
UC Irvine
UC Irvine Previously Published Works

Title
Memory-Efficient Synaptic Connectivity for Spike-Timing- Dependent Plasticity.

Permalink
https://escholarship.org/uc/item/1sz3z3gx

Journal
Frontiers in neuroscience, 13(APR)

ISSN
1662-4548

Authors
Pedroni, Bruno U
Joshi, Siddharth
Deiss, Stephen R
et al.

Publication Date
2019

DOI
10.3389/fnins.2019.00357

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1sz3z3gx
https://escholarship.org/uc/item/1sz3z3gx#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

ORIGINAL RESEARCH
published: 24 April 2019

doi: 10.3389/fnins.2019.00357

Frontiers in Neuroscience | www.frontiersin.org 1 April 2019 | Volume 13 | Article 357

Edited by:

Chiara Bartolozzi,

Istituto Italiano di Tecnologia, Italy

Reviewed by:

James Courtney Knight,

University of Sussex, United Kingdom

Quansheng Ren,

Peking University, China

Alejandro Linares-Barranco,

Universidad de Sevilla, Spain

*Correspondence:

Bruno U. Pedroni

bpedroni@eng.ucsd.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 22 November 2018

Accepted: 28 March 2019

Published: 24 April 2019

Citation:

Pedroni BU, Joshi S, Deiss SR,

Sheik S, Detorakis G, Paul S,

Augustine C, Neftci EO and

Cauwenberghs G (2019)

Memory-Efficient Synaptic

Connectivity for Spike-Timing-

Dependent Plasticity.

Front. Neurosci. 13:357.

doi: 10.3389/fnins.2019.00357

Memory-Efficient Synaptic
Connectivity for Spike-Timing-
Dependent Plasticity
Bruno U. Pedroni 1*, Siddharth Joshi 2, Stephen R. Deiss 1, Sadique Sheik 3,

Georgios Detorakis 4, Somnath Paul 5, Charles Augustine 5, Emre O. Neftci 4 and

Gert Cauwenberghs 1

1 Integrated Systems Neuroengineering Laboratory, Department of Bioengineering, University of California, San Diego, La

Jolla, CA, United States, 2Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN,

United States, 3 aiCTX, Zurich, Switzerland, 4Department of Cognitive Sciences, University of California, Irvine, Irvine, CA,

United States, 5 Intel Corporation - Circuit Research Lab, Hillsboro, OR, United States

Spike-Timing-Dependent Plasticity (STDP) is a bio-inspired local incremental weight

update rule commonly used for online learning in spike-based neuromorphic systems. In

STDP, the intensity of long-term potentiation and depression in synaptic efficacy (weight)

between neurons is expressed as a function of the relative timing between pre- and

post-synaptic action potentials (spikes), while the polarity of change is dependent on

the order (causality) of the spikes. Online STDP weight updates for causal and acausal

relative spike times are activated at the onset of post- and pre-synaptic spike events,

respectively, implying access to synaptic connectivity both in forward (pre-to-post) and

reverse (post-to-pre) directions. Here we study the impact of different arrangements

of synaptic connectivity tables on weight storage and STDP updates for large-scale

neuromorphic systems. We analyze the memory efficiency for varying degrees of density

in synaptic connectivity, ranging from crossbar arrays for full connectivity to pointer-based

lookup for sparse connectivity. The study includes comparison of storage and access

costs and efficiencies for each memory arrangement, along with a trade-off analysis

of the benefits of each data structure depending on application requirements and

budget. Finally, we present an alternative formulation of STDP via a delayed causal

update mechanism that permits efficient weight access, requiring no more than forward

connectivity lookup. We show functional equivalence of the delayed causal updates to

the original STDP formulation, with substantial savings in storage and access costs and

efficiencies for networks with sparse synaptic connectivity as typically encountered in

large-scale models in computational neuroscience.

Keywords: synaptic plasticity, neuromorphic computing, data structure, memory architecture, crossbar array

1. INTRODUCTION

Extensive research in the field of artificial neural networks (ANNs) in the past decade has given rise
to diverse neuron functions, network topologies, and training techniques (Nair and Hinton, 2010;
Krizhevsky et al., 2012; Goodfellow et al., 2014; Kingma and Ba, 2014; Ioffe and Szegedy, 2015),
capable of solving complex cognitive tasks, such as image classification (Krizhevsky et al., 2012),
sequence generation (Graves, 2013), speech recognition (Graves et al., 2013), and game playing

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00357
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00357&domain=pdf&date_stamp=2019-04-24
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:bpedroni@eng.ucsd.edu
https://doi.org/10.3389/fnins.2019.00357
https://www.frontiersin.org/articles/10.3389/fnins.2019.00357/full
http://loop.frontiersin.org/people/129879/overview
http://loop.frontiersin.org/people/14426/overview
http://loop.frontiersin.org/people/50888/overview
http://loop.frontiersin.org/people/26862/overview
http://loop.frontiersin.org/people/37464/overview
http://loop.frontiersin.org/people/416694/overview
http://loop.frontiersin.org/people/407389/overview
http://loop.frontiersin.org/people/3753/overview
http://loop.frontiersin.org/people/12771/overview

Pedroni et al. Memory-Efficient STDP

(Silver et al., 2016). However, the components of these
algorithms are normally only loosely based on actual biological
neural networks, particularly with respect to the non-local
learning rules (e.g., the widely used backpropagation algorithm,
Rumelhart et al., 1986) and the continuous activation functions
(e.g., sigmoid unit and rectified linear unit). Spiking neural
networks (SNNs), in contrast, incorporate multiple aspects
of biological nervous systems into its components (Gerstner
and Kistler, 2002), including biologically relevant neuron
models, binary activation functions and communication, event-
driven processing, and local learning rules (i.e., where all the
information required for adjusting parameters between neurons
is collocated with these neurons). The neuron models can
range from simple single-variable differential equations (e.g.,
McCulloch-Pitts and integrate-and-fire), to complex systems
with dynamics more homologous to real neurons (e.g., Hodgkin-
Huxley). In SNNs, neurons communicate between each other
via a binary event known as an action potential (or spike),
which is elicited whenever a neuron variable (typically, the
membrane potential) crosses a threshold value. Whenever a
neuron produces an action potential, this spike event information
is conveyed to its population of downstream post-synaptic
neurons, resulting in an update of their respective internal
variables based on the values of synaptic efficacy (or weight). Due
to their binary nature, the time at which spikes occur is essential
information when training SNNs.

The origins of hardware designed to emulate the biological
nervous system, also known as neuromorphic systems Mead
(1990), targeted design of neural properties at the device level,
with natural focus on analog circuits (Maher et al., 1989; Andreou
et al., 1995; Koch and Mathur, 1996). More recently, however,
neuromorphic systems such as TrueNorth (Merolla et al., 2014),
SpiNNaker (Furber et al., 2014), and Loihi (Davies et al., 2018)
were designed with purely digital components, being capable
of emulating large-scale SNNs with real-time dynamics in the
millisecond timescale. Additionally, large digital systems have
the advantage of being more readily verifiable in simulation
and a software-hardware equivalence is typically possible. While
ANNs operate in a sequential manner, where data propagates
through the network one layer at a time, neuromorphic systems
typically present multiple cores running in parallel at biological
timescales, with synaptic memory local to each core. Systems
with distributed processing and memory move away from
the traditional von Neumann architecture, where memory is
centralized and a high-frequency global clock is responsible for
fast computation and memory access (Merolla et al., 2014).

Among the bio-inspired learning mechanisms, spike-timing-
dependent plasticity (STDP) is perhaps the most widely
considered form of induced synaptic modification (Markram
et al., 1997). STDP originated from experimental data collected
in cultures of dissociated rat hippocampal neurons, where
scientists observed that a causal relationship between spike
times of pre- and post-synaptic neurons could induce synaptic
strengthening or weakening, and this change was correlated with
the relative temporal difference of spikes (Bi and Poo, 1998). The
experiments showed that long-term potentiation and long-term
depression could both be induced in synapses depending on the

order of spike occurrence, where a causal relationship (i.e., pre-
synaptic neuron spikes before post-synaptic neuron) potentiated
the synapse, while an acausal relationship (i.e., post-synaptic
spikes before pre-synaptic) weakened the synapse. The authors
then approximated the measured synaptic modification with a
mathematical model. In themodel, the STDP function (or kernel)
defines the change of the weight as a function of the relative
time between pre- and post-synaptic action potentials, and the
duration of the causal (and acausal) influence of spikes is called
the STDP learning window (Sjöström and Gerstner, 2010). An
important aspect of STDP is that, though it is a local learning rule,
weight updates occur at the onset of both pre- and post-synaptic
spikes, requiring for the algorithm to be able to not only identify
all neurons which the pre-synaptic neuron sends its spikes to,
but also locate all the neurons which the post-synaptic neuron
receives its spikes from. This is a fundamental property of STDP,
and throughout our work we will refer to reading the neuron
addresses and weights from pre-to-post connectivity as forward
access and reading from post-to-pre connectivity as reverse access.

In traditional ANNs, the typical data structure used to
represent the weights between neurons is a dense matrix,
constituting a fully connected topology. However, more realistic
and biologically relevant neural networks, such as small-world
and locally connected random networks (Bassett and Bullmore,
2006; Bullmore and Sporns, 2009; Seeman et al., 2018), do not
conform to this structured topology. In these cases, synaptic
weight storage costs can benefit greatly using compressed
representations. For physical realizations of the STDP learning
rule, the arrangement used to organize the synaptic weights in
memory has a direct impact on the ease of forward and reverse
access. As we will later show, dense matrices typically have
the advantage of natively facilitating both types of connectivity
access. Conversely, compressed memory arrangements suffer
greatly when trying to access in the reverse direction, making
causal STDP weight updates in these structures computationally
intensive. In this work, we discuss the complexity of storing and
accessing synaptic weights in different types of data structures
and their impact on implementations of the STDP algorithm, and
propose a novel method of performing STDP using only single-
direction connectivity access, consequently taking advantage of
compressed structures.

Storage costs associated to synaptic weight memory
arrangements have been previously studied (Moradi et al.,
2013; Pedroni et al., 2016; Joshi et al., 2017; Kornijcuk et al.,
2018). In Materials and Methods, we give an overview of four
typical data structures used for representing synaptic weights,
and analyze storage costs based on different network parameters
(number of neurons and weight bit-length) and varying degrees
of network connectivity density. We extend our analysis to verify
the memory access cost and efficiency associated to each data
structure, focusing particularly on the computational complexity
and requirements for performing STDP. Inspired by our
previous work (Pedroni et al., 2016), we propose a definite pre-
synaptic-driven solution for obtaining a quantitatively equivalent
algorithm to STDP. Previous attempts in approximating STDP
using forward-only connectivity include (1) simplifying the
STDP rule by equally updating all the synaptic weights based

Frontiers in Neuroscience | www.frontiersin.org 2 April 2019 | Volume 13 | Article 357

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

on recent spike activity (Bichler et al., 2012; Yousefzadeh et al.,
2017), (2) using other variables (usually post-synaptic membrane
potential) as a proxy for the post-synaptic spike times when
computing causal updates (Brader et al., 2007; Davies et al.,
2012; Lagorce et al., 2015; Sheik et al., 2016), and (3) delaying
the weight updates (Jin et al., 2010; Davies et al., 2018). In the
discussion, we compare our method to these, particularly with
the third type, currently present in SpiNNaker and Loihi, and
explain how our solution can produce exact STDP while previous
methods rely on particular balanced firing rate conditions in
the network or simply produce qualitative approximations to
STDP. In Results, a network composed of 256 pre-synaptic
and 256 post-synaptic neurons is simulated using our proposed
method and compared against the original STDP learning rule,
showing that our method produces the same post-synaptic
membrane potentials, resulting in identical spiking activity and
synaptic weights.

2. MATERIALS AND METHODS

2.1. Digital Neuromorphic Core
Neuromorphic systems emulate the biophysics of neural
computation in correspondingly tailored electronic circuits
(Mead, 1990). Whereas artificial neural networks are typically
deployed as software applications in general purpose hardware,
neuromorphic systems are normally developed accounting
for the properties and limitations that a physical hardware
implementation entails. These include biologically plausible
neurons (i.e., spiking neurons) and learning rules, binary event
communication (i.e., neurons communicating via spikes), limited
and local synaptic memory, and parallel and distributed neuron
processing (Mahowald, 1993; Liu and Delbruck, 2010; Indiveri
et al., 2011; Park et al., 2017).

The current state-of-the-art digital neuromorphic processors,
such as TrueNorth (Merolla et al., 2014) and Loihi (Davies
et al., 2018), partition the network into cores, where typically
the population of post-synaptic neurons in a core shares inputs
from a common pool of pre-synaptic neurons. At a high level,
the core comprises of a digital finite-state machine, with weights
stored in digital memory elements (e.g., random access memory
- RAM), and with the state of the neural and synaptic variables
progressing in discrete time steps (1t), representing the temporal
precision of the system. Figure 1A illustrates an abstract digital
neuromorphic core and its components. The core operates by
processing incoming pre-synaptic spikes (irrespective of their
origins) and updating the post-synaptic state variables (e.g.,
membrane potential) with the associated weight between the pre-
and post-synaptic neurons. Once all pre-synaptic spikes have
been processed, the post-synaptic neurons are evaluated. Any
new post-synaptic spike is then routed to its destination (on
another or the same core), where there it is treated as an incoming
pre-synaptic spike and is buffered to be used in the next system
time step.

For realizing STDP learning in digital neuromorphic systems,
a core must locally store (or have access to) the following: pre-
synaptic spike times, synaptic weights, and post-synaptic neurons

and spike times. Collocating the synaptic weights with the post-
synaptic neurons ensures that all the information required for
local and distributed learning strategies can be accessed with
minimum overhead (Joshi et al., 2017). Interestingly, since our
proposed method operates in pre-synaptic spike-driven fashion,
a core does not require storing the pre-synaptic spike times. In
other words, the spike times only need to be stored at the origin
of the spike (i.e., at the post-synaptic neuron).

Lastly, an important consideration throughout our work is
that we analyze the storage and access efficiency of the different
memory arrangements based on the data structure used for
storing synaptic weights. For this, we abstract away the physical
storage elements by considering that each position in memory
contains only a single “packet” of information (of arbitrary
length), and that only one position in memory can be accessed
at a time (i.e., each read/write command targets one “packet” at
a time). Though memory storage and access in dynamic RAMs
(DRAMs), for example, is typically not performed on an arbitrary
number of bits (i.e., usually each read/write command targets a
few bytes at a time), and complete random access is less efficient
than bursts of sequential addresses of data, understanding the
efficiency of each memory arrangement would become too
involved if we were to consider the intricacies of exact physical
models. For simplicity, we consider that storage costs take into
account only the total number of bits for storing the connectivity
and weight tables, and that each read/write command accesses
only one address of the table at a time. Thus, the computational
complexity of locating neuron addresses and weights in the
data structures, denoted as access cost, considers the number of
variables which must be accessed until the desired information is
located, and can perhaps serve as a proxy for indirectly evaluating
latency and energy of the methods.

2.2. Spike-Timing-Dependent Plasticity
(STDP)
Spike-Timing-Dependent Plasticity is a biologically inspired
form of Hebbian learning which considers the relative spike
time of pre- and post-synaptic neurons for updating the synaptic
efficacy (or weight) (Caporale and Dan, 2008). Though STDP
is believed to be a fundamental learning mechanism in the
mammalian brain (Dan and Poo, 2004) and has been widely
explored in computational neuroscience (Song and Abbott, 2001;
Izhikevich, 2007; Sjöström and Gerstner, 2010), results obtained
in machine learning applications (Nessler et al., 2009; Diehl
and Cook, 2015; Yousefzadeh et al., 2017; Kheradpisheh et al.,
2018) suggest it may also be an interesting solution in non-
biological scenarios.

STDP operates by modifying synaptic weights at the onset
of pre- and post-synaptic spikes. “Causal updates” occur when
a pre-synaptic spike precedes a post-synaptic spike, resulting
in an increase in synaptic efficacy (i.e., long-term potentiation).
Conversely, when a pre-synaptic spike proceeds a post-synaptic
spike, an “acausal update” occurs and the efficacy is reduced
(i.e., long-term depression). Figure 1B identifies the causal and
acausal regions of the STDP function. The strength in which
these changes take place is dependent on the temporal difference

Frontiers in Neuroscience | www.frontiersin.org 3 April 2019 | Volume 13 | Article 357

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

FIGURE 1 | (A) An abstract representation of a neuromorphic spiking neural network core and the components required for implementing pre-synaptic spike-driven

STDP. (B) The causal and acausal regions of the STDP function. (C) Typical STDP kernels implemented in neuromorphic systems.

between the spikes, and can also consider other factors (such as
the current weight value). In sum, the polarity of change depends
on the order of the spikes, while the intensity of change depends
on the temporal difference of the spikes. The basic model for
STDP is defined mathematically by

1wij =

Tj∑

a=1

Ti∑

b=1

W(taj − tbi), (1)

where the weight change between pre-synaptic neuron j and
post-synaptic neuron i is defined by the STDP kernel, W,
using all Tj pre-synaptic spike times, tj, and all Ti post-synaptic
spike times, ti.

The STDP kernel is a function which defines how weights
are modified based on the relative temporal difference between
pre- and post-synaptic spikes. Figure 1C highlights the causal
(when tpre < tpost) and acausal (when tpre > tpost) regions of
the STDP function in three commonly used kernels: (truncated)
exponential, ramp, and box. The basic STDP model in Equation
(1) considers a causal relationship of infinite duration between
all pre- and post-synaptic spikes. However, physical realizations
of STDP cannot account for a limitless amount of data to be
stored and analyzed at every instant of weight update. Therefore,
two considerations must be made for temporal spike interaction
when implementing STDP in a neuromorphic system: (1) the
duration of the kernel is finite and (2) the number of spike
times which can be stored is finite. For the first consideration,
the typical STDP kernels in Figure 1C present finite causal
and acausal window duration. In hardware, this duration is
defined by the limit of the STDP timers used in the system.
The exponential kernel, in theory, has a window duration of
infinite time; nonetheless, for physical realizations of the kernel,
we define a limit (i.e., truncation) on how far apart in time two
spikes can influence weight change. With the ramp and box
kernels, this limit is naturally occurring. For simplifying things

further, we normally select symmetric kernels (i.e., with identical
duration of the causal and acausal windows) as not to require
different STDP timers for each side of the STDP kernel. The
second consideration affects the temporal spike interaction and
is, in part, addressed by the finite kernel duration since “older”
spikes (i.e., spikes which have already left the learning window)
can be discarded.

Lastly, throughout this paper we will represent the STDP
window duration as Tstdp and the refractory period duration
as Trefr. Since we are considering implementations on digital
neuromorphic systems, both of these duration values are defined
as integer multiples of the system time step, 1t. Additionally,
it is worth mentioning that there are basically two alternatives
for storing spike times: using a bitmap or using multiple timers.
In section A1 we detail how the latter is always at least as
efficient as the former and, thus, this will be our method of choice
throughout the paper. Nevertheless, the proposed STDP learning
method using multiple timers can be transferred seamlessly to a
bitmap representation of spike times if desired.

2.3. Synaptic Weight Data Structures
Storage costs associated to synaptic weight memory
arrangements have been previously studied (Moradi et al.,
2013; Joshi et al., 2017; Kornijcuk et al., 2018), and here we give
an overview of four typical data structures used for representing
synaptic weights. We analyze the storage costs (in number of
bits) based on number of neurons, weight bit-length, and varying
degrees of network connectivity density. Depending on the
network topology being emulated, particularly with regards to
the connectivity density between pre- and post-synaptic neurons,
some of the data structures have clear advantages over the more
traditional dense matrix representation. The data structures
present common memory tables, which include: adjacency
table, pointer table, and weight table. Which tables are used and
how they are organized defines the synaptic weight memory
arrangement of the network.

Frontiers in Neuroscience | www.frontiersin.org 4 April 2019 | Volume 13 | Article 357

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

As will be presented next, crossbars consume memory
even for nonexistent synaptic connections, while pointer-based
models store only the existent connections, making them ideal
candidates when representing sparsely connected networks. For
our analyses, the network connectivity density, ρ, represents
the percentage of post-synaptic neurons which are connected
to a given pre-synaptic neuron, while sparsity can be computed
simply as (1−ρ). Both crossbars and pointer-based architectures
present a weight table (WT) for storing the values of the synaptic
weights; however, the latter must (directly or indirectly) also
include inWT the address of the post-synaptic neuron associated
with each weight, along with an additional memory called the
pointer table (PT).

2.3.1. Fully Connected: Crossbar
The most intuitive representation of synaptic weight memory
arrangement is by means of a dense matrix, representing full
connectivity between the inputs (pre-synaptic neurons) and
outputs (post-synaptic neurons). Alternatively, in neuromorphic
systems, the dense matrix is sometimes referred to as a crossbar
(Merolla et al., 2014). In a crossbar, every connection between a
pre- and post-synaptic neuron has a reserved space in WT, even
if the connection between the neurons does not exist.

An important aspect of WT to consider is that, when using a
dense matrix to represent a sparsely connected network, the zero-
valued weights can represent either (1) a nonexistent connection
or (2) an existent connection with weight currently equal to zero
(“inactive”). When simply testing the network (i.e., while not
performing synaptic plasticity), both of these cases produce the
same results. However, when actually training the network, there
should be a distinction between a nonexistent connection and
a weight which can momentarily take on the value of zero. To
distinguish between these two cases, the first option is to use
an additional memory called the adjacency table (AT), where
each position aij in AT stores a binary value representing the
existence (aij = 1) or nonexistence (aij = 0) of the synaptic
connection between pre-synaptic neuron Aj and post-synaptic
neuron Bi (Joshi et al., 2017). The second option is to use one of
the 2W weight values—whereW represents the bit-length of each
weight—to represent a nonexistent connection. The advantage of
using this second option is that it removes the memory overhead
required for storing AT, thus only using one weight value—
instead of an additional bit per weight—to differentiate between
existent and nonexistent connections. Throughout our work,
crossbars will be implemented using this second option.

The top left panel in Figure 2 depicts a crossbar with M
pre-synaptic and N post-synaptic neurons. Though WT can be
represented inmatrix-form, in the actual memory the weights are
stored sequentially, starting with all the weights of pre-synaptic
neuron A1 (i.e., w11 to wN1), then all the weights of A2 (i.e.,
w12 to wN2), and so forth, until weights w1M to wNM . Since the
crossbar presents a structured WT, the start and stop locations of
the weights in WT for each pre-synaptic neuron can be obtained
simply by the pre-synaptic address, thus eliminating the need
for pointers: the location of the first weight for pre-synaptic
neuron Aj can be computed by A∗

j = (j − 1)N + 1, with j ∈

[1,M]. Therefore, forward access in crossbars is performed by

starting at address WT(A∗
j) and reading N consecutive weights.

The figure also illustrates forward access (in yellow) for a single
pre-synaptic neuron.

2.3.2. Pointer-Based Compressed Sparse Row

(PB-CSR)
Using the compressed sparse row (CSR) format (Saad, 2003),
each position of WT stores an address-weight pair, (Bi, wij),
of the post-synaptic neuron Bi and the respective incoming
weight from pre-synaptic neuron Aj. In this manner, WT is
only populated by existent synaptic connections, and is the most
efficient method for storing very sparse networks. The top right
panel in Figure 2 exemplifies the PB-CSRmodel. As shown in the
figure, an important aspect of this model is that, when accessing
the weights for pre-synaptic neuron Aj, since we do not have
explicit information of the number of existent connections for
this neuron, we must always read the start, PT(j), and stop,
PT(j+ 1), addresses. Therefore, for performing forward access of
pre-synaptic neuron Aj, start at position PT(j) = A∗

j in WT and

consecutively read addresses and weights until position A∗
j+1− 1.

The figure also illustrates the forward path (in yellow) for a single
pre-synaptic neuron in PB-CSR, requiring two reads in PT (for
start and stop) and ρN reads in WT for the existent connections.

2.3.3. Pointer-Based Run-Length Encoding (PB-RLE)
Run-length encoding (RLE) is a method of lossless data
compression particularly useful when consecutive sequences of
the same value are present (Oliver, 1952). This concept can be
used to replace explicit storage of post-synaptic neuron addresses
of adjacent nonexistent connections. In PB-RLE, sequences of
consecutive nonexistent connections are stored as run counts,
and each position in WT stores a “run bit” followed by the
run/weight value. A run bit equal to “0” indicates the existence
of the synaptic connection, and the value that follows the bit
specifies the respective synaptic weight. If the run bit equals “1,”
then the data that follows it specifies the run length, representing
the number of consecutive post-synaptic neurons which do not
have connections with the respective pre-synaptic neuron and
are, thus, “skipped” when sequentially reading through WT.

The bottom left panel in Figure 2 illustrates the PB-RLE
model. Since the resulting WT after compression depends on the
specific distribution of the existent connections in the network,
we included equations for the worst-case scenario of perfectly
interleaved runs and weights. In other words, for ρ < 0.5, no
two consecutive positions in WT contain existent connections;
for ρ ≥ 0.5, no two consecutive connections are nonexistent,
resulting in only runs of unit length. The figure also illustrates
the forward path (in yellow) for a single pre-synaptic neuron, Aj,
which consists on starting at position PT(j) = A∗

j in WT and

consecutively reading weights and processing runs until post-
synaptic neuron N. When reading the last weight or run, the
pointer should be in position A∗

j+1 − 1 in WT. Forward access

requires one read in PT and a variable number of reads in WT,
which depends on the distribution of connections between the
pre- and post-synaptic neurons. The equations in the figure are

Frontiers in Neuroscience | www.frontiersin.org 5 April 2019 | Volume 13 | Article 357

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

FIGURE 2 | Synaptic weight memory arrangements and storage costs (in bits). Tables: adjacency table (AT), pointer table (PT), and weight table (WT). Parameters:

number of pre-synaptic neurons (M), number of post-synaptic neurons (N), weight bits (W), and connectivity density (ρ). The forward memory access path has been

highlighted. The pointer-based data structures compress data storage, resulting in non-structured solutions which depend on the connectivity and weight distribution

in the network. The equations for PB-RLE refer to worst-case scenarios of perfectly interleaved runs and weights.

defined for the worst-case scenario of perfectly interleaved runs
and weights.

2.3.4. Pointer-Based Bitmap (PB-BMP)
Mixing properties of the crossbar and the previous pointer-based
data structures, the PB-BMP includes PT, WT, and an additional
fully connected adjacency table. As with PB-RLE, bitmaps do not
require explicit storage of post-synaptic neuron addresses in WT,
while its equivalent run-length encoding is realized via AT. The
bottom right panel in Figure 2 illustrates the PB-BMP model
and the forward access path (in yellow) for a single pre-synaptic
neuron. The start address is stored in PT, and AT stores binary
information about connection existence. For forward access of
pre-synaptic neuron Aj, start the pointer in WT at position
PT(j) = A∗

j , and in matrix-form AT continuously read the entire

row j in the following manner: for every position in AT which
aij = 1, read the current weight in WT and move the pointer in
WT to the next position; if aij = 0, do not change the pointer
in WT. After reading the entire row j in AT, the pointer in WT
should be at positionA∗

j+1. The entire forward access requires one

read in PT, N reads in AT, and ρN reads in WT.

2.3.5. Data Structure Storage Costs
When considering a complete neuromorphic system, memory
elements must also be accounted for storing neuron variables
(e.g., synaptic current, membrane potential, etc.) and the
aforementioned STDP timers. However, for a network with k

pre-synaptic and k post-synaptic neurons, the space complexity
of storing the synaptic weights is O(k2), while neuron variables
and timers are unique to each neuron and do not depend on
the synaptic weight memory arrangement being used, resulting
in O(k) space complexity. Therefore, our analyses of memory
storage cost and efficiency only incorporate the memory required
for storing pointer, adjacency and weight tables, and do not
account for the neuron variables and STDP timers.

A summary of the storage costs (in number of bits) for the
different synaptic weight memory arrangements is presented in
Table 1. The crossbar does not require AT since one of the 2W

weight values can be used to indicate nonexistent connections.
The upper limit of PB-RLE costs vary depending on connectivity
density: for ρ < 0.5 we considered no two consecutive existent
connections, while for ρ ≥ 0.5 we considered every run is of
unit length. Actual costs for PB-RLE (presented in Figure 6)
were obtained via simulation, where networks were generated
by randomly creating connections based on the value of ρ, then
producing the respective PT and WT and computing their costs
in terms of number of bits required for storage.

2.3.6. Data Structure Access Costs
Both forward and reverse access to synaptic connections are
required for implementing the original STDP learning rule.
When a pre-synaptic neuron spikes, we perform forward access
in the connectivity table and apply the acausal updates, since
this specific pre-synaptic spike must have occurred after any

Frontiers in Neuroscience | www.frontiersin.org 6 April 2019 | Volume 13 | Article 357

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

post-synaptic spikes which have already taken place. When a
post-synaptic neuron spikes, we perform reverse access in the
connectivity table and apply the causal updates, since any pre-
synaptic spike must have occurred before this specific post-
synaptic spike.

In the diagrams in Figure 2, the forward (“fwd”) path for
accessing weights from pre- to post-synaptic neurons in the
weight tables was highlighted in yellow. The structured memory
arrangement in crossbars facilitates reverse access by simply
performing forward access in the transposed WT. Due to
the manner in which weights are stored in memory, pointer-
based data structures natively present access only to forward
connectivity. For accessing post-to-pre connections (i.e., reverse
access), two alternatives are possible: (1) using forward access
and sweeping through the entire AT or WT to verify if
each pre-synaptic neuron is connected to the post-synaptic
neuron of interest or (2) including PT and WT for the reverse
connections as well. The first solution does not affect hardware
costs, but can be extremely inefficient in terms of computation
time (particularly for densely connected networks). The second
solution facilitates reverse access by creating explicit tables for
this purpose, yet at the cost of basically doubling the memory
requirements. In this subsection we will only treat the first option
since the second option can be trivially implemented by simply
executing forward access on the reverse tables. A final alternative
will be presented in section 2.4, where we describe how STDP
learning can actually be executed without the need for reverse
access, availing of the benefits of pointer-based models (i.e.,
memory compression and efficient forward access).

An important practical aspect to consider is that memory
access in digital memory elements, such as double data rate
synchronous dynamic random-access memory (DDR SDRAM),
typically occurs in blocks of multiple bytes per read command.
Additionally, there is a variable amount of row and column
address strobe overhead that precedes the single memory access
depending on whether the read is from the same row or from
the next column item. For single item accesses, this can add
many clock cycles of overhead for reading. Memory controllers
can try to optimize memory command scheduling to overcome
some of this, but never all of it. Nonetheless, for simplification
purposes, in our work we have considered that accessing any
single position in memory (to read the value of a single variable)
consumes one “computational unit,” and that only one position in

TABLE 1 | Storage costs (in bits) for different synaptic weight memory

arrangements.

Architecture AT PT WT

Crossbara 0 0 MNW

PB-CSR 0 M log2(MρN) MρN(log2 N +W)

ρ < 0.5 M log2(MN) MρN(2+ log2 N +W)+M log2 N
PB-RLEb

ρ ≥ 0.5
0

M log2(MN) MN(1+ (1− ρ) log2 N + ρW)

PB-BMP MN M log2(MρN) MρNW

aThe crossbar does not require AT since one of the 2W weight values will be used to

indicate nonexistent connections.
bThis is the upper limit of the cost, considering perfectly interleaved runs and weights.

More realistic values were obtained via simulation.

memory can be accessed at a time. With this, the computational
(or access) cost of performing STDP can be summarized simply
by the number of positions in memory which must be accessed
to obtain address and weight information for executing the
learning rule.

A summary of the access costs for the different synaptic
weight data structures is presented in Table 2. In the table,
forward costs refer to the average number of positions in
the data that must be accessed for a single pre-synaptic
neuron, while reverse costs refers to the average number of
positions in the data that must be accessed for a single post-
synaptic neuron. The equations in the table consider worst-case
scenarios for PB-RLE in forward access, as well as worst-case
scenarios for all pointer-based data structures in reverse access.
Exact closed-form solutions, particularly for reverse access, are
difficult to obtain for pointer-based models since the location
and distribution of existent connections can greatly impact
the data compression, consequently affecting the search for
addresses and weights. In any case, since our proposed method
removes reverse access altogether, we will focus uniquely on
forward access throughout the paper, with the equations in
the table merely serving as an assessment of the complexity of
reverse access.

2.4. STDP Learning Rule With
Forward-Only Connectivity Access
Based on the equations presented in Table 2, reverse access in
pointer-based data structures can be quite inefficient. Because of
this limitation, multiple efforts have been made in approximating
STDP learning using forward-only connectivity, including
simplifying the STDP rule by equally updating all the synaptic
weights based on recent spike activity, using other variables as a
proxy for the post-synaptic spike times when computing causal
updates, and delaying the weight updates. Our method falls
under the latter category; however, contrary to these approximate
alternatives, it can produce exact equivalence to STDP, as will be
shown in the Results section.

When using pointer-based data structures for storing synaptic
weights, acausal updates can be immediately performed at

TABLE 2 | Access costs (per neuron) for different synaptic weight memory

arrangements.

Direction Architecture AT PT WT

Forward

Crossbar 0 0 N

PB-CSR 0 2 ρN

ρ < 0.5 1+ 2ρN
PB-RLEb

ρ ≥ 0.5
0

1 N

PB-BMP N 1 ρN

Reversea

Crossbar 0 0 M

PB-CSR 0 M M(ρN)

ρ < 0.5 M(1+ 2ρN)
PB-RLE

ρ ≥ 0.5
0

M MN

PB-BMP M+ ρM(N − 1) ρM ρM

aThe equations for the pointer-based models consider worst-case scenarios. The values

presented in Figure 6 were obtained via simulation.
bThis is the upper limit of the cost, considering perfectly interleaved runs and weights.

More realistic values were obtained via simulation.

Frontiers in Neuroscience | www.frontiersin.org 7 April 2019 | Volume 13 | Article 357

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

the onset of a pre-synaptic spike using forward connectivity
access of PT. Causal STDP updates, however, should be
performed at the onset of post-synaptic spikes, requiring reverse
connectivity access. Since pointer-based models natively have
only forward connectivity access, we have devised a method
which performs causal updates at the onset of yet another pre-
synaptic neuron event: the STDP timer expiration. Therefore,
instead of immediately applying the causal updates at the onset of
post-synaptic spikes, the update is delayed until the pre-synaptic
STDP timer expires, at which point the causal influence of a
spike ceases. The two types of weight updates in our proposed
algorithm are described below:

• Acausal update: At the onset of a pre-synaptic spike from
neuron Aj, perform forward access in WT starting at position
PT(j) = A∗

j , and verify the STDP timers of the post-synaptic

neurons connected to Aj. For every post-synaptic neuron
which has spiked not long ago (i.e., with an active STPD timer),
perform the acausal weight update.

• Causal update: At the moment of expiration of the pre-
synaptic STDP timer of neuron Aj, perform another forward
access in WT starting at position PT(j) = A∗

j , once again

verifying the STDP timers of the post-synaptic neurons
connected to Aj. For every post-synaptic neuron which has
recently spiked (i.e., with an active STPD timer), perform the
causal weight update.

For clarifying the proposed algorithm, Figure 3 illustrates four
different instants during system evolution for a causal and an
acausal STDPwindow duration of 8 time steps each. These events
are described below:

1. The first event illustrates a new post-synaptic spike, at which
time this neuron’s STDP timer is initialized and no weight
updates occur.

2. In the second event, the pre-synaptic neuron elicits a new
spike, initializing its STDP timer and also performing the
acausal weight update. This update is performed just as
it would be in the original STDP algorithm via forward
connectivity access.

3. The third event illustrates the expiration of the post-synaptic
STDP timer. No action is required since the acausal update of
its weight has already been serviced.

4. In the fourth event, the pre-synaptic STDP timer expires, at
which point the causal weight update takes place. Unlike the
original STDP algorithm, in which causal updates would have
taken place at the onset of a post-synaptic spike, the proposed
method delays the update until the pre-synaptic STDP timer
expires, requiring, therefore, only a second forward access and
avoiding reverse connectivity access altogether.

Using our method, if every neuron is configured to be able
to spike at most once during the STDP window, then the
weight updates will always fall under one of these four scenarios
and produce results which exactly match those obtained by
the original STDP algorithm (this will be shown in section
3.3). However, if a neuron is allowed to spike multiple times
during Tstdp, then many different scenarios may arise between
the moment a post-synaptic neuron spikes and the moment
the STDP timer of its pre-synaptic neuron expires. In this case,
the proposed method may incur in incorrect weight updates, as
shown next.

2.4.1. Drawbacks of Allowing Multiple Spikes Inside

the STDP Window
If the system is designed without guaranteeing that no neuron
spikes more than once inside its STDP window, some natural
drawbacks arise. Below we list these cases to better illustrate the
importance of the two criteria— three of the drawbacks present
direct solutions, while the fourth does not. To generate these
specific cases, we will consider nearest-neighbor temporal spike
interaction (where only the nearest spikes are considered; refer
to subsection 2.4.3), and we will configure the neurons with
Trefr < Tstdp and use a single timer of length ⌈log2(Tstdp + 1)⌉
bits per neuron.
Case 1: High-firing pre-synaptic neuron (refer to Figure 4A):

If a second pre-synaptic spike occurs while the first spike
is still inside the STDP window, the timer will be restarted
and information about the first spike will be lost. Since the

FIGURE 3 | The four typical events which occur during the proposed STDP learning algorithm. The first event illustrates post-synaptic spike generation, while the third

event is the moment a post-synaptic spike exists the learning window (i.e., its STDP timer expires); in both cases, no weight updates are performed since the

algorithm is driven only by pre-synaptic events. The second event illustrates pre-synaptic spike generation, resulting in acausal update. The fourth event illustrates

pre-synaptic STDP timer expiration, resulting in causal update. Note that the post-synaptic spikes in the third and fourth instants are distinct spike events, used to

highlight that acausal and causal updates can take place between the same pair of neurons depending on the order of the spikes.

Frontiers in Neuroscience | www.frontiersin.org 8 April 2019 | Volume 13 | Article 357

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

post-synaptic spikes occur after the second pre-synaptic spike,
the correct update will take place since only nearest-neighbor
influence is considered.
Case 2: High-firing post-synaptic neuron (refer to Figure 4B):

If a second post-synaptic spike occurs before the pre-synaptic
spike, information about its first spike time will be lost. Since the
pre-synaptic spike occurs after the second post-synaptic spike,
once again the correct update will take place since only nearest-
neighbor influence is considered.
Case 3: High-firing pre-synaptic neuron (refer to Figure 4C):

If a second spike occurs for a pre-synaptic neuron whose STDP
timer has not yet expired, then the timer will be restarted and
information about the first spike will be lost. As a solution,
first service the pending causal updates (relative to the first
spike), then service the acausal updates (relative to the second
spike) only for post-synaptic spikes which have occurred after
the first pre-synaptic spike. The reason for this is that the
acausal updates of post-synaptic spikes older than the first
pre-synaptic spike have already been performed at the onset
of this first spike. Lastly, restart the STDP timer for the
new spike.
Case 4: High-firing post-synaptic neuron (refer to Figure 4D):

If we have a post-synaptic neuron which spikes frequently (i.e.,
before the pre-synaptic timer expires and the causal updates
are performed), then the nearest-neighbor spike information
between pre- and post-synaptic neurons will be lost and

overwritten by the new post-synaptic spike time (since the
post-synaptic STDP timer is restarted). An objective, yet inexact,
solution is to simply ignore this issue given that a single pre-
synaptic spike should not have a strong causal relation with
a high-firing post-synaptic neuron. With this, a causal update
will still take place at the expiration of the pre-synaptic STDP
timer, except it will just not be with the nearest-neighbor post-
synaptic spike. To prevent this scenario from occurring, we
must ensure that a maximum of a single spike can occur in the
duration of each timer, demanding that the system be designed
as presented next.

2.4.2. Criteria for Exactness Between Methods
The effect of not being able to implement nearest-neighbor causal
updates has the effect of the weights not increasing as much as
expected, resulting in lower synaptic efficacy and, consequently,
fewer post-synaptic spikes. For the results of the proposed
method to exactly match those obtained by the original STDP
algorithm, each neuron must present one timer per refractory
period, capturing every possible spike, and resulting possibly in
multiple timers to cover the entire duration of the STDP learning
window. In other words, we must use ⌈Tstdp /Trefr⌉ timers, each
of length ⌈log2(Trefr + 1)⌉ bits. Note that if Trefr ≥ Tstdp, this
reduces to the expected single timer of length ⌈log2(Trefr + 1)⌉
bits. This rule has the advantage of allowing different types of
temporal spike interaction (see subsection 2.4.3).

FIGURE 4 | Special cases which arise when using a single timer and Trefr < Tstdp. (A–C) By considering nearest-neighbor temporal spike interaction, cases 1–3 can

be correctly addressed, (D) yet case 4 does not present a direct solution. To overcome all the drawbacks inherent to the proposed method, the neurons in the system

must be configured as to ensure that they spike at most once during each timer duration. If the neurons can be configured with Trefr ≥ Tstdp, then we guarantee that

only one spike can occur inside the STDP window. However, if the neurons present Trefr < Tstdp, then the only manner of capturing all the spikes is to use multiple

timers for the STDP window, each with duration Trefr.

Frontiers in Neuroscience | www.frontiersin.org 9 April 2019 | Volume 13 | Article 357

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

Details of the multi-timer method are presented in
Appendix A1 and shown in Figure A1. To implement our
proposed method of STDP learning using multiple timers,
we must simply treat each individual timer as was done in
Figure 3. The causal updates, however, can be implemented in
two different manners.

1. During the traversal of the spike through the timers, at the
instant of timer expiration the causal updates are performed
between the current spike and all “newer” post-synaptic
spikes. This means that whenever any of the multiple pre-
synaptic timers expires, perform weight updates with the
post-synaptic spikes which have recently entered the queue—
meaning we must verify only the first timer of the post-
synaptic neurons.

2. The second option implies in performing the causal update
only when the T-th (i.e., the last) pre-synaptic timer expires.
This method has the advantage of possibly incurring only two
instants of updates: when the spike enters and when it exists
the spike history queue. However, if a new pre-synaptic spike
occurs while a spike is still traversing the queue, then the
causal weight updates between the first spike and any post-
synaptic spikes that occurred after it must be performed prior
to updating the post-synaptic neuron variables. This effect is
similar to that of case 3 in Figure 4.

It may appear at first glance that both of these alternatives incur
in more memory access than the original STDP algorithm. The
first method can, in fact, produce more updates than the second
alternative, particularly for sparse pre-synaptic activity—though
it is a more systematic way of implementing updates since we
must only verify the first timers for the post-synaptic neurons.
The second alternative, however, implements updates only when
actually required, consuming (on average) the same number
of memory accesses as the original STDP learning rule. This
can be elucidated by considering the case of a high-firing post-
synaptic neuron: the original algorithm would search through all
its pre-synaptic neurons even if most have not spiked, while the
proposed algorithm would only verify the pre-synaptic neurons
which have recently spiked and could, therefore, have some
causal influence on the post-synaptic spikes. If we consider the
case of a high-firing pre-synaptic neuron, then the inverse is
valid, thus resulting most likely in a similar average cost for
both methods.

2.4.3. Temporal Spike Interaction
Temporal spike interaction can go to the extreme of considering
only the nearest spikes, known as nearest-neighbor interaction
(Morrison et al., 2008). At the other extreme, all-to-all interaction
considers influence of the entire spike history. A third variant
is a triplet-based interaction (Pfister and Gerstner, 2006), where
a sequence of post-pre-post spikes, for example, is a template
for updating weights. Examples illustrating these temporal spike
interactions using multiple timers for Tstdp = 12 and Trefr = 5
are presented in Figure 5. The procedure when using multiple
timers follows that of a single timer: weights are updated at
the onset of a new pre-synaptic spike and at the expiration of
the (last) pre-synaptic STDP timer. Note in Figure 5C that the

triplet-based interaction requires spikes to be stored for a longer
duration since the “older” post-synaptic spike in the post-pre-
post triplet may already have left its active region (i.e., the timers
to the right of the red bar), but is still of use for an active pre-
synaptic spike. From the figure we show that, independently of
the type of temporal spike interaction being implemented, as long
as the appropriate number of timers is used and we address the
pending causal updates before sending the weights to the post-
synaptic neurons (as per case 3 in Figure 4C), then our method
produces exact equivalent results to original STDP.

3. RESULTS

3.1. Data Structure Efficiency
Based on the data structure storage and access costs, a
comparison of storage and forward access efficiencies formultiple
network sizes, weight bit-lengths, and connectivity densities is
shown in Figure 6. By varying the number of pre-synaptic (M)
and post-synaptic (N) neurons, the connectivity density (ρ),
and the number of bits used to represent each weight (W),
we empirically verified the performance of each data structure
for different network configurations. For each data structure,

storage cost, Cs, is compared to the reference cost value, C
ref
s =

MρNW, representing the amount of memory required to store
the weights of only the existent connections in the network.

Storage efficiency is then computed as ηs = C
ref
s /Cs. Forward

access cost, Ca, is compared to the reference computational cost

value, C
ref
a = ρMN, representing the total number of variables to

be accessed when reading data for all pre-synaptic neurons once
(i.e., obtaining the entire network address-weight pairs). Forward

access efficiency is then computed as ηa = C
ref
a /Ca. The results in

the plots were obtained by generating 1,000 randomly connected
networks according to the parameter set, and averaging the costs
of these networks per connectivity density. The light-shaded
regions behind each plot indicate the model with the highest
efficiency for specific values of ρ.

As we can observe in Figure 6A, pointer-based models have
a great advantage over crossbars due to their data compression,
with the PB-BMP model showing the best overall performance
for a large range of ρ. Naturally, for larger weights, pointer-
based models show a greater advantage, particularly for sparsely
connected networks (i.e., small values of ρ). Increasing network
size has only a slight impact on PB-BMP models, since in
these models the only additional memory required beyond the
reference value is the rather low-cost AT. Conversely, PB-CSR
and PB-RLE are clearly affected when mapping larger networks
since they directly (for PB-CSR) or indirectly (in run-lengths
for PB-RLE) must store larger post-synaptic addresses in WT.
For forward access, Figure 6B shows that pointer-based models
PB-CSR and PB-RLE have a natural advantage over the other
two models since they do not require reading every position in
their tables. Between these two models, PB-CSR performs better
than PB-RLE (except for ρ = 1) because the latter requires
decompressing the data by reading run-lengths, while the former
requires only two read commands in PT (the start and stop
addresses) along with the ρMN weights to be read. The PB-BMP

Frontiers in Neuroscience | www.frontiersin.org 10 April 2019 | Volume 13 | Article 357

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

FIGURE 5 | Example scenarios of proposed method for different types of temporal spike interactions using multiple timers. Pre-synaptic spikes in red represent event

of interest: a new spike event or the last STDP timer expiration event. (A1) Perform pending causal update before acausal update. (A2) No updates required since no

post-synaptic spikes occurred after the previous pre-synaptic spike. (A3) Perform causal update. (A4) No update required because the causal update was performed

when the most recent pre-synaptic spike occurred. (B1) Perform causal updates with post-synaptic spikes which occurred after the previous pre-synaptic spike,

followed by the acausal updates. (B2) No causal updates required since no post-synaptic spikes occurred after the previous pre-synaptic spike. (B3) Perform causal

updates. (B4) Only a single causal update is required since the other causal update was performed when the most recent pre-synaptic spike occurred. (C)

Triplet-based spike interaction requires spikes to be stored for a longer duration. For pre-synaptic spikes, the timers to the right of the red bar represent the active

region. (C1) Perform triplet update since the previous pre-synaptic spike is still in the active region. (C2) No triplet update required since the previous pre-synaptic

spike is already in the inactive region (i.e., left-side timers). (C3) Perform triplet update at expiration of pre-synaptic STDP timer. (C4) No triplet update required since it

was performed when the most recent pre-synaptic spike occurred.

model can achieve a maximum efficiency of about 50% because
it requires two read commands per existent connection: one read
in AT to identify if the connection exists and one read in WT to
find the weight value of the connection. The performance of the
crossbar grows linearly with connectivity density, and is efficient
at very large values of ρ.

3.2. Budget Efficiency
In order to identify the optimal solution for a given
implementation budget in terms of memory storage and
computational effort (i.e., memory accesses), we defined the
budget efficiency metric as η = ληs + (1 − λ)ηa, where ηs is
storage efficiency, ηa is forward access efficiency, and λ is a
tunable parameter defining the storage-versus-access trade-off.
Note that ηa is computed as the forward access efficiency since
(1) both causal and acausal updates only require this type of
access in pointer-basedmodels and (2) reverse access in crossbars
is just as efficient as forward access.

The graphs in Figure 7 illustrate the optimal models (based
on the shaded colors) for different network parameter settings

in the ρλ-plane. For networks where memory access efficiency
is priority (i.e., small values of λ) and/or for sparse networks
(i.e., small values of ρ), the PB-CSR model is the clear optimal
solution. This is mainly due to the compression method in
PB-CSR, where no AT and no decompression (as in PB-RLE)
are required, making weight storage simple and forward access
efficient. However, when memory storage is priority (i.e., for
large values of λ), the PB-BMP model spans the longest range
of connectivity densities as the optimal solution. For densely
connected models, the crossbar appears as the best alternative
since the nonexistent connections entail only a small amount
of storage overhead, while presenting efficient forward access.
Interestingly, the PB-RLE model spans only a small region close
to the center of the graph (especially for small weight bit-
lengths), resulting as the optimal solution for more specific cases
of ρ and λ.

3.3. Proof-of-Concept Example
Many of the examples and results presented thus far throughout
our work were obtained via simulation of various network

Frontiers in Neuroscience | www.frontiersin.org 11 April 2019 | Volume 13 | Article 357

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

FIGURE 6 | Data structure storage and forward access efficiencies for different parameter settings and varying connectivity density. Parameters: number of

pre-synaptic neurons (M), number of post-synaptic neurons (N), bits per weight (W), and connectivity density (ρ). The light-shaded regions behind each plot indicate

the most efficient model for specific values of ρ. (A) Storage efficiency in pointer-based models is higher than in crossbars for nearly all values of ρ. Increasing weight

bit-length is more impactful than increasing network size. PB-BMP efficiency improves for larger networks since it does not explicitly store post-synaptic addresses

(except as binary values in AT). All data structures show higher efficiency for larger networks. (B) Forward access is efficiently performed in pointer-based models due

to their compression mechanism, particularly in sparsely connected networks. PB-CSR has advantage over the other models throughout most values of ρ because it

does not require data decompression to obtain address-weight pairs.

topologies and connectivity distributions. In this section, we
present an additional example to highlight the equivalence of our
proposed algorithm with the original STDP learning rule—when
implementing one of the two criteria presented in subsection
2.4.2. The effect of case 4 from subsection 2.4.1— where nearest-
neighbor causal updates are lost—will be demonstrated, along
with an example of all-to-all temporal spike interaction which
perfectly matches the original STDP algorithm.

The experimental setup involves 256 post-synaptic neurons
receiving spike inputs from 256 pre-synaptic neurons. Initial
weight values were sampled from a Gaussian distribution with
0.1 mean and unit variance. All the neurons were configured with
symmetric STDP ramp kernel of window duration of Tstdp =

16 and maximum weight change of ±0.01, spiking threshold
of Vth = 1.0, and refractory period duration of Trefr = 4.
Pre-synaptic neurons were set with spiking probability of 10%
when outside the refractory period. The leaky integrate-and-fire
neuron model was used for the post-synaptic neurons, governed
by the equation Vi(t + 1) = αVi(t) +

∑
j wijsj(t), where the

membrane memory constant, α was set to 0.9. The network
dynamics were simulated for 1, 000 time steps, during which all
the weights and membrane potentials were recorded at each time
step. Since causal weight updates occur at different instants of the
algorithm for the original STDP learning rule and our proposed
method, directly observing the weight values at each time step
for such a large number of weights is not feasible. Therefore, to
validate our method, we compared the post-synaptic membrane
potentials for each neuron throughout the entire simulation.
Additionally, for completeness, the post-synaptic spiking activity
was analyzed by computing the distance between the van Rossum
spike traces (Rossum, 2001) for the two algorithms. The time
constant of the exponential kernel for generating the continuous
traces was set as the time constant of the membrane potential and
computed as τR = −1 / log(α) ≈ 9.5.

The simulation results for the network are presented in
Figure 8, where we verify the convergence of our proposed
method for STDP learning. The left column illustrates results
when one timer is used and simply nearest-neighbor interaction

Frontiers in Neuroscience | www.frontiersin.org 12 April 2019 | Volume 13 | Article 357

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

FIGURE 7 | Budget efficiency, η = ληs + (1− λ)ηa. Parameters: ηs is the storage efficiency, ηa is the forward access efficiency, and λ is a tunable parameter defining

the storage-versus-access trade-off. Given efficiency priority and overall network connectivity density, the optimal memory arrangement for synaptic weights can be

obtained. Pointer-based models cover most of the range of values for ρ and λ because the proposed STDP algorithm takes advantages of their efficient memory

compression and forward access.

is considered for the original algorithm and our method. The
right column illustrates results when multiple timers (in this
case, 4 timers) are used to capture all possible spikes which can
occur inside the STDP window and all-to-all spike interaction
is performed for the original algorithm and our method. Note
that the single-timer and multi-timer results were obtained from
different simulations since only one temporal spike interaction
can be considered at a time.

The top row shows how the total mean squared error (MSE)
of all post-synaptic membrane potentials between the original
STDP algorithm and our method diverge when using only one
timer; this is the effect described in case 4 in subsection 2.4.1,
where post-synaptic weights receive smaller causal updates than
expected. For the multi-timer solution, the membrane potentials
alwaysmatch those obtained by the original STDP algorithm, and
the resulting MSE is zero.

The second row shows the total van Rossum spike traces
obtained by adding all traces after passing each spike through

the exponential kernel. In this example, the effect of smaller
weight updates because of lost causal nearest-neighbor updates
is clearly observed by the decreasing post-synaptic spike activity
when using a single timer. As expected, the multi-timer solution
produces post-synaptic spikes identical to those obtained by the
original STDP algorithm.

Lastly, the bottom row illustrates the MSE of all incoming
weights for post-synaptic neuron B1. Once again, the effect of case
4 causes the weights to diverge for the single-timer solution. For
the multi-timer solution, we can see that the MSE momentarily
increases but soon after returns to zero; this effect occurs because
of the delayed causal updates, but always produces the correct
weight at the moment the weight must be effectively used. Note
in the graphs that in the last Tstdp time steps the membrane
potentials and spike traces for the single timer method also
converge to zero, simply because we enforced all pre-synaptic
neurons to stop spiking during this duration for the final weights
obtained by the multi-timer solution to exactly match those of

Frontiers in Neuroscience | www.frontiersin.org 13 April 2019 | Volume 13 | Article 357

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

FIGURE 8 | Example of convergence of proposed method for STDP learning for a network with 256 pre-synaptic and 256 post-synaptic neurons, configured with

Tstdp = 16 and Trefr = 4. The left column illustrates results when one timer is used and simply nearest-neighbor interaction is considered. The right column illustrates

results when multiple timers (in this case, 4 timers) are used to capture all possible spikes which can occur inside the STDP window. The top row shows how the total

mean squared error (MSE) of all post-synaptic membrane potentials between the original STDP algorithm and our method diverges when using only one timer; this is

caused by the effect described in case 4 in section 2.4.1. For the multi-timer solution, the membrane potentials always match, and the resulting MSE is zero. The

second row shows the continuous van Rossum spike traces, where the effect of smaller weight updates in the case of using a single timer is clearly observed by the

decreasing post-synaptic spike activity over time. As expected, the multi-timer solution produces post-synaptic spikes identical to those obtained by the original STDP

algorithm. The bottom row illustrates the MSE of all incoming weights for post-synaptic neuron B1. Once again the lost causal nearest-neighbor updates make the

weights diverge for the single timer solution; for the multi-timer solution, we can see that the MSE temporarily increases but soon after returns to zero, which is simply

the effect of the delayed causal updates.

the original STDP algorithm at the last simulation time step (i.e.,
so the delayed causal updates could be completed and all timers
could return to zero).

4. DISCUSSION

Storage costs associated to synaptic weight memory
arrangements have been previously studied. In Moradi et al.
(2013), the authors describe a network clustering scheme which
uses a two-stage routing architecture to reduce the overall
memory storage requirements. This method is also mentioned
in Joshi et al. (2017) and is referred to as “clustered addressing.”
In both of these studies, the storage savings comes at the cost
of reduced flexibility in network connectivity, since a specific
topology must exist for groups of neurons to be clustered
together. Instead, we decided not to constrain our networks
to any structured topology. In Joshi et al. (2017), the authors
describe the data structures we have presented, highlighting,
particularly, the storage cost savings obtained for a large range
of connectivity density when using the PB-BMP architecture.

However, the impact of pointer-based models on learning
algorithms was only briefly mentioned, and memory access
costs were not analyzed. More recently, the impact of using
different memory arrangements on spike routing and network
traffic congestion was described in Kornijcuk et al. (2018).
Though the work describes a theoretical means of routing-rate
evaluation and results for maximum network sizes for each
of their memory arrangements, it does not target any specific
learning algorithm, and the experimental results focus only on
an inference task without synaptic plasticity. More recently,
the authors in Kim et al. (2018) proposed a modified SRAM
which enables transposable memory access. The method is
interesting as it facilitates the reverse (post-to-pre) access for
causal updates; however, it can only be applied to fully connected
network topologies (i.e., crossbars), and, thus, are not efficient for
representing sparse networks since compressed data structures
are typically not transposable.

In terms of spike-driven learning, there have been multiple
attempts to replicate or approximate STDP with forward-
only connectivity. The motivation for storing synaptic weights

Frontiers in Neuroscience | www.frontiersin.org 14 April 2019 | Volume 13 | Article 357

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

in a pre-synaptic perspective (i.e., pre-to-post) is because
post-synaptic-driven systems are not as efficient in terms of
number of memory accesses as pre-synaptic-driven systems; this
is mainly because, as we sweep through neurons to update
their states during a system time step, 1t, for each post-
synaptic neuron we must verify the spike state of every pre-
synaptic neuron, even if none of these has spiked. Conversely,
pre-synaptic-driven systems operate in an on-demand fashion,
accessing the pre-synaptic spike states only as needed.

In Pedroni et al. (2016); Detorakis et al. (2018), we described a
less-detailed version of our method; yet, we did not study all the
data structures nor were we able to address all of the drawbacks
incurred by delayed causal updates (as we have shown in the
current paper). One of the earliest works which evaluated the
complexity of implementing the STDP learning algorithm in a
neuron address domain was presented in Vogelstein et al. (2003).
The authors discussed how the address-event representation
(AER) protocol could support STDP learning in the address
domain. Being pioneering work, the paper considered only small
networks, consequently not addressing the different possible
arrangements for organizing synaptic weights in memory and
the implications of requiring reverse access for performing
causal updates.

Methods that approximate STDP learning by equally updating
all the synaptic weights based on recent spike activity have been
proposed. In Bichler et al. (2012), the authors use a special
form of STDP which equally depresses all the synapses that
did not recently contribute to the post-synaptic spike activation
regardless of their activation time; in contrast, synapses that
were activated with a pre-synaptic spike a short time before
post-synaptic spikes are strongly potentiated. The authors in
Yousefzadeh et al. (2017) created a more hardware-friendly
version of this model by limiting the number of synapses to
be potentiated (instead of limiting the STDP time window
duration), eliminating the need for time-stamping the spikes.
Though efficient in terms of memory access, with both of these
methods it is not possible to depress synapses whose activation
time is precisely not correlated with the post-synaptic spike,
and the methods only work if LTD is systematically applied to
synapses not undergoing an LTP. Additionally, the methods are
post-synaptic-driven, undergoing the aforementioned drawbacks
of this mechanism.

Another alternative to approximating STDP is by using other
variables (usually post-synaptic membrane potential) as a proxy
for the post-synaptic spike times when computing causal updates.
This learning rule was proposed in Brader et al. (2007) and has
even been incorporated in the SpiNNaker system (Davies et al.,
2012; Lagorce et al., 2015). More recent work describes how to
use the rule for learning sequences of spikes (Sheik et al., 2016).
Once again, though very efficient in terms of memory access and
spike time storage, in this method exact STDP is not possible as
post-synaptic potential serves only as a [deterministic (Lagorce
et al., 2015) or probabilistic (Sheik et al., 2016)] proxy of the post-
synaptic spike time and, inmany cases, is not capable of capturing
the subtle spike time causalities of STDP.

The third category of methods for approximating STDP
consists on delaying the weight updates, and is the category

which our proposed method falls under. In the Loihi system,
the authors adopt a less event-driven method where synaptic
modification is performed in an epoch-basedmechanism (Davies
et al., 2018). Their method delays the updating of all synaptic
states to the end of a periodic learning epoch time, and, to
avoid receiving more than one spike in a given epoch, the
epoch period is normally set to the minimum refractory delay of
all neurons in the network. Though Loihi implements forward
connectivity tables for supporting generalized STDP rules, the
periodic servicing (i.e., non-event-driven methodology) can
result in inexact weights being delivered to post-synaptic neurons
since multiple pre-synaptic spikes may occur before a weight
update takes place. Therefore, certain conditions in firing rates
must be guaranteed for their method to be equivalent to STDP.

In the current version of the SpiNNaker system, STDP
learning is approximated using a trace-based approach via
delayed updates (Mikaitis et al., 2018). Since in trace-based STDP
each spike leaves an exponentially decaying trace (Morrison
et al., 2008), this renders possible linearly accumulating the
spike traces into a single variable, representing the total current

effect of all past spikes. In this manner, weight updates can
then be performed in an online fashion at the onset of either

pre- or post-synaptic spikes. In SpiNNaker, however, the updates
only occur at the onset of pre-synaptic spikes, meaning that,

for the method to follow rather closely to original STDP, the
system relies on frequently firing pre-synaptic neurons. This

issue can be observed in the case when a post-synaptic neuron
spikes multiple times soon after a pre-synaptic spike (typically

resulting in large causal updates): if the pre-synaptic neuron

spikes again in a much later time, then the causal updates
will be practically null due to the almost completely decayed

traces (somewhere along the lines of the problem encountered
in case 4 in Figure 4D). Additionally, besides serving only as

an approximation to STDP, the trace-based method requires an

exponentially decaying kernel, and, thus, other kernels such as
those in Figure 1C cannot be implemented.

Perhaps the most similar work to ours has been presented in
Jin et al. (2010), which uses a deferred-event approach and stores
spike times for postponed processing at the time of the next event
following them. This method has been previously implemented
in the SpiNNaker system under their “deferred event driven
model” (Rast et al., 2008; Diehl and Cook, 2014; Galluppi et al.,
2015). It is similar to our proposedmethod in that weight updates
are driven by pre-synaptic spikes and causal updates are delayed;
however, some important distinctions should be highlighted:

• A neuron’s spike history is stored as a bitmap in an array.
However, as presented in Appendix A1, using multiple timers
is at least as efficient as using a bitmap array, and becomes
extremely more efficient for large Trefr.

• Acausal updates are not immediately processed and are also
deferred to the future, once more pre-synaptic spikes have
arrived. This implies that larger arrays are required to store
spikes on both sides of the STDP window for post-synaptic
neurons. In fact, in their work the post-synaptic bitmap
array is three times larger than the pre-synaptic array. In
our solution, applying the acausal updates immediately at

Frontiers in Neuroscience | www.frontiersin.org 15 April 2019 | Volume 13 | Article 357

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

the onset of pre-synaptic spikes demands that we use timers
that must cover only one side (i.e., the longest side) of the
STDP window.

• Since the bitmap array is only updated at the onset of new
spikes (but not necessarily at the expiration of the pre-synaptic
STDP timer) and STDP updates can only take place when an
“old” pre-synaptic spike eventually exits the bitmap array, this
means that both causal and acausal updates rely on frequently
firing pre-synaptic neurons. This demands that pre-synaptic
spikes arrive at a high enough rate to ensure that the pre-
synaptic spike time bitmap array is frequently updated so
weight updates are not lost. In their work, the minimum firing
rate for pre-synaptic neurons is 10.4 Hz.

• Since multiple pre-synaptic spikes may occur before an
“old” pre-synaptic spike eventually exits the bitmap array,
this implies that the weights being used for updating post-
synaptic neuron variables at each pre-synaptic spike event
could (or most likely will) be an “old” set of weights since
the causal and acausal updates have been deferred. Therefore,
though qualitatively similar, a quantitative equivalence with
the original STDP algorithm will probably not occur.

5. CONCLUSIONS

There are multiple forms of organizing data structures for storing
synaptic weights. Among these different memory arrangements,
pointer-based models are capable of data compression by storing
only the existent connections in the network. In pointer-
based models, weights are stored, in a high-level sense, as
lists of post-synaptic addresses and weights, where the pointer
to the list is defined by the pre-synaptic neuron address.
Biologically relevant neural networks are typically unstructured
and sparsely connected, making pointer-based architectures
particularly efficient at storing these network topologies. In
this work, we studied the storage costs (in bits) of each data
structure and identified the most efficient based on network
parameters (e.g., network size and weight bit-length) and
connectivity density.

For the different data structures, we analyzed the
computational complexity (in number of memory accesses)
of obtaining synaptic address and weight when accessing the
tables in forward and reverse directions. Though efficient in
terms of storage for a wide range of connectivity density values,
pointer-based models natively present only forward connectivity
access, making them inefficient when implementing spike-time-
based local learning rules such as STDP—which requires both
forward (pre-to-post) and reverse (post-to-pre) connectivity
access. Therefore, we devised a novel means of efficiently
implementing STDP by forward-only synaptic connectivity
access, benefiting from the reduced memory storage property of

pointer-based data structures. In the traditional STDP algorithm,
causal updates are performed at the onset of post-synaptic spikes,
demanding reverse access at this instant. Our proposed method
operates by delaying the causal weight updates until the instant
of expiration of the pre-synaptic STDP timer. With this, forward
access is performed for both causal and acausal updates, driven
by pre-synaptic events.

Natural drawbacks arise when delaying the causal updates,
particularly with respect to high-firing post-synaptic neurons. All
the drawbacks can be addressed by a very simple rule: the number
of STDP timers for each neuron should be equal to the number
of spikes which can occur inside the STDP learning window.
This rule can be obtained by using multiple timers when Trefr <

Tstdp, with each timer lasting Trefr time steps. Using this strategy
results in the possibility of implementing nearest-neighbor and
all-to-all temporal spike interaction. Additionally, by extending
the number of timers, the more complex triplet-based temporal
interaction can also be deployed.

Lastly, besides the comparison of storage and access
costs and efficiencies for each data structure, we devised
a budget efficiency figure of merit for a trade-off analysis
of the benefits of each model depending on application
requirements and storage and access budget. In sum, we feel
our work is unique in that it presents a methodology for
identifying the optimal memory arrangement solution based
on system requirements and network topology, including
also the cost of memory access, and supplying the first
viable and exact solution for implementing STDP learning in
systems organized with either crossbar arrays or forward-only
connectivity tables.

AUTHOR CONTRIBUTIONS

BP and GC developed the main part of the work, including
the algorithms, simulations, analyses, and results. All authors
contributed to the manuscript.

FUNDING

This work was partly supported by the National Science
Foundation (CNS-1823366), the Office of Naval Research
(N00014-18-1-2248), the Brazilian National Council of
Technological and Scientific Development (CNPq-CsF
201174/2012-0), and Intel Corporation.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2019.00357/full#supplementary-material

REFERENCES

Andreou, A. G., Meitzler, R. C., Strohbehn, K., and Boahen, K. (1995).

Analog VLSI neuromorphic image acquisition and pre-processing

systems. Neural Netw. 8, 1323–1347. doi: 10.1016/0893-6080(95)

00098-4

Bassett, D. S., and Bullmore, E. (2006). Small-world brain networks. Neuroscientist

12, 512–523. doi: 10.1177/1073858406293182

Frontiers in Neuroscience | www.frontiersin.org 16 April 2019 | Volume 13 | Article 357

https://www.frontiersin.org/articles/10.3389/fnins.2019.00357/full#supplementary-material
https://doi.org/10.1016/0893-6080(95)00098-4
https://doi.org/10.1177/1073858406293182
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

Bi, G.-Q., and Poo, M.-M. (1998). Synaptic modifications in cultured

hippocampal neurons: dependence on spike timing, synaptic

strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472.

doi: 10.1523/JNEUROSCI.18-24-10464.1998

Bichler, O., Querlioz, D., Thorpe, S. J., Bourgoin, J.-P., and Gamrat, C.

(2012). Extraction of temporally correlated features from dynamic vision

sensors with spike-timing-dependent plasticity. Neural Netw. 32, 339–348.

doi: 10.1016/j.neunet.2012.02.022

Brader, J. M., Senn, W., and Fusi, S. (2007). Learning real-world stimuli in a neural

network with spike-driven synaptic dynamics. Neural Comput. 19, 2881–2912.

doi: 10.1162/neco.2007.19.11.2881

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat. Rev. Neurosci. 10:186.

doi: 10.1038/nrn2575

Caporale, N., and Dan, Y. (2008). Spike timing-dependent plasticity:

a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46.

doi: 10.1146/annurev.neuro.31.060407.125639

Dan, Y., and Poo, M.-m. (2004). Spike timing-dependent plasticity of neural

circuits. Neuron 44, 23–30. doi: 10.1016/j.neuron.2004.09.007

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Davies, S., Galluppi, F., Rast, A. D., and Furber, S. B. (2012). A forecast-based

STDP rule suitable for neuromorphic implementation. Neural Netw. 32, 3–14.

doi: 10.1016/j.neunet.2012.02.018

Detorakis, G., Sadique Sheik, C. A., Paul, S., Pedroni, B. U., Dutt, N.,

Krichmar, J., et al. (2018). Neural and synaptic array transceiver: a brain-

inspired computing framework for embedded learning. Front. Neurosci. 12:583.

doi: 10.3389/fnins.2018.00583

Diehl, P. U., and Cook, M. (2014). “Efficient implementation of STDP rules on

SpiNNaker neuromorphic hardware,” in IJCNN (Beijing), 4288–4295.

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.1109/IJCNN.2014.6889876

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Galluppi, F., Lagorce, X., Stromatias, E., Pfeiffer, M., Plana, L. A., Furber,

S. B., et al. (2015). A framework for plasticity implementation on the

SpiNNaker neural architecture. Front. Neurosci. 8:429. doi: 10.3389/fnins.2014.

00429

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models: Single

Neurons, Populations, Plasticity. Cambridge: Cambridge University Press.

doi: 10.1017/CBO9780511815706

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

et al. (2014). “Generative adversarial nets,” in Advances in Neural Information

Processing Systems (Montréal), 2672–2680.

Graves, A. (2013). Generating sequences with recurrent neural networks.

arXiv:1308.0850.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). “Speech recognition with

deep recurrent neural networks,” in Acoustics, Speech and Signal Processing

(ICASSP), 2013 IEEE International Conference on (Vancouver: IEEE),

6645–6649.

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Van Schaik, A., Etienne-

Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron

circuits. Front. Neurosci. 5:73. doi: 10.1109/ICASSP.2013.6638947

Ioffe, S., and Szegedy, C. (2015). Batch normalization: accelerating deep network

training by reducing internal covariate shift. arXiv:1502.03167.

Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of

STDP and dopamine signaling. Cereb. Cortex 17, 2443–2452. Ioffe and Szegedy,

2015

Jin, X., Rast, A., Galluppi, F., Davies, S., and Furber, S. (2010). “Implementing

spike-timing-dependent plasticity on SpiNNaker neuromorphic hardware,”

in Neural Networks (IJCNN), The 2010 International Joint Conference on

(Barcelona: IEEE), 1–8.

Joshi, S., Pedroni, B. U., and Cauwenberghs, G. (2017). “Neuromorphic event-

driven multi-scale synaptic connectivity and plasticity,” in Signals, Systems, and

Computers, 2017 51st Asilomar Conference on (Pacific Grove, CA: IEEE), 1–5.

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T.

(2018). STDP-based spiking deep convolutional neural networks for

object recognition. Neural Netw. 99, 56–67. doi: 10.1109/IJCNN.2010.55

96372

Kim, J., Koo, J., Kim, T., and Kim, J.-J. (2018). Efficient synapse memory structure

for reconfigurable digital neuromorphic hardware. Front. Neurosci. 12:829.

doi: 10.3389/fnins.2018.00829

Kingma, D. P., and Ba, J. (2014). Adam: a method for stochastic optimization.

arXiv:1412.6980.

Koch, C., and Mathur, B. (1996). Neuromorphic vision chips. IEEE Spectrum 33,

38–46.

Kornijcuk, V., Park, J., Kim, G., Kim, D., Kim, I., Kim, J., et al.

(2018). Reconfigurable spike routing architectures for on-chip local

learning in neuromorphic systems. Adv. Mater. Technol. 4:1800345.

doi: 10.1002/admt.201800345

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Information

Processing Systems (Lake Tahoe), 1097–1105.

Lagorce, X., Stromatias, E., Galluppi, F., Plana, L. A., Liu, S.-C., Furber, S. B.,

et al. (2015). Breaking the millisecond barrier on SpiNNaker: implementing

asynchronous event-based plastic models with microsecond resolution. Front.

Neurosci. 9:206. doi: 10.3389/fnins.2015.00206

Liu, S.-C., and Delbruck, T. (2010). Neuromorphic sensory systems.

Curr. Opin. Neurobiol. 20, 288–295. doi: 10.1016/j.conb.2010.

03.007

Maher, M. A. C., Deweerth, S. P., Mahowald, M. A., and Mead, C. A. (1989).

Implementing neural architectures using analog VLSI circuits. IEEE Trans.

Circ. Syst. 36, 643–652.

Mahowald, M. A. (1993). The Address-Event Representation Communication

Protocol. AER 0.02. Pasadena, CA: California Institute of Technology.

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of

synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275,

213–215.

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Mikaitis, M., Pineda García, G., Knight, J. C., and Furber, S. B.

(2018). Neuromodulated synaptic plasticity on the SpiNNaker

neuromorphic system. Front. Neurosci. 12:105. doi: 10.3389/fnins.2018.

00105

Moradi, S., Imam, N., Manohar, R., and Indiveri, G. (2013). “A memory-efficient

routing method for large-scale spiking neural networks,” in Circuit Theory

and Design (ECCTD), 2013 European Conference on (Dresden: IEEE), 1–4.

doi: 10.1109/ECCTD.2013.6662203

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models

of synaptic plasticity based on spike timing. Biol. Cybern. 98, 459–478.

doi: 10.1007/s00422-008-0233-1

Nair, V., and Hinton, G. E. (2010). “Rectified linear units improve restricted

Boltzmann machines,” in Proceedings of the 27th International Conference on

Machine Learning (ICML-10) (Haifa), 807–814.

Nessler, B., Pfeiffer, M., and Maass, W. (2009). “STDP enables spiking neurons

to detect hidden causes of their inputs,” in Advances in Neural Information

Processing Systems (Vancouver), 1357–1365.

Oliver, B. (1952). Efficient coding. Bell Syst. Tech. J. 31, 724–750.

Park, J., Yu, T., Joshi, S., Maier, C., and Cauwenberghs, G. (2017). Hierarchical

address event routing for reconfigurable large-scale neuromorphic

systems. IEEE Trans. Neural Netw. Learn. Syst. 28, 2408–2422.

doi: 10.1109/TNNLS.2016.2572164

Pedroni, B. U., Sheik, S., Joshi, S., Detorakis, G., Paul, S., Augustine, C.,

et al. (2016). “Forward table-based presynaptic event-triggered spike-timing-

dependent plasticity,” in Biomedical Circuits and Systems Conference (BioCAS)

(Shanghai: IEEE), 580–583.

Pfister, J.-P., and Gerstner, W. (2006). Triplets of spikes in a model

of spike timing-dependent plasticity. J. Neurosci. 26, 9673–9682.

doi: 10.1523/JNEUROSCI.1425-06.2006

Frontiers in Neuroscience | www.frontiersin.org 17 April 2019 | Volume 13 | Article 357

https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1016/j.neunet.2012.02.022
https://doi.org/10.1162/neco.2007.19.11.2881
https://doi.org/10.1038/nrn2575
https://doi.org/10.1146/annurev.neuro.31.060407.125639
https://doi.org/10.1016/j.neuron.2004.09.007
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1016/j.neunet.2012.02.018
https://doi.org/10.3389/fnins.2018.00583
https://doi.org/10.1109/IJCNN.2014.6889876
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.3389/fnins.2014.00429
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/IJCNN.2010.5596372
https://doi.org/10.3389/fnins.2018.00829
https://doi.org/10.1002/admt.201800345
https://doi.org/10.3389/fnins.2015.00206
https://doi.org/10.1016/j.conb.2010.03.007
https://doi.org/10.1126/science.1254642
https://doi.org/10.3389/fnins.2018.00105
https://doi.org/10.1109/ECCTD.2013.6662203
https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1109/TNNLS.2016.2572164
https://doi.org/10.1523/JNEUROSCI.1425-06.2006
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

Rast, A., Jin, X., Khan, M., and Furber, S. (2008). “The deferred event

model for hardware-oriented spiking neural networks,” in International

Conference on Neural Information Processing (Berlin: Springer),

1057–1064.

Rossum, M. v. (2001). A novel spike distance. Neural Comput. 13, 751–763.

doi: 10.1162/089976601300014321

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning

representations by back-propagating errors. Nature 323:533.

doi: 10.1038/323533a0

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems,

Vol. 82. Philadelphia, PA: SIAM. doi: 10.1137/1.97808987

18003

Seeman, S. C., Campagnola, L., Davoudian, P. A., Hoggarth, A., Hage, T. A.,

Bosma-Moody, A., et al. (2018). Sparse recurrent excitatory connectivity in

the microcircuit of the adult mouse and human cortex. bioRxiv 292706.

doi: 10.7554/eLife.37349

Sheik, S., Paul, S., Augustine, C., and Cauwenberghs, G. (2016). “Membrane-

dependent neuromorphic learning rule for unsupervised spike pattern

detection,” in 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS)

(Shanghai: IEEE), 164–167.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van

Den Driessche, G., et al. (2016). Mastering the game of Go with deep

neural networks and tree search. Nature 529:484. doi: 10.1038/nature

16961

Sjöström, J., and Gerstner, W. (2010). Spike-timing dependent plasticity. Front.

E-books 35.

Song, S., and Abbott, L. F. (2001). Cortical development and remapping

through spike timing-dependent plasticity. Neuron 32, 339–350.

doi: 10.1016/S0896-6273(01)00451-2

Vogelstein, R. J., Tenore, F., Philipp, R., Adlerstein, M. S., Goldberg, D. H., and

Cauwenberghs, G. (2003). “Spike timing-dependent plasticity in the address

domain,” in Advances in Neural Information Processing Systems (Vancouver),

1171–1178.

Yousefzadeh, A., Masquelier, T., Serrano-Gotarredona, T., and Linares-Barranco,

B. (2017). “Hardware implementation of convolutional STDP for on-line visual

feature learning,” in 2017 IEEE International Symposium on Circuits and

Systems (ISCAS) (Baltimore: IEEE), 1–4.

Conflict of Interest Statement: SP and CA were employed by company Intel

Corporation. SS was employed by company aiCTX.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2019 Pedroni, Joshi, Deiss, Sheik, Detorakis, Paul, Augustine, Neftci

and Cauwenberghs. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 18 April 2019 | Volume 13 | Article 357

https://doi.org/10.1162/089976601300014321
https://doi.org/10.1038/323533a0
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.7554/eLife.37349
https://doi.org/10.1038/nature16961
https://doi.org/10.1016/S0896-6273(01)00451-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Memory-Efficient Synaptic Connectivity for Spike-Timing- Dependent Plasticity
	1. Introduction
	2. Materials and Methods
	2.1. Digital Neuromorphic Core
	2.2. Spike-Timing-Dependent Plasticity (STDP)
	2.3. Synaptic Weight Data Structures
	2.3.1. Fully Connected: Crossbar
	2.3.2. Pointer-Based Compressed Sparse Row (PB-CSR)
	2.3.3. Pointer-Based Run-Length Encoding (PB-RLE)
	2.3.4. Pointer-Based Bitmap (PB-BMP)
	2.3.5. Data Structure Storage Costs
	2.3.6. Data Structure Access Costs

	2.4. STDP Learning Rule With Forward-Only Connectivity Access
	2.4.1. Drawbacks of Allowing Multiple Spikes Inside the STDP Window
	2.4.2. Criteria for Exactness Between Methods
	2.4.3. Temporal Spike Interaction

	3. Results
	3.1. Data Structure Efficiency
	3.2. Budget Efficiency
	3.3. Proof-of-Concept Example

	4. Discussion
	5. Conclusions
	Author Contributions
	Funding
	Supplementary Material
	References

