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Data analysis from empirical moments and the Christoffel

function

Edouard Pauwels ∗ Mihai Putinar † Jean-Bernard Lasserre ‡

October 22, 2018

Abstract

Spectral features of the empirical moment matrix constitute a resourceful tool for unveiling
properties of a cloud of points, among which, density, support and latent structures. It is already
well known that the empirical moment matrix encodes a great deal of subtle attributes of the
underlying measure. Starting from this object as base of observations we combine ideas from
statistics, real algebraic geometry, orthogonal polynomials and approximation theory for opening
new insights relevant for Machine Learning (ML) problems with data supported on singular sets.
Refined concepts and results from real algebraic geometry and approximation theory are empow-
ering a simple tool (the empirical moment matrix) for the task of solving non-trivial questions in
data analysis. We provide (1) theoretical support, (2) numerical experiments and, (3) connections
to real world data as a validation of the stamina of the empirical moment matrix approach.

Inference of low dimensional structures

Intrinsic dimension has a long history in signal processing expressing the idea that most empirical
high dimensional signals are actually structured and can be approximated by a small number of
entities [6, 24, 45, 52]. Dimension reduction in data analysis has witnessed a considerable renewal
of interest in the early 2000’s with the advent of non linear low dimensional structure estimation
algorithms [46, 50, 4] and follow up works [16, 34, 20]. Graph Laplacian based methods were proposed
in [5, 29] and intrinsic dimension estimation was revisited in [35, 28]. In a manifold learning context
the questions of finite sample efficiency were treated in [26, 25, 31, 1] and a statistical test was proposed
[23]. A spectral support estimator was described in [54].

Getting access to topological properties of a data distribution through computational topology is
of rising interest [43, 19, 11, 27]. This was cast in a statistical framework in [12, 13, 10] and in a
machine learning framework by [43, 44].

Classical real algebraic geometry [7] and its related computational tools [14] constitute a well
established mathematical branch dealing with varieties described by polynomials. Our work streams
from the potential of exploiting these results with the specific aim at inferring latent structures. A
fundamental view in modern algebraic geometry is to study a finite dimensional set S via duality, by
investigating the algebra of polynomial functions acting on S. We put at work the idea to capture
geometric characteristics of S from polynomials on a cloud of points spread across S, essentially a
spectral property of the corresponding empirical moment matrix.
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Christoffel-Darboux kernel

Given a positive, rapidly decaying Borel measure µ on euclidean space, integration with respect to
µ defines a scalar product on the space of polynomials. The reproducing kernel associated to the
Hilbert space of polynomials up to a given degree is called the Christoffel-Darboux kernel [48] and
is usually computed from a suitable orthonormal family [49, 18]. This kernel only depends on the
moments of µ and has been intensively studied for more than a century. It captures refined properties
of the original measure [42, 53] and allows to decode information concerning the support, the density
of the absolutely continuous part of µ and more importantly it can detect the presence of a singular
continuous component of µ. The univariate case was treated in [40, 41, 51], while a recent application
to dynamical systems is given in [32].

In the multivariate setting, explicit computations are known only for simple supporting varieties
[8, 55, 9, 56] or under abstract assumptions [33]. As claimed in [37, 38], these tools constitute a
promising research direction for data analysis. For latent structure inference one needs to understand
properties of these objects in the singular setting, hardly tackled in the literature, and this is the
main goal of the present paper.

Results

(i) Under natural assumptions, we show that the space of polynomials on a real algebraic set and
the space of polynomials on a large enough generic sample on the same set are essentially the same
spaces. As a result, global geometric properties of the support can be inferred with probability one from
only finite samples. This relies on the rigidity of the polynomial setting, and constitutes a significant
departure from more classical forms of statistical inference which most often hold non deterministically.
In particular, we describe how the growth of the rank of the empirical moment matrix is related to
the dimension of the support of the underlying measure. Again, with probability one, the intrinsic
dimension of the set of data points can be inferred exactly from the empirical moment matrix.

(ii) Our second main result extends the weighted asymptotic convergence of the Christoffel function
to the density of the underlying measure, cf. [33]. The work of [33] relies on the variational formulation
of the Christoffel function, still valid in the singular case. Starting from simple assumptions, we cover
the cases of the sphere, the ellipsoids and canonical operations of them, such as fibre products. The
proof provides explicit convergence rates in supremum norm, which to the best of our knowledge, is
the first result of this type in the multivariate setting.

Numerical experiments

We illustrate on simulations that the growth of the rank of the empirical moment matrix is related
to the dimensionality of the support of the underlying measure. Connection with the density is
illustrated on three real world datasets featuring symmetry and periodicity. We map them to higher
dimensional algebraic sets which captures naturally the corresponding symmetries and deploy the
Christoffel function machinery illustrating how this simple tool can be used to estimate densities on
the circle, the sphere and the bi-torus. Experiment details are found in the appendix.

Organisation of the paper

Section 1 presents the Christoffel-Darboux kernel for positive definite moment matrices, this is ensured
for example if the underlying measure is absolutely continuous. The singular case is tackled in Section
2 where we provide a general construction and first describe its geometric features. Section 3 exposes
our main results on approximation of Christoffel-Darboux kernels from finite samples and Section
4 describes our main result about relation with the underlying density with respect to a singular
reference measure. Numerical experiments are presented in Section 5 and a discussion about slightly
perturbed singular measures is given in Section 6. All proof arguments are postponed to Section
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7; the Appendix contains additional details on notation, numerical experiments and some technical
Lemmas.

The rather odd structure of the article was dictated by our primary aim of making accessible
the main results to a wider audience. In this respect, some technical proofs and references to higher
mathematics can be omitted at a first reading. On the other hand experts in algebraic geometry or
approximation theory will find complete indications of the proofs of all claimed statements.

1 The non-degenerate case

Henceforth we fix the dimension of the ambient euclidean space to be p. For example, we will consider
vectors in Rp as well as p-variate polynomials with real coefficients.

1.1 Notations and definition

We denote by R[X] the algebra of p-variate polynomials with real coefficients. For d ∈ N, Rd[X] stands
for the set of p-variate polynomials of degree less than or equal to d. We set s(d) =

(
p+d
d

)
= dimRd[X].

Let vd(X) denotes the vector of monomials of degree less than or equal to d. A polynomial
P ∈ Rd[X] can be written as P (X) = 〈p,vd(X)〉 for a given p ∈ Rs(d). For a positive Borel measure
µ on Rp denote by supp(µ) its support, i.e., the smallest closed subset whose complement has measure
zero. We will only consider rapidly decaying measures, that is measures whose all moments are finite.

Moment matrix For any d ∈ R, the moment matrix of µ, with moment up to 2d, is given by

Mµ,d =

∫
Rp

vd(x)vd(x)T dµ(x)

where the integral is understood element-wise. Actually it is useful to interpret the moment matrix as
representing the bilinear form on R[X], 〈·, ·〉µ : (P,Q) 7→

∫
PQdµ, restricted to polynomials of degree

up to d. Indeed, if p,q ∈ Rs(d) are the vectors of coefficients of any two polynomials P and Q of
degree up to d, one has pTMµ,dq = 〈P,Q〉µ. This entails that Mµ,d is positive semidefinite for all
d ∈ N.

1.2 Christoffel-Darboux kernel and Christoffel function

In this section we assume that the probability measure µ is not supported by a proper real algebraic
subset of Rp. In other words, for any polynomial p:∫

p2dµ = 0 if and only if p = 0.

This non-degeneracy condition is assured for instance for an absolutely continuous measure with
respect to Lebesgue measure on Rp.

Fix d a positive integer. In this case, the bilinear form 〈·, ·〉µ is positive definite on Rd[X] which
is a finite dimensional Hilbert space; we denote by ‖ · ‖µ the corresponding norm. For any x ∈ Rp,
the evaluation functional on Rd[X], P 7→ P (x), is continuous with respect to ‖ · ‖µ. Hence Rd[X] is
a Reproducing Kernel Hilbert Space (RKHS), it admits a unique reproducing kernel, κµ,d [2], called
the Christoffel-Darboux kernel [48]. The reproducing property and definition of Mµ,d ensure that for
any x,y ∈ Rp,

κµ,d(x,y) = vd(x)TM−1µ,dvd(y). (1)
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The Christoffel function is defined as follows:

Λµ,d : x 7→ inf
P∈Rd[X]

{∫
P (z)2dµ(z), s.t. P (x) = 1

}
(2)

A well known crucial link between the Christoffel-Darboux kernel and the Christoffel function is given
by the following Lemma of which we give a short proof for completeness.

Lemma 1 For any x ∈ Rp, one has

κµ,d(x,x)Λµ,d(x) = 1, (3)

and the solution of (2) is given by P ∗ : x 7→ κµ,d(z,x)
κµ,d(z,z)

.

Proof of Lemma 1 If P is feasible for (2), then
∫
P (x)κµ,d(z,x)dµ(x) = P (z) = 1. Cauchy-

Schwartz inequality yields

1 ≤
∫

(P (x))2dµ(x)

∫
(κµ,d(z,y))2dµ(y) = κµ,d(z, z)

∫
(P (x))2dµ(x).

Choosing P = P ∗, we obtain equality in the above inequality which proves the desired result. �

2 The singular case

Throughout this section µ denotes a Borel probability measure possessing all moments.

2.1 Departure from the regular case

Relations (1) and (3) do not need to hold in the singular case as the bilinear form 〈·, ·〉µ may fail
to be positive definite. In this situation the definition of polynomial bases requires additional care
and the RKHS interpretation is not valid over the whole space Rp. There are essentially two ways to
circumvent this difficulty:

• Construct, using a quotient map, the space of polynomials restricted on supp(µ), construct the
kernel based on this family and extend it to the whole euclidean space.

• Consider only the variational formulation as in the left hand side of (2).

These are equivalent on the support of µ but do not lead the same definition outside of the support.
Identity (3) ceases to hold in the singular case and both constructions provide a valid extension outside
of the support. We will focus on the second choice and start by stating the following basic Lemma.

Lemma 2 Let p ∈ N∗, M ∈ Rp×p be symmetric semidefinite and u ∈ Rp. Let M† denotes the
Moore-Penrose pseudo inverse, we have

inf
x∈Rp

{
xTMx; xTu = 1

}
=

{
1

uTM†u
, if projker(M)(u) = 0,

0, otherwise
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2.2 Support of the measure

If Mµ,d does not have full rank, then this means that its support is contained in an algebraic set. We let
V be the Zariski closure of supp(µ), that is the smallest real algebraic set which contains supp(µ). It is
well known that an algebraic set is always equal to the common zero set of finitely many polynomials.
Note that in the present article we exclusively work over the real field of coefficients, a setting which is
more intricate than that offered by an algebraically closed field (for instance Hilbert’s Nullstellensatz
is not valid in its original form over a real field).

Lemma 3 Denote by I the set of polynomials P which satisfy
∫
P 2dµ = 0. The set I coincides with

the ideal of polynomials vanishing on V .

We conclude this section by underlying important relations between the moment matrix and geometric
properties of V . The proof combines [39, Proposition 2] and a well known identification of the
dimension of a variety in the leading term of the associated Hilbert’s polynomial [14, Chapter 9]. An
illustration of the relation between the growth of the rank of the moment matrix and the dimension
of the underlying set is given in Section 5 with numerical simulations.

Proposition 4 For all d ∈ N∗, rank(Mµ,d) = HF(d), where HF denotes the Hilbert function of V
and gives the dimension of the space of polynomials of degree up to d on V . For d large enough,
rank(Mµ,d) is a polynomial in d whose degree is the dimension of V and ker(Mµ,d) provides a basis
generating the ideal I.

2.3 Construction of the Christoffel-Darboux kernel

We denote by L2
d(µ) the space of polynomials on V of degree up to d with inner product and norm

induced by µ denoted by 〈·, ·〉µ and ‖ · ‖µ respectively. This quotient space can be obtained by
identifying two polynomials which are equal on V . More specifically, L2

d(µ) is the quotient space
Rd[X]/(I ∩ Rd[X]), and it can be easily checked that 〈·, ·〉µ is positive definite on L2

d(µ) and hence
induces a genuine scalar product.

As in the absolutely continuous setting, pointwise evaluation is continuous with respect to ‖·‖µ and
L2
d(µ) is a RKHS [2]. The symetric reproducing kernel is defined for all x ∈ V , by κµ,d(·,x) ∈ L2

d(µ)
such that for all P ∈ L2

d(µ), ∫
P (y)κµ,d(y,x)dµ(y) = P (x).

We consider the variational formulation of the Christoffel function in (2). Considering the restriction
of Λµ,d to V amounts to replace Rd[X] by L2

d(µ), so that for all z ∈ V

Λµ,d(z) = inf
P∈L2

d(µ)

{∫
(P (x))2 dµ(x) : P (z) = 1

}
. (4)

(3) still holds for all z ∈ V , Λµ,d(z)κµ,d(z, z) = 1.
By definition of the Zariski closure, a polynomial vanishing on supp(µ) also vanishes on V and we

deduce that:

{z ∈ Rp, Λµ,d(z) = 0} ∩ V = ∅. (5)

Therefore if z ∈ V then Λµ,d(z) > 0 and Lemma 2 ensures that Λµ,d(z) = (vd(z)TM†µ,d vd(z))−1.
Since V is algebraic, it is the solution set of a finite number of polynomial equations. Let dV be the
maximum degree of such equations. Then for any d ≥ dV : V =

{
x ∈ Rd : Λµ,d(x) > 0

}
.
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3 Finite sample approximation

Given a positive Borel measure µ one may consider a finite sample {xi}ni=1 of independant random
vectors drawn from µ and replace µ by its empirical counterpart µn = 1

n

∑n
i=1 δxi where δa denotes

the Dirac measure at a. In this situation, for i = 1, . . . , n, xi is a random variable, hence µn is a
random measure, Mµn,d is a random matrix, and the law of large numbers states that for every fixed
d, ‖Mµn,d −Mµ,d‖ → 0 almost surely. This entails that rank(Mµn,d) → rank(Mµ,d) almost surely.
Classical approches to strengthen this result and provide quantitative estimates rely on concentration
of measure for matrices or operators. In the present section, we investigate another direction and
provide a different view of this convergence phenomenon. Under suitable assumptions, the rigidity of
polynomials ensure that convergence of the rank occurs almost surely for a finite sample size.

3.1 Assumptions and main result

Recall that µ is a Borel probability measure on Rp with all its moments finite and V denote the
Zariski closure of supp(µ). An algebraic set is called irreducible if it is not the union of two algebraic
proper subsets. Given an algebraic set W , we define a canonical area measure σW . Intuitively, an
algebraic set consists of a finite union of a smooth submanifolds of dimension pW ”glued” along a
lower dimensional singular locus. The area measure is constructed with geometric integration theory
techniques on the smooth part.

Construction of the area measure: Let W ⊂ Rp be an irreducible real algebraic set of dimension
pW . According to Proposition 3.3.14, Proposition 3.3.10 and Definition 3.3.4 in [7], there exists a lower
dimensional algebraic subset Y of dimension strictly smaller than pW , such that the set Z = W \Y can
be seen as a pW dimensional smooth submanifold of Rp (possibly not connected). There is a natural
Euclidean pW dimensional density on Z induced from the euclidean embedding, see for example
Section 7.3 in [17]. This defines integration of continuous functions on Z; then Riesz representation
theorem yields a regular positive Borel measure representing this very integration linear functional.
The resulting measure is called the area measure of W and it is denoted in short by σW .

Assumption 5 µ is a Borel measure on Rp with finite moments and V is the Zariski closure of
supp(µ) endowed with the area measure σV . They satisfy the following constraints:

1. V is an irreducible algebraic set,

2. µ is absolutely continuous with respect to σV .

Under this assumption one infers the following finite sample stabilization result. The statement
formalizes the intuition that the set of polynomials on supp(µ) and the set of polynomials on a finite
sample coincide almost surely as long as the sample size reaches the dimension of the space L2

d(µ).

Theorem 6 For all d ≥ 1 and all n ≥ rank(Mµ,d), it holds almost surely that,

• rank(Mµn,d) = rank(Mµ,d),

•
{
P ∈ Rd[X];

∑n
i=1(P (xi))

2 = 0
}

= Id.

A proof of Theorem 6 is given in Section 7.2. It is the combination of Theorem 6 and Proposition 4
which shows that, in principle, it is possible to fully characterize algebraic geometric properties of the
Zariski closure of supp(µ) from a finite sample, with probability one.

It is obvious that rank(Mµn,d) ≤ rank(Mµ,d). The main idea of the proof is to show that rank
deficiency implies that {xi}ni=1 are in the zero locus of a polynomial P on V n not vanishing everywhere
on V n. We then use the fact that a polynomial P vanishing in an euclidean neighborhood in V n

6



actually vanishe on the whole V n. This fact is deduced from Rückert’s complex analytic Nullstellensatz
[30, Proposition 1.1.29], which provides a local characterization of P . Completion of the local ring of
rational functions allows to deduce global properties of P [47]. The irreducibility hypothesis and the
definition of the area measure allow precisely to switch from real to complex variables.

We remark that the assumptions on V and µ in 5 are mandatory for the validity of the above
theorem. Two simple examples illustrate our claim.

Example Consider the following generative process in R2: x, y and z are drawn independently from
the uniform measure on [−1, 1]. If z ≤ 0, return (0, y), otherwise return (x, 0).

The underlying measure µ is the “uniform” measure on the set
{

(x, y) ∈ [−1, 1]2; xy = 0
}

and

hence we have V =
{

(x, y) ∈ R2; xy = 0
}

. Draw an independent sample from µ, {(xi, yi)}ni=1, the
event yi = 0 for i = 1, . . . , n occurs with probability 1/2n. Hence there is a nonzero probability that
our sample actually belong to the set Ṽ =

{
(x, y) ∈ R2; y = 0

}
. This will result in rank(Mµn,d) <

rank(Mµ,d). Since this event holds with non zero probability, this shows that Theorem 6 may not
hold for any value of n if V is not irreducilble.

Example Similarly, absolute continuity is necessary. Consider for example a mixture between an
absolutely continuous measure and a Dirac measure. There is a non zero probability that the sample
only contains a singleton which will induce a rank deficiency in the moment matrix.

4 Reference measure with uniform asymptotic behavior

This section describes an asymptotic relation between the Christoffel function and the density asso-
ciated with the underlying measure. The proof is mostly adapted from [33, Theorem 1.1], we provide
explicit details and use a simplified set of assumptions which allows us to deal with singular measures.

4.1 Main assumptions and examples

Our main hypothesis is related to a special property of a reference measure whose existence is assumed.

Assumption 7 Let Z be a compact subset of Rp and assume that there exists a reference Borel
probability measure λ whose support is Z and a polynomial function N : R+ 7→ R∗+ such that

lim
d→∞

sup
z∈Z
|N(d)Λλ,d(z)− 1| = 0.

Remark The constant 1 is arbitrary and could be replaced by a continuous and strictly positive
function of z.

The principal example that fits Assumption 7 is the p − 1 dimensional sphere in Rp, denoted Sp−1.
The dimension N(d) of the vector space of polynomials over Sp−1 is given by:(

p+ d− 1

p− 1

)
+

(
p+ d− 2

p− 1

)
=

(
1 +

2d

p− 1

)(
d+ p− 2

p− 2

)
which grows with d like 2dp−1

p−1 for a fixed value of p. As a function of d it is exactly the Hilbert

polynomial associated with the real algebraic set Sp−1. Here we may choose for λ the rotation invari-
ant probability measure on Sp−1 (as normalized area measure). In this case Λλ,d(z) = 1

N(d) for all

z ∈ Sp−1 and all d by rotational invariance of both the sphere and the Christoffel function.

The case of the sphere is important because it helps construct many more situations which satisfy
Assumption 7:

7



• Product of spheres with products of area measures: the bi-torus in R4 with the corresponding
area measure.

• Affine transformations of such sets with the push forward of the reference measure with respect
to the affine map; for instance the ellipsoid,

or rational embeddings of the sphere in higher dimensional space, to mention only a few natural
choices of admissible operations.

4.2 Main result

Given a reference measure λ as in Assumption 7, and another measure µ ∼ λ (i.e. λ� µ and µ� λ),
one can describe a precise relation with the underlying density.

Theorem 8 Let Z and λ satisfy Assumption 7. Let µ be a Borel probability measure on Rp, absolutely
continuous with respect to λ, with density f : : Z → R∗+ which is continuous and positive. Then:

lim
d→∞

sup
x∈Z
|N(d)Λµ,d(x)− f(x)| = 0.

A proof of Theorem 8 is given in Section 4. In the case of the sphere, Assumption 7 does not hold
only in the limit and from the proof of Theorem 8 we are able to obtain explicit quantitative bounds
and a convergence rate, which to the best of our knowledge is the first estimate of this type for the
Christoffel function.

Corollary 9 Let f : Rp → R+ be Lipschitz on the unit ball with 0 < c ≤ f ≤ C < +∞ on Sp−1 and
assume that µ has density f with respect to the uniform measure on the sphere. Then

sup
x∈Sp−1

|N(d)Λµ,d(x)− f(x)| = O(d1/4).

5 Numerical experiments

5.1 Rank of the moment matrix

We illustrate Proposition 4 by the following numerical experiment:

• Sample 20000 points on a chosen set Ω ⊂ R3, from a density with respect to the area measure
on Ω.

• For d = 5, . . . , 12, compute the rank of the empirical moment matrix.

• Fit a degree-2 regression polynomial interpolating the relation between the degree and the rank.

We choose four different subsets of R3: unit cube, unit sphere, TV screen, torus. The first one is 3-
dimensional while all the others are 2-dimensional (see Figure 1). From Proposition 4, in the first case
it is expected that the computed rank grows like a third degree polynomial while for the remaining
cases, it should grow like a quadratic. Hence the interpolation of the rank-degree relation should be
of good quality for the last three cases and not for the first case. This is what we observed, see Figure
1.
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Figure 1: Top: A visualization of the 2 dimensional surfaces considered in this example, the sphere,
the torus and the TV screen. Bottom: Relation between the rank of the moment matrix and the
corresponding degree bound. For different sets, the dots represent the measured rank and the curve
is the degree-two interpolation. On the left, the raw relation, we see that the cube has the highest
rank. The same plot is in log log scale in the middle. The difference between measured rank and
estimated degree-two interpolation is hardly visible. On the right, we represent the residuals between
degree-two interpolation and measured ranks. The degree-rank relation is well interpolated for two
dimensional sets while this is not the case for the cube.

5.2 Density estimation on an algebraic set

We present multivariate datasets whose topological characteristics suggest to map them to algebraic
sets capturing symmetries. Practitioners have developed density estimation tools which mostly rely
on the ability to compute a distance like divergence between two points which respects the topology
of the data. As we next show, a unifying and generic approach allows to treat all these cases using
the same computational tool: the empirical Christoffel function.

The first step consists in mapping the data of interest on an algebraic set whose topology reflects
the intrinsic topology of the data, namely: the circle for periodic data, the sphere for celestial data,
and the torus for bi-periodic data. Then, we evaluate the empirical Christoffel function on the chosen
set and use it as a proxy to density. We use the pseudo-inverse of the empirical moment matrix.

The Christoffel function highly depends on the geometry of the boundary of the support. The
algebraic sets considered here do not have boundaries (as manifolds) and isotropy properties ensure
that the Christoffel function associated to the uniform measure on these sets is constant.

5.3 Dragonfly orientation: the circle

The dataset was described in [3] and consists of measurements of the orientation of 214 dragonflys with
respect to the azimuth of the sun. The orientation is an angle which has a periodicity and as such is
naturally mapped to the circle. The dataset and the corresponding Christoffel function are displayed
in Figure 2. As the degree increases, the Christoffel function captures regions densely populated by
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Figure 2: Left: Dragon fly orientation with respect to the sun, on the torus. The curves represent
the empirical Christoffel function and the dots are observations. Right: Each point represents the
observation of a double star on the celestial sphere, associated to longitude and latitude. The level
sets represent the empirical Christoffel functions on the sphere in R3 (degree 8). The highlighted band
corresponds to the Milky Way.

observations and regions without any observation. As was already observed in [3], dragonflies tend to
sit in a direction perpendicular to the sun.

5.4 Double stars: the sphere

We reproduce the experiment performed in [15]. The dataset is provided by the European Space agency
and was aquired by Hipparcos satelite [21]. The data consists of the position of 12176 double stars
on the celestial sphere described by spherical coordinates. Double stars are of interest in astronomy
because of their connection with the formation of evolution of single stars. A natural question is
that of the uniformity of the distribution of these double stars on the celestial map. The dataset and
corresponding Christoffel function are displayed in Figure 2 using equirectangular projection. Firstly
we note that the displayed level lines nicely capture the geometry of the sphere without distortion at
the poles. Secondly the Christoffel function allows to detect a higher density region which corresponds
to the Milky Way.

5.5 Amino-acid dihedral angles: the bi-torus

We reproduce the manipulations performed in [36]. Proteins are amino acid chains which 3D structure
can be described by φ and ψ backbone dihedral angle of amino acid residues. The 3D structure of
a protein is extremely relevant as it relates to the molecular and biological function of a protein.
Ramachandran plots consist of a scatter plot of these angles for different amino acids and allow to
visualize energetically allowed configuration for each amino acid.

It is worth emphasizing that being able to describe typical regions in Ramachandran plots is of
great relevance as a tool for protein structure validation [36]. Since the data consist of angles, it has
a bi-periodic structure and therefore naturally maps to the bi-Torus in R4. A Ramachandran plot for
7705 Glycine amino acids as well as the corresponding Christoffel function estimate is displayed in
Figure 3. The Christoffel function is able to identify highly populated areas and its level set nicely fit
the specific geometry of the torus. We refer the reader to [36] for more details about this dataset.

6 Discussion: perturbation of the moment matrix

We import real algebraic geometry and approximation theory results as tools to infer qualitative,
topological properties from datasets. This is intrinsically connected to the notion of algebraic sets
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Figure 3: Each point represents two dihedral angles for a Glycine amino acid. These angles are used
to describe the global three dimensional shape of a protein. They live on the bitorus. The level sets
are those of the empirical Christoffel functions evaluated on the sphere in R4. The degree is 4.
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and allows to leverage more rigidity than provided by usual smoothness assumptions. This is suited
for data restricted to algebraic sets.

However, in a singular situation, we are faced with a numerical instability issue. Aside from exact
real arithmetic computation, the notion of rank in finite precision arithmetic is actually ill-defined
which makes the singularity assumption questionable. We believe that the objects considered in this
paper have sufficient stability properties to treat “near-singular” cases. We describe an heuristic
argument, while more quantitative results is subject of future work.

Lemma 10 For a given m ∈ N, let A,M ∈ Rm×m be symmetric semidefinite. Then, for any v ∈ Rm
(uniformly on any compact)

lim
l→0+

inf
x∈Rm

{
xT (M + lA)x s.t.x ∈ Rp, xTv = 1

}
= inf

{
xTMx s.t.x ∈ Rm, xTv = 1

}
.

By Lemma 10, the Christoffel function associated with a slight perturbation of the moment matrix
is very close to the actual Christoffel function. This justifies the variational formulation (4) as it can
be seen as the limit of perturbations of µ making it non singular. By continuity of eigenvalues an
appropriate thresholding scheme should lead to a correct evaluation of the rank of the moment matrix.

An important application of Lemma 10 is the addidtion of noise. Consider the following random
process y = x + ε, where x is distributed according to µ and ε is independent small noise. Measuring
the impact of ε on the moments of y compared to moments of x will help using our tools in the “close
to singular” case. Understanding of the singular situation is a key to investigate robust variants suited
to more general and practical manifold learning situations.

An important example of application of Lemma 10 is the case of a convolution, which corresponds
to the addidtion of noise. Consider the following random process For illustration purpose, in Figure
4 one observes how the level sets tend to concentrate as the perturbation gets smaller.

7 Proofs

This section contains proofs of the main results of the present paper.

7.1 Rank of the moment matrix

We begin with the proof of Lemma 3.

Proof of Lemma 3: First, P ∈ I entails that P vanishes on supp(µ) by continuity of P . If P did
not vanish on V , then one would construct a strictly smaller algebraic subset of V containing supp(µ)
which is contradictory. Conversely, let P ∈ Rd[X] vanish on V , then P vanishes on supp(µ) and
P (x)2 = 0 for all x ∈ supp(µ) and therefore

∫
P 2dµ = 0, which in turn implies P ∈ I. �

We introduce the following notion of genericity, borrowed from [39]. For any d ∈ N, let Id :=
I ∩ Rd[x] be the intersection of the ideal I with the vector space of polynomials of degree at most d.

Definition 11 For any fixed d ∈ N, denote by Kd the set

Kd =
{
M ∈ Rs(d)×s(d), M11 = 1, M � 0, pTMp = 0, ∀p ∈ Id

}
.

A matrix T ∈ Rs(t)×s(t) is called generic if T ∈ Kd and rank(T ) ≥ rank(M) for all M ∈ Kd.

Lemma 12 For any d ∈ N∗, Mµ,d is generic.
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Figure 4: Small perturbation of a set of points on the circle by addition of a small amount of noise.
The perturbation tends to 0 and the level sets of the Christoffel function tend to converge to the circle
as predicted by Lemma 10.
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Proof First, for any polynomial P of degree at most d, with coefficient vector p, we have pTMµ,dp =∫
P 2dµ. This quantity vanishes for P ∈ Id and hence Mµ,d ∈ Kd. Choose M ∈ Kd and p ∈ Rs(d)

such that Mµ,dp = 0. We have that pTMµ,dp =
∫
P 2dµ = 0 so that P ∈ Id and hence Mp = 0. We

have shown that ker(Mµ,d) ⊂ ker(M) so that rank(Mµ,d) ≥ rank(M). �

We introduce the Hilbert function and the Hilbert polynomial. We refer the reader to [14, Chapter
9] for a general presentation.

Definition 13 The Hilbert Function of I is defined by

HF: N 7→ N
t 7→ dimRt[x]/It.

For large values of t, HF is a polynomial.

Intuitively, the Hilbert function associates to d the dimension of the space of polynomials of degree
up to d on supp(µ). This space is constructed using a natural quotient map as described in Section 2.
Proposition 4 combines [39, Proposition 2] and relation between Hilbert’s polynomial and dimension
[14, Chapter 9].

7.2 Finite sample approximation, proof of Theorem 6

Recall that for any d ∈ N∗, L2
d(µ) is identified with Rd[x]/Id, two polynomials are considered equivalent

if they agree on V . (L2
d(µ), 〈·, ·〉µ) is a finite dimensional RKHS which reproducing kernel is symmetric

positive definite and defined for all x ∈ V , by κµ,d(·,x) ∈ L2
d(µ) such that for all P ∈ L2

d(µ),∫
P (y)κµ,d(y,x)dµ(y) = P (x).

For any x ∈ V , κµ,d(·,x) is a polynomial and, by symmetry, κµ,d is itself a polynomial on V 2 which sat-
isfies κµ,d(x,x) > 0 for all x ∈ V . Furthermore, we have L2

d(µ) = span {κµ,d(·,x), x ∈ supp(µ)}. This
space being finite dimensional, there exists N(d) ≤ s(d) such that one can find a basis e1, . . . , eN(d) ∈
supp(µ) with

L2
d(µ) = span {κµ,d(·, ei), i = 1, . . . , N(d)} . (6)

Furthermore, let {Pi}N(d)
i=1 be an orthonormal basis of L2

d(µ). Then the identity
∫
κµ,d(x, y)Pi(y)dµ(y) =

Pi(x), for all x ∈ V and all i, yields:

κµ,d(x,y) =

N(d)∑
i=1

Pi(x)Pj(y), ∀x,y ∈ V. (7)

We begin by a technical Lemma which is a consequence of the reproducing kernel construction and
its relation to orthogonal polynomials.

Lemma 14 Let v1, . . . ,vn ∈ V and let µn be the empirical average
∑n
i=1 δvi . Then:

rank
(

(κµ,d(vi,vj))i,j=1...n

)
= rank (Mµn,d) .

14



Proof This is a consequence of equation (7). Let {Pi}N(d)
i=1 be an orthonormal basis of L2

d(µ). For each
i = 1, . . . , N(d) we choose Qi ∈ Rd[X] to be one element in the equivalence class of Pi. The family

{Qi}N(d)
i=1 must be independent in Rd[X] otherwise this would contradict independence of {Pi}N(d)

i=1 in

L2
d(µ). This independent family can be extended to a basis of Rd[X] which we denote by {Qi}s(d)i=1 .

Consider the matrix D = (Qj(vi))i=1...n, j=1...s(d). Then rank
(

(K(vi,vj))i,j=1...n

)
= rank(DDT )

from (7) and rank (Mµn,d) = rank(DTD) since the rank of the moment matrix does not depend on
the choice of polynomial basis in Rd[X]. Both ranks are the same which is the desired result. �

Now let V N(d) be the cartesian product space V × · · · × V︸ ︷︷ ︸
N(d) times

. It is irreducible [7, Theorem 2.8.3] and

its area measure is the product measure σ = ⊗N(d)
i=1 σV . The determinantal function:

F : V N(d) 7→ R

(x1, . . . ,xn) 7→ det
(

(K(xi,xj))i,j=1,...,N(d)

)
is a polynomial function which is not identically zero on V N(d), since by (6), F (e1, . . . , eN(d)) > 0.
The following observation, of some independent interest, is in order.

Lemma 15 Let W be an irreducible real algebraic set with corresponding area measure σW and P be
a polynomial on W . The following are equivalent

(i) σW ({z ∈W : P (z) = 0}) > 0.

(ii) P vanishes on W .

Proof The implication (ii) to (i) is trivial since σW is supported on W . Let us assume that (i) is true
and deduce (ii). This is classicaly formulated in the language of sheafs, we adopt a more elementary
language and describe details for completeness. The main idea of the proof is to reduce the statement
to Rückert’s complex analytic Nullstellensatz [30, Proposition 1.1.29] which characterizes the class of
analytic functions vanishing locally on the zero set of a family of analytic functions. The first point is
precisely of local nature and the Nullstellensatz combined with properties of analytic functions allow
to deduce properties of P which extend globally [47]. The irreducibility hypothesis and the definition
of the area measure allow precisely to switch from real to complex variables.

First, let P1, . . . , Pk generate the ideal I of polynomials vanishing on W . Since W is irreducible,
I is a prime ideal and W = {x ∈ Rp, Pi(x) = 0, i = 1, . . . , k} (see propositions 3.3.14 and 3.3.16 in
[7]). Point (i) entails that there exists x0 ∈ W and U1 an Euclidean neighborhood of x0 in Rp such

that W ∩ U1 is an analytic submanifold, or more precisely the Jacobian matrix
(
∂Pi
∂Xj

)
i=1...k, j=1...p

has rank k on U1, and furthermore, P (x) = 0 for all x ∈W ∩ U1.
Consider the complex analytic manifold Z = {z ∈ Cp, Pi(z) = 0, i = 1, . . . , k} and the polynomial

map

G : (X1, . . . , Xp) 7→ (P1(X1, . . . , Xp), . . . , Pk(X1, . . . , Xp), Xk+1, . . . , Xp).

This map is locally invertible around x0 in Cp and its inverse is analytic. The function (H : Xk+1, . . . , Xp) 7→
P (G−1(0, . . . , 0, Xk+1, . . . , Xp) is analytic and vanishes in an Euclidan neighborhood, of (x0,k+1, . . . , x0,p),
the last k coordinates of x0, in Rk. Hence, it can be identified with the constant null function on U1.
This shows that H vanishes in an Euclidean neighborhood of (x0,k+1, . . . , x0,p) in Ck.

This proves that there exists a Euclidean neighborhood of x0 in Cp, U2, such that P vanishes on
Z ∩ U2. At this point we can invoke the complex analytic Nullstellensatz [30, Proposition 1.1.29], to
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obtain k analytic functions, O1, . . . , Ok, on U2, and an integer m ≥ 1, such that, for all z ∈ U2, we
have

(P (z))m =

k∑
i=1

Pi(z)Oi(z). (8)

We can now use powerful result related to completion of local rings. Combining Corollary 1 of
Proposition 4 and Proposition 22 in [47] we obtain that identity (8) still holds with the constraint
that Oi, i = 1, . . . , k, are rational functions. In other words, reducing to common denominator, there
exists an Euclidean neighobourhood of x0, U3, and k complex polynomials Q1, . . . , Qk and a complex
polynomial Q such that Q does not vanish on U3, and

Q(z)(P (z))m =

k∑
i=1

Pi(z)Qi(z). (9)

From this we deduce that identity (9) still holds by restricting to real variables and real polynomials.
Now since the ideal I is prime and Q 6∈ I (since Q(x0) 6= 0), we deduce that P ∈ I, that is, P vanishes
on W . This is what we wanted to prove. �

We may now proceed to the proof of the rank stabilization result from Theorem 6. First, since V
is irreducible, V N(d) is also irreducible [7, Theorem 2.8.3]. Since F is a polynomial which does not
vanish everywhere on V N(d), we deduce from Lemma 15 that

σ
({

x1, . . . ,xN(d) ∈ V N(d) : F (x1, . . . ,xN(d)) = 0
})

=

∫
V N(d)

I
[
F (x1, . . . ,xN(d)) = 0

]
dσ(x1, . . . ,xN(d))

= 0. (10)

Noticing that rank(Mµ,d) = N(d), the result follows because µ is absolutely continuous with respect

to σV and hence ⊗N(d)
i=1 µ is absolutely continuous with respect to σ so that, combining Lemma 14 and

(10) with the i.i.d. assumption, yields:

P (rank (Mµn,d < N(d))) = P
(
F (x1, . . . , xN(d)) = 0

)
=

∫
V N(d)

I
[
F (x1, . . . , xN(d)) = 0

]
dµ(x1) . . . dµ(xN(d)) = 0.

This proves the first point. The second point is a consequence of the first point since the existence of
a polynomial vanishing on the sample but not on the whole V would induce a rank deficiency in the
empirical moment matrix and this occurs with zero probability.

7.3 Reference measure with uniform asymptotic behavior, proof of Theo-
rem 8

Although the proof is mostly adapted from [33, Theorem 1.1], we provide explicit details and use a
simplified set of assumptions which allows us to deal with singular measures.

Proof of Theorem 8: Our arguments, mostly inspired from [33], are adapted to our setting. In
addition, we provide some novel quantitative details. We split the proof into two parts. The second
part is essentially a repetition of arguments similar to those used in the first part.
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One direction By Assumption 7, Z is compact and so denote by D the finite diameter of Z. Fix
an arbitrary d ∈ N∗ and set:

εd = sup
x,y∈Z, ‖x−y‖≤D/

√
d

|f(x)− f(y)|, (11)

which is well-defined because f is continuous on the compact set Z and hence uniformly continuous
on Z, which ensures that the supremum is finite. Furthermore, εd → 0 as d→∞.

Next, fix an arbitrary x0 ∈ Z and choose Pd−bd3/4c realizing the infimum for Λλ,d−bd3/4c(x0) (b·c
denotes the floor integer part). Set Q2bd3/4/2c : y 7→ Q((y − x0)/D) where Q is given by Lemma 17

with δ = 1/
√
d and of degree at most 2bd3/4/2c. Then:

2bd3/4/2c ≤ bd3/4c,

and hence, the polynomial P = Pd−bd3/4cQ2bd3/4/2c is of degree at most d and satisfies
P (x0) = 1

|P | ≤ |Pd−bd3/4c| on Z

P 2 ≤ 22−
√
d/2 supx∈Z Pd−bd3/4c(x)2 on Z \BD/√d(x0),

(12)

where the first identity is because P is a product of polynomial whose value at x0 is 1, the last
two identities follow by maximizing both terms of the product, using Lemma 17 and the fact that
1 − δbd3/4/2c ≤ 1 − d3/4/(2

√
δ) + 1/

√
δ ≤ 2 −

√
d/2. P is feasible and provide an upper bound for

the computation of the Christoffel function of µ. We obtain:

Λµ,d(x0)

(i)

≤
∫
Z

(P (x))2dµ(x)

(ii)

≤
∫
Z∩B(x0,D/

√
d)

(Pd−bd3/4c(x))2fdλ(x) + 22−
√
d/2 sup

x∈Z
Pd−bd3/4c(x)2

∫
Z\B(x0,D/

√
d)

dµ(x)

(iii)

≤ (f(x0) + εd)

∫
Z∩B(x0,D/

√
d)

(Pd−bd3/4c(x))2dλ(x)

+ 22−
√
d/2 sup

z∈Z

(
Λλ,d−bd3/4(z)c

)−1 ∫
Z

(Pd−bd3/4c(x))2dλ(x)

(iv)

≤
(
f(x0) + εd + 22−

√
d/2 sup

z∈Z

(
Λλ,d−bd3/4c(z)

)−1)∫
Z

(Pd−bd3/4c(x))2dλ(x)

=

(
f(x0) + εd + 22−

√
d/2 sup

z∈Z

(
Λλ,d−bd3/4c(z)

)−1)
Λλ,d−bd3/4c(x0).

where (i) is because P (x0) = 1, (ii) follows by decomposition of the integral over two domains and the
uniform bounds in (12), (iii) follows by combining (11), Lemma 16 and the fact that µ is a probability
measure on Z, (iv) follows by extending the domain of the first integral and the last identity is due

17



to the choice of Pd−[d3/4] and Lemma 16. Therefore:

Λµ,d(x0)N(d)− f(x0)

≤
(
f(x0) + εd + 22−

√
d/2 sup

z∈Z

(
Λλ,d−bd3/4c(z)

)−1)
Λλ,d−bd3/4c(x0)N(d)− f(x0)

≤
(
εd + 22−

√
d/2 sup

z∈Z

(
Λλ,d−bd3/4c(z)

)−1)
Λλ,d−bd3/4c(x0)N(d− bd3/4c) N(d)

N(d− bd3/4/2c)

+ f(x0)

(
Λλ,d−bd3/4c(x0)N(d− bd3/4c) N(d)

N(d− bd3/4/2c)
− 1

)
≤

(
εd + 22−

√
d/2 sup

z∈Z

(
Λλ,d−bd3/4c(z)

)−1)
Λλ,d−bd3/4c(x0)N(d− bd3/4c) N(d)

N(d− bd3/4/2c)

+ C

(
Λλ,d−bd3/4c(x0)N(d− bd3/4c) N(d)

N(d− bd3/4/2c)
− 1

)
(13)

where C = supx∈Z f(x). Now the upper bound in (13) does not depend on x0 and goes to 0 as d→∞
since as d→∞,

εd → 0,

22−
√
d/2 sup

z∈Z

(
Λλ,d−bd3/4c(z)

)−1 ∼ 22−
√
d/2N(d− bd3/4c)→ 0,

Λλ,d−bd3/4c(x0)N(d− bd3/4c) N(d)

N(d− bd3/4/2c)
→ 1,

where the first limit is obtained by uniform continuity, the second limit comes from N being a poly-
nomial (by Assumption 7), and the last one also follows from Assumption 7. As a result:

lim sup
d→∞

sup
x∈Z

Λµ,d(x)N(d)− f(x) ≤ 0, (14)

which concludes the first part of the proof.

The other direction: To obtain the opposite direction inequality, we permute the role of µ and
λ which corresponds to a density f̃ = 1/f which remains positive and continuous on Z. We repeat
similar arguments, fix an arbitrary d ∈ N∗ and set

εd = sup
x,y∈Z, ‖x−y‖≤D/

√
d

|1/f(x)− 1/f(y)| , (15)

which again is well-defined because f is positive and continuous on the compact set Z and so 1/f
is uniformly continuous on Z, which ensures that the supremum is finite. Furthermore, εd → 0 as
d→∞.

Fix an arbitrary x0 ∈ Z and choose Pd realizing the infimum for Λµ,d(x0). The polynomial
Q2bd3/4/2c : y 7→ Q((y − x0)/D) is the same as in the first part of the proof. The polynomial P =

PdQ2bd3/4/2c is of degree at most d+ bd3/4c and satisfies
P (x0) = 1

|P | ≤ |Pd| on Z

P 2 ≤ 22−
√
d/2 supx∈Z Pd(x)2 on Z \BD/√d(x0).

(16)
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As P is feasible one may compute an upper bound for the Christoffel function associated with λ, by:

Λλ,d+bd3/4/2c(x0)

(i)

≤
∫
Z

(P (x))2dλ(x)

(ii)

≤
∫
Z∩B(x0,D/

√
d)

(Pd(x))2

f(x)
dµ(x) + 22−

√
d/2 sup

x∈Z
Pd(x)2

∫
Z\B(x0,D/

√
d)

dλ

(iii)

≤ (1/f(x0) + εd)

∫
Z∩B(x0,D/

√
d)

(Pd(x))2dµ(x) + 22−
√
d/2 sup

z∈Z
(Λµ,d(z))

−1
∫
Z

(Pd(x))2dµ(x)

(iv)

≤
(

1/f(x0) + εd + 22−
√
d/2 sup

z∈Z
(Λµ,d(z))

−1
)∫

Z

(Pd(x))2dµ(x)

=

(
1/f(x0) + εd + 22−

√
d/2 sup

z∈Z
(Λµ,d(z))

−1
)

Λµ,d(x0).

The inequality (i) follows P (x0) = 1, (ii) follows by decomposition of the integral over two domains
and the uniform bounds in (12), (iii) follows by combining (15), Lemma 16 and the fact that λ is
a probability measure on Z, (iv) follows by extending the domain of the first integral and the last
identity is due to the choice of Pd and Lemma 16.

Hence we have,

1

Λµ,d(x0)N(d)
− 1

f(x0)

≤
(

1

f(x0)
+ εd + 22−

√
d/2 sup

z∈Z
(Λµ,d(z))

−1
)

1

Λλ,d+bd3/4c(x0)N(d)
− 1

f(x0)

≤
(
εd + 22−

√
d/2 sup

z∈Z
(Λµ,d(z))

−1
)

1

Λλ,d+bd3/4c(x0)N(d+ bd3/4c)
N(d+ bd3/4c)

N(d)

+
1

f(x0)

(
1

Λλ,d+bd3/4c(x0)N(d+ bd3/4c)
N(d+ bd3/4c)

N(d)
− 1

)

≤
(
εd + C22−

√
d/2 sup

z∈Z
(Λλ,d(z))

−1
)

1

Λλ,d+bd3/4c(x0)N(d+ bd3/4c)
N(d+ bd3/4c)

N(d)

+ C

(
1

Λλ,d+bd3/4c(x0)N(d+ bd3/4c)
N(d+ bd3/4c)

N(d)
− 1

)
(17)

where C = supz∈Z 1/f(z). We have used the fact that for all x ∈ Z, infz∈Z f(z)Λλ,d(x) ≤ Λµ,d(x)

and hence supz∈Z (Λµ,d(z))
−1 ≤ C supz∈Z (Λλ,d(z))

−1
, to obtain the last identity. Now the upper

bound in (17) does not depend on x0 and goes to 0 as d→∞ since as d→∞,

εd → 0,

22−
√
d/2 sup

z∈Z
(Λλ,d(z))

−1 ∼ 22−
√
d/2N(d)→ 0,

1

Λλ,d+bd3/4c(x0)N(d+ bd3/4c)
N(d+ bd3/4c)

N(d)
→ 1.

The first limit is obtained by uniform continuity, the second limit follows from N being polynomial
(by Assumption 7) and the last one also follows from Assumption 7. Therefore:

lim sup
d→∞

sup
x∈Z

1

Λµ,d(x)N(d)
− 1

f(x)
≤ 0, (18)
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from which we deduce that

lim inf
d→∞

inf
x∈Z

Λµ,d(x)Nd(Z)− f(x) ≥ 0. (19)

Combining (14) and (19) concludes the proof. �

Remark In the case of the sphere, Assumption 7 does not hold only in the limit and from the proof
of Theorem 8 we are able to obtain explicit quantitative bounds and a convergence rate. Suppose
f : Rp → R+ with 0 < c ≤ f ≤ C on Sp−1 and that µ has density f with respect to the uniform
measure on the sphere. In addition, assume that f is L-Lipschitz on the unit ball for some L > 0.
Then equation (13) simplifies to:

Λµ,d(x0)N(d)− f(x0) ≤
(

2L√
d

+ 22−
√
d/2N(d)

)
N(d)

N(d− bd3/4/2c)
+ C

(
N(d)

N(d− bd3/4/2c)
− 1

)

and equation (17) yields

Λµ,d(x0)N(d)− f(x0) ≥ −C2

(
2L√
d

+
22−
√
d/2

c
N(d)

)
N(d+ bd3/4c)

N(d)
+
C2

c

(
N(d+ bd3/4c)

N(d)
− 1

)
.

As a result we obtain the overall convergence rate O(d1/4), which to the best of our knowledge is the
first estimate of this type in this context. We leave for future research the task of improving this rate.

7.4 Perturbation of the moment matrix

Proof of Lemma 10: Since A is positive semidefinite, the left-hand side must be greater than the
right-hand side. In addition, the infimum in the right-hand side is attained at some x∗ which can be
used in the right-hand side to show the result. �
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A Introduction

We collect below some supplementary information to the main body of the present article. Section B
provides additional details regarding the notations and constructions employed in the main text. More
insights about the numerical simulations are given in Section C. Technical Lemmas are presented in
Section D.
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B Polynomials and the moment matrix

In this section µ denotes a positive Borel measure on Rp with finite moments and for any d ∈ N, Mµ,d

denotes its moment matrix with moments of degree up to 2d. As a matter of fact we will soon restrict
our attention to probability measures, which is a minor constraint to impose on the constructs below.

Henceforth we fix the dimension of the ambient euclidean space to be p. For example, vectors in
Rp as well as p-variate polynomials with real coefficients. We denote by X the tuple of p variables
X1, . . . , Xp which appear in mathematical expressions involving polynomials. Monomials from the
canonical basis of p-variate polynomials are identified with their exponents in Np: specifically α =
(αi)i=1...p ∈ Np is associated to the monomial Xα := Xα1

1 Xα2
2 . . . X

αp
p of degree deg(α) :=

∑p
i=1 αi =

|α|. The notations <gl and ≤gl stand for the graded lexicographic order, a well ordering over p-variate
monomials. This amounts to, first, use the canonical order on the degree and, second, break ties in
monomials with the same degree using the lexicographic order with X1 = a,X2 = b . . . For example,
the monomials in two variables X1, X2, of degree less than or equal to 3 listed in this order are given by:
1, X1, X2, X

2
1 , X1X2, X

2
2 , X

3
1 , X

2
1X2, X1X

2
2 , X

3
2 . We focus here on the graded lexicographic order

to provide a concrete example, but any ordering compatible with the degree would work similarly.
By definition Npd is the set {α ∈ Np; deg(α) ≤ d}, while R[X] is the algebra of p-variate polynomials

with real coefficients. The degree of a polynomial is the highest of the degrees of its monomials with
nonzero coefficients1. The notation deg(·) applies a polynomial as well as to an element of Np. For
d ∈ N, Rd[X] stands for the set of p-variate polynomials of degree less than or equal to d. We set
s(d) =

(
p+d
d

)
= dimRd[X]; this is of course the number of monomials of degree less than or equal to

d.
From now on vd(X) denotes the vector of monomials of degree less or equal to d (sorted using

≤gl), i.e., vd(X) := (Xα)α∈Npd
∈ Rd[X]s(d). With this notation, one can write a polynomial P ∈

Rd[X] as P (X) = 〈p,vd(X)〉 for some real vector of coefficients p = (pα)α∈Npd
∈ Rs(d) ordered using

≤gl. Given x = (xi)i=1...p ∈ Rp, P (x) denotes the evaluation of P with respect to the assignments
X1 = x1, X2 = x2, . . . Xp = xp. Given a Borel probability measure µ and α ∈ Np, yα(µ) denotes
the moment α of µ, i.e., yα(µ) =

∫
Rp xαdµ(x). Throughout the paper we will only consider rapidly

decaying measures, that is measure whose all moments are finite. For a positive Borel measure µ on
Rp denote by supp(µ) its support, i.e., the smallest closed set Ω ⊂ Rp such that µ(Rp \Ω) = 0.

Moment matrix The moment matrix of µ, Md(µ), is a matrix indexed by monomials of degree at
most d ordered with respect to ≤gl. For α, β ∈ Npd, the corresponding entry in Md(µ) is defined by
Md(µ)α,β := yα+β(µ), the moment

∫
xα+βdµ of µ. For example, in the case p = 2, letting yα = yα(µ)

for α ∈ N2
4, one finds:

M2(µ) :

1 X1 X2 X2
1 X1X2 X2

2

1 1 y10 y01 y20 y11 y02
X1 y10 y20 y11 y30 y21 y12
X2 y01 y11 y02 y21 y12 y03
X2

1 y20 y30 y21 y40 y31 y22
X1X2 y11 y21 y12 y31 y22 y13
X2

2 y02 y12 y03 y22 y13 y04

.

The matrix Md(µ) is positive semidefinite for all d ∈ N. Indeed, for any p ∈ Rs(d), let P ∈ Rd[X] be
the polynomial with vector of coefficients p; then pTMd(µ)p =

∫
Rp P (x)2dµ(x) ≥ 0. We also have

the identity Md(µ) =
∫
Rp vd(x)vd(x)T dµ(x) where the integral is understood element-wise. Actually

1For the null polynomial, we use the convention that its degree is −∞.
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it is useful to interpret the moment matrix as representing the bilinear form

〈·, ·〉µ : R[X]× R[X] 7→ R

(P,Q) 7→
∫
Rp
P (x)Q(x)dµ(x),

restricted to polynomials of degree up to d. Indeed, if p,q ∈ Rs(d) are the vectors of coefficients of
any two polynomials P and Q of degree up to d, one has pTMd(µ)q = 〈P,Q〉µ

C Numerical experiments

This section provides additional details regarding numerical experiments.

C.1 Rank of the moment matrix

We choose four different subsets of R3:

• The unit cube {x, y, z, |x| ≤ 1, |y| ≤ 1, |z| ≤ 1}.

• The 3 dimensional unit sphere
{
x, y, z, x2 + y2 + z2 = 1

}
.

• The 3 dimensional TV screen
{
x, y, z, x6 + y6 + z6 − 2x2y2z2 = 1

}
.

• The 3 dimensional torus
{
x, y, z,

(
x2 + y2 + z2 + 9

16 −
1
16

)2 − 9
16 (x2 + y2) = 0

}
.

Among the above sets the first one is three dimensional while all the others are 2-dimensional. The 2-
dimensional sets are displayed in Figure 1. For each set, we sample 20000 points on it and compute the
rank of the empirical moment matrix for different values of the degree. To perform this computation,
we threshold the singular values of the design matrix consisting in the expansion of each data point
in the multivariate Tchebychev polynomial basis.

C.2 Density estimation on algebraic sets

The following quantities are used in the litterature as divergences combined with density estimation
techniques for the examples treated in the main article.

• The quantity cos(θ1 − θ2) where θ1 and θ2 are angular coordinates of two points on the circle.

• The dot product on the sphere which generalizes the previous situation to larger dimensions,
used in [15].

• The quantity cos
(√

(φ1 − φ2)2 + (ψ1 − ψ2)2
)

where φ1, φ2, ψ1, ψ2 are angles which correspond

to points on the torus in R4, used in [36].

D Technical Lemmas

We begin with the following simple Lemma.

Lemma 16 Let µ be a Borel probability measure on Rp and S its support which is assumed to be a
bounded subset of Rp. Then for any d ∈ N∗ and for any P ∈ Rd[X],

sup
x∈S
|P (x)|2 ≤ sup

z∈S
Λ−1µ,d(z)

∫
(P (x))2dµ(x).
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Proof For any x ∈ S and P ∈ Rd[X], one finds

Λµ,d(x) ≤
∫

(P (z))2dµ(z)

P (x)2

and

P (x)2 ≤
∫

(P (z))2dµ(z)

Λµ,d(x)
.

The result follows by considering the supremum over S on both sides. �

Finally, the following Lemma is a quantitative adaptation of [33, Lemma 2.1].

Lemma 17 For any d ∈ N∗ and any δ ∈ (0, 1), there exists a p-variate polynomial of degree 2d, Q,
such that

Q(0) = 1 ; −1 ≤ Q ≤ 1, on B ; |Q| ≤ 21−δd on B \Bδ(0).

Proof Let R be the univariate polynomial of degree 2d, defined by

R : t→ Td(1 + δ2 − t2)

Td(1 + δ2)
,

where Td is the Chebyshev polynomial of the first kind. We obtain

R(0) = 1. (20)

Furthermore, for t ∈ [−1, 1], we have 0 ≤ 1 + δ2 − t2 ≤ 1 + δ2. Td has absolute value less than 1 on
[−1, 1] and is inceasing on [1,∞) with Td(1) = 1, so for t ∈ [−1, 1],

−1 ≤ R(t) ≤ 1. (21)

For |t| ∈ [δ, 1], we have δ2 ≤ 1 + δ2 − t2 ≤ 1, so

|R(t)| ≤ 1

Td(1 + δ2)
. (22)

Let us bound the last quantity. Recall that for t ≥ 1, we have the following explicit expresion

Td(t) =
1

2

((
t+
√
t2 − 1

)d
+
(
t+
√
t2 − 1

)−d)
.

We have 1 + δ2 +
√

(1 + δ2)2 − 1 ≥ 1 +
√

2δ, which leads to

Td(1 + δ2) ≥ 1

2

(
1 +
√

2δ
)d

(23)

=
1

2
exp

(
log
(

1 +
√

2δ
)
d
)

≥ 1

2
exp

(
log(1 +

√
2)δd

)
≥ 2δd−1,

where we have used concavity of the log and the fact that 1 +
√

2 ≥ 2. It follows by combining (20),
(21), (22) and (23), that Q : y→ R(‖y‖2) satisfies the claimed properties. �
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