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Spectral and Spatial Classification of Hyperspectral Images Based 
on ICA and Reduced Morphological Attribute Profiles

Nicola Falco, Student Member, IEEE, Jón Atli Benediktsson, Fellow, IEEE, and 
Lorenzo Bruzzone, Fellow, IEEE

Abstract:

The availability of hyperspectral images with improved spectral and spatial 
resolutions provides the opportunity to obtain accurate land-cover 
classification. In this paper, a novel methodology that combines spectral and 
spatial information for supervised hyperspectral image classification is 
proposed. A feature reduction strategy based on independent component 
analysis is the main core of the spectral analysis, where the exploitation of 
prior information coupled to the evaluation of the reconstruction error 
assures the identification of the best class-informative subset of independent
components. Reduced attribute profiles (APs), which are designed to address
well-known issues related to information redundancy that affect the common
morphological APs, are then employed for the modeling and fusion of the 
contextual information. Four real hyperspectral data sets, which are 
characterized by different spectral and spatial resolutions with a variety of 
scene typologies (urban, agriculture areas), have been used for assessing 
the accuracy and generalization capabilities of the proposed methodology. 
The obtained results demonstrate the classification effectiveness of the 
proposed approach in all different scene typologies, with respect to other 
state-of-the-art techniques.

Index Terms—Dimensionality reduction, hyperspectral images, independent 
component analysis (ICA), mathematical morphology (MM), reduced attribute
profiles (rAPs), remote sensing (RS), supervised classification.

SECTION I.

Introduction

IN THE last few years, a new generation of hyperspectral sensors that are 
able to provide images with both high spectral and high spatial resolutions 
has been developed. Hyperspectral images are an increasingly important 
source of information that has found use in a wide range of fields, from Earth
observation (EO) to the assessment of food quality, to the medical domain. 
Focusing on the EO field and, in particular, on land-cover analysis, the burst 
of informative content conveyed in hyperspectral images, represented by 
both high spectral and spatial resolutions, provides the base for obtaining 
high accuracy in the identification and classification of different land covers 
of an observed area of interest. These characteristics enforce the need of 
strategies that integrate the analysis of both spectral and contextual 
domains in order to maximize the exploitation of the information combined 
in these images.



As expected, the processing of hyperspectral data is far from being 
straightforward, due to innate issues. Considering the spectral domain, each 
single pixel is considered as an independent entity of information. The high 
dimensionality makes the analysis computationally expensive, while the 
Hughes phenomenon (curse of dimensionality) [1] arises when the ratio 
between the number of available training samples and the number of 
spectral channels is small. This affects the generalization capability of the 
classifier. Most studies in the current literature address the curse of 
dimensionality issue by exploiting feature extraction/selection techniques, 
aiming at decreasing the dimensionality of the feature space by retaining the
most useful information. Based on the task to be accomplished, i.e., 
compression, target detection, identification of endmembers, and 
classification, several feature extraction techniques have been developed, 
ranging from unsupervised to supervised approaches. The most widely used 
unsupervised approaches include principal component analysis (PCA) [2], [3] 
and singular value decomposition [4], which provide an optimal 
representation in terms of least square error. Maximum noise fraction [5] 
and noise-adjusted principal component [6] aim at identifying the projection 
that maximizes the signal-to-noise ratio, whereas independent component 
analysis (ICA) [7] aims at identifying a linear transformation that minimizes 
the statistical dependence between its components. Supervised approaches, 
which exploit prior information to extract class-discriminant features, include
discriminant analysis feature extraction [2], decision boundaries feature 
extraction (DBFE) [8], projection pursuit [9], and nonparametric weighted 
feature extraction (NWFE) [10]. All the aforementioned approaches are used 
in both pre- and postprocessing phases in order to overcome the high-
dimensionality issue in the classification task. Feature selection techniques, 
which have the goal to select the most adequate subset of features without 
decreasing the information content, have been widely used in remote 
sensing (RS). The selection of a subset is usually based on the evaluation of 
a fitness function followed by a search strategy. A number of statistical 
distance measures [2], such as divergence, Bhattacharyya distance, Jeffries–
Matusita distance, and mutual information, are used to assess the 
separability and/or the mutual dependence among class distributions based 
on the available training set. Suboptimal strategies, such as the sequential 
backward selection (SBS) [11] and the sequential forward selection (SFS) 
[12] methods, are broadly used. More effective sequential search methods, 
i.e., the sequential forward floating selection (SFFS) and sequential backward
floating selection methods [13], were proposed in order to avoid the nesting 
effect that affects both the SBS and SFS techniques by including and 
excluding features. The steepest ascent and the fast constrained [14] 
algorithms are effective strategies that have shown better results compared 
with the SFFS technique, even if the required computation time is slightly 
higher. Furthermore, heuristic search algorithms based on the evolutionary 
concept of natural selection, such as genetic algorithms (GAs) [15], have 
been widely employed in several fields and in RS.



When images with high spatial resolution are considered, the analysis of 
spectral information only is less effective. In fact, on one hand, the improved 
spatial resolution makes different objects more distinguishable on the 
ground. On the other hand, however, it increases the intraclass variability 
[16], leading to poor classification performances. In order to minimize the 
uncertainty of the classification, the information related to the spatial 
context needs to be included in the analysis. Recently, several methods 
developed as part of the mathematical morphology (MM) framework have 
been proposed in retrieving and modeling contextual information also, both 
for RS images and other image types. Attribute profiles (APs) [17] have been 
successfully exploited in the RS domain to include the spatial information in 
the analysis for different tasks, such as land-cover classification [18]– [19] 
[20], segmentation [21], and change detection [22]. APs provide a multilevel 
decomposition of the original image, which is obtained by applying a more 
severe thinning/thickening filtering [23] on connected regions. APs are an 
interesting tool as they extract contextual information performed according 
to specific attributes, i.e., measurements that can be performed on a 
connected region. APs have many advantages.

Different attributes can be defined, providing a variety of different image 
decompositions.

Attributes can be a measurement that is not related to the geometry of the 
region (e.g., standard deviation).

The filtering is performed on connected regions, while the geometrical detail 
of the unfiltered regions is fully preserved.

This high flexibility renders the APs a powerful tool for extracting 
complementary spatial information of the structures in the scene. Because 
the APs are based on attribute filters [23], which are binary operators, the 
extraction of contextual information based on APs is not trivial when 
multichannel images, such as hyperspectral data, are considered. The 
application of the attribute filters to each spectral band would increase 
excessively the dimension of the final feature space, making the direct 
profile extraction not feasible. In the literature, this issue is generally 
addressed by applying dimensionality reduction prior to the filtering. That 
generates a vector of filtered images, named extended APs (EAPs) [18], 
which consists of concatenated APs obtained by each feature. A further 
extension is obtained when several EAPs obtained by different attributes are 
concatenated, obtaining the so-called extended multiattribute profiles 
(EMAPs) [18]. This extension can effectively model the spatial information 
extracted by employing several attributes, providing a rich description of the 
scene. As a consequence, when the dimensionality increases, the redundant 
information contained in the profile increases also. This is evident if we 
examine the sparsity that characterizes the differential AP (DAP) [17], which 
expresses the residual between two adjacent levels in an AP. Moreover, 
when a large range of filtering thresholds is considered, the dimension of the



feature space of the obtained profile increases, resulting in a very large 
number of features and, thus, in the Hughes phenomenon. In the literature, 
the issue was investigated by considering many approaches. In [24], the high
dimensionality was reduced by exploiting feature extraction and feature 
selection techniques prior to classification, which is a strategy that has been 
also widely exploited in recent studies [19], [20], [25]. A compact 
representation of the morphological profiles (MPs), which is called 
morphological characteristic (MC), was obtained in [21] by analyzing the 
differential MP (DMP) to identify if the underlying region of each pixel is 
darker or brighter than its surroundings. In [26], an extension of the MC was 
presented, where the characteristics of scale, saliency, and level of the DMP 
are identified by a 3-D index for each pixel in the image. A strategy based on
a sparse classifier and sparse unmixing by variable splitting and augmented 
Lagrangian [27] for the analysis of the entire EMAP was presented in [28].

In this paper, the previous studies presented in [29] and [30] are extended, 
proposing a novel approach to supervised classification based on both 
spectral and spatial analyses. Considering the most recent studies, where 
APs are exploited, the spectral analysis is usually relegated to the 
identification of few PCA components, which are then exploited for building 
the APs, EAPs, and EMAPs, whereas supervised feature extraction techniques
(e.g., DBFE and NWFE) are eventually employed in order to reduce the 
dimensionality of such huge vectors. In this paper, the spectral analysis 
becomes a fundamental part, which aims at extracting the optimal subset of 
class-informative features. To this purpose, a feature reduction technique 
based on ICA is considered, where the selection of the most representative 
components is assured by the minimization of the reconstruction error 
computed on the training samples employed for the supervised 
classification. The spatial analysis is then performed by extracting spatial 
features based on MM. A compact optimized representation of the AP, named
reduced AP (rAP), is obtained by evaluating the contextual information for 
each region by identifying the best level of representation, according to a 
homogeneous measure. Such analysis permits the contextual information to 
be preserved and, at the same time, to address the dimensionality issue, 
which leads to a highly intrinsic information redundancy, that affects the 
original AP.

This paper is organized as follows. The theoretical background on ICA and 
MM is presented in Section II. In Section III, the proposed spectral and spatial 
analysis for classification is described. The experimental setup is given in 
Section IV, whereas the experimental results are discussed in Section V. 
Conclusions and future steps are drawn in Section VI.

SECTION II.

Theoretical Background

Here, we provide an introduction to the theoretical background on ICA and 
MM, which is needed for a better understanding of the presented work. Here,



the mathematical notations of vectors and matrices are denoted by bold 
lowercase and bold uppercase letters, respectively, where the elements of a 
matrix are considered as column vectors. According to the notation, mi 

represents the ith column of a matrix M,  represents the ith row of M, 
and mj is the element placed in the jth position of the column vector mi.

A. ICA

1) General Concept

ICA is a well-known technique used in blind source separation, which is the 
decomposition of an observed set of mixture signals into a set of statistically 
independent sources or components. Let us consider the observed mixture 
data X=[x1,…,xm]T, which can be defined as a linear combination of n random
vectors represented by S=[x1,…,xn]T, the linear mixing model can be defined 
as

where A represents the unknown mixing matrix with elements [a1,…,an]. 
Assuming that the mixing matrix A is squared (m=n), the best approximation
Y of the unknown source matrix S is obtained by estimating the unmixing 
matrix W≃A−1, which is used to compute the decomposition. The source 
matrix is then obtained by applying the ICA model as follows:

where Y represents the matrix of statistically independent components (ICs).
In the RS literature, many ICA algorithms based on the maximization of 
different criteria can be found, such as FastICA [31], JADE [32], and Infomax 
[33].

2) FastICA Algorithm

In this paper, the FastICA algorithm is exploited for the ICA decomposition. 
FastICA is based on the fixed-point iteration algorithm, where the negentropy J, 
which is a measurement of non-Gaussianity, is the function to be maximized. 
Negentropy is always positive, except for the Gaussian distribution case, where 
its value is zero. Negentropy is defined as follows:

where y is a random vector, H(y) is the entropy of y, and H(yGaussian) is the 
entropy of a Gaussian random vector whose covariance matrix is equal to 
the one of y. Because of the high computational complexity of the 
negentropy, a moment-based approximation was introduced [34], i.e.,



where y is a standardized non-Gaussian variable, v is a standardized 
Gaussian variable, and G is a nonquadratic function. The fixed-point iteration
algorithm finds the maximum of the non-Gaussianity of wTx, where w 
represents one row of W. The convergence is reached when w and its 
update, obtained in the successive iteration wi+1, point in the same direction.
In this paper, the FastICA package (version 2.5, 2005) has been used, 
choosing a symmetric orthogonalization. This choice has the advantages to 
avoid the cumulative error in the estimation process and allows the parallel 
estimation of the components, decreasing the computational time of the 
algorithm. The readers are referred to [34] for a complete explanation of the 
algorithm.

B. Morphological Operators

MM is a well-established framework built upon set theory, lattice algebra, 
and integral geometry, whose operators are exploited for the investigation of
spatial features (i.e., geometry, shape, and edges) of geometrical structures 
present in an image [35]. Many are the operators, developed in the 
literature, and most of them are defined for binary and grayscale images. 
Dilation and erosion are the basic morphological operators. They are based 
on a moving window (or kernel), which is called structuring element (SE). Let 
us consider an object in the image as a connected region, which is a flat area
where the pixels have the same value. In general, dilation causes objects to 
dilate or grow in size, whereas erosion causes objects to shrink. The effect of 
the filtering, i.e., the way objects dilate or shrink, depends upon the choice of
the SE (shape and size). By combining dilation and erosion, we obtain the 
closing and opening operators. Those operators are used to remove objects 
that cannot contain the SE, while preserving objects with a similar shape as 
the SE. However, a distortion of these objects that remain after the filtering 
is introduced, with a consequent loss of information related to the 
geometrical characteristics of the objects. This issue was solved by the 
introduction of closing and opening by reconstruction, which are based on 
geodesic transformations and permit the preservation of the geometrical 
characteristics of the objects that are not removed. A further advancement 
was made by the introduction of MPs, which is a stack of filtered images 
obtained by a sequential application of a morphological filter by 
reconstruction with the SE increasing in size at each step. In general, a single
application of a morphological operator is not enough for representing all the
objects within the scene. The MP provides a multiscale decomposition of the 
image, which aims to obtain a better representation of the scene by taking 
into account that objects can appear at different scales. The reader is 
referred to [35] and [36] for a complete background on morphological 
operators and to [21] for the definition of MP. All the aforementioned 
operators are based on the use of an SE, making the filtering highly 
dependent on the shape of the used SE. A different approach was introduced
in [23], with attribute filters, where the morphological transformation is 
based on attribute, removing the constraint of choosing a particular shape of



the SE. Consequently, the effect of the filtering is no longer dependent on 
shape, whereas it is adaptive to the considered region and its surrounding. In
a similar way, as for the morphological filters, it is possible for the attribute 
filters to build a multiscale representation of the images, i.e., morphological 
APs [17]. The APs are the starting point of this study, and thus, a more 
formal definition is given.

1) Morphological Attribute Filters

Morphological attribute filters are defined by morphological attribute opening
and morphological attribute closing operators [23]. Let I be a digital 

grayscale image and  (n=2, i.e., 2-D images) its definition domain. A 
morphological transformation ψ is a mapping from a subset E of the image 

domain I to the same definition domain E, with ψ(I)→ . Considering a 
criterion T, the morphological attribute opening on a binary image is defined 
as the union of two binary operators: binary connected opening Γx, which 
transforms the image I, preserving only the connected region that contains a
selected pixel x, and binary trivial opening ΓT, which preserves or removes 
the connected region based on the evaluation of the criterion T. The binary 
attribute opening is extended to the grayscale case by applying a threshold 
decomposition [21] on I at each of its gray level k, assigning at each pixel 
the maximum gray level achieved by the binary opening. The morphological 
attribute opening can be formally defined as

where Thk(I) represents the binary image obtained by thresholding I at level 
k. By duality, morphological attribute closing is defined as

2) Morphological APs

Let us consider a family of increasing criteria T={Tλ:λ=0,…,L}, with T0=true 
∀C⊆E, where λ is a set of reference scalar values used in the filtering, and C 
is a connected region in the image. An MP is obtained by applying a 
sequential filtering, where the criterion Tλ is evaluated at each filter step. 

Following this definition, the attribute opening profile  and the attribute 

closing profile  are defined as follows:



where ϕTλ and γTλ represent morphological attribute closing and 
morphological attribute opening, respectively. The AP Π(I) is obtained by 
concatenating the opening and closing profiles as follows:

where  corresponds to the original grayscale. It can be seen 
that the profile results in a vector of 2L+1 images. Another important 
operator that is extensively used in this work is the so-called DAP. It is 
obtained by computing the derivative of the AP, and it shows the residual of 
the progressive filtering, i.e., the connected regions that have been filtered 
between two adjacent levels of the AP, and their relative gray values. The 
DAP can be defined as follows:

In this case, the obtained profile is represented by a vector of 2L images. 
When the property of increasingness is not met, the definitions of opening 

and closing become more general, with  and  denoting the thickening 
and thinning profiles, respectively.

3) Extension to Multichannel and Multiattribute

Morphological operators are in general nonlinear connected transformations 
computed on an ordered set of values. This means that any of their 
extension to multivariate values is an ill-posed problem. The usual strategy is
to apply the operator to each channel separately and fuse or create a stack 
of the obtained profiles. However, in the case of hyperspectral images, 
whose feature space has high dimensionality, this strategy becomes 
unattainable. In [37], a morphological operator was applied to a subspace of 
the original data obtained by using PCA, and only the first most informative 
principal components (PCs) were considered. The concatenation of each 
obtained MPs defines a new structure, which is called extended MP. In 
general, after performing dimensionality reduction, the morphological 
analysis is applied to the r retained features f. The same procedure can be 
adopted for the APs case [18], resulting in the definition of extended 
morphological APs (EAPs), i.e.,



A further extension, which is based on the flexibility of the AP in considering 
any possible measure applicable to a connected region as criterion, is the 
concatenation of the EAPs obtained by different attributes, which results in 
the EMAP [18] and is defined as follows:

where ai represents the ith given attribute, with i=1,2,…,q. When the EMAP is
built, a multiple presence of the original PCs is included in the profile. This is 
avoided by including them once only in the first EAP and not including them 
at all in the later EAPs.

SECTION III.

Proposed Methodology for Spectral and Spatial Classification

The proposed methodology consists of two main parts: The first part is 
related to spectral analysis, where ICA is exploited in order to retrieve class-
informative features; the second part is related to contextual analysis, where
rAPs are used to model the spatial information contained in the extracted 
ICs. The general scheme is shown in Fig. 1.

A. Spectral Analysis: ICA-Based Approach for Dimensionality Reduction

The goal of the spectral analysis is to extract informative features that can 
be used in the classification task. However, many studies have shown that 
not all the spectral space is needed for a good representation of the image. 
On the contrary, a part of the spectral space contains information that is 
noisy and redundant. Feature reduction techniques are usually adopted in 
order to extract a subspace of informative features based on different 



criteria, while discarding all the rest. Several studies [38]– [39] [40] have 
demonstrated that, when PCA is used prior to ICA for dimensionality 
reduction, it provides a subset of components that does not preserve class 
separability. This also affects the ICs. The approach presented in this paper 
exploits the properties of ICA aiming at extracting class-informative 
components for supervised classification purposes. ICA analysis is optimized 
to address the supervised classification task based on the use of prior 
information provided by training samples. In [40], it was shown that the 
reduction of the number of samples used as input to an ICA algorithm can, in
general, improve the ICA convergence speed, without affecting significantly 
the classification results. That was noticed, in particular, in a low-dimensional
scenario (i.e., dimensionality reduction was performed prior to ICA), whereas 
when the dimensionality reduction was not considered, the decrease of the 
number of training samples used as input to the ICA was affecting negatively
the performance of the classifier. In that case, the issue was to extract class-
discriminant features by exploiting only few samples in a high-dimensional 
space. In the proposed approach, the ICA is applied in a high-dimensional 
space (which means that no dimensionality reduction is applied prior to ICA).
This is due to the fact that our aim is to find an optimized approach that 
effectively exploits the information extracted by ICA. The ICA is separately 
applied to each class, extracting sets of ICs that are strictly dependent on 
the training samples of each single class. The idea is to extract ICs 
specifically suitable to represent each specific class. After the ICA 
decomposition, the reconstruction error is evaluated in order to identify the 
best ICs in terms of class representation. The reconstruction error is, thus, 
exploited to address the issue related to the nonprioritization of the 
extracted ICs, i.e., multiple applications of ICA provide different IC sets, 
which are diverse both in the order of appearance and in content. The final 
subset is then optimized by applying a feature selection technique based on 
GA. Based on our previous study [40], FastICA resulted the technique that 
provided the best performance in extracting the whole source matrix, 
requiring less computational resources compared with JADE and Infomax. 
Therefore, FastICA is chosen here as the applied ICA decomposition 
technique. Let X be the observed data, represented by an m×p matrix, with 
m spectral channels and p pixels, whose elements [x1,…,xm]T are the 
mixtures of the observed data. Considering the model in (1), the linear 
mixing model adopted for hyperspectral images can be rewritten as

where A is an m×m matrix and represents the unknown mixing matrix with 
elements [a1,…,am], and S is an m×p matrix whose elements are the 
unknown sources [s1,…,sm]T. The proposed algorithm consists of the following
steps.



1. Extraction of class-specific ICs: n clusters representing the n classes of 
interest are extracted from the data set. Each cluster Xcl, where cl=1,
…,n, coincides with the training samples of each class. For each of 
them, the unmixing matrix Wcl and the independent components Ycl 
are estimated by using FastICA, as shown in Fig. 2.

2. Evaluation of the reconstruction error: The reconstruction error 
provides a measure of the class information associated with a single 
component and is used to rank the extracted ICs. For each class, the 
estimation of the reconstruction error ecl is obtained by computing the 

Frobenius norm, which is denoted by , between the original data 
set and the back projection of the extracted ICs. It is mathematically 
defined as follows:

where . Here, ai is a column vector of the mixing matrix Acl, 

which represents the spectral signature related to the class cl, and  
is a row vector of the estimated source matrix Ycl. Considering the 

relation in (14), the m pairs  are ranked based on their relative 
contribution, where high contribution means low reconstruction error. 
The ranking is assessed by applying the following iterative procedure, 
which identifies the lth couple that minimizes the reconstruction error:

with i=1,…,m. Here, idx represents the index of the chosen lth couple 
at the lth iteration. Xl is initialized as equal to Xcl and updated at each 

iteration by subtracting the contribution provided by  identified 
at the previous iteration, as shown in (16). The procedure requires the 
tuning of the parameter l, which represents the number of couples to 
retain after the ranking. Fig. 3 shows an example of the behavior of the
reconstruction error versus the number of selected features for a 
single class, with l=m. The algorithm for the computation of the 
reconstruction error and the l indices for a single class is described in 
the Appendix A.

3. The optimal mixing matrix Aopt: From the previous step, for each class 

cl, a matrix , which is composed of the best elements [a1,…,al], is 



defined, where l is the total number of couples retained for a given 
class. The optimal mixing matrix is represented by

. The obtained Aopt is an m×(nl) matrix. Based on
the choice of l, the matrix Aopt can have a quite high dimensionality. In 
order to reduce the final feature space and, at the same time, the 
information redundancy, a further selection based on GAs is 
performed.

GAs are identified as a class of adaptive search optimization algorithms
and belong to the family of techniques known as evolutionary 
algorithms, based on the concept of artificial evolution [41]. In this 
paper, a GA is employed for feature selection. In particular, the 
algorithm is performed on the elements of the matrix Aopt in order to 
select the columns that provide the best set of ICS in terms of 
classification accuracy. In this framework, a standard representation of
the solution domain based on a binary encoding is used, where an 
individual solution (chromosome) is identified by n×l binary digits and 
the inclusion or exclusion of a given column of the matrix Aopt is 
identified by the values 1 and 0, respectively. This leads to a 
population of elements represented by a matrix (see an example in 
Fig. 4). The algorithm is first initialized with an initial population of 
individuals (chromosomes) randomly generated, representing a set of 
possible solutions. The next step is the so-called selection, where each 
chromosome is evaluated and ranked based on the evaluation of a 
fitness function. A proportion of the existing population is then selected
and manipulated through genetic operators, such as recombination 
(crossover), and mutation, to breed a new generation, which is an 
evolved version of the initial population. Many GAs implementations 
could be found in the literature; however, their description goes 
beyond the scope of this paper. For a complete background on GAs, 
the reader is referred to [42]. An important aspect in the GAs is the 
fitness function. In this paper, a fitness function is employed to 
evaluate the transformation YGA=WGAX in terms of classification 

accuracy, where  is the new unmixing matrix derived from 
the reduced version of Aopt, and X is the original observed image. The 
process is iterated until the stopping conditions are met, providing the 
final subset YGA of ICs. In our algorithms, the computation of the 
unmixing matrix, which can lead to an underdetermined system, is 
done by using the Moore–Penrose pseudoinverse.





It is worth mentioning that the analysis of each class is independent of the 
other. This allows steps 1 and 2 to be performed in a parallel distributed 
system. This way, the computational time of the ICA for the entire data set is
significantly decreased and can be approximated to be similar to the 
computational time of a single-class ICA. The computation in parallel fashion 
can be also adopted for computing the fitness function for each population in
order to optimize the selection based on GAs.

B. Spatial Analysis: Feature Extraction Based on rAPs

Aiming at minimizing the intraclass variability due to the increase in 
geometrical detail, spatial features are usually introduced. In this paper, MM-
based techniques are used for the extraction of the spatial information. 
According to Section II-B, it is easy to understand that EAPs and EMAPs 
provide a rich multilevel description of the scene. However, the 
dimensionality of the feature space increases when EAP is considered as 
input to a classification stage. The situation is even more challenging when 
an EMAP is considered. Another important issue is related to the relevant 
presence of redundant information within the AP, which can be seen from the
high sparsity that characterizes the DAP. This is due to the way in which the 
profile is built. Regions that are not considered in the filtering are preserved 
at each scale, and the same information is propagated along the profile. 
Here, we present an optimized version of the AP representation that exploits 
the most informative geometrical features extracted by the DAPs, addressing
the issue related to the redundancy that affects the APs.

The proposed solution aims at fusing the information contained in the AP by 
identifying the best level of representation for each region present in the 



scene. This is possible by analyzing the DAP and by using the corresponding 
AP's values in order to compress the AP into two single features, one for each
thickening and thinning profile. Since the rAP is directly extracted from the 
original AP, it has also the same limitations when multichannel data are 
considered. The extension to hyperspectral data analysis is obtained by 
applying the morphological analysis to the subset of features identified by 
applying the proposed ICA-based feature reduction. The following steps 
describe the methodology (see Fig. 1) related to a single attribute case. The 
same procedure is thus repeated for each attribute considered in the 
analysis. In Fig. 5, an example of the pipeline to obtain a single rAP is shown.
The steps are as follows.

1. Computation of the AP and DAP: The first step is to build the AP. The 
critical phase in this part is the choice of the λ range values used as 
reference for the filtering phase. An optimal choice of the range values 
is the one that provides a proper representation of the regions present 
in the scene. This is highly dependent on the chosen attribute and is 
usually based on prior information of the scene. The DAP is obtained by
differentiating the AP.

2. Region extraction: The DAP represents the residual of the AP, which 
means that each level shows the regions that have been filtered 
between two adjacent levels of the AP, in terms of gray-level values. 
This characteristic allows the identification of connected regions 
related to each gray value of the DAP with the advantage of preserving
the geometrical shape without any lost in terms of detail. From this 
step, thinning and thickening profiles are analyzed separately due to 
the different information that they provide.

3. Identification of the representative levels: This step aims at finding the 
level where a given connected region is well represented in terms of 
homogeneity. Let us consider the case of an increasing attribute, 
where the size of the filtered regions increases when the criterion 
value λ increases. In general, it can be seen that a given region, 
starting from the first levels where few pixels are considered, increases
in size by merging with the surrounding region at each filtering step, 
growing until the level in which the structural meaning of the region is 
partially or totally lost is reached. In order to identify that level, a 
homogeneity measure, which is computed on the connected region 
taking into account the original image pixel values, is defined and 
analyzed along the profile. For a given connected region C, the 
homogeneity measure H is computed as follows:

where P(⋅) is the size in pixels of the connected region, and S(⋅) is the 
standard deviation computed on the pixels within the connected region
considering the original values. The joint use of the two parameters 



ensures that a region selected as meaningful will be as spectrally 
homogeneous and large as possible. Consequently, the goal is to 
identify the level where the homogeneity of a connected region 
changes drastically and consider as the meaningful level Lm the one 
that precedes this effect. This is obtained by maximizing the difference
between the H(C) of two adjacent levels, as follows:

where CL and CL+1 are defined as follows:

where CL⊆CL+1. This implies that CL+1 could be the result of the merging
of more connected regions, which are compared with CL+1 separately. 
Fig. 6 shows three examples of possible behaviors of a homogeneity 
measure computed for an increasing criterion (e.g., the diagonal of the
bounding box that encloses a given region). Considering the 
nonhierarchical nature of the DAP, the levels that have zero values for 
a given region are not considered in the analysis since, at those levels 
of the AP, the region is not affected by the filtering (see Fig. 6, where 
squares indicate the considered levels, and circles indicate the 
meaningful levels). The computation of Lm is based on the assumption 
that H(C) is monotone increasing (after discarding the zero-value 
levels). When nonincreasing attributes are considered, the initial 
assumption does not hold. To overcome this issue, the H profile 
computed for each extracted region is sorted in terms of size of 
regions; in such a way, the new H profile has a similar behavior to the 
one of an increasing criterion. After this, the procedure illustrated 
above can be applied to the modified H. This solution allows the 
analysis of the homogeneity to be performed without losing the 
information provided by the attribute, which is intrinsic in the shape of 
the extracted regions.

4. Fusion of the AP into the rAP: In this step, the geometrical information 
contained in each profile (i.e., thinning and thickening of the AP), is 
fused into two images, whose connected regions Cs are associated to 
the values of the AP at the scale level denoted by Lm. The rAP, is thus 
defined as



The obtained feature space has a size of three feature types that 
combine the most informative geometrical information, according to 
the homogeneity measure.

The same concepts of multichannel and multiattribute previously introduced 
can be applied to the rAP, obtaining the reduced EAP (rEAP) and the reduced 
EMAP (rEMAP). In this case, the dimension of the future space of a rEAP is 
calculated as (r3), where r corresponds to the number of features processed 
in the analysis. For the rEMAP, the feature space size corresponds to (2rq+r),
where q is the number of the considered attributes. It is worth noting that 
the feature space size does not depend on the number of filtering thresholds 
L, as it is for the original EMAP, whose size corresponds to (2Lrq+r). This 
gives the possibility, if necessary, to increase the range of family criteria, 
i.e., T, for a better identification of the regions that compose the scenes 
(which leads to a more representative decomposition of the image) without 
incurring a consequent increasing of the final dimension of the final feature 
space.

When the concatenation of different rEAPs leads to a high-dimensional 
vector, a fusion process [43] is preferable. The evaluation of the 
multiattribute information is performed by fusing the outcome of the 
classification obtained by each single rEAP. More specifically, the fusion 
strategy considered in this work assigns a pixel to a class according to the 
majority voting strategy. However, in the case of a tie in votes for two or 
more class labels, majority voting cannot be exploited. In this case, for each 
class label for which a tie is observed, the average class accuracy obtained 
by the classifiers in agreement on the same class label is computed and 
considered for comparison. The final decision is made according to the 
classifiers that obtained the highest averaged classification accuracy.



SECTION IV.

Experimental Setup

A. FastICA Tuning

FastICA is not a parameter-free approach. In our experiments, the 
nonquadratic function g(u), which represents the derivative of the 
nonquadratic function G, is set as tanh(au), where a=1. This choice provides 
a good approximation of negentropy, as proven in [34]. As mentioned in 
Section II-A2, symmetric orthogonalization is chosen since, in our analysis, 
every feature extracted has the same importance. Moreover, the 
computation of the ICs is much faster. Other parameters are related to the 
stopping criterion. The algorithm stops when the convergence is reached, 
which means that the weight change has to be less than 10−4, or the 
maximum number of iterations (which is set at 1000) is reached. One more 
parameter is the guess for the initial projection. In order to make the 



performance comparison consistent, the identity matrix of size n×n is chosen
for initialization.

B. GA Tuning

A search strategy based on GA is employed to reduce the size of Aopt by 
selecting the most representative column vectors ai. In this paper, the 
classification accuracy obtained by the support vector machine (SVM) 
classifier with the radial basis function (RBF) kernel is considered as a fitness
function to be maximized. However, other measures could be integrated as 
fitness function. Since the kernel parameter estimation is computationally 
expensive, the estimation is performed once for each population using 
fivefold cross-validation. The selection strategy is based on stochastic 
universal sampling [44], where sigma scaling [42] is employed in order to 
avoid premature convergence. The parameters of the GA, such as crossover 
rate, mutation rate, and population size, are empirically determined through 
a set of preliminary experiments. In this paper, a uniform crossover is used, 
with a crossover rate of 0.80 and a mutation rate of 0.01. The length of a 
chromosome is computed as nl, where n is the number of classes of a 

specific data set, and l is the chosen number of  couples that 



minimize the reconstruction error. The search criterion stops when 50 
generations are computed.

C. Classification Algorithm

In the experimental analysis, an SVM classifier is employed for classification 
purposes, using an RBF kernel. The algorithm exploited is the LIBSVM [45] 
library developed for MATLAB. The one-against-one multiclass strategy is 
used. For the estimation of the regularization parameter C and the kernel 
parameter γ, cross-validation based on the grid-search approach is 
performed. In particular, an exponentially growing sequences of C and γ are 
considered, with C={10−2,10−1,…,104} and γ={2−3,2−2,…,24}. Each 
classification result in Section V is obtained by using a tenfold cross-
validation, i.e., that the training set is split into ten sets, where nine of them 
are used for training the model, and the one left is used for validation. This 
way, the choice of the parameters results unbiased. For a better 
understanding of the obtained results, the overall classification accuracies 
are given in percentage (%), whereas the comparison between accuracies is 
given in percentage points ( pp), which are simply the arithmetic difference 
of two percentages.

D. Data Set Description

1) Pavia, University Area, Italy (Pavia University)

The hyperspectral data set was acquired by the optical airborne sensor 
Reflective Optics Imaging Spectrometer (ROSIS-03) over the university area 
of the city of Pavia (Italy). The image is composed of 103 bands, with a 
spectral range between 0.43 and 0.86 μm and a spatial resolution of 1.3 m 
per pixel, showing an area of 610 × 340 pixels. In the data set, nine classes 
of interest are considered: asphalt, meadow, gravel, trees, metal sheets, 
bare soil, bitumen, self-blocking bricks, and shadows. The data set and the 
reference map are shown in Fig. 7(a) and (b), respectively, whereas the class
information is reported in Table I.



2) Pavia, Central Area, Italy (Pavia Center)

This scene, as the previous one, was acquired by the ROSIS sensor during a 
flight campaign over Pavia. In this case, the data set is composed of 102 
spectral bands, with a scene of 1096 × 715 pixels. Nine classes of interest 
are considered: water, trees, meadow, self-blocking bricks, bare soil, asphalt,
bitumen, tiles, and shadows. The data set and the related reference map are 
shown in Fig. 7(c) and 7(d), respectively, whereas the class information is 
reported in Table I.

3) Salinas Valley, California (Salinas)

The data set has been acquired over Salinas Valley, California, in 1998. The 
acquisition has been done by using the Airborne Visible/Infrared Imaging 
Spectrometer (AVIRIS) sensor, which uses four spectrometers. The original 
data set is composed of 224 bands, with a spectral range between 0.4 and 
2.5 μm. The image has a size of 512 × 217 pixels, with a spatial resolution of
3.7 m. In this paper, the corrected data set is considered by discarding the 
20 water absorption bands: [108–112], [154–167], and 224. The ground 
reference data contain 16 classes of interest (which are described in Table 
II). The data set and the reference map are shown in Fig. 8(a) and (b). For 
this data set, the training set used in the experiments is made up of 15% 
randomly selected samples from each class.

4) Hekla Volcano, Iceland (Hekla)

The data set was collected on June 17, 1991, on the active Hekla volcano, 
which is located in south-central Iceland, by the 224-band AVIRIS sensor. Due
to the failure of the near-infrared spectrometer (spectrometer 4) during the 
data acquisition, 64 channels appeared blank. After discarding noisy and 
blank channels, the final data set included 157 spectral channels. The image 
has a size of 600 × 560 pixels, with a geometric resolution of 20 m. It shows 
mainly lava flows from different eruptions and older hyaloclastites (formed 
during subglacial eruptions). The ground reference data contain 12 classes of



interests, which are described in Table II. Fig. 8(c) and (d) show the image 
and the reference map, respectively. More information about the data set 
can be found in [46]. The training set used here was generated by a random 
selection of 50 samples from each class.

SECTION V.

Experimental Results

A. Spectral Analysis

Here, the feature dimensionality reduction approach based on ICA 
(presented in Section III-A) is tested alone, and the obtained results on the 
four data sets are shown. Aiming at providing a qualitative analysis of the 
presented approach, the effectiveness in extracting class-informative 
features is assessed in terms of classification accuracies and kappa 
coefficients. The numerical results are reported in Table III. For each data 
set, the behavior of the proposed approach is tested for a different choice of 
the parameter l, which indicates the number of the retained best couples

 that minimize the reconstruction error. The parameter is set as 
l=1,2,3,4. The proposed approach is then compared with the spectral case, 
where all the spectral bands are used as input to the classifier, and to the 
common strategy based on ICA for feature reduction (i.e., PCA is used as 
dimensionality reduction prior to ICA). In the last case, the result shown for 
each data set represents the best case obtained by varying the number of 
components retained from 2 to the spectral dimension. By comparing the 
obtained results, one can see that the proposed approach is able to provide 
representative subsets. While this is less evident for Pavia Center and 
Salinas, where the classes are already well represented and separated in the
spectral case, for the Pavia University and Hekla data sets, the effectiveness 
of the proposed approach becomes clearer. In those cases, significantly 
higher classification accuracies are achieved for the proposed approach 
compared with the spectral and common strategy cases. In particular, for 
Pavia University, the best classification accuracy is achieved with l=4, 
obtaining after the selection a subset of 12 components, with a sharp 
improvement of 9.78 pp compared with the spectral case and of 5.15 pp 
compared with the best case of PCA-ICA (which is obtained by extracting 12 
features). In the case of Hekla, the best classification accuracy is achieved 
with l=3, obtaining after the selection a subset of 20 components. In the 
Hekla case, the classification accuracy has an improvement of 5.88 pp 
compared with the best case of PCA-ICA and of 2.39 pp compared with the 
spectral case. In the case of Pavia Center and Salinas, the best classification 
accuracies are achieved with l=3 and l=2, respectively, retaining after the 
selection a subset of 17 components with a slight improvement with respect 
to both the spectral case and PCA-ICA. Table III also reports the results of the
McNemar's test, which is used to assess the statistical significance of the 
differences between the results obtained by using the PCA-ICA strategy and 



the proposed approach. The McNemar's test is based on the standardized 
normal test statistic, as described in [47], i.e.,

where f12 represents the samples correctly classified by strategy 1, 
represented by PCA-ICA, and wrongly by strategy 2, represented by the 
proposed approach. The difference in accuracy between the two strategies 
can be considered statistically significant if |Z|>1.96, whereas the sign of Z 
indicates which of the approach is more accurate. In the case of (Z>0), the 
PCA-ICA results are more accurate than those of the proposed approach, 
whereas in the case of (Z<0), the results of the proposed approach are the 
most accurate. From the obtained results, we can see that all the tests, with 
the exception of Pavia Center data set for l=1, are statistically significant 
and coherent with the obtained overall accuracies.



For this analysis, the computational costs are provided in Table IV. The 
execution times are related to the best cases (see the results in bold 
reported in Table III) obtained by the proposed feature reduction method 
based on ICA. Here, the execution time is divided in two components: the 
time needed for the computation of ICA and the ranking of the ICs and the 
time needed for the last selection performed by GAs. All the experiments 
were performed on MATLAB using a computer having Intel Core Duo 2.93-
GHz central processing unit and 4 GB of random access memory. As we can 
see, the computational costs related to the ICA and the ranking of the ICs are
very low and therefore negligible for the final execution times, which are 
dominated by the GA-based selection. As aforementioned, the proposed 
approach could be further optimized by improving the implementation of the 
GA-based selection. However, this is not the main goal of the proposed work,
which is to propose a strategy that is able to extract the spectral and spatial 
information in order to obtain more accurate classification maps, therefore 
the high execution times.

B. Spectral and Spatial Analysis

Before showing the results obtained by the proposed spectral and spatial 
approach, the results obtained in the previous work [30] are first shown, 
where the classification performance of the proposed optimization was 
compared with the results obtained in [43] by employing the original APs 
considering the Pavia University data set. For this purpose, the same 
experimental setup used in [43] was also used here. In particular, four 



features were retained after dimensionality reduction, which was performed 
by PCA, and four attributes were considered for the modeling of the spatial 
information, such as area ( a), diagonal of the bounding box ( d), moment of 
inertia ( i), and standard deviation ( s). The λ values considered for each 
attribute were the following: λa=[100,500,1000,5000], λd=[10,25,50,100], 
λs=[20,30,40,50], and λi=[0.2,0.3,0.4,0.5]. Table V shows the results 
obtained by using the proposed approach and the original APs. The best 
results based on the comparison between the two techniques (i.e., AP versus
rAP) are reported in bold. In particular, the classification performance 
obtained by the rEAPs is consistent with the state of the art, obtaining similar
classification accuracies in case of the area, diagonal of the bounding box, 
and standard deviation attributes. However, in the case of the inertia, rEAPs 
provides an improvement of 10.79 pp compared with the original EPAs. 
Following the same strategy as in [43], the EMAP and the rEMAP are obtained
by concatenating all the EAPs and the rEAPs, respectively, to obtain a unique
vector of features. In addition, in this case, the reduced version of the EMAP 
outperforms the original EMAP with an improvement of 13.14 pp. One can 
notice the increase in the Hughes phenomenon when the original EMAP is 
used, whereas in the case of rEMAP, the multiattribute information is better 
exploited, as demonstrated by the classification accuracies. It is worth noting
that rEAPs and rEMAPs required only 12 and 36 features (three times less 
than the original EAPs and EMAPs), respectively, to provide results 
comparable with state-of-the-art accuracies.

In the following, the proposed integrated spectral and spatial approach for 
classification is tested on the four data sets. In these experiments, the ICA-
based scheme is employed for the extraction of class-representative 
components, which are then used for building the rAPs. Here, four attributes 
are again considered. For each of them, two experiments are set up, where 
two families of increasing criteria are considered. Since the proposed method
is based on a region extraction process, a better filtering of the scene would 
lead to the extraction of regions that would not be identified otherwise. In 
order to test the performances on different ranges of thresholds, two 
experiments are set up. Experiment 1 exploits the values that are usually 
employed in the literature, whereas in Experiment 2, the number of 
thresholds is increased, giving a thicker image decomposition. Table VI 
shows the range of threshold λ used for building the profiles. It is important 



to note that an increase in the number of thresholds does not cause an 
increase in the dimension of the feature space of the rAPs and, thus, of the 
rEAPs. Table VII reports all the classification results obtained in Experiments 
1 and 2 for each data set, whereas Figs. 9 and 10 show the classification 
maps of the best cases (represented in bold in Table VII). Considering the 
results obtained in Experiments 1 and 2, one can see that the inclusion of 
spatial information provides a general improvement in the classification 
accuracies compared with the case where only spectral information (i.e., the 
ICs) is considered (see Table III).

In particular, in the case of the Pavia University data set, the rEAPs are built 
starting from the 12 ICs selected by applying the ICA-based feature reduction
approach, obtaining profiles that include 36 features. In this case, the 
attributes area and diagonal provided the best results, obtaining a maximum
improvement of 8.23 pp. In the case of the Pavia Center data set, the rEAPs 
are built on 17 ICs, obtaining a final vector of 51 features. From the analysis, 
it can be seen that a good classification accuracy can be achieved by 
exploiting the spectral information (see the spectral case in Table III). 
However, a slight improvement can be obtained by employing spatial 
information. In addition, in this case, the attributes area and diagonal 
provided the best accuracies. In the case of the Salinas data set, as for the 
Pavia Center case, the rEAPs are composed of 51 features, including 17 ICs. 
In this case, the attribute area obtained the best classification accuracy with 
an improvement of 4 pp with respect to the only spectral case. In case of the
Hekla data set, 20 ICs were extracted, which are used to build 60-feature 
rEAPs. In this case, the attributes area, diagonal, and standard deviation 
provided an improvement with respect to the spectral case. The best 
classification accuracy was obtained by using the attribute diagonal, giving 
an increase of 3 pp. The attributes area and diagonal are the ones that 
provided better classification accuracies, whereas inertia resulted in a worse 
classification accuracy. This is probably due to the fact that the identification
of a proper range of thresholds is not trivial, particularly for nonincreasing 
criteria, where this is less intuitive with respect to the increasing criteria. 
Such issues will be considered in our future research to provide an automatic



approach that would be independent of the attribute and image considered. 
By comparing the results obtained in Experiments 1 and 2, one can see that 
a larger range of thresholds leads in general to more representative rEAPs. 
Table VII shows in bold the best classification accuracies based on the 
comparison between the two cases (i.e., Experiment 1 versus Experiment 2).

A further experiment is based on the fusion of the information provided by 
each rEAP to obtain the rEMAP. The strategy adopted for the multiattribute 
analysis is based on the fusion of the classification results obtained by the 
rEAPs (see Section III-B). This choice is justified by the fact that this solution 
is more robust than using a unique stack of features, while the 
dimensionality of the problem remains low with an, consequently, advantage
in terms of computational cost. In general, the employment of the fusion 
strategy provides classification results (see Table VIII) that are quantitatively 
and qualitatively similar and, in some cases, better than the best case 
obtained by employing a single rEAP. This is also proved by the classification 
maps of the rEMAPs [see Figs. 9(e) and (j) and 10(e) and (j)], where each 
class is spatially better represented (i.e., less noisy) with respect to the 
single rEAP case. In Table VIII, the McNemar's test is used to compare the 
results obtained by using the rEMAPs computed in Experiments 1 and 2. 
Here, a negative value of Z indicates as the most accurate the rEMAP 
computed in Experiment 2. All the tests results are again statistically 
significant. The results obtained in this study by exploiting spectral 
information, spatial information, and their combination can be compared 
with the ones obtained in other recent studies [19], [20], [25], [48], where 
the use of APs were exploited and combined with supervised feature 
extraction techniques in order to reduce the final dimension of the profile 
and discard the redundant information. In particular, the proposed 
methodology for spectral and spatial analysis outperformed the approaches 
presented in [25] and [48] in terms of accuracies. Here, the Pavia University 
data set was used for testing by exploiting the attributes standard deviation 



and area. Furthermore, supervised feature extraction techniques were 
employed to both provide the initial feature subset and reduce the final 
dimension of the profile space. The proposed methodology outperforms also 
the approaches considered in [19] for the Pavia Center data set. In 
particular, by comparing the results obtained in the presented study, one 
can see that, by employing the presented ICA-based approach, we are able 
to reach higher overall accuracy with respect to the spectral–spatial case in 
[19]. In particular, the rEMAP is able to achieve a higher accuracy than for 
the case in [19], in which supervised feature extraction techniques are 
exploited for dimensionality reduction of the final profile. In the case of the 
Pavia University data set, the proposed approach obtained higher accuracies 
compared with the case in which the original APs are used, whereas it 
provided very close (and in some cases higher) accuracies to the cases in 
which feature extraction techniques are exploited. In terms of accuracies, 
the proposed approach outperforms also the strategy adopted in [20] 
considering the case in which standard training set is exploited for the 
classification. The reason for such comparison is to prove the effectiveness 
of both the ICA-based approach in extracting class-informative features and 
the rAPs in providing subsets of spatial features in which the redundant 
information is discarded. Moreover, the comparison proves that, by 
optimizing the information extraction, the inclusion of additional process 
steps in the classification chain, such as the multiple use of supervised 
feature extraction techniques, can be avoided.

SECTION VI.

Conclusion

In this paper, a novel methodology for spectral and spatial supervised 
classification of hyperspectral images has been proposed. The presented 
methodology optimized the usage of ICA in class-informative feature 
extraction, while minimizing the disadvantages in the use of APs and its 
extensions (i.e., EAPs and EMAPs), such as the information redundancy, 
which limits the classification capabilities.





In particular, a novel ICA-based feature reduction approach was particularly 
designed to retrieve class-informative features in a high-dimensionality 
scenario, i.e., where no prior dimensionality reduction is applied. The 
selection of the ICs subset was decided upon the minimization of a criterion 
function based on the reconstruction error measured for the ICs extracted 
from each specific class. A GA-based approach was employed for the 
selection of the final subset. The obtained results confirmed that an 
appropriate use of ICA can bring prominent improvements in selecting the 
most representative components, leading to significantly higher classification
accuracies. Moreover, the proposed schema introduced an automatic 
approach that not only isolates the most informative features without any 
supervision but also identifies the optimum number of the components to 
keep.

The analysis was then extended to the spatial information domain with the 
definition of a novel method for extracting spatial information. The method 



was based on an optimized version of APs, aimed at reducing both the 
dimensionality and the redundancy of the information that characterizes the 
APs. The algorithm considered, built upon multiscale analysis of the DAP 
behavior, resulted in the extraction of geometrical features that correspond 
to meaningful structures in the scene at different scales. According to 
homogeneity criteria, the original AP was compressed, fusing the most 
informative geometrical information into few features. The emerged rAP's 
feature space accounted for three feature types, i.e., the reduced thickening 
and thinning profiles and the original image. Compared with the original APs,
the rAPs achieved comparable or higher classification accuracies, while using
only few features (i.e., in the presented case was one third of the number of 
features of the original AP). It is worth noting that, in contrast to the original 
AP, the number of thresholds used in the filtering process does not affect the
final number of features that compose the rAP. This property brings 
important advantages in the cases of multiattribute and multichannel 
analysis, where the use of rEAPs and rEMAPs for modeling the spatial context
limits the Hughes phenomenon.

The presented methodology was tested on four real hyperspectral images, 
which were different in spectral/spatial resolutions and content. The obtained
results showed the effectiveness of the proposed methodology in extracting 
spectral and spatial features, providing higher or similar accuracies when 
compared with state of the art.

The experiments carried out pointed out on a series of potential 
improvements that are promising directions for future research.

 Considering the proposed feature dimensionality strategy, the 
definition of an automatic approach for the estimation of the 
parameter l, which represents the number of ICs to be retained, would 
allow us to obtain a fully automatic and parameter-free approach.

 Considering the morphological tools, their usage could be further 
optimized by defining an automatic approach for the identification of 
the best representative filtering parameters, which is preferable to be 
independent of the attribute employed and the image content.
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