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d XMDP reduces labeling costs by 96%versus hand labeling on

4 diverse medical ML tasks
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performing models

d XMDP performance continually improves as more unlabeled

data becomes available
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In Brief

Machine learning (ML) models have

achieved record-breaking performance

on many tasks, but development is often

blocked by a lack of large, hand-labeled

training datasets for model supervision.

We extend data programming—a

theoretically grounded technique for

supervision using cheaper, noisier

labels—to train medical ML models using

person-days of effort that previously

required person-years of hand labeling.

We find that our weakly supervised

models perform similarly to their hand-

labeled counterparts and that their

performance improves as additional

unlabeled data becomes available.
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THEBIGGERPICTURE Machine learning can achieve record-breaking performance onmany tasks, butma-
chine learning development is often hindered by insufficient hand-labeled data formodel training. This issue
is particularly prohibitive in areas such as medical diagnostic analysis, where data are private and require
expensive labeling by clinicians.
A promising approach to handle this bottleneck is weak supervision, where machine learning models are
trained using cheaper, noisier labels. We extend a recent, theoretically grounded weak supervision para-
digm—data programming—wherein subject matter expert users write labeling functions to label training
data imprecisely rather than hand-labeling data points.We show that our approach allows us to trainmachine
learning models using person-days of effort that previously required person-years of hand labeling. Our
methods could enable researchers and practitioners to leverage machine learning models over high-dimen-
sional data (e.g., images, time series) even when labeled training sets are unavailable.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
A major bottleneck in developing clinically impactful machine learning models is a lack of labeled training
data for model supervision. Thus, medical researchers increasingly turn to weaker, noisier sources of super-
vision, such as leveraging extractions from unstructured text reports to supervise image classification. A key
challenge in weak supervision is combining sources of information that may differ in quality and have corre-
lated errors. Recently, a statistical theory of weak supervision called data programming has shown promise
in addressing this challenge. Data programming now underpinsmany deployedmachine-learning systems in
the technology industry, even for critical applications. We propose a new technique for applying data pro-
gramming to the problem of cross-modal weak supervision in medicine, wherein weak labels derived from
an auxiliary modality (e.g., text) are used to train models over a different target modality (e.g., images). We
evaluate our approach on diverse clinical tasks via direct comparison to institution-scale, hand-labeled data-
sets. We find that our supervision technique increases model performance by up to 6 points area under the
receiver operating characteristic curve (ROC-AUC) over baseline methods by improving both coverage and
quality of the weak labels. Our approach yields models that on average perform within 1.75 points ROC-AUC
of those supervised with physician-years of hand labeling and outperform those supervised with physician-
months of hand labeling by 10.25 points ROC-AUC, while using only person-days of developer time and clini-
cian work—a time saving of 96%.Our results suggest that modern weak supervision techniques such as data
programming may enable more rapid development and deployment of clinically useful machine-learning
models.
Patterns 1, 100019, May 8, 2020 ª 2020 The Author(s). 1
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION
 is often encoded in unstructured forms (e.g., free text) that are
Modernmachine learning approaches have achieved impressive

empirical successes on diverse clinical tasks that include pre-

dicting cancer prognosis from digital pathology,1,2 classifying

skin lesions from dermatoscopy,3 characterizing retinopathy

from fundus photographs,4 detecting intracranial hemorrhage

through computed tomography (CT),5,6 and performing auto-

mated interpretation of chest radiographs (CXRs).7,8 These ap-

plications typically use standard neural network architectures9

that are supported in professionally maintained open-source

frameworks and can be downloaded within minutes from online

repositories.10,11 This trend suggests that model design is no

longer a major barrier to entry in medical machine learning. How-

ever, each of these application successes was predicated on the

existence of massive hand-labeled training datasets that often

require physician-years of labeling time to create, cost hundreds

of thousands of dollars per task, and are not robust to changes in

the data distribution or labeling schema.4,12 Reducing the

dependence of clinically impactful machine learning models on

costly hand-labeled data would enable more rapid deployment

to provide value in medical practice.12

Reliance on hand-labeled datasets is not a challenge unique to

medicine. Similar problems in both industry and academia have

recently been addressed using advances in weak supervision,

where training data can be rapidly labeled in noisier, higher-level,

often programmatic ways rather than manually by experts. The

statistical intuition behind these techniques is that a larger vol-

ume of noisier training data can sometimes be more effective

than a smaller amount of hand-labeled data. Similar ideas have

historically driven a rich set of work on topics such as tem-

plate-based systems for knowledge-base construction,13

pattern-oriented bootstrapping for relation extraction,14 and

co-training techniques for leveraging unlabeled data.15Weak su-

pervision has already had a substantial impact on how machine

learning models are built in the technology industry, where these

methods have been used to build models for critical applications

that perform better than their hand-labeled counterparts while

using fewer labeling resources.16–22 Our work assesses whether

the benefits of these same weak supervision techniques can be

translated from industrial use cases into clinical impact by

reducing the amount of hand-labeled data required to train clin-

ically useful machine learning models.

A common difficulty in applying weak supervision methods in

medicine is that providing even noisy labels can be difficult if only

raw image or sensor data are available. In this context, a prom-

ising approach is one we call cross-modal weak supervision,

where noisy labels are programmatically extracted from an auxil-

iary modality (e.g., the unstructured text reports accompanying

an imaging study) and then used to train a model over a target

modality (e.g., the medical images). At test time, we would like

to obtain a prediction from the target modality but usually do

not have access to the auxiliary modality—for instance, the

text report has not yet been written when the image is first ac-

quired. Recent research in medical imaging has used cross-

modal weak supervision by applying natural language-process-

ing techniques to clinical reports accompanying the images of

interest.5,8,23–26 Such approaches are compelling because

important medical information that could be used for labeling
2 Patterns 1, 100019, May 8, 2020
not suitable for supervising machine learning models.

The key technical challenge in applying such weak supervision

techniques in practice is combining sources of information that

may overlap, conflict, and be arbitrarily correlated in order to

provide accurate training labels for amachine learning algorithm.

While a variety of previous cross-modal weak supervision ap-

proaches have shown promise in medical applications, studies

performed to date have generated weak labels from text in ad

hoc, application-specific ways. Specific strategies reported in

themedical literature range from combining pre-existing disease

tagging tools27,28 with handcrafted negation detection rules to

provide labels for CXR classification8,23 to ensembling large

numbers of distinct regressors that predict specific medical con-

cepts to provide labels for cranial abnormality detection from

CT.5 None of these application-specific cross-modal weak su-

pervision approaches are supported by theoretical analysis

that characterizes how well the resultant models are expected

to perform. Furthermore, because large, hand-labeled datasets

are generally unavailable when cross-modal weak supervision

is used in medicine, empirical comparison of these models’ per-

formance with those trained using hand labels has not yet been

possible. Because neither theoretical nor empirical analysis of

how cross-modal weak supervision methods perform across

diverse clinical use cases has been conducted, it remains diffi-

cult for practitioners to confidently deploy these models to

improve patient care.

In this work, we propose a theoretically grounded, application-

agnostic approach to cross-modal weak supervision and apply

this technique to diverse, institution-scale hand-labeled clinical

datasets to perform the first comprehensive study of cross-

modal weak supervision in medicine. Such a study allows us to

directly assess both the merits of our proposed approach and

the broader translational potential of models trained using

cross-modal weak supervision across multiple clinical use

cases. We directly compare our cross-modal weak supervision

techniquewith hand labeling along three principal axes: absolute

model performance, model performance improvement with

additional training data, and the type and amount of labeling re-

sources required. We further evaluate how our supervision

approach improves model performance via a series of ablation

studies. We make four distinct contributions in the course of

this work.

First, we propose a single, uniform approach to cross-modal

weak supervision that is theoretically grounded, is applicable

across diverse medical-use cases, and exhibits high levels of

performance when compared with hand labeling. We base our

technique on data programming, an application-agnostic weak

supervision technique recently developed and theoretically

analyzed by Ratner et al.29–31 Data programming uses a genera-

tive modeling step to create weak training labels by combining

unlabeled data with heuristics provided by domain experts that

may overlap, conflict, and be arbitrarily correlated. Data pro-

gramming has also recently been shown to consistently outper-

form simple heuristic ensembling strategies such as majority

vote across use cases spanning academic natural language pro-

cessing (NLP) benchmarks, biomedical text classification tasks,

and core products in the technology industry, making it a

compelling method on which to base our approach.16,30 To
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handle cross-modal applications where it is challenging to

enumerate sets of heuristics that provide useful supervision

signal on every example in the dataset, we propose the use of

a learned neural network to improve both the coverage and qual-

ity of the weak labels emitted by the base data-programming

model. Our work represents the first extension of data program-

ming, and the associated open-source Snorkel software,30 to

diverse, clinically important imaging and monitoring tasks in

the cross-modal setting. We refer to the specific cross-modal

weak supervision approach we propose here as ‘‘cross-modal

data programming.’’

Second, to support an analysis of cross-modal weak supervi-

sion that generalizes across applications, we curate four diverse

medical datasets in applications spanning CXR and knee extrem-

ity radiograph (EXR) triage, intracranial hemorrhage identification

on headCT (HCT), and seizure onset detection on electroenceph-

alography (EEG), each ofwhich has important clinical implications

previously described in the literature.5,7,32,33 In contrast to previ-

ous work, we evaluate our cross-modal weak supervision tech-

nique by directly comparing performance and resource require-

ments for models trained using our approach with those trained

using hand labels provided over the exact same data. We view

the curation of the diverse institution-scale datasets required to

perform these comparisons—each of which contains raw images

or signals, associatedclinical reports, andclinician-providedhand

labels—as a major contribution of this work. This type of compar-

ative analysis is critical to evaluating the translational potential of

models trained using cross-modal weak supervision, but has not

yet been performed because large, hand-labeled datasets with

associated text-image pairs are rarely available and because pre-

vious work does not report the amount of domain expert time and

resources required to perform cross-modal weak supervision

(e.g., training an NLP model for label extraction).

Third, we present empirical evidence that models for clinically

important applications that have been trained using cross-modal

weak supervision can perform similarly to those trained using

large hand-labeled datasets while providing several practical ad-

vantages. Across applications, we find that models weakly su-

pervised using cross-modal data programming over all available

data outperform models trained with physician-months of hand-

labeled data by an average of 10.25 points of area under the

receiver-operating characteristic curve (ROC-AUC). We addi-

tionally find that models trained using cross-modal data pro-

gramming over all available data achieve on average within

1.75 points ROC-AUC of models trained using hand labels

over all available data, which required physician-years to obtain.

These results suggest that cross-modal data programming can

yield models with similar clinical utility to those trained with

hand labels. We further observe that the performance of models

trained using cross-modal data programming and hand labeling

both improve with additional training data, and often at similar

rates. Not only is this behavior consistent with theoretical predic-

tions, but it also emphasizes that weakly supervised model per-

formance can be improved by providing more unlabeled data

with no additional clinician effort. Finally, we find that cross-

modal data programming required less than 8 h of clinician

time per application, which was largely spent defining simple

pattern-matching or ontology-lookup heuristics over clinical

text reports. In our experiments, models trained with cross-
modal data programming achieved statistical equivalence to

those trained using hand labels while providing an average

96% saving in labeling time. Our results provide evidence that

cross-modal data programming can lower a substantial barrier

to machine-learning model development in medicine by

reducing the labeling time required from domain experts by or-

ders of magnitude while maintaining high levels of performance.

Fourth, our ablation studies demonstrate that modeling steps

within cross-modal data programming result in target modality

models that perform up to 6 points ROC-AUC better than those

trained usingmajority vote of clinician-provided heuristics, which

serves as a proxy for common rule-based approaches to cross-

modal weak supervision. Our analysis suggests that these per-

formance improvements are caused by increases in both the

coverage and quality of the weak labels with respect to the ma-

jority-vote baseline, and that our proposed neural network

approach emits weak labels that yield a statistically significant

performance improvement for target modality models. We find

that these gains are more pronounced on screening tasks such

as radiograph triage and marginal on more targeted detection

tasks such as hemorrhage or seizure detection on which clini-

cian-provided heuristics are both highly accurate and cover

most of the dataset. Thus, we not only demonstrate that the spe-

cific cross-modal weak supervision technique proposed in this

work can improve performance over strong baselines but also

identify the clinical contexts in which each component of our

approach may be particularly useful.

We first describe technical details of our cross-modal data pro-

gramming approach. We then provide an overview of the institu-

tion-scale, hand-labeleddatasets curated for this studyandoutline

our process for applying cross-modal data programming to these

usecases using a consistent procedure.We next comparemodels

trained using cross-modal data programming against their hand-

labeled counterparts, assessing absolute levels of performance,

performance scalingwith the amount of training data, and required

labeling resources. Finally, we assess the empirical utility of each

component of our cross-modal data programming modeling

approach via a series of ablation studies anddiscuss important im-

plications of our results for translational medicine.

RESULTS

Overview of Cross-Modal Data Programming
The data programmingmethod of Ratner et al.29 handles the label

noise inherent inweak supervision by automatically estimating the

accuracies and correlations of different labeling heuristics in an

unsupervised manner, reweighting and combining their outputs,

and finally producing a set of probabilistic training labels that

canbeused tosuperviseadeep learningmodel.Webuildon these

ideas by proposing cross-modal data programming.

In cross-modal data programming (Figure 1), users such as cli-

niciansprovide twobasic inputs: first, unlabeled cross-modal data

points, which are represented as target-auxiliary modality pairs

ðxðiÞt ; x
ðiÞ
a Þ˛X t 3Xa (e.g., an imaging study and the

accompanying text report); and second, a set of labeling functions

(LFs), fljg, which are user-defined functions (e.g., pattern-match-

ing rules, existing classifiers) that take in an auxiliary modality data

point x
ðiÞ
a as input and either output a label, l

ðiÞ
j ˛Y, or abstain

(l
ðiÞ
j = 0). Here, we consider the binary setting Y = f � 1;1g,
Patterns 1, 100019, May 8, 2020 3



Figure 1. A Cross-Modal Data Programming Pipeline for Rapidly Training Medical Classifiers

A clinician first writes several labeling functions (LFs), which are Python functions that express pattern-based rules or other heuristics over the auxiliary modality

(e.g., text report). Here, for instance, the function LF_pneumowould label a text report as ‘‘abnormal’’ if the report contains a word with the prefix ‘‘pneumo’’; note

that these LFsmay overlap, conflict, and be arbitrarily correlated with each other. During the offlinemodel training phase, LFs are applied to unstructured clinician

reports and combined to generate probabilistic (confidence-weighted) training labels for a classifier defined over the target modality (e.g., radiograph). A

discriminative textmodel such as a long short-termmemory (LSTM) network can then be trained tomap the raw text to the generativemodel output. Our optimizer

uses a simple heuristic to determine whether computation can be saved by training the target modality endmodel directly on probabilistic labels emitted from the

generative model or if end model performance can be improved by using probabilistic labels emitted from the trained LSTM. At test time, the end model receives

only the target modality as input and returns predictions.
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corresponding to, for example, ‘‘normal’’ and ‘‘abnormal,’’ and

make theassumption that themajorityof theseLFswill bemoreac-

curate than random chance.29 In practice, users often create a

small, hand-labeleddevelopment set (e.g., several hundredexam-

ples) to assist in LF development and tuning.

Given m such LFs, we apply them to the unlabeled auxiliary

modality data points fxðiÞa gi = 1;.;n to generate a matrix L˛ Rn3m

of noisy labels, where the non-zero elements in each row Li

represent the training labels generated by the LFs for point i. In

general, these labels may overlap, conflict, and be arbitrarily

correlated. The goal of data programming is to reweight and

combine them to generate a single probabilistic (i.e., confi-

dence-weighted) label ~yðiÞ. To do this, we use an unsupervised

generative modeling procedure to learn the LF accuracies q

that best explain the observed labeling pattern via minimization

of the negative log marginal likelihood29

bq = argminq

 
� log

X
Y

pqðY ;LÞ
!
; (Equation 1)

where pq is an exponential family generative model and Y is the

unobserved true label vector over which we marginalize.

The result of this first modeling stage is a set of probabilistic or

confidence-weighted training labels ~yðiÞ. In the simplest case,

these labels are used to train a weakly supervised discriminative

model f t (e.g., a neural network) over the target modality t using a

noise-aware variant of the loss function l,29 which takes into ac-

count the uncertainty of the probabilistic training labels:

bwt
= argminwt

Xn
i = 1

E
~y
ðiÞ�pbqð,jLiÞ

�
l
�
f t
�
x
ðiÞ
t ;wt

�
; ~yðiÞ

��
:

(Equation 2)

The resulting model f tð ,; bwtÞ—represented by the estimated

parameters bwt
—can then be applied to the target modality

alone; for example, to classify CXRs by triage priority before hu-

man interpretation. Importantly, data programming relies on

recent statistical learning theory,31 which guarantees that, under

certain basic statistical assumptions, the estimation error of the
4 Patterns 1, 100019, May 8, 2020
learned LF accuracies and correlation parameters (Equation 1)

and the test error of the discriminative model (Equation 2) will

both be upper bounded by O
�
n�

1
2

�
. That is, as the size n of the

unlabeled dataset increases with the LFs held constant—i.e.,

with no additional supervision signal—we expect to observe

improved performance at the same asymptotic rate as in tradi-

tional supervised approaches when adding more hand-labeled

samples. This result, recently derived by Ratner et al.,31 provides

a theoretical framework for understanding a broad spectrum of

cross-modal weak supervision methods and how they can

leverage both clinician domain expertise and available unlabeled

data.

The cross-modal setting presents an opportunity to improve

this basic data-programming pipeline via an additional modeling

step that we propose here. Specifically, the probabilistic training

labels ~yðiÞ produced by the generative model do not always pro-

vide full coverage, as all LFs may abstain on any given

example.30 We mitigate the effects of incomplete coverage by

training an intermediate discriminative model fa, parameterized

by weightswa, that predicts the generative model output directly

from the raw auxiliary modality a. Concretely, we can create an

augmented set of probabilistic labels ~yðiÞa by estimating bwa
as

bwa
= argminwa

Xn
i = 1

E
~y
ðiÞ�pbqð,jLiÞ

�
l
�
fa
�
xðiÞa ;wa

�
; ~yðiÞ

��
(Equation 3)

and subsequently evaluating fa over all training points,

~yðiÞa = fa
�
xðiÞa ; bwa�

: (Equation 4)

In this way, we can produce a set of training labels that

approximately retains the favorable statistical properties

described above but provides useful labels for every element

of the training set. The target modality model is then trained

exactly as in Equation 2, but using ~yðiÞa instead of ~yðiÞ:

bwt
= argminwt

Xn
i = 1

E
~y
ðiÞ
a

�
l
�
f t
�
x
ðiÞ
t ;wt

�
; ~yðiÞa

��
: (Equation 5)
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As illustrated in Figure 1, we implement this idea on paired text-

image datasets by training a standard long short-term memory

(LSTM) network over text reports (the auxiliary modality) using

probabilistic labels ~yðiÞ generated by combining our LFs within

the generative modeling step.34 We use a simple heuristic opti-

mizer to decide whether to use the generative model probabilistic

labels ~yðiÞ directly or if performancecould be improvedby using an

augmented set of probabilistic labels ~yðiÞa emitted from the trained

LSTMmodel. Specifically, we train the LSTM only if either gener-

ative model coverage or ROC-AUC on the development set is

less than 90%. Bypassing the LSTM training step in cases where

we would expect end model performance to be equivalent using

the generative model labels can save substantial computation.

We explicitly assess the effect of each step in this cross-modal

data programming pipeline as part of our experimental analysis.

We propose using cross-modal data programming as an

exemplar technique for evaluating the efficacy of training medi-

cal machine learning models with cross-modal weak supervision

for several compelling reasons. First, data programming natu-

rally extends and improves upon common rule-based methods

by using unsupervised statistical modeling techniques to auto-

matically denoise potentially overlapping and conflicting heuris-

tic functions in a way that provides more accurate, probabilistic

training labels to deep learning models.29 This allows us to

directly compare with a majority vote over our LFs as a proxy

for existing, application-specific cross-modal weak supervision

methods that commonly use rule-based procedures. Second,

theoretical analysis suggests that this approach should yield

continual performance improvement with increasing amounts

of unlabeled data.31 Third, the generative modeling formulation

allows us to easily add an intermediate neural network model

that can improve the coverage of our weak labels while approx-

imately retaining these theoretical guarantees. Finally, data pro-

gramming is well suited to evaluating the resource requirements

of cross-modal weak supervision relative to hand labeling

because it is supported by Snorkel,30 a well-validated, open-

source software system that enables cross-modal weak supervi-

sion across different applications in a manner that is both acces-

sible to clinicians and amenable to detailed quantitative analysis.

Datasets and Experimental Procedure
We use the theoretically grounded cross-modal data program-

ming approach described above to assess the performance of

cross-modal weak supervision in four real-world medical appli-

cations (Figure 2) spanning CXR triage (two-dimensional [2D] im-

age classification), EXR series triage (2D image series classifica-

tion), intracranial hemorrhage detection on CT (three-

dimensional [3D] volumetric image classification), and seizure-

onset detection on EEG (19-channel time-series classification).

We use a standard deep neural network architecture for the

target modality in each application, as described in Table 1.

Fixing the model class and training procedure for each applica-

tion allows us to assess the effects of different supervision ap-

proaches with all other variables held constant. To provide a

rigorous comparison between cross-modal data programming

and hand-labeled data in our experiments, we curate a large

hand-labeled dataset for each application comprising raw

data, associated reports, and clinician-provided labels. Each of

these datasets represents physician-years of hand labeling. Us-
ing these data resources, we can assess how closely the perfor-

mance of models trained using cross-modal data programming

can come to matching their fully supervised equivalents in the

context of real clinical data.

For each application, we apply the cross-modal data-pro-

gramming approach described above, which is implemented

as an extension to the Snorkel30 software package: a clinician

first writes LFs over the text reports using a small, hand-labeled

development set for LF tuning; we then use Snorkel to generate a

final set of probabilistic training labels, using the intermediate

LSTM text model if generative model coverage or ROC-AUC is

below 90% on the development set; and we finally train a

discriminativemodel over the target datamodality.We report im-

plementation details for each application in Experimental Pro-

cedures and present an in-depth walkthrough of how cross-

modal data programming was applied to the HCT application

in Supplemental Experimental Procedures. Complete code for

all LFs is provided in Supplemental Experimental Procedures,

along with a Jupyter notebook containing a step-by-step tutorial

on how to apply cross-modal data programming to a small, pub-

licly available dataset.38

We use this cross-modal data-programming approach to

empirically assess the hypothesis that cross-modal weak super-

vision methods can reduce the amount of labeling resources

required to build useful machine-learning models across diverse

clinical settings. We compare the absolute performance of

cross-modal data programming with hand-labeled supervision

in Figure 3, provide empirical scaling results compared with

hand-labeled supervision in Figure 4, analyze the amount of la-

beling resources required relative to hand-labeled supervision

in Figure 5, and assess the performance effects of each part of

the cross-modal data programming pipeline in Figure 6.

Weakly Supervised Performance Matches or Exceeds
Fully Supervised Performance
We first assess the degree to which models trained with cross-

modal data programming and standard model architectures

(see Experimental Procedures) can approach the performance

of those trained using hand-labeled datasets. From a transla-

tional standpoint, this experiment evaluates whether cross-

modal weak supervision can allow large hand-labeled training

sets to be replaced with flexible and high-level programmatic su-

pervision specified by clinicians. In Figure 3, we compare cross-

modal data programming with hand-labeled full supervision with

Large and Medium hand-labeled datasets (see Table 1 for data-

set size definitions). Note that data programming refers to either

the LSTM or generative model output, as determined by the opti-

mizer step; we analyze cases in which the LSTM versus the

generative model should be used in a later section. We find

that across applications, median models (i.e., models achieving

median ROC-AUC across five random seeds) trained using

cross-modal data programming are able to perform within an

average of 1.75 points ROC-AUC of those trained with Large

hand-labeled datasets while outperforming those trained using

Medium hand-labeled datasets by an average of 10.25 points

ROC-AUC. Median weakly supervised models for CXR and

HCT are not statistically different from median models trained

using large hand-labeled datasets (DeLong p > 0.38),41 the me-

dian weakly supervised EXR model performs several points
Patterns 1, 100019, May 8, 2020 5



Figure 2. Example Target Modality Data for Four Clinical Applications

Single 2D chest radiographs (A), examples of knee extremity radiographs drawn from 2D radiograph series (B), 32 slices from 3D head CT scans (HCT) with and

without hemorrhage (C), and 19-channel electroencephalography (EEG) signals with and without evidence of seizure onset (D). Note that while these applications

are fundamentally different in both dimensionality andmodeling requirements (see Table 1), deepmachine learningmodels supporting each can be rapidly trained

using cross-modal data programming.
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ROC-AUC higher than the median model trained using the Large

hand-labeled dataset (DeLong p < 0.05), and median weakly su-

pervised EEG models are not statistically different from median

models trained using Medium hand-labeled datasets (DeLong

p > 0.25). Exact p values for these comparisons are provided

in Table S1. We view the impressive empirical performance of

the weakly supervised models as compared with the fully super-

vised ones as a notably positive outcome of our study, and in

turn view the annotation and curation effort required to perform

this comparison between weakly and fully supervised models

as a major contribution of this work. Furthermore, the fact that

our fully supervised results compare favorably with recently pub-

lished work on each problem (Table S2) reflects encouragingly

on the potential clinical utility of analogous weakly supervised

models.6,7,32,42
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Cross-Modal Data-Programming Models Improve with
More Unlabeled Data
Amajor trend in themodern clinical world is that large amounts of

digitized medical data are increasingly accessible, but important

information is often encoded in unstructured forms (e.g., free

text) that are not suitable for supervising machine-learning

models. We therefore evaluate whether cross-modal weak su-

pervision can harness these growing unstructured data re-

sources without requiring additional clinician effort. Specifically,

we assess the performance of the target modality model when

additional unlabeled data are weakly labeled using cross-modal

data programming, but without any modification of the fixed set

of clinician-authored LFs. In Figure 4, we observe favorable per-

formance scaling across all applications studied. In particular,

the CXR results of Figure 4A demonstrate that the ROC-AUC



Table 1. Description of Data Type, Classification Task, Training-Set Sizes, and Neural Network Architectures for Each Application

Studied

CXR EXR HCT EEG

Data type single 2D radiograph multiple 2D radiograph views 3D CT reconstruction 19-channel EEG time series

Classification task normal normal hemorrhage seizure onset

abnormal abnormal no hemorrhage no seizure onset

Anatomy chest knee head head

Train set size (Large/Medium) 50,000 30,000 4,000 30,000

5,000 3,000 400 3,000

Train Set Size (Literature) 20,0007 40,56132 9046 23,21833

Network architecture 2D ResNet-189 patient-averaged

2D ResNet-509
3D MIL + ResNet-

18 + Attention35
1D Inception DenseNet36

We apply cross-modal data programming to four different data types: 2D single chest radiographs (CXR), 2D extremity radiograph series (EXR), 3D recon-

structionsofcomputed tomographyof thehead (HCT), and19-channelelectroencephalography (EEG) timeseries.Weuse twodifferentdataset sizes in this

work: the full labeleddataset (large) of a size thatmight be available for an institutional study (i.e., physician-years of hand labeling) and a 10%subsampleof

the entire dataset (medium) of a size that might be reasonably achievable by a single research group (i.e., physician-months of hand labeling). For context,

wepresent thesizeofcomparabledatasetsused to trainhigh-performancemodels in the literature. Finally,we list thedifferentstandardmodelarchitectures

used. While each imagemodel uses a residual network encoder,9 architectures vary from a simple single-image network (CXR) to a mean acrossmultiple

imageviews (EXR) toadynamicallyweightedattentionmechanismthatcombines imageencodings foreachaxial sliceofavolumetric image (HCT).ForEEG

time series, an architecture combining the best attributes of the Residual and Densely Connected37 networks for 1D applications is used, in which each

channel is encoded separately and a fully connected layer is used to combine features extracted from each (see Experimental Procedures).
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score of the weakly supervised model improves with additional

unlabeled data at a similar rate to that at which the fully super-

visedmodel improves with additional hand-labeled data, as sug-

gested by recent theoretical analysis.29,31 Figure 4B, describing

EXR triage, shows analogous scaling trends, but the initial

improvement in performance of the weakly supervised model

upon adding more data points appears far more rapid. We spec-

ulate that this is due to the combination of weak supervision with

the relatively simple multiple-instance labeling (MIL) modeling

approach used for this application (i.e., mean across radio-

graphs), which causes the model to perform particularly poorly

at small sample sizes. These scaling trends also hold for more

complex modalities in HCT and EEG in Figures 4C and 4D. For

HCT, we observe that theweakly supervised and fully supervised

results in this case are extremely similar at all dataset sizes; this

behavior likely results from well-engineered LFs that yield partic-

ularly accurate labels over the text reports. While the gap be-

tween the weakly and fully supervised EEG results is larger

than those in other applications, this is not unexpected given

the known difficulty of the problem and the fact that we work

with pediatric signals, which generally exhibit high levels of pa-

tient-to-patient variation.42 Across applications, we find that

mean performance of the weakly supervised models improves

substantially with additional examples and observe that model

variance across training runs with different random seeds often

decreases as training-set size increases. Thus, our scaling re-

sults suggest that the performance of machine learning models

supervised using weak supervision techniques such as cross-

modal data programming can be continually improved by har-

nessing additional unlabeled data, which requires no extra label-

ing effort from clinicians.

Cross-Modal Data Programming Requires Simple and
Minimal Clinician Input
Wealso analyze the time and input complexity that were required

of clinicians in cross-modal data programming relative to hand-
labeling data. On average, 14 LFs comprising on average six

lines of code each were developed per application, using a mix

of general text patterns (e.g., identifying non-medical words indi-

cating normalcy, equivocation), medical text patterns (e.g., iden-

tifying specific terms or overlaps with medical ontologies), and

structural heuristics (e.g., shorter reports tend to describe

normal cases), as described in Figure 5A. Importantly, between

the CXR and EXR applications, six LFs were directly reused,

demonstrating the ability of weak supervision methods such as

data programming to amortize clinician effort across different

modeling tasks. While composing LFs took less than a single

physician-day per application, hand-labeling training sets

required physician-months to physician-years, as shown in Fig-

ure 5B. We observe that weakly supervised models are able to

attain statistically equivalent performance to supervised models

while using on average 4% of the amount of physician-hours for

labeling; exact values are reported in Table S3, and relative time-

performance values are presented graphically in Figure 5C.

Thus, we see not only that cross-modal data programming can

support models that achieve high levels of performance, but

also that it can do so while requiring orders-of-magnitude less

time spent on the labeling process and directly incorporating

relevant domain knowledge.

Cross-Modal Data Programming Can Improve Cross-
Modal Weak Supervision Performance
A final hypothesis of this work is that modeling steps within

cross-modal data programming are important to providing per-

formance benefits for the target modality model. We evaluate

this hypothesis in two steps. First, we assess the quality of

weak labels emitted from each step in the modeling pipeline

of Figure 1 by comparing the coverage and ROC-AUC of each

of the following text models: an unweighted majority vote of

the LFs (MV), the data-programming generative model (GM),

an LSTM discriminative text model trained on MV (DM-MV),

and an LSTM discriminative text model trained on GM (DM-
Patterns 1, 100019, May 8, 2020 7
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Figure 3. ROC Curves for Models Trained

Using Full Hand-Labeled Supervision and

Cross-Modal Data Programming

Results are presented for chest radiographs (CXR)

(A), extremity radiographs (EXR) (B), head CT (HCT)

(C), and electroencephalography (EEG) (D). DP,

cross-modal data programming; FS, full hand-

labeled supervision. Each curve shown is that at-

taining the median ROC-AUC score on the test set

over runs using five different random seeds (see

Experimental Procedures). Models trained using

cross-modal data programming exhibit perfor-

mance levels that meet or exceed those of models

trained with Medium fully supervised datasets (i.e.,

physician-months of labeling time) and approach or

exceed those of models trained with Large fully

supervised datasets (i.e., physician-years of label-

ing time). See Table 1 for additional details of da-

taset sizes.
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GM). As a proxy for common heuristic approaches to cross-

modal weak supervision, MV represents a strong baseline for

GM.30 Comparing DM-GM with GM indicates the degree to

which our proposed LSTM step improves performance over

the GM output, and comparing DM-GM with DM-MV indicates

how important the generative modeling step is to achieving the

improvements observed from the LSTM. We expect that the

GM will improve label quality (as measured by ROC-AUC) by

resolving label overlaps and noise, while the discriminative

LSTM model may both improve label coverage and further in-

crease probabilistic label quality. Second, we compare the per-

formance of target modality models trained on labels generated

using each of these approaches with that attained using hand-

labeled full supervision. This procedure allows us to empirically

evaluate the effect of both the generative and discriminative

text modeling steps on target modality model performance.

Performance of each text model on the development set is

presented in Figure 6 for each application, while exact

values—including additional metrics such as precision, recall,

and F1 score—are provided in Table S4. We first find that our

GM text model ROC-AUC is strictly superior to that of MV and

that it provides larger improvements—on average 8.5 points

ROC-AUC—on CXR and EXR applications where we have

more LFs that can overlap and conflict. We also find that both

DM-GM and DM-MV provide improvements in coverage and

strictly non-inferior performance with respect to the LF-based

MV and GM approaches for both CXR and EXR applications.

On HCT and EEG, the clinician-provided rules are both full

coverage and highly performant, limiting the additional utility of
8 Patterns 1, 100019, May 8, 2020
the intermediate LSTM text model. These

results are in line with our heuristic opti-

mizer, which would train an LSTM model

only if either ROC-AUC or coverage of

the GM labels is less than 90%. Thus, in

the results of Figures 3, 4, and 5, we

have used models trained on DM-GM la-

bels for CXR and EXR (~ya) and models

trained on GM labels (~y) for HCT and

EEG. This procedure allows us to save
substantial computation—between GPU-hours and GPU-days

depending on the application and available hardware—while

producing median target modality models for HCT (DeLong p =

0.72) and EEG (DeLong p = 0.75) that are not statistically different

than those trained using labels emitted from the LSTM.

In Figure 6, we also present the performance of target modality

models trained on labels from each label source on Large data-

set sizes; numerical mean, median, and standard deviation for

each case are recorded in the rightmost column of Table S4.

The effect of the different text modeling approaches on target

modality model performance varies by application. We perform

statistical comparisons between the ROC-AUC values of the

median model for each case so that outliers do not affect our

overall performance analysis. On CXR, we see that the median

target modality models trained on DM-GM and DM-MV labels

are only 1 point ROC-AUC apart, but are on average 4 points

ROC-AUC higher than those trained on GM (DeLong p =

0.0012) and MV (DeLong p = 0.0020) labels, respectively. These

general trends correlate directly with those seen in the text

modeling results, where the LSTMmodels consistently and sub-

stantially outperform the LF-based models. Thus, on this appli-

cation, our results suggest that gains in performance from addi-

tional modeling stem mostly from the improvements in ROC-

AUC and coverage resultant from the intermediate LSTM step

we propose in this work. We observe a slightly different trend

on the EXR dataset. In this case, MV and DM-MV models

perform similarly, while we see a 2-point ROC-AUC median per-

formance improvement when using the GM labels (DeLong p =

0.15) and a further 4-point ROC-AUC increase (DeLong p =
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Figure 4. Mean Neural Network ROC-AUC

Score versus Dataset Size Using Full Super-

vision and Cross-Modal Data Programming

Results are presented for chest radiographs (CXR)

(A), extremity radiographs (EXR) (B), head CT (HCT)

(C), and electroencephalography (EEG) (D). DP,

cross-modal data programming; FS, full hand-

labeled supervision. In each case, the performance

of models trained using cross-modal data pro-

gramming improve as additional unlabeled data are

added, and in several cases exhibit scaling prop-

erties very similar to those of the fully supervised

model as additional labeled data are added. Error

bars (dashed lines for FS, shaded region for DP)

represent 95% confidence intervals from five

training runs with different random seeds.
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0.0064) when using DM-GM labels. These relative results sug-

gest that for EXR, the additional coverage provided by the

discriminative model was only helpful when the LSTM was able

to learn from the higher-quality GM labels. Finally, HCT and

EEG represent use cases in which the LFs provide both high

coverage and high performance when combined via majority

vote. We observe that models trained using DM-GM labels in

Figures 6C and 6D perform at levels similar to those trained using

GM model labels, as our heuristic optimizer predicts.
DISCUSSION

In this work, we have performed the first comprehensive study of

cross-modal weak supervision in medicine and have empirically

assessed the hypothesis that cross-modal weak supervision

methods can reduce the amount of labeling resources required

to build useful machine learning models across diverse clinical

settings. We have analyzed this class of techniques by propos-

ing the cross-modal data programming approach, applying it

to clinically relevant applications spanning radiography, CT,

and EEG, and performing a direct comparison with large-scale

hand labeling. Our results show that cross-modal weak supervi-

sion can enable clinicians to rapidly generate large training sets

in a matter of hours or days that match or exceed the perfor-

mance of large, hand-labeled training sets that took months or

years of physician time to annotate.We have further provided ev-

idence that weak supervision approaches such as cross-modal

data programming can be used to train models that increase in
quality as more unlabeled data become

available, making efficient use of clinician

resources.

Our results also suggest specific situa-

tions in which modeling the labeling pro-

cess can improve the performance of

weakly supervised models in medical im-

aging and monitoring. In the CXR and

EXR applications on which generative

and discriminative modeling over the text

was able to provide more useful sets of la-

bels for target modality model training,

clinician LFs tended to be quite accurate
but relatively low-coverage. Such a pattern would be expected

in screening applications such as radiograph triage wherein

the variety of pathologies that can appear on a scan is large.7,32

Hemorrhage detection on HCT and seizure detection on EEG, on

the other hand, are more targeted detection applications

wherein clinicians are tasked with identifying a specific pathol-

ogy. In these cases, clinicians tend to refer to the pathology in

question in their reports in very consistent ways, which makes

the LFs they provide both accurate and high coverage. Our re-

sults suggest that simple majority vote over report text LFs

may often be sufficient for building highly accurate detection

models for specialized diagnostic protocols, while additional

generative or discriminative modeling could provide substantial

benefit for trainingmachine-learningmodels on target modalities

intended for general screening.

Several limitations should be considered when interpreting the

results of this study. First, because we use data sourced from a

single hospital, our results do not address cross-institutional

model validation. While substantial resources are required to

de-identify and make publicly available datasets of the sizes

considered here, we hope that continued progress on this front

will allow for future work that addresses this important question.

Second, although the statistical estimation techniques underly-

ing cross-modal data programming do handle the multi-class

setting, this work focuses on well-defined binary tasks. Third,

cross-modal data programming is limited to cases wherein an

auxiliary modality exists, is readily available, and is amenable

to rapid LF specification. Finally, our study assumes the exis-

tence of reference neural network architectures for each
Patterns 1, 100019, May 8, 2020 9



Figure 5. Analysis of Labeling Function Types and Time-versus-Performance Tradeoffs

(A and B) Labeling function (LF) types (A); labeling time for datasets describing chest (CXR) and extremity (EXR) radiographs, head CT (HCT), and electroen-

cephalography (EEG) (B). Labeling times are presented for the small development set (Dev) of several hundred examples, the Large fully supervised dataset (i.e.,

physician-years of labeling time), and the Medium fully supervised dataset (i.e., physician-months of labeling time). See Table 1 for additional details on dataset

sizes. Hand-labeling times were estimated usingmedian read times of 1min 38 s per CXR, 1min 26 s per EXR, 6min 38 s per HCT, and 12min 30 s per EEG drawn

from reported values in the literature.39,40 These estimates are conservative because they assume that only a single clinician contributed to reading each case.

(C) Labeling time versus performance in the context of dataset size, the task, and the type of supervision. Cross-modal data programming (DP) often yields

models similar in performance to those trained on Large hand-labeled datasets (FS) but using a fraction of the labeling time.
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diagnostic modality; while this is often valid in computer vision,

additional resources may be required to create high-perfor-

mance models for other diagnostic modalities. Addressing

each of these points would be a natural and valuable direction

for future research.

Remaining challenges associated with translating this work to

clinical practice mirror those usually faced by machine learning

systems for decision support in medicine. In addition to well-

documented regulatory hurdles, these include integrating rapid

model iteration and data collection workflows into hospitals

and care centers, designing robust testing infrastructures to sup-

port continual model improvement while guarding against critical

failure modes, and training physicians to best make use of these

algorithms.43 Indeed, our specific aim with this work is to reduce

these barriers. By demonstrating that models trained using

cross-modal weak supervision can perform comparably with

their fully supervised counterparts on four clinically relevant

tasks with only days of development time, our results suggest

that high-performance machine learning models can be devel-

oped quickly enough to support more rapid clinical deployment.

This ability to shorten the model development cycle has other

practical benefits, as models could be rapidly retrained using

cross-modal weak supervision to address important issues

such as failures on critical subsets, changes in patient population

demography, or updates to scanning hardware. It is our hope

that the conclusions of this work will provide empirical support

for deploying higher-level, more practical methods of generating
10 Patterns 1, 100019, May 8, 2020
training data for modern machine learning algorithms in the clin-

ical setting, translating advances that have had substantial

impact on the technology industry to improve patient care.
EXPERIMENTAL PROCEDURES

Study Design

The purpose of this study is to assess the hypothesis that cross-modal weak

supervision techniques such as cross-modal data programming can enable

rapid construction of useful machine learning models across diverse clinical-

use cases. Each dataset analyzed here was retrospectively collected from

our institution, and Institutional Review Board (IRB) approval was obtained

from our institution (Stanford University) in each case. In each dataset, different

patients were randomly assigned to training, development, and held-out test

sets, and subsets of the training set were chosen via random sampling. The

study was blinded in the sense that the study authors were unaware of which

patients were in the train, development, and test sets.

Text models were trained using the Snorkel30 software package and stan-

dard tools in PyTorch. For each application, a 20-trial random hyperparameter

search was performed to determine final values for learning rate and [2 regu-

larization to use for training the GM described in Equation 1. Five separate

GMs were then trained using procedures documented in the Snorkel code-

base.30 The output of each GM training procedure was then used to train a

discriminative bidirectional LSTM with attention44 wherein the input was the

raw text and the output was the generative model label. Hyperparameters

for the LSTM for each application were determined via 20-trial random search;

this same set of hyperparameters was used to train all LSTMs within each

application. Standard tools in PyTorch were used for tokenization, word em-

beddings were initialized randomly, and each model consisted of a single bidi-

rectional LSTM layer with hidden size 128. LSTM models were trained using
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Figure 6. Model Performance versus Super-

vision Type on Auxiliary (Text) and Target

(Image or Signal) Domains

We analyzed the performance of majority vote (MV)

of the labeling functions (LFs), a generative model

trained on these LFs (GM), an LSTM trained to map

the raw text to the MV output (DM-MV), an LSTM

trained to map the raw text to the GM output (DM-

GM), and hand-labeled full supervision (FS). Text

model performance is evaluated on the develop-

ment set, as coverage and ROC-AUC on this set are

used in the cross-modal data programming heu-

ristic optimizer. Target modality performance is

evaluated on the held-out test set. We present re-

sults for CXR (A), EXR (B), HCT (C), and EEG (D).

Note that MV text results and coverage results are

deterministic. Error bars are 95% confidence in-

tervals from five runs with different random seeds.
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the Adam optimizer until validation loss had not decreased for more than three

epochs.

Details of dataset composition, preprocessing routines, training proced-

ures, and neural network architectures for each target modality model are pro-

vided below. LFs for each application and an annotated, functional Jupyter

notebook tutorial applying the cross-modal data-programming technique to

a publicly available CXR dataset are provided in Supplemental Experimental

Procedures.

Automated Triage of Frontal Chest Radiographs

As the demand for imaging services increases, automated triage for common

diagnostics such as CXRs is expected to become an increasingly important

part of radiological workflows.5,7 Our frontal chest radiography dataset com-

prises 50,000 examples wherein each instance contains an image, a free-

text radiology report, and a prospective normal or abnormal label provided

by a single radiologist at the time of interpretation. Each data point describes

a unique patient, and the dataset balance is 80% abnormal. The fully super-

vised (hand-labeled) models are trained using these prospective labels. For

both fully and weakly supervised models, we use a development set size of

200 prospectively labeled images for cross-validation during the training pro-

cess and evaluate on the same 533-image held-out test dataset as Dunnmon

et al.,7 which is labeled by blinded consensus of two radiologists with 5 and 20

years of training. Examples of CXRs can be found in Figure 2A.

For this task, a radiology fellow wrote 20 LFs over the text in less than 8 h of

cumulative clinician time, using a labeled development set of 200 reports.

These LFs were implemented in Python with several hours of assistance

from a computer science graduate student. These LFs represent a combina-

tion of pattern-matching, comparison with known knowledge bases, and

domain-specific cues. In the context of chest radiography, the impression

and findings sections of the radiology report tend to be the most informative;

thus, the majority of LFs considered text within these sections. Once LFs had

been generated, tools within the Snorkel software package were used to

generate sets of probabilistic training labels.30 Note that the particular set of

LFs used for this application is not meant to be prescriptive or exhaustive;

rather, it represents the output of a real-world effort to create useful rules for

programmatic labeling of data with domain experts in a reasonable period

of time.

The image model used for this task was an 18-layer Residual Network (Re-

sNet-18) with a sigmoid nonlinearity on top of a single-neuron final layer, which
yields near-state-of-the-art results on this dataset

at a modest computational cost.7,9 The model

was implemented using the PyTorch software

framework and was initialized using weights pre-

trained on the ImageNet database.11,45 Models

were trained on a single Tesla P100 GPU using

the Adam optimizer with default parameters and
early stopping, an initial learning rate of 0.001, batch size of 72, learning rate

decay rate of 0.1 on plateau in the validation loss, weight decay (i.e., [2 regu-

larization) value of 0.005, and the binary cross-entropy loss function. We train

models on the full dataset for 20 epochs with early stopping and use an equiv-

alent number of batches for models trained on subsets of the dataset. Images

were preprocessed using histogram equalization, downsampled to 2243 224

resolution, Z-score normalized using global mean and standard deviation

values computed across the dataset, and replicated over three channels (for

compatibility with a model originally for RGB images) before injection into

the training loop. Each model over 50,000 images took approximately 6 h

to train.

Because each image is associated with a unique report, evaluation is per-

formed on a simple image-by-image basis, using ROC-AUC as the evaluation

metric.

Automated Triage of Extremity Radiograph Series

Musculoskeletal disorders are generally diagnosed from imaging, and their

substantial prevalence makes them a natural target for automated triage sys-

tems; in this work, we specifically focus on detecting musculoskeletal disor-

ders of the knee from multiple-view radiograph series. We originally obtained

a dataset of 3,564 patient exams prospectively labeled as normal or abnormal

in the same manner as described for chest radiography, containing a total of

37,633 individual images and 3,564 reports. A single exam can have a variable

number of radiographs across different views, as collection protocols are not

standard for this type of exam. The dataset was pulled from the PACS system

in such a way that it contains a 50:50 distribution of normal and abnormal

cases (as indicated by the prospective label). We split the dataset such that im-

ages from a randomly sampled 3,008-patient cohort are available for training

both fully supervised andweakly supervisedmodels, with images from 200 pa-

tients available for cross-validation. We then obtained retrospective labels for

each image in a held-out test set of 356 patient exams (3,718 images) where a

single radiologist with 9 years of training provided a normal or abnormal label

with no time constraints. We used this set of 356 exams for evaluation on a pa-

tient-by-patient basis. Examples of knee radiographs can be found in

Figure 2B.

For this task, a single radiology fellow wrote the 18 LFs within 8 h of cumu-

lative clinician time, which were implemented in Python with several hours of

assistance from a computer science graduate student using a development

set of 200 labeled reports. These LFs use a variety of pattern-matching and
Patterns 1, 100019, May 8, 2020 11
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semantic cues to identify reports as either normal or abnormal. While there is

some overlap between these LFs and those for the CXRs (e.g., the length of the

report), LFs nonetheless had to be adapted for this specific application. Prob-

abilistic labels were then generated from these LFs using tools in the Snorkel

software package.30 Note that this application represents an MIL setting

wherein the label extracted from a report is applied to all images in the study,

but it is unknown which of these images actually contains the abnormality.

The imagemodel for this task takes a single radiograph as input and outputs

the probability that this radiograph is abnormal. We use a 50-layer Residual

Network (ResNet-50) architecture modified to emit a binary classification

result on each radiograph in the training set, and leverage ImageNet-pre-

trained weights for model initialization.9,45 The model is implemented using

the Keras software package46 and trained using the Adam optimizer with early

stopping, a learning rate of a = 0.0001 with learning rate decay rate of 0.1 on

plateau in the validation loss, a weight decay value of 0.005, and the binary

cross-entropy loss function. We train models on the full dataset for 30 epochs

with early stopping and use an equivalent number of batches for models

trained on subsets of the dataset. Images were preprocessed using histogram

equalization, downsampled to 2243 224 resolution, Z-score normalized using

global mean and standard deviation values computed across the dataset, and

replicated over three channels (for compatibility with a model originally for

RGB images) before injection into the training loop. Batch size was set at 60

radiographs, the maximum possible on the single 1080 Ti GPU that was

used to train each model. Models over 30,000 training images took approxi-

mately 6 h to train. For each exam in the test set, we compute an output score

by taking the mean of the image model outputs for all radiographs in the exam

following Rajpurkar et al.32

Intracranial Hemorrhage Detection on Computed Tomography

The problem of rapid intracranial hemorrhage detection on CT of the head

(HCT) represents an important task in clinical radiology to expedite clinical

triage and care.47 To create a dataset describing a binary task of intracranial

hemorrhage detection on HCT, we acquired 5,582 non-contrast HCT studies

performed between the years 2001 and 2014 from our institution’s PACS sys-

tem. Each study was evaluated for a series containing 5-mm axial CT slices

with greater than 29 slices and fewer than 45 slices. For each study containing

the requisite 5-mm axial series, the series was padded with additional homo-

geneous images with Hounsfield units of 0 such that each series contained 44

CT slices. The center 32 slices were then selected for automated analysis. The

final dataset contains 4,340 studies preprocessed in this way, and 340 of these

examples are provided with a ground truth label at the scan level (cf. the slice

level6) confirmed by consensus of two radiology fellows. Of these hand-

labeled scans, 50% (170 scans) are allocated for cross-validation during

end-model training while the rest are used for evaluation. Scan-level hand la-

bels for the 4,000 images that support assessment of model performance us-

ing fully supervised training were provided via single-annotator reads of each

report. An example set of 32 CT slices for both hemorrhage and non-hemor-

rhage cases can be found in Figure 2C.

The seven LFs for the hemorrhage detection task were written in Python

entirely by a single radiology resident in less than 8 h of cumulative develop-

ment time using a labeled development set of 200 reports. Notably, these

LFs programmatically combine many possible expressions for normality or

hemorrhage that are drawn from this radiologist’s personal experience. Again,

probabilistic labels are generated from these LFs using tools in the Snorkel

software package.30

The hemorrhage detection task fits naturally with the framework of MIL

because we have a single label per CT scan, each of which contains 32 image

slices. Furthermore, if a CT image is labeled as positive, there must exist at

least one slice that contains evidence of a hemorrhage. We leverage the atten-

tion-based MIL approach recommended by Ilse et al.35 for this task. Specif-

ically, we embed each instance (i.e., each slice) into a feature space and sub-

sequently learn a weighted average off all instance (i.e., slice) embeddings

corresponding to a single bag of instances (i.e., a single CT scan). These

weights are learned using a two-layer neural network known as an ‘‘attention

layer.’’ Classification is then performed using the attention-weighted combina-

tion of all instances (i.e., all CT slices).

Our attention-based MIL model uses a randomly initialized ResNet-18

encoder with an output size of 50. Each slice is downsampled to dimensions
12 Patterns 1, 100019, May 8, 2020
of 224 3 224 and Z-score normalized using global mean and standard devia-

tion values computed across the dataset. Model training is accomplished us-

ing the stochastic gradient descent optimizer in PyTorch with a learning rate

that was initially set to a high value of 0.1 and reduced upon plateaus in the vali-

dation loss, a momentum of 0.9, and a weight decay value of 0.005. Models

over the full dataset were trained for 30 epochs with early stopping, and use

an equivalent number of batches for models trained on subsets of the dataset.

Batch size was set at 12 CT scans, the maximum possible using the single

Tesla P100 GPU that was used to train each model. Training each model on

the full set of images took approximately 6 h.

Because only 39 of the 340 consensus-labeled examples were positive for

hemorrhage, the end-model performance metrics could be sensitive to the

random splitting of the test and development datasets. We therefore carry

out a cross-validation procedure where we repeat the stratified 50:50 develop-

ment set/test set split using the 340 gold-labeled data points, and analyze

averagemodel performance over five trials with different random seeds, where

one of the seeded operations was the development set/test set split.

Seizure Monitoring on Electroencephalography

One of the most common tasks performed using EEG is epileptic seizure

detection, where an epileptologist examines large amounts of time-series

data to determine whether the repeated, uncontrolled electrical discharges

suggestive of seizure activity have occurred. Our EEG dataset comprises

36,644 pediatric EEG signals from our institution along with 9,496 EEG reports.

Each EEG report can reference multiple signals, and each signal can be refer-

enced by multiple EEG reports. Each signal is annotated by an EEG technician

with onset times of possible seizures, which we treat as full hand-labeled su-

pervision for a machine-learning model for seizure detection. To ensure con-

sistency across exams, each of which could have a unique sensor alignment,

we use only signals from the 19 electrodes in the standard 10-20 International

EEG configuration, which forms a subset of the electrodes deployed to every

patient at our institution. Voltage readings from each channel are sampled at

200 Hz. We approach the seizure-onset detection problem as a clip-level clas-

sification problem over 12-s clips of the full time series. Our model maps an

input x˛R2400x19 to a single output indicating the probability of seizure onset

in that clip. An example set of EEG signals can be found in Figure 2D.

The 11 LFs used to determine whether a given EEG clip contains seizure

onset were written collaboratively by a clinical neurologist and a postdoctoral

computer scientist over the course of less than 8 cumulative hours of dedi-

cated time using a labeled development set of 200 reports. These LFs simul-

taneously leverage the structure of the EEG report along with unstructured in-

formation contained in the raw text, which can often cover several paragraphs.

The Snorkel software package is then used to create probabilistic labels for

each report.30 Due to the length of these reports and their highly variable struc-

ture, the LFs for this application represent a particularly compelling example of

how domain-specific knowledge can be used to inform heuristic development.

Because these reports refer to entire signals rather than to specific clips, a

small hand-labeled EEG clip dataset for cross-validation and end-model eval-

uation was created by a pediatric clinical neurologist with 10 years of experi-

ence. This dataset contains 350 12-s clips representative of seizure onset;

100 of these positive examples are allocated to a development set for cross-

validating the end model and 250 are allocated to the test set for final evalua-

tion. Sets used for both cross-validation and evaluation were made to contain

an 80% fraction of clips without seizure onset by randomly sampling clips from

signals in each set confirmed to contain no evidence of seizure. We use a

densely connected Inception architecture inspired by Roy et al.36 for

seizure-onset detection. This modeling approach combines the most compel-

ling aspects of the InceptionNet48 and DenseNet37 architectures, namely the

extraction of convolutional features at multiple granularities at each layer com-

bined with concatenation of each filter bank with all of those preceding it. To

address the issue of extreme class imbalance caused by the low frequency

of clips containing seizure onset even in EEG signals that contain a seizure,

we use a simple filtering process analogous to common techniques used in

the information extraction literature for candidate extraction for weakly super-

vised models.30 Specifically, we construct a candidate extractor that is a

three-layer neural network operating on a set of 551 features reported to be

useful for seizure detection from the literature.49 This candidate extractor,

which is trained on the development set, is executed over all signals with an
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associated report that is weakly labeled as containing a seizure to provide clips

that are positive for seizure onset with high probability, while negative clips are

randomly sampled from signals with no associated positive report. The candi-

date extractor cutoff was tuned using the development set such that precision

was 100% and recall was 15%; because we have such a large unlabeled data-

set, we are able to optimize for this high level of precision while still obtaining a

large set of positive examples.

Model training is accomplished using the Adam optimizer in PyTorch,

learning rate was initially set to a value of 1 3 10�6 and reduced by a factor

of 0.1 upon plateaus in the validation loss, and a dropout probability of 0.2

was applied to the last layer. We train models on the full dataset for 30 epochs

with early stopping and use an equivalent number of batches for models

trained on subsets of the dataset. Plentiful negative examples were under-

sampled such that the train set contained 50% positive examples. Batch

size was set at ten EEG signals, the maximum possible using the single Tesla

P100 GPU that was used to train each model. Training each model on the full

set of signals took approximately 12 h.

Statistical Analysis

All statistical tests performed in this work are two-tailed DeLong non-para-

metric tests41 to evaluate the equivalence of ROC-AUC values. These tests

were implemented using the R package pROC accessed via the Python pack-

age rpy2. A statistical significance (a) threshold of 0.05 was used for all re-

ported tests. All ROC-AUC values were computed using the entire test sets

described above. Confidence intervals reported in plots are standard 95%

confidence intervals assuming a normally distributed population.

DATA AND CODE AVAILABILITY

Raw data for Figures 3, 4, 5, and 6 are available from the authors. Protected

Health Information restrictions apply to the availability of the raw clinical data-

sets presented here, which were used under IRB approval for use only in the

current study. As a result, these datasets are not yet publicly available. We

have, however, made available the LFs used for each application as well as

a full working demonstration of the cross-modal weak supervision pipeline us-

ing a small public dataset containing CXRs, ground truth labels, and text re-

ports in Supplemental Experimental Procedures. The code in this demonstra-

tion exactly mirrors that used for analyses presented in this paper.

All code used for this study uses open-source Python packages. We have

made available the LFs themselves as well as a full annotated demonstration

of the cross-modal weak supervision pipeline using a small public dataset con-

taining CXRs and text reports in an online repository as described in Supple-

mental Experimental Procedures. Technical background and usage informa-

tion on the Snorkel software package used heavily in this work can be found

at snorkel.stanford.edu.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2020.100019.
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