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1 Introduction 

Multifragment systems are of central importance both for the description of nuclear 
matter at subsaturation density, since such systems tend to cluster, and for the
understanding of medium-energy nuclear collisions, in which many fragments are 
produced. Until recently, statistical models addressing nuclear multifragmentation 
dit not incorporate the forces acting between the nuclear fragments in the source 
considered and it was necessary to resort to simple one-body approximations.1 The 
recently developed micro canonical simulation model[2] for nuclear multifragmen-

,tation presents a significant advance because it allows interfragment forces to be 
included in a straightforward and formally well-founded manner. With tractable 
reference calculations available, it is possible to ascertain the quality of the various 
simple approximations that have been commonly employed. It is also of interest 
to seek to improve the approximations, without introducing complexity beyond the 
one-body level. This is necessary because the simulation of interacting fragments is 
computationally demanding, so that there are practical advantages associated with 
having reasonably accurate one-body models. 

Therefore, in the present paper, we address the role of interfragment forces in 
a multifragment system. First, in section 2, we consider the effect of the nuclear 
interaction potential, as idealized in terms of hard spheres, and commonly adopted 
"excluded-volume" prescriptions are tested; an improved "virial" approximation is 
also presented. Subsequently, in section 3, the electrostatic (Coulomb) energy is 
studied and the validity of various popular one-body approximations is assessed; 
again, an improved formula is proposed. Some concluding remarks are then given. 

2 The nuclear interaction 

The most important feature of the nuclear component in the interfragment potential 
arises from the high nuclear incompressibility which acts to prevent fragments from 
overlapping. To a rough approximation, this effect can be taken into account by 
representing the nuclear fragments as hard spheres. (Deviations from this idealiza
tion are expected to be quantitatively important, but they are considerably harder 
to address and their inclusion is postponed for later study.[4]) Although somewhat 
simplistic, the hard-sphere approximation is still quite demanding in terms of com
putation, since it requires knowledge of all the relative fragment positions. Most 
models developed so far do not contain this degree of detail and so it has been 
common to adopt some form of a one-body approximation. In intuitive terms, the 
presence of the other fragments limits the volume available for a given fragment. 
It is therefore natural to attempt to approximate the mutual fragment repulsion 
in terms of a reduced "effective" volume neff, within which the fragments can be 

IThe first formulation of nuclear disassembly into complex excitable nuclei was made within the 
grand canonical approximation for non-interacting fragments,[l] and most later modelings have had 
an essentially similar basis. 
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considered as independent. In the present section, we wish to examine such ap
proximations in order to ascertain their quality and in the hope of devising more 
accurate approximations. 

For the present analysis, it is most instructive to consider the level of detail at 
which the multifragment system is characterized by its positioning, or placing, P, 

P = {An,rn,n = 1, ... ,N} , (1) 

i. e. by its mass partition a = {An} together with the positions {rn} of the fragments. 
In the canonical approximation,[2] the statistical weight of a given positioning P is 

where Bn is the binding energy of fragment n and its intrinsic partition function is 

(3) 

Furthermore, A is the total number of nucleons in the system, T is the imposed 
temperature, and V(rl, ... , rN) is the interaction potential. The combined weight of 
all positionings P having the same mass partition a is then 

W(a) = 11 [1 d;t 1 W(P) 

h(2:An -A) IT [n(mAn;?/2 Cn(T) eBn / r ] 1 drne- v/r (4) 
n ~1 ~h n 

K(a)NWo(a) . 

Here Wo( a) is the statistical weight for the same system if there were no interfrag
ment forces, i. e. V = O. The quantity K( a), which expresses the reduction of the 
available volume due to the fragment interactions V, is then defined by 

(5) 

Thus, the weight of a particular mass partition a is equal to that associated with 
noninteracting fragments confined within the smaller effective volume n~ff = K( a )n. 
When the fragments are hard spheres the interaction potential V vanishes if none 
of the fragments overlap and is infinite otherwise. Therefore, for any positive tem
perature T, e-v/r is either one or zero, respectively, and K(a)N is then simply the 
number of allowed (i. e. non-overlapping) positionings divided by the total number 
of positionings of the N fragments with the specified masses a = At, ... , AN. 

For any fixed mass partition a, the replacement of hard spheres within the 
volume n by non-interacting fragments within the (a-dependent) effective volume 
n~ff is exact, of course, provided that the exact value (5) is employed for K( a). The 
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aim of any effective-volume approximation is to estimate K( a) without invoking 
specific information about the fragment positions. 

When a one-body model is used, as is most often the case, information about 
the mass partition is only available in terms of the mean multiplicities of the vari
ous fragment species, VA. The most common approximations therefore employ an 
effective K-value that is independent of mass partition, i. e. use Oeff = KeffO, for all 
the different mass partitions a. In order to have a convenient reference value, we 
define, for a given fragment multiplicity N, the following effective value of K, 

N _ ()N _ Ea W(a)K(a)N 
Keff -< K a >a- EaW(a) . (6) 

A number of effective-volume approximations have been devised and employed 
in studies of nuclear disassembly. In the simplest one the effective volume is taken 
as the total volume minus the volume taken up by all the fragments combined, 
Oeff = n - no, where no = En nn = A/po is the volume of the N hard spheres. 
This approximation has been employed in particular by Kapusta and coworkers [5]. 
It follows that the corresponding effective K-value is 

0 0 P 
KK = 1 - - = 1 - - . o po 

(7) 

A more refined approach was taken by Fai and Randrup [6], based on the recog
nition that the (anti)correlated positioning of the N fragments can be viewed as a 
sequential process, so that progressively less volume is available as the fragments 
are placed. Clearly, the entire volume n is available to the first fragment, and by 
assuming that each fragment placed blocks an additional volume equal to its own 
volume, the following approximation was derived,[6] 

KFR = ~X = ~(1 - ~ )l-po / P . 
po e Po 

(8) 

In the dilute limit, p ~ po, we have KFR ~ 1- -2
1 .L, whereas KFR ~ 1.L in the dense 

PO e Po 

limit, p ~ Po. The fact that only the last fragment is blocked by the full amount 0 0 

implies that the value(8) will be closer to unity than (7). However, even though 
more refined, the consideration employed in deriving (8) does not yet take account 
of the fact that the volume blocked by a given fragment exceeds that fragment's 
own volume by a layer of thickness equal to the radius the next fragment placed. 
Therefore the approximation (8) is expected to underestimate the effeCt of blocking, 
and hence to overestimate the value of K. This feature is most significant for dilute 
systems, for which the average excluded volume is typically underestimated by a 
factor of eight, whereas (7) would be off by a factor of four (see below). 

The above two approximations depend only on the relative density, p/ po, and 
thus give the same value of K for all multiplicities. A simple comparison can be 
made for two fragments having the same volume, 0 1 = O2 = ~Oo. The exact 
effective volume parameter is then K2 = 1 - 400 /0, since the first fragment blocks 
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a volume equal to -t;(Rl + R2? = 4no. By contrast, the approximation (7) gives 
KK = 1 - no/n, whereas (8) would give K}R = 1 - ~no/n in the dilute limit. 

We now discuss a more refined approximation that we have developed in the 
course of the present study. It is based on the assumption of independent pairwise 
correlations between the fragments, and we shall denote it the virial approximation, 
because our considerations are rather similar to the virial treatment of interacting 
particles in a gas. Thus, for a given mass partition Cl!, we assume that each fragment 
pair ij contributes a factor Pij to K

N
, i. e. 

KV( a)N = IT Pij = exp( - L Wij) . (9) 
i<j i<j 

While we have explored several different forms of the "pair correlation" Pij = 
exp( -Wij), we shall here focus on the simple but quite useful approximation in 
which 

(10) 

Here Ci and Cj are the (central) radii of the two nuclear fragments. Because nij -

4; (Ci + Cj ? is the size of the volume that fragment i blocks for fragment j, or vice 
versa, and since Pij ~ 1 - Wij for dilute systems, it follows that Pij is approximately 
equal to that value of KN that would have resulted if only the two fragments i and 
j were present. The virial value (9) of K is also displayed in fig. 1. 2 

The virial approximation is amenable to a one-body treatment. It follows from 
the definition (9) that the virial value of K associated with a given mass partition 
a can be written in the form 

n N 

Kv(a)N IT Pij = IT [IT Pij ]1/2 = IT Ki(a) , (11) 
i<j i=l j(:#i) i=l 

i. e. as a product of contributions from each of the individual fragments. The value 
Ki associated with a given fragment i can be calculated as 

(12) 

In the last relation, the summation has been reorganized so that all fragments with 
the same mass number A are grouped together, and VA is the multiplicity of such 

2The standard textbook treatment of interacting particles is by way of a virial expansion.[3] 
When carried to first order, this procedure would yield a result of the form (9), with the suppression 
factor from a given pair given in terms of their interaction potential Vii, 

The last relation holds for hard spheres, for which the integrand is unity inside the blocked volume 
r2ii and vanishes outside. We have replaced 1-Wii bye-Wij in order to avoid problems when wii > 1, 
as may happen at high densities. (For equal fragments, this happens when p> po/4.) 
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fragments in the particular mass partition a considered. A one-body approxima
tion, ~(a), is then obtained by replacing the actual multiplicity v A by its ensemble 
average, VA. Writing ~(a)N = TIi ~i(a), in analogy with (11), we thus have 

(13) 

This one-body approximation yields a II:-value for any given mass partition a, pro
vided that the one-fragment multiplicity distribution VA is known for the system. 
An overall effective value for the entire system can then be obtained by averaging 
over the mass partitions a, as in (6), ~ =< !'fo: >0:. 

'In order to achieve an impression of the quality of the various approximations, 
we consider idealized systems consisting of N uncharged hard spheres, each with a 
radius equal to the equivalent sharp fragment radius, Rn ::::::: roA~p, ro = 1.15 fm. 
The fragment masses are either all equal, An = A/N, or chosen randomly. [The 
random mass distribution is generated by first selecting N random masses from 
an exponential distribution having the mean value A/ N (i. e. An = - ~ In TJ where 
TJ E (0,1) is random) and then renormalizing these masses by a common factOr to 
ensure that Ln An = A. Thus the mass distribution is approximately of Poisson 
form.] 

Figure 1 displays results for both a dilute system (p = po/16) and a dense one 
(p = po/4). It is seen that the variation of II: with the fragment multiplicity N 
is substantial. This casts serious doubt upon the use of multiplicity-independent 
approximations, such as (7) and (8). The virial approximation exhibits a quantita
tively good correspondence with the exact II:-value at low densities, and remains a 
reasonable approximation at high densities, although far from perfect 

While the above schematic studies are instructive in judging the relative quality 
of the various approximations, they give little information on the effect on ob
servable quantities, such as the mass distribution or the pressure. Therefore, it is 
important to also consider more realistic scenarios. For this task, we have employed 
the simulation model developed in. [2] As an illustration of these results, figure 2 
shows the mean fragment mass and the pressure as functions of the density p for 
the temperature 7=8 MeV. Again the virial approximation is generally superior to 
the simple excluded-volume approximations, and in fact it follows the exact results 
fairly well. (The near-perfect agreement of the virial approximation for the pressure 
is probably somewhat fortuitous, since the results have some statistical error, as in
dicated by the wiggles in the P-curves.) It should also be noted that II:K happens to 
produce fairly good values for the mean mass number A in the particular example 
shown. However, as is evident from the behavior of the corresponding pressure P, 
such agreement for a single observable can be misleading, and it is important to 
consider several observables when assessing the quality of the approximations. 

5 



3 The Coulomb energy 

The Coulomb force has a long range and thus acts between all the fragment pairs. 
The associated interaction energy is typically several MeV IN, so when the temper
ature is of this order, or less, it is quantitatively important to treat the Coulomb 
energy accurately. We therefore wish to study the Coulomb energy of multifragment 
systems. 

Real nuclear fragments have non-trivial charge distributions, even when isolated, 
and they are polarizable as well. However, to a reasonable approximation, they can 
be considered as sharp spheres with uniform charge distributions. Accordingly, 
we shall consider an idealized scenario consisting of non-overlapping hard uniform 
spheres. The exact Coulomb energy of N such fragments is 

vcxact = L ~e2 Z~ + ~ L L e 2 ZnZnl 

n 5 Rn 2 n n/(i=n) rnn' 
(14) 

where e is the elementary electric charge. The first term represents the self
energies of homogeneously charged spheres, having charge numbers Zn and radii 
Rn = roA1 / 3 • The second term is the interaction energy between these (non
overlapping) spheres, with rnn' = Irn - rnll being their center separations. 

As already mentioned in connection with the discussion of the nuclear interac
tion potential in the preceding section, the double sum in the energy expression 
is computationally demanding since it requires the knowledge of all the fragment 
positions rn. So it is desirable to approximate the electrostatic energy in a manner 
that only involves a single sum over the fragments. 

The simplest such approximation is often denoted the mean-field approxima
tion. In this approximation the interaction of a given fragment with the remaining 
fragments is replaced by its interaction with the electrostatic field arising if the 
charge of the entire multifragment system were distributed uniformly throughout 
the confining volume n. Thus 

mf 3 2 '"' Z~ 1 ~ () Vc = 5 e L..J R + "2 L..J eZn<pz rn . 
n n n 

(15) 

Here the electrostatic field inside the uniformly charged sphere is given by <p z( r) = 

(~ - !(~)2)eX, and the factor of one half accounts for the fact that the field is 
self-generated by two-body forces. Since usually the purpose of making the approx
imation is to eliminate the need for tracking the fragment positions, one normally 
uses only the average value of the mean field, ~ z = ~ eX ' as is appropriate if the frag
ments are situated at random within the confining volume. (This is generally not 
the case, though, because different positionings have different statistical weights.) 
Then the averaged mean-field approximation reads 

Vgu = ~e2 L Z~ + ~e2 L Z Zn 
5 n Rn 5 n R 

~e2Z2 + ~e2L Z~ . 
5 R 5 nRn 

(16) 
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In the second line the sum over the fragments has been carried out, using En Zn = Z, 
and the order of the terms has been interchanged. The fragment interaction term 
is then recognized as the selfenergy of the equivalent uniformly charged sphere, 
V3 = ~e2 ~. This term is a constant for a given system, i. e. it is independent of 
the particular mass partition, and it can therefore be eliminated by a corresponding 
redefinition of the total energy of the system. The mean-field approximation was 
first formulated for nuclear disassembly by Koonin and Randrup[1] and has been 
employed in most of the subsequent work along that line. 

It was first noted by Gross [7] that the above mean-field approximation is rela
tively inaccurate for configurations having only a few fragments, because the mean 
field <P is calculated on the basis of all the charge, rather than only the charge 
associated with the residual N-1 fragments. Therefore, we shall also consider the 
following refined mean-field approximation, in which this shortcoming is remedied, 

rmf 3 2" Z~ 1 " ( ) Va = 5e L..J R + 2 L..J eZn<pz-Zn rn . 
n n n 

(17) 

Here <PZ-Zn is the electrostatic field from a uniform sphere containing the residual 
charge e(Z -Zn). Again, it is natural to average over the fragment positions, leading 
to 

vcr ~e2I: Z~ _ ~e2I: Z - Zn Z 
5 n Rn 5 n R n 

_ ~e2Z2 + ~e2 I: Z~ _ ~e2 I: Z~ . 
5 R 5 nRn 5 nR 

(18) 

The incorporation of the last term leads to a substantial lowering of the Coulomb 
energy of configurations with a low fragment multiplicity. This effect has been 
discussed in detail by Gross.[7] 

A commonly employed approximation in condensed-matter problems was intro
duced in 1934 by Wigner and Seitz.[8] It is based on the fact that the Coulomb 
energy can be considered as composed of two terms, one associated with a primor
dial uniform charge distribution and another associated with the condensation of 
of the individual fragments. The first term is simply the quantity V3 introduced 
above. The approximation consist in replacing the exact condensation energy, or 
redistribution energy, by a sum of independent contributions from the individual 
fragments. Then, for each fragment separately, it is calculated how much the energy 
is increased when the charge in the neighborhood of the fragment is condensed to 
form the actual fragment. This redistribution process is considered as the shrinking 
of a uniform sphere from an original radius of R~ to the actual fragment radius Rn. 
Since R~ is the radius required to spread out the fragment charge to the primordial 
uniform density, it is given by R~ = (An /A)1/3R. Consequently, the Wigner-Seitz 
approximation can be written as 

(19) 
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Although the Wigner-Seitz approximation is formally very similar to the refined 
mean-field approximation, the last term in the Wigner-Seitz formula is always larger, 
since the denominator contains R~ rather than R, and, moreover, it has an addi
tional A~3 dependence on the fragment size An. The Wigner-Seitz approximation 
has the advantage, relative to all other approximations we have investigated, that 
it readily can be applied to an infinite, or periodic, system, since its expression for 
the redistribution energy makes no reference to the overall size of the system. 

After having defined the various approximations of particular interest, we turn 
now to the analysis of their validity. The results are best presented in a simple 
schematic model similar to the one considered in section 2. Thus, we consider N 
spherical fragments whose centers are randomly positioned within a sphere. It is 
convenient to write its radius as R = eRa, where Ra = roAl/3 is the radius of 
the corresponding compound nucleus. In order to gain some familiarity with the 
different expressions for the Coulomb energy, we first consider the simplest situation 
when all the N fragments in the system are equal. Then each fragment has mass 
An = AIN, charge Zn = eZIN, and radius Rn = e-1N-l/3 R, and, moreover, 
R~ = N- 1/ 3 R. If the energies are expressed in units of V3, the entire problem 
is dimensionless, and we then readily find that the various approximations can be 
written as follows, 

1 + eN-2
/

3 
, 

1 + eN-2/ 3 - N- 1 (20) 
1 + eN-2/ 3 _ N- 2/ 3 . 

Figure 3 shows the resulting values as functions of the fragment multiplicity N, and 
for two different relative densities, pi po. 

In realistic situations the fragments are not all equal, and we therefore wish to 
test the approximations in systems with varying fragment sizes. The results for the 
random-mass system are included in figure 3. While the absolute values differ, the 
quality of the approximations is very similar to the case of equal masses. 

The position-dependent approximate energies vgn and Vcmf have also been cal
culated. In all cases they are quite close to their respective idealized mean values 
-mf -rmf 
Vc and Vc . 

Actual nuclei are not sharp spheres but have a finite surface diffuseness. Diffuse 
nuclei can be packed to the point where their central radii C touch, rather than 
their euivalent sharp radii R, before the nuclear incompressibility begins to manifest 
itself. For small nuclei the difference between Rand C is larger, and so they can 
be packed closer than large nuclei. To investigate the quality of the approximations 
in such a scenario, we have reduced the hard-sphere radius from Rn to the central 
radius Cn :;::;;j Rn - b2 I Rn. This change is of significance at high densities. It should 
also be noted, that equal hard spheres can only be packed up to a density of around 
half the saturation value. When the spheres have variable sizes they may be packed 
to a higher density, essentially by filling the gaps between the large fragments by 
smaller fragments. This feature is important for densities close to saturation. 

8 

v 



,'-f 

These tests, and others, can be summarized as follows. As expected, the sim
ple mean-field approximation (16) overestimates the energy considerably. Since the 
excess depends on the multiplicity, the discrepancy can not be removed by a sim
ple redefinition of the energy, so in cases where the Coulomb energy is important 
this approximation is inadequate, as has been noted by Gross repeatedly. [7] The 
refined mean-field approximation is much better, particuarly for small multiplici
ties. However, for intermediate multiplicities it can be significantly off, and it has 
a wrong multiplicity dependence at high densities. Therefore, caution should also 
be excercized when using this approximation. 

The Wigner-Seitz approximation is generally superior to the above two, although 
it fails quantitatively at high densities, p I'V Po/2, as might perhaps have been 
expected. For such densities there is a need for devising a better approximation. 

A particularly simple, but generally quite useful approximation is the following 

TT* _ 3 2" Z~ 1 2" Z - Zn Z (21) v c - -e W - - -e W 5 n . 
5 n Rn 2 n '6R + Rn 

Relative to the refined mean-field approximation (18), the denominator in the sec
ond term has been modified. The first term of the denominator, ~ R, is the mean 
separation between two random points inside a sphere and leads to (18). (Strictly, 
~R = 1/ < l/rij >.) The second term, the fragment radius Rn , is the minimum 
distance from the considered fragment n to any other fragment. Thus the modified 
formula has more appealing limits and, consequently, it is somewhat more robust. 
The results of this approximation are included in figure 3. 

It is possible to further refine the formula (21), for example to take account of 
the facts that the mean charge density generated by the fragments is diffuse and 
that the spatial distribution of the fragments depends on the temperature. We shall 
hot discuss such additonal refinements here. . 

4 Concluding remarks 

In this paper, we have examined some commonly used approximations for the inclu
sion of interfragment forces in nuclear multifragment systems. The mutual exclusion 
of fragments brought about by the high nuclear incompressibility was approximated 
in terms of hard spheres and popular effective-volume approximations were tested. 
They w~re generally found to be fairly poor, and so a refined approximation was 
devised, based on the notion of independent fragment pairs. This "virial" approx
imation presents a considerable improvement which, moreover, is well represented 
by the corresponding one-body approximation (13). Therefore, we suggest that 
this approximation be adopted in one-body calculations of nuclear multifragment 
systems. 

We also studied the Coulomb energy of multifragment systems confined· within a 
sphere and tested the quality of various commonly used approximations. Generally, 
the simple mean-field approximation is fairly poor, and its refinement (replacing the 
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total charge by the residual charge) is considerably better. However, the Wigner
Seitz approximation, which is equally simple, is significantly better. We also devised 
a modified approximation (21), which is generally rather good, and in fact is supe
rior to the Wigner-Seitz approximation for relatively dense configurations. It may 
therefore be preferable to employ this new approximation. 

The work reported here establishes a firmer ground for employing one-body sta
tistical models for nuclear multifragmentation, since we have demonstrated how the 
most important features of the interfragment forces can be approximated at this 
level. Our studies also show that unless such one-body approximations are made 
with care, the calculated results can be in significant error. It should also be re
membered, that the nuclear interaction has been considered only in the hard-sphere 
idealization, which ignores all attraction and thus is expected to be inadequate for 
studies of phase transitions in subsaturation nuclear matter. Studies aimed at in
corporating finite-range fragment interactions in one-body treatments are presently 
underway. [4] 

This work was supported in part by the Director, Office of Energy Research, 
Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the 
U.S. Department of Energy under Contract No. DE-AC03-76SF00098. 
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Figure 1: Effective volume forhard spheres 
The effective i'i:-values as functions of the fragment multiplicity N, for equal or 
random hard spheres confined within a periodic cube, and for both a dilute (p = 
Po/16) and a dense (p = po/4) scenario. The solid curve is the "exact" value i'i:~ of 
eq. (6). Also shown are the results for the following approximations: i'i:K (7) (- -), 
i'i:FR (8) (- -), the virial approximation (9) (- - -), and its one-body approximation 
K based on (13) (- - - -). The multiplicity N is shown on a logarithmic scale. For 
large values of N, the effective volume approaches a limiting value, so in order to 
assess the quality of the approximations it is not necessary to consider systems with 
large N, which is a computational advantage. 
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Figure 2: Results in a "realistic" scenario 
Results calculated with the simulation model developed in [2]. Shown is the mean 
fragment mass number A and the pressure P for 1"=8 MeV, both as functions of the 
considered mean nucleon density p. The results were calculated on the basis of 4000 
multifragment configurations sampled from periodic cubes containing 100 nucleons. 
The wiggles in the curves for P are indicative of the statistical error associated 
with these results. For higher temperatures, the fragment masses remain small up 
to higher densities and the different approximations therefore differ less from each 
other with regard to the mean fragment size. Morevover, for lower temperatures 
the system very quickly prefers to coalesce into large fragments and comparisons 
would be less informative. 
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Figure 3: Coulomb energy for uniformly charged spheres 
This figure shows the Coulomb energy of N uniformly charged spheres of either 
equal or random masses; their centers are confined within a sphere of specified size. 
The solid curve is the exact result (3). Also shown are the following approximations: 
mean-field (16) (-- -), refined mean-field (18) (- -), Wigner-Seitz (19) (- - -), and 
our improved approximation (21) (- - - -). 
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