submitted data. As summarized by Hilgartner, the agreement stated 

that: 

• Funding agencies should require, as a condition of funding, free and unrestricted 

data release from community resource projects. But, they should also “support the ability of 

the productions centers to analyze and publish their own data;” 

• Resource producers should make data “immediately and freely available without 

restriction.” They should also “recognize that even “recognize that even if the resource is 

occasionally used in ways that violate normal standards of scientific etiquette, this is a 

necessary risk set against the considerable benefits of immediate data release;” 

• Resource users should cite and acknowledge the resource producers’ work, and 

“recognize that the resource producers have a legitimate interest in publishing prominent 

peer-reviewed reports describing and analyzing the resource that they have produced” (Trust, 

2003) 
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The stipulation of the Fort Lauderdale Agreement established three important precedents. 

First, it established that the practice of releasing data prepublication should be restricted 

to “community resource projects,” defined as: “large-scale efforts devised and 

implemented to create a set of data, reagents or other material whose primary utility will 

be as a resource for the broad scientific community.” As Hilgartner observed, the concept 

of community resource project built of the governing frame of the HGP, in which 

“genome projects” (mapping and sequencing) had been conceptualized as significantly 

different from “ordinary biology” projects (gene discovery). Second, the agreement 

would not rely on in a set of codified “right,” but it would be grounded in “mutual respect 

and self-restrain.” The agreement envisioned a “scientific etiquette” in which scientists 

would trust each other in reusing data without scooping each other. Third, as Hilgartner 

significantly notes: “The principle that large-scale infrastructure projects should ensure 

rapid and widespread availability of data became a recognized norm of what some 

observers referred to as the post-genomic era” (Contreras, 2011; Hilgartner, 2017, p. 

181). 

Open data, human subjects, and participatory paradigms 

In the first section of the literature review, I have examined how emerging data 

sharing regimes symbolize competing visions of what constitute credit for data reuse, 

data authorship, and data ownership in biology research. So far, my analysis focused on 

providing an account of how science stakeholders (researchers, funding agencies, journal 

editors, database managers etc.) shaped, reacted to, and act across these changing data 

sharing regimes. I now turn my attention toward the relationship between data sharing 

regimes, open data policies, and public benefit. Openness of research data is often 
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promoted as a means of epistemological transparency: if data are freely accessible, 

anyone can potentially verify the accuracy of scientific results (Leonelli, 2016). In this 

sense, open data practices promote trust from the public toward science. Open data 

policies are also a matter of accountability and return on investment (Borgman, 2015). 

Like in the case of the HGP, research data are often collected with public funding, so it is 

in the interest of the public to make sure that usage of data is maximized and tax payers 

money are not wasted. Finally, openness of data promotes public participation in science, 

such as in citizen science projects and Do It Yourself (DIY) biology initiatives (Darch, 

2014).  

 

Recently, scholars in the social studies of science and related fields started to raise 

concerns in relation to the openness of biomedical research data, especially human 

subject data. Beyond obvious concerns about patients’ re-identification and privacy, 

scholars call for an examination and evaluation of the historical circumstances that led to 

the collection of highly reused human subject research data (Radin, 2017b). Joanna Radin 

recently examined the history behind the collection of the “Pima dataset.” “Pima” refers 

to the members of an Indigenous community who live in the southwestern region of the 

US. The dataset, which contains sensitive biomedical information about the members of 

the community, was collected during the 60s “in ways that do not respect the human 

dignity of human subjects and that do not recognize the legitimate interest of the 

Community in the integrity and preservation of its culture” (Radin, 2017, p. 58). Today, 

computer scientists reuse the Pima dataset – freely available online in a data repository 

managed by the University of California Irvine (UCI) – to train machine-learning 
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algorithms for all sorts of purposes. In her historical analysis, Radin wonders whether 

those who reuse the data should somehow take this controversial history into 

consideration. Most importantly, Radin suggests that this history should be made visible 

to the data reusers via data citations and provenance techniques. 

 

Stevens (2016) pointed out that the accumulation of sequence data and individual 

health data has generated a growing stock of information that can be mined to look for 

the relationship between genes and diseases. One challenge to the analysis of such stock 

of information is that it is highly distributed. Sequence and health data about individuals 

exist in a multitude of databases located internationally. Most of these data collections are 

publicly funded, such as all the data deposited on the National Center for Biotechnology 

Information (NCBI). In this context, meta-analyses conducted with semi-automated 

analytical tools are regarded as particularly promising. Researchers are increasingly 

employing machine-learning algorithms – such as deep neural networks – to partially 

automate the analysis of this huge amount of distributed data (Mamoshina, Vieira, Putin, 

& Zhavoronkov, 2016). Genomics, health, and phenotypic data about individuals are 

used as “training datasets” to teach algorithms what to look for. Once the algorithm is 

trained, it can be reused to make predictions about novel data. 

 

By the mid-2000s, some entrepreneurs saw a commercial opportunity for monetizing 

the predictions coming out of machine-learning analytical methods. The first so-called 

“personal genomics” services started to spread in early 2000. The company 23andMe was 

founded in 2006 and offered its first testing services to the public in November 2007. 
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Navigenics and DeCODE likewise started to sell their services around the same time. 

These services sell direct-to-consumer genome sequencing, and, by analyzing consumers’ 

data, make predictions about their potential health risks. They provide information about 

an individual’s risk for a wide variety of diseases and traits. Some of them also provide 

consumers with reports about their ancestry background, as we have already discussed. 

These companies argued that genomic information should not remain in the exclusive 

domain of scientists or biotech, but could rather be used to empower consumers. Like 

pharmaceutical, personal genomics services promise an increasing personalization of 

health care and an increasing ability to use biotechnology to tailor medical interventions 

to individuals’ bodies (Nelson, 2016; Stevens, 2016). 

 

Alternative, “participatory” versions of personal genomics have also emerged. For 

example, the “Open Humans” platform encourages individuals to upload and donate their 

personal health and genomics data to diverse research projects (Open Humans, 2016). At 

Harvard, the “Personal Genome Project” (PGP) – led by George Church – hopes to enroll 

100.000 volunteers, their while-genome sequence, and their medical records (Buhr, 

2018). In both cases, the hope is to increase knowledge of human disease, but also to 

genomically tailored and targeted treatments and pharmaceuticals. 

 

The diffusion of all these different types of individuals’ health and genomics 

information raises difficult questions about who has the right to own, access, interpret, 

and distribute genomic and health data. Genomic information is indeed identifiable – it 

can be directly associated with a particular individual. Advocates groups are worried that 
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individuals’ genomics information can be sold to or accessed by insurance companies, 

and used to discriminate against individuals with pre-conditions. In the United States, the 

creation of the Genetic Information Nondiscriminary Act (GINA) – signed by President 

George W. Bush in 2008 – partially addressed this concern (Hudson, Holohan, & Collins, 

2008). GINA makes it illegal for employers and insurers to discriminate on the basis of 

genetic of genomic information. However, the law does not apply to life, disability, or 

long-term care insurance. 

 

Scholars also raised ethical concerns over the ownership of the research datasets 

obtained from the patients. Probably the most famous case of exploitation of a patient’s 

data is the case of Henrietta Lacks (Skloot & Turpin, 2010). Ms. Lacks was a 31-year-old 

working-class African-American woman from Baltimore. In 1951 she was admitted at the 

John Hopkins Medical School where she was diagnosed with cervical cancer. Without 

the knowledge or permission of the patient and her family, some cells from Lacks’ tumor 

were sent to the laboratory of Dr. George Gey, who used them to create the first ever 

“line” of human cells. Dr. Gey distributed the cells for free, never attempting to patent 

them or limit their distribution. However, the line was later reused to test the polio 

vaccine, and consequently marketed for sale by a biological supply company. This raised 

issue of data ownership: given that companies profited by using Lack’s cells, why 

shouldn’t Lack’s descendent be able to sue for a share of the profit? Also, shouldn’t 

doctors have asked Henrietta for permission to use her cells? Shouldn’t her identity being 

kept private? More recently, in the 90s, John Moore, a leukemia patient, lost a historic 

property rights battle in which he claimed he deserved to share in the profits from an anti-
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cancer drug derived from cells taken from his spleen (McLellan, 2001). Differently from 

Moore, Ted Slavin was a hemophiliac who successfully sold his antibodies and aided Dr. 

Baruch Blumberg in the discovery of the link between the hepatitis B virus and liver 

cancer. This eventually led to the first hepatitis B vaccine (Skloot, 2006). Some are of the 

opinion that all people should be able to sell their data to research. George Church at 

Harvard, for example, is encouraging individuals to sell their DNA to his PGP project 

(Buhr, 2018). 

 

The use of informed consent helps to control the reuse of research data obtained by 

patients. However, scholars pointed out that informed consent has its limits as well. As I 

anticipated in the introduction to this section, Joanna Radin recently wrote about a well-

known case in the realm of bioethics and medical history: the Pima Native American 

tribe in Arizona, which is known for unusually high rates of diabetes and obesity (Radin, 

2017a). The Pima were the first Native American tribe to be granted a reservation in 

Arizona at the beginning of the California Gold Rush. In 1963, following nearly half a 

century of mass famine among the Pima, NIH conducted a survey for rheumatoid arthritis 

in the Pima tribe, instead discovering a frighteningly high frequency of diabetes. In 1965, 

the NIH initiated a long-term observational study of the Pima that continued for about 40 

years, though it was meant to last no more than 10. The goal of the study was to learn 

about diabetes in the “natural laboratory” of sorts that the Pima reservation unwittingly 

provided. The data collected in this study came to be known as the Pima Indian Diabetes 

Data set (PIDD). 
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Machine learning enters the story around 1987, when David Aha and colleagues at 

the University of California, Irvine (UCI) created the UCI Machine Learning Repository, 

an archive containing thousands of data sets, databases and data generators. The 

repository is still active today, virtually a gold mine for researchers in machine learning 

to test their algorithms. The PIDD is one of the oldest data sets on file in the UCI archive, 

“a standard for testing data mining algorithms for accuracy in predicting diabetes,” 

according to Radin. Generations’ worth of data on the Pima tribe have been publicly 

accessible in the UCI archive for over two decades, creating ethical controversy around 

the accessibility of information as personal as blood pressure, body mass index (BMI) 

and number of pregnancies of Pima Native Americans. Though the PIDD can help refine 

machine-learning algorithms that could accurately predict–and prevent–diabetes, the 

privacy issues provoked by the “publicness” of the data are impossible to ignore. This is 

where “eternal” medical consent enters the equation: no researcher can realistically 

inform a study participant of what their medical data will be used for 40 years in the 

future. 

Current controversies in human genomics research 
 

To understand fully what is at stake when biomedical data collected from human 

subjects are made freely available for reuse, I review critical literature in the fields of 

social studies of science and anthropology of science that surfaces the ethical 

controversies embedded in certain genetics practices and epistemologies. In what follows, 

I report on the societal issues raised by several scholars in relation to the practices of 

precision medicine and population genetics. As I will discuss, craniofacial research is 

deeply informed by the practices of precision medicine and population genetics. I also 
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briefly summarize the long history that ties craniofacial research to the practice of 

classifying human beings into supposedly discrete ethnic groups. 

Precision medicine, population genetics, and racial categories 

The novel field of “personalized medicine” – also referred to as “precision medicine” 

– aims at providing diagnosis and treatments that are targeted to individuals’ genetic 

profiles. Patients’ DNA is collected and searched for indications (genes, genetic markers, 

SNPs etc.) of how an individual might be predisposed to a certain syndrome, or how the 

patient might react to a targeted drug (Frizzo-Barker, Chow-White, Charters, & Ha, 

2016). Precision medicine is expanding rapidly, capturing both the imaginary and the 

funding priorities of the funding agencies (Ferryman & Pitcan, 2018). Like virtually all 

funding agencies in the biomedical domain, also the agency that funded the DataFace 

Consortium included “precision medicine” in its 2014-2019 strategic plan as a main 

outcome of craniofacial research. In 2015, Springer released a collection of papers from 

the craniofacial research field titled “Genomics, Personalized Medicine and Oral 

Disease” (Sonis, 2015). 

 

Scholars have raised a set of concerns in relation to the practices of precision 

medicine (Ferryman & Pitcan, 2018). Commentators in the field of social studies of 

science noted that this novel approach, instead of tailoring drugs on individuals, it 

actually relies on grouping individuals in “risk populations” that mirror old racial 

classifications (F. S. Collins, 2011; Rabeharisoa et al., 2014). To be sure, biomedical 

research has held a controversial relationship with the concept of “race” for a long time. 

The supposed usefulness of racial categories to study human health is constantly debated 
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within and outside the academy (Chen, 2016; Hacking, 2005). For a short period of time, 

it seemed that biomedicine was ready to dismiss race as a factor to study human health. 

In 1972, Richard Lewontin found that genetic human variation within ethnic groups is 

higher (93%) than genetic variation between groups (7%) (Hacking, 2005; Lewontin, 

1972; Stevens, 2016). However, after the completion of the HGP, researchers felt the 

need to go back to sampling people based on their ancestry background. As noted by 

Stevens (2016, p. 292), in many ways, “the HGP was a triumph of technological and 

collaborative scientific effort.” But in other ways it was a disappointment: it turned out 

that it is harder than expected to find significant correlations between genes and human 

phenotypes – including genetic syndromes. Many genes might be involved in 

determining simple traits, genes seemed to work together in complex networks, 

epigenetics factors seemed to play a signification role, and environmental signals also 

proved to have a large impact on gene expression. This set of novel factors are now 

investigated in a series of disciplines commonly referred to as “post-genomic” biology 

(Richardson & Stevens, 2015). As a way to less the complexities of genome analysis, and 

at the same time increase the chances to find statistically significant correlations between 

genes and complexities, researchers turned their attention to the examination of how 

genetically distinct groups (i.e., populations) might react differently to certain drugs, or 

are differently predisposed to certain syndromes. Troy Duster coined the expression “the 

molecular re-inscription of race” to refer to this switch back to racial classification in 

biomedical research after the HGP (Duster, 2006). 
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While old-school racial categories grouped individuals based on their “externally 

visible characteristics” (EVCs), modern population genetics uses the frequency of certain 

genetic markers – Ancestry Informative Markers (AIMs) – across different cohorts of 

patients (Nelson, 2016). The idea of genetically distinct “racial” populations is rooted in 

the assumption that individuals leaving in proximity to each other tend to share similar 

DNA profiles. Because of this proximity (i.e., continental affiliation), these individuals 

have been exposed to similar evolutionary processes, including sexual selection and gene 

flow, which made them genetically close to each other. With this assumption in mind, 

individuals’ DNA is examined for a panel of AIMs, which are then correlated with 

“geographically separate populations.” As a result, individuals are grouped in distinctive 

and supposedly mutually exclusive “types.” There are four main genomic ancestry types: 

African, European, Native American, and East Asian; a division which, some have 

argued, recapitulates the centuries-old racial categories of Caucasian, Mongoloid, and 

Negroid (Caspari, 2003; Dewey-Hagborg, 2017). Commentators pointed out that 

population genetics is just another arbitrary way of classifying human beings into racial 

categories that are not actually mutually exclusive (Chen, 2016; Duster, 2006). 

 

Also commercial companies like 23andMe uses AIMs for their direct-to-consumer 

genetic ancestry testing, though commercial companies also examine mitochondrial 

(mtDNA) and Y chromosomes (Y-DNA) (Donovan, Pasquetto, & Pierre, 2018; Panofsky 

& Bliss, 2017). Because these types of DNA are inherited directly from mother to 

offspring (mtDNA) or father to male offspring (Y-DNA) without recombination, they can 

be used to trace maternal or paternal lineages along one ancestral branch. However, while 
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mtDNA and Y chromosome DNA can provide an interesting path through ancestral 

history, they do not provide an overall view of an individual’s constitutive “racial” 

percentages (M’Charek, 2005; Nelson, 2016). 

 

In precision medicine, AIMs and population genetics have been employed to study 

the effect of certain drugs on specific populations, or to predict birth defect – like in the 

case of craniofacial studies (Parker et al., 2010). In some cases, the use of population 

genetics raised serious concerns. These cases include, for example, the design and 

commercialization of the BiDil drug, which was supposed to help African-Americans at 

risk of heart attack, but whose population-specific benefits were never proven (Duster, 

2005; Temple & Stockbridge, 2007). Another infamous case is the discovery of the 

MCPH1 gene of “intelligence,” which some researchers controversially claimed to be 

more common in certain populations over others (Evans et al., 2005; Stevens, 2016, p. 

321). Beyond precision medicine, biomedical researchers employ population categories 

in a variety of research contexts. Evolutionary geneticists, for example, study the factors 

that cause changes in allele frequencies in within populations over time, and these 

changes are understood as being at the heart of how and why evolution happens. 

Craniofacial research, facial measurements, and identification systems 

Populations can be used in isolation (e.g., a dataset of only “Caucasian” DNA), like in 

the case of the Genome Wide Association Studies (GWAS), or in “admixture” research 

studies, which use samples from “mixed” populations (e.g., a dataset with mixed 

Caucasian and African samples). The craniofacial researchers I interviewed for this study 

collected two distinct GWAS datasets, one from a Caucasian population and one from an 



	
   60	
  

African population. I will get into the details of how GWAS studies are conducted by 

DataFace researchers in the findings’ chapter. For now it will be enough to point out that 

GWAS aim at finding statistically significant associations between certain genetic 

markers (e.g., AIMs) and some pre-selected phenotypes of interest. In craniofacial 

research, scientists test thousand of genetic markers that could be potentially found in 

genes associated with the formation of the facial shape. A set of pre-determined facial 

traits, obtained from 3D images of human faces, are used as phenotypes. By examining 

associations between genetic markers and facial traits, DataFace researchers aim at 

finding the genes that cause the formation of facial traits during human development. 

 

The researchers involved in the production of DataFace GWAS datasets envisioned 

as the primary use of these data research activities in the context of clinical research, and 

in particular for the investigation of the genetic causes involved in craniofacial 

syndromes. As anticipated, however, DataFace data have been reused in the context of 

facial reconstruction research, to develop computational models to predict human faces 

from DNA samples. A team of physical anthropologists and computer engineers led the 

research on these models. Historically, craniofacial research is a highly interdisciplinary 

field, which has branched out in many different directions, from biomedical research, to 

forensic anthropometrics studies. In order to quantify and map the human face, modern 

craniofacial researchers use metrics (e.g., facial landmarks and linear distances) and tools 

(e.g., calipers and tapes) that were originally designed in the nineteenth-century for 

measuring the level of development of different people, especially across races (Stevens, 

2016, p. 315). For instance, measurements of the skull, including its volume, were taken 
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to indicate cognitive characteristics and adaptive patterns (Boas, 1922). In his latest book 

Biotechnology and Society, Hallam Stevens (Stevens, 2016, p. 315) explains how the idea 

of using “facial angles” was used in this period to characterize human types: “The facial 

angle was the angle between two imaginary lines drawn on a profile of a human face: the 

first line went from the middle of the nostril to the earhole, and the second from upper 

jawbone to the forehead. Europeans were supposed to measure in at around 80°, African 

at around 70°, and orangutans at 58°.” This classification was used to show the 

progression from lower to higher types of human beings. The early nineteenth century 

also saw the practice of “phrenology” to become widely popular. Phrenology believed 

that the brain was made up of large number of different organs that controlled different 

behaviors. Phrenologists also thought that the function of these organs was directly 

related to their size, and that the size of the organs varied across races (Farkas, 1994; 

Teslow, 2014). 

 

Facial measurements developed in the context of biomedicine and physical 

anthropology have been widely used to develop systems of identification. For example, 

around 1880, Frenchman Alphonse Bertillon introduced a system of identification – the 

“Bertillonage” system – that was based on several measures of physical features, 

including facial and head measurements – such as head length (crown to forehead), head 

width (temple to temple), width of cheeks, and “lengths” of the right ear (Ragas, 2018). 

Today, Apple’s latest iPhone X security recognition system, called “Face ID,” uses 

similar facial metrics to confirm the phone’s owner identity. The iPhone X’s Face ID 

uses its cameras to make 3-D scans of the users’ faces, which then enable them to unlock 
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their phones by just holding the device in front of their faces. Modern facial recognition 

and analysis techniques are empowered by high-tech cameras and advanced machine 

learning algorithms, which hold out the promise of scientific objectivity. Tools for facial 

identification are also used by law enforcement agencies to search for suspects in 

criminal investigations. The Federal Bureau of Investigation (FBI) developed the “Next 

Generation Identification” system, a database it is described as “the world’s largest and 

most efficient electronic repository of biometric and criminal history information” (“Next 

Generation Identification (NGI) | Biometrics,” 2016). It includes an automated facial 

recognition search and response system for law enforcement agencies. Similar algorithms 

and metrics are used for the design of DNA-based facial reconstruction technologies, 

such as those developed using DataFace datasets. In the findings section, I will show that 

novel computerized systems for facial mapping and classification are highly contested 

among craniofacial researchers. 
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4. Research design 

This study is part of a larger research project funded by the Alfred Sloan Foundation 

with a grant titled If Data Sharing is the Answer, What is the Question? The overarching 

goal of this grant is to unpack the promises and challenges of making available – in 

different forms – research data. Given the current public investments in open data 

policies and infrastructures, the Center for Knowledge Infrastructures (CKI) examines the 

underlying motivations that brought to their design and implementation. The CKI 

researchers investigate questions such as: What kinds of problems are research data 

sharing policies and practices addressing? What kinds of solutions are these policies and 

practices providing? 

 

Informed by this larger research design, this dissertation focuses specifically on the 

challenges and implications of reusing research data, once these have been already 

released in open access. In particular, I look at the policies and practices of data sharing 

and reuse in the biomedical field. My main case study is the DataFace Consortium (DF), 

a consortium for data sharing funded by one of the agencies of the National Institutes of 

Health (NIH) in 2010. Participants in this study collect and make available for reuse 

large-scale biomedical datasets. The three overarching questions that guide this project 

are: 

 

1. What motivates the design of policies and infrastructures for open research data? 

2. How do researchers reuse open research data for knowledge production? 
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3. What are the societal implications of making available and reusing open 

biomedical data across contexts of production? 

Introduction to case study 

I use the fictional name “DataFace” to protect the confidentiality of the research 

participants. The consortium is currently in its second five-year grant phase, which 

started in 2015 and will end in 2020 (DataFace II Consortium). Data collection for this 

dissertation project started in January 2015 and ended in September 2017, which means 

that my investigation focused on phase-two of the DataFace funding cycle (DF II). 

 

The DataFace Consortium was funded to meet two overarching goals, naming 

collecting and making publicly available novel craniofacial biomedical data. DataFace 

data are deposited and available for download and reuse by the larger research 

community on a digital open repository accessible online. 

 

DataFace’s initial mission (phase I) centered on the collection of biomedical research 

data obtained from human patients and mouse animal models. Partecipating scientists 

mainly collected research data to the goal of informing biomedical research on the 

development of craniofacial syndromes, in particular oral clefting. From the very 

beginning, the consortium aimed at promoting and proving funding for the collection of 

large-scale genomic data, such as data collected in the context of Genome Wide 

Association Studies (GWAS) and via whole-genome sequencing techniques. 
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DataFace phase II extended the mission of DataFace I by complementing the 

collection of research data from humans and mice with new data collections from 

chimpanzee and zebrafish. In addition, DataFace II expanded the consortium research 

focus shifting the attention from oral clefting to a variety of other craniofacial syndromes, 

and novel developmental and evolutionary questions. As I discuss in details in the 

findings section of this dissertation, DataFace II also invested in improving the 

organization, integration, and granular curation of data collected by DataFace I and 

DataFace II investigators, to the goal of promoting wider reuse of these data. 

 

As per fall 2017 (end of my data collection), DataFace II counts 11 principal 

investigators (PIs), and around 70 researchers total. During phase-two, new laboratories 

and researchers became involved in the DataFace project. The following description of 

the DataFace project mirrors the state of the consortium during the years 2015 and late 

2016. It is beyond the scope of this project to discuss how the consortium evolved over 

time, even though it is an interesting aspect of the project, and it might become the topic 

of future research work. 

 

The 11 satellite teams 

DF is organized in eleven “satellite teams” selected by the NIH. These include on 

engineering hub, and ten satellite spokes.  

 

The hub  

One team is called “the hub” or “the coordination center,” whose goal is to “develop and 
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maintain a DataFace II Data Management and Integration Hub infrastructure that will 

properly store, represent, and serve these data to the research community, and in addition 

provide access to tools for visualizing, integrating, annotating, linking and analyzing the 

data.” The hub’s members are the database engineers responsible for the development of 

the DataFace open repository, plus few senior scientists who help the engineers to meet 

the scientific and domain-specific goal of the community. 

 

The spokes 

The remaining 10 satellite projects are called “the spokes.” Members of the ten 

spokes are geographically distributed among nine academic laboratories, one national lab, 

and three international labs located in Europe, North America, and in the Middle East. 

Collectively, investigators span molecular and developmental biology, computational 

biology, genomics, human genetics, bioinformatics, medicine, dentistry. The ten spokes 

are formally grouped in two sub-categories based on their role in the DF consortium: 

scientific and technology spokes. 

 

The eight scientific spokes are responsible for the collection of novel imaging and 

genomic data. Scientific spokes use different methods and tools for the collection and 

analysis of the data, such as DNA and RNA recombination, transgenic experiments, gene 

editing experimental techniques, genome-wide association studies, next generation 

sequencing for DNA, RNA and protein sequencing; and machine learning algorithms for 

the analysis of the data. Scientists submit the data in highly heterogeneous formats, 

including 3D images, gene expression data, ChIP-Seq, RNA-Seq, animal and human 
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tissues, etc. 

 

The two technology spokes have distinct roles in the consortium. One is referred to as 

the “ontologies spoke,” and the other one as the “software spoke.” The ontology spoke is 

in charge of extending the Ontology of Craniofacial Development and Malformation 

(OCDM) to accommodate conditions of interest to DataFace II researchers, such as 

human and mouse facial, palatal, and cranial vault development, and dysmorphology 

such as craniosynostosis, midface hypoplasia, frontonasal dysplasia, craniofacial 

microsomia and microtia. The software development spoke aims at developing a software 

interface to enable DataFace website users to apply human genetics analysis software 

(e.g., PLINK) to human genomics data from craniofacial research, with access to this tool 

through the hub. Both the ontology and the software spokes collaborate with the hub to 

reach and coordinate their goals. 

Sampling strategy 

In this section, I define my units of analysis and I describe how I selected my sample 

population. Babbie defines units of analysis “the what or whom being studied” (Babbie, 

2012, p. 97). In social science research, the most typical units of analysis are the 

individual people. The overarching goals of this dissertation are twofold. I examine how 

the participating scientists reuse others’ data in their individual practices, but also as 

“teams” distributed in different labs reuse data that were not collected others’ labs. For 

this reason, my units of analysis are both the individuals and the teams. 
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The individuals and teams were selected applying the techniques of purposive 

sampling. Babbie defines purposive or judgmental sampling as “a type of nonprobability 

sampling in which the units to be observed are selected on the basis of the researcher’s 

judgments about which ones will be the most useful or representative” (Babbie, 2012, p. 

190). I selected my sample to include the most diverse and representative population. The 

final sample consists of: 

• 1 Engineering hub 

• 2 Technology spokes 

• 6 Scientific spokes 

DataFace scientific practices vary by many factors. I selected the sample population 

for the scientific spokes (6) in a way to allow for variation across at least three recurrent 

variables: sub-disciplines, data types, and model organism specialty. Individuals are 

specialized in diverse disciplines, such as molecular biology, developmental biology, 

epigenetics, and quantitative/computational biology. Each scientific team submits 

different data, including images (microCT, TIFF), gene expression data and drawings, 

data analysis results (gene functions), RNA-seq, ChIP-seq. Data are collected from four 

animal models, namely zebrafish, mouse, chimps, and humans. In the findings section I 

detail the data creation practices of three spokes. I also selected participants for 

interviews to ensure diversity of career stages. For each of the 11 teams, I interviewed the 

leading scientist, a lab manager, and one or two doctoral students or post doctoral 

students. Most of the DataFace teams include no more than five individuals. 
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At each spoke, I conducted interviews, participated as an observant in team meetings, 

and spent recreational time with the participants. Overall, I collected a total of 50 

interviews over an observation period of three years and 6 months, with approximately 

150 days of presence in the sites. Over the last three years and six months, I also 

participated in four DataFace Annual Meetings, and I presented my preliminary 

observations to the engineering hub in February 2016. I have also collected and analyzed 

a number of documents relevant to this community, which include academic papers, 

white papers, research notes, research presentations, posters, grant documents, email 

exchanges, and GitHub conversations. 

Research methods 

In this dissertation research, I used ethnographic fieldwork as a method for data 

collection and analysis, which includes ethnographic observations, semi-structured 

interviews, and document analysis. 

 

Ethnographic fieldwork 

Ethnographic fieldwork is one of the most common methods of knowledge discovery 

among qualitative social researchers. Ethnographic research is a theory-generating 

research activity that is particularly appropriate when the researcher is interested in 

uncovering in-depth knowledge in relation to one or a limited set of case studies (Babbie, 

2012, p. 324; Lofland, Snow, Anderson, & Lofland, 2005, p. 16). This methodology is 

normally carried out via direct observations of phenomena, in-depth interviews and 

document analysis (or archival research). The community studied is typically spatially-

located and the observations occur over extended periods of time (Babbie, 2012, pp. 296–
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298). By observing the everyday practices and beliefs of a community of actors in their 

“natural habitat,” the ethnographer looks for patterns in the ways actors employ social 

interaction to understand reality and act in space (Tavory & Timmermans, 2014). 

Compared to surveys and experiments, ethnographic fieldwork demonstrated to be an 

efficient method for investigating scientific practices because it allows the researcher to 

study communities in their “natural settings” (Shankar, 2006). 

 

My role as a researcher relies on the technique of “participant observation,” which 

allows me to study phenomena directly at the scene of the action. According to Lofland et 

al., “participant observation refers to the process in which an investigator establishes and 

sustains a many-sided and relatively long-term relationship with the field studied” 

(Lofland et al., 2005, p. 18). Typically, participant observation involves activities such as 

looking, listening, watching, asking and taking notes about social interactions. I joined 

DataFace teams as a participant observer during meetings, research work, and 

recreational activities, such as during lunch or other extra-work activities. During my 

observations I took extensive notes about the ways in which scientists think about and 

describe their research, their data practices, and the impact that data, code and tools have 

on their work. I was particularly interested in observing how they go about formulating 

research questions before and after data collection. I also took notes about how scientists 

interact with each other, and with other DataFace members during online calls. As I 

compiled notes of observations, I applied the technique of “memoing,” which consists of 

writing theoretical notes about overarching patterns that are emerging from my 

observations. The theoretical notes cover reflections on emerging dimensions, deeper 
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meanings of concepts, relationships among concepts, and theoretical propositions. I often 

integrated memos with conceptual maps, which allowed me to graphically display 

concepts and their interrelations. This ongoing process of data collection and analysis 

served as a basis for the design of this dissertation proposal. It also served as a record of 

how my understanding of DataFace data practices evolved over time (Babbie, 2012, pp. 

399–401; Emerson, Fretz, & Shaw, 2011, p. 19; Lofland et al., 2005, p. 66). 

 

Observations are paired with semi-structured interviews collected with individual 

team members. Interviews took place after a period of observation of at least one or two 

weeks. Semi-structured interviews followed an IRB-approved protocol (see ethics 

section), which includes a set of topics and research questions to be discussed with the 

subjects. The goal of semi-structured interviews is to collect relevant information while, 

at the same time, allowing conversations to naturally evolve in un-predictable directions. 

Semi-structured interviews demonstrated to be appropriate for exploratory studies that 

use inductive methods for data collections because they allow the research to collect 

highly heterogeneous and comprehensive data (Lofland et al., 2005, p. 123). Some of the 

topics to be discussed with the interviewees were decided before data collection started 

and are based on an interview protocol developed by the UCLA Center of Knowledge 

Infrastructure (CKI), of which I am a member. Some others emerged from my ongoing 

analysis of the data collected during preliminary field investigations. During the 

interviews I obtained highly detailed data that cannot be obtained during observations. 

For example, during interviews I explored each individual’s data practice by asking how 

she/he reuses data, to what purpose, where she/he finds data, the processes for data 
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selection and appraisal, what databases she/he uses to find data for reuse, the relation 

between databases, and so on. I also used interviews to discuss the origins and evolutions 

of collaborative efforts between scientists by asking in which ways research 

collaborations are established, what kind of data are exchanged and reused during these 

collaborations, and to what purposes. Interview data integrated and contextualized 

observational notes. Interviews are recorded, transcribed, and stored in on a UCLA 

closed access server. 

 

In ethnographic fieldwork, document analysis is often used as a procedure for 

reviewing and evaluating printed and electronic written material (Tavory & 

Timmermans, 2014). Documents are examined and interpreted to elicit meaning, gain 

understanding, and develop empirical knowledge (Bowen, 2009). For this dissertation 

research, documents analyzed include (1) grant documents; (2) academic publications, 

such as conference and journal papers; and (3) lab documents, such as lab notebooks and 

other forms of lab recordkeeping; (4) digital conversations between DataFace participants 

on online systems such as group emails, shared notes on Google doc, GitHub 

contributions, and chatting on Slack. Grant documents are of particular interest because 

these are records of how participants’ understandings of DataFace goals changed over 

time. They also allow me to compare formal communication with funding agencies to 

other forms of communications, such as journal articles, and informal discussions during 

meetings. 

 

Grounded theory 
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This research study follows the approach of grounded theory (Glaser & Strauss, 1967, 

p. 67). In social science, and especially in the Chicago School of sociology, grounded 

method of data collection and analysis tends to be associated to inductive qualitative 

approaches to knowledge discovery (Lofland & Lofland, 1995, pp. 123–132). Glaser and 

Strauss proposed that social scientists should build theory “from the ground up,” 

privileging a positivist position while emphasizing an inductive methodology 

uncontaminated by preexisting theories. In anthropology, library, and archival studies, 

grounded theory has been employed in association to “interpretivist” approaches. While 

positivist ethnographers seek to discover timeless truths behind human actions, 

interpretivist ethnographers tend to acknowledge actors’ own constructions of meanings 

and their subjective and partial interpretations of realities (Gilliland & Mckemmish, 

2006, p. 182). Nevertheless, these different uses of grounded theory share a primary 

concern with discovering concepts, categories, variations and hypotheses directly from 

the data, where the ethnographer approaches knowledge discovery with few 

preconceptions about what he or she will encounter in the data (Gilliland & Mckemmish, 

2006, p. 178). However, theory is not totally absent in this research method. In grounded 

theory, data collection and analysis are still guided by an overall theoretical framework, 

which is composed of all the preexisting studies that informed the topic under analysis 

(here exposed in the literature review section). It is essential for the researcher to be 

aware of the literature in order to develop that “theoretical sensitivity” that will guide the 

interpretation of the data during and after coding (Tavory & Timmermans, 2014, p. 17). 
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My research design does not rely on a detailed hypothesis of how the DataFace 

participants reuse data. However, the literature analysis and preliminary field 

investigation provided me with enough knowledge to elaborate an overarching theoretical 

approach. For example, I expected researchers to reuse others’ data in more than one 

way, and I expected tools and data management strategies (e.g., data curation) to have an 

impact on the ways in which data are reused. 

Data collection and analysis with “open coding” 

In this research study I adopted the practice of qualitative coding as taught by Tavory 

and Timmermans in their manual Abductive Analysis: Theorizing Qualitative Research 

(Tavory & Timmermans, 2014). “Abductive analysis” is an iterative process that 

gradually guides the researchers to the interpretation of the data and eventually to theory 

building. Typically the researcher does not initiate the data analysis at the end of the data 

collection, but conducts data collection and analysis iteratively. 

 

I started my initial coding procedure after a few weeks in the field, early in 2015. As I 

accumulated data from observations, interviews and documents, I labeled my notes by 

overarching categories, attributes and concepts. I used the “open coding” technique to 

code my sets of interviews. The “open coding” technique consists in the process of 

breaking down, examining, comparing, conceptualizing, and categorizing data (Strauss & 

Corbin, 1990, pp. 61–74). First, the researcher reads the notes collected from 

observations and the transcripts of the interviews and label the data by different main 

categories, or concepts. This can be done either on paper or via software, I use a mix of 

manual analysis and NVIVO IBM software for qualitative coding. For each set of notes, 
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the researcher asks: What phenomena are emerging from my notes? What these 

phenomena are instances of? The researcher names the phenomena by overarching 

categories and attributes. Second, the researcher identifies how the main categories can 

be subdivided in different instances and nuances. This time the researcher asks: What are 

the variations of each phenomenon? During the third and last step of open coding, the 

researcher looks for patterns and relations in the data. How these different phenomena 

relate to each other? How they do not? 

Ethical statement 

This dissertation research was conducted with the highest ethical regard. I completed 

the CITI training and I am a member of the UCLA CKI Institutional Review Board (IRB) 

approved protocol #10-000909. Dissertation interviews are conducted with the full 

consent of participating interviewees who were provided with consent information 

documents and signed IRB-approved consent forms. Consent materials informed the 

interviewee of the research scope and enabled the interviewee to make an educated 

decision as to whether or not to opt-in to the study. In addition to the consent materials, 

an IRB-approved Deed of Gift form was used for all recorded interviews. The Deed of 

Gift document is signed by the interviewee and ensures that the audio recording and 

transcription can be used and retained by author and the UCLA CKI research team into 

the future. Interviewees had the right to complete each form as they felt comfortable, and 

the right to end participation in the study at any time. The privileges of the individual 

continue to be respected. Interviewees are always asked, and never forced, to participate 

in an interview. Interviewees are not quoted by name in this document nor in subsequent 

publications. While full anonymity is impossible due to the nature of in-person interviews 
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(Babbie, 2012, pp. 64–65; Lofland et al., 2005, pp. 43–44), all efforts continue to be 

made to maintain the confidentiality of interviewees under approval of the UCLA CKI 

IRB-approved study (National Commission for the Protection of Human Subjects of 

Biomedical and Behavioral Research, 1978; UCLA Office of Research Administration, 

2015). 

5. Findings 

The DataFace leadership 

Setting aside the official organization of the DataFace Consortium (see Introduction 

to case study), the participants in this study tend to identify themselves as members of 

one of the following groups: “the funders,” “the engineers,” or “the researchers.” These 

informal affiliations mirror participants’ understanding of their work practices and 

disciplinary configurations.  

 

• The funders. The members of the funding body who strategized the overarching 

goals of the collaboration and allocated the financial resources for its constitution; 

• The engineers. The members of the engineering team who developed the online 

digital infrastructure for data sharing; 

• The researchers. The scientists, computational biologists, bioinformaticians, 

ontology experts, and clinicians who are responsible for the collection and 

submission of the data. 

 

During informal conversations and interviews, the study participants often mentioned 
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“the DataFace leadership” as a major decisional force driving the Consortium. Based on 

my data analysis, the participants seem to use this expression to refer to the members of 

the funding agency, plus few Principal Investigators (PI) who oversee some of the 

science spokes. This “unofficial” sub-group of DataFace members holds a key role in 

taking strategic decisions about the design and the evolution of the DataFace project. 

 

DataFace overarching workflow 

While each participating lab employs their own workflow for data collection and 

analysis – see later in this chapter – the DataFace Consortium is also characterized by a 

overarching workflow that can be summarized as follows: 

 

a) Scientists and clinicians collect novel data; meanwhile the engineers design 

and maintain a data model to organize and access the data; 

b) The ontology spoke provides the hub with ontological terms and relations to 

name and classify the data; 

c) Engineers and bioinformaticians collaborate at the development of the 

metadata that are used to describe the conditions for data collections; 

d) In each spoke, one bioinformatics expert is in charge of curating the collected 

data and submitting the data and the metadata to the engineering hub; 

e) The hub uploads the data in the data repository and releases them for open 

access; 

f) The software spoke designs and builds tools for data analysis to help 

scientists find and mine the data; 
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g) Scientists from all over the world access, analyze, and reuse data from the 

digital platform. 

 

 

Why open data? Rationales for the DataFace Consortium 

As discussed in the introduction to the case study, the DataFace mission is to collect 

and make available, in a secured and organized fashion, biomedical data related to 

craniofacial research, to the final goal of enabling the reuse of these data by the scientific 

community. 

 

The datasets collected as part of DataFace II are highly heterogeneous in terms of 

data types and formats. Data are collected through a variety of experimental practices, 

from four animal models, and with distinct research designs. Traditionally, the 

craniofacial field is a very interdisciplinary discipline with relatively segregated 

laboratory practices (Mossey & Catilla, 2003). The DataFace participants, by centralizing 

the collection, storage, and access to many different datasets, hope to encourage the 

integration of a diverse set of skills and expertise that is currently distributed among 

Data collection & database development; 

Ontology and metadata development; 

Data curation, upload, and release;  

Software design for data analysis;  

Data use and reuse.  
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many different labs working in the craniofacial domain (Van Otterloo, Williams, & 

Artinger, 2016; Van Otterloo et al., 2016). 

 

A second feature that characterizes the datasets collected as part of the DataFace 

Consortium is their relatively large scale. Like many other domains in biomedicine, also 

craniofacial researchers want to adopt high-throughput technologies for the collection of 

large-scale genomic data. Such collections represent for the scientists the opportunity of 

gaining a vast and detailed amount of information on complex biological entities and 

phenomena. As I will discuss in the next section, regular research grant are not designed 

to fund the collection of big genomics datasets. The DataFace Consortium provided ad-

hoc funding for the collection of these datasets. 

Integrating scarce and segregated knowledge 

Craniofacial research is multifaceted discipline made of multiple expertise and 

research interests. Researchers participating in the DataFace consortium operate in a 

variety of sub-disciplines and possess a vast range of research interests. Not surprisingly, 

doctoral students and post–doctoral fellows tend to identify “craniofacial research” with 

the research work that they are personally conducting at this point in time in the labs 

where they are working. On the other hand, principal investigators (PIs) and agency 

officers hold a more systemic view of what constitutes craniofacial research. From an 

interview with a senior experimentalist at the DataFace Consortium: 

 

Travis: […] So there are many aspects of general interest about craniofacial research to the general 

scientific community. And then there are very specific aspects to the biomedical community. […] 
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So, for example, in terms of evolutionary biology, think of facial development in most vertebrates, so 

probably even like in crocodiles, mice, rats, pigs, their facial shape is a very long extended snout, right? 

Whereas human face is basically taken out, and you have squashed it in flat. So you can see some of that 

happening between primates and many humans. So like a gorilla clearly has a more pulled-back face than 

a pig, for example. And then we're even more pulled back, right? So there's the evolutionary aspect of how 

did the human face get to be the shape it did, compared to all other vertebrates? And that's gonna involve a 

lot of issues dealing with the brain, because we have a much bigger brain, and the way we hold our brain, 

is really different. It's gonna have issues to deal with how we chew, and how our jaw works. So there are 

people out there who are interested in... Did you ever have braces yourself? So there's this idea that the 

evolution of the human jaw, and the way we eat food now just... There's some debate about it. But the fact 

that we eat a lot more soft food than probably our ancestors means that our jaws are more crowded. So our 

teeth are more crooked. So Neanderthals had less crooked teeth than we did because of their diet and their 

jaw shape. And our jaws, our teeth have not evolved yet to be in a good alignment. So there's that sort of 

evolutionary aspect of head development. 

 

And then you can also think of it as an engineering problem that there's a lot of sensory systems to 

plug into your brain that come from your face. So your face is basically, is a way to integrate all these 

systems with your brain. So your taste, touch, smell, sight, they all come from this area. And it's very close 

to your brain. But all those nerves and everything, they have to get engineered with the blood vessels, and 

the bones, and the cartilages, and the ligaments to all fit into this really tight area. So how does that come 

to? So that's an evolutionary thing. 

 

Now, from a human medical thing, there are... I should go back. So on the evolutionary point as well, 

there's the questions that Johanna will be asking, like why are different people's faces different shapes? 

That's also an evolutionary question. How much is heritable? How much is non-heritable? It's not really a 

biomedical question. It's again, more of a sort of an evolutionary question, a genetics question. 

 

Now, on a biomedical question front, you could have things like birth defects, right? If you read the 
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general reviews on craniofacial development, it will say that 70% of all birth defects have a head 

component, right? Approximately 1.5 in 1000 children will have some sort of a facial cleft. So it's quite 

common. […] There's a type of craniofacial birth defects, it can affect not just the appearance of your face, 

which has a social aspect to it, but they can affect your hearing, they can affect your breathing, your 

swallowing, your speech. So there's a lot of problems that come out of human craniofacial birth defects. 

And correcting them... Even if you correct somebody's cleft as a child, they still might need multiple 

surgeries, and multiple interventions over time. It's a lot of burden on the patient, the family, with the 

multiple surgeries. 

 

The extracts below are from a conversation with a NIH officer in relation to the key 

outcomes of craniofacial research: 

 

Stuart: So obviously, in the distance there should be something that benefits people. So, it could be as 

immediate future as screening for new syndromes, the ability to recognize particular genes that we should 

now be screening for in genetic counseling. So, if a family has a syndrome that appears to be running in it, 

how do you test for that to know who is a carrier and who is not? That's one practical output. The other is 

that we wanna do regenerative medicine. So, someone has a facial dysmorphology or they have a facial 

injury, a bone injury; what pathways would you manipulate to regenerate that tissue properly? So, that's 

another outcome. It's also just the basic science of it. But obviously, for craniofacial research, somebody 

loses a tooth. Well, you can put an implant and it's totally artificial, or do you have ways to redevelop a 

tooth, by understanding the pathways that are involved? And people are doing that, so you could... 

 

I identified three macro research-areas in which craniofacial researchers operate:  

 

A. Developmental biology (How does the face systemically develop in the 

animal and the human embryo?), 
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B. Human genetics and clinical research (What are the genetic causes of 

craniofacial syndromes in animals and humans?), 

C. Evolutionary biology (What role do heredity and genetics play in facial 

variation among humans and across species?). 

 

While this heterogeneity of expertise is overall valued by the participants in this 

study, at the same time researchers working in different labs often expressed the need to 

integrate each other’s knowledge in order to study the face “as a system.” Developmental 

and clinical biologists particularly value systemic and integrated approaches to 

knowledge production. During lab observations, it was explained to me that the human 

face evolves systemically in the embryos. For the first seven weeks of gestation, all facial 

components (forehead, nose, jaw, etc.) are compressed in one single organ made of one 

tissue type (neural crest) that is situated at the top of the spinal cord (Adameyko & Fried, 

2016). Starting from week eight, this one tissue starts to differentiate in multiple tissues, 

and each face components slowly grows out of it. The facial morphogenetic process 

requires precise coordination between multiple tissue types that behave differently during 

consecutive developmental stages. This delicate process is common among all vertebrate 

animals and it differentiates vertebrate from invertebrate animals. When something goes 

wrong in this process, a person develops a facial syndrome such as cleft lip and cleft 

palate. DataFace developmental biologists investigate how “normal” facial growth is 

carried out, while clinical geneticists focus on analyzing what happens when something 

goes wrong, and a craniofacial “defect” originates in the embryo. Because distinct tissues 

and cell types behave differently in the embryos, and genes are expressed at different 
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stages and locations, labs tend to specialize in observing and describing one tiny piece of 

the facial development puzzle. For this community, increasing knowledge integration is 

perceived as a way of integrating different pieces of this complicated puzzle. Knowledge 

integration is necessary to build a systemic understanding of how different tissues and 

cell types interact to each other to form a “normal” face, or to cause craniofacial 

syndromes. 

 

 

Figure 1: Cover page for Development, March 2014. 

The facial morphogenesis in the human and the animal embryos (Young et al., 2014). 

 

Overall, DataFace participants demonstrated interest in collaborating and developing 

complementary research trajectories between different labs. The challenge of increasing 

collaborative efforts between different labs operating in the craniofacial field is a 

recurrent discussion topic during DataFace official meetings and gatherings, during 
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online calls between the engineers and the scientists, and during DataFace annual 

meetings. The DataFace leadership is particularly vocal in stressing the importance of 

collaboration and knowledge integration. During annual meetings, representatives from 

the DataFace participating labs gather for two full days of discussion on DF 

advancements. During the first day of the meeting, representatives from each lab share 

their progresses on collecting, making available, and analyzing their data. The second day 

is dedicated to develop strategies for what the DataFace leadership refers to as the design 

of “shared research questions.” Participants would divide up in multiple concurring 

sessions based on research specializations, research interests, or methodological 

approaches. During these hands-on workshops, representatives discuss potential common 

research threads. In this interview extract, a NIH officer explains how important it is for 

NIH to avoid research “silos:” 

 

Stuart: The buzzword at NIH is silos, we do not wanna have silos. And I'm sure you've heard that 

before many times. So we have, for instance, people who do genetic epidemiology. We have a very strong 

community in the genetic epidemiology of oral clefting. So that would be like GWAS studies. Big genomic 

screens to look for associated loci. We also have lots of people who work on mouse models of syndromes. 

We have other people who work on genetic regulation. Those can all synergize, because when you've got a 

human candidate for something you wanna know, you have a region of the genome, you wanna be able to 

figure out which gene you wanna look at, and then you wanna have a mouse model. So by bringing those 

people together, you get the sort of soup to nuts, one end to the other way of looking at it. So it's much more 

complete. 

 

For NIH officers, data integration is a means toward knowledge discovery. In this 

sense, one of the goals of the consortium is to pull together and make available 
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fragmented craniofacial data collected by multiple labs so they can be re-analyzed 

systemically. In the following extract, a NIH officer explains that she envisioned 

DataFace as the “Google Earth” of craniofacial research. 

 

Rose: The biggest promise and the desired outcome is data integration. Many years ago, we talked 

about DataFace being the Google Earth equivalent of the face, of the craniofacial region. If you look at 

Google Earth, you can zoom in from the Earth to a single street. You can get information about the house 

and the neighborhoods and what's related. The vision was that, to be able to have data at different 

resolution, different types, images, maps, and traffic, if you think about signaling networks as traffic. So 

that was the vision. 

 

[…] the main goal of DataFace is to have a systems biology approach to craniofacial development. So 

going back to the Google Earth analogy. So what we can do now with Google Maps and Google Earth is 

that when you're driving, you know what where the traffic is, and you can go around the traffic and find a 

different route, because it has that real-time monitoring and real-time predictive power. If you think of it in 

craniofacial development, if I can predict a birth defect and I can have a workaround to avoid the birth 

defect by eliciting some alternative signaling pathway so that it does not have to go into the default 

pathway, that's really what could be done. But it will require the entire knowledge of all the pathways, all 

the genes and the triggers and what are the roadblocks, what are gateways to a phenotype. So that's really 

the big, longer vision. 

Collecting and accessing “hypothesis free” genomics data 

A second rationale behind the constitution of the DataFace project is to fund the 

collection and sharing of whole genome, exome, and trascriptome large-scale datasets. 

Whole genome sequencing techniques are also referred to as “high throughput 

sequencing” or Next Generation Sequencing (NGS). Following a common trend in 

today’s biomedical research, the craniofacial field is facing a methodological 
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transformation from gene-centric investigations, to the study of groups of genes at once, 

their regulatory processes, and the epigenetics and environmental factors involved in 

gene expression and protein making. As I have already discussed, after the completion of 

the HGP, the genetic community at large realized that single genes are not solo players in 

dictating life structures (Richardson & Stevens, 2015). It turned out that multiple variants 

are responsible for a single phenotype, and also that multiple phenotypes can be related to 

one gene variant. At the same time, new attention is being paid to regulatory processes 

and transcription mechanisms, whose role in shaping proteins is shaking the once-

dominating “central dogma” of molecular biology (DNA to RNA to protein) (Keller, 

1984). When high throughput sequencing became available around 2010, scientists 

employed it to find patterns and correlations across groups of genes expressed in the 

whole genome, exome, or transcriptome (instead of studying one gene or region at a 

time). Over the last few years, scientists started using whole genome sequencing to study 

the roles played by transcription mechanisms, regulatory processes, and the 

environmental in coding proteins. In the following extract, two NIH officers talk about 

how the craniofacial research field is changing: 

 

Stuart: I think this is a recognition that is not unique to craniofacial, but it's hitting craniofacial. There 

was a time, not so long ago, when everybody assumed that all dysmorphologies that had genetic basis were 

going to be based on mutations in genes themselves, protein coding regions. And that was true of all 

GWAS, and now it's becoming very... It is very clear that a lot of these changes are actually in regulatory 

sequences. And so, that emphasizes the collaboration, let's say, between M’s type of research, and V, where 

he studies enhancers, or J. That a lot of these things are regulatory. And I think that's where it's going, is 

studying the combinatorial effects of all these regulatory mutations. 
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Rose: Certainly, craniofacial birth defects as a group is one of the largest birth defects, and it does not 

necessarily only involve the craniofacial region. It actually presents from other syndromic problems. I 

mean, there are craniofacial manifestations of other systemic birth defects. So like heart defect could have 

a craniofacial presentation and so on and so forth. And so there are over 1,000 of these syndromic or non-

syndromic defects and many of these... I would say most of these are rare diseases, and so chasing after 

genes at the beginning was very hard. People would want to chase after a single gene, and it was clear that 

many of these disorders could not be explained by single genes. And so people started looking for gene-

gene interaction, gene-environmental interaction. And so this has always been a very big field that attracts 

state of the art science. And so because cleft lip and palate as a group is the most common type of 

craniofacial birth defect, a lot of scientists go in that area because you can find the families, you can clone 

the genes, and that's basically a big focus. Less on the rare diseases because it's just harder to find families 

and develop the animal models and have the resources to do that. 

 

Emanuela is a young scientist who was recently appointed as tenure-track assistant 

professor in a prestigious craniofacial lab in the US. She pointed out: 

 

Emanuela: The (craniofacial) field is changing. The human genetics side of it is changing because of 

technology. The technology of doing human sequencing has just exploded. So what took 10 years to do the 

first human genome, you can now do in a matter of months. And so we're dealing with huge amounts of 

sequence data on thousands of people, and that is increasingly being used clinically. And so I think that's 

where the field is going. 

 

Before the constitution of the DataFace Consortium, the craniofacial community had 

hard time collecting and accessing large-scale sequence datasets, for two main reasons. 

First, funding for the collection of these datasets was not easily accessible. While 

sequencing the genome of one individual is a relatively small financial investment, 
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sequencing multiple animals and patients, multiple times, for specific mutations, and at 

different grow stages, it requires considerable financial and human resources investments. 

The sequencing itself is a quite automated process, and it is normally outsourced as a 

third-party service (e.g., to the Broad Institute for the Boston area). However, the work of 

skilled bioinformaticians is necessary to analyze the sequence libraries for quality 

control, and filter and annotate sequences to find relevant variants (see Research 

Workflows). As explained to me by a NIH officer, regular research grants (R01) do not 

fund the collection of large sequence datasets. The main reason seems to be because 

“genomics” datasets are regarded as “hypothesis free” resources. 

 

From an interview with a NIH officer: 

 

Stuart: So the idea was this, as I understand it, that Rose (another NIH officer) had a longstanding 

interest in doing this and... So that was 2000. I came here in 2009, in fact it's now eight years since I got 

here. And that was at the beginning of a number of these collaborative projects around NIH where people 

were starting to talk about sharing data, and collecting data that you couldn't generate in a standard grant. 

So the standard type of our grant is an RO1, that's our standard investigator-initiated funding mechanism. 

And because of the way they're peer-reviewed and the attitudes of the reviewers, if you just said, "I wanna 

do a big data generation project," they do not get funded. It's like it's not hypothesis-driven, it's not 

mechanistic. So there were certain types of data that are very hard to fund, because the applications do not 

do well. So the idea was, I think to use DataFace to generate those data, and allow people to collect the 

data and use it for their own mechanistic experiments. 

 

During interviews and observations, participants often pointed out that DataFace data 

collections are “hypothesis free” data. With this expression, DataFace participants refer 
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to the idea that large sequence datasets are not collected in a traditional experimental 

setting where scientists aim to collect one dataset in order to investigate a pre-defined 

hypothesis. On the contrary, whole genome sequencing data are understood as large pools 

of data that, after collection, can be coded in different ways in order to investigate many 

different questions. As I discuss in the theoretical framework of this dissertation, the most 

attractive quality of big datasets is their capacity to be “used” to investigate multiple 

patterns at the same time, which is related to the idea of context-independent “fungible” 

data. Genomic datasets represent a great example of this feature of big data. Ideally, in 

this perspective, genomic data can be mine by a potentially infinite number of scientists 

at the same time, each of them investigating their own research questions. 

 

The second reason why craniofacial researchers did not have access to large 

collections of whole genomes is because they operate in a domain characterized by scarce 

data. Most craniofacial syndromes, including atypical variations of oral clefting, are 

considered rare syndromes. This means that there are not many patients that hold these 

phenotypes. Human geneticists researching rare syndromes need to find as many 

“matches” as possible between patients with similar phenotypes and related similar 

mutations in their genotypes. Usually, these few patients are distributed in multiple 

clinical institutes in the world, and, typically, those researchers who operate in 

collaboration with these institutes have priority access to the patients’ images and 

genotypes. Some of these data are shared with the whole community. In the US, 

researchers funded by the NIH are increasingly required to make patients’ “raw” 

genotypic and sequence data available prior to publication in secure databases such as 
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DbGaP. Processed data and analyses’ results are made available after publication, 

normally by submitting them to sequence dababases such as to the Database of 

Genotypes and Phenotypes (dbGaP) or to the Gene Expression Ontology (GEO) 

database. While there are all these regulations for data sharing in place, DataFace 

researchers still feel like they do not have access to enough data, or to “all the data.” In 

this perspective, the DataFace Consortium is a means for craniofacial researchers to gain 

funding for the collection and sharing of large-scale “hypothesis-free” sequence data. 

 

The sum up, the constitution of the DataFace consortium was motivated by the 

willingness to stimulate systemic approaches to knowledge discovery in craniofacial 

research, the desire to fund the collection of whole genome sequence data related to 

craniofacial development and syndromes, and the urge to integrated specialized data in a 

convergent knowledge representation system. 

 

Funding strategy: the U01 and R03 grants 

The National Institute for Craniofacial and Dental Research (NIH) funded the 

DataFace collaboration as a cooperative agreement grant “U01,” which differs from a 

traditional NIH research grant “R01.” The Research Project Grant (R01) is the original 

and historically oldest grant mechanism used by NIH to provide support for health-

related research and development. It is defined as “an award made to support a discrete, 

specified, circumscribed project to be performed by the named investigator(s) in an area 

representing the investigator’s specific interest and competencies, based on the mission of 

the NIH” (National Institutes of Health, 2017b). A NIH Research Project Cooperative 
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Agreement (U01) grant’s scope is similarly to the one of a R01, however, in a U01 “a 

substantial programmatic involvement is anticipated between the awarding Institute and 

Center (i.e., the researchers who receive the grant)” (National Institutes of Health, 

2017c). In short, whenever a NIH Institute funds a U01, the Institute does not simply 

oversee the advancement of the research, but it is deeply involved in setting priorities, 

designing strategies, and delivering results. Another substantial difference between the 

two grants is that traditional R01 grants require investigators to demonstrate that their 

research project was design to investigate and test specific hypotheses, while U01 does 

not have such requirement. As we have seen, the craniofacial community was eager to 

collect “hypothesis free” genomics data, and the U01 grant represented an ideal way to 

fund the collection of this kind of common pool resources. 

 

In 2016, NIH introduced supplementary small grants to the DataFace funding 

mechanism, called R03s, with the intent of encouraging the reuse of DataFace data by 

new investigators external to the DataFace collaboration. A R03 is defined as a “grant 

mechanism that supports small research projects that can be carried out in a short period 

of time with limited resources” (National Institutes of Health, 2017c). R03 are released 

with the explicit goal of encouraging secondary analyses of open data. Labs that 

demonstrated the willingness to reuse DataFace data in their own research projects 

received the R03 grants. These are labs that are not members of the DataFace Consortium 

I or II. In the interview extract below, Rose, one of the NIH officers, explains why they 

chose U01 and R03 grants to fund DataFace: 

 

Rose: Yeah, so we have funding opportunity announcement out there for secondary data analysis, 
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meaning that these are R03s. People outside of the data producers can go and download data sets and... In 

mind that those data sets for new information that's being supported as well. So the DataFace hub and 

spoke projects are supported by cooperative agreements. So they are a little different from grants because 

we, the government, are substantially involved in terms of managing the direction, the progress and 

deliverables, such as data uploads. We hold them to a certain frequency and integrity of the data. 

 

Rose: Yeah, the grant is primarily driven by the PI, and they have more flexibility in re-directing. In a 

cooperative agreement, prior approval is often needed for any redirections. So within NIH, we have a 

program team to manage these projects. So Stuart is the lead program officer, but there are three other 

program officers, including myself and a health specialist. So we have regular meetings internally, we 

make decisions, we look ahead, and that's how even internally we have to collaborate to manage such a big 

consortium. 

Curating and making available data “before the fact” 

The DataFace leadership insisted that all data types would be released publicly “prior 

to publication.” From a science policy point of view, this is a quite innovative element, 

since scientists more often publicly share their datasets (when they share) after they 

conduced their analyses, and they have published at least one major academic publication 

based on the data analysis results (called primary analysis, or overview paper). Some 

datasets are shared years after they have been collected. Holding data until publication is 

a common practice among developmental biologists working on validating a limited set 

of genes or regulatory processes. Large-scale sequence data, as we have seen, are more 

often shared few months (usually 6 months) after collection. 
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For the funders, openness of research data is also a matter of civic duty. Making all 

DataFace data open to the public is motivated by the fact that the “tax payers” paid for 

the collection of the data in the first place. Stuart explains: 

 

Stuart: I think the NIH policy is gonna continue to be to force people to share because the taxpayer 

has paid for those data to be generated. It's the same thing with PubMed Central, we're sharing our 

papers. The public's already paid for the generation of those papers. The public shouldn't have to pay 

again to allow other researchers to access it. So data sharing will continue to be encouraged and enforced. 

But how to weigh whether keeping all that data, the cost of keeping it all versus the cost of generating new 

stuff, it's hard to say. Science policy is gonna change so that you do not wanna encourage people to be 

generating the same new data all the time. 

 

As already discussed, in an ideal situation, publicly sharing data prior to publication 

creates the opportunity for other researchers to exploit a given dataset at the same time 

that the scientist who collected the data is doing so. Based on this reasoning, gaining 

immediate access to research data would make the science process more efficient, and 

faster. Stuart pointed out that “holding data until publication” is used as an excuse not to 

share data. Overall, funding bodies look at this practice as highly problematic. 

 

Rose: Our expectation is prepublication sharing. I think we have been very clear about the DataFace. 

We're not talking about a direct data dump from machine to the hub. We're talking about sets of data, a 

fairly complete set, maybe to ensure quality of the data before it goes to the hub. But publication is not a 

hold for not sharing the data. We've always had the expectation of prepublication sharing. 

 

Irene: And why do you think it's better to share the data before publication? 
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Rose: Because data should be out there [chuckle] to share. I do not think holding data is good for 

anybody else other than the person who wants to publish it. I think data being shared would be 

acknowledged so that the producers would still get the credit even without being a first or last author. So I 

really do not see any downside of data sharing right away, as long as it has the quality. 

Sharing data “prior to publication” is also seen as an opportunity to curate the data 

“before the fact,” where the word “fact” literally refers to scientific facts. I have 

discussed how, in the tradition of model organism communities, bio-curators are in 

charge of harvesting biology data from publications and institutional repositories and 

organized them in data structures. This practice heavily relies on the ways in which 

scientists share their data in the first place, which can vary by journal to journal. Richard 

(a database engineer) points out that, in his opinion, curating data “upstream” (e.g., right 

after collection) is better than “after the fact” (e.g., after publication) because it allows for 

better standardization of metadata and ontological terms: 

 

Richard: What a lot of projects are doing is very different from our site. So what a lot of projects have 

to do, is they go to the literature and what they call curation is basically getting a published journal article, 

and then they have to go through that and... A team of humans has to go through that and extract. […] 

That's a lot of times what a bio-curator is called. And they have to go through there and extract things, and 

then it depends on whether the publisher required a certain terminology to be used. So some publishers will 

say, "You have to name your genes... " If you're gonna mention a gene, you have to use the go term or 

something like that. I would suppose the same holds true for other parts of the nomenclature that they 

might, if required. So we're not bio-curators like that, we run a resource. When we say we do curation, it's 

a very different sense. We do not do any curating of literature. It's they submit data in a specific format, it's 

already been agreed on, so we do not have to curate the data after the fact, or literature after the fact. We 

get it upstream, and they produce it. 
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Research workflows: data collection, analysis, and release 

In this section, I describe the research settings in which selected DataFace datasets are 

collected. I describe how the DataFace researchers collect and make sense of the datasets 

that are made available on the DataFace repository. The DataFace researchers collect a 

wide range of data types, employing multiple research methods and experiments. As 

previously discussed, the consortium funded the collection of what the participants refer 

to as “high-throughput data collections.” Among DataFace members, the expression 

“high-throughput” is used to indicate the collection of large-scale datasets via automated 

technologies. These include whole genome, exome, and transcriptome sequencing and 

gene expression data, genotypic and phenotypic data from genome-wide association 

studies (GWAS), and atlases of animal and human images collected via computer 

tomography (CT scans) and magnetic resonance (MRI). 

 

My analysis focuses on three “sample” research workflows designed by three 

different participating teams, or spokes. I refer to the three spokes as the Blue spoke, the 

Green spoke, and the Pink spoke. These three workflows embody research methodologies 

from several sub-fields of biomedical research including human genetics, clinical 

research, developmental biology, and evolutionary biology. 

Research workflow #1: The Blue Spoke 
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Domain: Clinical research, human genetics, functional validation studies 

Syndrome: Cleft and lip palate 

Sequencing technique: Whole Exome Sequencing 

Model organisms: Humans, zebrafish, mouse 

Research design: Candidate genes 

Experiments: Gene editing (ZFN, CRISPR-Cas) 

Goal: Gene discovery and validation 

Data submitted to the hub: Sequence and phenotypic data from humans, zebrafish, mouse 

 

The members of the Blue spoke are two biology labs (lab A and lab B) and one 

bioinformatics lab. The scientists working at the Blue spoke received funding for the 

collection and analysis of biomedical data related to the identification and functional 

validation of ∼24 genes involved in craniofacial developmental disorders in humans, in 

particular cleft lip, cleft lip and palate, and oblique facial clefts. Cleft lip is the second 

most common birth defect in the United States, affecting one in every 940 births and 

resulting in 4,437 cases every year (Parker et al., 2010). Worldwide, oral clefts occur in 

1. The clinicians select and submit cases (patients' data) for 
review; 

2. When a case is accepted, lab A preforms whole exome 
sequencing; 

3. The bioinformatics team identifies a set of candidate 
genes; 

4. The experimentalists functionally validate the candidate 
genes;  

5. A second "hit" further validates the candidate genes. 
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about one in every 700 live births. However, the co-occurrence of cleft lip and cleft 

palate, or of an isolated cleft palate, are generally considered rare syndromes (Mossey & 

Catilla, 2003). For example, cleft palate is present in one in every 1574 births (Parker et 

al., 2010). 

 

The research on clef lip and palate is a quite specialized – but well-established – 

research “niche” of medicine, especially compared to cancer research. Few specialized 

labs have been conducting research on oral clefting for many years now, and a set of 

genes are thought to be associated with oral clefting in humans. Clefting is also classified 

as a “complex trait” because it seems to be related not only to a set of genes, but also to a 

variety of epigenetic and environmental factors. For example, research studies suggest a 

strong correlation between smoking during pregnancy and increased changes of 

developing oral clefting in the embryo (Derijcke, Eerens, & Carels, 1996). Building upon 

this knowledge on the occurrence of oral clefting, researchers at the Blue spoke aim at 

functionally validate it. This is done in two main steps: first, by identifying and 

sequencing new human cases, and, second, by creating genetically modified animal 

models that present the clefting observed in the humans. 

 

Selecting patients, exons capturing, and DNA sequencing 
 

Data collection at the Blue spoke starts at the hospital. The clinicians identify patients 

– referred to as “cases” – who present facial traits potentially related to one or more 

genotypes. Once they think a case could be of interest to the spoke, they collect the 

genetic pedigree and some phenotypic images of the patients, and send this information 
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to the research labs. The members of the two research labs meet with the clinicians and, 

together, they evaluate the cases. If a positive decision is made, lab A proceeds with the 

collection and sequencing of a blood sample of the patient and of few (from one to three) 

members of the patient’s family. 

 

The sequencing technique chosen for this study is Whole Exome Sequencing (WES). 

WES is a technique for the sequencing of all the protein-coding genes in a given whole 

genome (US National Library of Medicine, 2017a). These regions are known as the 

exome. WES technique consists of two steps. The first step is to isolate and select the 

exons from the sample. Exons correspond to a subset of DNA that encodes proteins. This 

action is commonly referred to as the process of “capturing” the exons. Humans have 

about 180,000 exons, constituting about 1% of the human genome, or approximately 30 

million base pairs (Ng et al., 2009). The “capturing” step is conducted at lab A, typically 

by a bench biologist. During step one, the researcher employs what are defined as “target-

enrichment strategies” to selectively capture genomic regions of interest from a DNA 

sample prior to sequencing. It is during this process that Polymerase Chain Reaction 

(PCR) is carried out (“Nature Chemical Biology,” 2005). 

 

The second step is to sequence the exonic DNA using high-throughput DNA 

sequencing technology, also referred to as Next Generation Sequencing (NGS). NGS for 

the Blue spoke’s data are conducted at an external sequencing facility (e.g., the Broad 

Institute). During the NGS process, DNA is divided in “short reads” that are particularly 

well suited to analyze many relatively short stretches of DNA sequence, as for human 
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exons (Rung & Brazma, 2012). Each read is sequenced and transcribed. Reads are 

eventually re-assembled using “reference DNAs.” 

 

When the sequenced exons come back from the sequencing facility, the 

bioinformatics lab takes over. The members of the bioinformatics lab for the Blue spoke 

include Daniela, who is also a principal investigator for the spoke, one software 

developer, and one computational biologist. The team receives the files from the 

sequencing facility in “raw” formats, such as in FASTA or FASTQ formats. Raw 

sequence files contain “quality scores” that represent the probability (p-values) that each 

read was not sequenced properly (i.e., the base calling process is incorrect). At this point, 

the bioinformatics lab is in charge of checking the quality of the DNA reads. Hank, one 

of the DataFace bioinformaticians, refers to this practice as “bioinformatics as a service.” 

In short, the goal of the quality control is to convert the raw, machine-generated sequence 

data into a useable and useful data resource. 

 

 

Figure 2: Example of FASTQ file format. It begins with a @ character and is followed by a sequence identifier. The 

second row contains the raw sequence letters. The format also ecnodes the quality score for the piece of sequence. 

Source: NCBI website. 

Getting “the list”: gene mapping and annotation  
 

After the reads passed the quality check, the bioinformatics team needs to find the 
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patients’ disrupted genes (if any genes is disrupted). The disrupted genes are identified by 

mapping them on the sequences of the known genome, a process referred to as “gene 

mapping” (Griffiths, Gelbart, Miller, & Lewontin, 1999). Obviously, the genome is too 

long for the researchers to map the genes manually, so gene mapping is done statistically 

using a technique called recombination analysis, and a metric called recombination 

frequency (RF). Sequence alignments and their mapping coordinates are stored in 

Sequence Alignment Map (SAM) or Binary Alignment Map (BAM) file formats. 

 

 

Figure 3: Example of SAM file format. Headings begin with a @ symbol, which distinguishes them from 

alignment sections. Alignment sections have 11 mandatory fields, as well as a variable number of optional fields. 

Source: NCBI website. 

The “raw” data are now finally ready for analysis. The bioinformatics team can now 

analyze the SAM and BAM files in order to identify those genes that present potentially 

interesting mutations in relation to the patients’ phenotypic profile (“most likely causal 

variants”). Data analysis will result in a list of mutated genes (or variants) that the 

bioinformatics team refers to as the “candidate genes.” The shorter the list, the better. 

This process of data analysis is also referred to as “gene discovery” or “gene prediction.” 
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Once a gene is probabilistically mapped on the genome, scientists need to learn as 

much as possible about the gene. The practice of “annotation” helps scientists to fulfill 

this task, and also confirm that the location is actually accurate (US National Library of 

Medicine, 2017b). Scientists annotate their sequence data by accessing and combining 

thrives of information – to use Leonelli’s expression, “small facts” - about a gene 

function and related regulatory processes that have been collected, accumulated, and 

integrated over time by geneticists all around the world. Many of these bits of 

information about genes are accessible through the website of the National Center for 

Biotechnology Information (NCBI) (US National Library of Medicine, 2017b). NCBI has 

links to many repositories of human and animal sequence data, including Genbank itself. 

The researchers use these repositories, and the related annotations, to get a detailed 

knowledge of all that is known about that particular gene. Every time a researcher 

discovers something new about a gene function – through experimental practice – 

publishes it, and submits it to GenBank, this information is added to the annotated 

database. NCBI annotated sequences provide up-to-date knowledge about gene locations 

and functions, and are used daily by researchers as references to annotate their own raw 

sequences. 

 

The NCBI annotation tools are only a subset of the variety of tools that are available 

to researchers to annotate sequences. To guide her annotation process, Daniela’s team 

uses a mix of open software and proprietary tools. For example, Daniela’s team employs, 

among many other tools, the Exome Aggregation Consortium (ExAC) browser, which 
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was created by a coalition of investigators “seeking to aggregate and Hankonize exome 

sequencing data from a wide variety of large-scale sequencing projects, and to make 

summary data available for the wider scientific community” (The Broad Institute, 2017). 

The ExAC Browser hosts sequence data from 60,706 individuals collected as part of 

various disease-specific and population genetic studies. The dataset allows scientists to 

type the name of a gene and obtained all the information that is known and available for 

that gene. Overall, annotation practices vary greatly between areas of research, and even 

between labs conducting similar research. The team also developed their own “in-house” 

pipelines, which are tailored on the kinds of research questions they are interested in. 

 

A very popular tool for gene discovery and annotation is the UCSC Genome Browser, 

which is hosted by the University of California, Santa Cruz (UCSC). Most DataFace’s 

participants use this tools for gene discovery, in a way or another. The interactive website 

offers access to genome sequence data from a variety of vertebrate and invertebrate 

species and major model organisms, integrated with a large collection of sequence 

annotations (Marx, 2013). It hosts a browser, commonly referred to as “The Genome 

Browser,” which is open-sourced and functions on top of a MySQL database. The 

Genome Browser presents a diverse collection of annotated sequences known as “tracks.” 

Tracks are presented visually on a horizontal axis. Blocks of color along the coordinate 

axis show the locations of the alignments of the various data types. The ability to show 

this large variety of data types on a single coordinate axis makes the browser a very 

precious tool for knowledge integration and annotation practices. To find a specific gene 

or genomic region, the user may type in the gene name (e.g., CAPZB), an accession 
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number for an RNA, the name of a genomic cytological band (e.g., 20p13 for band 13 on 

the short arm of chr20) or a chromosomal position (chr17:38,450,000-38,531,000 for the 

region around the gene BRCA1). By clicking on the annotations, the researchers can 

access further details on each note. 

 

Some of the links provide access to other data resources, such as to the Online 

Mendelian Inheritance in Man (OMIM), which is also highly used by DataFace 

researchers. OMIM is catalog of human genes and genetic disorders and traits, with a 

particular focus on the gene-phenotype relationships. Other annotation tools used by 

Daniela to identify the candidate genes are ClinVar, which is a public archive of reports 

on the relationships among human variations and phenotypes, and 1000 Genomes, a 

catalogue of human variation between ethnic populations. 

Experimental practice and functional validation 
 

Once Daniela’s team identifies a list of candidate genes – or gene variants – this 

information goes to lab B, which is specialized in designing animal models for function 

validation studies. Ideally, the job of lab B would be to conduct an animal model 

experiment that verifies that the candidate genes identified “in silicon” by Daniela and 

her team are indeed responsible for the phenotype observed in the patient. Developmental 

biologists at lab B have been working on genes discovery related to craniofacial 

syndromes for quite some time. They use zebrafish as their main animal model. Kristina 

is the lab biologist in charge of functionally validating some of the DataFace candidate 

genes. Kristina is a postdoc with a background in molecular biology and she is 

specialized in the investigation of the CAPZB gene. She started working on CAPZB in 
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2014, when a first patient with cleft palate and a disrupted CAPZB gene was identified. 

Since then, Kristina’s goal has been to make a zebrafish model where CAPZB gene is 

disrupted and the cleft palate phenotype is present in the fish (i.e., to functionally validate 

the CAPZB gene). To make her zebrafish model, Kristina used multiple gene editing 

techniques over the years, from Zinc Finger Nucleases (ZFN) to CRISPR-Cas 

technology. The process of making a CAPZB mutant fish is done in several steps. First, a 

guide RNA needs to be created and insert in the mother’s embryo. There, the guide 

disrupts (knocks out) the CAPZB gene. The resulting “fish babies” – as Kristina calls it – 

is referred to as “first generation.” If a mutation occurs, and the phenotype of interest is 

observed (in this case cleft lip or cleft palate), the researcher would cross wild types 

mouse with the mutant mice until the mutation is stabilized and a new mouse with 

consistent mutation on CAPZB is created. Karla, a Ph.D. student and Kristina’s assistant, 

pointed out that it might take up to two years to have a stable mutation in a zebrafish. 

Once a mutation is stabilized, the researcher needs to invert the process and bring back 

the mouse to a wild-type. Still using a guide RNA, this time the gene (in this example 

CAPZB) is “knocked in” from the DNA sequence. If the fish does not present the sick 

phenotype at this point, the experiment for the functional validation of the CAPZB gene 

in the zebrafish animal model can be finally considered successfully concluded. 

 

After interviewing several postdocs involved in the DataFace collaboration, it is my 

understanding that a postdoctoral fellow in a developmental biology lab conducts 

research on an average of one or two genes at a time, and each validation study takes 

from three to five years to be completed. At this pace, in order to functionally validate 24 
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genes in zebrafish models in five years (the duration of the DataFace II grant), the Blue 

spoke would need a dozen of postdocs working on different genes at the same time. 

However, as the reader may recall, the “real” goal of the DataFace collaboration is not to 

functionally validate the genes. It is to collect and make available all the sequence data 

collected from the patients and analyzed by Daniela, and also the experimental data 

resulting from the preliminary work of Kristina and Karla on the zebrafish model. Data 

from the patients and from the animal models will be obviously made available before 

Daniela, Kristina, and Karla publishes their results on the 24 genes. 

 

For Kristina, the fact that her gene CAPZB was included in the DataFace list 

constituted an incredible opportunity. As she explained to me, it is necessary for her to 

access as many patients’ genotypic and phenotypic profiles as possible in order to 

compare her experimental results with others’ result and further validate her hypotheses. 

However, as Kristina pointed out during an interview, gaining access to human data is 

often troublesome because researchers need to be part of pre-approved IRBs. Now that 

CAPZB is part of the DataFace project, Kristina will have access to all the patients’ data 

that will be obtained as part of this effort by other labs. Not by chance, from Kristina’s 

point of view, the main goal of the DataFace project is to provide access to patients’ data: 

 

Kristina: From my understanding and I'm not sure if it's correct, but I believe that DataFace recruits 

all these patients or at least has information about patients who have craniofacial anomalies. Which is why 

our lab has been a part of DataFace, is because we're interested in getting into those kind of gene 

databases where we can actually look at candidate genes. And I think that's what DataFace is for me to 

give us candidate genes for craniofacial anomalies. 
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Irene: So, how do you think the craniofacial research community would benefit from the data collected 

by the DF consortium beyond your specific team? 

 

Kristina: I think that there's a huge opportunity here if the DataFace consortium opens up, because for 

me, at this point, I found it a little bit hard to get to the data. But I think this is a huge mine of data, which 

is waiting for the scientist to go into and get all these genes and work on them. Have animal models, some 

of them mice, zebrafish and then kind of develop on those genes and actually get to what is causing these 

craniofacial anomalies. So a lot of research-based opportunity is waiting. I, myself have not been able to 

get to that point, but I think it is highly beneficial. 

 

[…] I know there are some whole patient databases where there are patients who have craniofacial 

anomalies and I can see that those genes have been published or those genes are somewhere there, except 

that I can't access them. But if they're open then we have this whole list of genes which we... We are not 

dealing with one patient or two patients, we actually have patients, multiple of those that makes it... We 

have a strong background to go form our story on. 

 

Since these interviews were taken, Kristina and Karla published a paper in which they 

functionally validate, for the first time, the role played by the gene CAPZB in 

craniofacial development in zebrafish mutant model. Next step would be to conduct the 

experiment in mouse. In this case, lab A, which is specialized in mouse animal models, 

would take over, and conduct a second experimental study. Ideally, the gene list will be 

fully validated when both animal models will consistently present the given phenotype 

(oral clefting), and the team will find a second “hit” for the CAPZB gene in a new patient 

presenting the same phenotype. Daniela explained to me how hard it is to find a second 

hit when dealing with rare syndromes, such as the co-occurrence of clef lip and cleft 
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palate: 

 

Daniela: So, collectively craniofacial diseases is a burden, is a serious burden in the society, but 

individually each private disease is very rare, so it's very hard to find a second case to see that indeed the 

gene of your interest might be involved in all type or portion of this type of phenotypes. 
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Research workflow #2: The Green Spoke 

 

Domain: Developmental biology 

Syndrome: Developmental syndromes 

Sequencing technique: Whole Transcriptome Sequencing (RNA) 

Model organisms: Mouse 

Research design: RNA expression 

Experiments: RNA-seq 

Goal: Identify and describe spatio-temporal gene expression profiles 

Data submitted to the hub: RNA-seq, microarray RNA expression data 

 

The members of the Green spoke are one biology labs (lab C) and one bioinformatics 

lab. The goal of the Green spoke for the DataFace project is to collect and share data 

related to the identification and description of RNA dynamics in the developing mouse 

face. During the development of the embryo, in mouse like in humans, RNA signaling 

processes direct the interactions of different tissue and cells that eventually come together 

to form a newborn face. Facial areas are made up of a layer of ectoderm and a large core 

of mesenchymal cells derived from the neural crest and mesoderm. Neural crest cells are 

 
1. The experimentalists microdissect mouse tissue samples and 
extract RNAs; 
 

2. An external facility sequences the RNAs and return 
them to the spoke; 

3. The bioinformaticians perform quality control on 
sequence data; 

4. The experimentalists annotate and contextualize 
sequence data. 
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a temporary group of cells unique to vertebrates that arise from the embryonic ectoderm 

cell layer, and in turn give rise to a diverse cell lineage, including craniofacial cartilage 

and bone (Adameyko & Fried, 2016). 

 

 

Figure 4: The formation of the face in the human embryo. Source: private slide donated by a study participant. 

The manipulations or altering of the RNA signaling processes and tissue interactions 

have grave consequences for facial development, resulting in various types of medically 

important dysmorphology, including orofacial clefting. Thus, the Green spoke aims at 

collecting detailed data on the RNA dynamics and ectoderm/mesenchyme interactions 

that contribute to the description of facial development. The data collection workflow for 

the Green spoke can be divided in two main stages: experimental phase, and data analysis 

phase. 

 

Micro-dissection and sequence of facial tissues in the mouse embryos 
 

The experimental process initiates when Hazel, a postdoctoral fellow trained in 
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developmental biology, conducts a micro-dissection to remove nasal, maxillary and 

mandibular components from mice pre-natal fetuses (wild-type). Components are 

removed at three stages considered to be crucial for facial development, naming at day 

10.5, day 11.5 and day 12.5. During the period between day 10.5 and day 12.5, distinct 

facial parts start to fuse to form the newborn complete face. These distinct facial 

components are separated and analyzed to determine how their unique expression profiles 

correlate with their eventual fates. After the components have been removed, the 

ectoderm is separated from the mesenchyme (citation redacted for anonymization 

purposes). At this point, the biologist would extract different parts of the RNA, including 

mRNAs and a variety of small RNAs, from the separated tissues. The experiment is 

conducted using RNA microarray for data collection. Once the RNA parts are extracted, 

these are sent to an external sequence facility to be sequenced. 

Data analysis: bioinformatics meets molecular biology 
 

The Green team deeply values a multi-interdisciplinary and systemic approach to 

knowledge discovery. Team members have mixed expertise in craniofacial biology, 

mouse molecular genetics, bioinformatics and computational biology. Two senior 

experimentalists, Jane and Travis, recently re-trained themselves in bioinformatics and 

computational analysis. Jane explains: 

 

Jane: I am, on Mondays and Wednesdays and Friday a bioinformatician, and on Tuesdays, and 

Thursdays and Saturdays, I'm a development biologist. (…) So, classically the way I was trained we think 

about a single gene and what it does in the system. But this [e.g., what they are doing] is a much more 

systems biology kind of approach, where we try and think about all of the information in the entire system 

and how it integrates. [single-gene and whole-genome sequences approaches] are very complimentary. 
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They are the yin and the yang. And neither one means much or you can get a little bit out of either one but 

you do not even begin to embrace the whole thing until you use both. 

 

In this team, as opposed to the Blue spoke, the same individuals who conducted the 

experiments carry out the core analysis of the sequence data. When the sequence dataset 

comes back from the sequencing facility, it first goes to a bioinformatician, Kaine. Kaine 

performs quality control over the sequence libraries, and then converts these into BAM 

files. At this point, BAM files are taken in custody by Jane and Travis. BAM files contain 

sequence alignments data in binary formats. Multiple statistical tools and programs – 

especially R packages – allow researchers to visualize and analyze BAM files in order to 

identify variance in the expression patterns. Jane and Travis investigate the significance 

of those variants by analyzing and annotating the RNA expression data, similarly to what 

Daniela does with gene sequences for the Blue spoke. Like Daniela, also Jane uses a 

diverse set of databases and tools for annotating her data, including the Gene Ontology, 

the Gene Expression Omnibus database, the Reactome Pathway Database, and the KEGG 

Pathway Database. Jane explains how she uses these databases for annotation: 

 

Jane: The gene expression type of database that we reuse, that would be to provide more depth and 

context for our gene expression data. And the databases that have more functional annotations, we use 

them to interpret our transcriptome data. Oh, a database that we use extensively, that I did not mention, is 

miRBase. And the various others are in a classes of RNA databases. There's the snoRNA database, and 

there's... I can't remember the name… but there's a number of databases that annotate, essentially 

annotate, all these other classes of RNAs besides messenger RNAs. 

 

Jane: A major thing that we want to do [by annotating the data] is to take our 25,000 of genes or so 
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that we have, and reduce the complexity by binning them, into either pathways like, A makes B makes C, or 

functional groupings. They're all involved in doing the same thing. So all this annotation information either 

for pathways, or for function is fundamental to doing that, reduction of complexity that we need to do to get 

the system's level analysis to work. 

 

For Jane, biology and bioinformatics approaches to knowledge discovery are 

complementary, but at the same time fundamentally different. In her daily research, Jane 

works hard to find ways to integrate them. 

 

Jane: I've spent the last five years learning how to communicate with, and think like a 

bioinformatician, and what the resources are and what the questions are. And they think in very different 

way about the problems than the biologists do. They are fundamentally interested in different questions. 

And as a biologist I'm interested in how things work, and an informatician is interested in how to transform 

data into information (…) And it's not black and white, but it's where the most emphasis is. And as 

biologists, we get involved in the details and the exceptions to the rules and the informaticians throw those 

out as noise. And as biologist we think about it one gene, and one protein, and one molecule at at time, and 

build our picture of the world from the bottom up. And the informaticians think about it on the systems level 

and their picture of the world comes from the top down. 

 

For Jane statistical analyses and sequence annotation are a starting point, an 

indication that something interesting might be happening in those tissues. Once she is 

done employing databases and tools to annotate sequences and find significant variants, 

Jane goes back to her knowledge of molecular biology and uses it to contextualize and 

make sense of the analysis results. As she explained to me, Jane makes sense of RNAs 

expression patterns by looking at molecular changes in “time and space.” For instance, 

Jane’s team found that the mesenchymal samples are very different from the ectodermal 



	
   113	
  

samples. By micro-dissecting and observing gene expression profiles at three different 

grow stages, she was able to locate how individual genes differently activate in distinct 

tissues (space) and at distinct grow stages (time). 

 

Jane: I start with the group of genes that are in this particular cell type, at this particular age, in this 

particular prominence that are different from the ones here and here and here. And then, I say, “So, what 

is different between, for instance, what's going on at E10 and a half in this cell, and what's going on at E12 

and a half in this cell? How do things change over time?” 

And so, you have to find in this group of 1000 genes the ones that are interesting in this particular 

way. So, what's changing as we age is the question. And then, you see, okay, these are the ones that we see 

a lot of things that are involved in cellular structure. A lot more of those in the old ones, where the young 

ones, we all know embryos are soft and squishy and so, in these ones, we see much more of things involved 

in communication between the cells. 

And so, we would then interpret this to say that and the young cells are primarily involved in 

communication between the cells, and maybe establishing the transcriptional patterns that have to do with 

cell fate. Whereas by the time we get to the older cells, we're involved in the structure of a cell. So, maybe a 

cell that has a lot of structure is gonna be making cartilage or something like that. 

 

In the slides below, Jane visualized the results of this research work. The content of 

these slides is pretty unique, it allows Jane to visualize the results from the whole 

transcriptome analysis at a molecular level at two different developmental stages (Figure 

11 and 12). De facto, these busy images enable Jane to translate results obtained via 

informatics approaches into a “developmental biology” perspective: “in time and space.” 

Bioinformaticians generally represent gene expression differences during development by 

means of diagrams and bar graphs, where genes are represented at a summary level (see 

Figure 10). Developmental biologists visualize biology processes by means of drawings 



	
   114	
  

in which they visually map processes on to the physical cell. In the slide represented in 

Figure 11, Jane mapped multiple genes obtained from whole transcriptome sequencing 

one by one on the physical cell and on all its functional components, including the 

nucleus, the secretory apparatus, and the cytoskeleton. And then she did it again for the 

following developmental stage (Figure 12). In this way, Jane can explain and visualize 

which gene is responsible for which action in the cell, individually, and at different times. 

 

 

Figure 5: A bioinformatics view of cell-to-genes interactions. Source: private slide donated by a study participant. 
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Figure 6: A molecular biologist's view of cell-genes interactions (early developmental stage). Source: private slide 

donated by a study participant. 

 

 

Figure 7: A molecular biologist's view of cell-genes interactions (later developmental stage). Source: private slide 

donated by a study participant. 
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Research workflow #3: The Pink spoke 

 

 

Domain: Computational Biology, anthropometry, human genetics 

Syndrome: Craniofacial complex traits 

Sequencing technique: Genotyping 

Model organisms: Humans 

Research design: GWAS, SNPs analysis 

Experiments: N/A 

Goal: Quantify normal facial variation, identify associated genes 

Data submitted to the hub: Facial images, genotypes, facial landmarks and measurements 

Members of the Pink spoke include one computational biology lab (lab D), and a set 

of external collaborators including human geneticists, statisticians, and computer 

scientists. For the Pink spoke, data collection started during phase I of the DataFace 

funding cycle (2010). The Pink spoke is one of the few spokes that received continuous 

funding from the DataFace project from phase I through phase II (until 2020). Currently, 

the human genomic and imaging data collected by the Pink spoke during phase I are the 

1. The lab members collect genopytes and 3D facial images 
from the general population (Caucasian);   

2. The lab members extract quantitative data from 3D 
images (landmarks and linear measurements) and submit 
saliva samples for genotyping; 

3. The computer scientists perform morphometric analyses 
on 3D data set to derive shape variation descriptors;  

4. The bioinformaticians identify genetic variants 
associated with normal facial shape variation. 
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most requested and reused data among all data types collected by the DataFace 

collaboration. For DataFace I, the spoke built a repository of 3D facial images and 

measurements called “3D Facial Norms Database,” which is accessible from the 

DataFace website. For DataFace II, the spoke developed a software package for data 

discovery that can be used to visualize summary level p-values of the data that they 

collected in phase I (and potentially of others’ data). In DataFace II’s official 

documentation, the Pink spoke is referred to as “the software spoke.” 

The making of a genome-wide association study (GWAS) for normal variation 

The overarching goal of the scientists operating at the Pink spoke is to address the 

current “dearth of information regarding how variation in specific genes relates to the 

diversity of facial forms evident in our species.” The research design used for data 

collection is called genome-wide association study (GWAS), which is defined as: 

A genome-wide association study (GWAS) is an approach that involves rapidly scanning 

markers across the complete sets of DNA, or genomes, of many people to find genetic variations 

associated with a particular disease. Once new genetic associations are identified, researchers can 

use the information to develop better strategies to detect, treat and prevent the disease. Such 

studies are particularly useful in finding genetic variations that contribute to common, complex 

diseases, such as asthma, cancer, diabetes, heart disease and mental illnesses” (National Human 

Genome Research Institute, 2015). 

As per definition, a GWAS consists in the collection of genotypic and phenotypic 

data from a large population, it is typically used to identify genes involved in a particular 

disease, and it is performed on affected patients. The Pink spoke collected data from a 

“normal population” that is not affected by any syndrome. The spoke collected “normal 
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variation data” in order to use them as control data in successive studies on oral clefting. 

3D facial surface images and DNA samples from 3500 healthy Caucasian individuals 

(age 5-40) were drawn from the general populations. Saliva samples and facial images 

were collected by graduate students working at the spoke computational lab, and in other 

partner labs, at four different locations on the West Coast and in the Midwest. 

 

Quantitative facial measures were extracted from the 3D facial images (Figure 13). 

Images and measurements were organized and made accessible in the DataFace 3D 

Facial Norms database. Images were analyzed by performing morphometric analysis of 

mid-facial shape differences in the general population, this analysis resulted in the 

identification of multiple shape variation descriptors. The morphometric analysis of the 

imaging data was conducted at a partner laboratory located in Europe. I provide further 

details about the GWAS datasets in the section where I describe the ways in which these 

datasets have been reused. 

 

The DNA extracted from the saliva was sent to an external facility to be genotyped. 

Once the data came back from the facility, these were analyzed by a group of 

computational biologists that includes two human genetics experts, one statistician, one 

computational biologist, and one computer scientist. The genotyping data are hosted on 

the NIH Database for Human Genotypes and Phenotypes (dbGaP). Genotypes data are 

analyzed to identify genes potentially associated with normal “non-syndromic” facial 

shape variations. For example, the team identifies few genes that seem to be related to the 

attachment of the lobe to the ear, which is present only in certain individuals, or to the 
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length of the nose. 

 

At the Pink spoke, the postdoctoral fellows with computational biology training 

conduct the data analyses. They do so via gene mapping and data annotation techniques 

similar to those I described in the Blue spoke’s workflow. However, the Pink spoke 

“genotype” the saliva samples, as opposed to “sequence” them. The term “genotyping” is 

used to refer to the process of determining which genetic variants an individual possesses. 

“Sequencing” is used to refer to the method used to determine the exact sequence of a 

certain length of DNA. Researchers can sequence a short piece, the whole genome, or 

parts of the genome, as in the workflows of the Blue spoke. Depending on the region, a 

given stretch of sequence may include some DNA that varies between individuals, in 

addition to regions that are constant. Thus, sequencing can be used to genotype someone 

for pre-selected genetic markers, as well as to identify variants that may be unique to that 

person. Genotyping can be performed through a variety of different methods, depending 

on the variants of interest and the resources available. Genotyping is commonly used in 

GWAS studies, where whole genome sequencing is more expensive and time consuming. 

Sequencing is slowly replacing genotyping techniques (Roetzer et al., 2013; Yang et al., 

2016). 

 

Because of the computational nature of this lab, most data analysis for genotypes data 

is performed in house. The principle behind a GWAS study is to associate phenotypes 

with genotypes. As we have seen, GWAS are more often conducted with syndromes’ 

data, where “sick” phenotypes/genotypes are compared to control phenotypes/genotypes. 
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Because the spoke collected data on normal variation, the researchers first had to define 

what their phenotypes of interest would be. I will get into the details of how facial 

phenotypes for normal variation are established in the chapter about data reuse. Once 

phenotypes are established (e.g., facial images with a broader nose), the researchers 

would look into the associated genotypes to verify whether certain variants, or “SNPs,” 

are common within individuals who present the phenotypes. A single nucleotide 

polymorphism, or SNP, is a variation at a single position in a DNA sequence among 

individuals. The concept of SNP is quite important to understand the functioning of a 

GWAS study. The DNA sequence is formed from a chain of four nucleotide bases: A, C, 

G, and T. If more than 1% of a population does not carry the same nucleotide at a specific 

position in the DNA sequence, then this variation is classified as a SNP. If a SNP occurs 

within a gene, then the gene is described as having more than one allele (Nature, 2014). 

Although a particular SNP may cause a disorder, some SNPs are associated with non-

syndromic traits, like in this particular GWAS study. These associations allow scientists 

to look for SNPs in order to evaluate an individual’s genetic predisposition to develop (in 

the embryo) or to possess a certain facial trait. 

 

Once SNPs are identified, researchers need to dig into the literature to integrate their 

findings with everything else that is known about these genetic markers and their 

biological functions. Julieta conducts most of this “interpretation work” for the lab. 

Julieta is a postdoctoral researcher from Belgium. For example, in order to find the SNPs 

that are associated with the attachment of the ear lobes in humans, Julieta analyzed and 

annotated the literature about over 358 genes (Shaffer et al., 2016). For her annotation 
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work, Jasmine consults a wide range of integrated resources. Julieta uses the Mouse 

Genome Informatics (MGI), and the Online Mendelian Inheritance in Man (OMIM) 

database to investigate whether certain genes or SNPs variants have been previously 

associated to syndromes that affect the formation of the face, either in mice or humans. 

She also uses the VISTA Enhancer browser to check whether genes are located in 

“enhancers.” Enhancers are short regions of DNA. Whenever a protein, or activators, is 

bound to an enhancer this increases the likelihood that transcription of a particular gene 

will occur (Nature, 2017). These proteins are also referred to as “transcription factors”. 

Finally, she looks for clues in the DECIPHER database, which is an online clinical 

database that contains human genome variants and phenotypes of thousands of patients 

worldwide. 

DataFace workflows’ summary 

Research workflows at the DataFace Consortium span a variety of data types, 

research questions, research interests, and methods for data collection and analysis. In the 

examples provided in here, genomic data are collected and employed for the diagnosis of 

rare syndromes (Blue spoke), to study how RNA expression varies in time and space 

during mouse development (Green spoke), and to identify how certain genetic markers 

possibly relate to certain facial traits (Pink spoke). Researchers use a variety of 

sequencing techniques to collect genomic data, namely exome sequencing, transcriptome 

sequencing, and genotyping. Sequencing and genotyping are performed on humans, 

zebrafish, and mice. Sometimes humans and animal models are sequenced as part of the 

same research setting, and sometimes in completely independent experimental settings. 
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The processes of gene mapping and “data annotation” play a central role in the 

interpretation of the sequenced “raw datasets” as they come back from the sequencing 

facility. Annotation can be done in many different ways, and it tends to be idiosyncratic 

to each lab. Annotation can be conducted by using in-house pipelines, or online data 

analysis tools, or a combination of both. The annotation work is distributed among team 

members based on computational skills and domain knowledge. Sometimes it is 

distributed between developmental biologists and computational biologists, for example 

at the Green spoke, and other times it is mostly outsourced to a computational biologist 

lab, such as at the Blue spoke. Some teams, like the Pink spoke, are composed of highly 

technically skilled geneticists and tend to do all the annotation work in house. 

 

Data are released right after data collection, while the presented research workflows 

were still in progress. The sequence data are released when they come back from 

sequencing facilities, – after quality control – in raw formats (e.g., SAM, BAM files). 

Phenotypes data such as images and scans were released after these were taken. As 

discussed earlier, releasing data as soon as possible, prior of publication, is a core mission 

of the DataFace collaboration. 

Building tools for data search, browsing, and discovery 

In this section, I describe how the DataFace participants designed and implemented 

infrastructural solutions for data sharing, retrieval, integration, and reuse. Building tools 

to find and access data revealed to be a complex and multifaceted activity that requires 

multiple specialized skills in database design and management, data curation, data search, 

data visualization, statistical analysis, biology and genomics. 
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The database engineers at the engineering hub are in charge of creating the database 

schema, uploading the data into the database, and designing a user interface to filter and 

retrieve the data. The DataFace leadership was conscious of the fact that database 

engineers needed support from domain scientists to properly understand the data and 

curate the data with the proper metadata. For this reason, the leadership asked each 

science spoke to appoint “go-betweens” individuals that could help the engineers to better 

understand how to organize the DataFace data. Each spoke appointed one person with 

bioinformatics skills. This person, referred to as “the bioinformatician,” is responsible for 

discussing data curation strategies with the database engineers (i.e., pick the right 

metadata), curating the data (i.e., apply metadata), and sending the data over to the 

engineering hub. The hub scheduled weekly meetings between the appointed 

bioinformaticians and the database engineers, during which they discussed best uses of 

metadata schemas, ontologies, vocabularies, and so on. In addition to the weekly 

bioinformatics meetings, the collaboration also set up monthly meetings with all the 

DataFace PIs. As I have already discussed, the process of releasing and curating the data 

was conducted right after data collection. 

 

From an interview with an NIH officer: 

 

Stuart: One of the things I redid between, when I rewrote the RFA, is I remember that the informatics 

people in DataFace I had a very hard time communicating with the Spoke projects. They didn't speak the 

same languages at all. And that was a determent to the Hub, that made their life much more difficult. So we 

required the second time that every project have an informatics scientist on their personnel list. And one of 
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the things the reviewers judged was, is this spoke project capable of speaking informatics? So that C, you 

do not have the two sides to start jabbering at one another and not understanding anything that they're 

talking about. Because C is not a biologist, and the Spoke people aren't generally informaticists, so we 

needed a translator. 

 

Stuart: Everybody had to have a go-between, and there was actually a committee early on, a working 

group of all the informaticists from all the projects and they would work with the hub. So how do you 

curate? So it's lessons learned the hard way through DataFace I, how do we get the data from you? So 

they've made these spreadsheets, you will use the spreadsheets. That was a problem for DataFace One 

because people didn't listen much as we pushed, they didn't understand the need for structured curated 

data. 

 

From an interview with a database engineer: 

 

Richard: I think the ultimate challenge for us is working with the spokes to help identify what will be 

the high-value datasets for the community 'cause ultimately, I think the technology will be important and 

could be a road block, but ultimately having the right data that satisfies the needs for the craniofacial 

research community is gonna be the biggest challenge. And that's something that we as the hub and the 

computer scientist in the group can't independently solve that, but we can work with the domain experts to 

help them identify that. 

Richard: So, we would kind of start by trying to get a rough sketch of what the problems are, do some 

brainstorming internal to the hub. We meet weekly on Mondays to kinda discuss some general ideas. But 

then, we have a regularly scheduled meeting with the informatics team. And so, the informatics team is 

comprised of a minimum of one representative from every spoke. And so, we go there to basically present 

ideas, discuss, collect input. We sort of kicked things off by having weekly meetings with them, and we went 

through kind of a more rapid ramp-up to get a handle on the data and such. But in general, so we hold 

these weekly meetings then with all of the spoke representatives in the informatics team and discuss issues 
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that can be cleaning up the vocabulary, talking about the data structures down to more mundane issues of 

who has data to be submitted this month or coming up, so tracking data submissions and stuff. 

Data modeling, searching, and browsing 

The first step of creating tools for data access and retrieval is to organize highly diverse 

sets of data in a proper database model, so that a user can query the data collection. The 

DataFace search engine, which is called “the data browser,” was developed to work as an 

intermediary between a set of specialized users and the datasets themselves. The platform 

hosts over 700 individual datasets. In the following extracts, Andrea (informatician), 

Hank (computational biologist), and Rose (NIH officer) point out that the DataFace 

database was envisioned as a cross-searchable repository of craniofacial large-scale 

datasets that could be downloaded and re-analyzed by the community. 

 

Andrea: (DF’s platform) It's more an organization of the data. I do not know if... It enables the 

analysis of the data but it's not... It is analyzing the data in terms of characterizing the data but it's not the 

type of analysis that will help you decide whether this gene has or does not have the right place or the right 

role into certain type of phenotypes or certain problems. The way we organize it helps make those analyses. 

 

Hank: …we're just basically translating the data that we get and we upload it to DataFace hub, so that 

the data is available for others to do data analysis. So even though we do that data analysis ourselves as 

well, for the grant, it's just getting the data and processing it, mapping it and making it available in the hub 

so that the wider craniofacial research community can start working. […] they can do other types of 

analysis that we do not do or integrative analysis with other DataFace projects or look for their favorite 

genes or whatever they want to use the data for. 

[…]  

(DF’s goal) It's  kind of comparable to I think what the ENCODE effort has been doing. It basically creates 
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a rich resource of different types of data relating to craniofacial development that can then be mined by 

different research groups with different research interests to get an added value out of those data that will 

help describe craniofacial development, regulatory mechanisms, gene expression profiles, regulatory 

elements and regulatory factors, new candidate genes. 

Rose: Short term, I think I would be happy, and that's where we're at as a repository of data, as a 

reference set, so that we would know what a normal face would look like, so that it could be compared with 

any deviations for diagnostic purposes. It can be a reference set to collect animal models that would be 

reflective of craniofacial birth defects, and serve as a reference that data is reproducible, if others want to 

reproduce any particular data set, so that's fine. Some sort of correlation of, say, a mouse, embryonic day 

10 is equivalent to a human day 60 of pregnancy or day 50 of pregnancy. That's fine in a short term, if 

there's some of this correlation. I think there’s knowledge to be discovered further. It's just that the longer 

vision seems quite challenging. [chuckle] 

 

In the following extract, Stuart points out that enabling effective data discovery is a core 

part of the DataFace mission. He envisions the DataFace online platform to work as the 

“Google” of craniofacial research data.  

 

Stuart: [the DataFace mission] it's encouraging data science, so it's encouraging... Yes, some of it's 

reuse, some of it is like the data commons where stuff will be moved to the cloud, and instead of having to 

download 12 terabytes of data, you move – what's the jargon? – you move the compute to the data; you do 

everything on the cloud. Other parts of it are, for instance, the data discovery index. There are tons and 

tons of data out there and they're in repositories, but you find them; [chuckle] it's a treasure hunt. So there 

is a project going on to try to index all the data and be able to find it, so it's searchable, like a Google for 

data basically. And that's a potential goal for DataFace in the end as well. What's out there that other 

people have generated outside of DataFace that DataFace can now point investigators to where it becomes 

a hub, a real informatics hub where it's like, "Here's all the data. You wanna find something, you do a 

search, we give you URLs." 
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During interviews and informal chatting, the DataFace leadership often referred to the 

DataFace search engine as “the Google” or “the Amazon” of craniofacial research. 

Database engineers, like Richard in the extract below, portray Google and Amazon 

platforms as the “standards” for best practices in data management and retrieval. 

 

Richard: what I do for my work (…) so (consists in) exploring the techniques that have kind of have 

been popularized in the enterprise and professional media and personal or prosumer kind of spaces for 

managing content and then applying those to scientific data management. 

 

The DataFace database was programmed to search and access data at different levels 

of granularity. Scientists can search for a specific gene mutation, or they can visualize a 

list of all the available gene expression datasets. Database engineers looked for ways to 

make the retrieval of specialized data “easy” for all scientists, not only for those 

specialized in the sub-discipline in which the data were collected in the first place. In 

order to do so, the DataFace search engine enables cross-search between datasets 

belonging to different categories, which means that datasets can be retrieved and 

classified from multiple “points of view” (i.e., expertise). Engineers refer to these modes 

of data seeking as “data search” and “data browsing.” Engineers also distinguish data 

search and data browsing from “data discovery.” 

 

In the following interview, Christopher (one of the engineers) explains how he needs 

to build a data model that can satisfy different types of data seeking behaviors. 
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Christopher: Well, yeah, I mean, internally, it's always a resource constraint thing that you're trying to 

figure out what you can do without throwing a huge set of different dedicated specialists at different tasks. 

So it's kind of balancing different roles. Externally, it's more about the domain model and the fact that a lot 

of these groups, what they... They have specialized domain concepts, but they do not necessarily have 

information modelers and highly fluent informaticians or database administrators or anyone who's really 

fluent and can put an interface between them and us. So we're kind of... The database administrator or the 

data modeler is one of the roles that we sort of manufacture out of all of our shared input without having 

an actual person dedicated to it. So I think that's one of the challenges and that probably makes... One of 

the biggest things that makes the project work or not is whether you find data models that work well with 

the computer and work well with the users. 

 

It was essential for the engineers to avoid what they refer to as “the data dump” 

effect. In a data dump, datasets are not explicitly related to each other because that have 

been indexed separately, and, as a consequence, they are difficult to locate and retrieve 

by non-specialized users. As it emerged from my interviews, database engineers often 

refer to the first iteration of DataFace database as a data dump. 

 

Christopher: Well, so the new system we've been rolling out, I pretty much am the architect of it and 

the primary developer of a lot of the actual back end data services catalogs. So I'm pretty happy about that, 

that it's being put to use. Also, we had to take on the Legacy system from the previous iteration of the 

project and basically receive a big data dump from another institution and try to piece it back together and 

get it up and running so that we could serve users in the interim. So all of that was sort of a challenge 

specific to this project and it worked out alright, and we've been migrating the users to, I think, a more 

useful way of getting their accounts managed through public Google-based services, basically, instead of 

having to have our own local team administering accounts, and that was kind of an important thing, I think, 

for us. 

 



	
   129	
  

Christopher: Right, I mean, a big shift was that... The previous system, I would say, was very ad hoc, 

which is typical of the kind of web platforms that it was based on and the decade that it came out of, but it's 

essentially, you ended up having... It was really like a website, a publishing system that people just kept 

piling more things into, but there wasn't much consistency to it. So you'd have different sections of data that 

were only really reachable through a different set of pages and a very different navigation model, and 

different organizations. So there wasn't really any consistency to walk in from the outside and say, "What's 

everything here," and, "What's it about?" And so by moving it into our much more structured or explicit 

database management system, we have a much more specific idea that all the data has a certain kind of 

relational representation and there's a standard search interface where you can browse through it all using 

the different facets of it and find about authorship or kinds of organisms or projects and dig down in a 

much more consistent way across all the different contributors, as opposed to feeling it's almost a 

collection of little mini websites, each of which had a very different authorship and model, so... 

 

To avoid the data dump problem, one of the solutions is to provide granular access to 

the DataFace data, as explained by Richard, one of the hub engineers: 

 

Richard: We do wanna take one big task of the database and we're exploring a big change to the 

structure of the database, which would be to expose... So DataFace's data, since the beginning of 

DataFace, one has always collected data in these big bundles, like a big ZIP file, basically. Large archives 

that have, maybe data on three, four, five, six specimens as opposed to... And so it might be age stages of a 

particular specimen, mouse or... Typically mouse data. And what we'd like to do is split those up into 

individual elements and so that people can see more easily what's in DataFace. 'Cause there's actually a 

ton more data in DataFace than what one might realize by looking at these larger bundles of data. So we 

have a smaller number of large bundles, there's actually a lot of files in them, there's actually thousands of 

individual data points that have been collected in DataFace. And it would be more usable for some users to 

be able to pick and choose things at a more granular, rather than there's a big multi-gigabyte bundle, they 

might wanna be able to get individual... And it would also allow them to search across for maybe more 

specific sub-sets of the data they're interested in. So that's another thing that we'd like to do in this year. 
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In order to provide granular access to different datasets and make them cross-

searchable, engineers need to organize the data in a relational database, which is a 

collections of tables (formally known as relations) containing data belonging to different 

overarching “kinds” of things. Tables contain rows (tuples) and columns (attributes), 

where rows represent individual data points, and columns the properties of the data 

points. Different tables are linked to each other by different sets of relations that are 

expressed in data definition language, a process called decomposition or normalization. 

In this way, each data item has a specific place in a data model. 

 

One of the engineers described as follows what he thinks the function of the DataFace 

data model: 

Andrea: Data model is... It will be kind of like all the different elements of the data and the relationship 

between the different elements of the data. So, how you organize the data. Let's say, I wanna have one piece 

of information that tells me everything about the user, one piece of information that tells me everything 

about the projects that the user work, one piece of information that tell me everything about the files that 

this user works for this project. So, the data model is how you organize these inside of the database and the 

relationship between these different pieces of information. 

 

Data organized in a data model can be searched from different points of view: 

Andrea: We have data in mouse, silverfish and humans. Then the data can also be looked... So that's if 

we look at the data by organism. Then the data can also be looked by different type of assays that are 

performed for samples, in each of these organism. For example, we have genotype, phenotype association 

type of data. We have data for doing expression profiling, enhanced identification. We have... And then we 

can also look at the data by the type of actually, experiment that they're conducting. In that we can 

separate the data in... Or sometimes we kinda tend to see at the data whether it's an imaging type of data or 
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whether it's a kind of by informatics type of data when they do sequence analysis. 

Metadata and ontology work 

In a data model, datasets are described and linked together using metadata and 

ontologies. Metadata and ontologies play quiet distinct roles in the organization of 

biomedical knowledge in database structures. Biologists use metadata to assess the 

quality and relevance of data collected by others (P. Edwards, Mayernik, Batcheller, 

Bowker, & Borgman, 2011). DataFace metadata provide information about the 

experimental settings of the data collection (location, conditions, durations, grow stages, 

etc.), the type of data (images, sequence data, etc.), the file formats of the data (CT scans, 

BAM files, etc.), and the instruments used to collect the data (e.g., lasers, scanners, 

tomography imaging). As discussed in the literature review section, Leonelli argued that, 

in biology, metadata enable data to move from context to context, to became to some 

extent “context independent” (Leonelli, 2016). In the previous sections of this chapter, I 

have shown how, in the context of DataFace collaboration, database engineers and 

bioinformaticians collaborated to select the “proper” metadata that can be used to 

describe the DataFace datasets. In the following extract, Andrea, a database engineer, 

talks about his collaboration with the bioinformaticians to compile the “metadata 

spreadsheet:” 

 

Andrea: They [the bioinformaticians] had to give me all the information that would... Again, that 

would make this... That would characterize this data. That would describe how this data, what this data 

represents, what is contained, what type of data set, what kind of data types, what kind of genes are they 

studying, what kind of type of study it is. Everything that we make. 

[…] 



	
   132	
  

My main interaction with the bioinformatician was to try to, in the first stage, was to try to understand 

the data that we're trying to submit, and that help us define the list of metadata fields that we needed to 

collect for that type of data, and the result of that has been the metadata spreadsheets that generated in 

order to collect their data sets, which there are... We already have it in certain form, and they're evolving 

because sometimes we find that we need to add this or remove that. That's been the main information, so 

the main interaction with them. And then on a normal basis, I interact with them when they need to submit 

the data. If they need to submit a new data set, I direct them to the latest version of the metadata 

spreadsheets, they send me, I look at them, I review them, I tell them... I ask for information, "Why is this 

field not complete? Why do you need, not putting this?" 

 

In biology, data ontologies play an essential role in advancing research. Ontologies 

are composed of two main parts: terminologies and relations. Standardized terminologies 

are used to specify, in a standardized way, information about the data, such as the species 

involved in the experiments (humans, mice, chimpanzees, zebrafish), and the anatomical 

regions that have been tested. Like metadata, and ontological terminologies, relations are 

also “data about data,” but their function is to link a particular piece of data semantically 

and logically to other pieces of data that were already catalogued. Ontologies are means 

of positioning new datasets in pre-existing knowledge organizational schemas. It is by 

ontology work that “experimental data” gain the status of “accepted knowledge.” This 

classification work is essential for knowledge validation and transfer in biology research. 

The process of sequence annotation previously described, which is the core of data 

analysis in genomics research, completely relies on the possibility of locating information 

about a piece of biological data, in relation to all other known biological data. The 

integrated databases of bio-data used for annotation are built on ontological relationships. 
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The bioinformaticians also helped with the selection of the proper ontological 

terminologies to name DataFace data. The process of “naming the data” with ontologies 

was more challenging than choosing the right metadata. Biologists use many kinds of 

ontologies in their work, as this ontology developer points out: 

 

Mario: The BFO, is the Basic formal ontology, and is the parent ontology of all ontologies. Then, there 

are ontologies for different domains, you have anatomy ontology, you have physiology ontology, you have 

pathology ontology. Those are different kinds of ontologies. Ours is anatomy. So there are species-specific 

ontologies, there's the human anatomy ontology, there's mouse anatomy ontology, there's zebrafish, there's 

frog, there's worm, there's fly, all kinds of species related ontologies. There are ontologies on drugs, there 

are ontologies for protein, then you have the gene ontology. So, all kinds of ontologies you will find out 

there that's related to the different biomedical domains, different species, different procedures, even 

laboratory procedures, laboratory results procedures, there are ontologies being developed for those. 

 

For example, the community had to decide how to name similar genes that appear in 

multiple model organisms. Multiple naming structures exist for these similar genes; 

specialized thesauri can be used to name these genes in different ways, depending on the 

species. At the same time, overarching ontologies (also called “bridging ontologies”) can 

be used to convert the specialized names in a common umbrella term that can be used to 

identify a group of similar genes from different species under one single name. In this 

process, the database engineers were very careful not to develop new naming systems, 

they relied instead on the bioinformaticians to get guidance on using existing, established, 

and authoritative sources.  

 

Richard, the database engineer, explains that the best ontological term is the most 
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widely accepted: 

 

Richard: […] our method for picking which ontology to use, is essentially to look for external, 

established ones that are considered the most authoritative. Picking one in the end is probably somewhat 

subjective, but you look for the one that is gonna have the most adoption and be the one that's most broadly 

accepted. And so that's what we try to do. And so that has meant things like Jackson Lab, ZFIN, for 

Zebrafish, OMIM codes for human... 

Naming new data 
 

One of the challenges that emerged with describing phenotypes with known 

ontologies (e.g., OMIM codes for human phenotypes, which provides codes for 

diagnosis), is that some phenotypes studied by the DataFace community were not 

included in these established ontologies. These anatomical structures or developmental 

processes were not present in these standardized ontologies because they were just being 

discovered by the DataFace scientists. In order to solve this issue, the database engineers 

consult “ontologies experts” to develop new names for these novel phenotypes. In the 

following extract, Richard explains that whenever the database engineers find a piece of 

unknown data, they need to “push that back upstream” to the ontology experts. 

 

Richard: So, Jackson Lab may have anatomical terms... Or I think they're the one that runs the Mouse 

Atlas and they have two different versions of this Mouse Atlas, or an anatomical ontology. So while we 

might wanna use one, they may not have terms to cover the many bones and sutures of formations and 

structures of really specialized craniofacial, especially abnormal development. They may not have that 

term. And so we are always running into situations where there's a term that's not covered. And that came 

up at our meeting […] we run into situations where there is a term that does not exist. And then what we 

wanna do, is push that back upstream to the teams that are running those ontologies. 
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Examples of well-established teams of “ontology experts” include the information 

professionals at the Ontology for Biomedical Investigations (OBI) initiative (for animal 

images data), the Gene Ontology (GO) (for gene expression data), and the Protein 

Ontology (for proteins). In particular, the OBI ontology defines more than 2500 terms for 

research assays, devices, and objectives. Richard describes further how the process of 

going upstream to name new pieces of data works in practices. 

 

Richard: Each of them will have forms to say “submit a new term.” I mean in general, I think that's a 

general practice that most of them have, 'cause they wanna encourage people to submit terms to them. So 

there will be either somebody you email, somebody you know or generally maybe something on their 

website, that let's you go and contact them or a form that you can fill out to say, "I have this new term or 

this new code, and here's a description." They have something to fill out and you submit it to them and they 

fit it into their ontology or maybe come back to you. So basically, that's what I would call going back 

upstream. We're the downstream users of their ontologies, but if we had a term that's... If we had something 

that needs to be named and there's no name for it, at least in their ontology, then we would go back to them 

and submit it back upstream to them. And then, it gets included in the ontology and then we can get an 

official term from them and an official identifier for that item and include it in our database. That's kind of 

the process there for working with those other ontologies, and how we deal with naming something. 

 

However, it turned out that the scientists who collected the data in the first place 

sometimes disapproved the terminologies suggested by the ontology experts. As Richard 

points out in the interview extract below, there seems to be a disconnect between how the 

ontology experts suggest to name the data, and how the scientists would name them. 
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Richard: Building up these ontologies is itself an output of the scientific process. So some of the 

tension that happens too, is that these ontologies are developed by very well-meaning and often very bright 

informaticists or computer scientists, but they're not necessarily the bench scientists. And you'll have 

somebody who's the biologist, who's actually a geneticist or anatomist or whatever they may be, and they'll 

say, "But this term does not really describe it right." Or, "This is kind of a weird term." Or, "I have no idea 

what this means." And so despite the many terms that they have to choose from, they do not necessarily 

always find one that they think is right. And so that's an interesting problem 'cause we do not necessarily 

have those biologists building up those terms. 

 

Richard: And I think that's one of the things that we've observed from running the DataFace 

consortium, is that you kinda see in practice how at times there's really this disconnect between the 

ontologist and the actual, what I would call really, the domain scientist, or let's just call 'em the biologists. 

And a lot of people who do those, have come from a biology background. So, we just try to do the best we 

can with accommodating them and encourage them to use the terms that are in the control vocabularies 

and then the process is, if we find something where we do not have a term... Because craniofacial research 

is a specialized area. 

 

The “ontology spoke” and the human anatomy data 
 

The DataFace ontology spoke is in charge of supporting the development and 

selection of ontologies of imaging data related to anatomical parts in humans. 

Specifically, the spoke provided consultation for: 

• Identifying standardized terminology for human phenotypes; 

• Mapping species-specific ontologies (translational research); 

• Annotate human malformation genotypes and phenotypes. 

 

Mario is the principal investigator of the ontology spoke. Mario is a senior figure in 
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the human-anatomy ontology community. In collaboration with his colleagues, Mario 

designed in the late 90s the first version of the “Foundational Model Anatomy” (FMA), 

which organized for the first time human anatomy images in semantic relations. The 

FMA contains over 180.000 terms organized in over 104 over-arching classes and 150 

different types of relationships, “from the whole body to the smallest structure, the 

macromolecules.” Before the FMA was developed, human anatomical images data were 

named using controlled vocabularies provided by the National Library of Medicine 

(NLM). Mario and colleagues had the idea of organizing anatomical terminologies used 

to describe images semantically, linking terms to each other. The FMA was also different 

from the previous systems of classifying anatomical images because it organized 

ontological relations of anatomical parts not based on shared attributes (as it was done 

before), but bases on structures and physical properties. So, for example, if before hearth 

would have been classified as “a cavitated organ,” in Mario’s ontology would be 

classified as a “pumping organ.” Mario and the team called themselves the “structural 

informatics group” (SIG). 

 

During an interview, Mario highlighted that is very important to design ontology 

relations based on one coherent principle, and not more than one. He refers to this 

process as “putting data in proper boxes.” 

 

Mario: We were able to put them [terms] in their what we call proper boxes. So it's easy to now 

understand what the heart is, what the cavity of the heart is, what is the surface of the heart. They're not all 

the same thing, they are different things. But there's a relationship between them. The surface of the heart 

bounds the heart, and the lines bound surfaces and points bound lines. So those are the relationships. So, 
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we have now the ontology built based only on structure, nothing else. We do not base it on physiology or 

function. In building an ontology, it's necessary to be able to have a good ontology that is logical, that is 

clean, that is organized. You have to base it only on a single context. In this case, just structural, physical 

properties. No function, no pathology or any other context. 

 

The SIG team developed over 150 hierarchical relationships based on biological 

structures: 

 

Mario: I will send you the publication on that. Okay. So the 150 relationship meaning, by structural 

relationship, I meant part, regional part, constitutional part, membership, systemic part, adjacency 

relationship, connectivity relationship, developmental relationship, the heart developed from this and this 

developed from that or this gave rise to that. So those are examples and there's more than 150 

relationships. Now, the 104 classes are related to each other, by more than 150 relationships or properties 

resulting in about 2 million relationships between... There are more than 2 million relationships between 

the different classes, in the last 20 years that we have worked on the FMA. 

 

To create the FMA ontology, Mario and colleagues followed the best practices for 

building ontology promoted by the Open Biological Ontology (OBO), which advice to 

build ontologies using a single inheritance principle. Mario is convinced that the fact that 

the FMA was organized around one single principle (structure) contributed to its wide 

scale adoption. 

 

Mario: […] And so, while we were developing the Foundational Model of Anatomy there were also 

other ontologies being built in anatomy, but they did not follow the best practices in building proper 

ontology. This is based on that group, the OBO. And so, over time we became the only big anatomy 

ontology in the world. 
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Another challenge that the FMA designers had to deal with was the normalization of 

redundancy among terms. 

 

Mario: So I give you example, the thumb. Okay? In some institutions, they refer to it as the first digit of 

the hand. This is the first digit. So let's say, in one study, in one group, they're studying injury of the thumb. 

They would describe it as injury of the thumb but another institution would record it more formally as 

injury of the first digit of the hand. If you do not associate the two, you would not know that they're one and 

the same. So that's what happens in anatomy. This is very common in anatomy. People either come up with 

their own terms in describing, especially if it's a newly discovered segmentation of a structure. What I 

mean by that is that the more people develop different modalities, say either in imaging or in diagnosing, 

they started subdividing parts and the newly subdivided parts do not have new terms and they create their 

own terms. And what happens is, one institution may call it one thing, the other institution may call it 

another thing. Or even worse, one may call it one thing to refer another thing, use the same term but refer 

to a different structure. So those are the kinds of things that we want to, what we call accommodate and 

reconcile in the FMA. 

 

For the DataFace project, the SIG updated a section of the FMA dedicated to 

craniofacial regions. They called it the Ontology of Craniofacial Development and 

Malformation (OCDM). The new OCDM not only covered human phenotypes, but it also 

expanded to map human phenotypical ontological terms to mouse and zebrafish 

phenotypes. The Jackson lab provided terminologies for the mouse phenotypes, while the 

ones for the zebrafish were downloaded from the ZFIN platform.  

 

Below, Mario explains the process of mapping ontologies from different species 
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(identification of evolutionary homology). 

 

Mario: So the mapping, a lot of it is based on what you call the species evolution approach, meaning, 

for the development species, this particular structure became the upper limb for the mouse and then it 

became also the upper limb for the human. So in that case, we would say that, that's a homology between 

the upper limb of the mouse and the upper limb of the human. And what about with the fish, is it the fin? 

Because the fin is actually the homology of the arm for both the mouse and the human. So, the mappings 

that we have for the mouse and the human is more extensive than the human and the zebrafish and that's 

because of the information that is available. It's actually very difficult to find information, and the other 

thing is we need to have verification from the domain experts, and sometimes it's also hard to get the 

verification from domain experts. 

 

The SGI group first mapped human ontologies (A) to mouse ontologies (B), and 

human ontologies (A) to zebrafish ontologies (C), separately. The team is now in the 

process of evaluating whether it is doable to map mouse (B) and zebrafish (C) ontologies 

by inference (if A = B and A = C, then B = C). One of the problem of this translation 

work is that certain human phenotypes do not exist in other species, such as the mouse 

lacks the uvula and the philtrum, and vice versa, certain anatomical features in the mouse 

are missing in humans. 

Mario describes how different expertise from multiple teams are involved in the 

process of ontology mapping: 

Mario: So the framework, I'm using a template. A template that we have developed from the human. 

And then that template is being used for the mouse and then being used for the zebrafish but also being 

adjusted based on certain requirements that are different for mouse and different for zebrafish. And for that 

part, I can't do that. I have to go to the mouse and the zebrafish expert to give me the proper guidance in 

building that. And many of the contents will come from them because I'm not... I do not know... I'm not a 
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mouse or a zebrafish expert. 

 

The ontology spoke also helped with annotating genotypes and phenotypes related to 

malformation. As Mario explained, the community is very much interested in this 

activity, however, it is also the most challenging one. The construction of ontologies for 

malformation data is a complex process. For example, the anatomical ontology for the 

Apert syndrome would be based on a set of “observed abnormalities,” to use Mario 

espression, in humans, such as wide nose, small head, small ears, protruding jaw. This set 

of features that characterize the Apert syndrome need to be related to specific genotypes 

that explain how these structures came to be. However, each feature can be related to 

multiple genotypes, and one genotype can be related to multiple features. For each 

feature, the ontology needs to specify which genes are mutated, and also at what 

developmental stage they mutated. The same need to be done for protein mutations. 

Ideally, the goal of the OCDM is be to map all the malformation phenotypes with all the 

genes and proteins mutations across species in a single knowledge representation schema. 

Most of the information needed to develop such a schema already exist, but it is scattered 

in multiple databases. Mario refers to “data discovery” the process of finding links across 

different pieces of information and organize them in an ontology of relations. This is 

what labs members referred to as data annotation process.  

 

Mario: […] data discovery is... You're now able to access, be able to get to the information out there 

that already exist, and then you come to discover. You discover a new mechanism or you discover a new 

abnormality, or you discover a new pathway while you're navigating information and while you're looking 

for some data integration. That's the part that’s very exciting for the DataFace consortium. And that's the 

part that we're working on in a very early stage.  
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Below, Mario explains in details how the OCDM relational ontology can be used to 

annotate data for the Apert syndrome. 

 

Mario: Apert has component phenotype, broad nose, high palette, and so forth and so on. You will see. 

Has genotypic abnormality. 

Mario: Okay. So, the phenotype are the things that you can see. Broad nose, high palette, hypoplastic 

midface and so forth. Genotypic is the abnormalities in the genes, so that means the Fibroblast Growth 

Factor Receptor 2 gene is abnormal. If I go, say, to broad nose, if I go to broad nose, it takes me to, "Broad 

nose is a pathological nose." 

[…] 

Okay, so now when I go to the genotype, Fibroblast Growth Factor Receptor 2 abnormality, it's 

otherwise known as FGFR2. So the Fibroblast Growth Factor Receptor 2 abnormality is a fibroblast 

abnormality, is a autosomal dominant abnormality, is a genotypic abnormality. It tells you what type it is, 

but that's not it. So if I go to this class, it would say that it is a genotypic abnormality observed in Apert 

syndrome. It would also say that it's a genotypic abnormality observed in Beare-Stevenson cutis gyrata 

syndrome. 

 

Mario: It would also genotypic abnormality in Crouzon syndrome and the protein involved is and I 

give the URL. This [1:02:04] ____ an external ontology which is the protein ontology, and the protein 

ontology will now tell you what are the things associated with that. See how you can navigate information 

from one to another to the protein? These are the kinds of abnormality, there's a mutation in the FGFR2. 

So if I go to Beare-Stevenson syndrome... So there's three right now they've identified associated with that. 

At least that's important for the DataFace group. If I go to Crouzon syndrome, now it would also tell me 

what are the phenotypic abnormalities for Crouzon syndrome. And I say mandibular prognathia. 

 

Mario: If I go to prognathia, it would say it's a prognathism, it is abnormality of the jaw and that it is 

observed in Crouzon syndrome. And it's a type of prognathism. So there's a lot of things that can be 



	
   143	
  

developed, all this relationship. For example, when we go now to this gene and its URL, and if they have 

used this as the annotation for some other disease in another institution, another study, then we can access 

that through that relationship. 

 

Mario started working on the annotation of malformation data in July 2017 and he 

will be presenting the result to the community in the next year or so. A list of the non-

DataFace related projects that adopted the generic FMA ontology developed by Mario 

and his colleagues is available online. 

 

Mario: So once we have finished this, we will present this to the DataFace experts and say, "Okay, this 

is what we have now, how do you want to use it and what else do you need us to put in there?" You have 

pictures, associate those pictures with any of these terms. If you label your pictures with this, then this will 

already help you navigate all other attributes or properties associated with that particular label. 

 

By analyzing how DataFace participants built tools for data access, a diversity of 

practices for data curation and integration emerged. First, database engineers, in 

collaboration with the bioinformaticians, developed metadata schemas to curate the data 

right after data collection (curation “before the fact”). This first level of curation helps 

scientists to gain information on the quality and relevance of others’ data. Database 

engineers also collaborated with the ontology experts to properly “name the data.” By 

doing so they were able to bring multiple terms that refer to the same biology entity 

together, and standardize the naming for novel biological entities. Overall, the use of 

metadata and ontology terms enabled database engineers to build a cross-search data 

browser that access data at different levels of granularity, and avoid the “data dump” 

effect. DataFace data are integrated at the search and browsing level. A next step would 
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be to organize the data using ontological relations such as those envisioned by Mario and 

his team. 

 

Tools for data discovery and visualization 

Scientists cannot possibly be aware of all the datasets hosted in the DataFace 

platform. The collaboration developed some tools to help scientists to gain an 

understanding of what is inside the DataFace’s repository, without having to access or 

download datasets one by one. These are referred to as “tools for data discovery.” The 

engineering hub developed some of these tools, while others were developed by the 

science spokes. For example, the “Mouse Matrix” was developed by the engineering hub 

and is available on the homepage of DataFace’s website. The Mouse Matrix allows 

scientists to get a glance of all the experimental data related to mouse that have been 

made available by the DF participants and are hosted on the DataFace repository. The 

datasets are organized along two axes: mouse age (y) and anatomical region (y). 

Intersections are color-coded in relation to the type of experiments conducted. By 

clicking on an intersection, the researcher can visualize a list of datasets available for 

download. For example, if a researcher is interested in knowing what datasets are 

available for the mandible at the E12.5 stage, a pop-up window will show all datasets 

available for download, in this case five datasets. 

Participating spokes developed multiple tools for data discovery, in collaboration or 

independently from the DataFace engineering hub. Some of these tools are hosted on 

individual labs’ servers, and accessed through the DataFace main platform. Some others 
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are hosted on the DataFace’s servers. Some tools combine anatomical images and scan of 

humans or animal models, so that the user can explore known facial features in an 

integrated way. An example is the “CranioGui Virtual Machine,” which is available for 

download on the DataFace website. A list of all the data discovery tools developed by the 

DataFace Consortium spokes is available online on the DataFace website (DataFace, 

2017). 

In the interview extract below, Christopher (a database engineer) explains that data 

discovery tools developed by the spokes independently from the engineering hub were 

treated like “black boxes.” Engineers linked to the main DataFace platform, but they did 

not operate or modified them. 

Christopher: There are some things that DataFace considers applications. I do not have much 

familiarity with it, there's some little calculators and things that are out there, and there might be some 

client side applications that I think we still distribute, you know, it's developed by one group and then we 

allow that. We try to provide a place where they can post it for download, but it's essentially not a website 

function. It's just... It's like a local imagery or tool that you could... You could download the dataset that’s 

in DataFace and then run this tool on it, so it's kind of a black box from our point of view. 

One of these tools, the “Human Genetic Analysis Interface,” was developed by the 

Pink spoke (also referred to as the “software spoke”), and it is currently released in beta 

version. The interface allows researchers to visualize theirs’ and others’ genomics data at 

a summary-level (i.e., p-values) in a semi-automated way. In craniofacial GWAS, p-

values represent an estimate of the probability of certain facial traits to be associated with 

certain genes (Qu, Tien, & Polychronakos, 2010). Normally, p-values for GWAS studies 

are generated by using a command-line interface called PLINK. By functioning as a 
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graphic user interface (GUI) to the command-line software PLINK, the Human Genomics 

Interface automates the visualization of p-values. 

 

Figure 8: An example of summary-level visualization of genomics data, in the “Manhattan Plot” format. Source: 

the DataFace website. 

Visualizing summary-level data is a way to gain important information about others’ 

data without having to directly access, download, and process others’ “raw” datasets. 

Automating the visualization of p-values enables researchers who have low 

computational skills to access this type of information independently, as opposed to send 

the data to a computation lab. But it also saves some time to the computational biologists 

and statisticians who want to run secondary analyses. By using the interface, 

computational biologists can visualize p-values to verify whether the datasets are worth 

downloading and re-analyzing. In the interview extract below, Emanuela, who is one of 

the human geneticists involved in the design of the platform, describes the goal of the 

interface: 

Emanuela: The tool serves a couple of purposes. For the people who did the study [i.e., who collected 

the data], it's an easy way to look up the results without having to write a couple of lines of code to pull 

data out of a text file. You can just put the region in that you're thinking of and show the results. For people 

who are more animal model collaborators, they often will contact us and say, “I study this gene. I think it 
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causes clefting. Is it associated with clefting?” And then we have to then pull the results out of the database 

and what this tool allows them to do is to look that up themselves and then see if there’s a result. 

 

Emanuela: And if they still need help interpreting that p-value, then we can help. But it lets them do it 

for themselves without constantly having to go to somebody else and then wait for us to do it, it's 

immediately available. And then it also lets people who might be statisticians and statistical geneticists who 

do not wanna download the data or go through that process, see the results, and decide if they want to go 

through that process or see if the question that they're interested in could be answered by getting the data 

or collaborating with the group that has the data. 

Emanuela: It's mostly a visualization tool. It also saves you a step. […] It saves that step of providing 

that visualization that someone would do anyway. […] PLINK (software) runs on the command-line and it 

operates with a series of flags. You load your file and say what parameters you want to use for the analysis 

and it can do most large-scale GWAS analyses in a straightforward and fairly user-friendly way to do it. 

We envisioned the tool being basically an interface to PLINK so that people can run their own analyses. As 

easy is PLINK is to use, it's just as easy to use it incorrectly, so PLINK will not tell you, “You have trios. 

You shouldn't run a case-control analysis.” It’ll let you run a case-control analysis on trios. That's not the 

analysis you should be doing.” 

 

The Human Genomics Analysis Interface enables scientists to gain relevant 

knowledge about others’ data without having to directly access, download, and manually 

process individual-level datasets. Accessing summary level data, instead of downloading 

and re-processing raw data, is particularly useful in the context of GWAS studies. 

Accessing information about genotypes and phenotypes data from multiple GWAS 

studies help craniofacial researchers to establish meaningful relations between genes and 

facial shapes. Some GWAS are conducted by comparing two or more populations, some 

within one population, some on affected patients, and some, like the one conducted by 
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the Pink /software spoke, on general population. By visualizing p-values of genotypic 

datasets collected during any GWAS study, the Human Genomics Analysis Interface 

allows the possibility of integrating of knowledge across multiple GWAS studies. 
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Disciplinary configurations: craniofacial research as team science 

 

 

 

 

 

 

 

 

 

 

 

 

DataFace’s teams are highly interdisciplinary. I identified three overarching 

disciplinary configurations that represent the DataFace participants’ backgrounds and 

specializations. These are (1) the experimentalists, (2) the bioinformaticians, and (3) the 

informaticians. The disciplinary boundaries between the experimentalists, the 

bioinformaticians, and the informaticians are highly unstable. Some individuals belong to 

one configuration, while others have mixed educational backgrounds and training that 

allow them to practice in more than one configuration. At the same time, each 

configuration holds a defined set of skills and research objectives that shape the way in 

which individuals belonging to a specific configuration work with data, and think about 

data reuse. 
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I use the expression “the experimentalists” to refer to those individuals who are 

primary responsible for carrying out the lab experiments. Experimentalists have an 

educational background in developmental biology, molecular biology, or human genetics. 

For example, Kristina at the Blue Spoke, and Jane and Hazel at the Green spoke conduct 

the experiments at these specific sites. In the labs, the experimentalists are heavily 

involved in the collection of the sample data (e.g., tissues or blood from patients and 

animals), in the data production (e.g., DNA extraction, collection of imaging data), and 

also in the contextualization of the preliminary findings obtained by the statistical 

analysis (literature review and data annotation). These individuals are normally highly 

specialized in the investigation of a restrict set of biological phenomena, like a sub-set of 

genes involved in oral clefting, in the case of Kristina, or the developmental process of an 

embryonic tissue, in the case of Jane. Kristina and Jane are the experts of these biological 

entities and processes. Traditionally, “wet lab” biologists are portrayed as those who 

manage bench experiments and handle biological material “in vivo” and “in vitro,” as 

opposed to computer analysts and statisticians who conduct data analysis “in silico.” Far 

beyond simply handling biological material, the experimentalists I interviewed and 

observed actively contribute to the knowledge production process with their specialized 

knowledge. For the experimentalists, the results obtained from statistical analyses are 

indications that something interesting might be happening, but they cannot be sure until 

they review all the relevant literature on the subject. Experimentalists are in charge of 

separating the noise from the signal by functionally validating statistical analyses and 

find proper explanations of why biological entities behave the way they behave. 
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The experimentalists who work in clinical settings can collect and access human 

sequence and imaging data. Those specialized in model organism research cannot directly 

access or use human data. This is because experimentalists who work in clinical settings 

normally have also a Medical Doctorate, which allows them to have access to patients 

and their data. When animal model experimentalists need to access human data, they can 

do so by obtaining an IRB approval, or by collaborating with a human geneticist who is 

already clear to obtain the data. For this reason, DataFace’s mix teams of animal and 

human geneticists gave the opportunity to animal models specialists like Kristina to have 

access to human data. As I have showed, for Kristina this was the main advantage of 

being part of the DataFace collaboration. 

 

Among the DataFace participants, a distinct group of individuals self-identify as “the 

bioinformaticians.” These individuals have a background in computational biology and 

bioinformatics, sometimes in addition to a traditional biology degree, but not necessary. 

Daniela at the Blue spoke, Jane at the Green spoke, Emanuela and Julieta at the Pink 

spoke, serve as bioinformaticians in their labs, although in very different ways. I 

identified at least three different ways, or sub-configurations, in which bioinformaticians 

practically contribute to knowledge production in the DataFace collaboration. 

 

The first sub-configuration is “bioinformatics as a service.” In the Green spoke, Kaine 

provides a bioinformatics service to the lab researchers when he obtains the sequence 

data from the sequence facility, processes it for quality control, and returns it to the lab 
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for data analysis. Each DataFace spoke appointed a person to conduct this type of work. 

In few cases, this person would be a stable member of the lab, such as for Julieta at the 

Pink spoke. Often this person would be someone working in a near-by facility or lab, like 

in the case of Kaine at the Green spoke and Daniela at the Blue spoke. By talking with 

the bioinformaticians involved in the DataFace collaboration (N=9), it emerged that is 

quite common for an individual with bioinformatics expertise to be asked to perform 

sequence data quality checks for researchers working on different labs. Sometimes credit 

for this kind of work is given by including the bioinformaticians as authors in the related 

paper, or by sharing grant resources. 

 

The second sub-configuration is “bioinformaticians as statisticians.” These 

individuals possess the statistical knowledge to run the analysis (e.g., gene mapping) of 

the “raw” sequence data. As I showed in section 3 and 4, this analysis is conducted using 

ad-hoc software pipelines that rely on the access to a set of in-house, as well as publicly 

available, databases (e.g., OMIM, GEO), analytical and visualization tools (e.g., the 

Genome Browser), as software packages (e.g., Python, R). These analysts possess 

statistical skills and are well versed in the biology domain. This mixed background 

allows them to run statistical analysis “in silico,” and to come up with hypotheses of 

gene/protein functions and regulatory processes (e.g., Daniela’s gene list). 

 

Finally, bioinformaticians can also be “software and tool builders.” Builders develop 

all those pipeline components that are used by the analysts to perform statistical analyses. 

These include algorithms for the analysis of different data types (e.g., RNA-seq, Chip-
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Seq, and GWAS), software packages for data analysis (e.g., Package Gene Set Analysis, 

GSAR, in R), and tools for data visualization (e.g., the Genome Browser). The Human 

Genomics Analysis Interface developed by the Pink spoke is also one example of these 

tools. As we have seen, the builders working at the Pink ’s spoke designed the tool under 

the supervision of Emanuela, who has a mixed background of computational and 

experimental biology, but she is not a builder herself. The Pink spoke was the only spoke 

with builders in their team. As a matter of fact, the consortium didn’t explicitly fund the 

development of tools for data analysis, which, as we have already seen and I will soon 

discuss further, are central in the process of data reuse and analysis. 

 

As it should be clear by now, individual researchers belong to more than one 

disciplinary configuration. Daniela runs statistical analysis for the Blue spoke, while Jane 

does it for the Green spoke, and Julieta for the Pink spoke. However, Daniela also takes 

care of the data quality for the Blue spoke, while Kaine does the quality control for the 

Greens poke. Jane at the Green spoke conducts experiments and does also the analysis, 

but she does not do quality control. Julieta is an analyst, but does not do quality control 

either. Emanuela helps with setting up the experiments and performs data analysis, and 

she also supervises the development of tools for data analysis. 

 

The last disciplinary configuration is “the informaticians,” or the informatics experts. 

The informaticians are experts in knowledge organization, which means in data 

modeling, management, and curation. Both database engineers and ontology developers 

re informatics experts: they do not participate in the experimental procedures, or in the 
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design of the research studies, and they do not develop or use tools for statistical data 

analysis. Database engineers contribute to the organization of DataFace data in database 

structures that enable researchers to archive, retrieve, and cross-search different datasets. 

They use metadata to de-contextualize datasets, make them as much as possible “context 

dependent.” Ontology experts apply standardized terminologies and ontological relations 

to the datasets to allow scientists to re-contextualize the data in the larger schema of 

biology knowledge representation. One significant aspect is that, even if their roles are 

complementary, in the DataFace project database engineers and ontology experts hold 

different educational backgrounds and possess different sets of skills. Database engineers 

are trained in computer science and are specialized in data modeling, they do not have a 

biology or life science background. On the contrary, ontology experts do not have a 

traditional engineering background, but they hold biology and medical degrees, and they 

learned “ontology work” during their careers as biomedical professionals and educators. 

Merino, for example, developed the “Foundational Model Anatomy” mainly as a tool for 

teaching anatomy to medical students.  

 

Among all my interviewees, I did not find one individual that was at the same time an 

experimentalist, a bioinformatician (in any sub-configuration), and an informatics expert. 

However, I did find that most participants had some combination of the above expertise. 

In particular, most researchers conduct a mix of experimental and data analysis practices. 

I also observed that, among the DataFace participants, the database engineering and the 

ontology work are the most isolated and specialized practices. In other words, while most 

experimentalists conduct data analysis (either statistical analysis or data annotation), I did 
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not find experimentalists practicing data management or curation beyond the consortium 

explicit requirements. This is true also the other way around. During our conversations, 

DF’s database engineers and ontology experts stressed the fact that they are not involved 

in experimental practices or data analyses. 

Craniofacial researchers and data reuse 

At the time of my data collection, the DataFace participants either just deposited – or 

were in the process of depositing – the data that they collected. For this reason, our 

conversations on reusing others’ data for knowledge production did not solely focused on 

the datasets collected in the context of the DataFace project. I instead centered my 

analysis on their “routine” data reuse practices. I was particularly interested in identifying 

a typology of ways in which scientists reuse open data that they did not collect 

themselves. Findings in this section are based on the examination of interview and 

observation data from six participating spokes, and of the papers published by the 

participants in the study. 

 

My conversations with the scientists really centered on one simple question: Can you 

show me how you reuse open research data that you did not collect yourself in your 

research process? And I would clarify: I’m particularly interested in understanding how 

you reuse data that you did not collect yourself – or your lab – to produce novel 

knowledge. 

 

Some scientists would immediately answer something on the line of “I have never 

reused others’ data.” Others would say that they reuse others’ data daily. After talking to 
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few scientists, I realized that when I was asking about “reusing others’ data,” the 

scientists would understand “reuse” in different ways. Based on this initial observation, I 

started to ask more detailed questions and, soon, a quite clear pattern begin to emerge. 

Scientists would think about reuse as two distinct but also intertwined practices. When 

asked about reusing others’ data, some researchers thought I was asking about accessing 

others’ data at a summary level and through data visualizations tools. Others would think 

of accessing others’ data at a “raw” level in order to run secondary statistical analyses. 

The more I would ask questions about the challenges of reusing data in either ways, the 

more it would emerge that such reuse practices come with specific and distinct sets of 

socio-technical concerns. In what follows, I characterize how and why – from a socio-

technical point of view – re-using others’ data by accessing them at a summary and 

integrated level is different from re-using others’ data by accessing these as a “raw” level 

to run a secondary statistical analysis. 

 

The fact that participants reported very different ideas of how data could be reused 

for, and by whom, should not come as a surprise. Science data are often reused in 

unpredictable ways (Baker et al., 2015). Given the fast-evolving and deeply 

interdisciplinary nature of contemporary scientific research, it is often hard to predict 

future reuses of scientific datasets. As we have seen, engineers worked hard to 

accommodate the needs of different types of users by enabling cross-searches and 

developing data discovery tools. However, as I will show in this section and further argue 

in the discussion, different data reuse practices are only partially influenced by the 

technical skills of the data reusers, or by the granularity of the data curation. Issues of 
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trust and the need of collaborative analysis have a much bigger impact on data reuse 

practices. In other words, you can have the best database system and the most curated 

data, but nobody is going to reuse the datasets if the right socio-technical conditions are 

not in place. 

Accessing and reusing others’ data at a summary level 

A daily practice. Most researchers reported to reuse others’ data daily. Others’ data 

are reused daily to set up experiments, to annotate raw sequences, and to interpret 

preliminary findings obtained from experimental practices and statistical analyses. I have 

already showed how Daniela, Jane, and Julieta extensively use databases and other tools 

for annotating preliminary results from sequence and genotypes analyses. Participants 

access others’ data through a variety of digital tools and databases, most of which are 

freely available online. The Genome Browser, the OMIM database, the GEO database, 

and the Jackson lab mouse database are among the most popular databases used by the 

participants in their research routines. Most of these databases provide access to others’ 

data at an integrated or summary level, and through easy-to-read visualizations, such as 

in the case of the Genome Browser (see research workflow #1). In the following 

interview extracts, Akiko, Daria, and Halo, who are also collecting genomics data for the 

DataFace project, discuss the tools that they use to access and visualize others’ data for 

background purposes. 

 

Akiko: I use this Gene Expression Omnibus. For example, what I am thinking right now is we found 

some interesting gene expression changed from our study, but I do not know if it's specific for the disease 

or it just happened in our sample. But if I find the others’ data doing the similar study, I can search if this 

gene also differentially expressed in this type of, in other study. 
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Daria: It's absolutely fundamentally necessary to all research that we do to have the Genome Browser. 

We also will visualize our data this way too. The Genome Browser allows you to upload custom tracks and 

custom sessions and so we do a lot of that to be able to... When we map our data back on to the human 

genome or mouse genome being able to visualize it in this type of portal is really valuable. For NCBI I use 

a lot... PubMed just for literature, search. I also use OMIM a lot, and that is just trying to figure out gene 

function or genetic basis of various human diseases. We also use things... Some of these are integrated into 

the genome browser to like dbSNP and things like that, so we use them primarily through UCSC. 

 

Halo: I think database for me is a place where if I'm looking for specific question like, let's say, I'm 

working with a margin of interest, we found mutation in the gene and we wanna look at the expression. And 

if there is any animal model for the gene, so the database basically makes it easier for you to see if there is 

any things which was done before, so you do not want to repeat what was done, basically. We use human 

genetic databases, databases to look at phenotype like OMIM. We use expression database in different 

animal models, where you look at the variation in the expression of your gene of interest so you will look at 

through this database. So, of course, there is database for mRNA, there is database for protein across 

different species. And we have database for the animal model so either mice or zebrafish, you can look at 

the data of any of this phenotype which was described before. 

 

Databases as maps of small-facts. To use Halo’s expression, researchers use these 

tools to look at what “was done before.” On the Genome Browser, OMIM, and other 

NCBI resources, others’ data – accessed through summaries and visualizations – perform 

as maps of “established knowledge,” or as “small facts.” Researchers use these maps of 

established “science facts” to navigate through their knowledge production journeys. 

These maps provide the researchers with hints on how to causally explain the function 

and behavior of certain biological entities. Researchers use data summaries and 
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visualizations from online databases as reference points, as means of guiding the design 

of their hypotheses, and the interpretation of their findings. Without these resources, the 

knowledge production process would not be possible. 

 

Easy-to-use. Scientists also value online resources like the Genome Browser, OMIM, 

and GEO because of their practicality and their trustworthiness. For example, the GEO 

gene-level database allows users to search and visualize gene expression profiles relevant 

to the researchers’ interests by simply entering appropriate keywords and phrases into the 

search string. Especially for the experimentalists, these platforms represent, first of all, an 

easy way to integrate others’ knowledge, and validate their own knowledge. Whenever I 

asked the experimentalists how and to what goals they would reuse others’ data, our 

conversations focused on the usefulness of these platforms, and on their desire to access 

more of them. Especially for the experimentalists, visualizations of summary-level data 

represent the main way in which others’ data are useful to them. Experimentalists 

stressed the need to have platforms for data integration that are as easy as possible to use. 

Some experimentalists mentioned their desire to have access to a “dream database.” On 

the dream database, one can visualize all the knowledge on a specific biological entity 

simply by typing the name of the entity (e.g., the name of a gene) in a search string. 

Reusing others’ data when data are “raw” 

Most biology databases, including the Genome Browser, OMIM, and GEO, offer the 

option of downloading datasets at a “raw” level. Some databases, such as dbGaP, are 

primary composed of collections of “raw” genomics datasets. I use the expression “raw 

data” to refer to data released at minimal levels of processing. These include, for 
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example, lists of sequences in FASTA, FATSQ, SAM/BAM and SRA formats, lists of 

gene expressions in CVS format, and images and scans in OBJ formats (see table 1 

below). 

 

Table 1: File formats for low processed data. Source: NCBI. 

FastA are text files containing multiple DNA* seqs each with some text, some part of the text 

might be a name. 

FastQ files are like FastA, but they also have quality scores for each base of each seq, making 

them appropriate for reads from an Illumina machine (or other brands) 

SAM holds an alignment of seqs w/qual scores against a template. 

BAM is a compressed binary format for SAM, however it can also be unaligned in which case 

it's more like a compressed version of fastq. 

SRA files are a common format used by the NCBI, EBI, and others for storing reads and read 

alignments. 

OBJ is a geometry definition file format first developed by Wavefront Technologies for its 

Advanced Visualizer animation package. The file format is open and has been adopted by other 

3D graphics application vendors. 

 

As we have seen, the DataFace Consortium intentionally made available the datasets 

at a low level of processing. During my interviews and observations, I discussed with the 

scientists when, why, and under what conditions they decide to re-analyze someone else’s 

raw datasets. This practice is not very common among the participants in this study, but I 

provide an example of a secondary analysis of a DataFace’s imaging and sequencing 

dataset in the next section. As I will discuss, a team of physical anthropologists and 

computer engineers re-analyzed the Pink spoke’s Caucasian GWAS dataset in a study 



	
   161	
  

that aimed at prediction facial shapes from DNA samples. In what follows, I instead 

discuss why the participating scientists do not re-analyze others’ raw data that often. 

When they do, it is in the context of a collaboration with the lab that created the data. 

None of the scientists I interviewed seemed to have downloaded someone else raw 

dataset to run a secondary data analysis autonomously. It emerged that participants tend 

to be skeptical of “big data” that were collected by labs they do not know personally, and 

that were made available prior to publication. 

Big datasets and concerns over quality 

Skepticism toward high-throughput “hypothesis free” datasets. Researchers reported 

to be fairly skeptical toward large-scale survey datasets collected by “strangers,” such as 

the one deposited in dbGaP, or the raw gene expression data on GEO. As I discussed 

earlier, this community is at the verge of an important methodological transition. While 

craniofacial researchers have been trained to investigate one or a small set of genes at a 

time for a long time, they are now facing the challenge of collecting and analyzing 

thousands of genes and related phenotypical variations at once. Among participants, the 

practices of genomics research are not standardized yet, and researchers are in the process 

of figuring out where and how to find value in these large datasets. Several researchers 

seem to perceive “hypothesis free” data obtained from high-throughout technologies as 

inherently flawed, or as big collections of data that could include a signal, but could also 

be all noise. Below I report some conversations on this topic with three researchers 

working in three distinct DataFace participating labs. 

 

Lisa: With high throughput technologies, instead of studying a gene vertically, like for example we do 
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on these projects where we look at PBX mutations and we made all these mouse models that carry various 

PBX mutant alleles. You look at all of the genes of the genome at once. […] Unfortunately, sometimes there 

are imperfections and errors and it's also the nature of the investigations. You cannot expect everything to 

be perfect when you analyze 3,500 mega bases of information in a genome, right, and you look at it all at 

once. Correct?  

 

Sheryl: I think (the field) it's definitely becoming more computational. It probably depends what type of 

craniofacial research you're looking at. So, the human genetics for craniofacial research, I think, is going 

more and more towards whole genome sequencing. And so the challenge there is that you find lots and lots 

of rare variants, and so how do you interpret them? So yeah, just having all of this genomic data and what 

do you do with it? How do you figure out what is the true cause of X syndrome that you're studying or X 

disease or whatever it is. 

[…] So, five years ago when everyone was doing exome sequencing, and kind of grabbing the low-

hanging fruit…looking at the easiest things to find. So, if you sequence a bunch of people with cleft palate 

or something like that, you'll find mutations that are within genes. So now, they're going back in, 

sequencing the entire genome of everyone who still was not solved by that initial survey. And so, our 

research will help in trying to interpret their results of these kinds of things. And so, further down the line, 

you might see eventually, like, "This is a regulatory region that affects this gene, that can be targeted with 

this drug or something." But that's super far away. 

[…] In general, we're not looking at one specific gene, or one specific pathway. All of the assays that I 

do are unbiased. So just looking at active regions across the entire genome, or genes that are transcribed 

across the entire genome... So we end up sequencing the entire genome or the entire transcriptome and 

then using that data to go back and do some analyses in an unbiased way to see what interesting things pop 

out. 

 

Kristina: […] Sounds a little bit bad, but a lot of people like DataFace are generating data without a 

particular question and then they go, "Oh. Look at all this data we have. Let's ask a question." That's 

retrospective rather than prospective. So most of the studies that I do, you knock down a gene and you go 
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look at what happened. That is a prospective thing, you have a question, "What happens if I knock this gene 

down?" You knock it out and you go see. Versus what we're doing now is we are simply defining what the 

genetic construct is. I know that we have questions that are generating this but we're generating a database 

full of data that someone can then retrospectively ask questions about. 

 

Concerns about reusing data shared prior to publication. Several data creators 

reported to be “not sure” about how other researchers could generate hypotheses from 

their “unpublished” data. In the following conversation, Brianna, who is a postdoc in a 

DataFace participant lab, brings up a set of concerns specifically related to the reuse of 

big datasets of raw sequence data in the context of the DataFace collaboration. These 

data, as the reader may recall, are released prior to publication and curated “before the 

fact.” Brianna works in a traditional developmental biology lab, where most researchers 

are pure experimentalists and very few have computation biology skills. Brianna wonders 

how will other people be able to trust their data, given that these are not associated with 

peer-review publications. She wonders whether quantity will compensate for quality, as it 

was suggested to her by some colleagues. Brianna hypothesizes that maybe others could 

access their data and try to replicate them to verify their quality, but immediately reflects 

on the fact that this would constitute a waste of public money, in direct opposition with 

NIH motivations for open data (avoid duplication of efforts). 

 

Irene: What impact do you see DataFace datasets having on craniofacial research or on your 

research, on your work? 

 

Brianna: Well, this is difficult. We were talking, our group was talking yesterday about this that was bit 

hard for us to see how we even will be able to reuse our data or how it will be useful to us in the future, but 
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the hope would be, that some one could look at our data and say, "Oh, I'm interested in this gene and what 

this gene does and here are some people who have posted data related to this." And maybe I can get an 

idea for future research or something like this. 

 

[…] I think it's interesting to think about what kind of relationship this sort of data has to more 

hypothesis driven projects which are the other things that we work on. Usually, we have a scientific 

question or an idea of how we think something works and then we go and try to test it. This is more 

generating data for the sake of having the data and it's a bit difficult for us to see how it could be useful 

because we are so used to thinking the other way. 

 

I mean one thing we were talking about yesterday after this meeting about the XY was, “Well, why we 

should trust this data because it's not peer-reviewed, and we are just putting it on this website.” So if you 

are some other researcher coming on the DataFace website, why would you trust the Lab unpublished 

data. And one thing that one of our researchers said is, “Well, if it's n equals three, maybe you do not trust 

it so much but if it's n equals 100, maybe then you trust it more. But we are not funded for n equals 100.” 

 

I do not know really where that leaves us, maybe trust but verify for yourself although I think the goal 

is really or the vision from the NIH is that you can really use this data in your publications not that you 

would say, “Oh, this is what they found now let's go and replicate it.” And then use the new replicated 

data, the goal would be that you can actually use the DataFace data, I think. But then that's difficult 

because you really do have to trust what other researchers did. 

Data creator and data reuser collaboration 

Several scientists I talked with believed that the data creators themselves are those in 

the best position to re-analyze “raw” data – compared to scientists who were not involved 

in the data production process. For this reason, they reported to re-analyze others’ raw 

data solely in the context of a collaboration with the data creators. Collaboration between 
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data creators seems to help the scientists to overcome skepticism toward large and 

unpublished raw data. 

 

Data creators know the specialized literature. The experimentalists believe that their 

“raw” data need very specialized knowledge to be made sense of. While anyone can find 

patterns in the data, specialized and up-to-date knowledge of the literature related to that 

specific biology phenomenon being investigated is required to interpret the causal 

explanations behind statistical patterns. I have shown how Jane’s specialized knowledge 

in developmental biology guides her through the interpretation of her transcriptome data 

(see the Green spoke’s research workflow). Jane’s data, without Jane’s specialized 

knowledge of how tissues develop in “time and space” in the embryo, would be much 

harder to interpret. In the following conversation extract, Travis, Jane’s colleague, 

evaluates the possibility for others to download and mine their RNA-seq data. As Travis 

points out, these RNA-seq datasets, which are collected at three precise developmental 

stages and in relation to specific embryonic tissues, need a lot of context to be re-

purposed. 

 

Travis: I do not see somebody going in there and... If people want to go into our data and do the type 

of analysis that we want to do, well, they can do that too. I think they would be at a disadvantage though, 

because they do not know exactly how it was... They do not know all the meta-analysis that's associated 

with it. They weren't involved necessarily in the design and the execution. So I think it's more difficult for 

people to get in there and make sense of this… 
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Skills integration. By collaborating with the data creators, specialized and tacit 

knowledge can be exchanged and integrated between craniofacial researchers working in 

different, but related, biological phenomena. Collaboration also allows for work re-

distribution, and skills integration. Computational biologists access knowledge about the 

biological functions behind statistical results and low-hanging fruits, which helps them to 

design thorough hypotheses to be tested in the data. At the same time, experimentalists 

access statistical and computational skills necessary to analyze large-scale datasets. 

 

Hank: I think collaboration is better because then it makes sure that everybody's on the same page and 

they know what's going on with the data and you can... The groups might have complimentary skills. So for 

example, for human data, we have our own GWAS and we participated in a different GWAS. That data is 

on dbGaP and we could just download the data from dbGaP but our preferred method is just to collaborate 

with the group that did that GWAS and work with them and then we're all co-authors on the paper and we 

share the results and we help each other on different analyses and we're always talking about who's doing 

which things and where are the priorities for different groups. So I prefer collaboration to competition or 

doing things independently. 

 

Hank: Today's science is team science. We didn't necessarily answer one of your questions fully, is 

that, people who use big data and people who do not use big data and people that are going to use big 

data, they do not know how to use big data. So a lot of these guys (people interested in reusing big data 

from biomedical research) are MDs, they're surgeons, they do not know how to do what I do (data 

analysis). So, more and more, the projects are becoming team science where you have a bioinformatician 

of some sort, an informaticians of some sort, and a biologist, a bit scientist, a statistician... So data analysis 

and the generation of publishable work is getting more and more difficult as technology gets far and 

advanced, and to even all of these databases. So I know that the PIs could possibly extract data out of 

DataFace. Could they do it in an efficient amount of time? I do not know. Even if DataFace was well-

documented, well-interfaced...there would still need to collaborate with someone like me […] 
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Data creators have access to all and up-to-date annotations. Data creators posess an 

“advantage” to re-analyze their own raw data – as opposed to external reusers –also 

because when they deposit raw data they do not share all the variables, annotation, and 

phenotypes related to the dataset. When researchers deposit genomics raw datasets, 

researchers would normally share a certain amount of information (i.e., annotations) that 

is needed to make sense of the raw data. They would share the “annotations” that are 

known at the time of the data collection. Let’s take as an example a dataset of genotypes 

data from a craniofacial GWAS deposited on the dbGaP database. Let’s supposed that a 

team finds indications in their data of a set of variables to be related to a certainly 

genotypic profile. When depositing a genotype dataset, the team would provide 

annotations and summary level data for those variables (e.g., total number of cavities). 

However, after some time analyzing the data, the data creators could find a better way to 

summarize or present this information, which could make the interpretation of the data 

more meaningful (e.g., surface area affected by cavities). Also, because data creators are 

not required to share all the annotation data related to a certain dataset, they sometimes 

retain the information that seem to be more valuable for a publication. 

 

Data creators have special permission for human subject data. Another reason why 

secondary analyses tend to occur in collaboration with the data creators is related to the 

privacy and safety regulations on human genomics data. The data creators already own 

the permissions that are necessary to analyze the data. For example, because of privacy 

regulations, in order to access raw genotypes data on dbGaP, researchers need to be part 
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of a pre-approved IRB protocol, or to obtain a new one, which can take months. As I 

discussed earlier, gaining an IRB approval to access human data is particularly difficult, 

if not impossible, for researchers specialized in animal models research who do not have 

a degree as doctor of medicine (MD), and do not have access to computational 

infrastructures set-up for sensitive data. 

 

In the interview extract below, Ella, a computational biologist and statisticians at the 

Pink spoke, talks about some of the challenges related to re-analyzing others’ raw 

genotypes data from dbGaP that I mentioned so far: 

Ella: Most genetic studies these days are done on big epidemiological studies that might collect 

hundreds of variables. The genotypes will come directly from the genotyping center into dbGaP, and they 

make you send your phenotypes at the same time. And usually you would sort of negotiate with NIH about 

which phenotypes you’re gonna deposit. And it has to include the ones that are central to the study. If 

you’re studying cleft lip and palate, you obviously put your clefting phenotypes in there. But if you also 

checked these people’s height, and weight, and dental caries, and ear lobe shape, and hair length, and 100 

other things... 

Ella: You do not necessarily have to put everything in. And the other part of that is that, again; since 

you put those data in at the very beginning, you typically haven't done all the work yet to even figure out 

which of those are good variables or which ones you might want to transform or create a calculated 

variable with. 

Ella: For example, when we do dental traits we'll look at... The dentists measure every surface of every 

tooth to see whether there's decay, so that's 120 of these little decay variables for each person's mouth. 

We've never put all 120 of those variables into dbGaP. We come up with some summary, like "total number 

of cavities in your mouth", and that's what we put in. But then two years later after we've been working 

with the data we might decide that a different summary is actually better, like "total number of surfaces 
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that have decay on them" or something, and then we're doing our analysis with that one but this older one 

is still in dbGaP 

Ella: They encourage you to, but it's so hard that you have to be really committed to it... to initiate and 

complete a dbGaP submission on your own. I know it sounds crazy that it's that hard but it involves things 

like descriptions of the variables and documentation that you have the right consents for every sample that 

you've submitted. There's a lot of paperwork. It's for the bureaucracy that makes it so… 

Ella: That's what makes it hard for, for example, mouse people. I have collaborators at Jackson Labs 

which is major, major, major mouse facility. They have a really hard time getting dbGaP data because 

they're not set up for the kind of security you need for human data; they do not have the right computer 

security setups, or even the right people to describe the computer security the way the dbGaP wants it. So 

they're very frustrated that... And because [36:15] ____ that they're not... 

Attributing credit to the data creators 

The choice of re-analyzing others’ data in collaboration with the data creators is also 

related to issues of credit attribution and invisible labor. When collaborating to a 

secondary analysis, data creator and data reuser tend to co-author the resulting paper. All 

DataFace’s datasets were physically collected by early career academics, namely master 

students, doctoral students, and post-doctoral students. Obviously, the principal 

investigators direct the research agenda, and are often responsible for choosing the 

overarching research questions, and to supervise the research design and experimental 

setting. However, the early career academics are those who invested time in collecting 

the data, and they are those who are in charge of conducting the analysis of the data, and 

publish academic papers out of it. I let Kristina speaks for herself about her relation with 

the data she collects: 
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Kristina: Any data is very precious for me because I spend much time to do these all experiments. 

Every data. If I have a good data, I'm super happy every time, which means if I do not have good data I'm 

so sad, and I'll be disappointed for a day. 

Irene: Can you give an example what's good data for you? 

Kristina: The good data is data what I expected or I have this expectation to get this data. So, when I 

inject it, I want to have mutation, but sometime if it does not work, it will not show the mutation. 

 

Kristina has been a postdoctoral researcher for over seven years now. Her goal is to 

work as a researcher in the academia, but she says that she has no idea whether it’s an 

actual option for her. Like many of the post-doctoral researchers I interviewed, Kristina is 

on “soft money” – her job depends on grant money - and she could potentially stay on 

soft money for an indefinite period of time. Getting “good data” represents her only 

chance to publish novel results on the genetic causes of craniofacial syndromes, and 

hopefully obtain a tenure track position. Kristina told me that she felt uncomfortable 

releasing sequence data right after data collection because she was not sure these data 

were worth depositing in the first place. She reported that her experiment was still in 

progress, and she wasn’t sure that the experiment based on these data would show what it 

was supposed to show until her research design would be completed. 

 

Irene: What kind of data would you feel uncomfortable to show to the public? 

Kristina: If I'm working on it, it is still in the progress...the data, I want it (the data) to be complete 

when I show them to the public. 

Irene: Okay. You want it to be complete. Why? 

Kristina: Why? Because I will not be... There's no 100%. So we do a lot of troubleshoot, and so that's 

why I just wanted to make everything happens well. So for one experiment, we do... If this experiment is the 

first time we do, we have to do test experiment, and then we're gonna do real experiment and it will not... 
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Most of the time, it will not success the first time. That's why I wanted to complete everything and show it to 

people because there's no hundred percent. 

 

For Kristina, releasing her data before completing her experimental design is a double 

risk. If the data are “good,” someone else could step in and find patterns before her, and 

take away the only piece of credit that could advance her career. If the data are “bad,” 

someone could find out about it and this would jeopardize her reputation as a researcher 

even before she could gain one in the first place. I discussed with several scientists the 

problem of invisible labor related to the release of large-scale data collections of 

genomics data released prior to publication. Hank, a computational biologist, had a very 

interesting point of view on this issue, where he thinks that this problem will only get 

worse over time. 

 

Hank: I think it is a very healthy push that data should be freely-available. Data generated with public 

funds should be made publicly available. But I think we have to be very careful that in our zeal to make the 

data available, we do not jeopardize the next generation of researchers. […] If you talk to the data 

consumers, there's nothing better than open data. If you talk to people that had to spend two, three years 

setting up a sample collection and then another two years getting the money to generate data with that 

sample, you're talking about somebody investing five years of their life to generate certain datasets, that 

then with a click of a button is downloaded. And that disconnect between the amount of effort that 

sometimes goes into making this data available and then the effort in like, well, I downloaded the data, I 

did all the analysis without having the actual understanding, the concept of what it took to actually be able 

to provide that data to somebody to analyze. That disconnect is problematic. 
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Hank explained to me that computational biologists, especially those publishing in 

bio-statistics journals, increasingly mine multiple large genomics datasets at once with 

meta-analysis techniques that look for novel genes/phenotypes patterns, the so-called 

“long hanging fruits.” When multiple datasets collected by different teams are 

downloaded and analyzed at an integrated level, it becomes a real challenge to give credit 

to each single data collector through authorship or citation. From my interview with 

Hank: 

 

Hank: My worry at the end of the day, and you see that in the field of genetics as well, as a young 

investigator... I'm now talking about the field of genetics, like in genetic analysis. As a young investigator 

in the field of genetics, how do you make a name for yourself these days? How do you get your first R01? 

How do you... What do you do?  

 

Hank: Are you going to propose to do an exome sequencing study, a whole genome sequencing study, when 

there are massive, massive consortia doing tens of thousands of samples. How are you safeguarding your 

next generation of geneticists coming out of that? Is everything going to be commoditized, so that you just 

have computational scientists working?  

 

Hank: You can be a genetics lab that did investigation of syndrome X, syndrome Y. You generate data for 

that, right? You will do a genome screen. 

 

Hank: Now, you... Everything is going to very large datasets, right? Especially for common disorders. 

 

Hank: You want to have sample sets of thousands of thousands, tens of thousands or maybe even bigger 

datasets, which you can only get if everybody starts pooling their samples into one repository and have a 

central organization that types all of that. But then, how do you safeguard all these different genetic groups 

of that sample collection and then want to do analysis? How do you say exactly what you did? What was 
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your part?  

 

Hank: Yeah. What was your contribution? And how do you get recognition for your contribution in that? 

That was... That then becomes difficult when you're talking about a completely different model of doing 

science, right? Because in those large consortia, there are usually analysis groups that are associated, they 

are either going to be one big mass of metadata analysis in all of that, and that's going to be the thing that 

catches the spotlight, right? That's going to be the publication or a set of publications that generate the hits 

and the citations. And each individual group that contributed the sample set, what is their... What is then 

their... 

 

Hank: How do you profile yourself among such a large consortium? And there are going to be winners and 

losers there. And that's, I think... 

 

Hank: I think it's potentially problematic for young investigators. But I think it's the early days, and it's 

going to be interesting to see how that develops in the coming years. 

 

Hank: At the end of the day, people need to be motivated to do research. And if you're working as a cog 

and a wheel for some amorphous big consortium, where you do not know what's actually going to happen 

with the data that you're analyzing would generate, but that it's also very field specific. And I think genetics 

is where this is going to play earlier in our types of fields where sort of the gene-based focus is still very 

much considered [1:00:25] ____. 

 

Hank: And the problem with that is it's going to only appear down the line 'cause people have already 

invested, these data are going to keep flowing for a while. But at some point, people are going to be 

dincentivized to start collecting large datasets and there's going to be a lag between when that's going to 

start appearing down the line. But again, it's as simple as that, basic [1:03:00] ____ but it is a potential 

risk of more open data. That's not to say that data shouldn't be open but there's a risk that we need to be 

very aware of and make sure that we anticipate and that there is all credit and attribution to the people 
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that... 

 

When I asked the scientists what piece of information is the most valuable for them in 

order to decide to run a secondary data analysis on someone else’s data, they would say 

“the contact information” of the person who collected the data. Overall, data reuse seems 

to be a highly social activity regulated by many un-official community norms. Emanuela 

explains how she values collaboration over competition when it comes to re-using others’ 

data. Kristina talks about the “etiquette of co-authorship,” where co-authorship is given to 

those who provide access to closed data, and contribute to their re-analysis. 

 

Irene: Okay. Do you ever download data collected by someone else and run a new analysis asking a 

different research question? 

 

Emanuela: Not usually, no. […] If somebody has an interesting data set and they could do that 

analysis or ask that question, and I try to approach it from like a, "Let's collaborate on this question." kind 

of a thing, instead of, "I'll take your data and do something with it myself." 

 

Kristina: While I was working on my story (research study), I contacted another person who was 

working on the area of chromosome I was working on. He has access to five more databases I didn't get to 

look at, he looked up my gene of interest in those databases to see if anything was of interest for me. 

 

Irene: But the person gave you access to these databases as a personal favor?  

 

Kristina: Yes, basically the thing was authorship. If we were to find out something which I was going to 

publish in my paper, I would have given him authorship definitely and acknowledged his thing, because it 

just makes the story more interesting. I will obviously acknowledge that this part of data is from these 
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collaborations and this database, and this guy has helped me with it. We will offer them authorship. It is an 

etiquette, and then if they want it it's fine, if they do not then we acknowledge them and that’s it. 

 

To sum up, the practice of accessing others’ data at a “raw” level to conduct 

secondary analyses is complicated by many factors. First, there seems to be an epistemic 

challenge in asking new questions from old data, especially when these are 

conceptualized as “hypothesis free.” Some researchers reported to be unsure about how 

to independently pose novel research questions to mine others’ data that have been 

supposedly collected in the context of hypotheses free studies. At the same time, other 

scientists do not believe that their data are truly hypothesis free, and think that – given the 

fairly specialized nature of craniofacial researcher – potential reusers will need to contact 

them to make sense of their data. 

 

Second, there seems to be a problem of trust in “unpublished” big datasets. The 

researchers I interviewed tend not to trust the quality and accuracy of high-throughput 

data when these are released right after data collection and prior to publication. Also, it is 

by no mean guaranteed that “raw” data are shared along with complete and up-to-date 

metadata and annotations – which help to conduct secondary analyses. In relation to 

human data, obtaining a new IRB accreditation for data reuse could take a long time and 

be extremely time consuming. 

 

It emerged that the participants in this study tend to re-analyze others’ raw data with 

the help of the data creators. Data creators help data reusers to make sense of “raw” data 

by sharing with them the specialized knowledge and the technical skills that are 
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necessary to extract novel findings from “raw” data. Often these collaborations end up in 

co-authorship. At least in the cases I have discussed with the participants in this study, 

those who end up co-authoring the final papers are in most cases involved in their 

analysis, but not always. Co-authorship is often a means to reward those who collected 

the data – especially young academics – but it could be used as a currency to access 

closed data. 

A data reuse story: the case of DNA-based facial reconstruction 

“You know me by my face, you know me as a face and you never knew me in any other way. There-fore 

it could not occur to you that my face is not myself.” 

Milan Kundera, Immortality 

The DataFace Genome Wide Association Studies (GWAS) datasets have been reused 

in a variety of research projects. The Consortium received hundreds of download requests 

for the GWAS datasets, which include DNA sequences, facial images, statistics of facial 

measurements, and metrics (landmarks and linear distances) for mapping and quantifying 

the human face. As previously discussed, the DataFace GWAS datasets – differently 

from most of the other DataFace datasets – were collected from the non-syndromic 

“general population.” The low specificity of these datasets – especially compared to the 

other DataFace datasets – makes them valuable for reuse in many different contexts. The 

DataFace GWAS phenotypical data are available on the DataFace website, while the 

GWAS genotypical data are stored in the dbGaP database. 

 

Some DataFace GWAS datasets have been reused in a line of research that in turn 

informs the design of DNA-based facial reconstruction technologies. Several scholars 

from the biomedical domain, as well as in legal studies and bio-ethics, criticized the 
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current research on DNA-based facial reconstruction that claims to digitally reconstruct 

individuals’ facial portrays solely from their DNA samples. As I will discuss, criticism 

focuses on the scientific validity of this line of research, and on the ethics of employing 

DNA-based facial reconstruction in criminal investigations. Evaluating to what extent 

reconstructing faces from found-DNA at a crime scene is an ethical practice is beyond the 

scope of this dissertation. However, it is a fact that DNA-based facial reconstruction is a 

controversial research subject towards which the scientific community (and society at 

large) is highly divided. This “data reuse story” brings to surface the scientific debate 

surrounding this line of research. The overarching goal of this chapter is to provide 

empirical ground to reflect on the unexpected consequences of making research data 

openly available for reuse. My analysis raises the following concerns, which I will 

examine further in the discussion section: 

• Given the instability and controversies surrounding the science of DNA-

facial based reconstruction, especially in relation to its uses in criminal 

investigations, should the data donors be involved in choices related to the 

reuse of their data (in this case, DNA samples and facial images)? 

• Given that we cannot predict with certainty how data and the associated 

analyses will be reused once made open, are IRB protocols and the Informed 

Consent the right tools to evaluate uses and reuses of open research data? 

Reconstructing faces from DNA samples: appeal and controversies 

 

The idea that we can reconstruct a human face from a DNA sample has great appeal: 

the faces of prehistoric peoples could be reconstructed from their remains, the face of a 
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child could be predicted in utero from amniocentesis, and DNA from a crime scene could 

be used to create a facial image of a suspect (Hallgrimsson, Mio, Marcucio, & Spritz, 

2014; Zhang, 2017). In technical terminology, the latter application is called Forensic 

DNA Phenotyping (FDP). “DNA-Snapshots” obtained via FDP technologies are 

promoted as means to narrow down a search for a suspect under special circumstances 

(Kayser, 2015). For example, when there are no witnesses to a crime, and there is no 

match between the DNA found on the scene and the DNA of the suspects. DNA-

Snapshots can be shared with the public, and they can also be run against thousand of 

law-enforcement mug shot databases, as well as against government databases containing 

citizens’ ID photos (Gannon, 2017). 

 

Forensic analyses of found DNA samples have been used for a long time to 

categorize suspects by “group-level” factors, namely gender and ancestry (Hindmarsh & 

Prainsack, 2010; M’charek, 2008). FDP is gaining quite some traction among law 

enforcement agencies because it aims at providing information about isolated facial traits, 

such as eyes and hair color, and – even more specific – nose, chin, and jaw shapes. These 

can be used in combination to group-level factors (i.e., sex and ancestry) to reconstruct 

supposedly highly-accurate facial profiles (Kayser, 2015). Also referred to as the 

“biological witness,” FDP promises to be more objective than “human witnesses” 

(Kayser, 2015). The use of FDP in police search is spreading fast. Since 2015, when FDP 

technologies became commercially available in the US, American law enforcement 

agencies released over ten DNA-generated mug-shots to the general public, via television 

and online media, asking the public for help to identify the suspects (Biswas, 2015; 
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Purcell, 2016). At the time of writing this dissertation, two companies currently sell these 

services to law enforcement agencies in the US. 

 

There is little regulatory oversight over how law enforcement can use DNA tests in 

criminal investigation and in court. DNA left at a crime scene is considered abandoned 

material, and police can use the information encoded in it in any way they consider useful 

for investigative purposes (M’charek, 2008). The use of FDP technologies have been 

criticized by several scholars in a multitude of disciplines especially in relation to 

potential ethical issues that can occur with the rapid and unregulated diffusion of these 

technologies (Dewey-Hagborg, 2017; Hallgrimsson et al., 2014; Toom et al., 2016). For 

example, researchers in the field of forensic medicine, and also in the social studies of 

science, argued that FDP has a problem of racism. Contrary to the ways in which it is 

promoted, it cannot provide data capable of probabilistically identifying unique 

individuals. Instead, the researchers argue, DNA phenotyping groups people in “suspect 

populations.” Researchers observed that FDP “provides typological information about 

common but variable personal properties of relatedness to others, features of visual 

appearance, or aspects of biogeographic ancestry” (Toom et al., 2016). Researchers are 

concerned that DNA-generated mug-shots can be used to justify “genetic dragnets” in 

which hundreds of individuals belonging to a sub-population are asked by law 

enforcement to provide their genetic material for testing and profiling. Scholars further 

argued that while human witnesses provide contextual information along with their 

testimonies, “biological witnesses” like FDP simply return a statistically inferred 

stereotypical facial image. If stereotypical facial reconstructions are run in police 
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databases to find matches, these could return highly biased results, also given that police 

databases and algorithms are already known to be biased toward minorities (Dressel & 

Farid, 2018). In some occasions, pro-FDP commentators sustained that because human 

external appearances are visible to everybody, their records should not be protected by 

privacy regulations (Kayser, 2015). However, critics of FDP rebutted that “there is a 

difference between spotting someone on the street once, and keeping and reusing data on 

someone physical traits” (Toom et al., 2016). For all these reasons, concerned researchers 

urge caution in using FDP for criminal investigations, and ask to keep facial images 

reconstructed from DNA-analysis strictly confidential to the investigators, do not share 

them with the public, to avoid stigmatization of entire sub-populations. 

Research on FDP technologies 

 
Another problem with commercial FDP is that “the algorithm” behind it is not 

officially published in any academic journal. The companies’ technology is closed-

sourced, and its machine-learning algorithm black-boxed. However, the company’s 

technique is based partly on the work of an international team of physical anthropologists 

and computer engineers who published their model for predicting facial shapes from 

DNA starting from 2012. From now on, I will refer to this team as the “the team of 

physical anthropologists,” to differentiate this lab – which is external to the DataFace 

Consortium – from the labs that collected the DataFace GWAS datasets and are part of 

the DataFace Consortium. This team is currently testing multiple versions of a machine-

learning algorithm on a series of different training datasets. The latest model, published 

on Nature Genetics in February 2018, employs one of the DataFace GWAS datasets as a 

training set for the algorithm. In an commentary to PLOS Genetics called “Let’s Face it: 
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Complex Traits are not That Simple,” some of the scientists involved in the DataFace 

Consortium – but not in the collection of this specific dataset – highlighted a series of 

concerns related to the accuracy and scientific validity of this model for facial 

reconstruction. They argue that the science behind the genetic causes of facial 

morphology is still in its infancy, and that other studies showed fewer or different 

correlations between genes and facial traits. In what follows, I first describe the datasets 

involved in this controversy and the state of art of the research on DNA-based facial 

reconstruction. I then present the debate over its validity, and I conclude by pointing out 

the role that the DataFace datasets played in this context. Direct citations to academic 

articles have been removed to protect (to some extent) the confidentiality of this research 

study’s participants. 

The DataFace GWAS Datasets 

In order to predict faces from DNA, researchers and developers need, first of all, to 

know to what extent facial development and morphology are dictated by genetics, beyond 

obvious parental-siblings resemblance. They need, in other words, precise knowledge of 

the genetic causes behind the formation of facial features like eyes color, or nose shape, 

which are generally referred to as “Externally Visible Characteristics” (EVCs). While 

eyes and hair color have been (statistically) associated for a long time to certain locations 

on the genome, the research on specific genes that have an impact on individual facial 

traits such as nose, chin, and jaw dimensions, is still in its infancy (Hallgrimsson et al., 

2014). As pointed out by several commentators, one of the main challenges with studying 

the genetic causes of EVCs is that researchers need to have access to a large number of 

genetic and phenotypical data related to the human face, which collection requires 
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considerable investments in time, human resources, and infrastructures (Kayser, 2015; 

Roosenboom, Hens, Mattern, Shriver, & Claes, 2016). In this context, the human 

craniofacial datasets collected and made available by the DataFace Consortium constitute 

a quite precious, and scarce, resource. These datasets are described on the DataFace 

website as “an excellent resource for exploring questions relating to patterns of human 

facial variation and growth; e.g., how does the face change over different life stages, how 

are sex differences manifested in facial structure, how are different facial structures 

integrated during growth, and what are the major facial differences among different 

ethnic/ancestral groups […].” The DataFace database for GWAS data is described as “of 

particular interest to those working within the fields of physical anthropology, 

orthodontics and forensics.” The database technical notes also suggest that: “the 

thousands of 3D facial surfaces available through the 3D Facial Norms Database provide 

a unique resource for computer science and computer vision experts to develop novel 

surface-based methods for representing and analyzing human faces.” 

 

Overall, the research design for craniofacial GWAS studies can be summarized in 

four main steps, namely (1) the collection of the DNA samples and the 3D facial images 

from human subjects, (2) the extraction of quantitative measures and landmarks from the 

3D facial images, (3) the sequencing of the DNA samples, and (4) the statistical 

investigation of possible relations between genes and facial variations. Two different 

DataFace teams conducted two separated GWAS with data collected from two distinct 

populations. I called the two resulting datasets “the Caucasian dataset,” and “the 

Tanzania dataset.” “Caucasian” and “Tanzania” are terms used by the teams themselves 
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to refer to the “populations” sampled in each GWAS. 

The Caucasian dataset 

Data for the Caucasian population are stored and made accessible through the 3D 

Facial Norms (3DFN) Database, which is hosted on the main DataFace website. The 

Consortium described the database as “a web-based resource designed to provide the 

research and clinical community with access to high-quality craniofacial anthropometric 

normative data.” The database includes anthropometric data of different kinds. One data 

type consists in a variety of metrics and statistics about facial measurements. Metrics 

include 3D coordinates (x,y,z) for facial surface landmarks (i.e., reference points on the 

face), linear distances calculated between the landmarks, and actual face and head 

measurements using traditional anthropometric methods (i.e.,, calipers). Another type of 

data consists in the facial images themselves. The 3D facial surfaces were released in the 

Object Wavefront (.obj) format. Some demographic descriptors were released in 

association with the data, and these include age, sex, and ancestry. Finally, the 

consortium released the genotypic markers associated with the data (the raw data are 

available on dbGaP). 

The Caucasian dataset was collected during DataFace first grant phase. Subjects who 

volunteered their DNA and their facial images for the study include 3500 unrelated males 

and females of European-Caucasian ancestry between the ages of 3-40 years. The 

participants were recruited at three main sites within the US. Recruitment strategies vary 

from site to site but include the use of public print advertisements, word-of-mouth, direct 

mailing, university and hospital-based research registries, kiosks in public venues (e.g., 

commercial malls), and collaborations with general dental and medical clinics. 
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The Caucasian dataset can be consulted in multiple ways. Indeed, the 3DFN database 

allows users to interact with the data via a graphical interface, a type of reuse that I 

previously characterized as “background” reuse of others’ data. Summary-level data 

include things like sex- and age-specific means and standard deviations for selected 

anthropometric measurements (e.g., the average distance for five year old males). As 

such, all summary-level phenotypic data are non-restricted and available to all users 

directly on the database website. 

 

By giving proper credentials, users can also gain access to individual-level data, 

which allows investigators to perform their own analyses and reuse the data to ask novel 

questions (what I previously characterized as “foreground” reuse of others’ data). 

Individual-level data refer to the unique data elements that comprise the summary-level 

data, and include things like the measurements, landmark coordinates and 3D facial 

surface files for each individual in the database. As pointed out on the DataFace website, 

“one major advantage with individual-level data is that the users can carry out their own 

statistical analyses on original raw data as if they collected the data themselves.” Access 

to all individual-level phenotypic data (facial 3D images) is restricted to users with the 

proper permission. In order to access restricted datasets and reuse them in their own 

research studies, potential reusers need to obtain an IRB approval from their institutions. 

The users then need to submit a “Data Access Request form” and associated 

documentation to the “DataFace Data Access Committee” for review. Upon approval, the 

DataFace Hub grants the user permission to access and download the requested data 
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through the DataFace website. 

 

DataFace researchers obtained the data for this GWAS study using “consistent and 

semi-automated methods for facial quantification and measurements” (Weinberg et al., 

2016). These methods were developed by the DataFace team “to address the 

shortcomings of traditional craniofacial datasets,” which – according to the DataFace 

scientists – “are limited to measures obtained with handheld calipers and tape 

measurers.” As reported in the craniofacial literature, measurements obtained through 

direct anthropometry often result in some degree of deformation, caused by the soft 

tissues of the face with the caliper tips, which leads to lack of standardization between 

datasets obtained by different teams and at different sites. Lack of standardization makes 

comparative studies challenging. The most well-known and most comprehensive dataset 

of this kind was compiled by Dr. Leslie Farkas and colleagues in the 1980s and 1990s 

(Farkas, 1996). Kolar (1993) has pointed out numerous problems with this particular 

dataset, the most serious of which – as indicated by the scientists- seems to be the 

inconsistency of data collection protocols. In this context, the anthropometric data 

collected by the DataFace researchers aims at being “the right tool for the right job.” 

Obtained via 3D digital stereophotogrammetry  – a method of 3D imaging increasingly 

used for capturing human facial surface morphology – DataFace images promise 

consistency and precision. Measurements computed from the 3D surface models are 

supposed to be more “objective” because they involve much less deformation. 

 

From each image, the researchers located, with the help of a computer program, a set 
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of 24 “facial surface landmarks” (i.e., reference points on the facial area). Based on these 

landmarks, the researchers used basic Euclidean geometry to calculate the precise 

measurements of 29 linear distances between different sets of multiple landmarks. 

Starting from the 24 initial landmarks, the 3DFN database users can calculate any number 

of alternative inter-landmark distances directly from the raw coordinate data available 

through the 3DFN Database. 

 

The measurements obtained via 3D images were still complemented with additional 

linear distance measurements obtained through traditional direct anthropometry, which 

are also available through the 3D Facial Norms Database. These were large 

measurements of the head and face, which were difficult to capture through indirect 3D 

surface anthropometry. 

 

The team who collected the Caucasian dataset conducted the primary analysis of this 

dataset in collaboration with a second DataFace team, the one responsible for the 

collection of the Tanzania dataset (see next section). In the resulting overview paper, the 

two teams reported to have found evidence of genetic associations involving measures of 

eye, nose, and facial breadth. This study represents the second round of GWAS on facial 

morphology for Caucasian populations, the first round appeared in 2012 (Liu et al., 2012; 

Paternoster et al., 2012). The findings from the DataFace Caucasian dataset partially 

replicated the findings from the previous two studies. For example, both round of GWAS 

studies found the gene PAX3 having a role in shaping the nose’s “bridge elevation.” 

However, the DataFace researchers were not able to replicate most of the findings from 
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the previous round of GWAS studies. In the overview paper, the DataFace researchers 

reported that their ability to find significant genetic associations “was limited by a lack of 

directly comparable phenotypes, which is related to differences in data collection 

methods and the type and number of measurements available.” In addition, they point out 

that “the prior two European GWA studies each used imaging modalities different from 

the kind used here.” In the same publication, the DataFace researchers also noted that: 

“(…) fortunately, several promising approaches are on the horizon, such as the BRIM 

method.” The “BRIM method” – as I will shortly discuss – is one of the early iterations 

of the research design that team of physical anthropologists will eventually use to 

reconstruct faces from DNA. In a survey paper called “New Entries in the Lottery of 

Facial GWAS Discovery,” the physical anthropologists conducted a secondary meta-

analysis of the data obtained from the first two rounds of Caucasian GWAS studies. In 

this second paper, the physical anthropologists further discuss (and visualize) the 

significance of the association between the PAX3 gene with the nose formation in the 

Caucasian population. 

The Tanzania dataset 

The DataFace consortium funded the collection of a second GWAS study with 

participating subjects of African ancestry. A different team of researchers located at 

different US institution handled this second study. This is “the first GWAS of facial 

morphology for an African population.” I will refer to this dataset as the Tanzania 

dataset. The African GWAS cohort included 3,505 non-syndromic African Bantu 

children and adolescents ages 3–21 from the Mwanza region of Tanzania, a region that 

the team described as being “both genetically and environmentally relatively 
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homogeneous.”  

 

For this second study, methods for data collection and annotation slightly differed 

from the ones used for the Caucasian dataset. For example, they used the same 

methodology for 3D facial imaging collection – 3D digital stereophotogrammetry – but a 

different camera, namely the Creaform MegaCapturor (MC) camera. Also, while the 

Caucasian dataset is annotated for 24 landmarks on the human face, the Tanzania dataset 

is annotated for 29 landmarks. 

 

Also for the Tanzania dataset, the landmarks on facial images were identified using a 

semi-automated computational method. The landmark data were then used to calculate 

linear distances and multivariate measures to be used as phenotypes, as in the Caucasian 

study. Still, some images from 163 subjects were landmarked manually, “as they could 

not be landmarked automatically.” The team explained: “This was mostly due to imaging 

artifacts on non-critical regions of the face that do not interfere with manual landmark 

placement.” The details of the method and of the automated landmarking algorithm used 

to identify the landmarks on the human faces are available on the DataFace website. 

 

The creators of the Tanzania dataset published an overview paper in late 2016 on Plos 

Genetics. The data analysis suggests that only two locations on the genome are 

significantly associated with “measures of facial size.” For one of these loci, the team 

conducted an experiment in which they knocked out the loci from mice. This showed 

developmental anomalies in the palate and in the snout, indicating that the locus plays 
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indeed a role in facial development. This is one of the first studies to show a genome-

wide genetic association of human facial morphometric phenotypes in an African 

population. 

 

To some extent, results from the analysis of the Tanzania dataset differed from those 

on Caucasian populations, including from the analysis of the DataFace Caucasian dataset. 

For example, the Tanzania team was not able to replicate the influence of gene PAX3 on 

the shape of the nose bridge. In their overview paper, the team suggests caution in 

interpreting the possible causes behind such differences: “It is possible that facial 

morphology differences in different human populations have different genetic 

underpinnings,” but, they add, “alternatively, as noted above, our study cohort was young 

and almost universally lean, and therefore may be less influenced by environmental 

factors than study cohorts of adults from Europeans’ populations.” The researchers seem 

to argue that differences in genetic markers associated with the face between populations 

could be explained by the fact that the Caucasian populations are on average older, of a 

different body constitution, and were also exposed to several environmental factors to 

which the Tanzania population was not. Overall, in the discussion section, the researchers 

seem to make the point that craniofacial GWAS studies are not design to specifically to 

find variation “in between” populations, but within the same population. 

Modeling 3D Facial Shape from DNA 

“Our notion of symmetry is derived from the human face” 

Blaise Pascal (1623–1662) 

In a study titled “Modeling 3D Facial Shape from DNA,” a team of physical 
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anthropologists (not a member of the DataFace Consortium) analyzed a sample of 592 

individual genotypes for 540,000 SNPs, expressed in 46 different genes. The research 

design for this study is quite different from the GWAS studies conducted by the DataFace 

teams. The team of physical anthropologists chose not to use a GWAS approach on 

purpose, for multiple reasons. According to the authors, GWAS approaches have a 

problem of statistical power. They argue: “the fundamental problem with taking a naïve 

whole genome scan approach is one of statistical power […] the larger the number of 

markers that are tested for significant effects on facial variation, the larger the number of 

false positive results and the harder it will be to know which among those that show 

significant effects are actually having important effects that should be used for DNA-

based facial composites.” From this perspective, using GWAS to look for 

genotypes/phenotypes associations in facial morphology is like looking for a needle in a 

haystack. However, by using what is referred to as a “candidate genes” approach, 

researchers can narrow down the search for gene/phenotype correlations to few usual 

suspects, namely genes that have been previously identified as potentially expressed in 

facial development (46 genes, in this case). 

 

The physical anthropologists’ study differed from a GWAS also because they used an 

“admixture” approach to data sampling and analysis. An “admixture” approach enables 

researchers to purposefully look for variation across individuals with supposedly 

difference ancestry backgrounds. The admixture approach uses ancestry informative 

markers (AIMs) to estimate individual genomic ancestry from DNA (African, European, 

Native American, East Asian etc.), also called Biogeographical Ancestry (BGA) (Halder 
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& Shriver, 2003). In simple terms, BGA identifies “racial percentages” that are expressed 

in the heritable component of the face. The idea behind admixture sampling is that “non-

random mating and continuous gene flow in admixed populations results in admixture 

stratification or variation in individual ancestry” (Halder & Shriver, 2003). The process 

of admixture results in “admixture linkage” or “non-random association” among AIMs 

and traits to vary between individuals with different ancestry backgrounds (e.g., skin 

pigmentation). This is similar to the technology used by commercial companies that offer 

direct-to-consumer genetic ancestry testing. 

 

According to the authors of this paper, GWAS studies for facial traits are also limited 

in their description of facial morphology. As we have seen, DataFace GWAS studies 

relied on a limited set of pre-determined landmarks and linear distances to calculate facial 

variation. The physical anthropologists are convinced that facial variation can go well 

beyond this pre-determined measurement techniques. In order to bring to surface hidden 

variations of the human face, the team of physical anthropologists had previously 

developed a fully automated computational method for the mapping and quantification of 

the “full” facial morphology. This method relies on the use of a “digital anthropometric 

mask” made of thousands semi-landmarks. The mask is graphically imposed over the 3D 

facial images of participating subjects to map them “onto a common coordinate system.” 

The mask is applied automatically, “eliminating the difficult and error-prone procedure of 

manually indicating facial landmarks.” 

 

Finally, in order to find genotypes-phenotypes correlations, the authors used a novel 
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statistical methodology for shape prediction that was developed with the help of machine-

learning algorithms. The authors named it “bootstrapped response-based imputation 

modeling” (BRIM). According to the authors, the advantage of the BRIM method is that 

it allows researchers to estimate facial shape from a single multidimensional factor, such 

ancestry, sex, or a single gene. By using the BRIM method, “the effects of sex and 

ancestry can be isolated and optionally removed from the model, thereby providing the 

ability to extract the effects of individual genes.” In the authors’ words, “(with this 

method) the hypothesis Does this gene have significant effects on facial shape can be 

addressed with a single statistical test.” 

 

In the abstract of the paper, the researchers announced that they “uncover the 

relationships between facial variation and the effect of sex, genomic ancestry, and a 

subset of craniofacial candidate genes.” Results from the BRIM data analysis method 

suggested that many parts of the face are affected by both ancestry and sex. More 

specifically, findings from this study suggested that sex explains 13% of the total shape 

variation in the face, while ancestry 10%. In the authors’ own words: “these results 

provide the means for identifying the genes that affect facial shape, and for modeling the 

effects of these genes to generate a predicted face.” 

 

In a second paper titled “Toward DNA-based facial composite: Preliminary Results 

and validation,” the team conducted a secondary analysis on the same dataset in what 

they describe as “the first effort of generating facial composites from DNA.” This time, 

the researchers first used genomic ancestry and sex as main factors to create a “base-

face.” Subsequently, they overlapped the effects of 24 individual SNPs in 20 genes on the 
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base-face, in a process akin to a photomontage. The team concluded that “physical 

accuracy of the facial predictions either locally in particular parts of the face or in terms 

of overall similarity is mainly determined by sex and genomic ancestry,” and that “the 

SNP-effects maintain the physical accuracy while significantly increasing the 

distinctiveness of the facial predictions, which would be expected to reduce false 

positives in perceptual identification tasks.” 

 

The debate over method: complex traits are not that simple 

The very idea that complex facial traits could be predicted from DNA samples raised 

concerns among some members of the DataFace community. One thing is to say that a set 

of genes influences facial development processes, a very difference thing is to say that a 

set of genes predicts individuals’ facial traits with statistical accuracy. In an article titled 

“Let’s Face it: Complex Traits Are Not That Simple,” a group of researchers from the 

craniofacial research community, including some DataFace principal investigators, 

argued that the physical anthropologists’ model for predicting human faces based on 

genes, sex, and ancestry, needs to be replicated in the context of existing methodologies, 

in particular GWAS studies, in order to be considered methodologically valid. 

 

In the “formal comment” to PLOS Genetics, the researchers stated that the claim that 

facial shape can be predicted from DNA is troubling because, “it is not actually supported 

by the work done in this study.” First of all, they argue, the physical anthropologists’ 

work is “genes biased” because they used as a starting point a list of genes previously 

known in the literature to be expressed in the head of animal models with craniofacial 
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abnormalities. This fact, the commentators argue, “it does not mean that those genes 

contribute to normal variation in the face” and, they add, “it is quite possible that many 

genes not known to play important roles in craniofacial development contribute to normal 

variation in the face.” The commentators further pointed out that “only one of the 46 

genes identified in this study would have survived the Bonferroni adjustment for multiple 

testing.” In the absence of multiple tests, “the study contributes nothing new to our 

understanding of how genes influence the shape of the face since the genes tested may or 

may not actually contribute anything to normal variation in the shape of the face.” 

 

The commentators also observed that the physical anthropologists’ finding that 

ancestry has a great impact on facial shape variation (i.e., 10%) is “unexpectedly high” 

and further characterized this finding as a “surprising result.” As previously discussed, 

also the DataFace GWAS studies conducted on the Caucasian and the Tanzania dataset 

showed some differences in genes expression in between the two populations, such as for 

the PAX3 gene and its effect on nose shape. However, the DataFace PIs were generally 

careful in providing genetically deterministic interpretations of such results, suggesting 

instead that such differences could be related to the environment or other factors. A 

significant difference between the physical anthropologists’ model for facial prediction 

and the DataFace GWAS studies on facial variation lies in the way they use “ancestry 

background” as a factor for facial prediction. In the GWAS studies, ancestry background 

is used as a statistical tool to normalize the sample and obtain a seemly homogeneous 

population. This homogeneous population is then employed to find genetic and 

phenotypical variation within the population itself. While this type of approach surely 
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relies on racial classifications, at the same time, it does not explicitly aims at finding 

differences in between populations, quite the opposite, it aims at finding differences 

among individuals belonging to the same “racial classification.” On the contrary, the 

admixture research approach used by the physical anthropologists, and employed in 

combination with the BRIM statistical method for facial prediction, it explicitly uses 

ancestry as a discriminatory factor (along with sex) to determine the “basic” features of a 

predicted human face. As a result, the “base-face” fundamentally corresponds to a 

stereotypical “base-face” of the population to which the sampled-subjects allegedly 

belong (M’charek, 2017). 

 

The commentators wondered whether “genomic prediction of complex morphologies 

is even feasible.” They insist that the genotype-phenotype map for morphological traits 

like the shape of the face is “incredibly complicated,” and that changes to developmental 

processes can have much greater effect on facial shape than single genes or sex or race. 

These researchers, who conducted craniofacial GWAS studies themselves, conclude by 

reminding the physical anthropologists that current GWAS studies are finding very few 

genome “loci” to be causatively related to complex facial traits. 

Refining the prediction model for human faces 

The commentators challenged the physical anthropologists to design a second study 

that consistently shows that certain genes can be significantly associated to certain facial 

phenotypes, either at a group-level (ancestry, sex), or at an individual-level (nose, jaw, 

chin etc. dimensions). In other terms, the researchers called for replication of the physical 

anthropologists’ findings within a different research design. Without replication, their 
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prediction model for facial reconstruction from DNA loses credibility. 

 

Open data resource for craniofacial research include many different datasets collected 

in the context of GWAS studies, animal studies, dysmorphology studies, populations 

studies, and family studies (Roosenboom et al., 2016). But the commentators specifically 

called for the replication of the physical anthropologists’ results in a GWAS study, given 

that the “genes candidate” research design previously used by the team is considered 

genes-biased. Since organizing and conducting a GWAS study is expensive and time 

consuming, most of these studies are conducted in the context of large consortia, such as 

the DataFace Consortium. To replicate their study, the team of physical anthropologists 

conducted a secondary analysis of multiple craniofacial GWAS datasets, which included 

the DataFace Caucasian dataset. The results were published on Nature Genetics in early 

2018. The secondary analysis of the DataFace Caucasian dataset was conducted in 

collaboration with the DataFace team who collected the Caucasian dataset, but not with 

the team who collected the Tanzania dataset. 

 

In the Nature paper, the physical anthropologists used a refined methodology that 

aims at improving traditional GWAS studies, which they describe as being “phenotypic-

first” types of approaches. From this perspective, in “phenotypic-first” studies, the search 

for correlations between genes and traits is limited by the fact that the phenotypes are 

pre-selected and used to classify individuals based on pre-fabricated linear distances. In 

the paper, the researchers applied a fully automated data-driven approach for facial 

mapping to the analysis of the DataFace Caucasian GWAS dataset (plus other datasets). 
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To be sure, this time the team used an improved version of their previous methods. The 

improved technique allows for the identification of the genetic effects on facial shape at 

multiple levels of organization, “from global to local.” By employing an unsupervised 

machine-learning algorithm known as “hierarchical spectral clustering,” the face is 

subdivided in different fragments on the base of 10.000 semi-landmarks, from general 

(i.e., global) to more specific (i.e., local) fragments. As explained by the physical 

anthropologists, the shift from facial “linear distances” to “independent modules” enables 

the researchers to study the human face “as a whole,” instead of focusing on few pre-

determined traits. In the authors’ word: “This method provided an efficient and objective 

way means for subdividing facial shape into parts.” 

 

This approach resulted in the identification of 63 facial segments, that have then be 

tested over 9 million SNPs. The team used Generalized Procrustes Analysis (GPA) and 

Principal Component Analysis (PCA) to extract the major factors of shape variation 

characterizing each facial segment. The results suggest that, this time, 15 loci are 

involved in a variety of facial segments, mainly the nose and the chin. 9 of these loci 

have been previous found to be associated with facial variation, including locus 2q36.1 

on the PAX3 gene for the nose bridge. 4 were completely new, and 2 were found to be 

associated with more than one facial segment. 

 

Overall, this last study suggests that variation in the human face seems to be 

influenced by many genes that exhibit a range of effects, “with some influencing only 

localized parts of the face and others influencing more global aspects of morphology.” In 
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this paper, the researchers built a method with the intention of studying variation “freely” 

from pre-determined linear distances, and, at the same time, across a large number of 

SPNs. In this sense, the method developed in here by the team of physical anthropologists 

aims at maximizing the chances of finding correlations between genetics and facial traits. 

The team of physical anthropologists’ goal is not to simply respond to previous criticism, 

but to propose a method that can be adopted by virtually all researchers to analyze human 

faces in GWAS craniofacial studies. In their words, “[with this paper] we substantially 

advanced the literature on facial genetics on several fronts.” 
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6. Discussion 

This discussion starts by situating DataFace policies and infrastructures for data sharing 

and reuse in a broader framework, especially in relation to what I referred to as the 

“radical openness” regime for data sharing. Then, I examine how the scientists 

participating in the DataFace Consortium reuse open data for knowledge production. I 

conclude this discussion by considering ethical implications of making research data 

openly available for reuse, especially in relation to the impossibility of truly predicting 

what open data might be reused for. 

Regimes for Data Governance and the DataFace Consortium 

I have discussed how – in a data governance regime of semi-openness – the 

publication status of a dataset’s primary analysis (i.e., published or unpublished) 

regulates when the dataset would be made publicly available for reuse. In a semi-open 

regime, researchers deposit their data in public repositories exclusively after publication, 

and they share their data prior to publication in closed collaborations inter-labs. 

Depositing the research data after publication guarantees a certain degree of transparency, 

while at the same time allows others to make use of the data. Retaining data until 

publication also ensures that the data creators receive credit for the design and execution 

of the experiments in which the data are collected. By sharing “unpublished” data solely 

within closed collaborations between the data creators and the data reusers, scientists 

control for what purposes their data are reused. In this data governance regime, 

researchers share their tacit and specialized knowledge (which is essential to properly 

reuse their data) with few trusted colleagues, and they negotiate with them credit 

attribution – mainly by co-authoring the resulting publications. 
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With the advent of the “genomics revolution” and the completion of the HGP, 

sequence data started to be shared prior to publication in open repositories (Hilgartner, 

2017), de facto destabilizing pre-existing semi-open practices of data sharing. Hilgartner 

(2017) referred to research data made available prior to publication in open repositories 

as “Unpublished in Journal, Available in Databases” (UJAD) research data. The UJAD 

data-sharing regime partially emerged as a response to the deluge of sequence data that 

were generated during the HGP. As Hilgartner observed, it was also motivated by the 

anxiety of finding significant patterns in the freshly sequenced human genome. In this 

context, making data available prior to publication seemed to be a good way to guarantee 

fast reuse of such data, and, as a consequence, a return on the investment for the HGP. 

During the HGP, depositing data prior to publication became an accountability 

mechanism that the HGP leadership would use to measure the success of a participating 

sequencing center. 

 

As pointed out by Hilgartner (2017), the idea of making sequence data available prior 

to publication to the whole research community was rooted in the belief that sequence 

data are fundamentally different from “results data.” The results data are those coming 

out of experimental design and statistical analyses, and are normally deposited along with 

peer-reviewed publications. Contrary to results data, in this perspective, sequence data 

are seen as the products of factory-style sequencing facilities that extract “raw” resources 

that do not need any specialized labor or significant amount of time to be produced (Mike 

Fortun, 2008; Stevens, 2013). As a result, the HGP’s leadership did not expect the HGP 
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sequencing centers to receive any academic recognition for the collection of sequence 

data. Sequence data of whole human or animal genomes were believed to be “generic 

enough” type of data that can be reused in all sorts of contexts. These two conditions of 

the HGP’s sequence data – supposedly being labor and hypothesis free – motivated the 

funders to conceptualize sequence data as what Leonelli would call today “fungible 

resources” (Leonelli, 2016; Mirowski & Nik-Khah, 2017). Just like freshly extracted 

“crude oil,” freshly sequenced data can be reused by anyone who has the means to 

transform them into usable knowledge. Given sequence data labor free commitment, high 

potential for reuse, and abundance, the funding body saw no reasons why the sequencing 

centers should have kept sequence data “hostage” in their labs until publication. 

 

However, as Hilgartner (2017) also observed, HGP’s sequence data were not 

hypothesis free commodities. Commentators showed how these data were collected by 

specialized research communities, such as the model organism communities, and in the 

context of specific research agendas (García-Sancho, 2012; Gaudillière & Rheinberger, 

2004; Leonelli, 2016). At the sequencing centers, those researchers directly responsible 

for the sequencing of the data were very much interested in analyzing them and using 

them in their publications. HGP data were also not labor free. As discussed, because of its 

repetitive and quasi-automated character, sequencing was surely seen as a “factory style” 

type of research activity. But, in addition of being “boring,” the practice of sequencing 

would also take away from the scientists precious time (i.e. labor) that they could have 

used for conducting primary data analyses and publish papers. Sequencing was still time-

consuming and did not provide credit in terms of career achievements. 
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As I have discussed in the findings section, the participants in the DataFace 

Consortium refer to the data collected in the context of this project as “hypothesis free” 

research data. Like the sequence data during the HGP, also the DataFace data are 

marketed as not being collected by one lab for the benefit of that lab, to answer a pre-

defined set of research question. I have shown that both the DataFace leadership and the 

DataFace participants conceptualized DataFace data as resources to be reused by many 

labs to answer many research questions in relation to craniofacial syndromes and beyond. 

Like the sequence data during the HGP, the DataFace datasets are understood and 

promoted as fungible commodities. Another point of similarity between the HGP and the 

DataFace Consortium is the presence of a strong leadership. This leadership, in both 

cases, saw “openness” of the data as an accountability mechanism for measuring the 

success of the participating labs. The Consortium was funded as U01 cooperative 

agreement grant, which – as I explained in the finding section – motives the collection of 

hypothesis free genomics data. At the same time, it enables the leadership to retain 

control on setting up the goals of the project and on monitoring its advancements. Finally, 

like in the case of the sequence data coming out of the latest phase of the HGP, the 

DataFace datasets are Unavailable in Journals, Available in Databases (UJAD) datasets. 

All datasets are shared prior to publication in an open repository. In the DataFace context, 

sharing data before publication is regarded as an optimal solution to advance research in 

the craniofacial field, by making the research process faster and optimized. In this frame, 

by opening data right after collection, raw dataset can be re-purposed immediately, 
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multiple research questions can be investigate at the same time, and replication of efforts 

are avoided. 

 

But the DataFace Consortium is also obviously very different from the HGP, and not 

only for its much more limited scope. The data types collected by the participants are not 

only sequence data, but they also include facial images, measurements and statistics, and 

gene/RNA expression data coming out of experimental practices, such as candidate gene 

experiments and function validation studies. The DataFace datasets – like in the case of 

the Green and the Blue spoke (see findings section) – are after all still collected in the 

context of specific experimental designs, with specific research questions in mind. The 

only datasets that are to some extent “generic enough” (i.e., supposedly “hypothesis 

free”) to be widely reused in all sorts of research contexts are the human subjects GWAS 

datasets collected from children and adult general populations (Caucasian and African). It 

is not a chance that these datasets are also the most reused datasets among all datasets 

collected from the DataFace collaboration. Set apart the GWAS datasets, most of the 

DataFace datasets were collected in the context of specialized research on rare 

craniofacial syndromes and craniofacial developmental processes. Most of the 

participants in this study, maybe with the exception of the Pink spoke, were relatively 

new to the practices of genomics. As I have discussed, the majority of the participants 

conducts “gene-centric” research projects (see the workflow of the Blue spoke), or aims 

at integrating genomics screenings to developmental biology research designs (see the 

workflow of the Green spoke). This condition of being “in transition” from gene-centric 

to genomics methodologies translated in both enthusiasm and skepticism toward high-
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throughput data collections and analyses. While the participants are eager to incorporate 

genomics approaches in their experimental practices, at the same time they are quite 

suspicious of the idea of sharing and reusing others’ “big data,” especially when these are 

shared prior to publication. 

 

Another dimension that differentiates the DataFace data collections from the HGP 

sequences is that most of the DataFace datasets were collected in the context of rare 

disease research. Rare syndrome research – such as research on craniosynostosis 

diagnosis and treatment –is a “data scarce” environment. Craniofacial syndromes are 

many, but very diverse. For example, very few people are born with craniosynostosis, 

and, as a consequence, little information and data are available about the syndrome. 

Because of its limited nature – the data on craniosynostosis are very specialized. Given 

the scarcity of these data, and the over-specialization of the field, the competition over 

their use by multiple labs is a zero-sum game. Not that many people are interested in 

these data, and those who are interested they want to use them to ask very similar 

research questions. When a lab working on craniosynostosis makes available their 

specialized and rare data – prior to publication – the chances that these data are re-

purposed to ask a “novel” research question are much lower. Obviously, this situation 

creates issues of credit attribution. As discussed next, following a well-established 

tradition in molecular biology, the researchers would deal with this situation by sharing 

co-authorship between data creators and data reusers. 
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To sum up, the DataFace Consortium shared a vision for open data somehow similar 

to the “UJAD” data governance model that emerged during the completion of the Human 

Genome Project. Like HGP’s sequences, also DataFace datasets were made available 

right after data collection in an open repository and were conceptualized as “hypothesis 

free” data. UJAD datasets are the product of a regime of “radical openness.” What is 

relevant about this radical openness is that it differs from precedent semi-open traditions 

of data sharing that characterized the biology field for a long time, such as the semi-open 

data sharing practices of model organism communities. The regime of radical openness 

challenges the DataFace community on several fronts. Most DataFace datasets are quite 

specialized resources obtained via experimental practices. The fact that DataBase datasets 

are specialized makes them difficult to reuse to ask infinite research questions, and, at the 

same time, increases the bar for competition over their reuse. Finally, because the 

craniofacial researchers operate in a relatively traditional “gene-centric” knowledge 

production domain, they are concerned over reusing others’ high-throughput data in their 

research settings, unless these are related to a publication, and accessible through easy-to-

use data visualizations. 

Re-purposing others’ data: background and foreground reuse 

Because the value of scientific data lies in the possibility of using them as “evidence 

for phenomena” (Borgman, 2015), in order for the data to be reused such value – the 

data’s evidentiary “power” – needs to travel with the data from context to context when 

these are made open and reused. Scholars who investigate data reuse practices in the 

sciences researched how scientists “trust” the evidentiary power of others’ data 

(Birnholtz & Bietz, 2003; Jirotka et al., 2005; Wallis et al., 2013; Zimmerman, 2008). 
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Trust in the “data” and trust in the “system” 

As discussed by several scholars, and certainly confirmed in this study, metadata and 

ontologies play an essential role in enabling trust in others’ datasets (P. N. Edwards, 

Mayernik, Batcheller, Bowker, & Borgman, 2011; Wallis et al., 2013). Metadata allow 

scientists to verify the quality and accuracy of the data (Leonelli, 2016). Ontologies 

enable scientists to understand how relevant new data are to their research (Faniel & 

Jacobsen, 2010). Ontologies link conceptually different sets of data and incorporate them 

in specific knowledge representation schemas. Especially in biology and biomedicine, 

ontologies are crucial to enable reuse. As discussed by several commentators, higher 

levels of data integration can lead to higher rates of data reuse (Buneman, 2005; Jones, 

Schildhauer, Reichman, & Bowers, 2006). Some studies of digital repositories show that 

the researchers also value the functionality of a specific database, the reputation of the 

repository that hosts the database, and the type of organization responsible for the data 

curation process (Faniel & Yakel, 2017; Peer, Green, & Stephenson, 2014; Ross & 

McHugh, 2006). 

 

Trust in the data creators 

While trust in the data and trust in the system are important for reusing others’ data, 

commentators also observed that the judgment of trustworthiness is ultimately 

determined by the perceptions of the individual(s) performing the judgment, rather than 

solely by the essential properties of the dataset (Prieto, 2009). Another dimension 

involved in data reuse processes is indeed interpersonal trust, such as trust in the 
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individual who produced the dataset. For example, Jirotka et al.’s study of distributed 

readings of mammograms revealed strategies for assessing trustworthiness based on 

reputational familiarity with the data producer, i.e.,, whether the producer was known to 

produce reliable data (Jirotka, 2005). Zimmerman (2008) discussed how ecologists assess 

data by disciplinary standards involved in their production and by reputation of the data 

producer (Yakel, Faniel, Kriesberg, & Yoon, 2013). 

 

While these studies surely inform us about the factors that scientists take into 

consideration when selecting a dataset for reuse, they do not say much about how 

research datasets are actually employed once they have been selected for reuse. We can 

think of filtering and selecting through sets of open data resources as the tip of the 

iceberg of data reuse practices. In this dissertation research project, I took a closer look at 

what researchers do with open data in their daily research routines. I developed a 

typology of reuse practices. Knowing how researchers reuse others’ data for knowledge 

production is a good starting point for understanding the subtleties of how trust in others’ 

data is established. The examination of such data reuse practices – and of how they may 

vary – allows us to identify those factors that enable a type of reuse versus another one. 

 

The strategy behind this investigation originates from the observation that scientists 

reuse others’ data for more than one goal. Wallis et al. initially observed this 

phenomenon in a study titled “If We Share Data, Will Anyone Reuse Them?” (Wallis et 

al., 2013). Wallis et al. explain: “Foreground data are the focus of the research, whether a 

field deployment or laboratory study. These forms of data are described as core or 
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primary data, distinct from background data that serve other purposes.” Building on 

Wallis et al.’s initial formulation, and my empirical findings, I developed a typology of 

data reuse practices of the DataFace participants. This typology matters because if the 

scientists indeed reuse others’ data in more than one way, as discussed next, different sets 

of sociotechnical challenges relate to different reuse practices. This typology, however, 

differs from Wallis et al.’s one because it does not classify data reuse practices by the 

type of data that is reused (background data vs. foreground data), but rather by the type of 

research purpose (background reuse vs. foreground reuse). 

 

Data reuse for background research 

I found that the researchers participating to this study reuse others’ data in at least two 

distinct research practices, which relate to quite different sets of socio-technical 

implications. Researchers reuse others’ data daily by accessing these at an aggregate or 

summary level – through data visualizations – on open databases and bioinformatics 

tools. Datasets reused for what I call “background” research purposes are highly curated 

(i.e., with metadata and ontologies) collections of research data. “Background” research 

consists – in this study – in re-using others’ data to set up experiments, to annotate novel 

sequences, and to interpret preliminary results from statistical analyses. The 

bioinformatics platforms where these data are hosted have user-friendly GUIs that require 

not more that typing couple of simple queries in order to filter and visualize the datasets. 
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Trust in others’ data and the “publication status” 

When the DataFace researchers consult others’ data for background research, for 

example when they visualize genome tracks on the Genome Browser, they trust the data 

behind the scene. There is no doubt that the fact that these datasets are highly curated and 

semantically and logically linked to each other is what makes them usable as “small 

facts” (Leonelli, 2016). However, in my observations of the DataFace participants, it 

emerged that the scientists trust these data better when these are known to be associated 

to academic publications. Most of the highly curated and integrated data hosted on 

platforms such as the Genome Browser, OMIM, and GEO are harvested by the database 

bio-curators from academic publications, a practice that – we have seen – is common 

among model organism communities. Increasingly, the datasets are submitted to the 

databases as a requirement for submission to the journals, a practice that – as discussed – 

started to emerge in the US in the late 80s and early 90s. Over the years, these datasets 

have been used and reused a number of times, by many researchers, in the context of 

multiple research studies. When others’ data are harvested from publications, integrated 

in a system of organized knowledge, and reused over and over again, they constitute a 

corpus of known and validated knowledge about certain biological entities of interest. 

This validation does not solely come from the ways in which datasets are linked to each 

other – as discussed by Leonelli and many others – but also “through experience,” by the 

fact that a record exists of how these datasets have been reused before. When a dataset is 

released along with a peer-reviewed publication, this means that such dataset 

demonstrated – at least once – to be useful and “good enough” for research purposes. 

This “proof of effective reuse” – along with the metadata and ontologies – constitutes a 
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main factor that makes the datasets highly trustworthy for the scientists participating in 

this study.  

 

Data Reuse for foreground research 

I use the expression “foreground research” to refer to what constitutes a full 

realization of the big data promise: the possibility of extracting novel knowledge from 

old data (boyd & Crawford, 2012). Researchers conduct foreground reuse of others’ data 

when they statistically re-analyze the data to find new patterns that can inform novel 

scientific claims. In the findings section I provided an account of how a GWAS dataset 

collected in the context of DataFace has been reused in the context of a new experimental 

design, which led to a re-calculation of the genes-phenotypes correlations as they appear 

in the primary analysis. In the biomedical sciences, genomics datasets represent the “big 

data” par excellence. As the reader might recall, genomics datasets are considered 

“hypothesis free” data and, as such, they are increasingly made available in “raw” 

formats. In the context of the DataFace consortium, all datasets were made available in 

raw formats and prior to publications. All DataFace datasets were released with granular 

metadata information, but at a low level of integration. 

 

The main difference between background and foreground reuse lies at the epistemic 

level: in background research others’ data perform as validated “small facts,” while in 

foreground research others’ data are resources that can be used to test new statistical 

hypotheses. The same dataset can be used for background and for foreground, depending 

on the analysis that we perform on it. In Aristotle’s philosophy, “actuality” and 
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“potentiality” are states of the same being, which is subject to motion and 

transformations. The concept of potentiality, in this context, generally refers to any 

“possibility” that a thing can be said to have. Actuality, in contrast to potentiality, is the 

motion, change or activity that represents the instance in which a possibility becomes real 

in the fullest sense. When used for background purposes, others’ data perform as 

established facts, as fulfilled possibilities. While when used for foreground research, the 

same data perform as facts “in potency.” For example, the findings from the primary 

analysis of the Caucasian GWAS dataset could be reused by a researcher conducting a 

literature review on those genes that have been observed as having a role in shaping the 

development of the human face in the embryo (background reuse). However, in order to 

use the Caucasian GWAS dataset itself to look for “new” genes that might be involved in 

other biological processes – or in the same processes – a researcher would need to 

conduct a secondary analysis of the genes/phenotypes associations (foreground reuse). 

See table 2 below. 

Table 2: Features of background and foreground reuse. 

 Background Reuse Foreground Reuse 
Goal of reuse Knowledge 

contextualization: 
comparison and 
interpretation 

Novel knowledge 
production: 
correlation and causation 

Example of reuse Sequence annotation Statistical analysis 
Frequency of reuse Frequent – routine practice Rare – emergent practice 
Data processing level at 
moment of access 

Aggregate or results’ data, 
shared at a summary-level 

“Raw” data, released at a 
low level of processing 

Epistemic value of the 
data 

Data represent validated 
knowledge – small facts 

Data perform as uncharted 
territories – facts in potency 
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Data creator and data reuser collaboration 

The DataFace participants run novel statistical analyses on others’ data exclusively in 

collaboration with the original creators of the data. I found that there are many reasons 

why the data creator/data reuser collaboration is deeply valued by the scientists, but two 

main reasons stood up. First, the data creator/data reuser collaboration allows the data 

reusers to interpret the findings derived by novel analyses thoroughly. As I have 

discussed in few occasions already, craniofacial datasets are collected in the context of 

highly specialized research designs. In the craniofacial domain, often those who generate 

a certain dataset are those who possess the most up to date knowledge of the literature 

related to that field of inquiry. The data creators mastered this specialized knowledge 

over time, but the data reusers would need to invest a great amount of time to master it as 

well. Collaboration over reuse allows for the transfer of “specialized knowledge” – some 

of which is tacit knowledge – from the data creators to the data reusers. Second, 

collaborating with the data creators help the reusers to establish trust in large-scale 

datasets released prior to publication. When datasets have no records of reuse, the 

reputation of the data creator works as a substitute for the lack of publication records. 

When data are collected and made available for the first time, nobody in the research 

community knows whether they will turn out to be useful for anything. Simply put, the 

data creators simply have a better sense of what are the chances that the dataset will be 

useful for novel knowledge production. 

Data Reuse and Co-authoring Papers 

In a context in which raw data are made available prior to publication, the 

collaboration between data creators and data reusers also facilitates the process of 
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attributing credit to the data creators. Indeed, co-run secondary data analyses often result 

in the data collector and the data reuser co-authoring the research papers that comes out 

of the novel data analysis. In various conversations with the researchers, it emerged that 

the “etiquette” of co-authorship between data creators and data reusers is highly valued 

by these researchers, and often elevated to the status of community norm. As I have 

reported in my findings, in the context of the DataFace Consortium research data are 

exclusively collected by early researchers whose careers depend on the possibility of 

extracting results from the data. It is a fact that sometimes co-authorship is given simply 

in exchange to accessing data that are not openly available. However, nobody is forcing 

researchers working in open environments to give co-authorship to those researchers who 

collected the data, but they still do so. Among this study’s participants, the heads of the 

laboratories approve and encourage co-authorship with the data creators. Far from being 

a way to receive “free credit for doing nothing,” co-authorship empowers researchers to 

use research data as collective properties. In an open data environment, all researchers 

have access to most data, at any time. Contrary to early twentieth-century model 

organism newsletters, researchers are not required to share their own fly stocks in order 

to reuse others’ stocks. Nor they have to show to be active members of the craniofacial 

community. The research community has nicknames for those who reuse others’ data 

without giving recognition to the data creators, and without contributing their own data: 

these are called the “free riders” or the “data parasites.” By exchanging authorship at the 

time of reuse, researchers promote a work environment of cooperation and reciprocal 

trust. 
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In summary, I found that DataFace researchers tend to reuse others’ open data either 

for background or for foreground research. The scientists who participated in this study 

trust others’ data when these are highly curated with metadata and ontologies, but also 

when the related primary analyses are already published in trusted academic journals. 

Researchers reuse others’ data for background research daily, for example to annotate 

new statistical findings. Foreground reuse is more technically challenging because it 

requires scientists to conduct a new analysis that test new hypotheses on old data. Novel 

analyses are particularly challenging when conducted “manually,” on data shared at a 

lower level of processing. Making “raw” data available prior to publication further 

complicates their reuse for foreground purposes because researchers tend to be suspicious 

of “unpublished data.” For all these reasons, the participants in this study tend to re-

analyze others’ raw data in the context of a collaboration with the creators of the data. 

Finally, collaboration for data reuse normally results in co-authorship between the data 

creators and the data reusers. Via co-authorship, scientists make sure that the data 

creators – who are early career academics – receive credit for their labor, and also reward 

them for their contribution to the secondary analyses. 

Socio-technical challenges to reusing DataFace open datasets 

So far, my findings examined how the craniofacial researchers who participated in 

this study reuse others’ open data in their daily practices. Given my observations, I now 

discuss the socio-technical challenges that the community of craniofacial researchers at 

large could face when reusing the datasets collected in the context of the DataFace 

Consortium. 
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Reusing DataFace open datasets for background research 

As we have seen, the participants in this study reuse others’ data on a daily basis to 

contextualize findings or set up experiments. They do so by accessing others’ data at an 

aggregate level through easy-to-generate data visualizations. Online platforms and 

bioinformatics tools provide the primary means for data retrieval and consultation. Given 

these observations, to what extend can DataFace datasets be reused for background 

research? 

 

As I discussed, during the second grant phase of DataFace, the engineering hub built 

a solid infrastructure that allows scientists to perform granular and complex searchers of 

individual datasets. The database engineers used agreed-upon metadata and ontological 

terms to curate the data. By collaborating with ontology experts, the hub standardized the 

naming process for new pieces of data. Via annotation strategies, each datasets was 

further linked to relevant known information such as genotypes, anatomical images, 

developmental stages, and phenotypes. Database engineers uploaded the DataFace tracks 

of sequence data on the Genome Browser, and linked these to the main DataFace 

platform. 

 

At the same time, it was never the goal of the DataFace infrastructure to include 

visualization tools that would allow scientists to access data through a level of data 

integration similar to the one offered by the Genome Browser, the ExAc browser, or the 

OMIM and GEO databases. The development and design of the Human Genomics 

Analysis Interface consisted in one attempt to create such a tool. By providing summary 
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level visualizations for GWAS studies datasets, the Interface would have enabled 

scientists to visualize summary level information about individual datasets. At the time of 

writing this dissertation, the Interface is released in beta. 

 

With the exception of DataFace genome tracks, which have been integrated in the 

UCSC Genome Browser, the DataFace platform never reached a level of data integration 

that would enable scientists to visualize others’ data at an aggregate level. A main factor 

that prevented this from happening is the fact that the participants collected highly 

heterogeneous types of data, using different methods for data collections and analysis. As 

Andrea (informatician), Hank (computational biologist), and Rose (NIH officer), pointed 

out during our conversations (see findings section), the DataFace database was truly 

envisioned as a cross-searchable repository of craniofacial large-scale datasets that could 

be downloaded and re-analyzed by the community. In other words, the DataFace datasets 

are best suited for foreground research than for background research. 

 

Reusing DataFace open datasets for foreground research 

As I have already discussed, in this research community, foreground reuse of open 

data (i.e., running secondary analyses of others’ raw sequence data) is an emergent 

practice. The community is fairly skeptical of high throughput data collections, especially 

when these are released prior to publication. The scientists have hard time trusting 

Unpublished in Journal, Available in Databases (UJAD) high-throughput data that 

haven’t been explored by anyone yet, not even by the data creators. At the time the 

DataFace data are released, these datasets have neither the reputation, nor the history, to 
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speak for their value as evidence of something (to speak for their potentiality). 

Significantly, the Caucasian GWAS dataset was re-analyzed after the data creators 

published their primary data analysis. 

 

The problem with reusing raw data released prior to publication is not simply a 

problem of trust in the data quality. Metadata and ontological terms inform scientists 

about the ways in which the data were collected, and about the biological entities 

described in the data. But metadata and ontologies cannot inform a data reuser on the 

potential for a certain dataset to contain novel information worth a scientific publication. 

For example, the RNAs expression data collected by Jane and Travis (the Green spoke) 

could, or could not, turned out to be relevant for understanding facial development 

processes in the mouse embryo. If the RNA fragments studied by Jane and Travis will be 

differentially expressed in the tissues embryos, the underlying data could then be re-

purposed to study the emergence of craniofacial syndromes in the human embryos. But 

Jane and Travis will not know whether this is the case until they analyze their data. At the 

time these data are released, these are “virgin” of any findings. Again, when researchers 

conduct novel statistical analyses, research data perform as facts “in potency.” In an 

attempt to address this issue, the hub added some links close to the datasets that redirect 

the users to the data creator’s publication history. The question that the DataFace 

Consortium is now facing is whether curation “before the fact” (see chapter on tools for 

daa sharing and reuse) can compensate for the lack of reputation and usage history of 

these datasets. This is a challenge of temporal nature. The sooner the data creators will 
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publish their primary analyses, the sooner other researchers will be encouraged to reuse 

their data. 

 

Another challenge for foreground reuse of DataFace data is related to the fact that the 

consortium partially addressed the issues of credit attribution and invisible labor that 

originated with the decision of releasing data prior to publication. As a mechanism for 

credit attribution, the leadership encourages data reusers to cite the consortium as a whole 

as the source of the datasets. However, as I have discussed, researchers belonging to this 

community, in their daily practices, tend to attribute credit for reuse following a quite 

different strategy, which is by co-authoring the final paper with the team responsible for 

the production of the data. 

 

The consortium leadership actively promotes and encourages the design of “shared 

research questions” in between the participating labs. However, this attempt is challenged 

by the fact that participating scientists are already busy working on the analyses of their 

own datasets, and they do not have the time, the resources, and the interest in analyzing 

other participants’ data. As I also mentioned, the leadership eventually released small 

grants to encourage novel analyses of DataFace data. The applicants for these small 

grants must be external to the Consortium and not have been involved the creation of the 

datasets. While this funding strategy makes sure that resources reach a higher number of 

laboratories, at the same time it alienates the data creators from being involved in the 

reuse of the data they collected and – consequently – it disrupts established collaborative 

practices and credit attribution strategies. 
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Unpredictable reuses: from craniofacial syndromes to facial reconstruction 

In a regime of radical openness, research data are made available right after collection 

and mined as “hypothesis free” resources. The practice of data reuse is the locus of 

knowledge production: novel knowledge will be extracted from old data. By marketing 

research data as fungible communities, and actively encouraging scientists to access and 

reuse others’ data, open repositories like DataFace increase the chances for epistemic re-

negotiation, which is neither a good nor a bad thing per se, but it is a fact. 

 

By “following the data,” I reconstructed step by step the process that led the DataFace 

GWAS Caucasian dataset to be reused for training machine-learning algorithms for 

DNA-based facial shape prediction models. In turn, these models are informing the 

development of Forensic DNA Phenotyping (FDP) services. As discussed, FDP is a 

controversial technology. Commentators from multiple fields are skeptical of FDP’s 

claim to be able to re-construct with high accuracy a suspect’s face from a small amount 

of DNA left at a crime science. Since the commercialization of FDP services in 2015, law 

enforcement agencies started to use FDP services to generate DNA-based mug-shots of 

suspects, which are then routinely shared with the public. 

 

This story of data reuse exposes the convergence of few methodological traditions 

that inform today’s design of Forensic DNA Phenotyping (FDP) services. Metrics and 

techniques for classifying human beings into distinct “racial” groups have come in full 

circle, from being phenotypes-based, to DNA-based, to both phenotypes and DNA based. 

In the nineteenth-century, the discipline of craniometrics used to categorize us in distinct 
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races based on the measurement of their skulls. More recently, population genetics and 

admixture sampling techniques group individuals based on genetic markers (SNPs, 

AIMs, etc.). Craniofacial GWAS studies classify human beings on the basis of both facial 

phenotypical appearances (head measurements) and genetic markers (AIMs). The metrics 

and techniques developed in the context of GWAS studies, following a long tradition 

tracing back to the Bertillon’s system of identification, ended up informing a series of 

studies that aim at producing novel systems of identification (FDP services, indeed). 

 

The scientific validity of DNA-based facial reconstruction models is currently 

debated among the scientific community. The validity of this prediction model seems to 

be contested between the biomedical craniofacial community (DataFace teams), whose 

members study the diagnosis and treatment of rare craniofacial syndromes, and, on the 

other hand, the physical anthropology and computer engineering community, which is in 

this case specialized in human variation and prediction algorithms. I have shown how the 

same DataFace GWAS dataset has been analyzed and re-analyzed in two different 

research designs. In the primary analysis, conducted by the data creators, few genome 

loci were found to be associated with facial variation in humans. Among these few loci, 

only a couple replicated previous GWAS studies conducted on the same population 

(Caucasian). In the secondary analysis, the researchers have found 15 genes associated 

with human facial morphology. 

 

A main difference between these two studies is the way in which the researchers 

designed the facial phenotypes (variation across nose, chin, jaw shapes etc.) that need to 
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be correlated with the genetic markers. As I have discussed, the design of the phenotypes 

is key in identifying variation among single facial traits. It is this variation among 

isolated traits that can be potentially used to reconstruct faces of individuals. In the 

primary analysis, the DataFace researchers constructed their phenotypes by using 

approximately 30 landmarks and the same amount of linear distances. However, as we 

have seen, for the physical anthropologists this “phenotypic first” approach potentially 

misses variation in the face that is expressed in traits that are not represented in a linear 

distance system. In the secondary analysis, the physical anthropologists’ team used a 

machine-learning algorithm called hierarchical spectral clustering to map every inch of 

the human face. By using as a starting point 10.000 points on the face (as opposed to 24 

landmarks), this algorithm produced a supposedly “comprehensive” representation of 

geometrical facial variation in humans. Based on proximity and variation, the algorithm 

clustered the spatially distributed 10.000 points into “facial fragments.” Fragments vary 

from global (larger) to small (local), and are organized – in a Russian doll fashion – into 

60 modules. In this way, a “global” module contains many “local” fragments. By 

applying this technique, which basically returns a higher number of phenotypes, the 

physical anthropologist’s lab maximized their chances to find association between genes 

and facial traits. The claim is that the algorithm calculates the phenotype in a granular 

and objective way, as opposed to linear distances that are pre–determined by the 

researchers. 

 

Given the ethical controversies surrounding FDPs technologies, and the 

epistemological instability of the associated prediction models for facial reconstruction, I 
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conclude this discussion by considering the right of the data donors (people who donated 

their data to biomedical research) to be informed about the reuses of their data. In relation 

to this issue, I also discuss the feasibility of predicting specific reuses of research data 

and results, once these are made openly available across different communities of 

practice. 

Beyond privacy: the emerging politics of data reuses 

In the literature review section of this dissertation I provided some examples of how 

the accumulation and availability of sequences and individual health data has generated a 

growing stock of information that can be mined to look for patterns, patterns that can be 

in turn used to make predictions about human health (Stevens, 2016). Large volumes of 

bio data are used to feed machine–learning algorithms, which are responsible for 

returning the prediction models. Joanna Radin observed that “machine learning and the 

related field of statistical pattern recognition have been the subject of increasing interest 

to the biomedical community because they offer the promise of improving the sensitivity 

and specificity of detection and diagnosis of disease, while at the same time purportedly 

increasing the objectivity of the decision–making process” (Radin, 2017a, p. 52). I also 

discussed that starting from the mid–2000s some bio–tech entrepreneurs saw a 

commercial opportunity for monetizing these predictions – such as in the case of the 

“personal genomics” services (Bliss, 2018; Mike Fortun, 2008; Nelson, 2016). 

 

On the official website of the DataFace Consortium, the DataFace repository presents 

itself as “your curated, one–stop shop for facial research.” The DataFace open repository 

constitutes a set of data resources made freely available to be mined for predictions, and 
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the development of FDP services by private companies is an example of how these 

predictions can been monetized. In her paper Digital Natives, Radin (2017) calls for an 

inclusion of the “politics of data reuse” in the discourse about human subject data reuse 

practices and policies. For Radin, when scientists reuse human subject data that they did 

not collect themselves, they should take into consideration the “histories” behind these 

collections. Scientists should ask themselves: Where do these data come from? How were 

these data collected? What were these data originally collected for? Radin’s analysis 

highlights the fact that biomedical data comes from bodies, bodies that – in the Pima’s 

case study analyzed by Radin – have been appropriated unethically and as a result of 

post–colonial dynamics. 

 

The DataFace human subject datasets were collected and made available following 

procedures reviewed and approved by the Institutional Review Boards (IRBs) of all the 

participating labs. The parents and children who participated to the data collections were 

not compelled in doing so. Research subjects voluntary signed an Informed Consent 

form, which explains – along with the risks and benefits that come with the research 

participation – what researchers will use their data for. The Informed Consent is 

stipulated based on an overarching research protocol approved by an Institutional Review 

Board (IRB). To reuse DataFace human subject data, potential reusers need to submit a 

Data Access Request (DAR) to the Consortium. The DAR includes a detailed description 

of the research objectives and design. Each DAR needs also to include a research 

protocol approved by the requester’s IRBs. If investigators plan to collaborate outside 

their own institution, the collaborators must submit an independent DAR using the same 
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project title as the one originally submitted. A novel DAR and a novel IRB need to be 

submitted for each reuse of the DataFace datasets. The DAR and the IRB do no guarantee 

access to the data. The consortium leadership is eventually responsible for approving the 

DAR and reviewing the IRB protocol. 

 

Based on the DataFace policy for data access and reuse, the DataFace datasets should 

be employed in research studies that aim at understanding craniofacial development and 

disorders. But, as discussed, in practice the analysis of the DataFace datasets is already 

informing research well beyond these domains. The DataFace GWAS Caucasian dataset 

was reused in the context of a study which analytical results will advance research on the 

genetics causes of craniofacial birth defects. At the same time, the same data and the 

same analyses will also inform the design of prediction models for DNA–based facial 

reconstruction. This raises a question of how can IRBs and informed consents truly 

“inform” the data donors about the potential uses of their data when these are made 

available for reuse in interdisciplinary research. The more science becomes open and 

collaborative, the more scientists will be able to do novel and unexpected things with 

research data and results. When data are reused collaboratively and in an open 

environment, multiple teams can re–contextualize analytical results in multiple lines of 

research, which can have very different outcomes. Novel models for data governance are 

needed to make sure that those who donate their data can be properly informed about 

potential misuses. 
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Another limit of the IRBs and the inform consent is that this kind of regulations apply 

only to research data reused for research purposes. If research data are reused 

commercially, IRBs have no jurisdiction. This is also the reason why human subjects’ 

“research data” collected on Facebook cannot be used in academic context in ways that 

are not officially approved by an IRB, but the same datasets can be reused in all sort of 

ways for marketing purposes (at least for now). Human subjects data like facial images – 

both from Facebook and DataFace – must be always de-identified following HIPAA rules 

(45 CFR 164.514). Individual-level data must not be made publicly available, also when 

used in commercial purposes. However, no limitations apply to the kind of service or 

product the data can be reused for. As I pointed out the literature review, some limitations 

exist for sequence data in terms of privacy protection. For example, if sequenced data are 

used to profile individuals, the Genetic Information Nondiscriminary Act (GINA) makes 

it illegal for employers and insurers to discriminate on the basis of genetic of genomic 

information (Hudson et al., 2008). But, not only this the law does not apply to life, 

disability, or long-term care insurance, it also – again – does not say anything about the 

types of commodities and services that can be obtained by mining the data. 

7. Conclusions 

The findings of this research project contribute to the socio-technical understanding 

of research data practices at multiple levels. First, this dissertation project informs the 

debate around the existence of different data governance regimes in the biomedical 

domain in the US. In a “semi-open regime” for data sharing, scientists deposit their 

research data voluntarily, once they have published their primary analyses. In a “radical 
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openness” regime, which emerged toward the completion of the Human Genome Project 

(HGP), scientists share their data in exchange for the funding for new collections, right 

after data production. Openness performs as an accountability mechanism, and data reuse 

ensures the return on the investments on data collections. In order to maximize data 

sharing and speed up data reuse, research data are conceptualized as “hypothesis free” 

resources, which are different from the “results data” shared along with peer-reviewed 

publications. Hypothesis-free data – in this perspective – do not need specialized labor 

neither to be collected nor to be analyzed. In this frame, hypothesis-free data can be 

exchanged as fungible resources, rhetorically separated from their creators: they can 

stand by themselves. 

 

The very idea of producing hypothesis free data is troublesome for the scientists. As 

reported in my interviews, the participants in this study have hard time trusting research 

data that are marketed as being collected with no specific research design in mind. Even 

atlases of mouse RNA-expression data are collected to the goal of answering an initial set 

of questions. The participants in this study joined the DataFace Consortium to access the 

funding to collect large-scale datasets that they could mine to ask a set of pre-determined 

research questions informed by pre-established research agendas. Their overarching goal 

is to integrate these novel data collections with other data collections in an attempt to 

study the development of the human face as a system. Given these observations, the 

meaning of the expression “hypothesis free” is not clear. None of the DataFace datasets 

seemed to be collected without a clear research agenda, and a set of hypotheses, in mind. 
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Second, this study contributes to the debate about “what is needed” to reuse open 

data. My starting point was that, for research data to be reused, scientists need to trust 

that these data can be used as evidence of a natural phenomenon. I began this study by 

defying research data as “entities used as evidence of phenomena for the purposes of 

research or scholarship (i.e., science)” (Borgman, 2015, p. 29). We have also seen that – 

as observed by Leonelli (2016) – the evidentiary power of research data lies in the ways 

in which these are curated, or “packaged,” for reuse by others than the data creators. My 

findings confirm the value of the data curation process as the locus of evidence in 

research data. DataFace scientists access others’ data daily on databases and via 

bioinformatics tools – such as the Genome Browser, the ExAC Browser, or the OMIM 

database. Participants reuse these sets of curated and aggregate data to set up their 

experiments, annotate “raw” sequences, and interpret the results of the statistical analyses 

they perform on their own data. Bioinformaticians and data curators integrate open 

datasets in ways that can be easily visualized by the researchers at a summary-level. 

 

However, my findings also suggest that – at least in this case study – data curation is 

necessary but not sufficient to enable data reuse. Other factors impact the evidentiary 

power of research data. One of these is the “publication status” (published vs. not 

published) of a dataset’s primary analysis. Participants rarely reuse data that are not 

published along with peer-reviewed primary analyses. Before the advent of the radical 

openness regime, the data creators used to execute and publish the primary analysis of the 

data they produce. As I have discussed, if a dataset is published along with a publication, 

this means that – at very least once – it demonstrated its usefulness for the research 
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community. If a study is published in an academic journal, it means that it passed the 

peer-review process, but it also means that the quality of the underlying data is good 

enough to be used as evidence for “small biology facts” – at least theoretically. By 

accessing open datasets linked to peer-reviewed publications, reusers quickly assess the 

utility and quality of an open dataset. While metadata provide specific indications about 

the conditions of production, the “publication status” of the primary analysis indirectly 

suggests whether a dataset has the potential to be useful for research. In this sense, the 

publication status is the first indication of utility, the starting point for reuse. The 

publication of a primary analysis is not enough to enable scientists to re-contextualize 

others’ data, that is the “job” of metadata and ontologies, but it makes the very first reuse 

of a dataset easier. In a semi-open regime of data sharing, the data creators were 

responsible for demonstrating the usefulness of the data they collected. Now, with the 

emergence and diffusion of the radical openness regime, this responsibility is distributed 

among the research community at large. In a radical openness regime, the line between 

primary uses and secondary uses is re-negotiated. On one hand, scientists are supposed to 

trust the evidentiary power of datasets that have no publication records. On the other 

hand, anyone could be the first to conduct a primary analysis on data collected by 

someone else. 

 

Still, even when data are shared along with publications and are properly curated, 

there are cases in which the reusers need to collaborate with the data creators to re-

analyze the data. They cannot do so independently. This is where the typology of data 

reuse practices comes in handy. I developed the background/foreground typology based 
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on Wallis et al.’s initial observation that – for the scientists – data reuse can mean more 

than one thing (Wallis et al., 2013). I further used it to provide an explanation of why 

researchers collaborate with the data creators to reuse others’ data solely in certain 

instances. Overall, collaborating with the data creators does not seem to be necessary 

when data are accessed at an aggregate or summary level, and used for background. On 

the other hand, the practice of testing new statistical hypotheses on others’ data – what I 

defined as “foreground reuse” – requires collaboration between the data creators and the 

data reusers. Let’s suppose that a researcher is about to conduct a secondary data analysis 

of a research dataset that she did not collect herself – for example, she is about to re-

analyze Jane’s RNAs expression dataset of the mouse embryonic facial tissue. The 

dataset’s metadata provide the data reuser with information about the conditions of data 

production, and annotations and ontologies link Jane’s dataset to pre-existing datasets and 

other bits of information. The publication of Jane’s primary analysis confirms that this 

dataset has already passed peer-review quality control. Given this set of meta-information 

about Jane’s dataset, can a potential reuser run a new analysis on it? In my observations, 

in most cases she still cannot. Based on my observational and interview data, reusing 

others’ data for foreground research requires the linguistic and interpersonal exchange of 

tacit and specialized knowledge that is not easily formalizable in metadata and 

ontologies. Jane is an expert on facial tissue formation processes. She has been collecting 

and analyzing RNAs data from mouse embryos for a long time. Jane conceptualized and 

designed the experimental setting in which the data were collected. When she analyzes 

her own data, Jane heavily relies on her specialized knowledge of her field and of her 

experimental procedures to interpret them. For the data reuser to gain the same amount of 
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tacit and specialized knowledge, it would take months of training and many hours of 

reviewing past and current literature on this subject. For this reason, data reusers tend to 

collaborate with the data creators when they indent to reuse their data for foreground 

research. Collaboration enables fast sharing of tacit and specialized knowledge. 

 

Among the participants in this study, the data reusers reward the data creators with 

co-authorship because of the time they invested in collecting the data, and also for the 

specialized knowledge that they share along with their data. The conceptualization of 

research data as “hypothesis and labor free” resources falls short in the light of these 

observations. At least among the participants in this consortium – at this moment in time 

– the data creators collected their datasets in the context of specialized research designs, 

of which they are “the experts.” Tools developers could question this observation by 

showing how certain visualization tools are able to suddenly visualize “with one click” 

patterns in the data that were not there before. In this perspective, data discovery tools are 

promoted as substitute for specialized expertise and tacit knowledge. I would reply by 

asking: is the knowledge retrieved by this visualization enough for a scientist to submit it 

in the form of a publication to a panel of peers for review? In most cases, it is not. The 

Genome Browser, for example, by aligning and mapping many genome tracks on the 

same knowledge representation schema, enables the scientists to visualize and compare 

multiple genome tracks at once. But in order to publish a paper worth of the top journal in 

the field, the scientists still need to explain “why” variance can be observed across 

multiple genomes in the first place, and what are the implication of such variance. The 

deep knowledge that is necessary to explain the meaning and impact of a certain genetic 
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variance is produced by consulting many other databases and by accessing specialized 

and tacit knowledge that the researchers accumulate over time during their careers. 

 

Data reusers need the data creators’ collaboration to re-analyze data efficiently and 

properly interpret them. This observation raises a set of questions about how epistemic 

power is distributed in data reuse practices. The data creators, on one hand, retain a 

certain degree of control on who can access their specialized knowledge. At the same 

time, the data creators are concerned that their data can be misinterpreted and misused by 

those who re-analyze them independently. 

 

The case study of the reuse of the DataFace GWAS datasets is a perfect opportunity 

to reflect on “the politics of data reuse.” We have seen that DataFace GWAS datasets 

have been reused in the context of a research design that aims at associating variation in 

human facial traits to variation in human genotypes. My examination revealed that the 

science behind this kind of studies is highly contested between different epistemic 

communities (biomedical researchers vs. computer scientists and physical 

anthropologists). The fact that FDPs are being employed by law enforcement agencies to 

search for suspects while the underlying science is not settled yet, makes their uses 

ethically questionable. 

 

Given these observations, this case study further exposes the limitations that the IRB 

and the Informed Consent face when biomedical research data are reused across contexts 

of production. It highlights the fact that it is impossible to predict – and consequently 
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formalize – how open research data will be reused, by whom, and to what purposes. This 

is true in research, and even more problematic in the private sector, where there is no 

oversight over the products and services that research data can be reused for. We should 

be asking whether it is even feasible to truly inform the data donors about the ways in 

which research data will be reused. 

 

It might be useful to think about the reuse of research data as a “situated action” – to 

use Lucy Suchman’s famous expression (Suchman, 1987). The reuses of research data 

vary based on the research design – the situation – that informs such practice. Not all 

reuse situations are the same. Metadata and ontologies might be sufficient to enable reuse 

when research data are accessed at an aggregate or summary level, and used for 

comparison and control. Meta-information might not be sufficient to enable reuse when 

data are accessed at a low level of processing, to run novel statistical analyses. No 

research dataset was born “hypothesis free.” Even an atlas of mouse’s facial images is 

collected within a certain research design, in the context of a certain research agenda. 

When reusers who are not familiar with the research design in which data were originally 

collected try to independently re-analyze them, they lose bits of tacit and specialized 

knowledge that informed the initial collection of the data, as well as the interpretation of 

related statistical findings. By collaborating with the data creators, data reusers have easy 

and fast accessed to such knowledge. 

 

In my observations of the data reuse practices of the DataFace Consortium, the 

scientists are aware of what is gained and what is lost in reusing open data independently 
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vs. in collaboration with the data creators. The scientists in this community seem to be 

mostly in favor of reusing data in collaborative settings. Collaborations are formed 

spontaneously in relation to pre-existing research agendas and hypotheses that the 

scientists are interested in testing. The biomedical researchers who participated in this 

study did not download and re-analyze “hypothesis free” research data from open 

repositories out of the blue. Beyond metadata and ontology schemas, the process of 

testing novel statistical hypotheses on “old” data is facilitated by the availability of 

primary analyses, and the existence of a shared research agenda, a shared research 

question, and a shared hypothesis between the data creators and the data reusers. 
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