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ORIGINAL ARTICLE IMAGING

Assessing Pediatric Mild Traumatic Brain Injury and Its
Recovery Using Resting-State Magnetoencephalography
Source Magnitude Imaging and Machine Learning
Ming-Xiong Huang,1,2 Annemarie Angeles-Quinto,1,2 Ashley Robb-Swan,1,2 Bianca G. De-la-Garza,3

Charles W. Huang,4 Chung-Kuan Cheng,5 John R. Hesselink,1 Erin D. Bigler,6 Elisabeth A. Wilde,6

Florin Vaida,7 Emily A. Troyer,3 and Jeffrey E. Max3,8,*

Abstract
The objectives of this machine-learning (ML) resting-state magnetoencephalography (rs-MEG) study involv-
ing children with mild traumatic brain injury (mTBI) and orthopedic injury (OI) controls were to define a neu-
ral injury signature of mTBI and to delineate the pattern(s) of neural injury that determine behavioral
recovery. Children ages 8-15 years with mTBI (n = 59) and OI (n = 39) from consecutive admissions to an
emergency department were studied prospectively for parent-rated post-concussion symptoms (PCS) at:
1) baseline (average of 3 weeks post-injury) to measure pre-injury symptoms and also concurrent symp-
toms; and 2) at 3-months post-injury. rs-MEG was conducted at the baseline assessment. The ML algorithm
predicted cases of mTBI versus OI with sensitivity of 95.5 – 1.6% and specificity of 90.2 – 2.7% at 3-weeks
post-injury for the combined delta-gamma frequencies. The sensitivity and specificity were significantly
better ( p < 0.0001) for the combined delta-gamma frequencies compared with the delta-only and
gamma-only frequencies. There were also spatial differences in rs-MEG activity between mTBI and OI
groups in both delta and gamma bands in frontal and temporal lobe, as well as more widespread differ-
ences in the brain. The ML algorithm accounted for 84.5% of the variance in predicting recovery measured
by PCS changes between 3 weeks and 3 months post-injury in the mTBI group, and this was significantly
lower ( p < 10�4) in the OI group (65.6%). Frontal lobe pole (higher) gamma activity was significantly
( p < 0.001) associated with (worse) PCS recovery exclusively in the mTBI group. These findings demonstrate
a neural injury signature of pediatric mTBI and patterns of mTBI-induced neural injury related to behavioral
recovery.
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Introduction
Traumatic brain injury (TBI) in children and adolescents is a

major public health problem. The Centers for Disease Con-

trol and Prevention reported approximately 640,000 pediat-

ric TBI-related emergency department (ED) visits among

children 14 years of age and younger in 2013,1,2 with most

TBIs (70-90%) falling in the mild range of severity.3,4

Behavioral and psychiatric studies of pediatric mild

TBI (mTBI),5,6 with some exceptions,7-9 have demon-

strated a significant increase in symptoms and disorders,

respectively, in the first 3 months post-injury compared

with non-brain-injured age- and sex-matched controls

(e.g., children with orthopedic fractures). These findings

are driven by a minority of children with mTBI (10-

23%),6,10-12 who constitute an important group worthy

of study in efforts to mitigate suffering on an individual

basis as well on an epidemiological basis due to the prev-

alence of mTBI. Investigations of mTBI by our group6,13

and others5,12 have been guided by a biopsychosocial

model approach.14 In contrast, the current study focused

on a biological approach and by utilizing resting-state

magnetoencephalography (rs-MEG), attempted to ad-

dress two overarching questions: 1) What is a neural in-

jury signature of pediatric mTBI (i.e., how can the

brains of patients with mTBI be distinguished from pa-

tients with non-brain orthopedic injury?); and 2) What

pattern(s) of neural injury determine behavioral recovery

from early post-injury to sub-acute outcome (e.g., 3

months post-injury)?

With regard to the question about a neural injury sig-

nature of pediatric mTBI, studies utilizing magnetic res-

onance imaging (MRI) in children with mTBI have

yielded mixed results. Longitudinal morphometric studies

specific to mTBI in children are limited, but suggest the

potential for persistent alteration following injury.15-17

Other structural imaging techniques such as diffusion im-

aging have been conducted because diffuse axonal injury

(DAI) is known to play a major role in brain dysfunction,

producing an imbalance in excitatory/inhibitory neural ac-

tivity after mTBI.18 It is widely assumed that white matter

tracts are primarily vulnerable to DAI, which causes corti-

cal network disconnection.19,20

However, diffusion imaging results are variable for pe-

diatric mTBI.21 In the acute to sub-acute post-injury in-

terval, group differences have been reported in

commonly used metrics such as fractional anisotropy

(FA) and mean diffusivity in select white matter

tracts,16,17,22–35 as well as global and regional disruption

to structural network connectivity,36,37 though others re-

port no difference for those with mTBI.38–42 Results of

longitudinal diffusion imaging studies in pediatric mTBI

also reflect mixed results, with some reflecting resolution

of change over time,43,44 and others reflecting increased

or persistent differences following injury.17,27,42,45 Studies

assessing resting-state function via functional MRI (fMRI)

after childhood TBI are limited and almost exclusively

cross-sectional, but they generally demonstrate persistent

alterations in the functional connectivity of multiple

resting-state networks even in mTBI.46–49

In our preliminary study,50 we utilized a different func-

tional imaging technique (i.e., rs-MEG). rs-MEG source

imaging in the children with mTBI, in contrast to control

participants, showed: 1) bilateral insular cortices hyper-

activity in alpha, beta, and low-frequency bands, left

amygdala hyperactivity in alpha band, and hyperactivity

from left precuneus in beta band; and 2) bilateral dorso-

lateral prefrontal cortices hypoactivity in alpha and beta

bands, hypoactivity from ventromedial prefrontal cortex

in beta band, hypoactivity from ventrolateral prefrontal

cortex in gamma band, hypoactivity from anterior cingu-

late cortex in alpha band, and hypoactivity from right pre-

cuneus in alpha band.

There are limited data related to the second question

about pattern(s) of neural injury that determine behav-

ioral recovery from early post-injury to sub-acute out-

come. A study examining microstructural white matter

differences found that quicker resolution of post-

concussion symptoms (PCS) and return to play in adoles-

cent football players was related to higher FA in the

inferior longitudinal fasciculus, inferior fronto-occipital

fasciculus, and uncinate fasciculus.51 In another study,

lower FA in the uncinate fasciculus was associated with

persistent PCS.26 Other biologically-related variables

such as severity of injury (more severe type of mTBI), re-

peated mTBI, and inpatient hospitalization for the injury,

increase the risk of behavioral and psychiatric sequelae.52

A study of consecutively hospitalized children with

mTBI, most of whom had a lesion detected on a research

MRI, found that frontal white matter (network) lesions

were significantly associated with novel psychiatric dis-

orders in the first 6 months post-injury.13 However, the

vast majority of pediatric mTBI patients are treated in

the ED, are not hospitalized, and very few have lesions

demonstrated on MRI.5,53

As reviewed above, the state of the science with regard

to defining a neural signature of mTBI and clarifying pat-

tern(s) of neural injury that determine behavioral recovery

from early post-injury to sub-acute outcome, is at an early

stage of investigation. Traditional MRI techniques have

been relatively insensitive to the effects of mTBI, while

diffusion MRI focused on microstructural white matter

has shown interesting, but mixed, results. Many of the

knowledge lacunae may be filled by utilizing MEG. Con-

sistent with our preliminary study of pediatric mTBI,50

adult mTBI studies have uniformly demonstrated that

MEG is a highly sensitive technology in terms of detecting

evidence of gray matter (GM) injury.54–60

The possibility that GM pathologies following mTBI

are at play was suggested by an animal study showing

that DAI substantially alters the integrity of GM.61 In
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this regard, MEG source imaging can detect subtle pa-

thology that often goes undetected in individuals with

mTBI when using structural neuroimaging tech-

niques.55,56,62 MEG directly measures the magnetic sig-

nal due to neuronal activation in GM with high spatial

localization accuracy (2-3 mm in cortex)63 and high tem-

poral resolution (< 1 msec), which translates into excel-

lent frequency specificity at different frequency

bands.64 Regional resting state (rs-MEG) slow-wave

(delta band 1-4 Hz, extending to theta band 5-7 Hz) mark-

ers are highly sensitive in distinguishing patients with

chronic and sub-acute mTBI with persistent PCS on a

single-subject basis from neurologically intact individu-

als.55,56,62,65,66 Abnormal slow-waves have also been

reported in a cohort consisting of acute, sub-acute, and

participants with chronic mTBI.57

We also discovered that rs-MEG gamma-band (30-

80 Hz) markers showed striking hyperactivity in adults

with combat-related mTBI.67 In addition, task-evoked

MEG recordings during working memory detected ab-

normal alpha, beta, and gamma signals throughout the

brain in adults with combat-related mTBI, which corre-

lated with poorer cognitive functioning.68 However, the

vast number of markers of aberrant neuronal function

throughout the brain poses a significant challenge for

clinical applications. In this regard, analytic approaches,

such as machine learning (ML) are needed to discover

optimal combinations of aberrant features across differ-

ent frequency bands that best distinguish mTBI and

also predict neurobehavioral recovery, especially for

the pediatric population, which is virtually unstudied.

ML is a data-driven approach that optimally integrates

high-dimensional features in large datasets. It has been

used to classify mTBI and healthy control (HC) partici-

pants based on rs-MEG phase-synchronization analyses

of functional connectivity. For example, Vakorin and col-

leagues applied a support vector machine (SVM) classi-

fier to rs-MEG source-based measures of simple

functional connectivity, reporting that reduced delta and

gamma connectivity, together with increased alpha-

band connectivity, distinguished civilian patients with

mTBI from HCs with 88% accuracy.69 Dimitriadis and

colleagues70 applied an extreme learning machine classi-

fier to rs-MEG sensor-based functional connectivity mea-

sures derived from graph theory to measure the overall

efficiency of information transfer across the brain and

at local levels. They reported that alpha-band local effi-

ciency distinguished civilian patients with mTBI from

HCs with 100% accuracy.70 These studies illustrate the

great potential of ML approaches to uncover optimal

combinations of discriminating features, which can

streamline the interpretation of analyses from high-

dimensional data. Despite the very good to excellent clas-

sification accuracies reported in these studies, functional

connectivity metrics do not always easily pinpoint the in-

jured brain regions due to the involvement of multiple re-

gions in functional connectivity analysis and the many

interconnecting pathways that connect these regions.

Our focus was to examine a ML model using acute/

sub-acute rs-MEG data for: 1) accurately classifying pe-

diatric mTBI and orthopedic injury (OI); and 2) predict-

ing PCS recovery. We investigated the performances of

rs-MEG ML when modeling individual delta- or

gamma-band and when both bands were combined (i.e.,

both-band model). This strategy was to determine if re-

gional changes in one or more frequency bands optimally

distinguished participants with mTBI and OI. Further, we

evaluated the spatial differences of rs-MEG data using

the conventional voxel-wise group statistical analysis.

In addition, we studied some regional rs-MEG features

or classifiers by correlating them with measures of PCS

recovery.

The hypotheses underlying this investigation were as

follows:

� Hypothesis 1a: The ML algorithm using post-injury

rs-MEG data will predict cases of mTBI versus OI

with sensitivity and specificity both over 90% at 3

weeks post-injury. The predictive performance will

improve significantly when data from rs-MEG

delta (1-4 Hz) and gamma (30-80 Hz) frequency

bands are integrated. Hypothesis 1b: We predicted

that spatial differences in rs-MEG activity between

mTBI and OI groups will involve both delta and

gamma bands in disparate brain regions, particularly

in frontal lobe poles.

� Hypothesis 2: A ML algorithm with post-injury

rs-MEG data will explain >80% of variance in pre-

dicting the recovery as measured by PCS changes

between 3 weeks post-injury and the 3-month

exams in the mTBI group. The predictive perfor-

mance will be significantly lower in the OI group.

Methods
Research participants
Study participants included 98 children, age 8 to 15 years,

consecutively treated at the ED at Rady’s Children’s

Hospital, San Diego, for either a mTBI or OI. Inclusion

criteria for the mTBI group were: 1) evidence of a TBI

that resulted in an observed loss of consciousness; 2) a

Glasgow Coma Scale (GCS)71 score of 13-14; or 3) a

GCS score of 15 with at least two symptoms of concus-

sion as noted by the ED medical staff (e.g., persistent

post-traumatic amnesia, transient neurological deficits,

vomiting, nausea, headache, diplopia, dizziness).

Exclusion criteria for the mTBI group included: 1) loss

of consciousness greater than 30 min or a GCS score of

less than 13; 2) any injury requiring neurosurgical inter-

vention; 3) documented history of previous TBI meeting

the above criteria for at least mTBI; 4) associated injury
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that is severe, documented with the Abbreviated Injury

Scale (AIS)72 score greater than 3; 5) hypoxia, hypoten-

sion, or shock associated with the injury; 6) associated in-

jury that is likely to interfere with cognitive testing (e.g.,

injury to dominant upper limb); 7) alcohol or drug inges-

tion involved with the injury; 8) pre-injury neurological

disorder, schizophrenia, autism spectrum disorder, or in-

tellectual deficiency; 9) any medical contraindication to

MRI and MEG; 10) illegal immigrant status; 11) history

of child abuse; 12) extensive dental hardware or ortho-

dontia (e.g., braces and large metal dentures; fillings

were acceptable) or other metal objects in the head,

neck, or face areas that cause artifacts in the MEG data,

not removable during pre-processing; and 13) currently

taking medications (e.g., some sedative neuroleptics

and hypnotics) known to alter the power of brain

rhythms.73

Inclusion criterion for the OI group was the presence

of upper or lower limb fractures. Exclusion criteria for

the OI group included: 1) injury to the head or TBI;

and 2) exclusion criteria 3 through 13 for the mTBI

group above. Determination of eligibility was made by

review of the electronic medical record and screening in-

terview with the parent/guardian.

Participants were invited to attend three research ses-

sions at different time-points: 1) at baseline (approxima-

tely 3 weeks post-injury); 2) at MRI (approximately 7

weeks post-injury); and 3) at 3-month follow-up. Entry

criteria were specified with respect to the initial ED

visit regardless of symptom status at the baseline or sub-

sequent visits.

Post-concussive symptom assessment
During the baseline and 3-month follow-up sessions, par-

ents rated PCS on the Health and Behavior Inventory

(HBI) scale,74 which is comprised of 20 items that assess

cognitive (n = 11) and somatic (n = 9) symptoms that have

been related to TBI. The 11 cognitive symptoms include

problems with attention, distractibility, concentration,

memory, following directions, daydreaming, confusion,

forgetfulness, task completion, problem solving, and

learning. The nine somatic symptoms were headaches,

dizziness, the feeling of a spinning room, faintness,

blurred vision, double vision, nausea, commonly fa-

tigued, and easily fatigued. The frequency of each symp-

tom is rated on a four-point scale ranging from 0

(‘‘never’’), 1 (‘‘rarely’’), 2 (‘‘sometimes’’), and 3

(‘‘often’’). Thus, the ranges of the HBI domain scores

are from 0-33, 0-27, and 0-60 for cognitive, somatic,

and total score, respectively. The scale has been used

and has been recommended for use in research in pediat-

ric TBI studies.74,75 Factor analyses demonstrated dimen-

sions representative of cognitive and somatic symptoms.

The HBI has adequate construct validity, good to excel-

lent internal consistency, and reliability, and can be

used in longitudinal assessments of children.76 The

parent-rated version rather than the child-rated version

of the HBI was used for these analyses because the parent

may be in the best observational role to rate symptoms

following injury.77 Parents rated their child’s somatic

and cognitive symptoms during the 1-month interval

prior to the injury, the week of baseline (acute/

sub-acute visit), and the week of the 3-month follow-up.

The severity of cognitive, somatic, and total symptoms

is calculated by summing the scores in each domain.

MEG data acquisition and signal pre-processing
rs-MEG data were collected at the University of Califor-

nia, San Diego MEG Center using the VectorView�
whole-head MEG system (Elekta-Neuromag, Helsinki,

Finland) with 306 MEG channels. The rs-MEG exam

was conducted during the acute/sub-acute baseline post-

injury visit. Participants sat inside a multi-layer

magnetically-shielded room.78 MEG recordings were di-

vided into two 5-min blocks where the participant was

instructed to keep his/her eyes closed and empty his/her

mind. Data were sampled at 1000 Hz and run through a

high-pass filter with a 0.1 Hz cut-off, and a low-pass filter

with a 330 Hz cut-off. Micro eye blinks and eye move-

ments were monitored using two pairs of bipolar elec-

trodes, and heart signals were monitored with another

pair of bipolar electrodes.

Substantial efforts were taken to help ensure that par-

ticipants were alert during the rs-MEG recordings. Prior

to MEG sessions, participants completed a questionnaire

about the number of hours they slept the previous night,

how rested they felt, and if there was any reason that they

might not be attentive and perform to the best of their

abilities (e.g., headache, pain). Sessions alternated be-

tween eyes-closed and eyes-open conditions, and eye

blinking and movement were monitored. During MEG

recording, participants were viewed on camera and tech-

nicians continuously monitored alpha band oscillations,

which are consistently associated with tonic alertness.79

Pre-processing steps to remove artifacts
and noises in rs-MEG data
Eyes-closed rs-MEG sensor waveforms were first run

through MaxFilter, also known as signal space

separation,80-82 to remove external interferences (e.g.,

magnetic artifacts due to metal objects, strong cardiac

signals, environment noises) and to co-register the

MEG data by removing the small head movements across

the two 5-min eyes-closed sessions. Residual artifacts

near the sensor array due to micro eye movements and re-

sidual cardiac signals were removed via Independent

Component Analysis using Fast-ICA.83,84 The wave-

forms associated with top independent components

were examined by an experienced MEG data analyst,
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along with eye and heart signals. Independent compo-

nents associated with eye movement, heartbeats, and

other artifacts were removed.

Structural MRI, MEG-MRI registration, boundary
element method forward calculation
Structural MRI of the participant’s head was collected

using a General Electric 3T MRI scanner. The acquisition

contains a standard high-resolution anatomical volume

with a resolution of 0.94 · 0.94 · 1.2 mm3 using a T1-

weighted three-dimensional inversion recovery prepared

fast spoiled gradient recalled (3D-IR-FSPGR) pulse se-

quence. Scanner-related non-linear imaging distortions

were corrected using a gradient non-linearity correction

approach.85 To co-register the MEG with MRI coordinate

systems, three anatomical landmarks (i.e., left and right

pre-auricular points and nasion) were measured for

each participant using the Probe Position Identification

system (Polhemus, USA). By using MRILAB (Elekta/

Neuromag) to identify the same three points on the partic-

ipant’s magnetic resonance (MR) images, a transforma-

tion matrix involving both rotation and translation

between the MEG and MR coordinate systems was gen-

erated. To increase the reliability of the MEG-MR co-

registration, approximately 120 points on the scalp

were digitized with the Polhemus system, in addition to

the three landmarks, and those points were co-registered

onto the scalp surface of the MR images.

The T1-weighted images were also used to extract the

brain volume and innermost skull surface (SEGLAB soft-

ware by Elekta/Neuromag). The Realistic Boundary Ele-

ment Method (BEM) head model was used for MEG

forward calculation.86,87 The BEM mesh was constructed

by tessellating the inner skull surface from the T1-

weighted MRI into *6000 triangular elements with

*5 mm size. A cubic source grid with 5-mm size was

used for calculating the MEG gain (i.e., lead-field) ma-

trix, which leads to a grid with *10,000 nodes covering

the whole brain. MRIs were reviewed by a board-certified

neuroradiologist ( JRH), who determined that no mTBI or

healthy control participant had visible lesions on MRI.

MEG source magnitude imaging
using Fast-VESTAL
Voxel-wise MEG source magnitude images were

obtained using our high-resolution Fast Vector-based

Spatio-Temporal Analysis (Fast-VESTAL) MEG source

magnitude imaging method.67,88 This approach requires

the sensor waveform covariance matrix. The artifact-

free, eyes-closed, rs-MEG sensor-waveform datasets

were divided into 2.5-sec sections. The data in each sec-

tion were first direct current (DC)-corrected and then run

through one of the following band-pass filters for delta

(1-4 Hz) and gamma (30-80 Hz) bands. Notch filter at

60 Hz was applied to remove the power line signals.

Waveforms from all 306 sensors were used in the anal-

ysis. Sensor-waveform covariance matrices were calcu-

lated in the time domain for individual sections after

the band-pass filtering, in the same way as in our previous

studies to preserve the phase information.54,88 Then the

final sensor-waveform covariance matrix was obtained

by averaging the covariance matrices across individual

sections for the concatenated 10-min rs-MEG data that

combined the two 5-min blocks. From the covariance ma-

trix, whole-brain MEG source magnitude images for each

frequency band were obtained for each participant using

the Fast-VESTAL procedure.67,88,89

Design of rs-MEG machine learning approach
The proposed rs-MEG ML approach is a supervised lean-

ing method. Figure 1 shows the diagrams of the ML

approach. In the 98 participants and for each frequency-

band model, voxel-wise whole-brain rs-MEG source

images obtained from Fast-VESTAL were first spatially

registered to the Montreal Neurological Institute

(MNI)-15290 brain-atlas template using FLIRT, an affine

transformation program from FSL software.91,92

Spatial convolution and Max-pooling using functional
regions of interest (ROIs). Once in MNI-152 space,

the rs-MEG source imaging data from all frequency

bands were first run through a spatial convolution layer.

This convolution operation convolved the imaging data

with a 3D Gaussian kernel with 5.0 mm full width half

maximum (FWHM) to further reduce the inter-subject

variability in anatomy. Then, a Max-pooling procedure

was applied to the spatially convolved rs-MEG source

imaging data. In this procedure, the MEG source imaging

voxels were grouped into 184 gray matter functional ROI

variables using the FCONN parcellation with similar

sizes.93 In each functional ROI, the maximum activity

was obtained across all voxels within such an ROI.

After regressing out age, 184 ROI features for each fre-

quency band were obtained

The spatial convolution and Max-pooling procedure

based on functional ROI played important roles in feature

selection and dimension reduction, which is similar to the

steps in 3D Convolutional Neural Networks (3D-CNN) for

imaging processing,94 except for two main differences.

The first main difference is spatial convolution uses only

the Gaussian kernel in rs-MEG ML, without any spatial-

gradient based convolutional filters. The second main dif-

ference is that the Max-pooling is based on functional ROI

in rs-MEG ML, rather than on Euclidean distance in 3D-

CNN. These differences are discussed below.

Only one convolutional filter with Gaussian smoothing

kernel was used in rs-MEG ML. This is one main difference

between rs-MEG ML and the typical CNN approaches that

use a large number of spatial gradient-based convolutional
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filters for processing structural images.95–100 The gradient-

based convolutional filters are good for detecting edges and

shapes in images, and they usually require a large number

(e.g., thousands) of samples to train. However, rs-MEG

source magnitude images only contain ‘‘hot spots’’ without

edge, shape, and other features. The single layer of convo-

lutional filter with a Gaussian smoothing kernel in rs-MEG

ML, in combination with our Max-pooling layer (see

below) using 184 functional ROIs, effectively achieved

the goal of dimension reduction using a smaller number

of samples to train.

The Max-pooling procedure based on functional

ROIs93 was used in rs-MEG ML, instead of the geometric

Max-pooling procedure based on Euclidean distance in

typical CNN.95–100 It is common that functionally distinct

regions are next to each other with small Euclidean dis-

tance. The functional ROI-based Max-pooling has the ad-

vantage of taking into consideration the boundaries of

functionally distinct regions. The rs-MEG source activity

from the variables were reshaped into a 1-dimensional

Flatten Layer for: 1) classifying mTBI and OI partici-

pants; and 2) predicting the symptom recovery in terms

of PCS with a regression model. Age was projected out

before further analyses.

Use rs-MEG ML to classify mTBI and OI participants.
For a training data set, SVM-classification function with

Recursive Feature Elimination (RFE)101-103 was used to

obtain the optimal ROI features from the Max-pooling

ROI variables across all frequency bands (Fig. 1). Initially,

all K variables present in our ROI dataset were included in

training the network model. Then, the performance of the

RFE-SVM model was calculated. Next, we computed the

performance of the model after eliminating each variable

(K times). Specifically, we dropped one ROI variable

every time and trained the model on the remaining K-1

variables. The ROI variable whose removal had produced

the smallest (or no) change in the performance of the

model was dropped. This process was repeated until no

ROI variable could be eliminated. The source activity

from the subset of ROI variables after the RFE were

sent to SVM classification. In the SVM classification

model (Fig. 1), ‘‘H’’ stands for hyperplane(s) and ‘‘M’’

stands for maximum margin(s). The specific functions of

SVM classification and RFE will be from the Scikit-lean

Python Package. The output classes as shown in

Figure 1 were the mTBI and OI groups

The performances of rs-MEG ML were examined for

each individual frequency band, by changing the rs-MEG

source imaging data in the Input Layer from the combined

both-frequency bands data to that from each frequency

band. The rest of the network design remained the same.

Use rs-MEG ML to predict PCS recovery with regression.
Additionally, we examined the ability of the rs-MEG ML

approach for predicting the recovery with respect to PCS.

FIG. 1. Support vector machine (SVM) machine-learning diagram. The input images include resting-state
magnetoencephalography (rs-MEG) source imaging volumes in standard Montreal Neurological Institute
(MNI)-152 space across different frequency bands and participants. The rs-MEG source images are first
convolved with a Gaussian kernel. Next, the maximum values from individual functional regions of interest
are pooled to form the Pooling Layer. The elements in the Pooling Later are reshaped into the Flatten
Layer. SVM with Recursive Feature Elimination is used to classify the individuals into either orthopedic injury
(OI) or mild traumatic brain injury (mTBI) groups.
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In this approach, the ML diagram was similar to Figure 1,

except the SVM-regression function was used for predict-

ing the PCS scores and replaced the SVM-classification

function. The rs-MEG data at the acute/sub-acute injury

visit was used to predict the PCS score changes between

the 3-month follow-up visit and the acute/sub-acute visit

(i.e., 3-month PCS score minus the acute/sub-acute PCS

score)

Model building and performance evaluation
for rs-MEG classification
The present rs-MEG ML model was built using a super-

vised learning approach. The entire set of 98 participants

(59 mTBI and 39 OI) was used to generate the predictive

model. The model performance was evaluated using

Monte Carlo cross-validation.104 The participants were

randomly split into a training set of 88 individuals

(89.8%) and a validation set of 10 individuals (10.2%).

The training set was used to establish the rs-MEG ML

model, with the prediction accuracy computed on the val-

idation set. The procedure was repeated 1000 times, with

model performance averaged over the 1000 iterations. To

control for label imbalance, the proportion of OI partici-

pants in each validation set was constrained to 30-70%.

Age was projected out from the rs-MEG data before the

above analyses were conducted.

The evaluation of model performance included: 1) sen-

sitivity = TP/P, where P is number of mTBI subjects in the

validation set and TP is the number among these correctly

labeled as mTBI by the model; and 2) specificity = TN/N,

where N is number of OI subjects in the validation set and

TN is the number among these correctly classified as OI.

SVM is a forced classification approach: it does not output

individual-level classification probabilities, so no classifi-

cation thresholds were used in determining sensitivity

and specificity (e.g., via receiver operating characteris-

tic [ROC] curves). Note that due to the limited sample

size, the classification procedure uses the entire dataset

for model training, with model evaluation via cross-

validation, rather than splitting it into a training and testing

dataset.105 Monte-Carlo cross-validation was found in

standard settings to more accurately estimate predictive

performance than other options such as leave-one-out

cross-validation.106,107 The choice of a 90:10 split of the

training:validation sample in cross-validation corresponds

to the choice of K = 10 for K-fold cross-validation, which

is recommended as finding a balance between accurate es-

timation of predictive performance and leaving enough

data for model training.105

Conventional voxel-wise analyses for rs-MEG
source imaging
Additional analyses were conducted using the conven-

tional MEG source magnitude imaging using a voxel-

wise statistical analysis approach.67 In this approach,

the registered rs-MEG source magnitude images in

MNI-152 space were spatially smoothed using a Gauss-

ian kernel with 5 mm FWHM, followed by a logarithmic

transformation using FSL. Then, a voxel-wise, analysis

of covariance (ANCOVA) was performed to test for dif-

ferences between the mTBI and control groups, with age

as a covariate. Family-wise error rate across voxels were

controlled by using a standard cluster analysis for the

t-value maps to create the corrected group statistical

maps ( p < 0.01) for the MEG source magnitude images.67

Training and testing procedure for rs-MEG
to predict PCS recovery
To predict PCS recovery (i.e., difference score, 3-month

PCS score minus the acute/sub-acute PCS score) using

the ML with rs-MEG data collected during the acute/

sub-acute exam, the mTBI and OI groups were analyzed

separately. For the mTBI group, the training data set con-

tained 53 (or 89.8%) children and the testing data set con-

tained six (or 10.2%) children. Again, to examine the

robustness of the performances of rs-MEG ML, the pro-

cedures were repeated for 1000 different combinations of

the 53 – 6 splits. For the OI group, the number of children

in the training and validation data sets were 35 (or 89.7%)

and four (or 10.3%), respectively. The procedures were

repeated for 1000 different combinations of the 35 – 4

splits.

We focused on the combined rs-MEG ML model with

both delta- and gamma-activity. Age was projected out

from both the rs-MEG and the PCS difference score be-

fore these analyses were conducted. Two measures

were used to assess the predictive performance of the

rs-MEG ML approach: 1) the correlation value across

subjects between the measured and ML-predicted PCS

scores, and 2) the variance explained on the testing data

sets by the ML-predicted PCS score out of the measured

PCS score.

Results
Table 1 details demographic and clinical characteristics

of the participants. The mTBI and OI groups consisted

of 59 and 39 participants, respectively. Despite efforts

to match the groups by age, mean (standard deviation

[SD]) age at baseline assessment was significantly higher

for the mTBI group versus the OI group [12.05

(SD = 2.22) versus 11.18 (SD = 1.88); t = 2.02; df = 96;

p = 0.046]. Therefore, the MEG ML analyses controlled

for age. In terms of GCS, the mTBI group had one partic-

ipant with a GCS score of 13, two participants with a

GCS score of 14, and 56 participants with a GCS score

of 15, whereas in the OI group, by default, all 39 partic-

ipants had a GCS score of 15. The study neuroradiologist,

JRH, detected trauma-related abnormalities in 5/59
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(8.5%) of the research MRI scans in the mTBI group. The

mTBI and OI groups were predominantly male (39/59

[66.1%] and 25/39 [64.1%]), respectively (Fisher’s

exact test p = 1.00). Right handedness in the mTBI and

OI groups was present in 56/59 (94.9%) and 34/39

(87.2%), respectively (Fisher’s exact test p = 0.26). The

groups did not significantly differ on global intellectual

functioning as measured by the Wechsler Abbreviated

Scale of Intelligence-Second Edition (WASI-II)108 Full

Scale IQ-2 subtest score (mTBI mean = 107.64,

SD = 12.15, OI mean = 109.03, SD = 14.67; t = -0.49;

p = 0.627).

Participants attended three research sessions at differ-

ent time-points: 1) at baseline (days between injury and

baseline for mTBI group mean = 24.29, SD = 6.68, for

OI group mean = 21.69, SD = 5.88; t = 1.97; df = 96;

p = 0.051), 2) at MRI (days between injury and MRI for

mTBI group mean = 52.80, SD = 21.70, for OI group

mean = 48.56, SD = 23.90; t = 0.91; df = 96; p = 0.366),

and 3) at 3-month follow-up (days between baseline

and follow-up for mTBI group mean = 82.42,

SD = 15.27, for OI group mean = 86.15, SD = 14.60;

t = -1.20; df = 96; p = 0.231).

The Parent HBI scores at the three assessment time-

points are tabulated in Table 1, and group (mTBI vs.

OI) comparisons were analyzed with independent sample

t-tests. Parent HBI symptom rating total scores for the

mTBI group ranged from 0 to 51 at baseline acute/

sub-acute visit (average approximately 3 weeks post-

injury) and 0 to 38 at the 3-month follow-up. Parent

HBI symptom rating total scores for the OI group ranged

from 0 to 28 at baseline acute/sub-acute visit and 0 to 29

at the 3-month follow-up. The difference scores for par-

ent HBI symptom rating total scores at 3-month follow-

up minus baseline acute/sub-acute visit ranged from -34

to 18 for the mTBI group, and -17 to 16 for the OI

group. The baseline acute/sub-acute visit parent HBI

symptom rating total for mTBI participants (mean =
14.49, SD = 12.67) was significantly higher than the

comparison group (mean = 7.08, SD = 7.66); t = 3.61;

df = 95.4; p = 0.001). The component domain scores

were: cognitive score for mTBI (mean = 9.51,

SD = 8.20) versus OI (mean = 5.72, SD = 6.45); t = 2.55;

df = 93; p = 0.025 and somatic score for mTBI (mean =
4.98, SD = 6.12) versus OI (mean = 1.36, SD = 2.60);

t = 4.03; df = 84.4; p = 0.001, both Bonferroni-corrected.

Although parent HBI symptom ratings from the 1-

month prior to injury and from the 3-month follow-up

were higher for the mTBI as compared with the OI

group, differences did not survive Bonferroni-correction

(Table 1).

The parent HBI ratings difference total score from the

3-month follow-up minus the baseline acute/sub-acute

visit was significant across groups. Negative values in

difference total scores indicate improvement in symp-

toms and positive values in difference total scores indi-

cates worsening in symptoms. The mTBI group showed

a higher difference in total scores with mean = -3.85,

SD = 10.04 versus the OI group’s mean = 0.64,

SD = 6.26; t = -2.725; df = 95.7, p = 0.008.

Table 1. Demographic and Clinical Characteristics

mTBI (n = 59) OI (n = 39)

Mean SD Mean SD t df p value

Age at baseline 12.05 2.22 11.18 1.88 2.02 96 0.046
Glasgow Coma Scale Score 14.932 0.314 15 0 -1.66 58 0.103
WASI-II Full Scale IQ 107.64 12.15 109.03 14.67 -0.49 70.73 0.627
Days between injury and baseline 24.29 6.68 21.69 5.88 1.97 96 0.051
Days between injury and MRI 52.80 21.70 48.56 23.90 0.91 96 0.366
Days between baseline and follow-op 82.42 15.27 86.15 14.60 -1.20 96 0.231
Days between injury and follow-up 106.24 13.92 107.59 14.25 -0.47 96 0.642
Parent HBI—1 month prior to injury
Cognitive 8.47 7.23 6.13 6.45 1.64 96 0.208
Somatic 1.58 2.44 1.08 2.60 0.97 96 0.672
Total 10.05 8.51 7.21 7.52 1.70 96 0.093
Parent HBI—baseline (acute/sub-acute visit)
Cognitive 9.51 8.20 5.72 6.45 2.55 93.0 0.012
Somatic 4.98 6.12 1.36 2.60 4.03 84.4 0.000
Total 14.49 12.67 7.08 7.66 3.61 95.4 0.000
Parent HBI - 3-month follow-up
Cognitive 8.12 7.25 6.59 6.09 1.09 96 0.558
Somatic 2.53 3.97 1.13 2.44 2.16 95.6 0.066
Total 10.64 9.51 7.72 7.18 1.73 94.2 0.087
Parent HBI—3-month follow-up minus baseline (acute/sub-acute visit) difference scores
Total difference -3.85 10.04 0.64 6.26 -2.725 95.7 0.008

The p values for the Cognitive and the Somatic domains reflect two-fold Bonferonni correction.
mTBI, mild traumatic brain injury; OI, orthopedic injury; SD, standard deviation; HBI, Health and Behavior Inventory Scale; WASI II, Wechsler Abbre-

viated Scale of Intelligence-Second Edition; MRI, magnetic resonance imaging.
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Classification accuracy of mTBI versus OI,
and ROC analyses of rs-MEG ML
The classification accuracies of rs-MEG ML in the vali-

dation sets are shown in upper panel of Table 2 and

Figure 2 for each model. Fast-VESTAL source magni-

tude imaging data were used as the input layer. The

ML approach integrated rs-MEG source imaging markers

across delta-band and gamma-band frequencies. The left

panel of Figure 2 shows the classification accuracies in

testing data sets from the mTBI and OI control groups,

plotted for combined delta-gamma, delta only, and

gamma only bands. The accuracies in the mTBI group

(i.e., sensitivity measures) were 95.5 – 1.6%,

89.6 – 2.6%, and 85.2 – 3.2%, for the combined delta-

gamma, delta only, and gamma only frequencies, respec-

tively. The accuracies in the OI group (i.e., specificity

measures) were 90.2– 2.7%, 84.0– 4.7%, and 78.3– 3.7%,

for the combined delta-gamma, delta only, and gamma

only frequencies, respectively. Classification accuracies

for the combined delta-gamma model were markedly bet-

ter than for models using individual frequency bands

(non-parametric Wilcoxon signed-rank test with paired

samples: p < 0.0001). Figure 2 graphs the classification

accuracies of the individual frequency band models for

rs-MEG input.

The ROC analyses evaluated the overall accuracy of

models by analyzing the area under the curve (AUC)

for the sensitivity and specificity distributions using im-

port ‘‘roc_curve’’, ‘‘auc’’ functions in Python’s sklearn

(version 1.0.2) package. The right panel of Figure 2

shows the ROC curves for the three models. All curves

markedly outperformed the naive/non-discretionary clas-

sifier (diagonal dashed line). However, the combined

delta-gamma band model (blue curve) showed excellent

performance with both high sensitivity and high specific-

ity. The AUC value of the ROC was 98.5% for the com-

bined delta-gamma model. This value was significantly

higher than delta-only model (AUC: 92.6%) or gamma-

only model (AUC: 89.6%) using Wilcoxon signed-rank

test with paired samples ( p < 0.001).

Predict PCS recovery using ML and acute/
sub-acute rs-MEG
The prognostic value of ML approach on the validation

data sets was studied using the rs-MEG data collected

during the acute/sub-acute exam to predict the recovery

of PCS at 3-month follow-up. Here, the SVM ML method

with the combined delta-gamma band rs-MEG signals in

the acute/sub-acute exam was used to predict later

changes in PCS (3-month minus 3-week) in children

with mTBI (N = 59). Figure 3 shows the measured parent-

rated symptom score changes and the predicted symptom

score changes by ML were highly correlated. Each color

column represents an individual child, and the spreading

resulted from the 1000 bootstrapping analysis. On the

testing data sets, the correlation value across subjects be-

tween the measured and predicted PCS scores was 0.903,

and the variance explained by the predicted model was

84.5% with mean squared error (MSE) of 17.7, suggest-

ing that acute/sub-acute rs-MEG using ML could accu-

rately predict the PCS recovery in children with mTBI.

In contrast, for the OI group (N = 39, not shown), the cor-

responding correlation, variance explained, and MSE by

deep learning model were 0.762, 65.6%, and 13.3, re-

spectively. These values were significantly lower than

those in the mTBI group (Mann-Whitney test, p < 10�4).

Spatial differences in rs-MEG activity using
voxel-wise analyses
Conventional voxel-wise ANCOVA was used to assess

spatial differences in rs-MEG activity with age as a cova-

riate. Compared with children with OI, Figure 4 shows

that children with mTBI showed abnormal increases in

delta-band activity from the frontal poles, rostral anterior

cingulate cortex (rACC), superior central areas, posterior

insular, parietal operculum cortex, lateral temporal lobe,

precuneous cortex, lingual cortex, and basal ganglia. The

mTBI group also showed mainly abnormal increases in

gamma-band activity from frontal poles, inferior frontal

gyrus, planum temporale in lateral temporal lobe, supe-

rior central areas, hippocampus, fusiform gyrus, and cer-

ebellum, but decreases from medial frontal cortices,

inferior temporal gyrus, and lateral occipital cortex.

Associations between rs-MEG regional activity
and PCS recovery
Figure 5 displays scatter plots in which changes in PCS

score (3-month minus 3-week, unscaled) were plotted

against two hypothesized regional rs-MEG markers de-

rived from ML algorithm: right and left frontal pole

(FP) areas in gamma band. Figure 5 shows that in 59 chil-

dren with mTBI (but not in 39 children with OI), the rs-

MEG activity positively correlated with changes in PCS.

In these two regions, the children with mTBI also showed

abnormal hyper-activity in gamma band rs-MEG (see

Table 2. Results of rs-MEG ML Analysis, the Categorical
Classification Accuracies (Sensitivity and Specificity)
and the Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) Curve in Testing Data Sets
for Delta Plus Gamma (bold), Delta-Only, and Gamma-Only
Band Models

rs-MEG ML Model d + c bands (%)
d band

only (%)
c band

only (%)

59 mTBI (sensitivity) 96.9 – 1.9 87.2 – 2.9 83.5 – 3.1
39 OI (specificity) 90.1 – 3.1 82.5 – 4.5 78.4 – 3.8
AUC of ROC (%) 98.5 92.6 89.6
95% CI for AUC 96.7 to 99.6 89.5 to 95.3 86.7 to 92.9

rs-MEG ML, resting-state magnetoencephalography; mTBI, mild trau-
matic brain injury; OI, orthopedic injury; CI, confidence interval.
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FIG. 2. Machine learning’s classification accuracy in children with mild traumatic brain injury (mTBI) and
orthopedic injury (OI) controls using resting-state magnetoencephalography (rs-MEG) signals from delta,
gamma, and combined delta-gamma bands. Left panel: classification accuracy; right panel: receiver
operating characteristic (ROC) curves. The % values in the figure are area under the curve (AUC) values. The
AUC value for the combined delta-gamma model was significantly higher than those using the delta or
gamma only band.

FIG. 3. Delta plus gamma band model used resting-state magnetoencephalography (rs-MEG) in 3-week
acute/sub-acute post-injury examination to predict 3-month recovery in terms of post-concussive symptoms
in N = 59 children with mild traumatic brain injury (mTBI). The mean values across 1000 bootstrapping and
95% confidence intervals were plotted for each subject.
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FIG. 4. Voxel-wise resting-state magnetoencephalography activity from delta and gamma
frequency bands in pediatric mild traumatic brain injury (mTBI) versus orthopedic injury (OI). The
values in Z are superior-inferior coordinates of the axial slices in the Montreal Neurological Institute
(MNI) space.

FIG. 5. Scatter for left and right frontal poles plots between resting-state magnetoencephalography (rs-
MEG) markers in gamma band and post-concussive symptom recovery. Red stars: children with mild
traumatic brain injury (mTBI); blue circles: children with orthopedic injury (OI).
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y-axis). These show that increases in gamma activity

from FP areas predict poor symptom outcomes only in

children with mTBI but not with OI.

Discussion
There were four main findings in this rs-MEG study of

children with mTBI as compared with children with OI.

The first two findings provided answers for the initial

overarching question regarding a neural injury signature

of pediatric mTBI. The second two findings presented an-

swers for the second overarching question about the pat-

tern(s) of neural injury that determine behavioral

recovery from early post-injury to sub-acute outcome at

3-month post-injury.

First, the ML algorithm predicted cases of mTBI ver-

sus OI with sensitivity and specificity both over 90%

(95.5 – 1.6% and 90.2 – 2.7%, respectively) at 3-weeks

post-injury for the combined delta-gamma frequencies

(Fig. 2; Table 2). Further, the sensitivity and specificity

metrics were significantly better for the combined

delta-gamma frequencies compared with the delta-only

and gamma-only frequencies. These findings supported

hypothesis 1a. Second, the analyses found spatial differ-

ences in rs-MEG activity between mTBI and OI groups in

both delta and gamma bands in frontal and temporal lobes

as hypothesized (hypothesis 1b), but also more widely in

the brain (Fig. 4). Third, the ML algorithm with post-

injury rs-MEG data accounted for 84.5% of the variance

in predicting recovery as measured by PCS changes be-

tween 3 weeks post-injury and the 3-month outcome in

the mTBI group (Fig. 3), and this metric was significantly

lower in the OI group (65.6%, p < 10�4). This is the first

example of rs-MEG predicting behavioral recovery in a

prospective longitudinal study of either children or

adults. These results supported hypothesis 2.

Fourth, scatter plots (Fig. 5) displayed two hypothe-

sized regional (right and left frontal pole) rs-MEG

gamma band markers derived from the ML algorithm

that illustrated (higher) gamma band activity significantly

associated with (worse) PCS outcome at the 3-month

PCS assessment compared with the 3-week assessment

exclusively in the pediatric mTBI group. This fourth find-

ing offers an important example regarding regional spe-

cifics undergirding the ML algorithm predicting

recovery at 3-months post-injury and is a step toward de-

veloping a model for pattern(s) of neural injury that deter-

mine behavioral outcome.

The findings that involve delta and gamma band are

consistent with adult mTBI studies and therefore build

upon our preliminary work50 in extending these func-

tional imaging findings to a pediatric mTBI cohort. For

example, regional rs-MEG slow-wave markers are

detected in the acute, sub-acute, and chronic phase of

adult mTBI,57 and are also sensitive in differentiating

chronic and sub-acute patients with adult mTBI who

have persistent PCS from neurologically normal individ-

uals.55,56,62,65,66 Further, adults with combat-related

mTBI show significant hyperactivity in rs-MEG gamma

band markers.67

The findings in this rs-MEG study underscore that the

neuropathophysiology in the sub-acute (3 weeks post-

injury) phase after pediatric mTBI intimately involves

GM alteration. Neuroimaging research related to pediat-

ric mTBI has focused on white matter network changes

from DAI.16,22–42 It is well-accepted that acceleration-

deceleration forces that act at the time of the mTBI

may lead to DAI.109 GM damage has been more difficult

to detect than DAI unless there are macroscopic cortical

contusions, which are rare after pediatric mTBI.

Decreased GM and white matter integrity are related to

action of dynamic forces to the brain unique to each

mTBI. These forces precipitate initial ionic fluxes, and

indiscriminate glutamate and metabolic coupling that

cause oxidative stress, impaired axonal transportation,

and altered neurotransmission.110 rs-MEG studies offer

a path towards a detailed neurophysiological mechanistic

understanding of the clinical implications specifically of

GM dysfunction consistently characterized by abnormal

delta and gamma bands in children and adults with mTBI.

It appears that the abnormal delta and gamma signals

are related to different mechanisms. Neurophysiological

studies in animals have established a solid connection be-

tween pathological delta-wave (1-4 Hz) generation in

GM and injuries. Delta-band activity produced by physi-

cal lesions in cats were localized to the GM of cortex

overlying the lesion.111,112 Abnormal delta-waves can

also be induced by the administration of atropine.113

Atropine is a competitive antagonist of acetylcholine

(ACh) receptors and can block and/or limit ACh. These

animal experiments concluded that cortical deafferenta-

tion was a key factor in abnormal delta-wave production,

owing to DAI and/or blockages/limitations in the cholin-

ergic pathway.114

A postulated mechanism of hyperactivity of gamma

band finding is as follows. DAI plays a major role in

brain dysfunction producing an imbalance in excitatory/

inhibitory neural activity after mTBI. In GM, DAI is

also directly associated with injuries to GABA-ergic in-

hibitory interneurons, specifically the parvalbumin-

positive (PV+) interneurons.61 In addition, DAI in GM

is perisomatic, near the soma of the PV+ interneurons,61

or with a degradation of the perineuronal net (PNN), a

specialized extracellular structure enwrapping cortical

PV+ inhibitory interneurons.115 Fast-spiking (FS) PV+
inhibitory interneurons are the most common type of

GABA-ergic cells that regulate the activity of neural net-

works through GABA-ergic inhibition of local excitatory

neurons, and synchronous activity of FS-PV+ interneu-

rons generates gamma oscillations (30-80 Hz).116–120

Animal studies demonstrate that dysfunction or injury

CHILD MTBI MEG SIGNATURE AND RECOVERY PREDICTION 1123



to PV+ interneurons causes disinhibition in the neural

network, directly eliminating synchronized gamma-band

(30-80 Hz) signals that are normally evoked by stimu-

li,116,121,122 and up-regulating spontaneous gamma activity

(and possibly beta activity), owing to a lack of inhibition

of pyramidal and other excitatory neurons.116,121–124

With the growing recognition of the importance of GM

integrity after mTBI, particularly in adult MEG research,

and now in pediatric mTBI, the next steps are to refine

our understanding of the pathophysiology of injury and

recovery. There are several approaches that are likely

to be fruitful. First, prospective longitudinal studies

such as the current study will be more convincing than

cross-sectional or retrospective studies. Second, exami-

nation of different rs-MEG bands or combined bands

should be more useful than single bands as shown in

the current study.125 More in-depth understanding of

the function of each of the band frequencies in injured

and uninjured populations will be important. In the cur-

rent study, we focused on delta and gamma bands, but

our preliminary data demonstrated significant differences

in alpha and beta bands between participants with mTBI

and OI.50 The main reason we focused on delta and

gamma bands was because the models that used these

bands outperformed those using alpha or beta bands, as

shown in a separate mTBI study with machine learn-

ing.126 Third, larger controlled studies will have more

power to detect important findings including those that

involve other bands. The reasons for the increase in

power includes the fact that while every injury is unique,

the larger the cohort, the more likely one would detect

common patterns of injury and recovery.

Fourth, larger rs-MEG studies would permit a biopsy-

chosocial analytic approach that includes psychoso-

cial factors, which we and others have shown to be

relevant to behavioral and psychiatric outcome after

mTBI.5,6,12,13 Fifth, ML techniques have demonstrated

power to detect meaningful analyses of neural signatures

of injury as well as pattern(s) of neural injury that deter-

mine behavioral recovery. Deep learning techniques may

be even more powerful and mitigate the need for very

large cohorts. Sixth, integration of rs-MEG findings

with GM diffusion techniques as well as white matter mi-

crostructural studies might deepen understanding of neu-

ral signatures of injury and patterns of neural injury that

determine behavioral recovery. Seventh, standardized

clinician-rated psychiatric interviews that elicit symp-

toms and/or disorders, and which integrate the clinician’s

observation of the child, as well as the respective symp-

tom reports of both parent and child are considered the

gold-standard for behavioral assessment, and should im-

prove study methodology.

Compared with our previous pilot study with a smaller

cohort,50 the results of voxel-wise analyses with a much

larger cohort from the present study revealed additional

brain regions of significant group difference for both

the delta and gamma bands. For the low frequency

delta band, we replicated our earlier finding of increased

activity in the lateral temporal lobe using the larger co-

hort in the present study. Additionally, we found regions

of significant difference in frontal poles, rACC, superior

central areas, posterior insular, parietal operculum cortex,

precuneus cortex, lingual cortex, and basal ganglia in the

larger cohort as opposed to our preliminary work in the

smaller cohort. For the gamma band, the finding of in-

creased activity in the cerebellum was consistent in

both cohorts. However, in the present study, mTBI

group also showed abnormal increases in gamma-band

activity from frontal poles, inferior frontal gyrus, planum

temporale in lateral temporal lobe, superior central areas,

hippocampus, fusiform gyrus, and cerebellum, but de-

creases from medial frontal cortices, inferior temporal

gyrus, and lateral occipital cortex. The gamma-band ac-

tivity from these regions did not show significant group

differences in the pilot study. The new significant find-

ings from the present study are likely due to increased

power from the larger sample size. Note that the subjects

studied in the pilot study were not used in the present

study due to the MEG being conducted at different points

of recovery (i.e., 6 months post-injury in the pilot study

vs. 3 weeks post-injury in the present study).

The 90% thresholds for both sensitivity and specificity

adopted by our study are very high standards demonstrat-

ing the rigor of our approach and the performance of the

proposed algorithm. The R2 = 80% for predicting recov-

ery of PCS symptoms is also a high threshold, although

general guidelines are not available in this setting.

Different from the current rs-MEG study that utilizes

voxel-wise source magnitude, voxel-wise functional con-

nectivity (FC) using rs-MEG or rs-fMRI is another ap-

proach for studying mTBI. However, as reviewed in

our previous study,54 increase, decrease, or concurrent in-

crease and decrease in FC have all been reported rs-fMRI

and rs-MEG mTBI studies in adults. This may be due to

the co-existence of multiple mechanisms at play during

mTBI recovery.54 First, mTBI may injure white matter

(WM) tracts, resulting in the disruption of neuronal com-

munication between gray matter (GM) areas, which may

lead to decreased FC with other brain regions, especially

if axonal damage is substantial. An alternative is

glutamate-based over-excitation and GABAergic disinhi-

bition, another leading mechanism for mTBI-related sec-

ondary injury, which involves compromise to neurons in

the GM. The glutamate over-excitation and GABA disin-

hibition model posits aberrant GABA intra-neuron func-

tioning, which diminishes the inhibitory influence on

pyramidal neurons, thereby causing increased firing and

facilitation of network connections that are normally

inhibited. This process could lead to increases in FC be-

tween the injured GM area and other regions of the brain.
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A third potential mechanism that may also contribute to

increases in FC is the functional reorganization model,

which involves compensation or rerouting of functional

connections after mTBI.

Our findings are generally consistent with other reports

of functional imaging alterations in both adults and chil-

dren with mild to moderate TBI, which reflect increases

in neural connectivity, particularly in the frontal lobes,

potentially implicating compensatory recruitment of ad-

ditional brain regions, inefficiency, a failure in decou-

pling anterior brain regions in effortful processing, or

alteration of typical development in connectivity pat-

terns.127–132 Studies using graph theory in children with

mTBI have also revealed altered network organization

in relation to trauma comparison groups as reflected by

lower modularity, higher small-worldness, and lower

assortativity,133 which in turn relate to poorer cognitive

and behavioral outcome.

The study had several limitations foreshadowed in the

above discussion of likely fruitful future approaches.

First, the rs-MEG analyses were limited to gamma and

delta bands. Examination of other bands including

alpha, beta, and theta bands, and combinations of these

bands would provide a more complete picture of the neu-

ral signature of pediatric mTBI and patterns of neural in-

jury related to recovery. Second, the relatively modest

sample size resulted in insufficient power to detect im-

portant findings including those related to other bands.

However, the sample size was relatively large for this

type of functional imaging research, especially MEG

studies. Third, the limited power related to the sample

size precluded analyses that control for potentially con-

founding psychosocial variables that have been shown

to be related to behavioral outcome after pediatric

mTBI.6 Fourth, our ML approach was not as powerful

as a deep learning approach. Fifth, we have not integrated

the rs-MEG findings with white matter microstructural

data or with GM diffusion data, which could provide a

more fundamental understanding of neural signatures of

injury and patterns of neural injury related to behavioral

recovery.

Sixth, only parent-rated PCS scores were analyzed.

Child self-report PCS ratings would likely provide a dif-

ferent pattern of results, which might provide an alterna-

tive understanding of brain-behavior relationships.

Seventh, the validity and reliability of the concept of

PCS itself has been questioned.134 Clinician-rated psy-

chiatric symptoms and/or disorders would likely provide

a superior behavioral assessment.52 Eighth, there is a po-

tential confound affecting MEG results with regard to co-

morbid psychiatric conditions. However, the research

protocol standardized psychiatric assessment,135 which

was not a focus of these analyses showed approximately

equivalent prevalence of pre-injury disorders in mTBI

versus OI such as ADHD (mTBI 8/59 (13.6%); OI 4/39

(10.3%), anxiety disorders (mTBI 17/59 (28.8%); OI 8/

39 (20.5%), and substance abuse (none in either group).

Ninth, the OI group was significantly younger (by an

average of 12 months) than the mTBI group. However,

this was mitigated by controlling for age in the rs-MEG

analyses.

There were several notable strengths of the study.

First, this was a prospective longitudinal study of a

non-selected series of consecutively treated patients

with pediatric mTBI. As such, it was only the second

such study and followed our preliminary study, which

had a sample size of less than one quarter of the current

study.50 Second, the design included appropriate control

participants who had similar IQ and sex representation,

and presumably similar predisposing factors for incurring

an injury and experience of trauma and treatment in the

ED. Third, state-of-the-art rs-MEG techniques and analy-

ses were used in the study.

There were several clinical implications of the study.

The findings serve as a step toward understanding neural

dysfunction after pediatric mTBI, which may have future

clinical importance in the identification of groups of chil-

dren who are at higher risk for incomplete or delayed re-

covery, or who are potentially at higher risk of recovery

problems should they suffer an additional mTBI. An

issue that has limited clinical application of MEG find-

ings has been the cost and availability of this technology.

MEG systems use Superconducting QUantum Interfer-

ence Devices (SQUIDs) sensors.136 However, Optically

Pumped Magnetometers (OPMs) have emerged as a

wearable alternative to SQUIDs. The laser-based OPM

sensors do not require cryogenic cooling, and can be flex-

ibly placed on any part of the body,137,138 which permits

less expensive, more flexible, and highly sensitive MEG

systems.139,140 Commercial MEG systems based on OPM

are expected to be available soon, which will make MEG

widely available for clinical and research applications in-

cluding mTBI.
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