
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
A time and place for everything: Side-Channel verification using Co-Simulation

Permalink
https://escholarship.org/uc/item/1t20f68f

Author
Jayaraman, Ramesh Krishna

Publication Date
2022

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at
https://creativecommons.org/licenses/by-nc-nd/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1t20f68f
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

A TIME AND PLACE FOR EVERYTHING: SIDE-CHANNEL
VERIFICATION USING CO-SIMULATION

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Ramesh Krishna Jayaraman

December 2022

The Dissertation of
Ramesh Krishna Jayaraman is approved:

Professor Jose Renau, Chair

Professor Matthew Guthaus

Professor Alvaro Cardenas

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Ramesh Krishna Jayaraman

2022

Table of Contents

List of Figures v

List of Tables vi

Abstract vii

Acknowledgments ix

1 Introduction 1

2 Background and Related Work 5
2.1 Modern Microprocessors . 5

2.1.1 Instruction Pipelining . 6
2.1.2 Cache . 6
2.1.3 Branch Prediction . 7
2.1.4 Speculative Execution . 7
2.1.5 Superscalar . 8
2.1.6 Out-of-Order Execution . 9
2.1.7 Multithreading/Multiprocessing 9

2.2 Existing verification techniques . 10
2.2.1 Testbench . 12
2.2.2 Random Instruction Generators 15
2.2.3 Reference Models . 15
2.2.4 Coverage Based Testing . 17
2.2.5 Formal Verification . 22
2.2.6 Other Techniques . 23

2.3 Dromajo . 23
2.3.1 Checkpoints . 24
2.3.2 Co-simulation . 24

2.4 Spectre . 25
2.5 Mitigation Strategies . 27

2.5.1 Detecting Side-channels . 30

iii

3 Verification Framework for Timing Side-Channels 35
3.1 Speculative Execution and Transient Execution 36
3.2 Timing Side-Channel Effects . 38
3.3 Detecting Leaks . 43

3.3.1 Protection Set . 46
3.3.2 Speculation Fences . 48
3.3.3 Non-Transient Leaks . 49

3.4 Fuzzing Transients . 50
3.4.1 Transients Opcodes . 50
3.4.2 Transient Data . 51

3.5 Flow . 52
3.5.1 Random Instruction Generation 52
3.5.2 Enough Testing . 52
3.5.3 Performance Counters . 53
3.5.4 Flow Runs . 53
3.5.5 Sample Leaks . 54
3.5.6 Sample Non-Leaks . 56

3.6 Other Considerations . 56
3.7 Implementation setup . 57

3.7.1 Ariane . 58
3.7.2 BlackParrot . 60
3.7.3 BOOM . 61

4 Evaluation 63
4.1 Setup . 63
4.2 Results . 64

4.2.1 Correctness . 65
4.2.2 Coverage . 67
4.2.3 Efficiency . 69
4.2.4 Data-insensitive Transients . 70
4.2.5 Gaining insights . 72
4.2.6 Other Side-Channels . 73

5 Conclusion 75

Bibliography 77

iv

List of Figures

2.1 Design cycle involves verification at each step. 11
2.2 Architecture of a simple testbench. 12

3.1 Instruction life cycle with respect to speculation. 36
3.2 The three types of proposed runs. 45
3.3 Overall flow with the three types of proposed runs. 54

v

List of Tables

2.1 Transient Execution attacks which have been confirmed by commercial
processor manufacturers and have since been patched. 28

4.1 Line coverage metrics for CVA6-base, BP-base and BOOM. 67
4.2 Line coverage metrics for CVA6-safe and BP-safe. 68
4.3 Total execution time and cycles simulated for CVA6-base, BP-base, and

BOOM configurations. 69

vi

Abstract

A time and place for everything: Side-Channel verification using Co-Simulation

by

Ramesh Krishna Jayaraman

Since the advent of the modern microprocessor, the pursuit of better performance has

led to increased design complexity. This increased complexity manifests due to adopting

several design concepts like branch prediction, speculative execution, Out-of-Order ex-

ecution, and their respective implementation choices. When implementing these design

concepts in hardware, it is necessary to store information about the execution state of

the processor in some form. By design, multiple processes can run on the same hard-

ware. This leads to the execution state of any given process being influenced by one

or more other processes. This creates massive security vulnerabilities through timing

side-channel attacks, the most infamous classes belonging to Spectre, MDS, and Fore-

shadow. These are flaws inherent in the nature of the aforementioned design concepts

due to their need to maintain information about the execution state to deliver increased

performance. These vulnerabilities are found in most deployed modern processors. Most

attempts at fixing or patching them through software incur huge performance penalties

and require a hardware redesign to recoup them. This work presents a framework to be

deployed during the design and verification of microprocessors that will utilize the tim-

ing and side-channel effects of these vulnerabilities to the designers’ advantage to prove

the existence of such vulnerabilities in designs that have been verified using conven-

vii

tional design methodologies. We demonstrate the incidence of timing and side-channel

effects in three RISC-V designs, Ariane, BlackParrot, and BOOM. We also prove the

correctness of our framework using the patched version of these designs.

viii

Acknowledgments

I thank the members of my committee, whose guidance has helped shape this

thesis. In particular, I would like to thank my advisor Prof. Jose Renau for his unyield-

ing support.

I also thank the current and past members of the MASC lab, especially Daphne,

Nursultan, and Rafael.

Finally, I’d like to thank my family for their continuous encouragement and

support.

ix

Chapter 1

Introduction

Boosting computational power is one of the earnest endeavors of processor de-

sign. We have incorporated many significant advances to increase the computational

power of microprocessors. Modern microprocessors have undergone significant incremen-

tal developments since the advent of integrated circuits. As the number of transistors

in an integrated circuit increased, following Moore’s Law [70], we have implemented

several novel techniques to stick to the trend of increasing performance.

These techniques include, but are not limited to, instruction pipelining, caching,

branch prediction, superscalar design, speculation, out-of-order execution, multithread-

ing, and multiprocessing [39]. These ideas effectively deliver performance gains, and

some of these techniques have several novel ways of implementing them in integrated

circuits.

The inclusion of every novel technique, however, increases the complexity of

the design. Implementing such features is a complex task. Modern design processes

1

break up the system-level design into smaller modules or blocks based on functionality

to make this process easier. Due to an ever-increasing number of blocks in a given

design, the possible interactions between them also increase, making it hard to note and

verify all the interactions. Knowing exactly how the hardware will behave is essential

for the software stack and hardware designers to make better implementation choices

and fix mistakes in previous designs. This process is known as verification and is a

crucial step in designing and creating microprocessors.

Verification, however, is no easy task. It is the most resource-consuming part

of the design cycle of modern circuits- heavy on time, compute power, and human re-

sources [37]. Current hardware design cycles rely on verifying the processor design

using techniques such as dynamic simulation [50, 68, 88], formal verification [51], and

power area verification [17]. While these are effective in their own right, as they check

the functional correctness of their design, they do not provide complete coverage. They

also ignore specific effects on the architectural state known as side-channels [58]. These

are observable architectural side effects that do not impact the correctness of results dur-

ing execution. Designers, prioritizing economics over laborious, repetitive verification

flows, tend to ignore such effects as they do not contribute to the correctness of results.

However, this has become a significant area of research as numerous techniques have

been published that use side-channels to break security assumptions on the hardware

level.

Side-channel attacks can leverage several types of side effects during the exe-

cution of a program. These range from physical effects like power consumption [55–57],

2

electromagnetic radiation [75], and acoustic noise [32] to microarchitectural timing at-

tacks that exploit timing variability in caches [1,36,66], Branch Target Buffers [24,62],

and branch history [2,3]. Spectre [54] and Meltdown [65] belong to the later type of side-

channel attacks; those that exploit timing variability and serve as the main motivation

for this proposal.

Patching hardware after the fact is impossible and causes expensive recalls

(monetary) or expensive software-based patches (performance) [10,83]. This necessitates

finding these types of bugs during the design and verification phase. For Spectre and

Meltdown, the patches so far have been via software [6, 42, 44, 45, 52]. There have also

been some patches in hardware for the next generation of processors [5, 41]. This is

not satisfactory, as even hardware patches with optimized performance penalties are

only viable once a type of vulnerability has been discovered. On top of this, new

classes/variants of speculative execution attacks have been discovered that work on

fully patched hardware [101]. While there is no option but to issue patches for existing

hardware, such vulnerabilities must be fixed during the design and verification phase.

To this end, we introduce a novel verification methodology to find timing side-

channels in processor designs. We use co-simulation during the verification phase to run

tests on the processor and an equivalent software model to check the design’s correctness

and introduce variations in the instructions in the speculative path. Any timing side-

channels caused by the modified instructions are identified as the microarchitectural

state of the processor changes.

We first review the current state of processor design, side-channel vulnerabil-

3

ities, and verification methods in the related works section. We then provide details

about our methodology or framework. Then we provide our evaluation. Then we put

forward future work building on our proposal and then present our conclusion.

4

Chapter 2

Background and Related Work

This Chapter presents the current state of processor design and verification,

followed by an overview of Spectre-type vulnerabilities and their mitigations.

2.1 Modern Microprocessors

The modern microprocessor is a testament to accomplishments in aggregate

and abstract design, incorporating tens of thousands to millions of lines of code (in

RTL) into a synthesized integrated circuit with billions of transistors. Such projects

result from many decades of continuous increase in transistor density [78]. This enabled

designers to implement an increasing number of architectural features and techniques

in a single design to increase performance [39].

Each of the following architectural features was implemented to gain perfor-

mance and was facilitated by improved manufacturing processes resulting in higher

transistor density.

5

2.1.1 Instruction Pipelining

Early processors would execute one instruction at a time, leaving large portions

of the circuitry idle during the execution of a single instruction. Since most instruc-

tions have common steps that must be performed during their execution (fetch, decode,

execute, write back), designers overlapped the fetch, decode, and execute stages across

instructions. This technique has since become a staple in processor designs, regardless

of the performance requirement. The latest processor designs usually feature anywhere

from a few to more than two dozen pipeline stages, sometimes even more, accommodat-

ing a similar number of instructions in flight at any given time. Since pipelining allows

multiple instructions to execute at a given time, designers can increase the overall exe-

cution speed. This is because smaller pipeline stages allow each pipeline stage to finish

its work in shorter periods of time, enabling the entire pipeline to be clocked at a higher

speed.

2.1.2 Cache

As the number of instructions that could be in flight at any given time increased

with the use of deeper pipelines, so did the speed of execution. However, this increased

execution speed and higher demand for instructions were not matched by memory [38].

This necessitated a mechanism to bridge the difference between the pipeline’s clock rates

and the memory connected to it, leading to the introduction of smaller memory units

capable of higher clock speeds as a buffer between the pipeline and main memory. This

technique, known as caching, is also a staple in modern processor designs, with multiple

6

levels of caches of different sizes.

2.1.3 Branch Prediction

With deeper pipelines and unused transistors (due to increasing transistor

density), designers sought to increase instruction-level parallelism by minimizing the

number of pipeline stalls caused mainly by conditional branches. This was achieved by

implementing logic tracking program execution to predict future conditional branches.

This technique is known as branch prediction and is implemented in many different

ways, from simple two-bit counters to tagged geometric history (TAGE) based and

complex neural network based predictors depending on performance needs [61,81,82].

2.1.4 Speculative Execution

The successful implementation of branch prediction, a particular case of an

architectural technique known as speculative execution, led to the introduction of spec-

ulation in other areas of processor design. When using speculative execution and, in

particular, branch prediction, the processor attempts to guess the direction of program

flow when encountering a conditional branch in the program. When the correct choice

is made, it results in increased performance compared to the case where the processor

idled until the correct execution path was computed. If the incorrect choice is made, the

processor can undo the changes made by guessing the wrong direction of the program

flow. It then starts over with the correct program flow at the same time it would have

started the correct program flow when idling.

7

By leveraging control flow speculation in the manner described above, a pro-

cessor can execute more instructions at any given time when compared to when it idles

to compute the correct execution flow, resulting in increased performance. Any increase

in the accuracy of branch prediction directly leads to increased performance. For these

reasons, speculative execution is a powerful architectural technique as, on the surface

level, there are only gains to be made and no losses. Speculative execution encom-

passes other similar techniques used during execution when the processor would benefit

from not idling by attempting to guess the program execution flow [84]. Some tech-

niques that fall under speculative execution include value prediction [63, 97], memory

prefetching [9, 46], and speculative loads and stores [76].

2.1.5 Superscalar

Until this point, even while implementing all techniques mentioned above,

each pipeline stage executed only one instruction at any given time. As manufacturing

technology improved and more transistors could be placed on a single chip, designers

sought to further enhance instruction-level parallelism by allowing multiple instructions

to be processed simultaneously at different pipeline stages. The replication of functional

units in the pipeline facilitated this [47, 84]. Designs implementing this technique are

known as superscalar processors and typically have higher throughput per clock cycle.

8

2.1.6 Out-of-Order Execution

Even when implementing all the aforementioned architectural techniques, stalling

the pipeline is unavoidable for reasons such as cache misses, unavailability of specific

functional units, etc. In such cases, other instructions in the pipeline could be executed

when an instruction stalls. This led to the implementation of out-of-order execution,

where the instructions are executed in a different order compared to the actual execution

sequence of the program [74,89,100]. This technique further increases instruction-level

parallelism and uses the available hardware to a greater extent.

2.1.7 Multithreading/Multiprocessing

The fundamental principle to improve the performance of a processor is to

leverage the inherent parallelism in a program at some abstraction level. This can be

done at bit level parallelism, instruction level parallelism, task level parallelism, and

superword level parallelism. All the techniques discussed so far leverage Instruction

Level Parallelism (ILP). One way to implement task level parallelism is to distribute

the work done by the program into a set of concurrent sub-tasks, threads, or processes.

This technique can be implemented in different ways and is supported at the software

and hardware level.

One way to implement task level parallelism in hardware is to support multiple

threads in a single CPU core. This is known as Simultaneous Multithreading (SMT) [22,

93]. This allows multiple independent threads to utilize the hardware resources better,

simultaneously exploiting ILP and Thread Level Parallelism.

9

The definition of multiprocessing is not as rigid, as it depends on the system

implementation; multiple cores on a single CPU die, multiple dies in one package, and

multiple packages in a system sharing the same main memory. All these architectures

can support the ability to run multiple processes concurrently.

These two approaches to task level parallelism are complementary. The critical

difference is that in multithreading, the threads share the resources of one or more cores

(compute units, caches, etc.). In contrast, multiprocessing tries to incorporate the

hardware resources across multiple cores.

2.2 Existing verification techniques

There is an evergrowing need to ensure that the design functions as expected

when processors have deep and complex pipelines, implementing some or all of the

architectural techniques mentioned in Section 2.1. Designers employ several strategies

to ensure that their designs perform as expected. This process is known as verification

and involves many steps.

Designing a microprocessor is not a trivial task. It involves multiple steps,

usually known as the design cycle. Figure 2.1 shows a typical design cycle. Verification

needs to happen during each step of the design cycle. As the representation of the

functionality in the design plan is transformed in each design step, it is necessary to

ensure that the design remains within specification, that no existing functionality was

lost, and that no unnecessary functionality was introduced due to the transformation

10

Figure 2.1: Design cycle involves verification at each step.

process. Thus, the verification of modern microprocessors is a long and arduous task.

It consumes the most time, money, human and computational resources compared to

all the other steps in the design cycle of a microprocessor [37].

This body of work will concentrate on verifying the behavioral design, i.e., ver-

ifying the correctness of the microarchitecture when represented at the Register Transfer

Level (RTL).

Due to the complexity of a modern microprocessor design, complete functional

verification of the design tends to be an impossible task. To reduce this complexity,

designers have introduced many verification techniques to be as correct as possible.

This involves the use of various proxy metrics based on statistics (coverage) [87], time

(bugs per week) [102], functionality (special coverage models), and randomness (random

testing) [4, 71]. Using these proxy metrics, the designers establish a verification plan

11

Figure 2.2: Architecture of a simple testbench.

to test the design [40]. This, added with regression testing, where designers test for

possible bugs created by fixing any bugs previously found, results in gradually increasing

coverage. Designers also incorporate the verification process results into the verification

plan to find coverage holes missed by the previous step. By repeating these steps,

designers increase their confidence that the design under test is relatively bug-free.

This process is extensive but cannot guarantee completely bug-free designs.

We will now describe some of the techniques used in this verification step.

Henceforth, any reference to an RTL design is assumed to be in Verilog/System-Verilog

to keep things standardized.

2.2.1 Testbench

As mentioned above, while verifying the implemented design is essential, design

complexity plays a significant role in determining how designs are verified. Verification

can be done manually when implementing very small designs like a half adder or a flip-

flop. This is because the number of inputs and outputs is small and the total number

of states the design can be in is relatively small.

A testbench usually consists of non-synthesizable Verilog code that can gener-

ate inputs for the Design Under Test (DUT) and verify the outputs generated by the

12

design under test [85]. Figure 2.2 shows a high-level view of the testbench.

The process of writing a testbench usually consists of the following steps:

• Declarations: The interfaces needed to communicate with the DUT are declared.

• DUT Instantiation: The connections between the DUT and the testbench are

instantiated.

• Input Stimuli and Output Checking: The inputs and outputs can be checked

in two phases:

– Initialization: In this phase, initial inputs are provided to the DUT using

the interfaces defined above, and its outputs are checked. This is usually

done in a initial block in Verilog.

– Delay Based Testing: In this phase, the behavior of the DUT can be

checked by varying input stimuli at different times. This is implemented

based on different units of delay, assigning input stimuli based on current

delay and checking the output generated by the DUT. For example, the

clock and reset functionality can also be tested during this phase, along with

design functionality. This is where most of the input stimuli-based testing

is done. This is usually contained in some variation of an always block in

Verilog and is represented by non-synthesizable logic to check the DUT’s

functionality.

• Simulation: This is the step where the DUT is simulated using the different

13

inputs generated, and its output is tested. The results are generated to show

waveforms of the DUT behavior and check them against expected behavior. Al-

though waveforms are the used for debuggin DUT behavior, other methods may

be used, including simply dumping DUT output signals in human-readable form

and checking against expected behavior.

The input stimuli need to be generated as needed for the DUT. The stimuli

vary depending on the functionality of the design being tested. The same is true when

checking the output of each design. For example, it would not be possible to use the

same input stimuli generator or output checker used for a flip-flop when testing a half

adder and vice-versa because these modules represent different functionality and use

different inputs and outputs. Adopting existing test benches for other designs is as, if

not more complicated, than designing a new testbench for the new design.

This process, while practical, cannot be applied in all cases. As the complexity

of a design grows, incorporating many modules, it becomes infeasible to test or write

specialized testbenches for each module manually. This is due to the exponential growth

of the number of states for the entire DUT. Another factor is capturing complicated

cases that arise as different modules interact. Yet another factor is the enormously

long simulation time required to test a complex design. Hardware simulation is very

slow, and the fastest simulators can achieve speeds of a few Million Instructions Per

Second (MIPS) [15] for a reasonably small design and get a lot slower for more complex

designs, simulating around tens to hundreds of thousands of instructions per second -

14

Kilo Instructions Per Second (KIPS).

Several techniques are used to be as thorough as possible to overcome the

difficulty of testing increasingly complex designs. These are addressed in the following

Sections.

2.2.2 Random Instruction Generators

Random Instruction Generators (RIG), also known as Test Program Genera-

tors or Instruction Stream Generators, are programs that can generate a random stream

of instructions for a given set of configurations or parameters. These can be very effec-

tive in generating complex test cases that are hard to generate manually [7, 102].

While these tools are good at testing for a wide range of functionality im-

plemented in the DUT, they are not the best at testing complex interactions between

different modules. Some RIGs have additional inputs they can take that are known as

test program templates. These templates are abstract descriptions of the test. They

serve as a guide to the RIGs to match certain constraints when generating the instruc-

tion stream. This allows RIGs to be more effective at testing the interactions between

different modules in the DUT [20,95].

2.2.3 Reference Models

The reference model is a high-level implementation of the functionality in the

DUT. It does not reflect the implementation-level details of the DUT. Instead, it reflects

the changes in the architectural state at instruction-level granularity. These models

15

can be used to check the implemented DUT for the correctness of the execution path.

The same benchmark or test code is run on the DUT and the reference model. The

architectural state at any point of comparison must be the same. If this requirement

is not met, the DUT is checked for correctness using conventional methods such as

waveform analysis. This technique can be implemented at different levels of complexity,

as outlined below.

2.2.3.1 End of Simulation Comparison

In end of simulation comparison, a test program is run on the DUT and the

reference model. When the test is done, the architectural state of the DUT is checked

against the reference model. The compared architectural states include register states

and memory states of both models [50]. This type of comparison has apparent draw-

backs. It is hard to debug as there may be a substantial difference at the end of the

simulation due to a bug at the point of deviation. There may also be undetected bugs

as they may be hidden by correct execution later in the simulation.

2.2.3.2 Trace Comparison

A better way to implement simulation and comparison is Trace Comparison.

In this method, the DUT and reference model dump logs that contain information about

the instruction, Program Counter flow, and register/memory accesses. The traces are

compared, and any deviation is noted. This method facilitates a more straightforward

debug process as points of deviation can be noted, and erroneous behavior can be

16

captured with more detail in contrast to End of Simulation Comparison. Though more

useful, this method also has its drawbacks. Mainly this method is susceptible to external

stimuli such as interrupts or debug requests [68]. Since the traces are taken by running

the DUT and reference model independent of each other and interrupts can happen

at random points during program execution, the traces can be vastly different when

compared.

2.2.3.3 Co-Simulation

The DUT and the reference model need to be run in parallel to overcome the

drawbacks of the aforementioned simulation comparison methods. This needs to be

accompanied by the ability to communicate between the DUT and the reference model

about the current execution state and any asynchronous interrupts that might occur.

Such communication provides the ability to match execution states in the presence of

asynchronous interrupts and allows the pausing/halting of simulation at the point of

divergence. An infrastructure that supports this is known as a co-simulation infrastruc-

ture [88].

2.2.4 Coverage Based Testing

It is hard to continue writing testbenches for each module in a complex design

and simulate all possible states for the reasons mentioned above. One set of techniques

used to alleviate this is coverage analysis. This is done using a set of metrics to measure

the verification effort’s adequacy and progress. Doing this makes it possible to allocate

17

the available computational resources more efficiently. These metrics can also be used

as a guide to generate input stimuli [18, 26, 87]. The next Sections cover the different

classifications of coverage metrics.

2.2.4.1 Code Coverage

Code coverage metrics are very similar to their counterparts in software testing.

These metrics identify structures in HDL code that can be used during simulation. These

can be as simple as line coverage to more complex cases like branch, expression, and

path coverage. The latter three leverage the control flow in hardware using Control

Flow Graphs (CFG). Branch coverage requires exercising each possible direction of

control flow at the branch. Expression coverage involves exercising each possible way

an expression in the HDL can be evaluated. Path coverage involves the overall path of

execution in the CFG.

2.2.4.2 Circuit Structure Based Coverage

The most basic coverage metric based on circuit structure is toggle coverage.

This metric involves checking stuck-at or toggle (from 0 to 1 or 1 to 0) for each binary

node in the circuit at some point during simulation.

More complex metrics based on circuit structure require the circuit to be sep-

arated based on data and control paths. Data path based metrics include checking

structures like registers, counters, and other structures for different states. For ex-

ample, registers are checked for initialization, loading, reading, and register-to-register

18

connections. On the other hand, counters are often checked for minimum and maximum

values and reset conditions on top of those checks performed on registers. Similarly,

each structure identified requires different checks. Control path based metrics are simi-

lar to path coverage metrics defined in code coverage. Additionally, there must be tests

of communication between the control path and the data path. For example, checking

control status interfaces between the data path and control path.

2.2.4.3 Finite State Machine Based Coverage

So far, we have discussed coverage metrics based on static representations of

the RTL, like code and netlists (usually gate-level descriptions of the connectivity of an

electronic circuit). Since these do not provide a complete test of the sequential behavior,

another type of metric needs to be defined.

Metrics based on Finite State Machine (FSM) models of the DUT are better

at testing sequential behavior. These models require state and transition information

about the DUT. Since it is computationally intensive to model the entire DUT as an

FSM, it is common to model parts of the DUT as FSM models. There are currently

two ways to model parts of the design as an FSM model, each with advantages and

disadvantages.

• Hand Written FSMs: This is done when testing specific hardware functionality

at high levels of abstractions. These models usually capture the design more suc-

cinctly, but there are a few drawbacks since these are manually designed. They

include its time-intensive nature and the fact that these models might not accu-

19

rately represent the design implemented in RTL.

• Automatically Extracted FSMs: This method uses a set of state variables

upon which the RTL design is projected. These state variables can be manually

selected from the design or be automatically selected based on heuristics. Once

the state variables are selected, the RTL implementation can be used to determine

the possible transitions between the different states. The biggest challenge in this

method is determining the necessary coverage across the different states. The

reason for switching to coverage-based testing is to reduce the total number of

states tested. Selecting the critical state transitions in the automatically generated

FSMs can be challenging.

2.2.4.4 Functional coverage

These coverage models are based on the computation performed by a specific

module instead of its structure. These models are specific to functionality implemented

in the design and require the selection of certain error-prone scenarios that might occur

during execution. These scenarios can be defined manually, specific to the implemen-

tation, or can be extracted from the RTL by tools designed to search for given pre-

determined structures. Like FSM-based models, these models can test the behavior of

modules over time (spanning several clock cycles, etc.).

20

2.2.4.5 Other Metrics

• Error Models: Each coverage metric mentioned above has an error model asso-

ciated with it. These are simple for some cases and explicit for most. For example,

toggle coverage has a simple error model (check the bit transitioned from 0 to 1 or

1 to 0). Some metrics are defined solely based on error models. These are called

error-based or fault-based metrics.

• Observability: It is crucial to be able to observe the variables being checked while

simulating the reference model against the DUT. This can vary based on when the

check is performed, and the level of abstraction used when checking. Observability

requires that the variable can be checked at different stages for correct behavior.

Some variables cannot be checked at all times or at some levels of abstraction and

are hence unobservable at those times.

• Metrics Applied to Specification: While testing based on all the metrics

mentioned above, it is important also to test if all the design objectives mentioned

in the design specifications are met in the DUT. This process involves metrics

testing for design functionality that should exist in different modules and the DUT

overall. These types of metrics are known as metrics applied to specification.

2.2.4.6 Test Generation

Adopting the aforementioned coverage models makes it possible to automate

the generation of tests and input stimuli to a design. Designers can use the heuristics

21

gathered by these metrics to generate tests. This task can be challenging depending

on the type of coverage model chosen. For example, test generation for code-based and

circuit-based coverage models is easier as they involve working with static versions of

the DUT. In contrast, FSM-based and Functional coverage models make it harder to

generate inputs automatically due to modeling behavior over multiple cycles.

2.2.5 Formal Verification

All the techniques mentioned above are implemented at a particular stage in

the verification process shown in Figure 2.1. As mentioned earlier in this Section, the

hardware design process involves transforming the design into different representations.

It is also essential to verify that no errors or unwanted features were introduced while

transforming the design from one representation to another.

Formal verification [51] is a promising methodology to test the functional cor-

rectness of code, especially during these transformations. It is increasingly gaining

popularity among hardware designers. This verification methodology tries to examine

all possible execution paths in the design by proving or disproving the correctness of

a formal model of a design. However, it does have its drawbacks, mainly due to its

scalability; it is applied to designs on a modular level and can only be used for designs

that are moderate in complexity.

22

2.2.6 Other Techniques

All the techniques mentioned above run predetermined programs or test the

functionality according to some defined constraints. When implementing coverage-based

tests, it is not only essential to test correct inputs based on test programs; it is also

important to test some architectural states that might not occur when running these

tests. Recent work has shown the effectiveness of such techniques, known as Fuzzing [48,

60, 92], where the test programs are run, and some architectural states are randomly

changed. These techniques have proven to be effective in exposing bugs in the design

that were previously undetected.

2.3 Dromajo

One of the verification techniques mentioned in Section 2.2 is co-simulation. In

this section, we talk about one tool that allows us to do this. Developed by Esperanto

Technologies, Dromajo [88] is a RISC-V RV64GC emulator primarily designed for RTL

co-simulation.

It is fast. Dromajo enables executing applications, such as benchmarks running

on Linux, under fast software simulation (around 17 MIPS). It is flexible. It can interface

with a variety of RISC-V RTL cores using API calls. It contributes towards experiment

reproducibility through its ability to generate checkpoints after a given number of cycles

and resume such checkpoints for HW/SW co-simulation. Due to these factors, Dromajo

is a powerful tool to capture bugs in combination with randomized tests [48].

23

2.3.1 Checkpoints

Dromajo facilitates the creation of checkpoints with information about the

processor architectural state (registers, Control and Status Registers(CSRs)), the mem-

ory, program interrupts (PLIC / CLINT), and performance counters such as the cycle

counters and the number of instructions executed.

This information is made available as two images, a bootrom image and a

memory image. The memory image restores the state of the memory during checkpoint

generation. The bootrom image is used to restore the architectural state of the pro-

cessor when the checkpoint is created. This is done by leveraging the RISC-V debug

specification [29], which allows setting different supervisor registers. The RISC-V debug

specification is supported by most RISC-V CPUs. This makes this approach compatible

with most existing designs.

2.3.2 Co-simulation

Dromajo can be compiled as a shared library and linked to an RTL simulator.

This allows for interaction between the RTL and Dromajo during simulation through

API calls such as DPI calls from Verilog. These API calls are simple yet powerful,

facilitating RTL co-simulation with Dromajo.

24

2.4 Spectre

In section 2.1 we have discussed several microarchitectural features imple-

mented in modern processor designs. In this section, we will discuss how the imple-

mentation of these features culminates in the primary motivation for this proposal;

timing variability transient execution attacks [13,54,65,80,94].

To recap and summarize section 2.1, almost all modern processors implement

pipelining, have caches, and at least a rudimentary branch predictor. Processor designs

geared towards high performance usually implement more complicated speculative ex-

ecution techniques and usually have superscalar out-of-order pipelines. It is highly

unlikely to achieve the performance seen in the current generation of processors without

implementing such techniques. Most current processors can achieve an Instructions Per

Cycle (IPC) greater than 1 during most execution phases of most benchmarks. Spec-

ulative execution is one of the leading architectural features contributing to such high

performance. This is when the processor guesses which program execution path is more

likely to happen at a given program execution state and starts executing that path be-

fore the correct execution path is computed. This works out most of the time but can

lead to scenarios where the wrong execution path was chosen. When this is the case,

the processor discards any changes made to some critical architectural structures like

registers, re-order buffer, etc. This is done by creating a checkpoint each time a specu-

lative path is executed. The instructions in the speculative path, which were executed

and then discarded, are known as transient instructions.

25

While some architectural structures are updated to reflect true program exe-

cution, the effect of these transient instructions is not limited to those structures. When

executed, they are treated like any other instruction (except for the checkpoint) and

can influence hardware structures like caches, branch prediction tables, special registers,

and functional units. These act as side-channels and have been shown to break several

hardware-level security constructs guaranteed by hardware designers and assumed by

software developers.

There have been multiple such transient execution security vulnerabilities that

have been disclosed in the last few years. All of these vulnerabilities expose secret data

belonging to other processes. This effect is demonstrated in several Spectre vulnerabil-

ities [54], which include Meltdown [65], which exposes kernel memory, Foreshadow [94],

which exposed trusted execution environments, and Microarchitectural Data Sampling

(MDS) [80], which can leak data from other threads. Each of these vulnerabilities has

multiple variants, exploiting the primary mechanism of the vulnerability in different

ways.

Spectre-type attacks use the presence of these transient instructions to their

advantage. They can trick the processor into executing instructions that will not be

executed during the correct program execution. This is achieved by tuning the attacker

program to exhibit specific behavior, which influences the state of some architectural

structures like branch prediction structures, return address stack, etc. This then influ-

ences which transient instructions are speculatively executed. The result is the ability

to leak information from other processes through techniques such as forced cacheline

26

replacement.

2.5 Mitigation Strategies

As these vulnerabilities have been detected in existing processor designs from

different vendors spanning multiple Instruction Set Architectures, strategies to mitigate

them have become a prime area of research. Several strategies have been proposed,

with some of them seeing real-life implementations. These range from code recompi-

lation [6], making patches to the Operating System (OS)/Virtual Machine Hypervi-

sor (VM) [42, 44, 52], implementing microcode patches [45], to redesigning hardware

[5, 41, 77] to mitigate these vulnerabilities. Table 2.1 shows different transient execu-

tion attacks confirmed by manufacturers of commercial processors and patches applied

to mitigate them. A few transient execution attacks have been published but have not

been acknowledged by manufacturers. For example, Spectre-NG (v1.2) [53], a Read-only

Protection Bypass attack, has not been acknowledged by Intel, and Take a Way [64],

a cache-way prediction based attack has been disputed by AMD and has not yet been

patched.

Each mitigation strategy mentioned above has drawbacks [10, 83]. Code re-

compilation requires recompiling every software program to mitigate these vulnerabili-

ties. This is not practical. This method usually incurs high performance reduction as

the mitigation is performed in software while the hardware is still vulnerable. While

patching the compiler ensures that programs can no longer be written to exploit such

27

Vulnerability (version) Exploit type Mitigation
CROSSTalk Special Register Buffer Data Sampling Microcode

Fallout Microarchitectural Store Buffer Data Sampling OS, Microcode
Foreshadow L1 Terminal Fault/L1 Rouge Access Microcode

Foreshadow-OS L1 Terminal Fault/L1 Rouge Access OS, Microcode
Foreshadow-VMM L1 Terminal Fault/L1 Rouge Access OS, Microcode

Load Value Injection (LVI) Load Value Injection Code Recompilation
Meltdown Rogue Process Data Cache Load Microcode

Rogue In-Flight Data Load (RIDL)/CacheOut L1D Eviction Sampling OS, Microcode
Rogue In-Flight Data Load (RIDL) Microarchitectural Load Port Data Sampling OS, Microcode
Rogue In-Flight Data Load (RIDL) Microarchitectural Data Sampling Uncacheable Memory OS, Microcode
Rogue In-Flight Data Load (RIDL) Vector Register Sampling OS, Microcode

Rogue In-Flight Data Load (RIDL)/ZombieLoad Microarchitectural Fill Buffer Data Sampling OS, Microcode
Rogue In-Flight Data Load (RIDL)/ZombieLoad v2 Transactional Asynchronous Abort OS, Microcode

Spectre (v1) Bounds Check Bypass Code Recompilation
Spectre (v2) Branch Target Injection Hardware, OS/VM, Microcode

Spectre SWAPGS Bounds Check Bypass Code Recompilation
Spectre-NG Lazy FP State Restore OS/VM

Spectre-NG (v1.1) Bounds Check Bypass Store OS/VM
Spectre-NG (v3a) Rogue System Register Read Microcode
Spectre-NG (v4) Speculative Store Bypass Hardware, OS/VM, Microcode

SpectreRSB Return Mispredict OS

Table 2.1: Transient Execution attacks which have been confirmed by commercial pro-
cessor manufacturers and have since been patched.

vulnerabilities, the hardware remains vulnerable.

The second strategy of patching the Operating System/Virtual Machine Hy-

pervisor is a more feasible strategy to pursue. These patches are often successful but

still introduce a small to significant performance hit as the patch is still handled at

the software level. These patches are easier to implement as they require updating the

OS/kernel. This requires significantly fewer resources to implement and distribute these

patches.

The third strategy of implementing microcode patches requires updating the

microcode versions of each affected CPU. This might seem as effective as the Operating

System/Virtual Machine patches, but it involves significantly more resources. Patches

of this type need specific implementations for each CPU type affected (there are plenty)

and require integrating the microcode patches to every kernel deployed. These patches

usually incur a similar performance penalty to the OS/VM level patches.

28

The final type of proposed patches involves implementing at least a partial

redesign of the affected architectural structures. This can include changes like when

updates on specific structures are performed, ISA level changes [23], implementing secure

running modes in hardware for secure code, and implementing changes in hardware

behavior [5,77] to name a few. Some of these proposed hardware redesigns also consider

the effects on caches, proposing new update strategies and newly introduced special

caches for speculative accesses. These changes require the most resources due to reasons

discussed in section 2.2 and also take considerable time to manifest in the next generation

of hardware. It also does not fix current hardware that has already been deployed.

There have also been proposals to secure timing side-channel attacks enabled

by the Translation Lookaside Buffer [21]. Another approach is introducing mechanisms

in both the OS/VM and hardware to protect specific memory ranges selectively [31].

There have also been proposed microarchitecture changes to update policies for regis-

ters that have been shown to prevent timing side-channel attacks [79]. Other proposals

to mitigate timing side-channels include adding checks to control flow instructions and

restricting them within legal address ranges [59]. Additionally, static program analysis

can also be used to detect branches that can be exploited by timing side-channel at-

tacks [96]. On top of this, dynamic program analysis can also be used to show timing

side-channels [73].

It should be noted that there is no single best strategy to implement patches for

each of the vulnerabilities mentioned in section 2.4. The best strategy depends on the

type of vulnerability and its variant. It is also important to note that all these strategies

29

focus on fixing the problem’s effect rather than addressing the cause of the problem.

These vulnerabilities exist as there is no verification infrastructure/framework that can

integrate easily with existing modern verification techniques to handle such timing side-

channels. As described in section 2.2, current verification methodologies only check for

functional correctness. Transient execution is not considered, as even with the latest

co-simulation flows, only the correct program execution path is considered. To address

these issues, we propose a verification framework to detect the timing side-channel effects

of transient execution.

2.5.1 Detecting Side-channels

The most comparable publications to this work are not mitigation strategies

but verification techniques. They can be classified into three main categories, as ex-

plained below.

2.5.1.1 Model-Based

Model-based approaches like [12,16,91] create a model of the CPU and perform

different tests/checks to verify that the model does not have leaks. This approach is

quite different, as it requires a model and does not work at the CPU/RTL level like

our proposed approach. Revizor [72] is another model-based testing approach for com-

mercially implemented CPU designs. Another model-based approach is shown in [11],

where the biggest contribution of the authors is to reduce the search space of the model

using observation refinement for cache coloring and speculative leakage. All model-

30

based approaches have the disadvantage that the model might not be the same as the

RTL under test. Building an ISA model for the co-simulator is much simpler in terms

of verifying the correctness and complexity of the model. An ISA model has a further

advantage in that it can be used to test multiple CPU designs that use the same ISA.

2.5.1.2 Formal

Formal approach is showcased by UPEC [25]. They propose a formal method

to detect when a transient instruction does not allow data from a protected region to

leak outside. Such formal methodologies are also quite different in approach and scope

from the proposed work. Formal techniques use formal SAT solvers to check for side-

channel attacks. The scope is also different because UPEC restricts only protecting leaks

from a ”confidential” memory region and does not consider leaks outside the region.

This does not cover side-channels that avoid loads. For example, a retpoline [49]

attack could create a sequence of transients that leak contents from registers. While

such an attack may be difficult to implement, it is possible. In summary, UPEC is an

important but different approach (formal) with advantages like mathematical guarantees

but disadvantages like scalability to large designs. While both approaches provide the

ability to verify the design at verification time, our approach has the advantage of being

much more scalable for large designs.

31

2.5.1.3 Simulation

The alternative Simulation based approach is IntroSpectre [33]. It has a similar

goal of detecting speculative side-channel leaks, but the approach is very different. It

leverages known attack code snippets, fuzzes them and simulates them with RTL, and

has checks to detect leaks. This is complementary to our approach. IntroSpectre cannot

protect against unknown attacks, but it has the advantage of verifying against specific

attacks. While similar, we consider being able to protect against unknown attack vectors

a significant advantage.

2.5.1.4 Other approaches

A possible related alternative is to have a new [27,105] Hardware Description

Language (HDL) to verify against leaks. Such approaches require new languages, not

reusing existing designs, and high levels of investment in new HDLs. Osiris [98] is a

fuzzing-based approach to detecting side-channels in CPUs. They use fuzzing to gen-

erate instruction sequences and run them on commercially available CPUs to detect

side-channels, including those caused by transient execution. While this approach is

valid, our framework works during the verification stage of the CPU’s design to elim-

inate possible speculative side-channels altogether. Another fuzzing-based approach is

Medusa [69]. In this paper, the authors use fuzzing to mutate existing Meltdown vari-

ants’ basic blocks to generate new Meltdown sub-variants. This requires knowledge of

existing time side-channels to find similar ones. Unlike the approaches mentioned above,

our work still has the advantage of being verified during the design and verification of

32

the processor.

One possible defense against speculative side-channel attacks is to selectively

forward the speculative instructions by identifying the covert channel and forwarding

the results only if it is not going to the covert channel [103]. This dynamic approach

adds almost 15% overhead. Another approach is to analyze programs to determine if

the leak happens during the speculative or non-speculative instruction and only perform

execution once it is determined that the execution is non-speculative [19]. Another dy-

namic approach is DOLMA [67]. In this work, the authors use the principle of transient

non-observability by ensuring that within a given time slice on a core for a program,

they can provide isolation from existing attack vectors. While all the aforementioned

dynamic approaches are valid, they can have very high performance overheads during

runtime. While some works only has a 15% overhead [103], others can have up to 45%

and 42% overhead [19] [67]. While this is still better than existing dynamic approaches,

the problem of speculative side-channels needs to be fixed during verification. This is

the significant advantage our approach has over dynamic approaches.

One of the mitigations for the original Spectre variants was retpoline [49].

It is a software construct that prevents branch target injection by isolating indirect

branches from speculative execution. While there were concerns that the retpoline

patch could be exploited to create another class of speculative execution attacks, it

was deemed impractical to exploit [90]. As it turns out, dismissing possible attacks as

impractical is not the correct approach, and the retpoline patch has been exploited

by a new class of speculative execution attacks called retbleed [101]. We believe other

33

patches to different Spectre variants could be exploited similarly. It is not enough

to make attacks improbable or patch them once they are found. Time side-channels

must be eliminated. To achieve such a goal, it is insufficient to use only known attack

vectors like IntroSpectre [33] to achieve it. We propose using random test generation to

maximize coverage and flag any and all time side-channels, however unlikely they may

be to exploit.

34

Chapter 3

Verification Framework for Timing

Side-Channels

The raison d’être of this proposal is to establish a verification framework to

detect side-channels. We concentrate on timing side-channels (side-channels cause dif-

ferences in the performance of the test program depending on the transient instructions

executed) since Spectre-type side-channels can be detected based on changes in the ex-

ecution time of the instructions executed by the test program. This framework can also

detect other side-channels, like changes in branch prediction structures, cache states,

etc., that are visible due to transient execution.

On a high level, we first identify the transient instructions of interest. This

is done by running the test program on the DUT and a co-simulation tool. Once the

transient instructions of interest are identified, we rerun the test program, changing

the transient instructions in different ways (changing their PC, instruction, and data

35

Figure 3.1: Instruction life cycle with respect to speculation.

accessed by the instruction). We examine the effects of these changes with the help

of the co-simulation tool, capturing changes in the timing of commit and changes in

architectural structures like branch prediction structures and caches.

3.1 Speculative Execution and Transient Execution

To recap section 2.4, Spectre-type attacks are timing-based transient execution

attacks. We will first look at instruction behavior in the pipeline to define this accurately.

Since modern CPU designs use speculative execution and pipelining, they can

have multiple instructions in the pipeline at various stages of execution. An instruction

in the pipeline can be classified based on its speculative nature. Very few instructions are

non-speculative, i.e., very few instructions belong to the category where they will always

be executed regardless of which control flow path is chosen at any point during execution.

The majority of instructions belong to the category of speculative instructions, i.e.,

instructions that are determined to be on the correct program execution flow at fetch

36

by the speculative logic of the processor. These speculative instructions can be further

classified based on what happens to them on commit. Depending on the correct program

execution flow, they will either be committed, becoming non-speculative instructions,

or can be squashed/discarded, becoming transient instructions. This lifecycle of an

instruction with respect to speculative execution is shown in Figure 3.1.

Extending this terminology, more than one consecutive transient instruction

can be identified in the pipeline when we identify such transient instructions while us-

ing our framework. We name such phases in program execution with more than one

consecutive transient instruction, a transient phase. In this proposal, we are primarily

interested in the transient instructions/phases, and any description of changes made to

instructions on the speculative path is made on the transient instructions. Henceforth,

when referring to speculative instructions/phases/execution, we refer to the classifica-

tion at fetch, as described above and shown in Figure 3.1. Similarly, when referring to

transient instructions/phases/execution, we refer to the classification at commit, i.e.,

the discarded instructions as described above and in Figure 3.1.

Since transient instructions are not committed, there should be no effects on

the processor’s architectural state due to their presence/execution. However, this is

generally not true, and there are some side effects due to the execution of transient

instructions. Hardware free from the side effects of transient instructions would be

complicated and impractical to build and consume an unacceptable amount of power.

Instead, designers elect to implement more straightforward solutions like checkpoints

that protect critical hardware structures from the effects of transient execution. This

37

includes solutions like reverting the register file, reorder buffer, undoing the updates

caused by transient execution to the branch predictor structures, and so on. There have

been a few proposed methods to handle transient updates on caches [5,77] though their

performance and design implications on hardware that has been taped out have not been

verified. Designers also implement features like updating the branch predictor structures

before the branch instruction is retired- before the branch instruction has computed the

actual branch. This is usually done for performance reasons during speculative execution

- to predict future branches in the speculative phase.

3.2 Timing Side-Channel Effects

Implementing more straightforward choices mentioned in Section 2.1 leads to

multiple observable side effects during execution. These side effects can manifest in

different forms and can be used to leak information in different ways. These are known

as side-channels [58]. These can be detected based on how they manifest as described

in Chapter 1. In this work, we are primarily interested in timing side-channels caused

by transient execution. These side-channels cause differences in the performance of the

test program depending on the transient instructions executed. The performance of

the test program can be measured in terms of the timing of the instructions executed,

hence timing side-channel. These timing side-channels are also called transient timing

side-channels or speculative timing side-channels as they are caused due to speculative

execution of transient instructions.

38

Spectre-type vulnerabilities leverage these speculative timing side-channels to

leak information from victim processes. These timing side-channels can be detected

when simulating the DUT during the verification stage of the hardware design cycle.

It is also true that each instruction type can have different execution latencies in the

pipeline. We take advantage of both these facts in the proposed framework to expose

timing side-channel effects in a design, our primary focus. This framework can also

expose other side-channels, like effects on the branch predictor structures and caches,

but this is not the main focus of our work. Any side-channel effects of transient execution

that do not affect the timing of the correct execution trace with respect to the reference

model are not considered timing side-channels.

Speculative side-channel attacks can be classified under many categories and

variants. However, in all cases, they can be broken down into three main components:

Access, Leak, and Measurement. In this Section, we expound on these ideas in the

context of our framework.

Access mandates that the transient should be able to access protected data.

An attack can have transients reading register file contents or memory locations. Never-

theless, the instructions with access to protected data can be executed during transient

phases. Any access to data the programmer did not expect is an access violation. From

an RTL/CPU point of view, most transients can access protected data because we do

not know what register or memory data is protected and what is not.

Due to the complex nature of predictors and speculation, the programmer

has little control over the possible sequence of instructions that become transients.

39

Compounding this problem, in ISAs like RISC-V and x86, a branch/jump’s predicted

target PC can be in the middle of instruction sequences, effectively creating new code

fragments that are not what the programmer/assembler expected. The result is that

protecting access is quite a challenge unless speculation is avoided.

Leak is the next necessary component after Access. A leak indicates that

there is some measurable side-channel effect from a transient that is data-dependent.

If the side-channel effect is constant, i.e., independent of the data accessed, there is no

way to perform an attack. This is because the third key step, measurement, cannot be

performed by the attacker.

The leak can happen in many ways, depending on the measurement capabil-

ities, but this work focuses on time and any performance counters. It can also have a

power/energy/temperature impact, leading to other side-channel leaks, which is out of

this work’s scope.

Most established attacks leverage caches to trigger cache misses to perform

leaks. Leaks can have many other aspects. For example, it could affect a performance

counter like cache misses or have a micro-architectural side-effect. Examples of micro-

architectural states that could be speculatively updated leading to such side-channel

attacks include any branch predictor state, any predictor like a way predictor, mem-

ory dependence predictor, value speculation, cache replacement, variable latency units,

prefetchers, and any other state that plays a role in speculative execution.

Similar to committed instructions, transients will have side-effects, but the key

observation is that the leak must be data-dependent for an attack to occur. This is the

40

critical point that our framework targets with co-simulation and fuzzing.

1 ; x1 protected data

2 ; x2 enough permiss ion l e v e l

3 ; x3 some memory po inter

4

5 beq x2 , x0 , no_permission

6

7 sh l x4 , x1 ,8 ; ; acce s s

8 add x3 , x3 , x4

9 ldb x4 , (x4) ; ; l eak

10

11 no_permission :

12 ; some other code

Listing 3.1: Access to protected data

We consider leaks not only caused by individual instructions but any combi-

nation of instructions on the transient path. For example, in the case of a function

return instruction (ret), if the ret updates the return address stack predictor (RAS),

the update is data-independent, so the ret is not a leak per se. Nevertheless, if other

transients can create data-dependent pipeline stalls, the RAS update due to the ret

instruction can result in a leak. This is because the other transient instructions before

the ret RAS update can be used to leak information.

To summarize, there is a leak only when the transients can have a data-

dependent leak, which can result from the interaction of multiple transients.

41

Measurement is the last step needed to perform an attack. The transients

could access protected data and have a data-dependent leak, but they are deemed a

leak only if they are measurable. This was the point architects used to dismiss this type

of attack before Spectre/Meltdown. They thought that they could not be measured

if transients were flushed. The problem is that the leak can affect resources that will

impact performance. This performance impact can be measured in many ways.

A typical attack triggers cache misses and scans the cache to account for

hit/miss regions. The truth is that any execution time or performance counter change

due to a leak transient can be measured if enough access is provided. Imagine the

operating system call with a small number of cycle variations based on the leak data.

The code calling the OS syscall can measure the time before and after the call. This

effectively allows for measuring the leak. An example of a performance counter that

can be used to measure leaks is the page_walks counter in Intel x86 architectures [43].

This performance counter tracks the number of core cycles during a page walk. If the

attacker can read the counter, or the overflow for page walk triggers a performance

counter overflow, it can be used as an address-dependent point of attack. These attacks

are similar to data-dependent attacks where the address of some memory location is

used as the data to trigger the attack.

The goal is to have no measurable transient leaks. This implies that even one

cycle over the whole program execution is considered a leak. The same for any slight

change in any performance counter exposed.

Putting all this together with a RISC-V example, in the Listing 3.1 the branch

42

is taken if no permission is available. The access is triggered by the access of register x1

in the shl instruction. The leak is triggered by the ldb instruction, which loads a byte

based on the secret data accessed earlier. This load can update the cache state, which

can then be measured by the attacker by checking for cache hits/misses.

3.3 Detecting Leaks

A successful attack requires Access, Leak, and Measurement. Transient in-

structions are responsible for the access and leak, and the measurement can be done

afterward. The proposed verification framework focuses on the leak. This is because

most transient instructions can perform the access. The measurement can happen in

many forms, including those that do not involve architectural states like measuring OS

syscall performance.

If the verification infrastructure can guarantee that transients do not have any

data-dependent leaks, it can be guaranteed that the CPU/RTL is safe from speculative

side-channel attacks.

Theoretically, it would be possible to find speculative side-channel attacks by

only fuzzing the data accessed by the transient instruction as this would mimic the

secret data access performed by transient instruction. While this is a valid approach,

it is also inefficient in the context of verification as the transient instructions do not

change, restricting the coverage in terms of code fragments accessed and conventional

coverage metrics like line and toggle coverage. A key step in verification is to increase

43

coverage as much as possible. To this end, we propose the following steps:

• Transient detection: Our framework leverages the existing set of tests and

co-simulation platform for verification. As each test executes, we detect the tran-

sients. We call this step transient detection.

• Transient fuzzing: For each test, we perform one run where the transients are

randomized. Here, we mean the transient instructions are randomized to increase

speculative path coverage. We call this step transient fuzzing.

• Data fuzzing: For each fuzzed transient instruction, we fuzz the instruction’s

operands. We call this step data fuzzing.

Transient detection requires one run of the test program. Afterward, creating

many transient fuzzing tests is possible. For each transient fuzzing test, several data

fuzzing tests can be created. This is shown in Figure 3.2.

As the different data fuzzing tests run, we compare the performance counters

and the instruction commits. All the data fuzzing tests should have precisely the same

performance counters and instruction commits at every cycle for any given instruction

fuzzing test. If there is any mismatch, there is a leak.

These leaks can be detected based on the performance of the programs (time)

or the changes in the performance counter values. Time-based program performance

can be detected by tracking the commit times of the committed instructions. The

performance counters include the time-based counters but also several other counters.

In RISC-V, there are 32 performance counters, but in theory, we should compare all

44

Figure 3.2: The three types of proposed runs.

the possible performance counters available in the CPU. Some RISC-V CPUs have

programmable performance counters at boot time [29,35]. For example, counter 22 [29,

35] could be used as an L1 miss counter or for the number of TAGE updates. If

these counters are programmable and exposed, the counter should be included in the

verification. This is similar to the page_walk counter described in Section 3.2.

Comparing the hundreds of counters the CPU has at every cycle may have

some performance overhead, but we can have a hash function of the counters. It is

enough to create a hash of the whole execution and compare the hashes across data

fuzzing tests, simplifying the comparison.

45

3.3.1 Protection Set

One of the contributions of this work is to use a simple and hence easy-to-

understand method to avoid speculative side-channel attacks. This work claims that any

speculative side-channel attack can be avoided if there are no data-dependent transient

leaks with a measurable side-effect. In other words, it is not possible to have an attack

unless transient instructions can have different measurable side-effects based on data.

This definition is a superset of what is needed for an attack. Some examples

of why this is a superset:

• Impractical: Most attacks require multiple measurements. It may not be a

practical vector if this is a very noisy attack.

• Complete: It protects against all data, while some implementations may want

to protect only a range of data.

• Broken: Not completely protected systems may still be better than no protection.

• Fuzzed transients: We propose fuzzing transients which may not happen in real

systems.

The impractical protection is the point that most randomization techniques

argue. Although reasonable, it makes verification a much more complicated problem.

Instead of no side-channel leaks, it is required to verify not enough leaks, with a difficult

to quantify significance because it is quite sensitive to measuring techniques and the type

of attack used (combination of transients). This may be a potential future work, but

46

for the moment, we consider a more straightforward definition of zero leaks allowed as

it is easier to handle and verify.

The complete vs. ”only a subset” is one of the differences with work like

UPEC. A complete approach protects all the memory and registers. Works like UPEC

protect only a memory region. We consider that everything should be included. It is

possible to have contents on the register file that should not be visible. Namely, a thread

register’s contents should not leak. Protecting the register file and a programmable

memory region is not much different from protecting everything. If the CPU designers

had an implementation that does not protect a memory region, the proposed work

would still be compatible and applicable by ensuring that the fuzzing does not generate

addresses to those unprotected regions.

The broken system may still be possible to verify. The fuzzer generates

changes in the transient instructions to measure their impact. If something is not pro-

tected in the CPU, the verification infrastructure is still valid as long as the broken

portion of the design is not fuzzed. For example, the fuzzer could avoid the division

input/outputs if the division is a telescopic unit. We do not advise this approach, but

it shows the potential to at least verify that parts of the CPU are safe from attacks.

The fuzzed transient is a technique that we propose to increase the coverage

and reduce the verification time. However, conceptually, this can lead to impossible to

execute paths if we control the binary being tested. For example, the fuzzed transients

may use RISC-V CSR instructions, but the binary may not have any such instructions.

Hence, no matter what the hardware did, the software would have never triggered such

47

a condition. Notice that this also requires having ”software” control. Any possible

transient sequence can be created if we do not control what the compiler generates

for the speculative path. This implies that a more restrictive definition can exist if

we control the software stack. This work focuses on CPU/RTL verification without

requiring software control. It may be an exciting restriction for future work, but we

think that being software-independent is a better approach for CPU/RTL verification.

These are some more apparent examples of why our approach is a superset. We

argue that this is a good superset for two reasons: (1) It is easy to explain and verify; (2)

existing cores that protect against any speculative side-channel attack adhere to this. As

the evaluation shows, BlackParrot and CVA6 have speculative and non-speculative safe.

The verification infrastructure can detect leaks in the non-speculative safe versions and

verify that the speculative-safe configurations do not have any data-dependent transient

leak.

3.3.2 Speculation Fences

A potential solution to avoid speculative side-channel attacks is to extend the

ISA to insert fences to avoid speculation [23]. These speculative fences effectively mean

that there is no side-channel speculation. In an architecture without leaks, the fence can

become a no-op. Alternatively, if the CPU only protects speculation against branches

without fences, the proposed verification should apply only to the fenced branches. The

others are allowed to have leaks.

The proposed co-simulation can be deployed in a CPU with only speculative

48

fence leak protection. In such CPUs, the transient fuzzing would happen only when the

speculation fence notifies the region to protect.

3.3.3 Non-Transient Leaks

This work focuses on leaks by transient instructions, but there is an interesting

case when a non-transient instruction is the source of transients. Many instructions

can trigger pipeline flushes, for example, branch mispredictions or exceptions. The

interesting case happens because the pipeline flush can be data-dependent. For example,

a branch can be predicted correctly or incorrectly depending on the branch input source

values. The pipeline flush will have a number of cycles impact on the execution, and

hence it can be used as a side-channel attack. We do not consider this a transient leak

because the branch itself is non-transient.

In the late 90s [58], it became known that many encryption algorithms were

susceptible to non-transient side-channel attacks. Specifically, it was observed that

different data had different branch prediction performances, and this change in perfor-

mance could be observed by other applications or code sections, which compromised the

algorithms. Since then, most encryption algorithms have been implemented with con-

stant execution time to avoid leaking information through the branch prediction timing

side-channel. This work does not protect against these non-transient side-channel leaks,

only for transient leaks. Even if no transient is executed, this variable latency is a source

of leak independent of speculative side-channel attack.

49

3.4 Fuzzing Transients

Fuzzing transients is the critical step in co-simulation to verify that the CPU/RTL

does not have speculative side-channel attacks. As previously stated, this is done by

checking that no transients can have data-dependent side-effects in execution time or

performance counters.

The high-level process is to leverage co-simulation. As usual, the CPU/RTL

is verified against the Instruction Set Simulator (ISS) model, but we introduce some

additional steps to Fuzz Transients as shown in Figure 3.2. We detect the transients

during the first co-simulation run, which serves as a baseline to increase speculative

path coverage. A second run fuzzes the transient opcodes to increase coverage, and its

output is kept as a reference. Additional runs fuzz the transient data sources to provide

different data values effectively. There is a leak whenever there is any mismatch between

the second and successive runs with data fuzzing.

3.4.1 Transients Opcodes

A random instruction generator (RIG) like Google DV [34] is a standard tool

used together with co-simulation. The verification team keeps creating random pro-

grams and performs RTL co-simulation until some metrics like coverage are satisfied.

We must create many possible transient sequences to create any potential

past/future attack. In theory, if we run randomly generated programs from RIGs enough

times, we should hit any possible attack. In reality, achieving such coverage in modern

50

CPUs is not easy. For most CPUs, the transient path is branch predictor dependent,

and it is harder to create extensive coverage than in typical programs. The intuition is

that only a few possible random paths may exist for a given branch.

We propose to fuzz the speculative path at co-simulation time to speed up the

verification steps. We propose to fuzz the transient opcodes. The decode stage of most

CPUs is an accessible place to perform such fuzzing. Instead of using the instruction

cache data, we provide a fuzzed opcode.

3.4.2 Transient Data

While fuzzing transient opcodes helps to reach high coverage faster, fuzzing

transient data is what increases leak coverage.

After the fuzzed transient opcode is created, we do additional runs fuzzing the

data. There are several ways to fuzz the data, but generally, we generate different input

values (operands) for the transient instructions in all cases.

The easiest way is to fuzz the instruction source registers to random sources.

This allows us to use the same fuzzing location in the decode stage for transient opcode

and transient data fuzzing. This fuzzing is dependent on the register value coverage.

An approach with faster coverage is to provide a register file read with fuzzed data for

transient instructions. This requires further changes at the decode stage in addition to

the transient opcode fuzzing.

51

3.5 Flow

Co-simulation is an RTL verification technique that couples a simpler golden

model to check an RTL model. In CPU verification, the simpler golden model is an

Instruction Set Simulator (ISS) without any timing information. As instructions up-

date the micro-architectural state in the RTL, the golden model advances to the next

instruction, and the result is verified.

Several pieces are needed to have an effective co-simulation environment. The

most important is the capacity to generate test inputs and decide when to stop testing.

The Dromajo [48] work explains in more detail the open-source RISC-V co-simulation

infrastructure that we use as a starting point for this paper.

3.5.1 Random Instruction Generation

A Random Instruction Generator generates randomized assembly instruction

streams for a given set of configurations. The tests generated by the RIG sweep a broad

range of implemented functionality. It can create complex test cases that are hard to

come up with for an engineer [7, 102].

3.5.2 Enough Testing

A crucial decision in co-simulation is when there have been enough RIG tests.

Different teams have different approaches, but metrics like toggle coverage and line

coverage are usually used to detect enough bugs. As [48] shows, bugs can hide under

perfect coverage cases. This is why new tools like Coverity [86] try to test the quality

52

of testing infrastructure.

This work does not introduce any new novelty in deciding when there is enough

testing. The same metrics and methodologies used for traditional co-simulation, like line

coverage, are applied when detecting transient leaks.

3.5.3 Performance Counters

The golden model or ISS is typically not able to verify performance counters.

The reason is that many factors, like branch miss predictions, are RTL-specific, not

architectural. To verify against speculative side-channel attacks, we must check if tran-

sients do not have data-dependent performance counter updates. Section 3.4 shows that

we verify performance counters against previously fuzzed transients, not against the ISS

model.

3.5.4 Flow Runs

A simple approach will perform two runs: baseline and transient data fuzzing.

The baseline run gathers performance counters and is compared against the run with

transient data fuzzing. Any mismatch is a leak.

This approach is not as efficient because it is very sensitive to the RIG to

generate potential attacks, and the branch predictor can select those RIG-generated

transients.

The proposed framework performs three types of runs: Transient detection

(baseline run), transient fuzzing (where the opcode is fuzzed), and data fuzzing (where

53

Figure 3.3: Overall flow with the three types of proposed runs.

the operands of the fuzzed opcode are fuzzed).

The first baseline run is to find the transient paths. The second run is to fuzz

the transient opcodes. The following runs use the same fuzzed transients opcodes but

fuzz the transient data. A verification error is raised if any measurable difference in

time or performance counters happens between the last runs. The advantage of this

methodology is that high coverage can be achieved much faster. The overall flow with

transient detection, transient fuzzing, and data fuzzing is shown in Figure 3.3.

3.5.5 Sample Leaks

This Section showcases some sample cases to illustrate how the flow detects

leaks:

Non-flushable variable latency instruction: Any long latency transient

instruction with a data-dependent latency is a problem if it can not be flushed with

constant time. Imagine a load or a division that takes more time based on a given input

value. If any resource is reserved or blocked after the transients are flushed, we can

have a potential source of an attack.

54

The proposed framework finds this issue by fuzzing the data from all the tran-

sients. The framework will find a leak if data values impact future instructions differ-

ently.

Any data-dependent micro-architectural state update: If a transient

has data-dependent micro-architectural updates, it can have a performance impact on

future instructions. For example, updating the cache or branch predictor will affect the

execution time. Again, by fuzzing the transient data sources, this can be found.

Variable latency transients: Variable latency transients can complicate the

whole design even if they have no side-channel leaks. This is because chaining variable

latency instructions could stall the pipeline, effectively creating a data-dependent set

of transient instructions. If the CPU allows this, then even data-independent leaks can

become a source of leaks. For example, a function return (ret) can update the return

address stack all the time. This is a data-independent leak. However, if we can insert

variable latency before the ret instruction, we can avoid fetching or not fetching the ret

instruction. Since it leaks, we have leveraged a variable latency transient without side-

effects to use a data-independent transient to create the problematic data-dependent

leak.

The proposed flow captures this because the variable latency transient will

allow adding more or less fuzzing transient opcodes. The first run detects the non-

transient instructions. All the new instructions fetched are transient and subject to

opcode fuzzing.

Data-dependent priority inversion: An interesting case that the proposed

55

framework captures is a priority inversion. By priority inversion, we refer to the case

that a younger transient should not affect the performance of an older one. If an older

transient can affect a non-transient, there is a source of performance leak. This means

that a transient load without any micro-architectural impact can still leak. For example,

if an older non-transient load is issued after the transient load, the older one should not

stall due to the younger transient one.

Again by fuzzing the transient data and combine with RIGs, we can create

corner cases that will exercise this case.

3.5.6 Sample Non-Leaks

Data prefetchers in most modern processors are a potential source of leaks as

they use the transient memory operation’s address. If the prefetcher were triggered once

the memory operation is no longer speculative, there could still be speculation due to

the prefetcher, but it is not transient data-dependent. Such prefetchers will not trigger

an issue in the proposed framework because we only fuzz transients.

3.6 Other Considerations

One caveat to remember is that even if this proposed framework does not find

any timing side-channels, it does not mean that non exist. Similar to many verification

methods mentioned in Section 2.2, this is true for the proposed framework. However,

The proposed framework is not standalone. It should be used along with conventional

verification techniques. We run the proposed framework along with coverage based tests.

56

The two methods are complementary and will increase the overall coverage. We can

only try to maximize coverage and our confidence in our framework and the verification

process. Like with most verification methods, it is incredibly hard to prove a design is

completely bug-free.

Some attacks utilize sophisticated, hand-crafted gadgets to be executed on

the speculative path. While the proposed framework can support sophisticated, hand-

crafted gadgets to be executed in the prescribed manner, it defeats one of the proposal’s

goals to identify new timing side-channels. Having sophisticated hand-crafted gadgets

only allows us to check for vulnerabilities that have been already discovered. Our

objective is to utilize pseudo-randomness to our advantage and maximize coverage and

reach hard to encounter cases. This also lets us integrate better with the conventional

verification methods and use similar coverage metrics.

3.7 Implementation setup

This section discusses the implementation of the framework described earlier

in this chapter using existing designs and tools. We have implemented this framework

on three RISC-V cores, Ariane [104] (CVA6), BlackParrot [8], and BOOM [14] using

Dromajo [88] as the co-simulation tool.

Two of the CPUs we chose, Ariane and BlackParrot, both use in-order commit

logic, whereas BOOM is an out-of-order core. We have performed numerous runs on

several benchmarks.

57

3.7.1 Ariane

Ariane, also known as CVA6, is a 6-stage, single issue, in-order CPU design

implementing the RISC-V instruction set. Ariane has a speculative frontend. It im-

plements the I, M, A, and C RISC-V 64-bit extensions, privilege extension, and de-

bug specifications. It is capable of booting Linux, and its architectural structures like

the Branch History Table (BHT), Branch Target Buffet (BTB), Return Address Stack

(RAS), and Translation Lookaside Buffer (TLB) are configurable. We have used the

default configuration. It is primarily implemented in System Verilog.

The architectural features of Ariane make it ideal for testing the proposed

framework as the speculative frontend allows us to test our proposed methodology and

the in-order commit allows us to have a deterministic reference trace, ensuring repro-

ducibility of the results.

3.7.1.1 Dromajo integration with Ariane

As described in Section 2, Dromajo, developed by Esperanto Technologies, is

a RISC-V RV64GC emulator that was primarily designed for RTL co-simulation. We

leverage its ease of use and speed and integrate it into the Ariane core through the Sys-

tem Verilog Direct Programming Interface (DPI). As Dromajo is linked to the simulator

as a shared library, it also allows us to instantiate multiple instances of Dromajo during

simulation.

Conventional co-simulation flows integrate the co-simulation tool only at the

commit stage of the pipeline to check the committed instructions. We integrate Dromajo

58

at two different pipeline stages in the processor. This is done in the following stages:

• Commit Stage: Like other conventional co-simulation methodologies, we inte-

grate Dromajo at the commit stage of the DUT. This is done to verify the DUT’s

execution trace against the reference model. This also helps us determine if any

illegal commits have been caused by manipulating the fetch instruction in the

transient path.

• Frontend: We have a separate instance of Dromajo integrated to run at the

frontend, at the fetch stage of the pipeline. This allows us to identify transient

instructions during Transient Detection and is independent of the check that is

performed at commit. This makes sure that any manipulation performed does

not influence the original reference trace and that the instance of Dromajo at the

commit stage does not run ahead of the actual commit performed by the DUT.

At the frontend, during Transient and Data Fuzzing, when the transient fetches

are identified, we use a RIG (Google-DV) to replace the transient instructions. Changing

just one instruction is not enough to expose complex cases that cause timing side-

channels. We manipulate the transient fetches at different identified transient phases.

We have designed the framework to implement manipulation at all transient fetches,

specific transient fetches, and random transient fetches. This maximizes the potential

cases exposed over time, over multiple runs, and using different random instruction

streams.

Once any timing side-channels are found, we can analyze the entire execu-

59

tion trace until that point using conventional methods like waveform analysis using the

generated .vcd files. This allows us to analyze the operation of this verification frame-

work and manipulate it at cycle level granularity. It is also possible to configure the

framework to continue execution after detecting the timing side-channel if necessary.

To the best of our knowledge, this would yield no additional benefit. Once a timing

side-channel is identified, the execution traces differ, and there is no correlation with

the Transient Detection trace.

3.7.2 BlackParrot

BlackParrot is an open-source, Linux-capable, cache-coherent, RV64GC mul-

ticore capable design. It implements the I, M, A, F, and D RISC-V 64-bit extensions

and the SV39 Virtual Memory specifications. It is designed to be tiny, modular, and

friendly to use. It can be configured to be a single core or multicore system, with the

support for a race-free MESI based coherent cache for the multicore configuration.

Building on the project’s goal to be modular, the design of the core comprises

a Front End (FE), a Back End (BE), and a Memory End (ME). The Front End is pri-

marily responsible for PC generation (speculative as necessary) and instruction memory

access and is controlled by the Back End to match execution behavior. The Back End

is responsible for non-speculative, in-order execution and receives the speculative in-

struction stream from the Front End. The Back End is controlled using the Detector

(hazard detection, stalling), Director (controlling the Front End for Speculative cases),

Scheduler (dispatching instructions), and Calculator (non-stalling pipeline for execu-

60

tion). The Memory End interfaces both these modules through the instruction and

data caches. This modularity is configurable to be single core or multicore. Another

critical feature of BlackParrot is tracking speculative memory accesses using a flag and

having different running modes to support or ignore them.

3.7.2.1 Dromajo Integration with BlackParrot

Integrating the Dromajo co-simulation tool with BlackParrot is a similar pro-

cess to that of Ariane mentioned in Section 3.7.1.1. We integrate Dromajo at two

locations, the Frontend, between PC generation and fetch, and the Back End, at Com-

mit. The transient instructions are identified similarly and are dumped as a reference

trace during Transient Detection. The identified transient instructions are manipulated

during Transient and Opcode Fuzzing using the methods mentioned in Section 3.3.

3.7.3 BOOM

The Berkeley Out-of-Order Machine (BOOM) [14] is a synthesizable and pa-

rameterizable open-source RISC-V out-of-order core. BOOM implements the open-

source RISC-V ISA and utilizes the Chisel hardware construction language to construct

generator for the core. BOOM is a family of out-of-order designs rather than a single

instance of a core, as different configurations can be generated based on specifications

provided to the generator. BOOM supports RV64GC and the privileged ISA which in-

cludes single-precision and double-precision floating point, atomics support, and page-

based virtual memory.

61

3.7.3.1 Dromajo Integration with BOOM

Once again, integrating the Dromajo co-simulation tool with BOOM is a

straightforward process similar to the other CPU designs mentioned above. The same

process of integrating Dromajo at the Frontend and at Commit and Transient Detection,

Transient Fuzzing, and Opcode Fuzzing are used.

62

Chapter 4

Evaluation

We describe the three CPU designs CVA6, BlackParrot, and BOOM, in Sec-

tion 4.1. In Section 4.2 we provide the results of using our framework with these three

cores.

4.1 Setup

We evaluate our proposal using three RISC-V processor designs, Ariane, Black-

Parrot, and BOOM. We use Google’s RISCV-DV [34] to generate our random instruc-

tion streams. We tested the processor designs using RISCV Tests and Benchmarks and

random instruction streams generated by RISCV-DV.

BlackParrot [8] has an optional flag to avoid speculative side-channel attacks.

From a high level, when enabled, it treats the loads as accessing non-cacheable requests;

hence, non-speculative requests are allowed. It also avoids updates on the branch predic-

tor. In the evaluation, we consider additional flags like making all the memory requests

63

non-cacheable. The evaluation uses the names BP-safe (speculative side-channel safe

configuration), BP-base (default or baseline configuration), and BP-NC (non-cacheable

memory requests) for three variations of BlackParrot.

CVA6 [104] is sensitive to speculative side-channel attacks. A version of the

core was modified by UPEC [25] to make the core safe. This patch handles speculative

side-effects from the i-cache and other minor issues. The evaluation uses the names

CVA6-safe and CVA6-base.

Being an out-of-order design, BOOM is also vulnerable to speculative side-

channel attacks. It can also be configured to have different complexities. To the best of

the author’s knowledge, there are no side-channel safe versions of BOOM available.

The co-simulation uses Dromajo [48]. For CVA6, instead of performing the first

run to detect transient instructions, we perform two simultaneous Dromajo executions

so that a single pass can detect transient instructions. This is a small change to avoid

requiring creating traces, but it is conceptually the same.

4.2 Results

Since both CVA6 and BlackParrot have variants that are safe (BP-safe, CVA6-

safe) and vulnerable (BP-base, BP-NC, CVA6-base) to speculative side-channel attacks.

This makes them good platforms for checking the effectiveness of our approach and how

fast we can detect transient leaks. Evaluating our framework with BOOM proves the

framework’s validity for out-of-order designs.

64

4.2.1 Correctness

The proposed framework verified that BP-safe and CVA6-safe did not have any

issues.For the other configurations, the following issues show some that were problems

detected:

4.2.1.1 CVA6-base

The default CVA6 version (CVA6-base) is sensitive to side-channel attacks.

The co-simulation was able to find the following issues:

• Division: CVA6 has a telescopic division unit with a maximum latency of 64 cycles.

Due to this, we found time side-channels by performing fuzzing with division

transients. This has similarities to the attack explained by SpectreRewind [30] but

instead of the floating-point unit with the division unit. The leak could have been

avoided if the telescopic unit had been flushed when the transient instruction was

discarded. CVA6 does not do that, and as a result, the program IPC is affected by

the data in the transient path if the following instruction tries to use the division

unit.

• CSR: read and write CSR transient fuzzing revealed time side-channels in CVA6-

base. We are unaware of RISC-V-specific CSR attacks in the speculative path, but

time variations due to CSR operations are potential sources of attack in CVA6.

Both transient CSR read and writes show time dependence impacts on future

instructions.

65

• Fence: Opcode fuzzing with fence instructions revealed time side-channels in

CVA6-base.

4.2.1.2 BP-NC and BP-base

BlackParrot has several configuration options. Useful for this work is the BP-

NC or non-cacheable. Enabling this essentially means that all the memory operations

are not speculative. BP-base is the baseline/default BlackParrot design. One leak was

found in both configurations:

• CSR write: Speculative side-channels were identified with CSR write transients.

This is similar to the CVA6 CSR leak, but the CSR read did not produce a side-

channel.

The fuzzing did not find any leaks with BP-safe and CVA6-safe.

4.2.1.3 Out-of-Order designs

We also integrated our framework with BOOM [14] to show that this framework

works with out-of-order designs. BOOM does not have protections or configurations

to disable transient side-effects like CVA6 or BlackParrot. As a result, just running

Dhrystone on BOOM is enough to detect transient leaks. Despite that, tests were

run using RISCV Tests and Benchmarks and random instruction streams as the test

program. Most inserted transients caused a measurable change in performance due to

its OoO and highly speculative nature.

66

A leak detected showed that transients updated the branch predictor, effec-

tively leaking state by affecting future branch outcomes. Updating the branch predictor

at retirement instead of execute will avoid this source of the leak. Another leak showed

that transients updated the return address stack. This then affected future return in-

structions. Yet another leak showed that transient load and store instructions updated

the cache behavior, leading to another side-channel. While fixing such easily triggered

side-channels is exciting future work, patching BOOM is not a trivial problem. This

proposed framework opens the opportunity to do so incrementally.

4.2.1.4 Comparison with competing approaches

When verifying the CVA6-base version, we were able to replicate the findings

of UPEC [25], where the instruction cache allowed a user-level process to load cachelines

from inaccessible addresses. When testing with the CVA6-safe version, we verified that

the patches provided by the UPEC team were sufficient, and the problem did not persist.

We did not find any additional problems with the CVA6 cores. This furthers the validity

of our framework.

4.2.2 Coverage

CVA6-base BP-base BOOM
Transient Fuzzing Coverage 51.80% 75.10% 61.90%
Data Fuzzing Coverage 52.10% 75.80% 63.10%

Table 4.1: Line coverage metrics for CVA6-base, BP-base and BOOM.

We evaluated the CVA6-base, CVA6-safe, BP-base, BP-safe, and BOOM de-

67

signs for coverage analysis. We tracked the Line Coverage metrics through Verilator

simulation. We compared the coverage numbers for running a single test iteration, i.e.,

one Transient Detection run, one Transient Fuzzing run, and one Data Fuzzing run.

Table 4.1 shows the increase in coverage between the Transient Fuzzing and the Data

Fuzzing runs. We see a minor increase in overall coverage as we fuzz the data via

operand fuzzing. This is caused by different execution paths triggered by changing the

operands. The increase in coverage is minor because we only fuzz the operands, causing

corner cases otherwise not present.

CVA6-safe BP-safe
Transient Fuzzing 52.20% 75.70%
Data Fuzzing 52.60% 76.30%

Table 4.2: Line coverage metrics for CVA6-safe and BP-safe.

Table 4.2 shows the increased coverage between the Transient Fuzzing and the

Data Fuzzing runs for the CVA6-safe and BP-safe configurations. Once again, like their

base counterparts, we see a minor increase in overall line coverage as we fuzz the data

via operand fuzzing.

While it can be argued that such minor changes in coverage is a drawback, we

firmly disagree. The reason for this is that we are able to find side-channels in most of

the tests with such a minor increase in coverage. We see this as an advantage of the

proposed framework.

68

4.2.3 Efficiency

Traditional co-simulation requires many RIG tests to verify a core. One of the

main decisions in co-simulation verification is how many tests to run. A similar question

is how many additional tests are required for verifying against speculative side-channel

attacks.

Config Total Execution
CVA6-base (time - s) 10,199.97

BP-base (time - s) 14,983.84
BOOM (time -s) 13,841.42

CVA6-base (cycles simulated) 5,916,132
BP-base (cycles simulated) 3,684,228
BOOM (cycles simulated) 5,321,984

Table 4.3: Total execution time and cycles simulated for CVA6-base, BP-base, and
BOOM configurations.

The proposed co-simulation requires three passes: the original, the transient

opcode fuzzing, and the transient data fuzzing. It is possible to overlap the opcode

fuzzing and transient fuzzing, but we found it unnecessary. The reason is that for

each baseline configuration (BP-base and CVA6-base), Dhrystone [99] is enough to find

leaks. While Dhrystone may not find speculative side-channels due to Floating Point

instructions, it did prove the existence of leaks. Traditional co-simulation requires many

tests, but fuzzing quickly exposes the bugs, and for BP-base and CVA6-base, even

Dhrystone is enough. As a reference, BP-base ran Dhrystone in 216 seconds for the

first pass in a Xeon CPU E5-2689 v1. The transient fuzzing run was even faster at

171 seconds because it finished when an issue was detected. The fuzzing overhead is

negligible compared with the RTL and co-simulation overhead. If the fuzzing error

69

termination is not triggered, fuzzing adds a 5.2% co-simulation slowdown. The result is

that BP-safe co-simulation leaks in less than 10 minutes. CVA6 was slower, requiring

276 seconds per run. In total, it also finished in around 10 minutes.

The clear implication is that having transient opcode and data fuzzing is a very

effective way to find leaks. This is one of the reasons for not running Google DV [34] in

this evaluation. RISC-V tests [28] and RISC-V benchmarks are enough to find bugs. A

more powerful Google DV will help but does not seem as needed compared to traditional

co-simulation verification for BlackParrot and CVA6 type of cores.

Table 4.3 shows the total runtime of the simulations for the CVA6-base and

BP-base configurations. To declare the safe variants as secure, we ran simulations to

match a similar number of cycles simulated using our framework.

4.2.4 Data-insensitive Transients

One interesting observation from BlackParrot is that it has side-effects from

transient instructions, but it is not a source of leaks. We modified the verification

infrastructure to capture if any transient has data-independent side-effects. This can be

done by performing multiple transient opcode fuzzing. By comparing different opcode

fuzzing passes, we can detect if there is any side-effect or leak.

If any of the different transient opcode fuzzing passes have a new leak not seen

with the default data fuzzing, then the inserted opcodes have data-independent leaks.

Another way to say the same is that if executing a transient affects future instructions,

we have a leak that may be data-dependent or data-independent. Since we tested for

70

data-dependent leaks, then the leak must be data-independent. CVA6-safe did not

have any data-independent leaks, but BP-safe had data-independent leaks only for CSR

RISC-V opcode type.

BP-safe had a performance change when a RISC-V CSR opcode replaced a

transient instruction. This did not enable a speculative side-channel attack because

BP-safe had no data-dependent variable latency instruction. In BP-safe, loads are non-

cacheable, hence always inefficient but at the same latency. The branches are delayed

until becoming non-speculative. The result is that the CSR data-independent leak

cannot be leveraged.

If the BP-safe were to implement cacheable transient loads but without side-

effects, the CSR and fences could be a source of a speculative side-channel attack. The

reason is that long-latency loads could stall the pipeline before reaching the CSR. Thus

short-latency loads would not reach the CSR, effectively enabling a leak. In other words,

if the transient can affect the number of transients in the wrong path, then no transient

can have any side-effect. In BP-safe, there is no data-dependent transient affecting the

number of transients; therefore, the leak by a transient like CSR or memory fence is not

an issue.

This is a complicated pattern that BP-safe allows, but there is nothing special

in this work proposed methodology flow to handle it. By fuzzing the transient data,

we can automatically observe these combined interactions. The leak would have been

detected if BP-safe had allowed a transient instruction to affect the number of transients

based on some register or memory data.

71

An interesting corollary from the previous observation is that CPUs must pro-

tect from data-insensitive transient leaks when the transients can trigger data-sensitive

pipeline stalls. This type of core can have an even faster speculative side-channel co-

simulation verification. This is because it is possible just to fuzz transient opcodes and

compare against them, i.e., there is no need to fuzz transient data. CVA6 is a core that

also passes this faster verification. The advantage is more efficient fuzzing and fewer

runs, but as previously mentioned, the current fuzzing is fast enough that this does not

seem necessary.

4.2.5 Gaining insights

As we record the changes made to the instructions and operands during the

Transient Fuzzing and Data Fuzzing steps, and we stop the simulation as soon as any

deviation in performance counters or performance of the program is noticed, we are able

to identify performance differences caused by the introduced changes. For example, in

CVA6, when a division instruction was inserted in the transient path, it caused a delay

in the commits for the tests that used the division functional unit. Simple cases like these

are easy to identify. Similarly, micro-architectural changes were easy to pinpoint using

logs dumped during simulation. For example, a transient store instruction fuzzed used a

CSR as its operand indirectly, causing changes in the cache line replacement, which was

reflected in a non-transient load instruction a few cycles later. The most complex case

would be interactions involving all the inserted transient instructions until the point of

divergence. We did not encounter this case.

72

Choosing what metrics to track is tricky. We chose to track all implemented

performance counters in the designs we tested. Performance counters can vary based on

implementation given the same ISA. We recommend tracking all performance counters

regardless of the design.

4.2.6 Other Side-Channels

We observed other side-channels in all three CPU designs that are not timing

side-channels. These are discussed below.

• Cache: We observed changes in caching behavior in all three CPU designs due

to fuzzed transient loads/stores. These fuzzed instructions resulted in cache lines

being replaced.

• Branch Prediction Structures: In all three designs, we observed changes in the

branch prediction structures like branch target buffers and branch history tables

when the fuzzed transient was a branch type instruction. These changes were

essentially new entries in the structures corresponding to the PC of the Fuzzed

Branch instruction.

• Return Address Stack: Similar to the branch prediction structures, when the

Fuzzed Transient was a return instruction, the return address stack was updated

in all three processors.

While these are not timing side-channels, we did notice the side effects which

later caused divergence in the timing of the commits. For example, when we targeted

73

a specific cacheline which was already cached and was used by a non-transient load

instruction, the result of the cacheline being evicted due to the fuzzed transient load

led to the non-transient load having to stall as the cacheline had to be brought back to

the L1 cache. This resulted in the commit timing of the non-transient load instruction

being delayed. Our framework can capture complex scenarios like these, using random

testing and hand-crafted gadgets.

74

Chapter 5

Conclusion

This work presents a novel way to verify CPU/RTL designs against speculative

side-channel attacks. For the industry to design cores safe from attacks, they need

ideas to implement but also a methodology to verify the design. This work proposes

a verification infrastructure that can detect speculative leaks. Since it protects against

any potential speculative side-channel attack or leak, it does not require attack vectors.

Starting with a co-simulation setup, we add additional passes to generate any

potential source of attack efficiently. This is achieved by having a transient opcode

fuzzing followed by multiple transient data fuzzing.

To evaluate the correctness of the proposed design, we leverage that there

are two cores (BlackParrot and CVA6) with patches or configuration options to have

a baseline design and a speculative side-channel attack safe mode. In both cores, we

instrument the decode to fuzz transients. Even co-simulating the simple Dhrystone is

enough to detect leaks in the base designs. We run many more tests, and the safe

75

version of the cores has no leaks. We also showed that our framework can be integrated

with complex out of order designs like BOOM.

In summary, the framework presented allows verifying CPU/RTL designs when

focusing on performance and performance counters speculative side-channel attacks.

The major advantage of this framework is the ability for designers to make design

changes and quickly check for speculative side-channel attacks. This is achieved by

extending the commonly used co-simulation platforms already used by academia and

industry.

76

Bibliography

[1] Onur Aciiçmez. Yet another microarchitectural attack: exploiting I-cache. In

Proceedings of the 2007 ACM workshop on Computer security architecture, pages

11–18, 2007.

[2] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. New branch prediction

vulnerabilities in OpenSSL and necessary software countermeasures. In IMA In-

ternational Conference on Cryptography and Coding, pages 185–203. Springer,

2007.

[3] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting secret keys

via branch prediction. In Cryptographers’ Track at the RSA Conference, pages

225–242. Springer, 2007.

[4] Allon Adir, Eli Almog, Laurent Fournier, Eitan Marcus, Michal Rimon, Michael

Vinov, and Avi Ziv. Genesys-pro: Innovations in test program generation for

functional processor verification. IEEE Design & Test of Computers, 21(2):84–93,

2004.

[5] Sam Ainsworth and Timothy M Jones. Muontrap: Preventing cross-domain

77

Spectre-like attacks by capturing speculative state. In 2020 ACM/IEEE 47th

Annual International Symposium on Computer Architecture (ISCA), pages 132–

144. IEEE, 2020.

[6] AMD. Software techniques for managing speculation on amd processors.

[7] W. Anderson. Logical verification of the NVAX CPU chip design. In Proceedings

1992 IEEE International Conference on Computer Design: VLSI in Computers

Processors, pages 306–309, 1992.

[8] Azad, Zahra; Delshadtehrani, Leila; Zhou, Boyou; Joshi, Ajay; Gilani, Farzam;

Lim, Katie; Petrisko, Daniel; Jung, Tommy; Wyse, Mark; Guarino, Tavio; Veluri,

Bandhav; Wang, Yongqin; Oskin, Mark; Taylor, Michael. The blackparrot proces-

sor: An open-source industrial-strength RV64G multicore processor. Mar 2019.

[9] Jean-Loup Baer and Tien-Fu Chen. An effective on-chip preloading scheme to

reduce data access penalty. In Proceedings of the 1991 ACM/IEEE conference on

Supercomputing, pages 176–186, 1991.

[10] Lucy Bowen and Chris Lupo. The performance cost of software-based security

mitigations. In Proceedings of the ACM/SPEC International Conference on Per-

formance Engineering, ICPE ’20, page 210–217, New York, NY, USA, 2020. As-

sociation for Computing Machinery.

[11] Pablo Buiras, Hamed Nemati, Andreas Lindner, and Roberto Guanciale. Vali-

dation of side-channel models via observation refinement. In MICRO-54: 54th

78

Annual IEEE/ACM International Symposium on Microarchitecture, pages 578–

591, 2021.

[12] Gianpiero Cabodi, Paolo Camurati, Fabrizio Finocchiaro, and Danilo Ven-

draminetto. Model-checking speculation-dependent security properties: Abstract-

ing and reducing processor models for sound and complete verification. Electronics,

8(9):1057, 2019.

[13] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin

Von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss.

A systematic evaluation of transient execution attacks and defenses. In 28th

USENIX Security Symposium USENIX Security 19), pages 249–266, 2019.

[14] Christopher Celio. A Highly Productive Implementation of an out-of-order Proces-

sor Generator. PhD thesis, EECS Department, University of California, Berkeley,

Dec 2018.

[15] Christopher Patrick Celio. A highly productive implementation of an out-of-order

processor generator. University of California, Berkeley, 2017.

[16] Kevin Cheang, Cameron Rasmussen, Sanjit Seshia, and Pramod Subramanyan.

A formal approach to secure speculation. In 2019 IEEE 32nd Computer Security

Foundations Symposium (CSF), pages 288–28815. IEEE, 2019.

[17] Wen Chen, Sandip Ray, Jayanta Bhadra, Magdy Abadir, and Li-C Wang. Chal-

79

lenges and trends in modern soc design verification. IEEE Design & Test, 34(5):7–

22, 2017.

[18] Hana Chockler, Orna Kupferman, and Moshe Y Vardi. Coverage metrics for for-

mal verification. In Advanced Research Working Conference on Correct Hardware

Design and Verification Methods, pages 111–125. Springer, 2003.

[19] Rutvik Choudhary, Jiyong Yu, Christopher Fletcher, and Adam Morrison. Spec-

ulative Privacy Tracking (SPT): Leaking information from speculative execution

without compromising privacy. In MICRO-54: 54th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, pages 607–622, 2021.

[20] M. Chupilko, A. Kamkin, A. Kotsynyak, A. Protsenko, S. Smolov, and

A. Tatarnikov. Test program generator microtesk for risc-v. In 2018 19th In-

ternational Workshop on Microprocessor and SOC Test and Verification (MTV),

pages 6–11, 2018.

[21] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. Secure TLBs. In 2019 ACM/IEEE

46th Annual International Symposium on Computer Architecture (ISCA), pages

346–359. IEEE, 2019.

[22] Susan J Eggers, Joel S Emer, Henry M Levy, Jack L Lo, Rebecca L Stamm, and

Dean M Tullsen. Simultaneous multithreading: A platform for next-generation

processors. IEEE micro, 17(5):12–19, 1997.

[23] Mathieu Escouteloup, Ronan Lashermes, Jean-Louis Lanet, and Jacques Jean-

80

Alain Fournier. Recommendations for a radically secure ISA. In Workshop on

Computer Architecture Research with RISC-V, 2020.

[24] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Jump over

aslr: Attacking branch predictors to bypass aslr. In 2016 49th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pages 1–13. IEEE, 2016.

[25] Mohammad Rahmani Fadiheh, Alex Wezel, Johannes Muller, Jorg Bormann,

Sayak Ray, Jason M. Fung, Subhasish Mitra, Dominik Stoffel, and Wolfgang

Kunz. An exhaustive approach to detecting transient execution side channels in

RTL designs of processors. IEEE Transactions on Computers, pages 1–1, 2022.

[26] Farzan Fallah, Srinivas Devadas, and Kurt Keutzer. Occom-efficient computation

of observability-based code coverage metrics for functional verification. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

20(8):1003–1015, 2001.

[27] Andrew Ferraiuolo. Timing-Safe Hardware-Level Information Flow Control. PhD

thesis, Cornell University, 2018.

[28] RISC-V Foundation, Jul 2013.

[29] RISC-V Foundation, March 2019.

[30] Jacob Fustos, Michael Bechtel, and Heechul Yun. Spectrerewind: Leaking secrets

to past instructions. In Proceedings of the 4th ACM Workshop on Attacks and

Solutions in Hardware Security, pages 117–126, 2020.

81

[31] Jacob Fustos, Farzad Farshchi, and Heechul Yun. Spectreguard: An efficient

data-centric defense mechanism against spectre attacks. In Proceedings of the

56th Annual Design Automation Conference 2019, pages 1–6, 2019.

[32] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-

bandwidth acoustic cryptanalysis. In Annual Cryptology Conference, pages 444–

461. Springer, 2014.

[33] Moein Ghaniyoun, Kristin Barber, Yinqian Zhang, and Radu Teodorescu. Intro-

Spectre: a pre-silicon framework for discovery and analysis of transient execution

vulnerabilities. In 2021 ACM/IEEE 48th Annual International Symposium on

Computer Architecture (ISCA), pages 874–887. IEEE, 2021.

[34] Google. SV/UVM based instruction generator for risc-v processor verification,

Jan 2019.

[35] RISC-V Foundation Compliance Task Group. RISC-V Compliance Test Format

Specification, Dec 2018.

[36] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games–bringing

access-based cache attacks on aes to practice. In 2011 IEEE Symposium on Se-

curity and Privacy, pages 490–505. IEEE, 2011.

[37] Mentor Harry Foster. Part 8: The 2018 wilson research group functional verifica-

tion study (IC/ASIC resource trends), 2019.

82

[38] John L. Hennessy and Norman P. Jouppi. Computer technology and architecture:

An evolving interaction. Computer, 24(9):18–29, 1991.

[39] John L Hennessy and David A Patterson. Computer architecture: a quantitative

approach. Elsevier, 2011.

[40] R. C. Ho, C. Han Yang, M. A. Horowitz, and D. L. Dill. Architecture validation

for processors. In Proceedings 22nd Annual International Symposium on Computer

Architecture, pages 404–413, 1995.

[41] Intel. Affected processors: Transient execution attacks and related security issues

by cpu.

[42] Intel. Bounds Check Bypass Store (BCBS) vulnerability.

[43] Intel. Intel goldmont plus microarchitecture events.

[44] Intel. Lazy FP state restore.

[45] Intel. Microarchitectural Data Sampling advisory.

[46] Norman P Jouppi. Improving direct-mapped cache performance by the addition

of a small fully-associative cache and prefetch buffers. ACM SIGARCH Computer

Architecture News, 18(2SI):364–373, 1990.

[47] Norman P Jouppi and David W Wall. Available instruction-level parallelism for

superscalar and superpipelined machines. ACM SIGARCH Computer Architecture

News, 17(2):272–282, 1989.

83

[48] Nursultan Kabylkas, Tommy Thorn, Shreesha Srinath, Polychronis Xekalakis,

and Jose Renau. Effective processor verification with logic fuzzer enhanced co-

simulation. In MICRO-54: 54th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 667–678, 2021.

[49] Mohd Fadzil Abdul Kadir, Jin Kee Wong, Fauziah Ab Wahab, Ahmad Faisal

Amri Abidin Bharun, Mohamad Afendee Mohamed, and Aznida Hayati Zakaria.

Retpoline technique for mitigating Spectre attack. In 2019 6th International Con-

ference on Electrical and Electronics Engineering (ICEEE), pages 96–101. IEEE,

2019.

[50] M. Kantrowitz and L. M. Noack. I’m done simulating; now what? verification

coverage analysis and correctness checking of the DECchip 21164 Alpha micropro-

cessor. In 33rd Design Automation Conference Proceedings, 1996, pages 325–330,

1996.

[51] Christoph Kern and Mark R Greenstreet. Formal verification in hardware de-

sign: a survey. ACM Transactions on Design Automation of Electronic Systems

(TODAES), 4(2):123–193, 1999.

[52] kernel.org. x86/speculation: Protect against userspace-userspace spectreRSB.

[53] Vladimir Kiriansky and Carl Waldspurger. Speculative buffer overflows: Attacks

and defenses. arXiv preprint arXiv:1807.03757, 2018.

[54] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner

84

Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al.

Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on

Security and Privacy (SP), pages 1–19. IEEE, 2019.

[55] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In

Annual international cryptology conference, pages 388–397. Springer, 1999.

[56] Paul Kocher, Joshua Jaffe, Benjamin Jun, et al. Introduction to differential power

analysis and related attacks, 1998.

[57] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction to

differential power analysis. Journal of Cryptographic Engineering, 1(1):5–27, 2011.

[58] Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,

and other systems. In Annual International Cryptology Conference, pages 104–

113. Springer, 1996.

[59] Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shirazi, Khaled N Khasawneh,

Chengyu Song, and Nael Abu-Ghazaleh. Speccfi: Mitigating Spectre attacks using

CFI informed speculation. In 2020 IEEE Symposium on Security and Privacy

(SP), pages 39–53. IEEE, 2020.

[60] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik

Sen. RFUZZ: coverage-directed fuzz testing of RTL on fpgas. In Iris Bahar,

editor, Proceedings of the International Conference on Computer-Aided Design,

ICCAD 2018, San Diego, CA, USA, November 05-08, 2018, page 28. ACM, 2018.

85

[61] Johnny KF Lee and Alan Jay Smith. Branch prediction strategies and branch

target buffer design. Computer, 17(01):6–22, 1984.

[62] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus

Peinado. Inferring fine-grained control flow inside SGX enclaves with branch

shadowing. In 26th USENIX security symposium (USENIX security 17), pages

557–574, 2017.

[63] Mikko H Lipasti, Christopher B Wilkerson, and John Paul Shen. Value locality

and load value prediction. In Proceedings of the seventh international conference

on Architectural support for programming languages and operating systems, pages

138–147, 1996.

[64] Moritz Lipp, Vedad Hažić, Michael Schwarz, Arthur Perais, Clémentine Maurice,

and Daniel Gruss. Take-a-way: Exploring the security implications of amd’s cache

way predictors. In Proceedings of the 15th ACM Asia Conference on Computer

and Communications Security, pages 813–825, 2020.

[65] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.

Meltdown. arXiv preprint arXiv:1801.01207, 2018.

[66] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-level

cache side-channel attacks are practical. In 2015 IEEE symposium on security

and privacy, pages 605–622. IEEE, 2015.

86

[67] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish

Narayanasamy, and Baris Kasikci. DOLMA: Securing speculation with the

principle of transient Non-Observability. In 30th USENIX Security Symposium

(USENIX Security 21), pages 1397–1414, 2021.

[68] lowRISC. Ibex core verification, Aug 2019.

[69] Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz. Medusa: Mi-

croarchitectural data leakage via automated attack synthesis. In 29th USENIX

Security Symposium (USENIX Security 20), pages 1427–1444, 2020.

[70] G. E. Moore. Progress in digital integrated electronics. 21:11–13, 1975.

[71] Yehuda Naveh, Michal Rimon, Itai Jaeger, Yoav Katz, Michael Vinov, Eitan

s Marcu, and Gil Shurek. Constraint-based random stimuli generation for hard-

ware verification. AI magazine, 28(3):13–13, 2007.

[72] Oleksii Oleksenko, Christof Fetzer, Boris Köpf, and Mark Silberstein. Revizor:

testing black-box CPUs against speculation contracts. In Proceedings of the 27th

ACM International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 226–239, 2022.

[73] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetzer. Specfuzz:

Bringing Spectre-type vulnerabilities to the surface. In 29th USENIX Security

Symposium (USENIX Security 20), pages 1481–1498, 2020.

87

[74] Yale N Patt, Wen-mei Hwu, and Michael Shebanow. HPS, a new microarchitec-

ture: Rationale and introduction. ACM SIGMICRO Newsletter, 16(4):103–108,

1985.

[75] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA):

Measures and counter-measures for smart cards. In International Conference on

Research in Smart Cards, pages 200–210. Springer, 2001.

[76] Anne Rogers and Kai Li. Software support for speculative loads. In Proceedings

of the Fifth International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 38–50, 1992.

[77] Gururaj Saileshwar and Moinuddin K. Qureshi. Cleanupspec: An ”undo” ap-

proach to safe speculation. In Proceedings of the 52nd Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, MICRO ’52, page 73–86, New York,

NY, USA, 2019. Association for Computing Machinery.

[78] Robert R Schaller. Moore’s law: past, present and future. IEEE spectrum,

34(6):52–59, 1997.

[79] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling, Florian Kargl,

and Daniel Gruss. ConTExT: A generic approach for mitigating Spectre. In

NDSS, 2020.

[80] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,

Thomas Prescher, and Daniel Gruss. Zombieload: Cross-privilege-boundary data

88

sampling. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security, pages 753–768, 2019.

[81] André Seznec. A case for (partially)-tagged geometric history length predictors.

Journal of InstructionLevel Parallelism, 2006.

[82] André Seznec. A new case for the TAGE branch predictor. In Proceedings of the

44th Annual IEEE/ACM International Symposium on Microarchitecture, pages

117–127. ACM, 2011.

[83] Nikolay A Simakov, Martins D Innus, Matthew D Jones, Joseph P White,

Steven M Gallo, Robert L DeLeon, and Thomas R Furlani. Effect of melt-

down and spectre patches on the performance of hpc applications. arXiv preprint

arXiv:1801.04329, 2018.

[84] Michael D Smith, Monica S Lam, and Mark A Horowitz. Boosting beyond static

scheduling in a superscalar processor. In Proceedings of the 17th Annual Interna-

tional Symposium on Computer Architecture, pages 344–354, 1990.

[85] Chris Spear. SystemVerilog for verification: a guide to learning the testbench

language features. Springer Science & Business Media, 2008.

[86] Synopsys. Coverity sast software.

[87] S. Tasiran and K. Keutzer. Coverage metrics for functional validation of hardware

designs. IEEE Design Test of Computers, 18(4):36–45, 2001.

89

[88] Esperanto Technologies. Dromajo - esperanto technology’s RISC-V reference

model, Dec 2019.

[89] James E Thornton. The CDC 6600 project. Annals of the History of Computing,

2(4):338–348, 1980.

[90] Linus Torvalds. Retpoline deemed impractical to exploit.

[91] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Security verification

via automatic hardware-aware exploit synthesis: The checkmate approach. IEEE

Micro, 39(3):84–93, 2019.

[92] Timothy Trippel, Kang G. Shin, Alex Chernyakhovsky, Garret Kelly, Dominic

Rizzo, and Matthew Hicks. Fuzzing hardware like software, 2021.

[93] Dean M Tullsen, Susan J Eggers, and Henry M Levy. Simultaneous multithread-

ing: Maximizing on-chip parallelism. In Proceedings of the 22nd annual interna-

tional symposium on Computer architecture, pages 392–403, 1995.

[94] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.

Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-

of-order execution. In 27th USENIX Security Symposium (USENIX Security 18),

pages 991–1008, 2018.

[95] I. Wagner, V. Bertacco, and T. Austin. Stresstest: an automatic approach to

90

test generation via activity monitors. In Proceedings. 42nd Design Automation

Conference, 2005., pages 783–788, 2005.

[96] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and Ab-

hik Roychoudhury. OO7: Low-overhead defense against spectre attacks via pro-

gram analysis. IEEE Transactions on Software Engineering, 2019.

[97] Kai Wang and Manoj Franklin. Highly accurate data value prediction using hybrid

predictors. In Proceedings of 30th Annual International Symposium on Microar-

chitecture, pages 281–290. IEEE, 1997.

[98] Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, and Christian

Rossow. Osiris: Automated discovery of microarchitectural side channels. In 30th

USENIX Security Symposium (USENIX Security 21), pages 1415–1432, 2021.

[99] Reinhold P Weicker. Dhrystone: a synthetic systems programming benchmark.

Communications of the ACM, 27(10):1013–1030, 1984.

[100] Shlomo Weiss and James E Smith. Instruction issue logic for pipelined supercom-

puters. In Proceedings of the 11th annual international symposium on Computer

architecture, pages 110–118, 1984.

[101] Johannes Wikner and Kaveh Razavi. Retbleed: Arbitrary speculative code exe-

cution with return instructions. In 31st USENIX Security Symposium (USENIX

2022), 2022.

[102] D. A. Wood, G. A. Gibson, and R. H. Katz. Verifying a multiprocessor cache

91

controller using random test generation. IEEE Design Test of Computers, 7(4):13–

25, 1990.

[103] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and

Christopher W Fletcher. Speculative Taint Tracking (STT) a comprehensive

protection for speculatively accessed data. In Proceedings of the 52nd Annual

IEEE/ACM International Symposium on Microarchitecture, pages 954–968, 2019.

[104] F. Zaruba and L. Benini. The cost of application-class processing: Energy and

performance analysis of a linux-ready 1.7-ghz 64-bit RISC-V core in 22-nm FDSOI

technology. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

27(11):2629–2640, Nov 2019.

[105] Danfeng Zhang, Yao Wang, G Edward Suh, and Andrew C Myers. A hardware de-

sign language for timing-sensitive information-flow security. Acm Sigplan Notices,

50(4):503–516, 2015.

92

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Background and Related Work
	Modern Microprocessors
	Instruction Pipelining
	Cache
	Branch Prediction
	Speculative Execution
	Superscalar
	Out-of-Order Execution
	Multithreading/Multiprocessing

	Existing verification techniques
	Testbench
	Random Instruction Generators
	Reference Models
	Coverage Based Testing
	Formal Verification
	Other Techniques

	Dromajo
	Checkpoints
	Co-simulation

	Spectre
	Mitigation Strategies
	Detecting Side-channels

	Verification Framework for Timing Side-Channels
	Speculative Execution and Transient Execution
	Timing Side-Channel Effects
	Detecting Leaks
	Protection Set
	Speculation Fences
	Non-Transient Leaks

	Fuzzing Transients
	Transients Opcodes
	Transient Data

	Flow
	Random Instruction Generation
	Enough Testing
	Performance Counters
	Flow Runs
	Sample Leaks
	Sample Non-Leaks

	Other Considerations
	Implementation setup
	Ariane
	BlackParrot
	BOOM

	Evaluation
	Setup
	Results
	Correctness
	Coverage
	Efficiency
	Data-insensitive Transients
	Gaining insights
	Other Side-Channels

	Conclusion
	Bibliography

