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Abstract of the Thesis

Methods for Spatial Analysis on a Network

by

Victor Ying

Master of Science in Statistics

University of California, Los Angeles, 2013

Professor Mark Stephen Handcock, Chair

Network point patterns are usually analyzed by methods that assume a continuous

plane and Euclidean distance. These methods fail to account for the constraint

that network spatial phenomena must lie on a network. This paper proposes three

statistical methods, called the network (inter-event distance) H-function method,

network (nearest-neighbor distance) G-function method, and network (point-to-

nearest-event/empty-space distance) F -function method. We do so by extending

the existing H-, G-, and F -functions defined on a continuous plane with Euclidean

distance, formulating these methods on a linear network with the shortest-path

distance.
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CHAPTER 1

Motivation

Real world phenomena often occur either on or alongside a network. We refer to

them as network spatial phenomena. Examples include the distribution of street

crimes in Chicago (Figure 1.1) and spider webs on a brick wall (Figure 1.2). These

phenomena are usually analyzed with methods designed for a continuous plane and

Euclidean distance [15] – techniques called planar spatial methods. Analyses made

using planar spatial methods are called planar spatial analyses. The justification

for using planar spatial methods for the analysis of network spatial phenomena

are that: (1) computing the Euclidian distance on a plane can often be easier

than computing the network distance, and that (2) the network distance can

sometimes be approximated by Euclidian distance [15]. While the first reason

remains somewhat true, the validity of the second is questionable. For example, it

is clear that the points in Figure 1.3a are not randomly distributed when the points

are distributed on a plane. When the points are distributed on the network (as

in Figure 1.3b), however, this is no longer true. The points are, in fact, randomly

generated on the network. Even the first reason for using planar spatial methods

is allayed by the fact that Geographical Information Systems (GIS) and advances

in software that have made computation of the shortest-path distance, the prime

example of a distance metric on a network, easy.

This illustrates the danger of analyzing network spatial phenomena using pla-

nar spatial methods. What should be used instead are methods that assume a

network space using the shortest-path distance – the so-called network spatial

1



methods. In this thesis, I develop analog network spatial methods based on exist-

ing planar spatial ones.
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Figure 1.1: A record of street crimes in an area of Chicago. The points represent

where crimes have occured.

3



Figure 1.2: The plotted locations of 48 webs of the spider Oecobius annulipes on

the mortar lines of a brick wall.
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(a) (b)

Figure 1.3: (a) Non-randomly distributed points on a plane; (b) randomly dis-

tributed points on a network.
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CHAPTER 2

Review of Spatial Statistics in R2

A spatial point pattern is a data-set that contains a set of points/objects/events

distributed within a region of space. It might be thought of as consisting of a

set of locations in a defined region at which events of interest have been recorded

[1]. Such data occur in many different contexts. The points could, for example,

represent trees, cells, crimes, forest fires, people, gorilla nests, etc. They can

exist in a region of a one-dimensional line, two-dimensional plane, on the Earth’s

surface, or a three-dimensional volume; they can be points in space-time as well

(for example, earthquake epicenter locations and time). We refer to the set of

points within the region of interest as a ‘spatial point pattern,’ while the term

‘spatial point process’ refers to the stochastic mechanism that generates a random

set of points in space.

Spatial point process methods are used to analyze point pattern datasets to

answer questions such as whether the point pattern is exhibiting ‘independence’/

‘complete randomness,’ ‘aggregation’/‘clustering,’ or ‘regularity’/‘repulsion’ [1].

Independence or complete randomness refers to data with no clear structure, where

the points are equally likely to occur anywhere within the study region; the term

‘complete spatial randomness’ (CSR) is used to describe this type of point pattern.

The terms clustered and aggregated refer to points having a tendency to be located

close to each other; regularity refers to patterns where the points have a tendency

to be located away from each other. These three types of patterns are illustrated

in Figure 2.1. Figure 2.1a, from Numata [14] via Diggle [10] and Baddeley &
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Turner [4], gives the locations of 65 Japanese black pine saplings in a square

sampling region in a natural forest. The absence of a clear structure here suggests

it might be considered a completely random pattern. The second (Figure 2.1b),

extracted by Ripley [17] from Strauss [18] and presented in Diggle [10], presents

the locations of 62 seedlings and saplings of California redwood trees in a square

sampling region. They appear to be ‘clustered’ or ‘aggregated’. The third and final

figure (Figure 2.1c), from Ripley via Diggle, records the locations of the centers

of 42 biological cells in a histological section observed under optical microscopy;

the cells here appear to exhibit a regular pattern.

(a) Independent:

locations of Japanese

black pine saplings

[14, 10, 4].

(b) Aggregated:

locations of 62 seedlings

and saplings of California

redwood trees [18, 17, 4].

(c) Regular:

locations of the centers of

42 biological cells [17, 4].

Figure 2.1: Examples of independent/completely random, clustered/aggregated,

and regular point patterns, respectively.

2.1 Complete Spatial Randomness (CSR)

CSR of a spatial point pattern implies two things:

1. The number of events in any two-dimensional region A with area |A| follows

a Poisson distribution with mean λ|A|, where the constant λ is the intensity
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(that is, mean number of events per unit area)

2. The n events (xi, where i = 1, . . . , n) in the region A are an independent

sample from the uniform distribution on A.

Property 1 of CSR implies that the intensity is constant and does not vary over

the 2D area. Property 2 implies that the events do not interact– that is, the

existence of an event at x neither encourages nor inhibits the occurrence of any

other event around x.

Preliminary analysis of a point pattern dataset often begins with a test of CSR.

Although CSR is of limited scientific interest in itself, there are several reasons

for beginning with a test of CSR:

1. Rejection of CSR is a minimal prerequisite to any serious attempt to model

an observed pattern.

2. The tests might provide insight into the point pattern and suggest plausible

alternative models.

3. CSR acts as a dividing hypothesis between regular and aggregated patterns

[1, 10, 5].

2.2 Edge Effects

Edge effects often arise in the analysis of spatial point patterns. Edge effects occur

when the region of observation, A, is part of a larger region in which we do not

have data. The issue is that unobserved events outside of A might interact with

observed events within A. Since unobserved events are not observed, it is difficult

to assess their effects upon points within our window. That is, while a point

process, X, might extend throughout 2-D space, it is only observed within A,

and, by confining observations to A, the observed distance d(u,x) = d(u,X ∩ A)

8



from the point u to the nearest point inside A might end up being greater than the

true distance d(u,X) from u to the nearest point of the complete point process.

This is illustrated in Figure 2.2. For some kinds of exploratory analysis edge

Figure 2.2: Edge effects illustrated [4, p. 117].

effects can be ignored, but for others corrections will be required.

2.3 Monte Carlo Tests and Simulation Envelopes

2.3.1 Pointwise Monte Carlo Tests

Monte Carlo tests are often useful when the use of other methods is not feasible.

It consists of ranking the value, v1, of a test statistic V against a corresponding

set of values vi : i = 2, . . . , s, generated by independent random sampling from

the distribution of V under a simple null hypothesis H. That is, to assess the

significance of the observed v1, we carry out s − 1 simulations and calculate the

corresponding quantities v2, . . . , vs. The significance level is evaluated from the

rank of v1 amongst the order-statistics v(1) < · · · < v(s) [7, 13]. Let v(j) denote
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the jth largest amongst the vi : 1, . . . , s. Then, under H, each of the s possible

rankings of v1 are equally likely and we have

P{v1 = v(j)} = s−1 : j = 1, . . . , s

Hence, for an upper-tailed test, rejection of H on the basis that v1 ranks the kth

largest or higher gives a one-sided test of size k/s. For a lower-tailed test, rejection

on the basis that v1 ranks kth smallest or lower also gives a test of size k/s. For

a two-tailed/two-sided test, the p-value is 2 times the smaller of the one-tailed

p-values above [11]. These results all assume that the values of vi are all different

and that there are no ties so the ranking is unambiguous. If V is discrete so that

ties are possible, then either choose the least extreme rank for v1 as a conservative

rule or use a randomized p-value to break the tie.

To help interpret the significance (or lack thereof) of the observed test statistics

V̂ against the value expected under CSR, simulation envelopes are often used. To

construct pointwise simulation envelopes, we proceed as follows. Generate s − 1

independent simulations of CSR inside the study region A. Compute the estimated

V functions for each of these realizations, that is V̂ (j)(r) for j = 2, . . . , s−1. Define

the pointwise upper and lower envelopes of these simulated curves to be

L(r) = min
j
V̂ (j)(r)

U(r) = max
j
V̂ (j)(r).

For any fixed value of r, if the data come from a uniform Poisson process then

the probability that V̂ (r) lies outside the envelope [L(r), U(r)] is 2/s; that is, the

test that rejects the null hypothesis of CSR when V̂ (r) lies outside [L(r), U(r)],

has significance level α = 2/s. Thus, with 39 simulations, we have a test of size

α = 2/40 = 0.05. If one prefers to use the pointwise order statistic (that is, the

pointwise kth largest and kth smallest values), then the resulting test is of size

α = 2k/s [3, pp. 132-133].
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2.3.2 Simultaneous Monte Carlo Tests

Note that the pointwise test above requires that r be fixed in advance. If we

had based our decision on whether the empirical function (say V in the notation

of the previous subsection) ever wandered outside the envelope, then we would

have chosen the value of r in a data-dependent way, and the true significance level

would be higher (that is, less significant). To avoid this problem, we can construct

simultaneous critical bands with the property that, under H, the probability of V̂

ever wandering outside the critical bands is exactly 5% (or any other desired α).

Simultaneous critical bands are created by first computing, for each of the

s − 1 estimated V̂ (r), its maximum deviation from the theoretical (under CSR)

V function:

D(j) = max
r
|V̂ (j)(r)− Vpois(r)|, (2.1)

where Vpois(r) is the theoretical V function under the null hypothesis of CSR and

j runs from 2 to s. For each of the M = s − 1 simulated datasets, compute a

value of D(j). Among these, determine the largest D(j) and refer to this maximum

value as Dmax. The upper and lower limits are

L(r) = Vpois(r)−Dmax (2.2)

U(r) = Vpois(r) +Dmax. (2.3)

The observed empirical V̂ (1)(r) function then exceeds these limits only if the D(1)

for the data is greater than Dmax. Under the null hypothesis H, this occurs with

probability 1/(M +1). For a test of size α = 5%, use M = s−1 = 19 simulations.

2.4 Preliminary Testing, Exploratory Data Analysis (EDA)

For reasons discussed in Section 2.1, it is often useful to begin an analysis of a point

pattern dataset with a test of CSR. The remainder of this chapter will describe

a number of different test that have been proposed to do so. The main classical
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techniques, which will be described in this chapter, are the distance methods, which

are based on measuring distances between points. Three that we may consider

are

• pairwise distances tij = ‖xi − xj‖ between all distinct pairs of points

xi and xj (i 6= j) in the pattern. They are also referred to as inter-event

distance. We shall refer to them as pairwise distances here;

• nearest neighbor distances ti = minj 6=i tij, the distance from a point xi

to its nearest neighbor;

• empty space distances d(u,x) = mini{‖u − xi‖ : xi ∈ x}, the distance

from a fixed reference location u ∈ R2 in the observation window to the

nearest data point xi in the point pattern X. (They are also known as point-

to-nearest-event distances, but we shall continue to use the term empty space

distances.)

2.4.1 Pairwise Distances

The first summary description we consider is the empirical distribution of pairwise

distances. For a pattern of n events in a region A, there are 1
2
n(n − 1) pairwise

distances from event xi to event xj. Assuming the point process X is stationary,

we define the cumulative distribution function (CDF) of pairwise distances T to

be [9, p. 1]:

H(r) = P{tij ≤ r} (2.4)

The empirical distribution function (EDF) of the observed inter-event dis-

tances is

Ĥ1(r) =

{
1

2
n(n− 1)

}−1
#(tij ≤ r) (2.5)

=
2

n(n− 1)

∑
i 6=j

1{‖xi − xj‖ ≤ r}, (2.6)

12



where #(tij ≤ r) means ‘the number of tij less than or equal to r’, xi and xj

are events in the observed point pattern, and 1{·} is the indicator function. It is

negatively biased, since we can never observe a pairwise distance greater than the

diameter of the window [3, p 125].

To interpret this estimate, we compare it to what would be expected under

CSR. In general, the theoretical distribution function of T between two events

independently and uniformly distributed in A will depend on the size and shape

of A but is known for the most common cases when A is a square or circle [10].

When A is a square of unit side, the theoretical distribution function of T is

Hpois(r) =


πr2 − 8r3/3 + r4/2, if 0 ≤ r ≤< 1,

1/3− 2r2 − r4/2 + 4(r2 − 1)
1
2 (2r2 + 1)/3

+2r2 sin−1(2r−2 − 1), if 1 < r ≤
√

2.

(2.7)

When A is a circle of unit radius, it is

Hpois(r) = 1+π−1{2(r2−1)cos−1(r/2)−r(1+r2/2)
√

(1− r2/4)}, for all 0 ≤ r ≤ 2.

(2.8)

If A is neither a square nor circle, then we can proceed by using Monte Carlo tests

with simulation envelopes (see below).

Typically we compare Ĥ1(r) with Hpois(r). If we create a plot of Ĥ1(r) as

ordinate against Hpois(r) as abscissa, then the plot should be roughly linear for

data compatible with CSR. Values Ĥ1(r) > Hpois(r) for small values of Hpois(r)

means an excess of small inter-event distances, which suggests a clustered pattern.

Monte Carlo tests with simulation envelopes can also be used to assess the sig-

nificance or lack thereof of departures from linearity. Two of the many approaches

are as follows:

1. Choose r0 and define

vi = Ĥi(r0).

13



Then proceed as in Section 2.3.

2. Define

vi =

∫
{Ĥi(r)−Hpois(r)}2 (2.9)

to be a measure of divergence between Ĥi(r) and Hpois(r) over the entire

range of r and again proceed as in Section 2.3.

If the region A is one where the theoretical distribution function Hpois(r) is un-

known, a test can still be performed by replacing Hpois(r) in equation 2.9 with

H i(r) = (s− 1)−1
∑
j 6=i

Ĥj(r). (2.10)

2.4.2 Nearest-Neighbor Distances

Assuming the point process X is stationary (invariant under translations), we

define the CDF of nearest neighbor distances to be:

G(r) = P{d(u,X {u}) ≤ r|u ∈ X}, (2.11)

where u is an arbitrary event and d(u,X {u}) is the shortest distance from u to its

nearest neighbor in the point pattern X. The EDF of observed nearest-neighbor

distances

G∗1(r) = n−1
∑
i

1{ti ≤ r} (2.12)

is a positively biased estimator of G(r), since confining observations to a window

A means the observed nearest-neighbor distances are generally greater than the

actual nearest neighbor distances of points in the entire point process X [3, pp.

122-123]. A correction for this ‘edge effect bias’ is required. It will typically be a

weighted versions of the EDF

Ĝ1(r) =
∑
i

e(uj, r)1{ti ≤ r}, (2.13)

where e(u, r) is an edge correction so that Ĝ is unbiased.
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For a homogeneous Poisson process of intensity λ the theoretical CDF of near-

est neighbor distances is known to be [3, p 123]

Gpois(r) = 1− exp(−λπr2). (2.14)

Again, we can compare Ĝ1(r) with Gpois(r) by plotting one against the other

and comparing with simulation envelopes as in Section 2.4.2. Values of Ĝ1(r) >

Gpois(r) imply shorter observed nearest-neighbor distances than for a Poisson pro-

cess, suggesting a clustered pattern. Values of Ĝ1(r) < Gpois(r) suggest a regular

pattern.

The observed EDF Ĝ1(r) can also be compared with simulation envelopes from

simulated EDFs Ĝi(r) : i = 2, . . . , s exactly as in Section 2.4.1.

2.4.3 Empty-Space Distances and the F Function

Assuming X is stationary, we define the CDF of empty space distances to be

F (r) = P{d(u,X) ≤ r}, (2.15)

where u is an arbitrary reference location.

The EDF of observed empty space distances on a grid of m sample points,

uj : j = 1, . . . ,m, in A is defined to be

F ∗(r) = m−1
∑
j

1{d(u,X) ≤ r}. (2.16)

For reasons explained previously (in Section 2.2), it is a positively biased estimator

of F (r). Edge corrections are usually weighted versions of the EDF

F̂ (r) =
∑
j

e(uj, r)1{d(uj,x) ≤ r}, (2.17)

where e(u, r) is an edge correction so that F̂ (r) is unbiased.
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Again, we can compare the estimated observed F̂ (r) with Fpois(r). The theo-

retical CDF of empty space distances for a homogeneous Poisson process is pro-

vided by Diggle

Fpois(r) = 1− exp(−λπr2). (2.18)

(This is identical to the nearest-neighbor function for the Poisson process. Hence F

is equivalent to G. Interpretation is reversed, however.) Values of F̂ (r) > Fpois(r)

imply that empty space distances observed in the point pattern are shorter than

for a Poisson process, suggesting a regular pattern.; F̂ (r) < Fpois(r) suggest a

clustered pattern.

The observed EDF F̂1(r) can be analyzed by plotting against Fpois(r) or com-

paring with simulation envelopes from simulated EDFs F̂i(r) : i = 2, . . . , s as in

Section 2.4.1.

2.4.4 Pairwise Distances Revisited and the K function

If the distribution of a point process X is invariant under translation, we say that

it is stationary. Diggle reports that Ripley defined the K-function for a stationary

point process so that λK(r) is the expected number of other points of the process.

Ripley’s K-function is defined as

K(r) = λ−1E[N0(r)], (2.19)

where N0(r) is the number of other events within a distance r of a typical or

arbitrary point/event of the process. For a homogeneous Poisson process we have

Kpois(r) = πr2. (2.20)

Most estimators of K are weighted and renormalized EDFs of the pairwise dis-

tances

K̂1(r) =
1

λ̂area(W )

∑
i

∑
j 6=i

1{‖xi − xj‖ ≤ r}e(xi, xj; r), (2.21)
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where e(xi, xj; r) is an edge correction. Without an edge correction, Equation

(2.21) is equal to Equation (2.5) up to a multiplicative constant factor. Thus the

K function is equivalent to the H function. We can compare the estimate K̂1(r)

with Kpois and/or with simulation envelopes as in Section 2.4.1. K̂1(r) > πr2

suggests clustering; K̂1(r) < πr2 suggests a regular pattern.

2.4.5 Pair Correlation Function g

Another summary function is the pair correlation function (pcf)

g(r) =
K ′(r)

2πr
, (2.22)

where K ′(r) is the derivative of K. It is roughly interpreted as the probability of

observing a pair of points separated by a distance r, divided by the corresponding

probability in a Poisson process. While in some ways easier to interpret, it is

more difficult to estimate. We proceed by inspecting a plot of the estimated pcf.

The value g(r) = 1 suggests complete randomness, since gpois ≡ 1, while values

g(r) > 1 imply clustering (at distance r) and values g(r) < 1 imply a regular

pattern. [3].

2.4.6 Quadrat Counts

Quadrat counting is an alternative to the distance-based approaches discussed so

far. It involves dividing the observation window A into m rectangular subregions

(or quadrats) of equal size and and counting the number of points in each rectangle

to test homogeneity (that is, CSR). Specifically, we assume A is the unit square

and partition it into a regular k × k grid of quadrats so that m = k2. Let

ni : i = 1, . . . ,m be the number of points counted in each quadrat and n̄ = n/m be

the sample mean of the ni. Departures from CSR are assessed based on Pearson’s
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χ-squared statistic

χ2 =
m∑
i=1

(ni − n̄)2/n̄, (2.23)

which has a χ2
m−1 null distribution provided n̄ is not too small [10].
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CHAPTER 3

Review of Linear Point Processes

In this chapter, we will first present the basic definitions and terminology for a

linear network and related geometrical objects. We will then provide a summary of

homogeneous and inhomogeneous Poisson processes restricted to a linear network.

3.1 Basic Definitions for a Network

Definition 1. A set l ⊂ R2 is called a line segment in the plane with endpoints u

and v iff l can be expressed as

l = lu,v = {tu+ (1− t)v : 0 ≤ t ≤ 1} ,

for some points u, v ∈ R2, u 6= v. lu,v is referred to as the line segment between u

and v, and the length of the line segment is defined as

|l| = |lu,v| = ‖u− v‖,

where ‖.‖ is the Euclidean distance in R2.

Definition 2. A linear network, L, in R2 is the union

L =
n⋃
i=1

li,

of a finite collection of line segments l1, . . . , ln in the plane, where li = lui,vi are

segments of finite length in R2 such that |li ∩ lj| = 0 for i 6= j, and the segments

are maximal in the sense that li ∪ lj is not a line segment for any i 6= j.
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Definition 3. Let L = ∪ni=1li be a linear network. The total length of all line

segments in L is defined as

|L| =
n∑
i=1

|li|.

Definition 4. Let L be a linear network. A point v ∈ L is called an intersection

vertex if v = li ∩ lj for some i, j, i 6= j. It is called a free vertex if li = lx,v (or lv,x)

for some i, x, and li ∩ lj 6= v for any j 6= i. The union of intersection vertices and

free vertices is called the set of vertices of L.

Definition 5. Let L be a linear network and u, v,∈ L. The path between two

points, u and v, in L is a sequence

x0, x1, . . . , xm

such that

x0 = u,

xk = v,

[xi, xi+1] ⊂ L for each i = 0, . . . ,m− 1.

and is denoted by P (u, x1, . . . , xk−1, v).

Definition 6. If P (u, x1, . . . , xk−1, v) is a path in a linear network L, then the

length of the path is defined as

‖u− x1‖+ ‖x1− x2‖+ . . .+ ‖xk−1 − v‖.

Definition 7. The shortest path distance dL(u, v) between two points, u and v in

L is the length of the shortest possible path from u to v. If no path from u to v

exists then we have dL(u, v) =∞.

Definition 8. The disc, bL(u, r), of radius r > 0 and center point u in L is defined

as the set of all points v in the network whose shortest path distance from u is

less than or equal to r:

bL(u, r) = {v ∈ L : dL(u, v) ≤ r.}
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Definition 9. The relative boundary, dL(u, v), of bL(u, r) is the set of points lying

exactly r units away from u:

∂bL(u, r) = {v ∈ L : dL(u, v) = r}.

Definition 10. The number of points in the relative boundary ∂bL(u, r) is known

as the circumference and is denoted m(u, r). It is the number of points of L lying

exactly r units away by the shortest path from u:

m(u, r) = #∂bL(u, r) (3.1)

= number of points v in L such that dL(u, v) = r (3.2)

= NL{v : dL(u, v) = r.} (3.3)

It is finite for all r <∞ and, by convention, we set m(u,∞) =∞.

Definition 11. Given a linear network L, the quantity

R ≡ dmax = min
u∈L

max
v∈L

dL(u, v)

is analogous to and can be interpreted as the circumradius of the network– that

is, the radius of the smallest disc containing the entire network.

3.2 Point Processes in a Linear Network

A point process on a linear network L is a stochastic mechanism that generates a

finite set of point on L where both the number of points and their locations are

random. Let x = {x1, . . . , xn}, xi ∈ L, n ≥ 0 denote a realization of the point

process X on the linear network L.

Definition 12. If X is a point pattern in a linear network L and X ⊆ L, then

NX(S) is defined as the number of points in X and S. That is,

NX(S) = number of points in X ∩ S. (3.4)
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A feature of a point process that gives a basic idea of the distribution of a point

pattern is the intensity, which measures the mean rate of occurrence of points per

unit length. The intensity may vary at different locations.

Definition 13. A point process X on a linear network L is said to have [first

moment] intensity function λ(u), u ∈ L if, for any line segment S ⊆ L,

E[NX(S)] =

∫
S

λ(u)d1u, (3.5)

where
∫
S
λ(u)d1u is the one-dimensional integration over the line segment.

λ(u) can be interpreted intuitively as the expected number of random points

per unit length in a small neighborhood or interval about u:

λ(u) = lim
|δu|→0

E[NX(δu)]

|δu|
,

where δu is a small interval around u. When the expected number of points per

unit length is constant regardless of location (that is, when it is equal to some

constant λ), then we say that it is first-order stationary (homogeneous) with

intensity function λ(u) = λ, where λ can be interpreted as the expected number

of points per unit length. Formally we have the following:

Definition 14. Let L be a linear network and X be a point process in L. Then we

say that x is first-order stationary if, for any S ⊆ L,

E[NX(S)] = λ · |S|,

where λ is the intensity of X.
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CHAPTER 4

Exploratory Data Analysis on a Linear Network

Chapter 4 describes how the methods in Section 2.4 can be applied to linear point

processes. The approach used in this chapter are the Monte Carlo methods. First,

we define new network spatial methods based on existing planar spatial methods

discussed in Section 2.4 by substituting the Euclidian distances used there with

the shortest-path distances on a network. We take the linear network under con-

sideration and repeatedly simulate actualizations of a completely random point

process on that network. Calculating the summary description for each actualiza-

tion, we determine the upper and lower envelopes for the summary description.

We can then compare our observed summary description with the upper and lower

envelopes expected under CSR.

We will need the following definitions:

• the network pairwise distances, dij = ‖xi − xj‖l = dL(xi, xj), between

all distinct pairs of points xi and xj (i 6= j) in the pattern is the length of

the shortest path between point xi and xj (that is, the “as the ambulance

flies” distance). Okabe & Yamada (2001) refer to this length as the network

distance, or simply distance when a network is understood. We shall follow

that convention here.

• network nearest neighbor distances, di = minj 6=i dij, is the distance

from a point xi to its nearest neighbor in the network L;

• network empty space distances, dL(u,x) = mini{‖u− xi‖l : xi ∈ x}, is
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the distance from a fixed reference location u ∈ L in the observation window

to the nearest data point, xi, in the point pattern, X, in the network, L.

4.1 Pairwise Distances on a Network

The first summary description we consider is the empirical distribution of pairwise

distances on a linear network. For a pattern of n events in a region A, there are

1
2
n(n − 1) pairwise distances from event xi to event xj. We define the CDF of

pairwise distances D to be:

Hl(r) = P{dij ≤ r}. (4.1)

Note that this is just our earlier definition of theoretical pairwise distance de-

scribed in Section 2.4.1 with the Euclidian distance replaced by the shortest-path

distance on a network.

Similarly, we define the EDF of the observed inter-event distances to be:

Ĥl(r) =

{
1

2
n(n− 1)

}−1
#(dij ≤ r) (4.2)

=
2

n(n− 1)

∑
i 6=j

1{‖xi − xj‖l ≤ r}, (4.3)

where #(dij ≤ r) means ‘the number of dij less than or equal to r’, xi and xj are

events in the observed network point pattern, 1{·} is the indicator function, and

‖xi−xj‖l is the shortest-path distance between xi and xj. It is negatively biased,

since we can never observe a pairwise distance greater than the diameter of the

window [3, p 125].

4.2 Nearest-Neighbor Distances on a Network

We define the CDF of nearest neighbor distances on a network to be:

G(r) = P{dL(u,X {u}) ≤ r|u ∈ X}, (4.4)
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where u is an arbitrary event and dL(u,X {u}) is the shortest distance from u to

its nearest neighbor in the point pattern X on a linear network L. The EDF of

observed nearest-neighbor distances is

Ĝl(r) = n−1
∑
i

1{di ≤ r}, (4.5)

a positively biased estimator of G(r) for the same reasons as before.

4.3 Empty-Space Distances on a Network

The CDF of empty space distances on a network is

Fl(r) = P{dL(u,X) ≤ r}, (4.6)

where u is an arbitrary reference location.

The EDF of observed empty space distances on a grid of m sample points,

uj : j = 1, . . . ,m, in A is defined to be

F̂l(r) = m−1
∑
j

1{dL(u,X) ≤ r}, (4.7)

where Diggle [10] recommends using the same number of grid points, m, as there

are events in the observed pattern. F̂l(r) is positively biased.

4.4 The Network K Function

There is already an analog of the planar K function for use on linear networks.

It was defined by Okabe & Yamada in 2001 as [16, 1]:

K̂OY (r) =
1

λ̂2|L|

∑
i

∑
i 6=j

1{dL(xi, xj) ≤ r}. (4.8)

It is equal to the Ĥl function (Equation 4.2) up to a multiplicative constant. We

will show in the next chapter that the two are essentially the same. An edge

corrected version was later developed by Ang [2].
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4.5 The Pair Correlation Function g on a Network

An analog of the pcf for linear networks is defined by Ang et al. [2] as:

ρl(r) =
1∑

i 1/λ̂(xi)

n∑
i=1

∑
j 6=i

k(dl(xi, xj)− r)
λ̂(xi)λ̂(xj)m(xi, dl(xi, xj))

(4.9)

where k is a kernel on R and m(·, ·) is the circumference as defined in (3.1).

4.6 Quadrat Counting on a Network

The quadrat counting approach used to analyze spatial point patterns in R2 does

not seem to lend itself for use on networks. One approach might be to partition

the network into m equal segments each of length |L|/m, where |L| is the total

length of the network. If we treat each segment as a “quadrat,” then we should

be able to proceed with the analysis as in Section 2.4.6.
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CHAPTER 5

Data & Analysis

Our goal is to use our newly proposed summary functions to determine whether

our data sets can be modeled as a homogeneous Poisson process. If the data

were not compatible with CSR, then the question would be whether they are

aggregated or exhibit regularity. We also seek to compare the results of planar

summary functions with the results of their network analogs – by first treating

each point pattern as a two-dimensional rectangle, analyzing it with a planar

summary function, and then analyzing it as a point pattern on a network with a

network summary function. We will determine if there is any difference and, if so,

try to explain why.

5.1 Data

5.1.1 Chicago Street Crime Data

Figure 1.1 shows a record of street crimes in an area of Chicago in a two week

period from April 25, 2002 to May 8, 2002, available in the spatstat package

for the R programming language. It was reported by the Chicago Weekly News,

manually digitized by Adrian Baddeley, and can be accessed by entering:

> data(chicago)

in R. The data give the location of each crime, all of which occurred either on or

near the network of streets. It also gives the type of crime.
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5.1.2 Spider Nest Data

The first data set (presented in Figure 1.2) gives the positions of 48 webs of the

spider Oecobius navus on the network of mortar lines of a brick wall. The data

came from the positions of webs on two different sections of wall, each sampled six

times over a period of six weeks for a total of twelve point patterns. This thesis

will focus on only the first point pattern – point pattern QI 2705. We wish to elicit

information about the habitat preferences, resource requirements, and co-specific

interaction of the species.

5.2 Analysis

5.2.1 Pairwise Distances and the Network K Function

5.2.1.1 Analysis of Chicago Street Crimes

As discussed in Section 4.4, the pairwise distance H function is equal to Okabe &

Yamada’s Network K function up to a multiplicative constant. This is illustrated

in Figure 5.1, where the two plots appear identical. Figure 5.2a shows an EDF plot

of pairwise distances along with the upper and lower boundaries expected under

99 simulations of CSR. We see that the empirical network H function lies well

above the upper boundary throughout its range; we conclude that these data are

incompatible with a completely random spatial distribution of crimes. The same

conclusion is reached with a visual inspection of Ang’s geometrically-corrected

network K-function.

5.2.1.2 Analysis of Spider Nests

For the spider nest data, we again plot the empirical H-function along with the

upper and lower envelopes expected under 99 simulations of CSR. The EDF plot,
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(a) (b)

(c)

Figure 5.1: (a) Empirical network H function for the chicago dataset with upper

and lower envelopes expected under CSR. (b) Okabe & Yamada’s network K

function for the chicago dataset. (c) Ang’s geometrically corrected network K

function for the chicago dataset.
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(a) (b)

(c)

Figure 5.2: (a) Empirical network H function for the spider nest dataset with

upper and lower envelopes expected under CSR. (b) Okabe & Yamada’s network

K function for the spider dataset. (c) Ang’s geometrically corrected network K

function for the spider dataset.

Figure 5.2, shows that the summary function never wanders beyond the upper

and lower envelopes. This indicates that the data are compatible with CSR.

5.2.2 Nearest-Neighbor Distances

5.2.2.1 Analysis of Chicago Street Crimes

Figure 5.3 shows the EDF plot of network nearest neighbor distances for the

Chicago street crimes dataset with corresponding lower and upper envelopes from
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Figure 5.3: EDF plot of nearest neighbor distances for Chicago street crime data.

Solid curve represents data. Dashed curves represent upper and lower envelopes

from 99 simulations of CSR.

99 simulations of CSR. It shows an excess of small nearest neighbor distances,

which is characteristic of aggregated patterns. Therefore we feel that there is

ample evidence for rejecting the hypothesis of CSR in favor of an aggregated

alternative.

5.2.2.2 Analysis of Spider Nests

For the spider nests, the EDF plot in Figure 5.4 shows that the data lies within

the upper and lower envelopes throughout its range. It suggests acceptance of

CSR.
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Figure 5.4: EDF plot of nearest neighbor distances for spider nests data. Solid

curve represents data. Dashed curves represent upper and lower envelopes from

99 simulations of CSR.

5.2.3 Empty-Space Distances

5.2.3.1 Analysis of Chicago Street Crimes

Figure 5.5 shows the EDF plot for an empty-space analysis of Chicago street

crime data, using a grid of m = 116 points, where m was determined by following

Diggle’s rule of thumb of choosing as many grid points as there are events in the

observed pattern. F̂l(x) lies below the lower simulation envelope for most of its

range. This is typical of an aggregated pattern and contrasts with the behavior

of Ĝl(x) for these data shown in Figure 5.3.

5.2.3.2 Analysis of Spider Nests

Figure 5.6 show the corresponding EDF plot for the spider nests data, using a

grid of m = 48 points. Again, we use Diggle’s rule of thumb for determining

the number of grid points to use. We see that F̂l(x) lies between the simulation
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Figure 5.5: EDF plot of empty space distances for Chicago street crime data.

Solid curve represents data. Dashed curves represent upper and lower envelopes

from 99 simulations of CSR.

envelopes throughout its range. As in our previous analyses of the data, CSR is

accepted.
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Figure 5.6: EDF plot of empty-space distances for spider nests data. Solid curve

represents data. Dashed curves represent upper and lower envelopes from 99

simulations of CSR.
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CHAPTER 6

Closing Remarks

6.1 Discussion

The techniques used in this paper can be improved upon. Just as Ang [1, 2]

was able to improve Okabe & Yamada’s Network K-function [16] by adding a

correction for edge effects, so could we modify the summary functions used here.

Developing an analog of quadrat counting on spatial point patterns in R2 for use

on network point patterns might prove useful as well. So might the development

of exact Mont Carlo tests [10] of CSR on a network.

The values of the network summary-function are limited by being difficult

to interpret. Even for a completely random point process on the network, the

expected value of a network summary function might depend on the geometry of

the network [1]. There is no evidence that network summary functions obtained

from different networks are directly comparable. May we, for example, compare

the spatial patterns of street crime in two different cities using the respective

network summary functions?

The methods described in this paper also assume that the use of the shortest-

path distance is our best choice of a distance metric. This might not always be the

case. For example, on a directed network such as a street network containing one-

way streets, the shortest path between two points might not even be traversable.

In this case, we would not want to use the shortest-path distance, but rather the

directed shortest-path distance. The methods also assume that the shortest path
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is unique. If it is not – for example with Y-shaped paths or distances at junctions

– then it seems safe to choose any/either of the equidistant routes as the shortest

path.

Finally, we reiterate the differences between using planar spatial methods and

network spatial methods for for analyzing network spatial phenomena. In gen-

eral, while models for networked point processes are similar to those for regular

spatial processes in the sense that network spatial methods are extensions of pla-

nar spatial methods, using planar spatial methods on network data can lead to

false conclusions. For example, it was shown by Yamada and Thill (2004) that

applying the planar K function method to network data overestimates clustering

tendency. If we had used the planar K function instead of the network K function

to analyze the data set in Figure 1.3, we would have concluded that the data are

aggregated when they are in fact random. Network summary functions should be

used for network data [15].

6.2 Conclusion

We have adjusted for the fact that the events of a network point patterns are con-

strained to lie on a network. We did so by substituting the shortest-path distance

for the Euclidean distance in the definition of some common summary functions

– namely the inter-event distance function H, the nearest-neighbor distance func-

tion G, and the point-to-nearest-event/empty-space distance function F . We used

graphical procedures to test for CSR by comparing observed summary functions

to upper and lower envelopes expected under simulations of CSR.
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