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AS

ABSTRACT -

A study is made of the scéttering of high energy protons by
protqns, Several tybes’of "cutoffs? are introduced into the éingular
tensor interaction proposed by Christian and Noyes; the triplet P
state radial equations are:then solved by éssentially exa?t numerical
integration methods. The resulting cross sectioﬁs show a more bro-

nounced disagreement with experiment than do the Born apprdximation

cross sections of Christian and Noyes. Calculations are carried out

in the vicinity of 350 Mev and 120 Mev,
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1. 'INTERPRETATION OF HIGH ENERGY p-p SCATTERING ~
" 'Don R, Swanson’

" ‘Radiation Laboratory; Departmént of Physics -
University of California, Berkeley, California

- {NTRODUGTION
'Several experiments have'ﬁeen'carrie&Joﬁﬁlon the scattering -
" of protons‘by protons at energies greater than 100 Mev . The
resulting differential cross sections are characterized by‘spheriCaily‘
symmetrio”angular'distributions'(in'the*cenier of mass system) and by
a’léck'of"dependenoe“on energy. Between'scattering angleSKOfNZOQ“ahd :
160° and Betweenkeneréieé'of 130 MeV’éndi350'Mev the cross: section
iseeboﬁﬁifour_of'fiﬁeﬁiiiibarnshper steradfan. The results have been
‘ioiefbfeted'b§iéhrietien:énd'No§ees (he;eaféef.refeffeavio'asi"CN“)*
b& Jeegro;égia;d by Ceee}aoa.faie7,. In the CN analysis (350 Mev) a .
'souafe well singlet inﬁeracﬁioo was used whlch gave abnost.no
scatterlng at angles greater than hO | The problem then was to flnd
a trlplet 1nteract10n yleldlng an essentlally 1sotropic dlfferentlalu
croes ‘sec;c,ion° It was observed that any trlplet cent¥al potentlal
is unde31rable 31nce the cross sectlon due to it would vanlsh at 90°
(the wave function is antlsymmetrlc), accord1ngl& a tensor force ~.:‘

model was chosen° (The wave functlon must of course stlll be antl—

“symmetrlc, however, w1th a noncentral potentlal the antl-symmetrlzation
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is not expressed in terms of-the polar scattering angle, 8, alone, but
by the azimuthal angle, @, as wellf The antisymmetric spin scattering
matrix S(e, @) - s(T- ©, # +7') does not necessarily vanish at
= /2 as it:wonld if there were no v. g dependence:.5

In order to obtain the desired "fiat" cross>section, Christian
and Noyes found it necessary to use a potential with a "highly singular"
radial dependence e—r/R/rz . . All triplet state calculations were
carried out ixIBorn_approximation° Jastrow,_on‘the'other»hand?_attempted
toiobtainyagreement with experiment-by introducing athard-oore_into_tne
singlet. interaction, thus permitting greater momentum transfersvand_
accordingly a substantial amount of 1arge,angle.(909).soattering.u_$net
triplet;interaction was not then regnired to yield_an_isotropie_erOss'h
seetion,“‘Neitherrthe‘CN nor the Jastrow interpretat;on_waslentirely §
-successful in fitting the experimental data, the principal difficulty ‘
belng too large a theoretical peak in the forward d1rectlon due mostly
to scattering of the 51nglet D state. However 1t was notiln the splrlt
of the analyses to 1ndulge in a detalled proéram or tcnrve flttlné" -
‘but rather to=11iustrate tne 1nportant featuresvof the varlous.lnter—

actions>chosen. This phllosophy applles as well to the present paper°
h It is proposed here to examine more crltlcally the trlplet
state calculatlons of Chrlstlan and Noyes, and in partlcular, to
investlgate the valldlty of their use of the Born approx1matlon.'
Slnglet scatterlng will be. 1gnored There is reason to suspect that -

results of the'ﬁorn approximation applied‘toﬂa'high1y°singﬁlar potential

€

4

w0
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" may not be even qualltatlvely'correct Consider, for éiamﬁié;'éhé S
radial equatlon for the Po state (Appendlx, Equatlon A18) In the

v1c1n1ty of the orlgin thls takes the form

g ’ou o, vk @
ay? _y
(Choosi.oé 20> O mplles that the nuclear potentlal is effectlvelyb
attractlve in this state, and suff1c1ently deep to domlnate the o
centrlfugal term as r-1>0 ) The solution, for ;l ;? 1/h, is
composed of spherlcal'Bessel functions of 1mag1nary'order hav1ng~au
oséiilatory’singularity’at the originsr" L P o
u—-; y cos [—/)(o - 1/14 1og y+ B] . ; |
Y"O ' ' B ‘
An iuﬁeuacﬁioh of thls neﬁure'can”oevufeated’inveﬁoﬁySioaiiy meeniugful
way only 1f the 51ngu1ar1ty at the orlgln is in some arbltrary way

feut off"' It is ev1dent however, that the reglon of the cutoff cannot

be arbitrarlly small since several 050111at10ns of the wave functlon o
w1th1n the reglon would lead to bound states of the dl-—proton° Consider

the 1ntegral equatlon satisfied by the solutlon to Equatlon (A18)

. Lo

Y
. . ) . —ay ) -ay )
= A] g1 (7)+ 481 (y) S e ugy dy+ LA g(y) %_ ug_y dy .
' 0 ’ Y

¥
(2)

The left hand 51de of the equatlon becomes the wave functlon 1n Born

approximation if the plane wave, solution u = gl(y) 1s 1nserted as a
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trial functlon in the 1ntegrand The Born approx1mat10n 1s va11d 1f
the exact solutlon does not deviate greatly from the free partlcle _
trial functlon. Near the‘orlgln the latter, gl(y) becomes Just |

% y2 the next zero occurs be&ond the reglon‘in whicb the nuclear
interaction is appreciable, even for energies a§5high'§§=3so Mev, It
is therefore evident that for sufficiently short cutoffs the Born .
approxlnatibu‘is;invalidsince tne exactF(posslbl&iosclllatoryj{
solution does,not resemble the triallfunction. ”ﬁxamlnatlon,of’theiA.b

: integral-Equation:(é)_shows, moreover, that the presence“of,atshortf
range cutoff has a negligible influence on the Born calculation itself,.

51mply because the 51ngular1ty in the potentlal is masked by the

1 y factor from the trial function, (For convenlence a square well
3
cutoff may. be visualized here, that is, the potentlal e /y dfor

y> Yo is placed equal to the constant e y°/y° v for T £ ¥, ,),
It is ev1dent that the larger the cutoff radius the more nearly

valld becomes the first order 1terat10n procedure. On the other )
_hand‘a long range cutoff cannot be ignored in a Born calculatlon, ”

It seenSQ then; that the CN procedure (Born approx1matlon without
explicit lntroduction of cutoff) can.be taken seriouslr onlf'if tnere
Aexlsts.someiklnd'of_cutofr_of.sufficiently_long range;uo permit first
order perturbation methods to have real:neaning, yet-short enough so
that the perturbation calculation itself is not appreciably influenced

by ite presenCe; It w1ll be shown here that, strlctly speaklng, a‘

cutoff fulfllllng these two condltlons ‘does not ex1st.
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PROCEDURE
.”The pfocedufe adooted here is to 1ntroduce soeclflc-cutoffs into
the CN interactlon and obtaln an essentlally exact solutlon to the
scatoerlng problem by a numerlcal 1ntegrat10n procedure. The cutoffs
con51dered w1ll be of two types° tensor force "square welis", iﬁ'which

the potentiai‘is'giﬁen by |

V(r) = :F15.2 Sl-2 e 2 Mev for r> ry 312= 30':1' 75°r -0"5_"?2
. {r/R)’ :

. o (3)
V(r) =F15.28, e Mev = constant. for r £ r_

(r/R)
R-16x1013

and "hard cores", where

.V(f) :; o® for r éé ¥, and V(r) = Equation (3):for r ry -
B ’ W

The q: sign refers to what w1ll be called."attractlve" and ";epu131ve"
1nteract10ns, respectlvely° The Born cross sectlon of course is the
same-for the two signs of ‘the 1nteractlon°l

In attempting to choose. a more .or less phy31cally meanlngful
cutoff radius, r -, _the "nucleon Comoton wave length'". dﬂﬁﬂc is a
convenient gulde. Part of the motlvatlon for ch0031ng a radlal dependence
of the form e r/%/' is its slmllarlty to terms 1n the phenomonological

1nteractlons predicted‘by_meson theories. ASuch‘mot;vatlon pardly exists
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at.distances as short as H/Mc where} for example, the nucleon structure,
as well as relat1v1stlc effects, may be expected to play an 1mportant
role.' On the other hand to 1ntroduce a cutoff as large as Bﬁ/Mc (about
1/2 the meson Compton wavelength) more or less_abandons the 31mllar1ty
to meson potentialst Eseedt;ally the same limits on ro"afe obtained
by a few rough calculations which indicate that a cutoff somewhet -
smaller than 4i/Mc would lead to a bound dirpfoton, and a radius
:dgreater than BHAMC tends to destroy the de51red 1sotropy of the cross
section even in Born approx1mat10n. (The latter point is illustrated

by a plot of the Born tensor amplltude in Flgure 1.) The calculatlons
were therefore carrled out using a "short rangekcuteff", T, fiﬂﬂc s
and a “long range eutoff", roy A 2h/Mc, for both the square well and

the hard core. . The four cases considered will be denoted by the

abbreviations:

'SRSW= . short range ‘square well cutoff; Eq. (3);with r, = 2L x 10’12 cm.

IRSW: long range square well cutoff; Ea. (3) with ro = .48 x 107 om
13

SRHC: short range hard core cutoff; Eq. (&4) ﬁith.ro 24 x 107 cm,

LRHC: long range hard core cutoff  Eq. (L) with fo 48 x 10713 on
33 33 S
The Pe’ Pl and P2,- F2 states for the SRSW cdse were:

solved by numerical integration and checked by iterating the resulting
radial functions (using the integral equations) to produce the same

phase shifts and amplitudes to within a few percent. All other states
.. 3. 3. 3 . ' S E
( F - H etc.) were included'in Born approximation, with cutoffs

3 o0 H,

iéﬁofed;;'Seme'deteils-of the procedure are given in the Appendix.

4
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The phésé shifte for the LRSW eﬁﬁeff‘were'then'obteiﬁed b&ﬁa‘{”
perturbation method using as trial functions in the integral EQuétions
(A21) the radial functions for the SRSW case,'except:in the 3Po state
of the ﬁrepﬁlsive" ihteraction; which was integrafed numerically. . (The
3Po vstate is effectively attractive in the'"fepﬁleive" interaction and
repulsive ' in the "attractlve" because of a mlnus 31gn appearlng in thev
corfespondlng matrlx element of the tensor operator 312 ) Inspectlon
of the dlfferentlal Equatlons (A18) and (Al9) shows that the effectlve

well depth in the BPO- state is twice as great and of the opp031te 31gn

3
as that of the P1 state; From the remarks follow1ng Equatlons (A23)

~in the Appendix, it is apparent that the most important quantity in the

coupled system is the _PI dominant‘P'phase shift. Furthermore, in the

P dominant mode the term

- ay o
e 3 6 w.
o 2F
- ay - .
is asymptotically smaller than the term e u; from the power series
¥

expan51on 1t is clear that it also starts out much smaller near the

orlgln° Ignorlng for the moment this: coupllng term, then, and comparlng

3

L 3 3
‘the size of the P_ potential to the P. and P0 5. 1t is seen that

2 1
the latter'are, in‘absolute value, five and ten times as large as the

- : 3
former: Accordingly it is reasonable to think that the Po phase shift

in the "repulsive" case and the 3P1 in the "attractive" will exhibit

a great deal more sensitivity to the nature of the cutoff than will the

coupled 3P2 s 3F2 states, The perturbation calculations for the long

range square well cutoffs indeed show.just this sort of. behaviour. The
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coupled phase:shifts_invfact differ_negligibly fromvthose of_the SR3W.
cutoff. | |

The.foregoiug argumeutsAindicate ﬁhat a fair approximapion.to
the hard core cutoff cross sections should result from taklng the core

3

1nto con31derat10n only in the 3Po'dand P1 states and u31ng the
square well cutoff phase shifts in the coupled states° However, the
follow1ng somewhat more reflned procedure was used whlch stlll av01ds p
the labor of repeatlng the coupled numerlcal 1ntegrat10ns, Startlng

with the unperturbed SRSW solutlons, the P- domlnant P phase shlft

6&1 s 1s added to the "hard sphere" P phase shlft

- hs .

tan 8 + 3/2 (y) .

. P ‘
The nature of the approximation can be readily seen by considering a

similar procedure for an uncoupied integral equation (see Appendix for
‘notation):
oo
Jo
S . : : : " hs

sin 8hc = S ;Ua u, 8 dy + U ub g:L dy s:.n 8 + sin 8

o o (5)

§, 28" +8
[+ P Sw

Ua»

‘strong repulsion (approximates hard core). . .
' : {

e/ for ¥z Vo5 = € 79y = constant -for y£&7¥,.

‘Trial function . u, = exact solutionpwhen Ub”

0.

- Trial function ub.-= exact solution when- Uaj;~O°-.,‘,
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.6;w j: phase shift for square well cutoff.
' Shc. 2 'ph;a.se' shift for hard core cuboff,
| thé. ‘ '
p - T -P. phase. shift for hard.core alone. . .. .
Y, o R S :
__E;ﬂ_ Ub.ub gl_dy . is neglegped.__uﬁ .2
-0 '

2 2 2
_ Analogous treatment Qf;‘a13 s @

_ 31 % 33
the hard core on these quantities is negligible. The phase shifts

shows_that the influenpe of

2 2 : : _
81.3 e 831 ,»(unpertuzjbed_'.ngSW,va;.u'gﬂ .;'.‘s. 7'/2) feel the core somewhat
mqfevétrongly;_howevgr*they;may,Qeyiatq;as much as\zo%‘from_v2772',
without changing ‘t.he.‘\,_; {SJ..ms , by more than a few percent, :_(Ez;quatior;s A8.)
_;Al}.hgrdlqore coupled PF phgsgrshifts,were>obt§ined in the .
manner just indicated; al; uncoupled P-state eguations_werevintegrated
‘}numericaily. | | e
RESULTS AND CONCLUSIONS =
.,Phése,shifts and,diffgregtial cross sectionsAat'350 Mev,gre
_given in Table II and Figﬁre 2, The "attractive" interaction evidgntly:
leads to a. greater qgisqtpqpy of the,p;;plet;chSs sectiqn than does the
nrepulsiveﬂ,_regapdless Qfﬁthgﬂﬁaturg_of tne%cutoffov&fhe near agreemept
of the ggact:crégg sections at 350 Mev with;thoge:ca;qulated in quq\
approximation is;;urpriging_ip view of the la:gquisC;gpancies in the
corresponding phase shifts. Similar discrepancies at 129 Mev lead to
an exact cross section much larger than that obtained in Born approximation .

(Figure 3); apparently, then, the close agreeﬁent at 350 Mev is accidental.
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* Figure 2 also indicateslthat the greater the "volume" 0f_potential
removed by the cutoff the greater is the angulerivarietion ef the crose
section; Figure 1 illustrates the same point in Born epproxiﬁeeion.

The SRSW cutoff for the "repulsive" case was eélculatedrin
detail at 129 Mev. The results, Figure.3 (curve A) and Table ;II,
show that the predicted scatteriné'fs mﬁeh too gfeat. fThe'trqﬁble
comes almoet entirely from the large 3Po phase shift. To ihvestigate
the effect (at 129 Mev) of modifying the cutoff, attention'will be
restricted'td'the' 3P° state. (The arguments 6f‘tﬁe'pfecedihg section
1nd1cate that the coupled phase shifts are only sllghtly 1nf1uenced by
the nature of the potential at short range, the 3Pl state is repu151ve
and so ‘6bviously insensitive to the_cutoff.) A‘”BPO"“phase'ehift of =
.80 (iﬁsteed’Ef the 1.8'6f Table III) yields feughlyffhe"desifed cross
section (Figure 3, cﬁrve'B);;TTHevfeqﬁifed:phéee shift can be produced,

-13

for example, by the combination of a square well cutoff at A48 x 10 cm.

and a hard core of radius .24 x lo-lscm., (or, of course, by a hard core
alone of radius somewhat largef'than‘ 2L x 10-13”‘m.). The cross section
at 350 Mev w111 then in any case lie’ between that of the SRHC and the
’LRHC cutoffs*shown—ln—Flgure 2——— ' - ‘ |

- ﬂ Tt ‘is concluded therefore that w1th1n ‘the framework of the "
singlet and triplet models adopted by Christian and Noyes, something
similar to ﬁﬁe?f0110wing'triplet potential seems to yield the closest
appreeéh tO"fhe‘exﬁerimental ‘eross secticns i?igﬁré‘ﬁ) 4t 120 Mév and °

350 Mev:
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v(r) = 15.2 S, €. _Mev 7 r>r = 48%10 77 cm.,
vt /R ‘ T IR P
(6)
' o o= rl/R ,
V(r) - 15.2 5108 Mev = constant, r, L r £ ro
(r1/R)
o o - -13
V(r) - co r fé,ro T .24 x 10 cm,

It is to be emphasized>that significance should be attached only to the

necessary degree of "severeness" (i,e,, voﬁmnaof potential affected)
of -the cutoff ;nd nbt’to its precise nature.

It shouid be mentioned that a cutoff sufficiently short to
increase the IBPO' phase shift at 129 Mev to 2.2 is not obviously less’
deéirable than (6) (éee Figure 3, curve C); the 350 Mev scattering
would.be changed, but not drastically. The effect of so short~a.¢atdff
woula.be more'pronounced at some energy leé% ‘than 120 Mev where the
BPO ﬁhase shift will have decreased to‘ /2. |

Using the potential given by (6), the discrepancy with the:
experimental forward scattering is'considerably greatef than Origipéliy .
was indicatéd by the CN caléulations° The disagreement seems sufficiently
concluéive to justify ruling out a large class of static potentials for
the p;p interaction. The ciaés_of inaccéptable potentials is by no means

exhausti#e, however, Whenever a strong short range component (e.g., hard

core) iskincluded in the singlet interaction-(thus permitting large angle
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ﬁscatte;ing), the triplet potential acquires several more degrees of
freedom since the‘requiremeht of isotropy may be dropped. ‘In

particuiar, triplet central potentials then merit considérétion.
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The nucleon-nucleon.séattering problem for'a_noncenﬁra; #tatiq
potential will Ee formulated and discussed. The noﬁation and method of
treat@ent adapts éqnvénienﬁ;y to a descriptionvof polarizatioﬁ éffects
carried out in a congurrent.bapér?,. | |

The asymppotié férm oflthe ﬁriplet state wave_function can be
writtenloz a | “

—_— ikz ikr

(l/ n e Iinc;"' | _e . sxlnc .‘ B (A1)

r

;

;{an = triplet spin function of initial state where s(e, ¢) is
the tripiét spin'scatﬁering operator, the matrix for which is given

. : Jdm
explicitly in terms of the complex phase shifts, S‘ ? , by

Jm
| 21 &p °
S= 1 . 2> (2A+1)(e
21k ' |
1 e 0 o
-1 ¢
VA .0, 42 Be
szl |-712De . 2E © {2 De, 0 -
ik | SRR o L
218 i
Ce -92 B e A -1

(42)
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s ot E&.of ST SIS - - (43)
= e -1

g

“;?EJmé E? is an>operat6r,in @ripiet spin spabg &éfingd by'Eq;rxﬁé);
Qoulonb scattering is_neglected° The boundary COnditipné”nf,the scattering
prnblem yieln’also'ﬁne.relationship between the complex phase~éhifts and
the asymptotic form of thé nndial wévé functidns. To.obtain this rélation—
shlp, first expand the wave functlon of the system 1n elgenfunctlons,

Jm 2
‘9}', of total angular momentum J , and J B Separate the radla;nfrom

thé spln-angular dependence by means .of the expansion ; o

where the 962 - are: elgenfunctlons of J ’ JZ and the orbital
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, 2
angular momentum L . The Schrodinger equation for the radial functions

becomes:

£ - X4 ku - '(ru - 0
—t Ay Zu e

dr : -J—l o (aL)

w:he‘re V[)é{(r) - (('U[Jm, V(rlci’ G'é) t,-jzm ) is in-dependen’.o of m.
The s_pg}a.r,.product déﬁotes an integration over the surface of a sphere
aind summation ovér sp;;Ln variébles. |

. For a tensor interaction, thé orbital angulér 4,momentum is not

a constant of the motion and V(r, a'l‘, d’é) contains of‘:f‘-diagonal.'elements

between. states of t,he same parltyll

N

. 2.,
312}';-__7;-3;_9';1’1’. 0_'59 - 01"

J-1 Jt+1
- _1 0 o2(204+ 1) 0o J
B+ 1 | | |
630+ 1) - 0 —20+2) |
D
Jm

' The orthonormal set of spin-angular functions,. (IUK , can be
expreséé‘d in terms of spherical harmonics and spin functions by means

of the Clebsch-Gordon expansion:
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Jm

I 9i€

sgfy mg le; (8, 2) )[;é and

Mg Dg
2 s = s ) F m
sz 'st T ZJSJth mg "H( ' '

Defining the projection op‘eratvor- ST
“77}Jm” L. s . l_s - Jm RO
¢ (thms';rms) = %) mm,m, 4{5 so that
o . - o . (46)
fl L dmg ”)’ms' .
oMs T 'z s

the general expansion for the wé.ve function of the éyst‘ein takes the

form - . ' - o
- > > T )
A % T ' T |

- 9m"ms ms .
(A7)

u:éi'va;i sin (kr - A@J/Z: + gﬂi)

The subscript i 1is summed over the two regular solutions to the

coupled equation in:(A4) (see discussion following Equations A20).

Jm ' : '
For uncoupled states, put :C, . .= 0.  The asymptotic form of (A7)

‘ ' 5
is the same as (A1) with S defined by (A2) provided that
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-1 o Ee
EJ+21\I' I W= (dye ) |
R Mo L

o
[

@

]

(a8)

&
o
]

E; - 21\] JJi' 1,,: W 1(93. e | )

A

where: o
+§

) J21,0H 9L, I-1

e = ag.1,0+1 3J41,J-1 ©

o
cy
i

J J L o § .

.‘ ‘-. | ‘ . ] (3 & B - ) .
1(8J-1,J-1 8J+1,'J1-1') R AR B 'l(SJ:l"Hl SJH’J—I)
= - aJ-l,J+l aJ+l,J;-l,:e : .

- in( ‘ - ' - a in( v =
S B 00 S (& J1,d-1 SJ—,I_;J,-I-J.;)_ = a0 31}1.1(8-;;:‘14-1:;‘14—1- --§J+1,J-1)

o 9
2-1,0-1 7 Pos,oe T 1

Jms" E P J ..», ‘ ‘. . V |
81- = 82 -« for all unc¢oupled states. .

'The subscript i in Equations (A7) here. takes on the values J-1, J+l
instead of 1, 2. The Wronskian cénditioné,CA9) foilow immediately from
the differential Equations. (AL) or (A20): =

B ] . ', ‘
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Boundary condltlons at the orlgln require the constant to be zero, the

asymptotic form of (AlO) is (A9)

In Born approximation, Equations (A2) and. (48) become

B . . )
S = 1 (2£+1 (A11)
| QZ ’sz 751 o ww

J l,m
B Jm. - Bad. Jm, BJ B L
S . S s L
z - € - = J-1, J L= 2] -
: | (m2)
Jt Joow |
J l " - eJ':l = » 1 :f - l - J .
ZJ? i gde J+1
L J-1 - -
* For any linear comblnatlon of central and tensor potentlals, with
arbl-trarfy exchange dependence, V(r; o3 '0-2) = [ J(r)812 -d (r)] [a ~|— bP ]
- Equation (All) can be: wrltten in the closed form;O
‘ _ . -ig -2ig
B - ig S -ig. o '
-?3 = F1 4+ |Cye | , f.Z,Cl' | -C,e \ N (A13) .
2i ¢ : ig 7
03 e - | —‘Qéie Gl

where '
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F - a F(S)‘.*b:F(?ﬂv—'aG_)-_-_’:5-4 aFg+bFp- F(8) = M r2 J (r) sin Kr dr
: ,ﬁ “Kr
C, = -%4C 4 3 cos8C_
Tt R oL (a14)
C, = _2_ sin 6 C - e \ o
2 g
f—- c(e)=-M r2 J(r)»gz(Kr) dr
%2 Kr

Gy _f: _3_[c+cosec] -

-3 ..

= aCgtbC = ac(e)vc(” - o)

G "L
The pﬁéégdpreLTor,éalphlating..S will bévtolremofeffrpm the Born
sc;ttéringlmatrixv(Alé) the first few terms of its parﬁial wave

exééhsidn (All),fgnd»fo;replaCe them_by the'corresponding terms in the
exééf.séatfering matrix. The result will then correspond to a scattering
matrix containing explicitly the phase shifts of the few lowest angular
momentum states and impliﬁitly the:Bbrn approximation on all higher

states,

e A . J,0
g A&7 B am 21§, . B 3,0
g nJ J4
hg = e -1=2i 82 ; BZ = e = -1-21 §

(415)

7 ) , ' ' '
where S  is defined analogously to equations (A2), (A3), but with

A'd BlJL_‘ ovlaéing AJ‘i BJ '
¢ > Bg + replacing A, By .

For‘p—p scattering, replace S(8, @) with S(8, @) - S(#’- o, ¢+fﬁ7)5
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The triplet contribution to the differential scattering cross

' S _ * s
section, reduced to terms containing just Legendre polynomials is::

L

(Alé)

, ' ; B 6rn' '

<i<z:) - (go: n G . ) ( = 1 1r(s"s)
i~/ - e/ T @A 5

o ~triplet : : : |

trip.

f

Born B B 2 22 2 2 : 1 .
dc” 11r(s s) = 3|F| +6]aC + e, -abCo
dn- . A . L

trip.

R A AT ]

/p.i?«
4
:?_—/
| 1]

- [a"‘x : ‘?CLJ [8'2‘ n*’f"z*"z’* ﬁoﬂ’iﬂ] Z

oAl CI. Lk

| LZ& Gi -+'ZSC }

+ 62( 1 Pl 3 P3) Lo
4’3') i
dnN-

<g£_ - ;35' [/\;"'ALP +/\2P A P3+/\LPA] %Tr(s

(For n-p scattering, é%

1]

€, =€, =1.) (For p-p scattering, .

€ =0, &,=2, § =4 and a =1, bE-l) Gy s
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-~

10 1l 21 . 31 30
:-ZAZ -A2_'+ 5A2 +A2 - 3A

2

Aoo 11 21 Azo -A21
- 1+%A1+%A1v“2 Ceon,

b. 21 ' ZSZO
.—2 -
A, - 8,

10 11"
Ao + 2AO

- .2‘4% *A, F5B 34, + 18

00 21 21 - o1
34 + 340 +A. .- 3IA
-1 . 2 1 -3

~—

1

Zz{o_ ':’;:A‘zl “A2O 21
: b .l - 6  1 +’9 ; - AZSB

A10 All N 'A]_Q 11 . .
B, - 38y T 68, - A -"]55"[’24”352

00 1 . N
Al + BAl + 2Al + 3A1

20 1
34, + 24, -
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.(Al7)
11,220 © 221 110 1-_ 110
A, +3Au 2, + 3A : “+ 3A " 2A334-A -l-z‘Ao tb,,

111 1
+A +5A +3b +4A

o Aozo. 11 A‘121+ Azzo' 221_'__6')' Aozo‘l'-éAJ.zl
/\2 T Mt %Au T8, T2A, 4 %All 13 13

_ | 220 g 221 220
Hldy C 4., + %5»433 + %A +hA +2A

1 2

- AL A0 131 10 it
+104  +6A+ 8A02_+ 2A,, - %422 + 2 A

| A331- 330 121 A231 | _A131 130
2 : 2 0 - 8 12
-I'-7A 2 t *#Azz» by, 4 %‘ 22 722 + '7—A22

y , A A A 221 ' A221 231
= 72 h8 18 - 8 4 WA 4+ 100
4 %F 4' 4' 7zﬁ33 4i_57 22 -4""754422
.331 131‘ : A13'o_.. 330
2 184 .
’%A? bR t B T 4,

‘V(Eq. Al17 cont.):

i
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nzh,.
(Eq. (A17) cont.)

A010 | A'11-1- .- A121 120 010
2B ) + 6B, +68, + LB, + l;Alz#" 3

N

-3A +Z+A +3A -e—z@A +

030 .

6A12 + 18A21 + LA +12A 4—6A

231 230 121 AlZO
+ 1‘5-%412 + gS-L*Allz + l*Ao3 * 6803

where

Ja o J,-1 ad B ALY

A, - FAN = ImA ’

L= = £ 24

Aro L S AJJ"O

- Im BY |

y SR o i

J J J J

The identity - A& - A = B - B follows

J-1 94l J-1 JHL

-

111 Z>121
A12 +_ o

230

36A

131
+ 12A

(417b)

frow (A%), (A9).
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The summation has been carried out explicitly over the 38.1 s 3 PO.: 5
3 3 3 3 3 3. 0 .
P, ,°P, , "D, ,°D, , 7D and “F,_, states. In ds™ ; DF
1 | 2 1 2 37 2 i s

interference has been omitted. For p~p scattering, terms which ¢ontain -
an even. subscript do not appear and (A17) simpiifies considerably.
* . The radial differential equations for which Mexact" solutions

were obtained in the present paper will be considered now in more

detail. : :
' -ay -ay .
Let U= ¢ for y > yo s = e for y &£ yo = constant,
S Pl e . <
y Yo
P'O d u(0) - 2 u(0)+ u(0) = 4 U u(0) (A18)
2 2 , '
3 2 - e
Py d u2g12 =% u(l) 4+ u(l) = = 24U w(1) (519)
dy y
3 _ 2 ' '
P du-2 ut+u = 2 )U0(u~-3v w)
dy ¥y ‘
-(Aze)_
3 2
F Cw-12wtw = 2)00w=-376 v .
dy vy
MV, R? 2
a = 1 3 2= WoR o Ko owE 5 ¥y = kr
KR o o

The potential V(r) is given in Equation (3).
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There are four independeﬁt sets of solutions,

ul B u:2 " .u3 " ] U.L N
3 : 9 s .
Wy W, w3 wh'

vto equations (A2O)° Examinatioﬁ of the power series reﬁresentation in
Lﬁhe'ﬁeighborﬁood of ﬁhé origin shoWs'that two of the solutions always
vanish at the origin, and the other two are irregular and must be
discarded because of the usﬁal arguments én quadratic integrability and
conservat_ipp of gurrevnt,. The two regular_ 'sol‘utions, {:]l'}, {32} will |
be called a "fundamental set". Any set of'$6iutions af{siﬁg from a
linear transformation of the fundamental set will also satisfy all of the
2 boﬁﬁdary éonditions of the scatt;ring problem and hence may be used to
calculate the complex phase shifts ngs . It is not difficult to give
a_plausibility argument showing thét there nght tp be 6n¢:pair of
solutgéhs, - o e o |

2
2
W13

" in which the P state is dominant, at least asymptotically, and another
pair, .

u 2
Uy TP U4

2
Wy —>Ugg

in which the F state is dominant. Consider the ihtegral equations
corresponding to the coupled differential equations (A20) and their

boundary conditions:
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) 2 "
Y (y) = A]_o(- 81(Y)+ %hg-l(y) S U(u ‘ ;n E -{6_' u )g dy

.
%281(3') . U(ulc( .='_>._3 ﬁu3Y)gmldy 5

. . o
Ui (y)ﬂ.., ‘- AquB(y)-l' %)3_3(;') S Uk Uy -=-3 {;'ulq ?gB dy
+ %,}gB(y) | U(Au o ~3 'f"u )g 537
v e
TR E R TR el e

: .2 2 . : ' . ,
The constants Al o ° A3 o are arbitrary; the subscripts of denote

the duplicity of regular solutions and take on the values 1, 3. The
asymptotic form of (A21) yields integral expressions for tﬂhe» amplitude_,s -
'and phase shifts; |

-2 ' 8 2
A. =
1y ale( cos Q4

sin Sl°(' ZASU(u BFu}()gldy ,

(A22 cont.)
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e Ve (A22 cont.)
2 2 8 2 ,
AB"( - a3°‘ cos %
: - - , - d
a% sin Oy = :i_' g U(4 o | 3 »6 U )83 y
where
2 2 ' 2
ulﬁ( ~ alﬁ( sin (y - W’/zv + ng( )

The Weightir'l_gfj_influenc,e of the - gj(y) term (which is small throughtout
the region in which the nuclear potential is large) in the var_iou's

. v v 2
integrands suggests: that the "subdominant™ amplitudes 6,53_; s a31 - might

2 2 :
. best be kept small by placing- Al‘B = A3l': 0. 5 which amounts to choosing
2 2
813 = 831 = 77/2. In Born approximation, for which the free particle

a2 : ' 2 _
aly %1(Y). s W3 T Uy = OV s Ugy = 333 gB(y)

trial functions uil = 2 2 =

are used, Equationé (A2'_.,‘2_)‘_bécomé:

Bo2 - . 2 | B2 _ B2 _
811 = -%) S U(g,) dy R T % WA‘SU g8, 97
20 e | - 0
B, 2 g ' o2 2
= - u = = ?f’
833,‘ %/\S (e3) dy o 813 8-31 /2
, 5 . | ‘
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It is evident’from~thé behaviour of the functions gi(y)l andv'gB(y)

that, of the four quantities now describing the coupledjétate sgattering! ‘
2 2 2 2 2 L

811 s 8135 B4 '833)', 811 might be-large but the other three

are small. (a.]2_l and a§3 ‘may be normalized to ﬁﬁity_since onlj;@he }

ratios
2 2 |
al3 a ,
- and 31 - are relevant.)
> 2 '
433 : a1

In general, wherever a comparison of the exactVSolutionfwith'the Born
approximation could be made, the ;étter Qés found to be ggitéfacgérate
for the th 11 quantities (a_ 2 82 ) th al. 82
_ s a _
or the three small quantities 13 ? a31 > Qg3 ) with only 1
showing Mmarked deviations. Tablé AI gives the comparison it 350.Mev ' = =
for the SRSW case. - | |
*¢To integrate equations (A20) numerically;:it*ié onvendent t6 v ¢

start ‘with a power series solutidn_neér the origin (whefé théfpoteﬁtiél"i?

is-constant). ‘The roots of the indicial equations are: - Sl
5 - - o LSe
= - . - 5
f=6 ., B o= s
=4

°(2 =20, Pz

- | | .ziii: i n+ B
qli— ?=‘1 ] Fh :"43 vWi = bn y €1
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The fundamental set of regular solutions can fherefore be taken'® to be:
b T 0 Y 'u2ig7,,g1‘;9g Y+ £ Cn y
| - | 0
_ : a0 o : v.jgf N T éﬂ;‘ L _(A25)',
W, = EO b ¥y SRR PV log Y4 EO a v - .

The recurrences relations are:

'élnlv'[(n +:6)("";5&5) -2 ]+ K, a ,+ Kb TO

oo [0+ (n#3) - 12]+ Ky byt ey, =0
| l (A26)
.a'.;_vl_;("Z_n;+"3) +Cn[(n+2_Xn t 1) -'z‘*]"+" .Klzcn_2+.Kdé_h‘ "= 0
bn‘(2n+ 7) +4dp [(n.-[- h)(nv-}- 3) - 12]'-{—_ K, dn_2+ KC, = 0
where:v | |

 =aY¥, 2
o ° %2‘?,,.,:»'0

al
i

;K= 13 -/;Ko 3 K S1FK, 3 K= 1F UK,

. Jupper sign: "attractive" - lower sign:: "repulsive" .

o and d - are undetermined; the former merely defines

The quant;ties a
the normaliZétion ahd the latter représents the arbitrary'amount of
solution =f = 1 that may be mixed in solution o = 2.

o In gémé.cases the céuﬁléd equaﬁions were integratedvon a
differential analyzer; in others, a desk calculator was used. To check

the phase shifts, the resulting radial functions were used as trial

functions in the integral equations. Eor the uncoupled equations, a
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1
~method recently descrlbed by G. J. Kynch 3 was used Its advantage lles

e

in the fact that the nuclear phase shift is 1ntegrated dlrectly, whereas |
- in an integration of the wave function most of the effort is "was”t'ed"'
in obt'aining the centrifugal pha'.se shift. If. the quantity\“ |

-1 ¢ 4

tan =17 s(y')) represents the phase shift which would obtaln 1f

the potential for y > y were placed equal to zero, then

i 950 . vt . 2 L@+1) v
(-1) _a?_ .: .(gz Sg_z ). where _d_% - +1) u4u = u

dy Yy .
| ta2n)

I3

S(y) is elther monotonlcally 1ncreas:Lng or decrea51ng dependlng on
whether the potential is repulsive or attractlvec For a square well

\,utoff -the power series expansion for S(y) (P state) 1s glven by. -

S.(y‘:‘) = 84 y5+ s, y7+ S, y9;§- S yll let‘..-'V = £ = constant
50~ & 5, = & (8, - 4 S,-25,4 1)
(A28)
s, <28 (So+ 1) 5, = £, 4+ 258,44 S,-14 S,
2 == 00 35 6 = (o oz+35 0" "2
- 285 = L
i z+2»,525>

Within a hard core S(y) = < gl(y)/gal(-y) (P state).:
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‘ "_Trlplet p-p phase shifts and amplltudes at 350 Mev for 51ngular tensor

potentlal with short range square “well cutoff (SRSW case) '

31 8{33 8’31 -‘:813

Repulsive Exact 218 '-101 -.098 050 /2 72
| Attractlve Exact L 018 9081+ .085 : _.077} - WZ 7f/2

‘Repulsiveom 08 -.0%9 .09 06 M2 T2

| ﬁAttractivg ‘Born -.088 099 .099 —.‘06“77, | ’V/Z WZ




Tripletg&-p phase Shifts'atv350 Mev for singulaﬁw

sections plotted in Fig. 2.)

A

P

SQUARE WELL CUTOFF = |SQUARE WELL HARD CORE HARD CORE
ATTRACTIVE | REPULSIVE (R&%ngz) ATTRACTIVE| REPULSIVE| ATTRACTIVE | REPULSIVE ATTRACTIVE | REPULSIVE
- 002 | - .048 | B2 - ' 1,005 | - .029 —,,03'5»-‘3,-7..008
B> - _31 = -.033| Same as SRSW | A T
+1i.242 | +1.184 : | 41,170 | 411167 -1.185 | -1.239
o2 f-as2 | o5 - .028 | - 119 | - .129 | - .027
A2 | I g2 = 169 sameasshsw | o P bl
| -i.300 | +i.567 | 1 . C | 7L ] 410503 | -i.514 | 44,158
2| -7 | .08 | o |-.3] .o13| .o12]-.016}
B3| N R 8" =-.014 Same'as SRSW | - o} |-
. -1.016 | -1.060 3 I -1,016 | -i.062 | -1.020 | -i.066 |
- - 037 | - .08 | B - 3 |- ous | - Lome | - 082 | -.035 |
A5 ' 821 = .188] Samé as SRSW h _
-1.357 | +1.323 -3 | -1.356 | #1.325 | -1.349| 4i.331
8§ | - .626| 2.00 .880 -.616  1.24 | - .64 o1 | - .66 | 32
8\ 580 | - .360 ~ 140 5B =351 L3 - 37 | Lon | -

TABLE IXI

e

e

P .

i

tensor potential with various cutoffsgv (Cross

SHORT RANGE

LONG RANGE

SHORT RANGE

LONG RANGE

_gg-

- TY8T-Tuon
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TABLE ITI .. -
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' Phase‘shifts(forwgriplgp:p-pﬁgqaptering atii?9 Mev%_using~repulsive

singulan&tensog intéraction with,shqrtﬁrangg squareAwell (SRSW) cutoff.

Exact |

8%z 1a

2 2
_ o
n
]

o
it

ﬂ»
H

.240

Born

=590

-.295

J12

. -,024

109



. Figure 1:

Figure 2:

Figure 3:

Figure,h:

"Short range" means ro: 24 x 107
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FIGURE CAPTIONS

‘Born tensor ampiitudeéilc(é)' (Equation Al4), for singular”

potentials with various ranges (x, = To )-of ‘square well :
R
cutoffs. The radial dependence of the potentials is

indicated on the plot. x = r/R.

Differential cross sections (center of mass system) for

tripléfhp-p:scaffering (neglecting coulomb) at 350 Mev

-r/R

using a singular tensor potential 15.2 S50 & Mev’
A - T (o/R)?
with various cutoffs. Dotted curves show Born cross sectioné,

solid curves are "exact". Phase shifts are in Table II.

13

cm.; "long range"

= 48 x 10—137cm;~

Differential e¢ross sections for triplet p-p scattering

(neglecting cou;omb) at 129 Mev using cutoff'singular,

tensor potential. Curve A: SRSW Cutoff;W'Curves B, C

have .cutoffs adjusted to give the 3PO phase shifts.indicéteg@i

- on the plot.

P-p scattering at 350 Mev, 129 Mé{fusing'the cutoff .
singplar tensor poténtial given by Equation (6>vahd a
squ;fé weil sihélet interaction'(Chriétiaﬁ and,_.'vNoyes)°
Coulomh. scattering negleéted. The ¢§pé£iﬁental'points.at'

350 Mev and those at 120 Mev denoted by o are taken from

STy L 1 ' '
Chamberlain, Segre, -and Wiegand . The points,.x; at 105 Mev

. are from Birge, Kruse, and RamseyB,
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POLARIZATION EFFECTS IN NUCLEON-NUCLEON SCATTERING -~ -~
Don R, 'SWanson-v“#

Radiation Laboratory, Department of Physics.
University of - Callfornla, Berkeley,; California™

‘May 29,1952

ABSTRACT = -

‘If a.beam of unpolarlied.nucleons ls scattered-from a target
of unpolarlzed nucleons, the scattered partlcles are polarlzed (in a
dlrectlon normal to the scatterlng plane) prov1ded that the 1nter—‘>ﬁ
action contalns tensor or spln-orblt forces. The polarlzatlon can be
detected by ‘means of a second 51mllar scatterlng 51nce the cross o

section then contalns an az1muthal dependence. |
I(G ¢) = 25(9)(l~+'8005i¢) )

where E&Q) is essentlally the‘square‘of the polarlsatlono Calculatlons
are carrled out by the author for a double pP=r scatterlng using the
tensor 1nteractlon descrlbed in the precedlng paper, and:for a’donble""'
n—p scatterlng u31ng ‘the central and tensor potentlal of Christian

and Hart (contalning ‘the "half exchange" dependence proposed by Serber)
The polarlzatlon produced by the first scatterlng at the optlmnm angle'--
of A 5o° was found to vary from 6% at 4O Mev to 33% at 285 Mev '

for n-p scatterlng and from 104 at 129 Mev to 15% ‘at 350 Mev for p-p
scatterlng The n~p results (prev1ously publlshed) are consistent with -
the aZimuthal_asymmetry detected in a double scatterlng experlment

reported by L. Wouters.
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IL, POLARIZATION VEF_F‘ECTS IN NUCLEON—NUCLEON;SCATTERING' .
Don R. Swanson

Radiation Laboratory, Department of Physics
University of Caln.form.a, Berkeley, California

May 29, 1952

'SCATTERING OF A POLARIZED BEAM
* For a single nucleon-nucleon collision in a definite initial
spin state 7{1 , the intensity of the scattered state is given by

(57(1’;7415: the"expec‘:t.ation value of 5T S . S is the 3X3 triplet
spin scatterlng matr:.x defined in the Append:t_x of preced:x.ng pa.perl
S (4Xh dlmensmns) is the same w1th singlet s'cates 1ncluded The |
result of a measurement,'t.o whic':h’mamr sca.ttering events centribute is
necessarily the average expectation value of the meva.s’ure‘c‘l .qﬁaht;i’c.y |
taken over an ensemble of all possible initial states of the system.
The tota.llty of mi‘ormatlon concermng a system can be expressed in
terms of the q-dimensmnal density matrlx e(q) Z %f ai°( a;,’(
where Z °‘ u; 1is the wave function of the s‘yst_.em.in tI'qe .s:t.ate.v
Q(_, & ~is probability of occurrenc_e; and ﬁi ;_ complete set of‘ o
" expansion functione. Following the method .of Welfensteip and As_hkin2>3’
’vletk e(h) refer to th'e'.i,.njft,ial spin states of the two-nucleon systems;
fhen the differentia.l»scafgter;ng c'ross -se'ct_ioh is given by Tr( évb’)‘s—* 5).
Consider for t.ﬁe moment an ensemble of bpe particle (spin 3) systems;
a mea,eurement of spin will ﬁeld the result <GTf > = Tr( e(z)ﬁ) B

from which it fp]_.loW_s that the (two dimeénsional) density matrix can be
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written 6(2) ._'—_" %— [l + <G— > Q—} . .Thé‘: fbuf din{ensiehel"deneity
matrix describing a spin state ensemble of two—partlcle systems is glven
by the "direct product"h of the den51ty matrlces for the one particle
ensembles; provided that the”states,ofvone_partiele are not correlated

with ‘those of the other: .

éh) (l, 2) = _’Q(z) '(.l)_-. x,_e(z) (2) or
(e(h))la 1 3 [e(2) (l)] [Q(Z) (2) ] . v

" Hence, o o o
¢V @y dar@rd
| - | @

The differential cross section for a,beeﬁ'of_perticleslof"poiarization‘
g@t) scattered from an’unpolarized target <G—’Z> 20
I : '
. 1 '
is therefore given by: )
T B o S S
Tr (Q st s) = Lo 1r(sT 5)+ {0 Do Iric x1578) |
. (2).
= Lo'mr@E?3) + 17> (T 5T s)
h .. .' l'8 .

'-where ? 1s the triplet spln operator, and I the 1ntens:.ty of the _
1n<:1dent beam. » The second equallty follows from the absence of meurlx

elements in S between trlplet and 51nglet states , hence the latter do
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not. contrlbu’c.e to the "polarlzatlon term" . 1. <CS‘ >-Tr(6"‘ S S)
: g

For an 1nteract10n of the form

[A(r) + ? 012 B(rﬁ] [ 1- b P J ,

$ is proportional to the ‘(triplet) unit matrix and so the polarization
term vaﬁishes. In the case of a tensor or spln-orblt foree, it follows °
from Eq. (A2) (reference 1) (or can be proved by symmetry argumentss)
that the polarization term in Eq. (2):is nonva‘nishing end proportional
to the component of pOlarizatioﬁ of the incident beam normal to the
scattering pla'ne. Detection of ah“aziinuthai dependenee of t.his type

in the nuecleon-nucleon sce‘r,t.ering cres’s section woul.d’: therefere .
c.onstit.ute direct evidence fer the presence of neneentrai forces, The
problem now to be considered is that of producing the incident
polarized bee.iﬁ of hlgh eheréy (s véfai:‘es 'leiorie Ade not contribute to
po,lari;a’ciien) nucleons.

| L If _.an‘;unpolariz‘ed,beam_' strikes an unpolarized target, the . . . .

polarization-of ‘the scattered beam is .given by

& 7(1; &5x)  m@ssh
(g Xl:‘g){l) L Tr(S S+)

h P oo con LT ‘ o . N :: . o .
where é ) = % 1 is the density matrix describing the initial

system. A proof, basec_i -_on‘the_ trans:fgmetien properties of S, that -

-

Tr(o" Ss ) = Tr(c—:s+ S)
3

has been glven by Wolfensteln and Ashkln . AAtnaa]..éebrei:c tour de foree," |

~however, usmg the form (A2) (reference l) ‘for S',_‘jrields"the equality:
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+ - ' ‘ r" ) ) v [ 2-, R . ) ’ v... ]
T s’ 8)-T 38') - > J
r(S ) r(cry $S) = tan ikgos g 1. - Pt it ]__;)PJ"_l

J J 5 J

x [A;-E-C] -
| 3

which vvanishes immediately for purely central or S°L forces (uncoup‘léd,

o Jmg J v ,
therefore 81 = 81 ) and does so for tensor forces as a consequence

1
v o . ’

of the Wronskian conditions (A9), (Al7b) reference 1.

If the 21 direction is taken as that of the incident beam,
then : Tr( 0';1 st s) = vO may be readily‘confirmed_. Placing the .
x, ~axis iﬁ the scattering plane, (¢1=0), the polarization is given by: .

P._ (8, #.=0) = _1
Iy 8,

ST N Le.) .
r(S~. S, S,) = 1*°1/ 3 P_ =P _.=0 .
1V . .

| (4)

I, = % Tr(sy s)

1 _ 1~
where the subscripﬁs 1 will be used throughout to denote the first
scattering. |

In the first scattering, introduce the subscript (b) to represent

the particles originally in the incident beam, and (t) to denote-those
from the target. 'The polarization of the two scattered beams is the

same s
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m(lx 6339

e (5)

X}

The nucleons emerglng at some la.boratory angle @®, @ ) mll be
used to form the 1nc1dent beam for a second scatterlng. If particles
(b) are to be used, the_centep of mass angles are © = 2 ® and
g = é, for parti‘cles (t), however, 6=7~-20 a.nd g = é +7 .
Consider, - for example, the experiment  of Wouters6 1n whlch 1n01dent =
,”protons produce a neutron beam by means. of a (p,n) reactlon° The (p,n),

collision is descrlbed by s(e 525), and the polarlzatlon oi‘ neutrons
observed at ® , ] is. ﬁc_t) (e B)  where 6= 7 -2® and

§=@ +7 . e scattering matrix itself carries all information on

the exchange nature-of the interaction. In the case of two protons
the S matrlx is antlsymetrlc S0 1t is of course immaterial whether
=20, ¢-@ or. 9 77’ 2@ = @1-17/ is used..
The subscript 1 will be used hereafter in place of (b) or (t)
to 1ndlcate that the operator in question refers to once»scattered

particles which form an incident beam for the second scat’c,er:mg°

THE DOUBLE SCATTERING PROBLEM

'The coordinate’ system for the second- scattering, (x y2 2)
is obtained: by rotating (x_l ¥y z1) about the . ¥y axis until the
z axis lies along.the new incident beam (Figure 1). Hence PYl Py

is unchanged, and represents (in the form of <G‘i>) just the quantity .
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that must appear in the density matrix for the new initial state

—>

(L) (2) (2) - 4 LNy =
eV = 07 x € 2kl <oy = ey
(6)
The subscrlpt 2 refers to partlcles of the second target .The latter
is supposed to be unpolarlzed, so that <3$’j> . The dlfferentlal

cross sectlon for the second scatterlng is obtalned from (6) (2), (3),

and (4):

<§%—) .'= | J(el',‘ 6, 4,) = Ip(61)15(6,) + Q(81)Q,y(8,) cos B, -
B e ) (7)
h Il(91> and 12(62) are the differential cross sections with polarization
terms omitted. | -

‘In -the -case of p-p scattering, or n-p scattering with exchange-
dependence 1 £ Px s SO thet interaction occurs only in orbital

angular momentum states ofethe'samé pafity;fthehfthe‘cbhdition_3
(_s*, s)(e, ) = (s s)(17’ - o, ¢+7r‘)

iﬁpiie‘s; QUB) = - Q(7r - 8) so that Q(7//2) 0. The contribution
to the polarization at 8 = 27/2 must therefore come exclu51vely Tig
from odd-even interference terms; the p0351bllity of such a measurement
suggests a test of the 1+ PX' dependence proposed by Serber. -

\ Ignoring for the moment-the fact -that the second scattering
oocurs,atna_somewhat:lower energy tbanlthe»first,,end.agsuming_the;two

involve the same types of particles (i.e. both n-p or both p-p), then
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the meae?ree ree}e at ?ﬁe epti?g? apg;e; ‘91«:v92 = emax-. is:
‘g = @0 _ 1+ T
Rz M2 o 2T oL (8)

J(P,=7) 1 - (Q/1)°

Barrlng a somewhat remarkable dependence of Q(e) on energy, a ratlo
greater than 1 should 1n general be expected as the experlmental

result whenever el ~ 92  R A relatlonship whlch led to Equatlon (3)

. [ 2 J J
12(8 -‘D) oot 9 ' (4 - C- E) = Z’[P‘E"ﬁ J(J+1)PJ+l] [(AJ+1 - 45)

dJ - d _
- (BJ+1 - BJ_l)] = 0
(9).
can be used to simplify appreciably the form of - Q(8) by eliminating A-C.
Qo) = i I,,;»[E’(B'-l-' D )*+ D' B' cot e]‘-

5;2‘

e ' . (20)

Eé, em.fére'defined'in'(Al7) reference 1..

-RESULTS AND CONCLUSIONS
"~ For p<p scattering, Q(8) is plotted in Figure 2 for all cases

considered in'reference 1 except the long range hard. core model which



UCRL-1841
~50-
has been oﬁicced becaose tﬁe couoled phase shifcs ;ere foundhoni&
roughly° The dominant term of Eq° (lO), whlch alone yields a value of
- Q(8) correct to w1th1n 50% or so is' qulte 51mple, for 31ngular potentiale
(e CL) is very small, so that Q' ;>;> QI 3 only P states have been

kept°

il

a@ & 1] 87 [5% 2 L | e

Lan

The importance of obtaining accurate values for the coupled 'BPé.’ﬁhaEé '
shifts is clear; even rigorously there is mo contribution to the
polarization from the VBPO “and- P, states alone. The polarization

co

P(e; g-0) = Qe
R -

is'plotted in Figure 3;.thevvalue of I(8) was.taken in all cases to be- .
the predicted triplet cross.section for the potegtial.model,ueed;_tpat_;5,
the singlet scattering as aesumed,oegiigible‘foerG Z 50° If, .
instead, it_is_essumed_thet:singlet_scaiteringucen be introduped in~§€9¥;
a way as.;o‘pring%the,crose eection.in_eechvceee up co phe‘experimenteli
value cfvh,milliberos, then Figure 2!Krather:than’Figurev33 shoye‘more .
clearly.the dependence of polarization on choice of_cuﬁoff. -With the o
potentlal given by Equation (6) of reference 1, the polarization e
(at © 24.50°) 1s 108 (R X 1.02) st 129 Me.vand-:ﬁ%.(& % 1,05) at:
350 Mev; |
“LE?? n-p scattering,vcbe‘tensor and%ceqtreiﬁinperectiopfof

Christian and Hart (containing the "half exchange" dependence proposed

!
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by Serber) is used. In Flgure A, Q(Q) is plotted for energies of
40, 90, 200 285 Mev. A 51mllar plot of the polarlzatlon Q(Q)/T(G)
was glven in an earller report7 A comparlson of Q(e) with Q/I
111ust;ates phe point that I(e). alone carrles almost the entlre
energy dependence of the pelarizatlon° |
If.edd stafe forces were introduced into the triplet n-p

interaction (vy cheﬁgingjthe'1'*1?#'dependence), ﬁhe;pelariZation
‘could;ee'Considerably'iarger because of the contribution from S-P

interference:

s oy e 01 ]* N
s (R @] e
| | (12)
To obtain some idea ef the magnitudeﬂpf'this £erm; sﬁppose the same
amount of triplet odd“state'interaction is introdueed into the n-p
-Hémiltohieﬁ:as.ﬁaS'used?fef“the'p4p’interéction”in”the preceding
paperl.“ihterpolefiﬁg the p-p‘phase shifts”to obtain rough values ‘at
200iMev, the result is @ p A 5 sin' @ mllllbarns leading to
R(ZV/Q): 25 1.03:. Hence, although the asymmetry is appreciably
influenced by the presencé of odd states , the quoted uncertainty in
6

the ekpefimentai feeulte of Wouters® is toergfeat to permit any sharp

conclu51ons to be. drawn on the-qeestlon of the exchange dependence of
the'n—inntefactioh;':The;deEirabiliﬁy’of furﬁhef“exberiments on n~-p
double scattering is, however, indicated.

This’werkfﬁeezpérfefmedfﬁhder the auspices of the Atomic Energy

Commission, “~ -
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FIGURE CAPTIONS
Figure 1: Coordinate axes for double scattering problem.

Figure 2: Values of Q(6) = %_Tr(cr; st S)ANfOr'p-pfscatteringxat
' ‘;(lab.rsystem) energies of_?SéMev;_12§ Mev. é .= scattering
éngle in center of mASétsyst;ﬁ, The interéctions indicated
(éﬁﬁéff sihéﬁIaf:ﬁéﬁsofﬁféié thdéélfof:ﬁﬁichlcrOSé éections
were computed_ih reference lv(Figurngzg 3);. .
Figure 3: Values of 9&92’-;f¢r P-P ségtter;ng at;359”MeV,__g;t(9) =

I.(e) |
triplet cross section., Polarization is given by .

Q‘§62. 3
L8 1 e)

Is (8) = singlet cross section. The funétion plotted hence
represents the polarization at those angl§s>(6 :> 506 for
Christian and Noyés model)'for-WHich singlet Scattering is
negligible. .The interactions indicated-(éutoff singular
ténsor) are those for which cross sections were cbmputed in

reference 1.

. 1 ‘

Figure 4: Values of Q(e) = 3 Tr((?&-s+ S) for n-p scattering at the
energies indicated. The interabtibn used is that of Christian
and Hart. A similar plot of polarization (Q/I) is given in

reference 7.
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