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SUMMARY

Advances in cell-based therapy, particularly CAR-T cell therapy, have transformed the treatment 

of hematological malignancies. Although an important step forward for the field, autologous 

CAR-T therapies are hindered by high costs, manufacturing challenges, and limited efficacy 

against solid tumors. With ongoing progress in gene editing and culture techniques, engineered 

stem cells and their application in cell therapy are poised to address some of these challenges. 

Here, we review stem-cell-based immunotherapy approaches, stem cell sources, gene engineering 
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and manufacturing strategies, therapeutic platforms and clinical trials, as well as challenges and 

future directions for the field.

Short Summary:

Stem cell engineering and its application to cell therapy hold immense potential for the future of 

cancer treatments. In this review, Li et al. describe the most relevant stem cell sources, therapeutic 

platforms and clinical trials, evaluate gene engineering and manufacturing strategies, and discuss 

current challenges and future directions.

INTRODUCTION

Two unique properties of stem cells, their ability to self-renew and differentiate into multiple 

cell types, make them an attractive source for cell-based therapies. Stem cells and stem-cell-

derived products have been investigated for diseases such as muscular dystrophy, heart 

disease, Parkinson’s disease, Alzheimer’s disease, spinal cord injuries, diabetes, and cancer 
1. Even though much work remains to be done, recent advances in stem cell engineering 

underscore the promise of a new generation of stem-cell-based therapies to alter the 

treatment landscape for several clinical indications. One such area is cancer, where therapies 

that rely on genetically engineered stem cells are beginning to enter the clinic and show 

encouraging signs of safety and efficacy.

Cell therapy, in the form of non-genetically modified hematopoietic stem cell transplantation 

(HSCT), has been a mainstay of blood cancer treatment for decades 2. In the late 1900s, 

as our understanding and acceptance of the relationship between the immune system 

and cancer matured, investigators began utilizing immune cells to fight cancer3. Several 

clinical trials reported the application of ex vivo expanded tumor infiltrating lymphocytes 

and lymphokine-activated killer cells to treat end-stage solid tumors, and noteworthy 

clinical responses were observed 4,5. Soon after, developments in gene therapy ushered 

in another form of cell therapy for cancer, centered on tailor-made, genetically modified 

immune cells 6. Chimeric antigen receptor (CAR)-T cell therapy has transformed the 

treatment of hematological malignancies, with six products approved by the FDA so far. 

While instrumental in treating liquid cancers and propelling the field of cell therapy 

forward, the current CAR-T cell therapies face several limitations 7–11. The products are 

autologous, obtained from the patient itself, which impedes their scalability, affordability, 

and accessibility. The vein-to-vein manufacturing process also prevents the administration 

of CAR-T cell therapy to patients with rapidly progressing disease, and individualized 

starting material coupled with an ex vivo manufacturing process can result in variable 

and suboptimal final products 12–17. For example, patient-derived T cells and current 

expansion protocols can cause the therapeutic cells to enter a later differentiation state and 

express inhibitory receptors. A growing body of work contends that T cell fitness impacts 

clinical activity, with “younger,” less differentiated, less exhausted T cells correlating with 

improved responses 18–24. In addition to production and quality control challenges, CAR-T 

cell therapies can cause serious adverse events, namely cytokine release syndrome (CRS) 

and neurotoxicity 25–27. Despite outstanding response rates, the majority of CAR-T cell 

recipients relapse 28–30. Lastly, CAR-T cell therapies have often failed against solid tumors, 
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except for the anti-glioma activity of GD2-targeting CAR-T cells 31,32 and the success of 

Claudin-18.2 CAR-T in gastric cancers 33.

Allogeneic cell therapies have the potential to overcome some of the hurdles faced by 

autologous therapies but are not without challenges 34,35. Many concerns about safety 

and potency are not readily addressed and will remain important considerations as 

allogeneic cell immunotherapies advance further. Healthy donor-derived cells can improve 

manufacturability and standardization of products. They provide readily administrable “off-

the-shelf” cell therapies and can be pre-screened for desired characteristics. However, they 

also pose the risk of graft-versus-host-disease (GvHD) and are subject to host cell-mediated 

allorejection. GvHD is mediated by alloreactive donor T cells and can be avoided by 

TCR editing or the use of immune cells with known specificities or a lack of response to 

peptide-MHC mismatches 36–38. Examples are virus-specific T cells, tumor-antigen-specific 

T cells, innate-like T cells, natural killer (NK) cells, and macrophages 39–42. Through 

innate-like TCRs and/or NK receptors, gamma delta (γδ) T, invariant natural killer T 

(iNKT), mucosal-associated invariant T (MAIT), and NK cells exhibit intrinsic cancer 

cytotoxicity against many liquid and solid cancer types 43–46. Equally, macrophages can 

display innate cancer phagocytosis 44,47. Multiple tumor-targeting mechanisms are necessary 

for durable remission to oppose tumor antigen escape and antigen heterogeneity. Although it 

is possible to engineer dual-targeting CARs and other means of tumor recognition onto 

conventional T cells, the limits of current techniques for genomic alterations must be 

considered. Lentiviral and retroviral vectors remain the most common gene engineering 

methods. Given their relatively small gene payload capacity, the number of genes introduced 

in a single production round for mature immune cells is limited48. Between CARs, safety 

switches, immunomodulatory proteins, and other enhancements, selecting the optimal 

combination for transduction into mature immune cells is challenging and viral transduction 

and genomic editing affect cell yield and quality 49. Potentially desirable immune cell 

populations, such as iNKT and γδ T cells, have low frequencies in peripheral blood, 

requiring extensive expansion for clinical usage. This expansion can introduce variability, 

limit manufacturability, and produce highly differentiated cell products.

Regardless of the allogeneic cell type, recognition and elimination by the host immune 

system may limit the persistence and therapeutic efficacy of allogeneic cells 50. Interestingly, 

targeting B cell malignancies is a unique scenario, as B cell aplasia is a common sequelae of 

CD19 CAR-T cell treatment and thus humoral-mediated immunorejection of an allogeneic 

cell therapy will be diminished 51,52. Cord blood-derived, HLA-mismatched NK cells 

transduced to express CD19 CAR and IL-15 were administered to 11 patients with CD19-

positive lymphoid tumors and resulted in a 73% response rate 53. The infused CAR-NK 

cells expanded and persisted at low levels for at least 12 months 53. This long-term 

persistence was attributed to a permissive environment created by the lymphodepleting 

regimen combined with the ectopic expression of IL-15 by the CAR-NK cells 53. However, 

the presence of therapeutic cells was not sufficient to prevent relapse 53. Particularly for 

treating solid tumors, the rational design of allogeneic cells resistant to host rejection may 

be necessary to create a therapeutic window. Immunoevasion can be achieved by HLA 

“cloaking,” in which HLA genes are inactivated using gene editing techniques 54. Cells 
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that lack HLA, however, will be subject to NK “missing self-recognition,” and will require 

addition genetic modifications, such as the overexpression of HLA-E, to resist NK killing 55.

Despite rapid progress in the development of cell therapies, the question remains: can we 

produce off-the-shelf, safe, scalable cell products that lead to durable responses in cancers, 

including solid tumors? In this review, we discuss the potential of stem-cell-based cell 

therapies to achieve this lofty goal. We start by reviewing stem cell sources, engineering 

strategies, and manufacturing details, and then examine stem cell engineering challenges, 

solutions, and optimizations as well as current stem-cell-based therapeutic platforms and 

clinical trials.

Stem Cell Sources

The challenges faced by autologous therapy led us to consider alternative master stocks as 

therapeutic cell sources. Two major stem cell resources, hematopoietic stem cells (HSCs) 

and pluripotent stem cells (PSCs), have been used to develop therapeutic immune cells and 

could provide a sustained supply and bypass the unavailability of autologous cell materials 
56,57. Compared to HSCs, PSCs could be utilized as an “unlimited” cell source to derive 

immune cells for the generation of therapeutic products. However, generating cells from 

human PSCs has typically been less efficient58. Several strategies, such as co-culturing 

PSCs with stromal cells (e.g., S17 or OP9 cells) and producing embryoid bodies, can 

improve PSC differentiation and immune cell production 59–62. In addition, healthy donor 

periphery blood mononuclear cell (PBMC)-derived immune cells, such as conventional αβ 
T, iNKT, MAIT, γδ T, and NK cells, could be reprogrammed to pluripotency and then 

re-differentiated into rejuvenated immune cells 63–68. These PBMC-derived induced PSCs 

(iPSCs) can be further engineered with CARs for enhanced antitumor efficiency. However, it 

is necessary to explore the usage of the endogenous promoter to drive transgene expression 

in PBMC-derived iPSCs, as the endogenous regulatory elements could still be activated in 

iPSCs, thereby affecting differentiation. Inducible expression systems could be incorporated 

to address this concern 58.

Stem-Cell-Derived Therapeutic Immune Cells

The transformative success of immune checkpoint inhibitors and CAR-T cells has reinforced 

the importance of T cells in cancer immunotherapy. It has further made the creation of 

stem-cell-derived T cells a primary focus in the field of stem cell engineering. Genetic 

engineering of autologous conventional αβ T cells to generate tumor-targeting T cells has 

been pursued for over two decades. Two categories of tumor antigen-specific receptors 

are applied to grant T cell specificity: physiological TCRs and synthetic chimeric antigen 

receptors CARs. CD19 CAR- and BCMA CAR-engineered T cells have been approved 

by the FDA to treat B-cell malignancies and multiple myeloma, respectively 15,69–73. TCR-

engineered T cells have shown promise in the treatment of melanoma, lung cancer, sarcoma, 

and multiple myeloma 74,75. Nevertheless, several drawbacks exist for these approaches that 

may be addressed by stem-cell-derived products. Stem-cell-derived T cells have alternate 

cytokine profiles, which may reduce CRS and other safety risks 76. Additionally, the 

composition of autologous T cells, such as the CD4+:CD8+ ratio, vary greatly between 

patients and may affect therapeutic outcomes 15,24. The heterogeneity of starting materials 
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for CAR-T cell manufacturing may impede therapy efficacy. This issue could be resolved by 

adjusting a specific ratio/dose of CD4+:CD8+ cells 77,78 or by using allogeneic sources such 

as HSC or iPSC-derived off-the-shelf T cells. In these sources, theoretically, CD4+:CD8+ 

T cells can be tuned and additional genetic engineering performed on the small numbers 

of starting stem cells (Figure 1A). Notably, it is challenging to derive CD4+ cells from 

current protocols that differentiate stem cells into T cell lineages 79–82. One possible reason 

is that current stem cell differentiation systems utilize Notch signaling to induce T lineage 

development. Notch biases the CD4/CD8 T lineage decision, favoring CD8 over CD4 T cells 
83–85.

NK cells, potent innate cytotoxic lymphocytes, effectively target virus-infected cells and 

cancer cells 45. NK cell-based clinical trials attempt to treat cancers using a variety of 

NK cell sources, including NK cell line NK92, autologous patient-derived NK, allogeneic 

healthy donor-derived NK, and HSC and iPSC-derived NK cells (Figure 1A) 40,53,86–96. 

Unlike conventional αβ T cells expressing rearranged TCRs, NK cells recognize target 

cells through the integration of signals from activating and inhibitory receptors 89,92,97,98. 

NK cell recognition is independent of MHC restriction and prior sensitization, thereby free 

of GvHD risk 53,92,99. The efficacy of NK cell-based immunotherapy could be potentially 

improved via multiple strategies, such as arming CARs on NK cells 45,86,89,100 engineering 

IL-2 or IL-15 to enhance NK cell antitumor activity and persistence in vivo40,101, directing 

antibody-dependent cellular cytotoxicity (ADCC) through NK Fc receptor CD16 102, and 

blocking NK inhibitory receptors such as NKG2A or killer cell immunoglobulin-like 

receptor (KIRs) 103.

Unconventional T cells, such as iNKT, MAIT, and γδ T cells, recognize tumor cells via 

TCRs and NK activating receptors, independent of MHC-restriction. These unique features 

allow innate T cells to target tumor cells without inducing GvHD. Generation of iNKT, 

MAIT and γδ cells through genetic engineering and differentiation of HSCs or iPSCs 

has been successful (Figure 1A). The resulting innate T cells respond to their agonist 

stimulation and display potent tumor killing abilities in leukemia, multiple myeloma and 

solid tumors 57,63,104–110. These pre-clinical studies support the potential of developing 

off-the-shelf innate T cell-based cancer immunotherapy. Other innate immune cells, such as 

macrophages, dendritic cells (DCs) and myeloid cells, can also be generated from iPSCs 

(Figure 1A) 111–114. These iPSC-derived innate immune cells display immunostimulatory 

function and may facilitate vaccination-based immunotherapy 112.

Stem Cell Engineering: Technologies and Manufacturing

Stem cell culture and differentiation—A variety of stem cell culture and 

differentiation systems have been developed in the past decades, as comprehensively 

described in earlier reviews (Figure 1B) 56,57. These systems include humanized mouse 

models (e.g., bone marrow-liver-thymus mouse model) 106,107,115–117, feeder-dependent 

cultures (e.g., OP9-DL and artificial thymic organoid, ATO) 79–81, and feeder-free cultures 

(e.g., Ex Vivo HSC-iNKT culture) 105.

Considering the off-the-shelf purpose and safety profile of cellular products, the mouse 

origins of humanized mouse models severely limit their clinical application. Feeder-
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dependent cultures containing mouse stromal cells have safety concerns which need to 

be addressed. One study reduced contamination by mouse feeder cells using a porous 

membrane, with feeder cells seeded at the bottom of the membrane and stem cells cultured 

on the other side of the membrane 118. In addition, human-derived feeder cells such as 

foreskin fibroblasts, mesenchymal stem cells and adipose-derived stromal cells were utilized 

as feeders for human ESC and iPSC cultures 119–123. Alternatively, feeder-free systems were 

developed to meet the clinically applicable and scalable requirements. For instance, an ex 
vivo feeder-free HSC-iNKT culture allowed to generate allogeneic iNKT cells with high 

yield and purity 105. The feeder-free culture adopted a system of plate-bound DLL4 and 

VCAM-1 to induce T cell commitment from stem cells 124,125. The generated allogeneic 

HSC-engineered iNKT cells displayed potent antitumor efficacy and antiviral capacity 
105. They could be further engineered with CARs to enhance their tumor targeting and 

gene-edited with CRISPR-Cas9 to ablate surface MHC molecules 79. Another feeder-free 

differentiation culture system spanned from iPSC maintenance to T cell proliferation stages, 

enabling large-scale iPSC-derived T cell generation for cancer immunotherapy 126. Further 

improvements on the feeder-free cultures will be necessary to achieve a more stable and 

efficient immune cell production.

Stem cell gene editing—The common premise of engineering immune cells for cancer 

immunotherapy is to grant immune cells the ability to specifically target tumor cells. TCRs 

and CARs are widely used in stem cell engineering to enhance immune cell specificity given 

their validation in mature PBMC T cells. (Figure 1C) 15. Tumor antigen-specific TCRs are 

typically obtained from patient-derived, tumor-responsive T cell clones 15,127, humanized 

mouse models 128,129, or using phage display technology 130,131. Unlike TCRs which 

require CD3 co-expression and are MHC-restricted, synthetic CARs function independently 

of MHC restriction and can be applied to other cells such as NK cells, macrophages 

and myeloid cells 45,114, enhancing tumor targeting capability 132. In addition to directly 

engineering mature PBMC-derived or stem-cell-derived immune cells, retroviral or lentiviral 

vectors are used to stably introduce TCRs and CARs into stem cells (Figure 1D) 133. These 

vectors represent a promising approach to generate long-lasting immune cells with defined 

antigen specificity 134,135.

Gene-editing technologies, including zinc finger nucleases (ZFNs), transcription activator-

like effector nucleases (TALENs), and CRISPR-Cas9 have been utilized in cancer 

immunotherapy (Figure 1C) 36,38,136–139. These technologies enable efficient gene 

knockout, site specific knock-in, and genome-wide screen in target cells, including immune 

cells and stem cells. Knock-out of TCR genes (e.g., TRAC and TRBC) avoids T 

cell-triggered GvHD, knock-out of MHC-related genes (e.g., B2M and CIITA) reduces 

host T cell-mediated allorejection, and knock-out of immune checkpoint genes (e.g., 

PDCD1, LAG3, CTLA4, and DGKα) improves immune cell antitumor efficacy (Figure 

2) 38,137,140–150. Knock-in of a CAR gene into the TRAC locus via CRISPR-Cas9 results in 

a uniform CAR expression on T cells, lack of endogenous TCR expression, and enhanced T 

cell potency 151,152. In addition, CRISPR/Cas9-mediated genome-wide screening of immune 

and stem cells can help to identify gene targets for cell-based therapies 153–158. Compared to 

engineering CAR/TCRs or gene editing in mature immune cells, gene editing in stem cells 
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could mean a reduction of required materials, such as lentivirus and CRISPR-Cas9/gRNA. It 

might also lead to higher gene editing efficiency 79,159.

Gene knock-outs or knock-ins that enhance the antitumor capacity of immune cells are 

being widely explored. For example, incorporating IL-15 into NK or iNKT cells improves 

their in vivo persistence and tumor killing 160–163. Introducing HLA-E or HLA-G into 

MHC knock-out cells grants resistance to host NK cell-mediated allorejection 79,164,165. 

Disrupting CD52 makes these cells resistant to lymphodepleting drugs such as alemtuzumab 
26,166 (Figure 2).

Stem cell clinical manufacturing—Cell-based therapy has revolutionized cancer 

treatment. Unique features of cellular products, such as high variability, a long 

manufacturing process, low stability, complicated storage and transportation, insufficient 

characterization, and an unclear mechanism of action, make these cells different from other 

chemical drug or antibody products 167. Therefore, a GMP-grade regulation is especially 

necessary for cell therapy products. In compliance with official standards, such as the 

United States Pharmacopoeia (USP) or the European Pharmacopoeia (EurPh), complete 

characterization of cellular products should be tested, including identity, yield, purity, 

viability and potency. In addition, tumorigenicity and biocompatibility testing should be 

performed, if necessary. Multiple aspects should be taken into consideration, such as cell 

origin (autologous versus allogeneic), safety, immunogenicity, in vivo efficacy, persistence, 

administration route, exposure duration, use of combination products and others. 168.

One concern of PSC-derived cell products is the presence of residual undifferentiated PSCs, 

which could develop into teratomas in the recipient patients 169. Several preclinical studies 

have reported that once PSCs are differentiated into immune cells, few residual PSCs persist 

and form teratomas in animal studies. These results have been considered sufficient to 

demonstrate the safety of PSC-derived cellular products, and therefore these products have 

entered phase I clinical testing 170. Another concern of PSC-derived cell products is immune 

matching and tolerance 169. Different strategies are being pursued to resolve the issue of 

allorejection, and these are discussed below. Additionally, high costs and a time-consuming 

production process are other problems in manufacturing. Different from a vaccine or an 

antibody, generating human immune cells requires longer periods in a GMP environment, 

multiple culture and engineering steps, and specific sets of reagents and final formulations. 

This issue is further complicated, as each patient and condition might require a different 

number of cells for treatment 171–173. Nevertheless, the rapid development of PSC-related 

knowledge and technology will provide more and less expensive alternatives, bypassing the 

current limitations in iPSC protocols.

The Engineered Stem Cell Product: Challenges and Optimizations

Safety—In addition to traditional CAR-T cell adverse events, such as CRS and 

neurotoxicity 174, stem-cell-derived therapies have other safety concerns that must be 

addressed 175. The self-renewal property of stem cells, in particular pluripotent stem cells, 

raises concerns about tumorigenicity 176. It is also possible that undifferentiated and/or 

immature cells are retained in the final cell product. Even a few residual PSCs could result 
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in teratoma formation 177. In addition, tumorigenic mutations can arise during in vitro 
culture, which is prone to cause genetic alterations, such as chromosomal abnormality, copy 

number variation, and single nucleotide mutations 178. Allogeneic stem-cell-based products 

are subject to several in vitro and in vivo tumorigenicity-associated tests 179. Karyotyping 

is traditionally used to monitor chromosomal abnormalities 180, such as chromosomal 

deletion, duplication, or rearrangement. Clones with such alterations are discarded. Next 

generation sequencing can identify single nucleotide and other genomic alterations. The 

ultimate effect of these smaller genetic events on the final cell product remains controversial 

and further research will indicate whether these changes should preclude utilizing specific 

cell products 177. Flow cytometry and quantitative RT-PCR/droplet digital PCR are also 

employed to detect stem cells in the final product 181. In products that rely on the use of 

iPSCs, reprogramming factors are at risk to cause tumorigenesis 182. The Yamanaka factors, 

especially c-Myc, are often overexpressed and known as driver mutations of human cancers. 

Although current practice utilizes Sendai virus transduction of reprogramming factors for 

episomal expression 183, care must be taken to ensure that the reprogramming factors are not 

integrated as transgenes prior to clinical development 181,183,184. Lastly, suicide switches can 

be included in stem-cell-derived therapies to eliminate the cells in case of tumor formation 
185.

Although iPSC technology may ultimately unlock the door to autologous cell therapies 

of any cell type, the cumbersome and costly process of iPSC reprogramming and 

differentiation currently prohibits widespread application of individualized iPSC precision 

medicine. Thus, stem-cell-derived therapies will likely be allogeneic. An important safety 

concern for allogeneic cell therapies, particularly T cell-based therapies, is GvHD 186. Our 

understanding of GvHD stems largely from the longstanding use of allogeneic HSCTs to 

treat hematological diseases 187. It remains a major cause of patient morbidity and mortality 
188–190. Therefore, conventional αβ T cell-based allogeneic therapies require genetic 

engineering to remove or alter the endogenous TCR. TCR KO is a common approach 

for creating universal allogeneic T cell therapies (such as UCART). Other methods, such 

as gene insertion into the T cell TRAC locus, can be used to eliminate the risk of GvHD 
139,151. Importantly, several alternative immune cell populations obviate the need for genetic 

manipulation to avoid GvHD. Germline-encoded NK receptors and the TCRs on innate T 

cells do not respond to peptide-MHC mismatches 56. A growing number of clinical trials 

validate the safety of these allogenic cell types for cancer immunotherapy 191. Further 

support for the safety of innate and innate-like immune cells comes from extensive research 

identifying cellular components of allo-HSCT grafts that reduce the risk and severity of 

GvHD without diminishing normal immunological functions, including NKand iNKT cells 
192,193.

Immunogenicity—Immune rejection is a substantial hurdle to the successful application 

of allogeneic cell therapies. Immunosuppressants are traditionally used to prevent allograft 

rejection, for instance after organ transplantations. However, severe side effects, including 

infections, can result from continued immunosuppression 194,195. When transplanted into 

immune-privileged tissues, such as ocular or neurological tissues, allogeneic stem-cell-

derived cells persist for years 177. For non-immune-privileged areas, and to avoid continuous 
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immunosuppression, two strategies can help to prevent immune rejection in the patient: 

HLA haplotype banks that store human stem cells of different haplotypes and the 

engineering of hypoimmunogenic immune cell products.

HLA haplotyping is performed prior to solid organ transplantation and widely used in allo-

HSCT, with millions of donors registered in worldwide bone marrow banks 196. With over 

26,000 known HLA alleles reported for humans 197, creating stem cell biobanks that cover 

thousands of unique haplotypes is not feasible. However, being able to select specific HLA 

pairs can maximize population coverage with a minimal number of HLA haplotypes 198. 

The key advantage of a haplobanking strategy is that it does not require genetic engineering. 

Some of the limitations are the need for unique banks for different ethnicities, a benefit for 

only part of the population, and incomplete immune tolerance, even with HLA-matching 177.

Notably, cells can be engineered to evade the immune system. Genetic deletion of beta 

2-microglobulin (B2M) and class II major histocompatibility complex transactivator (CIITA) 

prevent the expression of MHC Class I and II molecules 199. Cells with genetic B2M and 

CIITA knockouts resist CD8+ and CD4+ host T cell allorejection, respectively 199. Cells 

lacking MHC Class I expression are subject to NK “non-self” elimination, and animal 

and clinical studies have reported a role for monocytes and macrophages in graft rejection 
200. Moreover, HLA Class I and II knockouts were paired with CD47 overexpression in 

iPSCs 201. CD47 is the canonical “don’t eat me” signal, and effectively reduces NK and 

macrophage-mediated elimination. In fully immunocompetent preclinical mouse allogeneic 

recipients, endothelial cells, smooth muscle cells, and cardiomyocytes derived from mouse 

hypoimmunogenic iPSCs were well tolerated. Human B2M−/−CIITA−/− CD47 iPSC did not 

incite any detectable cellular IFN-γ response or antibody response in NSG-SGM3 mice 

and showed long-term engraftment, whereas non-CD47 engineered hiPSCs were rejected. 

Alternative hypoimmunogenic cell therapies, in which iPSCs lack B2M, CIITA, and NK 

activating ligand CD155, and express HLA-E were also tested 202. T cells differentiated 

from the hypoimmunogenic iPSC lines showed longer survival than unmodified iPSC-

derived T cells in the presence of allogeneic immunity, and importantly, were more resistant 

to NK killing than HLA-edited iPSC-derived T cells. Hypoimmunogenic iPSC-derived T 

cells engineered to express CAR displayed potent antitumor efficacy in mouse models of 

CD20-expressing leukemia or lymphoma. These studies indicate that hypoimmunogenic 

stem-cell-derived therapies have the potential to produce off-the-shelf therapies that exert 

therapeutic benefits within reasonable dosing regimens.

Antitumor efficacy—The increasing body of clinical experience confirming the safety of 

cell-based cancer therapies encourages a focus on enhancing antitumor efficacy. Although 

these efficacy improvements are primarily developed for mature cells, progress in stem 

cell research will allow concurrent investigation of such innovations in stem-cell-derived 

products.

A critical barrier to the success of engineered cell therapies is tumor recognition. In 

hematological malignancies, ubiquitous lineage-specific markers have engendered the 

striking success of CAR-T cells targeting CD19 or BCMA 203. Importantly, the elimination 

of all B cells, cancerous and healthy, can be treated with immunoglobin infusions, providing 
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an advantage over strategies that eliminate cells expressing solid-tumor-associated antigens. 

Other hematological markers, such as CD20, CD22, CD30, CD33, and CD7, are being 

investigated as CAR-T cell targets 204. Although CD19 and BCMA CAR-T cells achieve 

response rates upwards of 90% for certain cancers, relapse is common 141. One possible 

explanation for relapse after CAR19 CAR T cell therapy is modulation of the CD19 

antigen on cancerous cells. For instance, genetic modification leading to partial or complete 

downregulation of the CD19 receptor, or truncation of the protein, which then prevents 

binding by CD19 CAR-T cells. A lineage switching that leads to the development of a 

CD19-negative phenotype can also result in relapse 205.

Identifying tumor-specific antigens for solid tumors is more challenging. Solid tumors are 

highly heterogenous and tumor-overexpressed antigens are often present on non-disposable 

healthy tissue. The first wave of CAR-T cells for solid tumors have targeted HER2, 

EGFRvIII, mesothelin, CAIX, PSMA, and GPC3 206. A fatal case of HER2-targeting 

CAR-T cells, potentially due to CAR-T cells attacking lung epithelial cells expressing low 

levels of HER2, tempered solid tumor CAR-T cell enthusiasm, but many clinical studies 

have reported tolerable safety profiles 207 and HER2 has since been targeted safely 208. 

Although antigen escape and antigen heterogeneity are two critical immunotherapy evasion 

mechanisms of cancer cells, several cell engineering strategies are being implemented 

to create therapies that target cancer cells via multiple antigens/pathways 209. Stem-cell-

derived products are uniquely positioned to provide improved tumor recognition given 

their genetic pliability. Importantly, research into efficacy optimization, such as CAR 

design and the overexpression of immunomodulatory proteins, was first performed using 

mature immune cells. As such, in most cases, engineered stem-cell-derived products would 

incorporate enhancements originally designed for mature cells. Considerations that are 

particularly relevant for stem cell engineering remain to be fully elucidated. Among them 

are, for instance, the optimal time frame to introduce the CAR and other molecules (i.e., pre 

or post-differentiation), the influence of genetic alterations on stem cell differentiation, and 

how to design stem-cell-optimized CARs.

One way to prevent antigen escape is to target multiple tumor antigens. Dual targeting 

CARs have been reported and clinical trials, predominantly for liquid cancers using 

CD19xCD22 or CD19xCD20 CARs, are currently ongoing 25,210,211. Importantly, the 

evaluation of costimulatory domains and the orientation of antigen recognition modalities 

is necessary to produce optimized dual-targeting synthetic constructs 212,213. An example is 

the synthetic Notch (synNotch) receptor-engineered cell therapy for the treatment of cancer 
214,215. synNotch receptors induce transcriptional activation after recognizing user-specified 

antigens. They can be used in a highly modular fashion to customize cytokine secretion 

profiles, differentiation, and local delivery of non-native therapeutic payloads, such as 

antibodies. SynNotch cellular programming has managed effective and controlled tumor 

cell killing by targeting antigens that are homogeneous but not fully tumor-specific in 

glioblastoma 216.

The antigen sensitivity of engineered receptors can influence the control of tumor cells 

expressing low levels of antigen. Native TCRs initiate T cell activation after recognizing 

only a few peptide-MHC complexes, whereas CARs require a higher antigen load 217. 
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HLA-independent T (HIT) cell receptors have been specifically developed to target tumors 

with low antigen density 218. In this study, the authors edited the heavy and light chains 

of a traditional CAR scFv into the TRAC locus in human peripheral blood T cells in place 

of TCRα and β variable chains, reconfiguring the TCR, which maintained its natural CD3 

engagement, to the CAR scFv target. HIT receptors consistently afforded superior antigen 

sensitivity and tumor recognition than CD28-based CARs, the most sensitive CAR design 

to date. Whether the HIT receptor is applicable to stem-cell-derived T cells remains to be 

demonstrated.

ADCC is mediated by the Fc receptor CD16a on immune cells and is the key effector 

mechanism of therapeutic monoclonal antibodies 219. Natural CD16a undergoes activation-

induced surface cleavage and different CD16a alleles have a range of antibody binding 

affinities, which can limit the therapeutic benefit of CD16a expression 220,221. Researchers 

incorporated high affinity, non-cleavable CD16a expression into PSC–derived NK cells and 

observed enhanced antitumor activity in combination with antibody therapy 96.

In addition to genetically engineered tumor cell recognition, several immune cell-intrinsic 

tumor-targeting mechanisms can be harnessed for anticancer therapy. Tumor antigen-specific 

T cells can be reprogrammed into iPSCs, although TCR-mediated tumor targeting of the 

differentiated final cell therapies will be HLA-restricted 222. The natural TCRs of iNKT, 

MAIT, and γδ T cells endow these T cell subpopulations with innate tumor cytotoxicity 223. 

Adoptive transfer of engineered and non-engineered iNKT and γδ T cells for the treatment 

of cancer are ongoing 161,224. NK cells and macrophages also possess inherent antitumor 

activity and are promising cell types for adoptive cancer treatment 223.

Critical bottlenecks in the widespread clinical application of innate and innate-like immune 

cells are their scarcity, fecundity, and genetic pliability. Starting at the stem cell state 

mitigates these issues by exploiting stem cell engineering techniques and expansion 

potential. For example, a single cord blood donation can be expanded to generate upwards 

of ten thousand doses of HSC-derived iNKT (HSC-iNKT) cells that retain iNKT TCR 

functionality and tumor targeting, and further CAR engineering results in superior antitumor 

efficacy 79. In 2019, Zeng et al. used an “NK cell-promoting” protocol to differentiate 

γδ T-iPSCs, which produced “γδ natural killer T cells” that were cytotoxic to a broad 

spectrum of cancers through γδ TCR and NK killing mechanisms 225. CAR-engineered, 

PSC-derived macrophages also exhibit potent cancer cytotoxicity in vitro and in vivo 114. 

Therefore, utilizing stem cells to produce unique cell populations can potentially expand the 

armamentarium for cancer treatment and may be instrumental in combatting tumor antigen 

heterogeneity and escape mechanisms.

Persistence—Their enhanced ability to expand and persist might endow less differentiated 

T cells with better antitumor effects compared to fully differentiated effector T cells 226,227. 

Increasing the persistence of innate and innate-like immune cells and their stem-cell-derived 

counterparts may be especially important given their traditionally short lifespans. Several 

stem cell engineering strategies have been developed to improve long-term durability of 

these cells.
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Autonomous cytokine secretion is one way to boost the persistence of engineered cell 

products. Transducing CAR-T cells to express IL-15, IL-12, IL-2, IL-18, and other 

cytokines promotes in vitro and in vivo survival 228. IL-15 signaling is especially important 

for the maintenance of NK and innate-like T cells 229, and has been incorporated 

into NK, iNKT, and γδ T cell-based therapies 161,230,231. IL-15 signaling can be 

potentiated by incorporating IL-15 secretion, membrane-bound IL-15 expression, and/or 

genetic modifications targeting the IL-15 pathway 232–234. Genetic knockout of cytokine-

inducible SH2-containing protein (CIS; encoded by the gene CISH), a negative regulator of 

IL-15 signaling, in iPSC-NK cells increased IL-15-mediated JAK-STAT signaling activity. 

CISH−/− iPSC-NK cells displayed improved in vivo persistence and inhibition of tumor 

progression in a leukemia xenograft model, which coincided with CISH KO-mediated 

metabolic fitness advantages 96. Other transcription factors, such c-Jun and BATF 235,236, 

protect CAR-T cells from exhaustion and enhance persistence. Further research will be 

needed to assess the feasibility of these methods in stem cell products. Modifications to 

improve cell persistence and survival will have to be optimized for each stem cell product 

and effects on differentiation must be assessed. Thus far, IL-15 signaling modifications 

have not been reported to negatively influence differentiation, production, or phenotype of 

stem-cell-derived NK and iNKT cells.

Heterogeneity—Each PSC line differs from others in gene profiling, epigenetic status and 

differentiation propensity 177,237–239. A comparison of the differentiation potential of 17 

human ESC lines found that some lines exhibited > 100-fold differences in the propensity 

to differentiate into specific lineages 238. Others reported distinct differentiation capacities 

of multiple PSC lines and indicated that PSC lines with lower differentiation potential 

exhibit an abnormal epigenetic status and are prone to teratoma formation 237,240. The 

heterogenicity of PSC lines may limit the broad application of PSC-derived immune cell 

therapy. Researchers have developed approaches to convert primed into naïve PSCs to 

eliminate PSC heterogeneity. A combination of five kinase inhibitors was reported (i.e., 

inhibitors of MEK, GSK3, BRAF, ROCK, and SRC) that induces naïve ESCs 241. Equally, 

short-term expression of NANOG and KLF2 reset the human pluripotent state, and the naive 

state of PSC cells is maintained in the presence of a protein kinase C (PKC) inhibitor 242. 

Although these methods are promising, the potential loss of genetic integrity and imprinting 

in naïve PSCs needs to be carefully considered to avoid problems 243,244.

Therapeutic Platforms and Clinical Trials

iPSC-derived NK cells—The use of iPSC-derived NK cells is receiving increased 

interest. iPSCs are a renewable cell source that can be expanded indefinitely to produce 

homogenous NK cells, addressing the manufacturing and supply chain bottlenecks 

associated with primary NK cells. Preclinically, iPSC-NK cells have shown powerful 

antitumor functions against a variety of cancers in xenograft models 86,91,96. Hermanson et 

al. showed that the antitumor activity of iPSC-NK cells against MA148 and A1847 ovarian 

tumor cells was as effective as primary NK cells 88. In a representative study, non-KIR 

expressing NK cells derived from donor peripheral blood-iPSCs had greater cytotoxicity 

against ovarian cancer SKOV3, colorectal cancer SW480 and HCT-8, breast cancer MCF7, 

and head and neck cancer SCC-25 cells compared to primary NK cells 68. Engineered 
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iPSC-NK cells that express CARs targeting CD19, CD33 or GPC3 demonstrated improved 

antitumor efficacies against CD19+, CD33+ or GPC3+ tumor cells 93,245,246. Further, the 

antigen-specific NK cell signaling and anti-tumor activity of iPSC-NK cells could be 

enhanced by utilizing a CAR containing the transmembrane domain of NKG2D 86. iPSC-

NK cells with a deletion of the IL-15 signaling regulatory protein CISH demonstrated an 

improved metabolic profile, increased expansion and persistence, and enhanced cytotoxicity 

in human AML xenograft tumor models 96.

Phase I clinical trials are underway for universal off-the-shelf iPSC-NK cell products, 

including several of Fate Therapeutics’ iPSC-NK cell therapies (Clinicaltrials.gov Identifier 

NCT03841110, NCT04023071, NCT05182073, NCT04245722). Fate Therapeutics showed 

the safety and tolerability of allogeneic iPSC-NK cells in liquid and solid cancer patients247, 

and has advanced to clinical investigations with engineered iPSC-NK cell products. iPSC-

NK cells engineered with CD19-targeting CAR, high-affinity, non-cleavable CD16 Fc 

receptor, and IL-15/IL-15 receptor fusion promoting cytokine-autonomous persistence iPSC 

NK cell therapy, showed promising results for treating B-cell lymphoma 248, with 13 of 

19 patients achieving an OR with a single dose of the cell therapy. In multiple myeloma 

patients, Fate Therapeutics’ BCMA-targeting cell product resulted in 10 of 14 patients 

achieving objective responses. These trials provide clinical support for the high tolerability 

of allogeneic iPSC-NK cell therapies and show signs of antitumor efficacy.

Besides Fate Therapeutics, several companies are developing next-generation iPSC-NK 

cells for cancer treatment. Shoreline Biosciences generate CISH knock-out iPSC-NK 

cell products with increased durability and activity for use in hematologic and solid 

tumor contexts 96. Century Therapeutics develop iPSC-NK cells with multiple targets 

such as CD19, CD19xCD79b, CD133xEGFR and Nectin-4 to treat B cell malignancies, 

glioblastoma, acute myeloid leukemia, and other solid tumors 249. Overall, by being easily 

engineered, cultivated on a large scale, and adapted to diverse cancers with high safety, 

iPSC-NK cells have become a viable alternative to conventional CAR-T cells for cancer 

immunotherapy 29,98,114,250–252. Nevertheless, in vivo persistence and viability of iPSC-NK 

cells, as well as their efficiency in conjunction with other immune checkpoint inhibitors, are 

still unclear and must be elucidated before iPSC-NK cell therapies can be widely used in the 

clinic.

iPSC-derived immune cells—In 2013, two Japanese research groups generated 

rejuvenated iPSC-derived, antigen-specific T cells 65,66. Human HIV-1 or MART-1-specific 

CD8+ T cells were reprogrammed to pluripotency by transducing retroviral vectors encoding 

OCT3/4, SOX2, KLF4, and c-MYC. The T-iPSCs were then redifferentiated into CD8+ T 

cells, which displayed the same antigen-specific killing activity and TCR rearrangement 

pattern as the original CD8+ T cell clone from the patient 64–66. A safeguard system, 

inducible caspase-9, was introduced into the iPSCs to ameliorate the tumorigenic potential 

of undifferentiated iPSCs 253. Using a similar technology, Wakao et al. reprogrammed 

human MAIT cells into iPSCs and redifferentiated the iPSCs to MAIT cells with 

antimycobacterial activity 67. In the same year, Themeli et al. combined T-iPSC and CAR 

technologies to develop CD19 CAR-T to treat B cell malignancies 76. These CD19 CAR-T 

cells displayed a phenotype closely resembling that of γδ T cells 76. Following the T-iPSC 
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technology, several groups generated rejuvenated iNKT 63, NK cells 68, and dendritic 

cells 112 from reprogrammed iPSCs. Due to the unlimited availability of iPSCs, these 

technologies provide a valuable source of off-the-shelf, allogeneic cell products. Further 

research also confirmed the translational relevance of iPSC-based strategies. In 2018, 

Minagawa et al. utilized CRISPR/Cas9 to delete RAG2 in T-iPSCs and prevent an unwanted 

TCR rearrangement, and then transduced the T-iPSCs with an antigen-specific TCR to 

endow T cells with tumor targeting capacity 254. The resulting TCR-stabilized, regenerated 

cytotoxic T cells displayed an effective antitumor ability in xenograft cancer models 254. In 

2021, the same group reported a clinically applicable and scalable technology to regenerate 

T cells from iPSCs derived from an antigen-specific cytotoxic T cell clone, or from TCR-

transduced iPSCs, as starting materials 126. A feeder-free, serum-free differentiation culture 

protocol was also developed to achieve an efficient iPSC differentiation procedure that 

can be adapted towards clinical application 126. Overall, these are promising approaches 

to generate large numbers of tumor-targeting immune cells for the study of T cell 

differentiation and potential clinical application.

iPSC-derived CAR-T cells—iPSC-derived CAR-T cells have the potential to be an 

infinite source of phenotypically defined, expandable, and functional CAR-T cells for 

off-the-shelf cancer therapy 255. However, compared to iPSC-NK cells, the generation of 

iPSC-derived CAR-T cells has been challenging and typically requires a preexisting TCR 

which directs in vitro T cell differentiation 62,65,66,81,254. In addition, T cell differentiation 

requires notch ligand engagement and can be impaired by CAR expression 76. Recently, 

highly functional CAR T cells were generated through iPSC reprogramming from CD62L+ 

naive and memory T cells, followed by CD19-CAR engineering and MS5-DLL4 stromal 

cell-dependent 3D-organoid system differentiation 256. The primary CD62L+ T cells have 

superior persistence and therapeutic potential in CAR-T cell treatment, and the pre-existing 

TCR induces T cell differentiation in a directed manner 227. The resulting iPSC-derived 

CD19 CAR-T cells demonstrated conventional αβ T cell phenotypes, homogeneous TCR 

repertoire, and strong antitumor reactivity 256. Another iPSC-derived CAR-T cell product 

was generated by combining histone methyltransferase EZH1 repression, stromal-free T cell 

differentiation from iPSCs, and CAR engineering 257. Repression of EZH1 promotes in 
vitro differentiation and maturation of T cells derived from iPSCs. The mature iPSC-T cells 

are similar to peripheral blood αβ T cells in phenotype and functionality 257. In addition, 

CAR-engineered iPSC-T cells showed enhanced cytokine production, potent cytotoxicity, 

and superior persistence in preclinical mouse models 257. Overall, these iPSC-derived CAR-

T cell platforms lay the groundwork for future efforts targeted at creating an infinite number 

of potent, allogeneic “off-the-shelf” CAR-T cells.

HSC-derived iNKT cells—iNKT cells are another potentially promising cell population 

for cancer immunotherapy. However, the low frequency and high variability of iNKT cells 

in humans limit their clinical applications 258. To overcome these challenges, an HSC-iNKT 

cell platform was developed (Figure 3A). The first generation was based on autologous 

HSC genetically engineered to express the iNKT TCR that were transferred back into the 

patient, potentially providing therapeutic levels of iNKT cells for a lifetime (Figure 3B) 
106. However, this approach is expensive and difficult to deliver to all patients in need 37. 
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Subsequent development of the HSC-iNKT cell platform has centered on producing off-the-

shelf HSC-iNKT cells and it was recently shown that HSC-engineering followed by in vitro 
differentiation resulted in allogeneic HSC-iNKT cells with high yield and purity (Figure 

3C and 3D) 79,259. Allogeneic HSC-iNKT cells have innate cancer-killing capacity and low 

risk of GvHD and, to enhance their therapeutic potential, these cells can be engineered to 

express CARs and undergo ablations of HLA Class I and II 79. Furthermore, HSC-iNKT 

cells can modulate the tumor microenvironment, as they can effectively target and eliminate 

tumor-associated macrophages and other immunosuppressive cells 105,260,261.

CONCLUSION

The remarkable success of CAR-T cells in treating hematological malignancies has ignited 

the field of cell therapy. In 2012, at the age of 6 years old, Emily Whitehead was the first 

patient to receive CAR-T cells for acute lymphoblastic leukemia and recently celebrated 

ten years of cancer free survival. By all evidence, she is cured 262. Our goal is to 

make Emily’s story a reality for all cancer patients. However, CAR-T cell therapies are 

limited by their autologous nature, suboptimal long-term efficacy for many patients, and a 

lack of potency in solid tumors. Off-the-shelf cell therapies that overcome tumor antigen 

plasticity, heterogeneity and the immunosuppressive tumor microenvironment can advance 

the current cell therapy paradigm. Work to date suggests that many immune cell subtypes, 

such as innate-like T cells, NK cells, and macrophages, might be useful in cancer therapy. 

The benefits of applying unconventional T and innate immune cells are twofold: they 

have intrinsic antitumor capabilities and pose little risk of causing GvHD. Unfortunately, 

isolation, gene engineering, and expansion of mature immune cells still represent several 

bottlenecks in the development of these therapies. Maintaining the desired cell phenotype 

during expansion, generating sufficient cell numbers for multiple doses, and performing 

extensive genetic manipulation are all remaining challenges.

Herein lies the allure of stem cell engineering, which promises scalable, easily 

modifiable and homogenous cell products that are optimized for safety and efficacy. As 

of yet, hypoimmunogenic, persistent, and potent stem-cell-derived therapies are under 

development. Despite this promise, several outstanding questions still need to be addressed. 

It was recently shown the iPSC-derived CAR-T cells exhibit reduced CAR expression 

compared to PBMC-derived CAR-T cells 256. In addition, previous work indicated αβ 
iPSC-derived CAR-T cells are closely related to γδ T cells based on gene expression 

analysis 76. It is noteworthy that multiple stem cell engineering and differentiation protocols 

have been documented, which have the potential to yield considerable variability in the 

resultant cell products, even when such products are classified as being of the same cellular 

subtype. We also do not know whether cells created in vitro are comparable to their naturally 

occurring counterparts. Stem-cell-derived products might be more affected by changes in 

gene regulation, such as epigenetic silencing. Importantly, most of the engineering and 

optimization strategies applied to stem cells were developed in mature T cells. Are there 

any modifications, such as different CAR designs or cytokine secretion patterns, that could 

enhance specific features of stem-cell-derived products? It will also be important to assess 

whether stem cell engineering influences the differentiation potential, identity and function 

of the final product. CARs, for example, can cause tonic signaling, which could impact stem 
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cell differentiation. Leveraging cutting-edge technologies, such as multi-omics, CRISPR 

screens, and automated culture systems, will enable researchers to better understand the 

underlying mechanisms of engineered stem cell functionality and perform high throughput 

screens to optimize the potential of stem cell therapies 263,264.

Given the complexity of diseases such as cancer, combination therapies will likely be 

necessary to achieve durable therapeutic benefits 265. Engineered stem cell products, 

with their off-the-shelf nature, hold promise as a component of treatment regimens that 

include established cancer treatments, such as surgery, radiation, chemotherapy, and targeted 

therapies, as well as emerging cancer immunotherapies, such as immune checkpoint 

inhibitors, oncolytic viruses, cancer vaccines, and adoptive cellular therapies 15,57. The 

versatility of engineered stem cell products and their ability to be tailored and scaled for 

specific cancer types make them a promising addition to the oncology arsenal, with the 

potential to enhance treatment outcomes and improve patients’ quality of life. As the field 

continues to evolve, it is crucial that we maintain a cautious and meticulous approach to 

ensure the safe and effective translation of stem-cell-based therapies to clinical settings.
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Figure 1. Stem cell engineering technologies, approaches, and therapeutic immune cells
(A) HSCs and PSCs can be engineered and differentiated into a variety of immune cells, 

such as conventional αβ T cells, innate T (i.e., iNKT, MAIT and γδ T) cells, NK cells, 

macrophages, dendritic cells, and myeloid cells. These immune cells could be further 

engineered with CARs to enhance their tumor targeting capacity.

(B) Various stem cell differentiation culture systems have been developed, such as a 

humanized Bone Marrow-Liver-Thymus (BLT) mouse model, in vitro feeder-dependent 

OP9-DL and artificial thymic organoid (ATO) cultures, and in vitro feeder-free cultures.

(C) Genetic engineering strategies have been explored in stem cells and immune cells 

for antitumor applications including CAR and TCR engineering, via gene editing using 

CRISPR/Cas9, designer nucleases like ZFN and TALEN, and viral vectors.

(D) In addition to lentiviral or retroviral transduction, delivery systems such as 

electroporation and nanoparticles achieve stable and efficient gene delivery to stem cells 

and their derivative immune cells.

Li et al. Page 33

Cell Stem Cell. Author manuscript; available in PMC 2024 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Applications of viral vector transduction and CRISPR/Cas9 gene-editing in stem-cell-
based immune engineering
Lentiviral or retroviral-vector-mediated delivery of CARs, antigen-specific TCRs, and 

immune-enhanced genes (e.g., IL-2, IL-15) enhance the antitumor response of immune 

cells. CRISPR/Cas9 gene editing enables multiple gene knockouts to avoid graft-versus-

host-disease (GvHD) (e.g., knockout of TCR), reduce allorejection (e.g., knockout of MHC 

I and MHC II), and enhance the immune response (e.g., knockout of immune checkpoint 

proteins such as PD-1, CTLA-4, TIM-3, and LAG-3). In addition, CRISPR/Cas9 allows the 

site-specific knock-in of genes of interest in target cells.
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Figure 3. Development of HSC-engineered iNKT (HSC-iNKT) cell therapies for cancer
HSC-iNKT cells are presented as an immune cell example. The different stem cell 

differentiation and culture strategies could be easily applied to generate other TCR-

engineered T cells, such as MAIT, γδ, and antigen-specific αβ T cells. The proposed 

autologous and allogenic cell therapy could also use other TCR-engineered T cells as cell 

carriers, depending on the tumor types.

(A) Generation of HSC-iNKT cells in a Bone Marrow-Liver-Thymus (BLT) humanized 

mouse model.

(B) Development of an autologous HSC-iNKT cell therapy for cancer.

(C) Generation of allogeneic HSC-iNKT cells in an ATO or a feeder-free culture.

(D) Development of an allogeneic HSC-iNKT cell therapy for cancer. CAR engineering and 

CRISPR/Cas9 gene editing could be incorporated into HSC-iNKT cells to enhance their 

immune response and safety profile.
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