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ABSTRACT OF THE DISSERTATION

Topological tools for understanding complex systems

by

Michelle Hsiao-Chin Feng

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2020

Professor Mason A. Porter, Chair

The behavior of complex systems is often influenced by their structure. In mathematics, the

field of algebraic topology has been especially useful for characterizing mathematical struc-

tures. Topological data analysis (TDA) is a growing field in which methods from algebraic

topology are applied to studying the structure of data. TDA has been used in a variety of

applications, including biological data, granular materials, and demography. Social interac-

tions are heavily informed by space and have complex structure due to patterns in the way

humans arrange themselves geographically. Consequently, social applications can benefit

from the application of TDA.

In this dissertation, I develop topological methods for studying spatial networks and apply

them to a wide variety of data sets. In particular, I study methods for building topological

spaces (specifically, simplicial complexes) based on data. I present two novel simplicial-

complex constructions, the adjacency complex and the level-set complex, for spatial data. I

apply both constructions to random networks, cities, voting, and scientific images, gaining

insights into the structure of these systems. I also propose a novel simplicial complex con-

struction for studying patterns of neighborhood formation based on combining demographic
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and spatial data. I present case studies in neighborhood segregation for two U.S. cities.

In addition to my topological research, I discuss two projects in the study of social systems

using methods from network analysis. I present an extension to multilayer networks of the

Hegselmann–Krause model for opinion dynamics and discuss preliminary findings on its con-

vergence properties. I also present a framework for estimating homelessness underreporting

in California Local Education agencies (LEAs).
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CHAPTER 1

Introduction

Studying structural properties can help us gain valuable insights into data, especially “big”

and/or high-dimensional data. A variety of mathematical [New18], statistical [Kol09], and

computational [CCK17] approaches to studying the structure of data have emerged as the

field of data science continues to rapidly expand. In this dissertation, I discuss a variety of

approaches that borrow ideas from algebraic topology, which is concerned with the study of

topological shape via algebraic methods. Using these approaches, which extend the state-

of-the-art, I study a variety of social and spatial applications.

In the remainder of this chapter, I provide brief intuitive introductions to some of the ma-

jor mathematical concepts that will appear in my work. In Chapter 2, I discuss the empirical

data sets that I study. In Chapter 3, I review in more detail the existing mathematical tools

that form a basis for my original work. In Chapters 4–6, I discuss a variety of applications

for which I helped develop novel topological methodologies. Specifically, Chapter 4 contains

work done with Mason A. Porter in [FP20a] and [FP20c]. Chapter 5 contains work done in

collaboration with the Voting Rights Data Institute. Chapter 6 contains a collaboration with

Heather Z. Brooks (UCLA), Yacoub H. Kureh (UCLA), and Mason A. Porter on adaptations

of bounded-confidence models. Chapter 5 also contains a project on homelessness in Califor-

nia schools in collaboration with Yacoub H. Kureh and the ACLU. Finally, in Chapter 7, I

discuss conclusions and plans for continuing and expanding the aforementioned projects to

future work.
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1.1 The “shape” of social data

Recent advances in storage and computing technology have allowed people to collect and

analyze massive amounts of new social data. Automation has allowed larger volumes of data

to be processed than ever before. As residents of a three-dimensional (3D) world, individuals

have a natural embedding into space. Interactions between individuals are influenced by a

wide variety of factors, and because individuals do not interact randomly, the structure

of social behaviors is often influenced by their embedding in space [Bar18]. For example,

human migration is heavily informed by the existence of geographical landmarks and barriers

[BBG18].

Figure 1.1: Geographical barriers affects human mobility. This image [from [Mee07], now

in the public domain] shows the path of the famous Oregon trail. Note how the trail routes

around certain mountains.

Additionally, social interactions can have structural properties that are not tied to three-

dimensional space [WF94,Mar09]. For example, socioeconomic class has an enormous impact

on how individuals interact with each other in the United States (including, but not limited

to, the way that people form friendships [Mal17], marry [Jal03], or choose where they live

[IW06]). Considering abstract demographic spaces such as socioeconomic class makes it

possible to probe the structure of various social behaviors. One can also try to understand
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other demographic spaces, like voting preferences or ideologies, using mathematical tools.

Achieving a thorough understanding social data (and social dynamics) requires achieving

an understanding of structural properties in a variety of spaces. In this thesis, I focus on

data sets that have social components (e.g., cities and social-media networks), though I have

also studied some applications in the biological and physical sciences. In particular, many

of my projects are geared towards the study of social structures and trying to identify and

interpret these structures.

1.2 Topological methods for understanding global structure

While structure can be studied in many contexts, I focus mainly on the study of global

structure in the topological sense [Hat02]. This is to be distinguished from global structure

in a networks sense, which generally means very large-scale structure [New18]. Methods for

understanding the global structure of a topological space rely intrinsically on information

about the entire space. To illustrate this concept, consider a sphere. If I sample a neigh-

borhood of any point on a sphere, I obtain a surface with the same properties as a plane.

If I take a collection of a sphere’s neighborhoods (which each resemble a plane) and stitch

them together, I am able to obtain a lot of information about the sphere, but I am unable

to describe the void in the center of the sphere. For example, a stereographic projection of a

sphere covers the sphere’s entire surface, but it fails to capture the void. To fully understand

the structure of a sphere, I must consider the entire sphere at once. In this sense, the sphere

has an inherent global structure that is not linked to any embedding of the sphere into a

larger space.

This topological idea of global structure can be especially useful in instances where one

does not want concepts of structure to rely on an embedding. For example, when considering

social-science applications, it can be difficult to determine how to weight different factors

relative to each other. If one embeds demographic data into Euclidean space, there is au-
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tomatically a choice of embedding. Therefore, if one attempts to, for example, compute

distances between data points in a demographic data set, those distances rely on the partic-

ular choice of embedding into Euclidean space (or another space with a well-defined metric).

Because various demographic factors can have heterogeneous importance in individual expe-

riences and decisions [PK93,Rot17, Sei98,RM10,KPM12,PKC10,Man18], one may wish to

avoid characterizing individual behaviors based on a one-size-fits-all embedding. Topological

methods can offer one way of answering questions about social structures that do not rely on

these types of arbitrary choices, because topological properties are invariant to embedding.

One of the core tools of algebraic topology is the concept of homology [Hat02]. I leave a

rigorous definition of homology to Section 3.3, but it’s helpful to now give an intuition for

homology. Generally, homology measures the “voids” in a topological space. For example, the

void in the center of a sphere (or the one enclosed by a torus) is a 2D void. Understanding the

homology groups (these are algebraic groups generated by the various voids in a space) gives

a great deal of information about the space. Homology groups provide coarse information

related to the homotopy class of a space. They have thus proven very useful in algebraic

topology for helping to characterize spaces up to homotopy [Hat02]. One can extend this

idea to using homological tools to provide a topological summary of a given data set [ZC04].

This topological summary can then be used to characterize the structure of that data set.

1.3 Networks

Many social applications are concerned with the interactions between individuals. This

makes networks a very natural setting for studying social phenomena, as networks are used

to study connections and relationships. Many social structures can be encoded readily

as networks [WF94, New18], where nodes are individuals and edges represent some sort

of relationship between individuals. In spatial applications, one can also encode spatial

relationships as edges of a network. The level of abstraction that networks provide can be
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leveraged on a wide variety of data sets, and because networks (as traditionally studied) are

discrete mathematical objects, computations that involve networks are often tractable.

Network analysis has been applied broadly to numerous social systems [WF94], including

migration networks [LBK89], prestige hierarchies in academia [CAL15], and analysis of so-

cial media data [GW16]. Biological applications like fungal networks [LFP17,HOG12], leaf

venation networks [RLD15,RK16], and networks of neural activity [KBC14,FCP09,GGB16]

have also been studied using network analysis. Applications to physics include granu-

lar materials [BOP15, KGK13, PPD18] and flows [RLK19]. Additionally, researchers have

examined the behavior of dynamical processes like epidemics and other spreading pro-

cesses [IPB19, TKH15, PCV15], opinion dynamics [BP20,MVP18], and coupled oscillators

[ADK08,RPJ16] on networks.

1.4 Spatial systems

Many complex systems have a natural embedding in a low-dimensional space or are otherwise

influenced by space, and it is often insightful to study such spatial complex systems using the

formalism of networks [Bar18,New18]. In a spatial network, the location of nodes and edges

in space can heavily inform both the structure of the network and the behavior of dynamical

processes on it. Obtaining a meaningful understanding of power grids [SRC08, KOA18,

AAN04], granular systems [PPD18], rabbit warrens [LCP14], and many other systems is

impossible without considering the physical relationships between nodes in a network. For

example, to examine traffic patterns on a transportation network in a meaningful way, it is

important to include information about the physical distances between points and about the

locations and directions of paths between heavily-trafficked areas [Bat17].

There are a variety of existing perspectives for studying spatial networks [Bar18,Bar11].

Many of them hail from quantitative geography [HC69,Pum20]. In the 1970s, geographers

were already studying the role of space in the formation of networks and in the activi-
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ties of individuals and goods over geographical networks. As data have become richer and

more readily available, it has become possible to take increasingly intricate computational

approaches to the study of spatial networks, and a variety of complex-systems approaches

have contributed greatly to the literature on spatial networks [Bar18]. Researchers have

also proposed various random models for spatial networks, and studying them yields base-

line examples to compare to empirical networks [LP19,NBP19,SLC16,EEB11]. There have

also been investigations of the effects of certain spatial network properties on the behav-

iors of several well-known dynamical processes, including the Ising model [BK87], coupled

oscillators [ADK08], and random walks [YWB19].
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CHAPTER 2

Data

The following sections describe various data sets that I study in this thesis. All of these are

freely available online.

2.1 Voting data

For my work on a case study on voting [FP20a], discussed in Section 4.3, I use data from the

Los Angeles Times California 2016 Election Precinct Maps [SFK16]. Compiled by the LA

Times Data Visualization Team after the November 2016 elections, this data set has precinct-

level results for all of California for every statewide race. Specifically, this encompasses

results for the presidential race, California’s senatorial race, and 17 statewide propositions.

The data covers all of California’s 24626 precincts (which are organized into 58 counties);

for each one, it includes the number of votes for each choice in each race, along with an

associated shapefile and other metadata.

This data can be used to generate a variety of precinct maps, illustrating voting prefer-

ences of various kinds. In Figure 2.1, I show choropleths that I generated using the results

of various elections across the entirety of California.
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(a) (b) (c)

Figure 2.1: California precincts colored by the numbers of votes for (a) Proposition 51, (b)

Proposition 52, and (c) Proposition 53 in 2016. The horizontal axis is longitude, and the

vertical axis is latitude.

2.2 Census and American Community Survey data

In my work on residential segregation (in collaboration with participants in the 2018 Voting

Rights Data Institute; see Chapter 5) and in work on Los Angeles School District (LASD)

homelessness (in collaboration with Yacoub H. Kureh, Victor Leung, and Alexis Piazza;

see Section 6.2), I use data from census.gov. This data is drawn from the American Commu-

nity Survey (ACS) [Bur16b,Bur16a], which occurs on a yearly basis and includes information

on housing, education, employment, income, demographics, and much more. In particular,

my segregation project uses information on race, ethnicity, and income at the census tract

level (taken directly from a yearly ACS table). My homelessness project examines demo-

graphic and economic data at the school district level.

In Figure 2.2, I show various city choropleths that illustrate economic data from the ACS.

2.3 City street data

In a case study on city street networks [FP20c] (see Section 4.4), I use OSMnX [Boe17]

(software written by Boeing et al.) to generate images of city street networks using lati-
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Figure 2.2: Census tracts of California, colored by median income in dollars.

tude/longitude coordinates. I obtained coordinates from shapefiles provided by ArcGIS

[Son17,Bel15] and from a city coordinate data set downloaded from SimpleMaps [Sim19].

Given a set of coordinates, OSMnX generates a city street network for a one-mile square

block centered at that coordinate in networkX [HSS08]. OSMnX also includes visual-

ization capabilities that I used to save images of these street networks. These images are

the ones that I analyzed in my investigation. In Figure 2.3, I show city street networks for

several examples.

2.4 Scientific images

Networks constructed from real-world experiments in physics, chemistry, and biology are

often informed by space and structure [Bar18]. In an application with Mason A. Porter

[FP20c], I examined two different types of networks: spiderwebs (dicussed in Section 4.5.1)

and snowflakes (discussed in Section 4.5.2). Both of these types of networks have planar
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(a) (b) (c)

Figure 2.3: City street networks of (a) Los Angeles, (b) Barcelona, and (c) Madrid.

embeddings into R2, and I use images of these networks to examine those embeddings.

All of the images discussed in this section are grayscale images. To apply my methods

(described in Section 4.1.2) to images, they need to be converted to black and white images.

As a preprocessing step, I threshold the grayscale images and convert them to black and

white images using GIMP [Tea20].

2.4.1 Spiderwebs

In 1948, Peter Witt began research on the effects of drugs on spiders to test whether garden

spiders would shift their web-building hours if drugs were administered. Witt found that

drugs affect the size and shape of the webs that are produced by spiders. He also found

that higher doses of most drugs (100 µg per spider, as opposed to 10 µg per spider) tend to

lead to larger changes in the shapes of webs, including yielding more irregular webs. Witt

eventually published more than 100 papers and several books on the behavior of spiders and

on their spider webs. For more information on his experiments with psychotropic substances

and spiders, see his 1971 review article [Wit71].

In a 1995 technical briefing [NCR95], NASA (which was inspired by Witt’s research)

proposed that spiders who were administered more toxic substances produce webs that are
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more deformed than the webs of spiders that were administered less toxic substances. Addi-

tionally, using techniques from statistical crystallography, they concluded that spiders fail to

complete more sides of their webs when they are under the influence of more toxic substances.

In a case study of PH in spiderwebs [FP20c], I use five images from the NASA technical

briefing [NCR95] and two images from Witt [Wit71] of various webs that were spun by

spiders under the influence of a variety of psychotropic substances. I show these images

in Figure 2.4

(a) (b) (c) (d)

(e) (f) (g)

Figure 2.4: Webs spun by (a) drug-Free spiders, compared with webs spun by spiders that

were under the influence of (b) chloral hydrate (sleeping pills), (c) marijuana, (d) speed, (e)

caffeine, (f) peyote, and (g) LSD. [The images for panels (a)–(e) are from [NCR95], and the

images for panels (f) and (g) are from [Wit71].]

2.4.2 Snowflakes

Kenneth G. Libbrecht of Caltech has studied crystal growth in snowflakes for many years,

and in the process he has photographed a massive number of snowflakes. Some of his images
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were put on a series of U.S. Postal Service stamps in 2006, and he has written several books

on snowflake crystallography [Lib07,Lib16,Lib19]. In my work [FP20c], I take 12 snowflake

images from his 2019 book [Lib19] and use them to analyze the spatial properties of different

types of snowflake crystals.

In Figure 2.5, I show the images of all twelve snowflakes that I examine in Section 4.5.2.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 2.5: The full set of twelve snowflake images that I examine in Section 4.5.2. I label

these snowflakes using the panel labels from this figure. I show Snowflake A in panel (a),

Snowflake B in panel (b), and so on. [These images are from [Lib19].]

12



CHAPTER 3

Tools, techniques, and models

In this section, I give rigorous mathematical definitions for a variety of tools that I use in

my research. In Sections 3.2–3.4, I discuss tools from algebraic topology. In Section 3.5, I

describe a bounded-confidence model for studying continuous opinion dynamics on a network.

In Section 3.6, I define two generalizations of networks that have been used in the literature

to study higher-order network interactions.

3.1 Networks

I begin by defining some basic network terms. See [New18] for an introductory textbook

about networks

Definition 1. A graph (sometimes called undirected) is an ordered pair G = (V ,E), where

V is a set whose elements are called vertices (also called nodes) and E is a subset of V ×V

whose elements are called edges.

The vertices u and v of an edge (u, v) are called the endpoints of the edge, and the edge

(x, y) is said to be incident to u and v.

A connected component of an undirected graph G is a subgraph H ⊆ G in which any

two vertices are connected to each other by paths, and which is connected to no additional

vertices in G.

Definition 2. A directed graph is an ordered pair G = (V ,E), where V is a set whose

elements are called vertices and E is a set of ordered pairs whose elements are called edges.
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The edge (x, y) is said to be directed from u to v.

In this thesis, most of the networks I discuss take the form of undirected graphs, and I

will refer interchangeably to “nodes” and “vertices”. I discuss network representations that

are not graphs in Section 3.6.

3.1.1 Graph models

Various models for generating graphs are studied in network science [New18]. In this section,

I give definitions for a few graph models that appear in this thesis.

3.1.1.1 Cycle graphs

A cycle graph on N nodes is a graph in which the N nodes are connected in a closed chain.

Note that N must be greater than or equal to 3. See Figure 3.1 for a visualization of a cycle

graph.

3.1.1.2 Lattice graphs

A lattice graph (also known as a mesh graph or grid graph) is a graph whose drawing em-

bedded in Rn forms a regular tiling. In this thesis, I use 2D rectangular lattice graphs on

(M,N) where M is the number of vertices in one direction, and N is the number of vertices

in the other. See Figure 3.2 for a visualization of an (M,N) lattice graph.

3.1.1.3 Erdős–Rényi random-graph model

An Erdős–Rényi (ER) random-graph model [ER59,SR51] generates random graphs in which

edges occur between node pairs with equal, independent probabilities. In this thesis, I use

the G(N, p) ER model, where N is the total number of nodes and p is the probability of

any potential edge (u, v) occurring in the graph. See Figure 3.3 for a visualization of an ER
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Figure 3.1: An example of a cycle graph with N = 10 nodes. For visual clarity, I use different

colors for the nodes.

graph.

3.1.1.4 Watts–Strogatz small-world model

The Watts–Strogatz (WS) small-world model [WS98, New18] generates graphs with the

“small-world” property. Given N , K, and β, there are N nodes in such a network. Each of

these nodes is initially linked to its K closest neighbors (K − 1 neighbors if K is odd), as

implemented in the NetworkX Python package. Some edges in the graph are replaced as

follows: for each edge (u, v), with probability β, replace the edge with a new edge (u,w),

where w is chosen uniformly at random. See Figure 3.4 for a visualization of a WS graph.
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Figure 3.2: An example of a lattice graph with M = 5 by N = 5 nodes. For visual clarity, I

use different colors for the nodes.

3.2 Simplicial complexes

In this section, I define some of the basic building blocks of simplicial homology. For more

information, see [Hat02].

Definition 3. A k-simplex is a k-dimensional polytope that is the convex hull of its k + 1

vertices.

Definition 4. An orientation of a k-simplex is an ordering of its vertices, written as

(v0, . . . , vk), with the rule that two orderings define the same orientation if and only if they

differ by an even permutation.

Definition 5. An m-face is the convex hull of a subset of cardinality m+ 1 of a k-simplex,

with m < k and the orientation preserved. A face refers to an m-face of any dimension m.

Definition 6. A simplex A is a coface of a simplex B if B is a face of A.
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Figure 3.3: An example of a G(N, p) graph with N = 50 and p = 0.1. For visual clarity, I

use different colors for the nodes.

Definition 7. A simplicial complex S is a set of simplices that satisfies the following

conditions:

1. every face of a simplex from S is also in S;

2. the intersection of any two simplices σ1, σ2 ∈ S is a face of both σ1 and σ2.

Definition 8. Given a simplicial complex S, we call the collection of all k-faces and their

faces the k-skeleton of S.

This definition of simplicial complex makes no use of orientation. However, in my later

discussion of simplicial homology (see Section 3.3), orientation of simplices is very important.

3.3 Simplicial homology

In this section, I give the basic definitions of simplicial homology.
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Figure 3.4: An example of a WS network with N = 50 nodes, K = 5 nearest neighbors, and

rewiring probability β = 0.1. For visual clarity, I use different colors for the nodes.

Definition 9. Let S be a simplicial complex. A simplicial k-chain is a finite formal sum

N∑
i=1

ciσi ,

where σi is an oriented k-simplex and each ci ∈ F for some field F .

I denote the group of k-chains on S by Ck. (With a consistent choice of orientation, this

group can be considered as the free Abelian group on the basis of k-simplices in S.)

Definition 10. Let σ = (v0, . . . , vk) be an oriented k-simplex. The boundary operator

δk : Ck → Ck−1

is the homomorphism defined by

δk(σ) =
k∑
i=0

(−1)i(v0, . . . , v̂i, . . . , vk) ,
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where (v0, . . . , v̂i, . . . , vk) is the oriented (k − 1)-simplex that obtained by deleting the i-th

vertex of σ.

Elements of Zk = ker δk are called cycles, and elements of Bk = im δk+1 are called

boundaries.

One can show by direct computation that δ2 = 0, so the groups (Ck, δk) form a chain

complex.

Definition 11. The k-th homology group Hk of S over F is the quotient group

Hk(S;F ) = Zk/Bk .

Note that Hk(S;F ) is nontrivial precisely when there are k-cycles on S that are not

boundaries; this occurs when there are k-dimensional holes. For example, a cycle between

three points gives a 2-cycle1, and it is also a boundary precisely when the triangle with

vertices at those three points is in the simplicial complex. Therefore, homological groups

track features that one can construe intuitively as holes. In this thesis, I compute only H0

and H1, which track connected components (H0) and loops in a space (H1).

In most existing software packages for TDA [OPT17], one computes homology groups

over the field F2 [OPT17]. Because 1 = −1 in F2, orientation is not considered.

I now introduce the definition of a simplicial map, a fundamental building block in

persistent homology (see Section 3.4).

Definition 12. Let S and T be simplicial complexes. A simplicial map f : S → T is a

function from the vertex set of S to the vertex set of T that preserves simplices.

A simplicial map f : S → T also induces a homomorphism f∗ : Hk(S)→ Hk(T ) for each

integer k. The homomorphism f∗ is associated with a chain map from the k-chain complex

1I distinguish homological cycles from cycles in a graph-theoretic sense
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of S to the k-chain complex of T . This chain map is

(v0, . . . , vk) 7→ (f(v0), . . . , f(vk)) ,

where (f(v0), . . . , f(vk)) = 0 if any pair of f(v0), . . . , f(vk) are not distinct.

This construction gives a functor from simplicial complexes to Abelian groups. This is

essential to the theory of persistent homology that I discuss in Section 3.4.

3.4 Persistent homology

I now discuss persistent homology (PH), one of the primary tools of topological data analysis

(TDA) [OPT17,Ghr08,ZC04].

Definition 13. A filtered simplicial complex X is a sequence of simplicial complexes

X1 ⊆ X2 ⊆ · · · ⊆ Xl .

Suppose that we have experimental data Xobserved, from which we have constructed a

filtered simplicial complex X = {Xi}. There are many ways to construct such a sequence,

including the commonly implemented Vietoris–Rips (VR) complex [Vie27], several fast ap-

proximations of VR complexes [EKS83,AEM07], and others [BEM10]. I discuss the existing

constructions I use in this thesis in Section 3.4.1. I require that the sequence {Xi} is increas-

ing, as in the definition of a filtered simplicial complex; and I call each Xi a subcomplex.

This filtered simplicial complex, along with inclusion maps between subcomplexes and chain

and boundary maps of each of its subcomplexes, is called a persistence complex. I examine

the homology of each subcomplex, noting that the inclusion map Xi ↪→ Xj induces a map

fi,j : Hm(Xi)→ Hm(Xj), and that, by functoriality,

fk,j ◦ fi,k = fi,j . (3.1)

Definition 14. Let X = {Xi}, where X0 ⊆ X1 ⊆ · · · ⊆ Xl, be a filtered simplicial complex.
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The m-th persistent homology of X is the pair(
{Hm(Xi)}1≤i≤l , {fi,j}1≤i≤j≤l

)
,

where fi,j : Hm(Xi)→ Hm(Xj), for all i ≤ j and m no larger than some maximum dimension

(often chosen to be the dimension of Xobserved), are the maps that are induced by the action

of the homology functor on the inclusion maps Xi ↪→ Xj. I refer to the collection of all m-th

persistent homologies as the persistent homology (PH) of X.

Most notably, the PH of a filtered simplicial complex encodes information about the

maps between each subcomplex, thereby giving more information than the homologies of the

individual subcomplexes. Each homology group with field coefficients Hm(Xi) is a vector

space whose generators correspond to holes in Xi, and the maps fi,j allow us to track these

generators from Hm(Xi) to Hm(Xj). By choosing a convenient basis for Hm(Xi), which

one can do by the Fundamental Theorem of Persistent Homology [ZC04], we can construct

a well-defined and unique collection of disjoint half-open intervals, where each generator

x ∈ Hm(Ki) corresponds to an interval [bx, dx), with Xbx denoting the subcomplex in which

the generator (and its associated hole) first appears and Xdx denoting the subcomplex in

which the generator dies. More precisely, I say that x 6= 0 is born inHm(Xbx) if it is not in the

image of fbx−1,bx ; it dies in Hm(Xdx) if dx > bx is the smallest index for which fbx,dx(x) = 0.

If fbx,j(x) 6= 0 for all bx < j ≤ l, then x lives forever and I associate the interval [bx,∞) to

it. For further details, see [OPT17,Ghr08,ZC04].

In my work, I focus on H0 and H1 in particular, due to the increased computational

complexity associated with building higher-dimensional simplicial complexes and the 2D

nature of many of the data sets explored in this thesis.

Conventional wisdom suggests that the features with the longest persistence are the

most important ones. Intuitively, features that have longer persistence occur across a larger

variety of scales. True topological features are scale-invariant, so it makes sense that one may

conclude that these long-persistence features are the most meaningful features. However, in
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practice, the PH depends heavily on the filtered simplicial complex that one constructs. In

many data sets, one can choose a filtered simplicial complex construction where short bars

are meaningful [BHP20,SHP17].

Choosing a filtered simplicial complex is a very important step in the computation of

PH. In my research, I seek to construct a filtered simplicial complex whose PH is readily

interpretable. This entails trying to construct filtered simplicial complexes whose most

persistent features correspond to a meaningful feature in the data set (for example, strength

of voting preference, in a case study on voting [FP20a]).

3.4.1 Methods for constructing a filtered simplicial complex

In this subsection, I review several common methods for constructing filtered simplicial

complexes from point clouds.

3.4.1.1 Vietoris–Rips complex

One of the most prevalent constructions is the Vietoris–Rips (VR) complex, which one

constructs using the pairwise distances between points in a point cloud [Vie27,EH10].

Let X be a data set in the form of a point cloud. Given a real number ε > 0, define the

VR complex VRε(X) as follows:

VRε(X) := {σ ⊆ X : ∀x, y ∈ σ , d(x, y) ≤ ε} .

If there are n points in X, the maximal possible VR complex is the (n − 1)-simplex that

consists of all points in X and all of its subsimplices. By taking a collection {εi}, with

0 = ε0 < ε1 < ε2 < · · · < εk, and considering

X = VRε0(X) ⊆ VRε1(X) ⊆ · · · ⊆ VRεk(X) ,

we obtain a filtered simplicial complex whose PH we can compute. It is straightforward to

construct a VR complex, because we only need to compute pairwise distances. Additionally,
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there are various fast algorithms for constructing a VR complex [Zom10]. Unfortunately, for

large point clouds, the worst-case VR complex has 2|X|− 1 simplices and dimension |X| − 1.

Vietoris–Rips complexes are employed commonly, because it is relatively easy to construct

them, they are intuitively appealing, they have important theoretical guarantees from the

Nerve Theorem [KS13], and (perhaps most importantly) they have been implemented widely

in existing PH packages.

3.4.1.2 Alpha complex

The alpha complex [EKS83], which we denote by Aε(X), also relies on a distance parameter

and is defined as follows. Let ε > 0, and let Xε :=
⋃
x∈X B(x, ε). Additionally, let (Vx)x∈X

be the Voronoi diagram of X. Consider the intersection Vx ∩ B(x, ε) for each x ∈ X, and

note that the collection of these sets covers Xε. We then have

Aε(X) = {σ ⊆ X : ∀xi ∈ σ ,
⋂
i

(Vx ∩B(x, ε)) 6= ∅} .

Because of the restriction of the ε-balls to the Voronoi diagram, the alpha complex restricts

the dimension of the space in which X is embedded. In our case, because our data is

embedded in R2, the alpha complex has 2D simplices (e.g., faces) as its highest-dimensional

simplices.

3.4.2 Visualizations

Given {Xi}, the collection of half-open intervals is known as the barcode [Ghr08] of {Xi},

and one uses it to visualize the m-th persistent homology. Generators with longer associated

half-open intervals are more persistent. In general, one uses the persistence of features to

distinguish signal from noise, but recent work (including our own [FP20a], which I discuss

in this thesis) indicates that persistence is not always readily interpretable in a meaningful

way [SHP17, HMM19, BHP20]. There are a variety of ways to visualize barcodes; in the

following paragraphs, I describe several of the most common visualizations.
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3.4.2.1 Barcodes

Persistence barcodes [Ghr08] are a method for visualizing PH that represent each homolog-

ical feature as a line whose left endpoint is the birth time and whose right endpoint is the

death time. We represent infinite-persistence features with an arrow at the right endpoint.

Persistence barcodes allow one to quickly see each homological feature separately. Addition-

ally, because more persistent features correspond to longer lines, the most persistent features

are the most visually prominent ones.

In Figure 3.5, I show an example of a computed persistence barcode.

Figure 3.5: I show an example of barcodes for H0 and H1. The filtration parameter is on

the horizontal axis, and each bar is given its own vertical coordinate that separates the bars

from each other. Note that each bar is visually distinct, and that the longer bars dominate

the image.

In barcodes in this thesis, I display each dimension of the PH as a separate barcode.
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3.4.2.2 Persistence Diagrams

Persistence diagrams (PDs) [OPT17] associate to each homological feature an ordered pair

(b, d), where b is the birth time and d is the death time. We plot infinite-persistence features

(b,∞) on a line at infinity. More persistent features are located farther from the diagonal,

and less persistent features appear close to the diagonal. We can plot different dimensions

of the PH on the same diagram by plotting each dimension in a different color or shape.

In Figure 3.6, I show an example of a computed PD.

Figure 3.6: I show a PD. Birth is on the horizontal axis, and death is on the vertical axis. I

plot features in H0 as pink circles and features in H1 as blue squares.

In this thesis, I plot both H0 and H1 on the same PD; computations of higher-dimension

PHs do not occur in my thesis.

One advantage of PDs is the ability to equip the space of PDs with an easily computed

metric called the bottleneck distance.
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Definition 15. The bottleneck distance between two PDs is the shortest distance b for

which there exists a perfect matching between the points of the two diagrams (completed by

adding points on the diagonal) such that any pair of matched points are at distance at most

b, where the distance between points is the sup norm in R2.

Bottleneck distance is included in many PH software packages.

3.4.2.3 Other visualizations

In this section, I discuss two other visualizations used in PH. These visualizations do not

appear in my work, but they are useful for applying statistical methods to the results of

PH computations. Persistence landscapes [Bub15] are a method of summarizing PH that

provides several statistical benefits. Persistence landscapes allow a well-defined notion of a

mean of a collection of persistence landscapes, and they also allow one to compute confidence

intervals.

Definition 16. The persistence landscape is a function λ : N ×R→ R, where R denotes

the extended reals. We define

λ(k, t) = sup
(
m ≥ 0 : βt−m,t+m ≥ k

)
,

where βi,j is the Betti number of the persistence module from Xi to Xj. I define

βa,b = dim(Im(ι : Xi → Xj)) .

Persistence images [AEK17] provide a method to represent a PD as a finite-dimensional

vector. This allows persistence images to be used with vector-based machine-learning tools

like support vector machines [VC64], linear models [Hoc83], and many more.

Given a probability distribution gu(x, y) (which one often chooses to be the normalized

symmetric Gaussian with mean u and variance σ2) and a nonnegative weighting function

f : R2 → R that is 0 along the horizontal axis, continuous, and piecewise differentiable, we

define a transformation from a PD to a persistence surface.
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Definition 17. Given a PD B in birth–death coordinates, the corresponding persistence

surface ρB : R2 → R is the function

ρB(z) =
∑
u∈B

f(u)gu(z) .

Intuitively, one can imagine placing a Gaussian over each point of a PD, thereby “blurring”

the diagram.

Given a persistence surface, we discretize the surface into a persistence image as follows.

Definition 18. Given a PD B, the persistence image of B is the collection {I(ρB)P =∫ ∫
P
ρB dy dx} of pixels, where P is the area of the pixel.

Persistence surfaces and images can be computed for any choice of weighting function and

distribution, but the standard choices are to give the largest weight to the most persistent

features and to use a Gaussian distribution. The persistence image of a single dimension of

the PH is a vector, and vectors for PHs of different dimensions can be concatenated together

to provide a single persistence image that represents all dimensions.

3.4.3 Previous and current research in TDA

PH is a quickly evolving field, with contributions from a diverse set of communities. PH

methods have been applied to a wide range of fields, including neuroscience [LEF16,YKA16,

BMM16], time-series analysis [SHP17], dynamical systems [YB20], the social sciences [BZ18,

ID19,WSK17], biology [XW14,KBN16], hurricanes [TMD20], granular materials [KGK13,

BHO18], and many others.

Researchers are also developing new methods for use in PH. This includes developing new

types of filtered simplicial complexes [BHM19,KDS16], making PH more tenable to statistical

analysis [Bub15,MTB15], developing theoretical guarantees for PH methods [AA17], and

more. Other research in TDA includes development of clustering methods like Mapper
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[SMC07], computations in knot theory [LHS19] and homotopy [BM13], and the development

of persistent homotopy [MZ19].

3.5 Bounded-confidence models

Bounded-confidence models, introduced by Hegselmann and Krause [HK02] and Deffuant et

al. [DNA00], model continuous opinion dynamics on a network. They capture the idea that

individuals adjust their opinions based on a tolerance threshold [MVP18]. At each time,

individuals’ opinions take on a value (generally in R, but theoretically in any metric space)

based on some function of their neighbors’ opinions, as long as their neighbors’ opinions

are within a certain distance of their own. In the following subsections, I give more precise

specifications of various versions of bounded-confidence models.

3.5.1 Hegselmann–Krause model

In this subsection, I discuss the Hegselmann–Krause model for continuous opinion dynamics

[HK02]. Given a group of N agents, denote each agent’s opinion at time t by xi(t) ∈ [−1, 1].

That is, ~x : Rn → [−1, 1]n describes agent i’s opinion at time t. Let A be the adjacency

matrix, with Aij denoting the edge weight of (i, j). Given a confidence bound c, at each

discrete time step, update all agents’ opinions at time t+ 1 according to the following rule:

xi(t+ 1) =
xi(t) +

∑N
j=1Aijxj(t)1|xi(t)−xj(t)|<c

1 +
∑N

j=1Aij1|xi(t)−xj(t)|<c
, (3.2)

where 1 is the indicator function.

3.5.2 Deffuant model

In the Deffuant model [DNA00], only randomly-selected agents change their opinions in a

given time step. Specifically, we choose a pair of neighboring agents, xi and xj uniformly at
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random, and their opinions are updated according to the rule

xi(t+ 1) = xi(t) +m(xj(t)− xi(t))1|xi(t)−xj(t)|<c ,

xj(t+ 1) = xj(t) +m(xi(t)− xj(t))1|xi(t)−xj(t)|<c .

Note that the selection of two neighboring agents (or equivalently, an edge) introduces

stochasticity.

3.5.3 Previous research on bounded-confidence models

Bounded-confidence models have been applied to study various applications, and they have

also been generalized in numerous ways. Researchers have studied consensus formation

[Lor07,Dit01], polarization [SPG19,DSC17], and various adaptations of the model (including

rejection [HDJ14], incorporation of media [BP20], and others [BCV14,Var14]). Applications

include the spread of opinions on social networks [BP20] and random networks [MVP18],

decision-making processes [ZDZ19], and formation of linguistic opinions [DCL16].

3.6 Generalizations of graphs

In network science, it is most traditional to study networks in the form of graphs [New18].

However, in many applications, it is not always suitable to use a framework in which inter-

actions are always pairwise or in which there is only one type of interaction [Por20,LRS19].

In this section, I discuss generalizations of graphs that are designed to study networks.

In particular, I focus on “multilayer networks” [KAB14] in Subsection 3.6.1 and on “sim-

plicial networks” in Subsection 3.6.2. There are also other generalizations of graphs, but

I do not discuss them in this thesis. They include hypergraphs [New18], time-dependent

networks [HS12,Hol15], and many more.
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3.6.1 Multilayer networks

Multilayer networks [KAB14,Por18,AM19] allow nodes to interact with other nodes across

different layers. This allows different types connections between nodes, depending on the

layer (or layers) on which nodes and edges occur. Imagine, for example, a transportation

network in a city. There may be multiple modes of transportation that connect point A and

point B. A multilayer network can model the two points as nodes and the various forms of

transportation as edges on different layers. While various types of multilayer networks, such

as multiplex networks, have been studied for decades [Mit69, Ebe97,WF94], I present the

mathematical formulation given in Kivelä et al. [KAB14], as this notation is convenient for

the multilayer network analysis.

Definition 19. A multilayer network is a tuple M = (VM , EM , V ,L), where

• V is the set of nodes. A node can exist on any layer to belong to V . This set of nodes

represents the entities in the network.

• L = {La}da=1 is a sequence of sets of elementary layers, where each La is a set of layers

for a fixed aspect a and there are d aspects. An “aspect” is a type of layer. The set of

all possible layers is given by the Cartesian product L1 × L2 × · · · × Ld.

• VM ⊆ V × L1 × · · · × Ld is the set of node-layer tuples. This encodes the occurence of

a node v on a specific layer (l1, . . . , ld).

• EM ⊆ VM × VM is the set of edges between node-layer tuples.

Note that I have put no requirements on EM , so edges can occur between nodes on the

same layer (an intralayer edge) or between nodes on different layers (an interlayer edge).

Definition 20. The adjacency tensor A : V × V × L1 × L1 × · · · × Ld × Ld → R is

the tensor in which A(u, v, α, β) = w indicates that there is an edge of weight w between

node-layer pairs (u, α) and (v, β).
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Multilayer networks have been studied in the context of biological systems [PPP17,

FSP19,GMD18,SJ15], transportation [GB15], and more.

3.6.2 Simplicial networks

In some networks, higher-order (i.e. non-pairwise interactions) can occur; consider, for exam-

ple, team sports, or peer pressure. These non-pairwise interactions cannot be modeled using

a graph, unless one assumes that all interactions with three or more agents are equivalent

to the collection of pairwise interactions. Simplicial complexes, however, present a natural

framework for modeling interactions of k individuals via k-simplices. A simplicial network

is simply a simplicial complex S. I use the terminology “simplicial network” to reframe the

simplices of the complex in terms of network relationships. The 0-simplices of a network are

nodes, 1-simplices are edges, and higher-order simplices are faces.

There has been some work on generalizing network models and concepts to simplicial

networks, but the difficulty of dealing with orientation makes the study of simplicial networks

a largely open area. For example, some work on infectious disease modeling has been done by

Iacopini et al [IPB19], and a simplicial extension of voter models was examined in [HK20].
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CHAPTER 4

Persistent homology of spatial data

The following sections are adapted from two original papers [FP20a, FP20c] that I co-

authored with my advisor Mason A. Porter. I begin in Section 4.1 by defining and describing

new methods in PH that we developed in those papers. Section 4.3 describes a case study in

map-based voting data [FP20a]. The data set is described in Section 2.1. I adapt Sections

4.2, 4.4, and 4.5 from a recent paper on applications of PH to spatial networks [FP20c].

4.1 Novel methods for PH

In this section, I describe methods for generating simplicial complexes based on data. We

introduced these methods in [FP20a]. The “adjacency construction” in Section 4.1.1 is de-

signed to work on network-based data, and the “level-set construction” in Section 4.1.2 is

designed to work with image-based or manifold-based data. We wrote a popular exposition

of these methods for SIAM News in [FP20b].

4.1.1 Adjacency construction of PH

I now describe a way to construct a filtered simplicial complex based on network adjacencies.

Consider a network in the form of a graph (V ,E), with numerical data f(v) associated with

each node v. For a given filtration step Xi, let the 0-simplices of Xi be given by v ∈ V such

that f(v) ≤ ε for some value ε. For any edge (u, v) ∈ E, if u ∈ Xi and v ∈ Xi, add (u, v) to

fXi. Finally, to Xi, add all triangles (u, v, w) such that (u, v), (v, w), and (u,w) are in Xi.
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Repeat this process for Xi+1 using a larger value of ε. By construction, each Xi ⊆ Xi+1, and

so the collection {Xi} is a valid filtered simplicial complex. See Figure 4.1 for an illustration

of such a filtered simplicial complex.

In some of our applications, we use an alternate adjacency construction in which we

associate data g(u, v) to the edges, instead of to the nodes. This construction differs from

the one above only in that we can define the function f ′(v) = minu:(u,v)∈E{g(u, v)}. We

then proceed with the above adjacency construction, but we substitute f ′ for f . We recently

introduced our main adjacency construction in [FP20a], and we introduced our adaptation

of it to edge-based data in [FP20c].

Figure 4.1: We illustrate an adjacency construction of PH on (a) a planar graph, whose nodes

we color according to a function value from yellow to dark blue. At each filtration step (see

panels (b)–(e)), we add all nodes with a given range of function values. We also add any

edges between these new nodes, as well as any edges between these new nodes and existing

nodes, and we fill in any triangles that form. Only cycles of length three form triangles, so

the graph in panel (a) yields five infinite-length features in H1 (as one can see from the five

holes that remain in panel (e)).

4.1.2 Level-set construction of PH

The other PH construction (also introduced in [FP20a]) that I use in this thesis involves

describing data as a manifold, rather than as a graph. Let M denote a 2D manifold, such
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as data in an image format. We consider the boundary Γ of M and construct a sequence

M = M0 ⊆M1 ⊆ · · · ⊆Mn

of manifolds, where at each time step, we evolve the boundary Γt of Mt outward according

to the level-set equation. (See [OF03] for a thorough exposition of the level-set equation

and level-set dynamics.) That is, if the manifold M is embedded in R2, we define a function

φ(~x, t) : R2×R→ R, where φ(~x, t) is the signed distance function from ~x to Γt at time t. We

propagate Γt outward at velocity v (in our case, v is a constant 1) using the equation

∂φ

∂t
= v|∇φ| . (4.1)

Because this evolution gives a signed distance function at every time step t, we take Mt to

be the set of points ~x such that φ(~x, t) > 0. This corresponds to points inside the boundary

Γt. We stop at time T large enough that MT covers the entire image (alternatively, when

φ(~x, t) > 0 for all x in the domain of the base image).

Intuitively, in terms of a geographical map, we can visualize the graph of φ(~x, 0) as a

mountain (or multiple mountains, if there is more than one connected component), with the

boundary of the map at sea level, the interior of the map above water, and the complement

of the map below water. The set M0 is the set of points ~x that are at or above sea level.

As we evolve φ, we move the entire mountain upward, increasing the amount of land above

water. The new region that is at or above water is our expanded manifoldMt. In Figure 4.2,

we show the evolution of the 0-superlevel set (i.e., all points ~x such that φ(~x, t) ≥ 0) as

t increases, along with the graph of φ to help visualize the corresponding evolution of the

level-set equation (4.1).

We then impose {Mt} over a triangular grid of points to construct a filtered simplicial

complex {Xt} in the following manner. For every grid point ~x, if φ(~x, t) > 0, add ~x to Xi as

a 0-simplex. For two points ~x, ~y that are neighbors in the grid, if φ(~x, t) > 0 and φ(~y, t) > 0,

add (~x, ~y) to Xi as a 1-simplex. Finally, if ~x, ~y, ~z are the vertices of a triangle in the grid,
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(a) T = 0 (b) T = 4 (c) T = 10

Figure 4.2: Evolution of (top row) a level set, with corresponding (bottom row) contour

plots of φ. As t increases, the graph of φ translates upward, so the 0-superlevel set expands.

(Clipping of minimum and maximum values, which we do for computational efficiency, leads

to flat areas at the minimum and maximum values of φ.)
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add (~x, ~y, ~z) to Xi as a 2-simplex. In [FP20a, FP20c], we used a triangular grid by first

constructing a regular rectangular grid whose grid cells have a width and height of 5 pixels.

This results in grid points every five pixels. We connect these points to their neighbors in

the north, south, east, and west directions. We then connect each grid point to the diagonal

adjacent grid points to the northwest and southeast, resulting in a triangular grid.

This procedure constructs a corresponding simplicial complex Xt for each Mt. In Fig-

ure 4.3, I show a visualization of this simplicial complex. Because the level-set equation (4.1)

evolves continually outward, this automatically satisfies that condition that Xt ⊆ Xt+1, so

{Xt} is a filtered simplicial complex.

(a) (b) (c) (d)

Figure 4.3: Illustration of a level-set adjacency construction of PH. In (a), I show a synthetic

image that I used as an initial manifold for level-set evolution. In (b)–(d), I show various

filtration steps of the filtered simplicial complex that I generate by performing a level-set

evolution on the image in panel (a). Panel (b) shows the simplicial complex that I obtain

by overlaying the image in panel (a) on a triangular grid. In panels (c) and (d), I add new

vertices, edges, and triangles to the image as it evolves outward. Darker colors indicate

simplices that enter the filtration at a later time step.

In the examples in this thesis, I construct level-set complexes for 2D images. However,

the level-set method generalizes to higher dimensions, so one can also construct level-set

complexes for higher-dimensional manifold data.
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4.1.3 Sizes and computation times

In general, construction of simplicial complexes can be very slow, as one must check all

possible simplices. The number of simplices grows as nm, where n is the number of vertices

and m is the maximum simplex dimension that one is considering. Consequently, methods

that build smaller simplicial complexes tend to be faster. In Table 4.1, we compare the

number of simplices in the simplicial complexes that we construct using the various methods.

In this section, I discuss comparisons of computation time and simplicial complex size

to state-of-the-art methods. These computation times (and Table 4.1) appear in our work

in [FP20a], and all of the tables in this section are based on the California precinct-level

election data from [SFK16]. However, the size scaling and computation time properties

displayed in these tables is generalizable to many 2D spatial networks, for reasons I discuss

in the following paragraph. See Section 4.3 for more information on the problem statement

and particular choices used in the construction of simplicial complexes for the voting data.

In these tables, we only construct one of the VR or alpha complexes. Because of long

computation times, for counties with at least 151 precincts, we computed alpha complexes

(approximations to VR complexes) instead of VR complexes.

From Table 4.1, we see that the adjacency and level-set complexes do not scale in size

as rapidly as the VR complexes. This arises from how we construct these complexes. In

adjacency complexes based on 2D spatial data, the number of neighbors can be almost

constant for any number of nodes, as there are sometimes practical bounds on the number

of nodes that can border another nodes. For example, any district on a map is likely to have

a constant number of neighboring districts. The beneficent scaling of the level-set complexes

with respect to the size of image data arises from our specific choices for how we construct

them. Because we take each vertex of a simplicial complex to be a point on a triangular

grid, it has at most six neighboring vertices (one for each of its cardinal directions, as well

as one to its upper left and one to its lower right), and it can thus be a member of at most
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six 2-simplices. One can make different choices of triangular grids—in our case, we simply

added a northwest/southeast diagonal to each square in a square grid—and the number of

neighbors is O(1), as long as the grid is composed of triangles that are roughly the same size

and shape (as is true for many grids). In practice, the size of a level-set complex is depends

mostly on how much of an image is covered by the initial manifold M . That is, if M has

large contiguous regions that span most of an image, then most of the possible grid points,

edges, and faces possible will be added to the filtered simplicial complex, leading to a larger

simplicial complex.

In Table 4.2, I compare the computation times for the construction and computation of

PH for several of the larger (and therefore more computationally intensive) complexes that

we studied in [FP20a]. From Table 4.2, it is significantly faster to construct the adjacency

and level-set complexes than it is to construct the VR complexes. This is especially striking

in light of the fact that we did not optimize our implementations of the new methods to make

them as fast as possible. (For the level-set complexes, it is possible to make the computations

much faster using existing implementations of level-set dynamics [GFO18].)

Our constructions are only slightly slower than or of similar computation time to the

construction of alpha complexes. These speed gains are due largely to the significantly

smaller number of simplices that we need for our new types of simplicial complexes. In

2D geospatial applications, the number of simplices is smaller than for other applications

because of constraints from our starting geographical maps. In other applications, one does

not typically benefit from such a built-in limitation in numbers. (For example, networks

in general do not satisfy the property that the degrees of the nodes are roughly constant

for any total number of nodes [New18].) However, other spatial applications (e.g., granular

materials, transportation networks, and various examples in biology) will likely also benefit

from these ideas. We illustrate that with a few examples in Sections 4.2, 4.4, and 4.5.
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Table 4.1: Sizes (i.e., number of simplices) of simplicial complexes constructed based on

voting data [FP20a]. We first partitioned each county into precincts that voted for Clinton

(C) and precincts that voted for Trump (T). We did not consider precincts that did not

favor one of the two candidates. We then computed VR (or alpha), adjacency, and level-set

complexes for each of these sets of precincts. (We computed VR complexes for counties with

at most 150 precincts and alpha complexes for counties with 151 or more precincts.)

County
# Precincts VR Alpha Adjacency Level-set

C T C T C T C T

Alameda 1156 – 1967 5843 – 5755 70 3327 3578

Alpine 5 2 1 – – 11 1 11962 1505

Amador 30 3 884 – – 2 168 46 3979

Calaveras 29 8 641 – – 6 92 1897 5195

Colusa 17 19 74 – – 10 46 1665 5329

Contra Costa 711 – 3551 3561 – 3240 126 4135 3215

Del Norte 18 5 204 – – 4 61 3584 6385

El Dorado 196 2397 89301 – – 136 1123 782 4965

Fresno 592 – – 1825 1431 1540 1192 2031 4788

Glenn 34 8 1152 – – 4 156 329 5247

Humboldt 127 45998 680 – – 504 119 15211 7323

Imperial 179 32496 6320 – – 313 129 4375 6223

Inyo 25 33 216 – – 14 51 4169 2242

Kern 642 – – 1125 2119 928 2083 1429 5033

Kings 183 6305 69786 – – 155 599 4849 7338

Lake 70 2279 779 – – 99 73 4468 11275

Lassen 51 1 5920 – – 1 250 193 11439

Los Angeles 4988 – – 26551 1747 27705 1067 8587 6686

Madera 67 927 1947 – – 103 132 925 5139

Marin 182 – 3 1037 – 1074 3 7893 621

Mariposa 25 5 401 – – 7 91 2241 4485

Mendocino 250 – 692 1115 – 946 51 11901 1400

Merced 268 139832 54664 – – 546 435 2213 6999

Modoc 21 0 399 – – 0 94 0 7995

Mono 12 41 5 – – 35 4 2499 3452

Monterey 467 – 13887 2297 – 1059 135 3597 4370

Napa 170 170093 56 – – 858 15 10414 4968

Nevada 82 2569 2242 – – 230 201 2946 2495

Orange 1668 – – 5391 3811 4373 2632 5719 6513

Placer 363 5085 – – 1685 141 1902 1210 3354

Plumas 30 8 618 – – 6 102 723 6609

Riverside 1126 – – 2291 2833 1602 2081 2231 2617

Sacramento 1267 – – 2935 1275 15893 3459 4263 6748

San Benito 54 1804 276 – – 152 67 699 6357

San Bernardino 2654 – – 6206 4953 3658 2465 1700 6487

San Diego 2111 – – 8007 3329 7480 2977 4680 7447

San Francisco 599 – 0 3499 – 3728 0 6826 0

San Joaquin 500 – – 1659 1091 1490 902 7115 13419

San Luis Obispo 161 24600 14301 – – 307 351 1319 4321

San Mateo 467 – 8 2573 – 2457 4 13865 782

Santa Barbara 250 – 11950 971 – 835 287 3488 6542

Santa Cruz 267 – 28 1307 – 1301 7 4737 295

Shasta 121 3 75177 – – 2 745 941 5973

Sierra 22 3 233 – – 2 57 417 3677

Solano 258 125438 13096 – – 727 338 4589 5891

Sonoma 491 – 886 2355 – 2204 32 6031 899

Stanislaus 218 45984 51289 – – 420 493 2536 6219

Sutter 52 62 3558 – – 23 266 588 10689

Tehama 46 0 4261 – – 0 241 0 5007

Trinity 25 25 243 – – 12 60 5485 10344

Tulare 250 13096 – – 921 235 1032 2242 7763

Tuolomne 68 18 10605 – – 6 334 3380 3997

Yolo 129 49597 486 – – 559 70 5089 4597

Yuba 46 5 3422 – – 3 199 1909 8521
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Table 4.2: Computation times of selected county–candidate pairs from California precinct-

level voting data, where I show the fastest method for each example in bold. I present

several larger counties to show that our methods are substantially faster than computing VR

complexes. For small counties, such as Imperial and Tulare, the improvement in computation

time is less noticeable. Computing level-set complexes is not substantially faster for small

counties than for large counties, as the number of simplices in a level-set complex is based on

the image resolution of a geographical map, rather than on its number of precincts. [Table

appears in [FP20a].]

County
VR Alpha Adjacency Level-set

Complex PH Complex PH Complex PH Complex PH

El Dorado (T) 180.426 s 0.783 s – – 0.090 s 0.008 s 2.580 s 0.011 s

Imperial (C) 0.739 s 0.154 s – – 0.0137 s 0.009 s 9.29 s 0.007 s

Los Angeles (C) – – 15.479 s 0.065 s 39.264 s 0.069 s 8.842 s 0.045 s

Merced (C) 488.823 s 0.669 s – – 0.0217 s 0.009 s 6.677 s 0.025 s

Napa (C) 654.803 s 0.980 s – – 0.048 s 0.010 s 9.161 s 0.042 s

San Bernardino (C) – – 1.765 s 0.032 s 0.691 s 0.030 s 4.385 s 0.019 s

Tulare (T) – – 0.0515 s 0.016 s 0.129 s 0.015 s 5.180 s 0.006 s

4.2 Random spatial networks

In this section, I discuss applications of our adjacency PH construction to a dynamical

process on synthetic networks in which space plays an important role. The text and figures

are adapted from [FP20c].

For each network (V ,E), we run the Watts threshold model (WTM) [Wat02] on it. Given

a graph, we select a fraction ρ0 = 0.05 of its nodes uniformly at random to be “infected” at

time 0. At each time step, we then compute the fraction of each node’s neighbors that are

infected. (That is, we synchronously update the states of the nodes [PG16].) If the fraction of

a node’s neighbors that are infected meets or exceeds a threshold (in our case, the threshold

is υ = 0.18 for all nodes), the node becomes infected. We take this implementation of the

40



WTM to be the generator of a function f : V → N, where f(v) is the time at which node v

becomes infected. We say that infected nodes are in the set I. If v never becomes infected, we

set f(V ) = maxv∈I f(v) + 1, so we eventually add all nodes to a filtered simplicial complex.

The resulting filtered simplicial complex consists of the subgraphs that are generated by I

at each time step. See [TKH15,MTP18,Yin13] for some research on the properties of the

Watts threshold model on spatial networks.

At each time step, the set of nodes which are “infected” and the edges between them make

up the “infected subgraph” of the network. We examine topological changes in the infected

subgraph of three different types of synthetic networks. We first examine random geometric

graphics (RGGs) [Pen07]. For each instance of an RGG, we pick 100 nodes uniformly at

random from the unit square. If the Euclidean distance between two nodes is less than

or equal to 0.1, we add an edge between them. Our second type of synthetic network is

a square lattice network with 100 nodes. We arrange the 100 nodes in a 10 × 10 grid on

the unit square, and we then connect the nodes along the grid lines (as in Figure 4.4). Our

third type of synthetic network is a Watts–Strogatz (WS) small-world network [WS98,Por12]

(see Section 3.1.1.4). We begin with a ring of 100 nodes. We then connect each node to its

K = 4 nearest neighbors. We then rewire each edge uniformly at random with a probability

of β = 0.1 using the implementation of the WS model in NetworkX [HSS08].

For each type of synthetic network, we consider 100 instances, which we generate using

NetworkX. For the RGG and WS networks, each instance is a different graph; the square

lattice network is deterministic in nature. For all three types of networks, each instance has

a different initial set of infected nodes. We show visualizations of each of these types of

networks (with WTM dynamics on it) in Figure 4.4.

Our adjacency construction begins by selecting the initially infected nodes and the edges

between them of a network to create an infected subgraph that we call an “infection net-

work”. As the infection spreads, we add more nodes and edges to the infection network until

eventually we have added all nodes and edges to it.
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Figure 4.4: An instance of each of our synthetic networks with Watts threshold model

(WTM) dynamics on it. The corresponding PDs are in Figures 4.5–4.7. We color the nodes

based on the time that they become infected. The three types of synthetic networks are (a) a

random geometric graph, (b) a square lattice network, and (c) a Watts–Strogatz small-world

network.
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Figure 4.5: PD for an instance of the WTM on an RGG. We plot each feature as a point

on the PD, for which the horizontal coordinate represents the birth time and the vertical

coordinate represents the death time. We plot features with infinite persistence (i.e., features

that do not die within the range of filtration parameters that we use for a PH computation)

on a horizontal line at the top of the PD. We plot features in H0 (which indicates the

connected components) as pink circles, and we plot features in H1 (which indicates the 1D

holes) as dark-blue squares.
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Examining the PHs of the RGGs (see Figure 4.5), we see that for our parameter values, the

infection network tends to have several connected components, resulting in a large number

of features in H0. However, because of the spreading behavior of the WTM, new nodes can

become infected only via their infected neighbors. Because features in H0 record connected

components of a graph, new infected nodes join existing connected components. Therefore,

features can only be born at time 0 or in the last step, which is when we add all remaining

uninfected nodes to our filtered simplicial complex. By contrast, features in H1 are relatively

rare, as most cycles that occur in an RGG are filled because of the uniform probability

distribution of the node locations.

Figure 4.6: PD for an instance of the WTM on a square lattice network.

For a square lattice network (see Figure 4.6 for a PD of the WTM on such a network),

we first note that there is only a single infinite-length feature in H0, as the final infection

network necessarily consists of a single connected component. Consequently, H0 consists of a

set of features that are born at time 0 and eventually merge (and therefore die), resulting in

a single infinite-length feature. Additionally, there are a constant number (81, to be precise)

of features in H1, because when we construct a simplicial complex, every grid cell of the

lattice is a feature in H1 at the final filtration. However, these features can be born at a

variety of times, as all nodes must enter the filtration for the filtration to incorporate every
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lattice cell.

Figure 4.7: PD for an instance of the WTM on a WS network.

From Figure 4.7, we see a WS small-world network also eventually has an infection net-

work that consists of a single connected component. However, the WS networks consistently

have more features in H1 than the RGG networks, because the former’s (non-geometric)

shortcut edges usually result in splitting an existing cycle (and hence a feature in H1) into

two cycles.

We summarize our observations about the various synthetic networks in Table 4.3, in

which we give the means and standard deviations of the number of features during the

temporal evolution of the WTM for each type of synthetic graph. Our counts include features

that appear at any time during the WTM dynamics.

4.3 The “shape” of voting

In this section, I discuss an application of adjacency and level-set complexes to California

voting maps. The text and figures in this section are adapted from [FP20a].

For the adjacency complexes, we build networks based on the voting maps as follows.
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Table 4.3: Means and standard deviations of the numbers of features in H0 and H1 during

the temporal evolution of the WTM across all instantiations of each type of synthetic graph.

(Our counts include features that appear at any time during the WTM dynamics.)

Mean (H0) STD (H0) Mean (H1) STD (H1)

RGG 23.16 3.1897 1.2 1.0

Square lattice 4.56 0.5886 81 0

WS 8.29 2.0214 26.95 5.2314

Each precinct is a node in the network, and there is an edge between two precincts if they are

queen adjacent. Precincts are queen adjacent if they touch at any point, including corners.

This can be contrasted with rook adjacency, which occurs when any two regions of a map

share a border.

For the level-set complexes, we use images of the voting maps as input data. For any

county, we take the map of all precincts that voted for the same candidate to be the base

manifold M . In visualizations, we color precincts according to voting preference. Precincts

that voted for Clinton are colored in blue, while precincts that voted for Trump are colored

in red. The darker the color, the stronger the preference for a candidate. Precincts with

equal numbers of votes for each candidate are colored in white.

We generate two types of visualizations for our PH results. The first takes the form of

barcodes, where we display each feature as a bar whose length corresponds to its persistence.

The second is a map visualization, where we mark the locations of the features that we find

by computing PH by drawing a cycle that passes through all of the generators of a feature.

(We call this a “feature map”.) These generators are not necessarily unique, and we select

our generators by using a standard PH algorithm (specifically, by using the row-reduced

boundary matrix) [ZC04]. Although the non-uniqueness of generators is a potential concern,

in our study, any set of generators results in some group of precincts that surround a voting
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island. We color the cycle according to the political party of the candidate. For example,

if we find a blue hole in a sea of red, we draw a red cycle. To help illustrate the various

interpretations of persistence, we highlight “long-persistence” features in H1. Specifically, if

an element [x] ∈ H1 has persistence interval [birth([x]), death([x])], we compute

l =
death([x])− birth([x])

max[y]∈H1 [death([y])− birth([y])]
. (4.2)

If l ≥ 0.75, we consider [x] to be a long-persistence feature. We color long-persistence

features in dark red or dark blue, depending on the political party of the candidate, and we

color other features in lighter shades of red or blue. We also color long-persistence features

with darker bars in the barcodes. We discuss results for two counties in this section.

For our first example, we compare the barcodes and feature maps that we obtain by

computing PH of the alpha, adjacency, and level-set complexes that we generate from red

precincts (i.e., those with a majority who voted for Donald Trump) in Tulare County (see Fig-

ure 4.8). Tulare County is relatively small, with only 250 precincts. The county is predom-

inantly rural, although it has a few small urban areas towards its western side. Politically,

Tulare is a strongly Republican county, and only a very small proportion of its precincts

voted blue (i.e., for Hillary Clinton) in the 2016 election. Looking at a voting map of Tulare,

we observe several pockets of blue voters that we hope to be able to detect using PH. To

detect these blue pockets, we consider the topological structure of simplicial complexes that

we construct using only the part of the map with red precincts, and we seek to find holes in

these complexes. In Figure 4.9, we show the results of the three different constructions.

For the alpha complex, we observe that the dimension-1 barcodes indicate that most fea-

tures do not have long persistences. The loops that surround the blue holes are light red, in-

dicating that they are not long-persistence features. Additionally, the single long-persistence

feature corresponds to a loop in the northwest part of the voting map (see Figure 4.9); it

connects three precincts whose union is disconnected, and it does not surround any blue

areas. It thus exhibits two problems, which we call “scaling” and “contiguity” problems.

“Scaling” refers to the phenomenon in which precincts occur at wildly different size scales.
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When we use Euclidean distance between precinct centroids to build a simplicial complex,

it is influenced by the size of the precincts. For example, the spacing of the three precincts

forming this loop is such that the pairwise distances between them are similar, but this

spacing is at a distance that is larger than the precincts themselves, causing them to form

a loop even though none of them are adjacent to each other on the map. Because this loop

corresponds to the only long-persistence bar in the barcode, it is difficult to use persistence

to distinguish fake loops like this one from real loops in the western region of the map. This

particular feature also demonstrates a “contiguity” problem; that is, the alpha complex does

not recognize that the three precincts do not form a contiguous region. As a result, the

loop that the alpha complex detects does not correspond to a contiguous loop of precincts.

Overall, the alpha complex does detect some pockets (of voting results that are surrounded

by different voting results), but it misses a few of them just southeast of the central area. It

also detects many features that are not real.

In contrast to our observations when using the alpha complex, generator precincts in the

adjacency complex mostly form contiguous loops. By virtue of our construction, edges cannot

occur between the centroids of precincts that are not adjacent to each other. A few features

that are disconnected from their (graph-theoretic) neighbors do still appear on the resulting

feature map, largely because the precincts themselves have complicated shapes. For example,

some of them are not simply connected and others have multiple connected components.

Some work in mathematical gerrymandering has focused on tackling some of these issues by

quantifying the idea that electoral districts ought to be “compact” [BS18,DT18]. However,

for the most part, the generator precincts surround blue and light-red holes in the voting

map. Additionally, there are fewer bars in the dimension-1 barcode in the adjacency complex

than in the alpha complex, and more of the bars in the adjacency complex correspond to

long-persistence features. The longest bar corresponds to the large hole in the middle that

includes both blue and light-red precincts. Although these light-red precincts do eventually

join the filtered simplicial complex, the blue precincts in the middle ensure that this hole
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never closes. Keeping in mind that the generators of a feature are not necessarily unique,

the particular algorithm that we use to compute PH selects the group of darker red precincts

that surround that area. We also observe several small light-red holes (which correspond to

early-birth bars) and several blue holes (which correspond predominantly to the bars in the

barcode that are born late). The adjacency complex is able to locate most of the blue areas

of the voting map—the exceptions are a few areas near the edges (and there is no hope of

detecting several of these as holes, because they lie on the county’s borders and thus cannot

be surrounded)—and it has little noise. All of the long-persistence feature are true features,

and we can therefore do a better job of distinguishing signal from noise for Tulare County

with an adjacency complex than with an alpha complex.

Finally, we examine the level-set barcode and feature map for Tulare County. We only

consider features that start at time 0, because features that start at later times do not exist

in the initial image and are instead created by the level-set evolution. Observe that the

dimension-1 barcode has several features—some with long persistence and others without

long persistence—that start at time 0; there is one feature that starts at a much later step

of the filtration. These bars that start at time 0 correspond to several of the holes in the

western area of the voting map. We detect only six of these holes, as some of them occur

on size scales that are too small for us to capture in our level-set complex because of our

choice of grid when constructing the coomplex. We also observe that the persistence of a

bar is correlated positively with the size of its associated hole. The single long-persistence

feature corresponds to the largest blue hole. Overall, the level-set complex captures most of

the blue areas on the map and avoids most of the noise, although it does fail to detect some

of the smaller regions.

For our second example, we consider Imperial County’s blue precincts, which we show

in the map in Figure 4.10. In contrast to Tulare County, it is not immediately evident

for Imperial County where there may be holes. There do seem to be a few very small red

precincts that are surrounded by blue precincts, so we hope to be able to capture some of
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Figure 4.8: Tulare County, which we color based on the voting for president in the 2016

election. Red precincts have a majority who voted for Trump, and blue precincts have a

majority who voted for Clinton. Darker colors indicate stronger majorities. For the level-set

complex, we plot only features which start at time 0, as features starting at later times are

noise created by the level-set evolution.
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(a) Alpha complex

(b) Adjacency complex

(c) Level-set complex

Figure 4.9: Barcodes and generated loops for red precincts in Tulare County. We mark long-

persistence features using darker loops with thicker line widths. For the level-set filtration,

we show only features that start at time 0.
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those. Overall, however, we expect to observe relatively few features.

Examining the results from the various constructions, we observe that the VR complex

picks up some noise, and only one of the features appears to surround a hole. Instead, it

finds several areas where the blue precincts are tightly clustered, but they do not seem to

surround any red precincts. Furthermore, all of the features have similar persistences, and

they are all categorized as long-persistence features. Unfortunately, because so many of the

precincts in Imperial County are small, it is unsurprising that all of the features have similar

persistences, so it is difficult to distinguish signal from noise. Moreover, as we will see, our

findings from the adjacency complex and level-set complex imply that the VR complex is

not picking up any real holes.

The adjacency complex picks up one long-persistence feature and two other features.

On inspection, these appear to be small white or light-blue holes that are surrounded by

darker blue districts. All three of the holes appear to be around either white precincts or

red precincts, and the single long-persistence feature is composed of relatively dark-blue

precincts. The long-persistence feature also seems to be the only feature that corresponds

to a feature from the VR construction.

In contrast to the adjacency and VR complexes, which include very few features, the

level-set complex picks up a large number of dimension-1 features, but none of them start

at time 0. This occurs because, as the level set evolves, the separate connected components

eventually combine, creating a larger number of holes than the ones that actually exist in

the original voting map. This illustrates one of the problems with the level-set complex: as

time passes, the simplicial complex tends toward becoming progressively more connected,

which can create some false features when the simplicial complex starts with many con-

nected components. However, if one considers only those features that exist at time 0, one

can distinguish between genuine and false features. Most of the counties have relatively

homogeneous voting patterns, with small pockets of dissimilarity, so few of the California

counties exhibit this behavior in practice. Additionally, including only features that begin

52



at time 0 results in reasonable feature maps.

Figure 4.10: Imperial County, which we color based on presidential voting. Red precincts

have a majority who voted for Trump, and blue precincts have a majority who voted for

Clinton. Darker colors indicate stronger majorities.

4.3.1 Comparison of our results to “ground truth”

We conclude our case study of voting data with some discussion of the accuracy with which

we are able to use long-persistence features to find true features in the LA Times voting

data. In Table 4.4, we show the proportion of long-persistence features that indicate an

actual hole, as determined by the human eye. We highlight the most successful method for

each county in bold. We see that our adjacency and level-set approaches outperform the VR

and Alpha constructions. This indicates that our methods are less likely than the traditional

distance-based approaches to detect noise as significant features in these examples.

For source code and more computations, see https://github.com/mhcfeng/precinct.
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(a) VR complex

(b) Adjacency complex

(c) Level-set complex

Figure 4.11: Barcodes and generated loops for blue precincts in Imperial County. The VR

complex results in several false “features”. The adjacency complex detects two white holes

and one red hole. The level-set complex is unable to detect any holes that start at time

0, because there do not exist sufficiently large white or red holes in the first step of the

filtration.
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Table 4.4: Proportion of long-persistence features that identify a real feature in simplicial

complexes based on voting data. Bold text shows the method with the highest proportion

of long-persistence features that correspond to a voting island. The adjacency and level-set

methods perform very well, with most counties detecting only “true” voting islands.

County
VR Alpha Adjacency Level-set

C T C T C T C T

Alameda – 0.00 1.00 – 1.00 – 1.00 –

Alpine – – – – – – – –

Amador – 1.00 – – – – – –

Calaveras – 1.00 – – – – – 1.00

Colusa – 1.00 – – – – – 1.00

Contra Costa – 0.00 0.00 – 1.00 – 1.00 1.00

Del Norte – 0.00 – – – 1.00 – 0.00

El Dorado 0.00 1.00 – – 1.00 1.00 – 1.00

Fresno – – 0.00 0.00 0.66 0.00 – 1.00

Glenn – 0.00 – – – 0.00 – 1.00

Humboldt 0.00 0.00 – – 0.50 – 1.00 1.00

Imperial 0.20 1.00 – – 1.00 1.00 – 1.00

Inyo – 0.00 – – – 1.00 – –

Kern – – 0.00 1.00 1.00 1.00 – 1.00

Kings 0.00 0.00 – – 1.00 0.67 – 0.87

Lake 1.00 0.00 – – – – 1.00 –

Lassen – 1.00 – – – – 1.00 1.00

Los Angeles – – 0.00 0.00 – – 1.00 –

Madera 1.00 1.00 – – 1.00 1.00 – 1.00

Marin – – 1.00 – 1.00 – 1.00 –

Mariposa – 1.00 – – – – – –

Mendocino – 0.00 1.00 – 1.00 – 1.00 –

Merced 0.11 1.00 – – 0.5 1.00 – 1.00

Modoc – 0.00 – – – – – –

Mono 0.00 – – – – – – –

Monterey – 0.00 0.00 – 1.00 0.00 1.00 1.00

Napa 0.25 0.00 – – 1.00 – .75 –

Nevada 0.00 1.00 – – 1.00 1.00 1.00 1.00

Orange – – 0.00 0.00 0.00 0.50 1.00 1.00

Placer 0.50 – – 0.00 – 1.00 1.00 1.00

Plumas – 1.00 – – – 1.00 – 1.00

Riverside – – 0.00 .33 1.00 1.00 1.00 1.00

Sacramento – – 0.00 0.00 0.00 1.00 1.00 1.00

San Benito 1.00 0.00 – – 1.00 – – 1.00

San Bernardino – – 0.00 0.00 – 0.75 – 1.00

San Diego – – 0.00 1.00 1.00 1.00 1.00 1.00

San Francisco – – 0.00 – 1.00 – 1.00 –

San Joaquin – – 0.00 0.00 0.75 1.00 1.00 1.00

San Luis Obispo 0.00 0.14 – – 1.00 1.00 – 1.00

San Mateo – – 1.00 – 1.00 – 1.00 –

Santa Barbara – 1.00 0.00 – .67 1.00 – 1.00

Santa Cruz – – 1.00 – 0.00 – 1.00 –

Shasta – 0.00 – – – 1.00 – –

Sierra – – – – – – – –

Solano 0.00 0.00 – – 1.00 1.00 1.00 1.00

Sonoma – 0.00 0.00 – 1.00 – 1.00 –

Stanislaus 0.00 0.00 – – 1.00 1.00 – 1.00

Sutter – 0.00 – – – 1.00 – 1.00

Tehama – 0.00 – – – 1.00 – –

Trinity – 0.00 – – – 0.00 1.00 1.00

Tulare 0.00 – – 0.00 – 1.00 – 1.00

Tuolomne – 0.00 – 0.00 – 1.00 – 1.00

Yolo 0.00 – – – 1.00 1.00 0.00 0.00

Yuba – 0.00 – – – 1.00 – 1.00
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4.4 Classification of cities based on their street networks

The field of urban analytics has grown rapidly in the last several years [Bar18,Bar19,Pum20].

To give one example that is of central interest to us, increasingly powerful computational

tools have allowed researchers to characterize cities in terms of their street networks [Boe19a].

Indeed, a variety of tools from network analysis have been applied to the study of urban street

networks [Boe18,Bar17,CSL06,Bat17]. In the present section, we use city street networks as

base manifolds for constructing level-set complexes, and we thereby characterize cities based

on their PHs. We use these PHs to compare city morphologies both within a single city and

across a variety of cities.

We use our level-set construction to obtain topological descriptors in the form of persis-

tence for city street networks. We then use these city persistences to compare (1) different

regions of the same city and (2) different cities to each other. We obtain all of our city street

networks with the software package OSMnx [Boe17] using latitude–longitude coordinates

and taking a 1 km block that is centered at specified coordinates. In each example below,

we will indicate how we choose these coordinates.

The initial filtration of the filtered simplicial complex that results from our level-set PH

construction consists only of the streets in a network. As we increase the filtration time, we

slowly add city blocks to the complex, and the topology changes as those blocks are filled in.

More regular city blocks are more likely to be filled in without creating any new homological

features, and larger blocks take longer to be filled in. Our construction is thereby able to

capture information about the size and regularity of city blocks. The existence of dead ends

tends to lead to the “pinching” of blocks into multiple homological features — as dead ends

expand, they lengthen and eventually meet with nearby streets, cutting through blocks in

the process — so our approach also yields information about dead ends.

56



4.4.1 Comparing different regions of the same city

We sample 169 points from the city of Shanghai using a shapefile of Shanghai’s neigh-

borhood boundaries that we downloaded from ArcGIS [Son17]. From the shapefile, we

obtain a bounding box for each neighborhood. We sample uniformly within this bounding

box, discarding points that do not lie within the polygon neighborhood geometry that is

defined in the shapefile. The sampling ends when we reach the desired number of points.

In total, we sample ten points from each administrative district, and we also include nine

historical landmarks with coordinates from Google Maps [Goo19]. In Figure 4.12, we show

maps and their associated PDs for two examples.

(a) (b)

Figure 4.12: Two sampled street networks from (a) PuDong New District and (b) ZhaBei

district. [We generated both maps using OSMnx [Boe17].]
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After computing PH (in the form of a PD) for each map, we compute the bottleneck

distance between each pair of maps. Bottleneck distance (see Definition 15) is a metric that

is defined on the space of PDs. It gives the shortest distance d for which there exists a

perfect matching between the points of the two PDs and all diagonal points, such that any

pair of matched points are at most a distance d from each other, where we use the sup norm

in R2 to compute the distance between points. Once we have pairwise bottleneck distances

between PDs, we perform average-linkage hierarchical clustering into three clusters. (We

chose to have three clusters based on looking at the dendrogram.) In Figure 4.13, we show

the sampled points (which we color according to their cluster). We observe that the three

clusters consist largely of historical neighborhoods (“City center”), concession-era neighbor-

hoods (“Transition”), and modern neighborhoods (“New construction”). In Figure 4.14, we

show administrative districts along with the year that they were constructed. We break

them down by the percentage of the sample points that are in each cluster.

4.4.2 Comparing street networks from different cities

We continue our analysis of cities by characterizing and comparing the structures of street

networks of 306 cities across the globe. We downloaded latitude and longitude coordinates

from SimpleMaps [Sim19] and selected all cities with a population at least 1.5 million people.

Given these latitude and longitude coordinates, we use OSMnx [Boe17] to obtain street

networks. We then compute PH for each city and cluster their PDs using average-linkage

hierarchical clustering with three clusters. We sometimes refer to a city in a given cluster as a

city of a certain “type”. Our results depend on the specific latitude and longitude coordinates

in our downloaded data set. Accordingly, our results are influenced by the particular location

of a city’s coordinates, which are the standard ones in SimpleMaps.

In the following paragraphs, we describe our clusters of cities. We define “blocks” to be

the cells of a planar street graph. Although our level-set construction for computing PH is

not designed explicitly to characterize blocks, we take advantage of the fact that our level-set
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Figure 4.13: Sampled points in Shanghai. We color these points according to their cluster

assignment from average-linking hierarchical clustering of neighborhoods of Shanghai into

three clusters.
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Figure 4.14: Breakdown of administrative districts in Shanghai into our three clusters. (We

order the districts roughly by their year of development.) Most of the older districts have a

larger percentage of points that are assigned to the “City center" cluster, whereas the points

in the “Transition” cluster tend to occur in districts that included development in the 19th

and early 20th centuries. The “New construction" cluster is the most common assignment

for neighborhoods that were built in the 1950s or later.
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construction takes the set of streets as its initial manifold. As the streets expand outward

according to Equation (4.1), they fill in the blocks. Larger blocks take longer to fill in, and

blocks fill in more evenly when they are closer to circular in shape. Roughly, we characterize

block sizes based on the death times of H1 features: small sizes correspond to early death

times (specifically, less than 10), medium sizes correspond to death times between 10 and 15,

and large sizes correspond to late death times (specifically, more than 15). We also designate

blocks as “regular” (when they are close to a regular polygon) or “irregular” (for blocks that

do not resemble a rectangle or some other convex polygon). If a block is very irregular, then

as its streets expand, it is possible that narrow parts of the block shrink and close off, such

that the block segments into smaller blocks. We refer to this phenomenon as “pinching”. Our

three main clusters are dominated by (1) gridlike cities, (2) cities with gridlike patches that

are interspersed with larger, non-gridlike blocks, and (3) cities that have a large number of

non-gridlike structures (specifically, dead ends or large holes) that interrupt other structures.

We use the term “interrupted grid” for cities that are either mostly gridlike with some patches

that are not gridlike or that consist of patches of disparate grids that are stitched together

(with other features between them).

Our first major cluster has 99 cities and is dominated by cities with small, gridlike blocks.

All regions of the world have some cities of this type, but North America has the largest

percentage (relative to all of the cities that we sample from that continent) of these gridlike

cities and Europe has the smallest percentage of them. The block sizes in this cluster tend

to be small or medium, resulting in filtrations whose maximum filtration value tends to be

small in comparison to cities in the other two clusters. In the PDs, we also observe that the

distributions of death times of features in H1 tends to be close to uniform and over a small

range. Such distributions occur because these gridlike cities tend to have even distributions

of block sizes, even though they include some areas with slightly smaller and/or slightly

larger grid sizes. They do not have large blocks, so they do not have features in H1 with late

death times.
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Figure 4.15: Cities in our first major cluster have gridlike street layouts. One example of

such a city is Los Angeles, which we show in this figure. We show its street network on the

left and its associated PD on the right.

Our second major cluster has cities with patches of grids that are interspersed with

structures that are not gridlike. This cluster, with 149 cities, is the largest of our three

clusters. The PDs in this cluster tend to have larger maximum death times than the PDs

for the cities in our first cluster. In the PDs, gridlike blocks yield collections of features in

H1 with early death times, and the larger, non-gridlike structures yield features in H1 with

late death times. The non-gridlike areas in these cities do tend to have fairly regular shapes,

resulting in a relatively small number of features in H1 with late birth times. Such late-

birth-time features usually correspond to the pinching of blocks, which can occur either via

dead ends or via shape irregularities. By examining the dendrogram from our hierarchical

clustering, we can further separate the second cluster into two subclusters, which we show

in Figure 4.16. The first of these subclusters consists mostly of cities that have large patches

of gridlike structure, with a small number of large blocks that interrupt the grids. The

PDs for cities in this subcluster tend to have a large number of features in H1 with early

death times, and they tend to have only a small number of isolated features in H1 with late

death times. The second subcluster of our second major cluster consists mostly of cities with
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small patches of grids that are mixed with large irregular blocks. The PDs for cities in this

subcluster tend to have a larger number of features in H1 with late death times than is the

case for the cities in the other subcluster of cluster two.

Our third major cluster, with 58 cities, consists of cities with a large number of non-

gridlike structures. In particular, many of these cities have a large number of dead ends,

rectangular blocks that are not arranged in a grid, or both. Some of our observations include

streets that do not continue through particular blocks (e.g., there is a street, it is obstructed,

but then it continues after the obstruction), which leads to a mixture of block sizes even in

areas of a city that tend to have regular blocks. We refer to these situations as “obstructions”.

The PDs of the cities in this cluster have a larger number of features in H1 with medium

death times (specifically, in the range 10–15), and many of these features are close to the

diagonal. This is common when large blocks are pinched into several regions, as the smaller

regions are born at the pinching time, rather than near the beginning of the filtration.

Therefore, they do not survive long enough to have a late death time. By examining the

dendrogram from our hierarchical clustering, we see two clear subclusters. However, one

of these subclusters consists of only two cities (Beirut and Nanyang). The PDs of both of

these cities are dominated by two features in H1 with late death times, and they also have

several features in H1 with medium death times. In Figure 4.17, we show examples of cities

in cluster three.

We color our cities according to their major cluster and show them on a world map

in Figure 4.18. In Figure 4.19, we show the breakdown of cities from each continent into the

various clusters. We calculate PH for only four major cities in Oceania, so we cannot draw

strong conclusions from the cluster assignments of those cities. Among the other regions, we

observe that North America has the largest proportion of cities with gridlike street layouts

and the smallest proportion of cities with non-gridlike layouts. By contrast, Europe has the

smallest proportion of cities with gridlike street layouts. This is consistent with the common

perception that North American cities are much more gridlike than European cities. In all
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(a) (b)

Figure 4.16: Cities in our second major cluster have patches of gridlike structure that are

mixed with large blocks. As examples of cities in this cluster, we show (a) Aleppo and (b)

Barcelona. We show their street networks in the top row and their associated PDs in the

bottom row. Aleppo illustrates the idea of having holes in a large grid and is an example of

a city in the first subcluster of cluster two. Barcelona, which is in the second subcluster, is

an example of a city with small patches of gridlike structure.
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(a) (b)

Figure 4.17: Examples of cities in our third major cluster include (a) Nanyang and (b)

London. We show their street networks in the top row and their associated PDs in the

bottom row. Cities in our third major cluster include dead ends, irregular blocks, and

obstructions. This leads to a large range of block sizes and hence to features in H1 that

have medium death times. Such features are rare in the other two major clusters. For

example, Nanyang has several streets with obstructions, and London has dead ends and a

broad distribution of block sizes.
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regions, we also observe that a large fraction of the cities are interrupted grids. Additionally,

we observe that South America, Africa, and Asia have similar distributions of city types.

Interestingly, from the map in Figure 4.18, South America, Asia, and Africa appear to

have areas that are dominated by specific major clusters. We observe non-gridlike cities in

the northern part of South America, whereas we see gridlike cities along its east coast. In

Africa, most of the non-gridlike cities occur along the western coastline. In Asia, we see few

non-gridlike cities throughout most of Southeast Asia. Across the map, there appears to be

a potential equatorial band of non-gridlike cities. We do not have an explanation for these

patterns, but they are fascinating and seem worthy of future research efforts.

66



F
ig
ur
e
4.
18

:
C
it
ie
s
co
lo
re
d
by

th
ei
r
cl
us
te
r
as
si
gn

m
en
ts

fr
om

av
er
ag

e-
lin

ka
ge

hi
er
ar
ch
ic
al

cl
us
te
ri
ng

of
ci
ti
es

in
to

th
re
e

cl
us
te
rs
.
[T
he

sh
a
pe

fi
le

of
th
e
w
or
ld

m
ap

is
fr
om

[B
el
15

].]

67



Figure 4.19: Continents broken down based on the distribution of cities into our three major

clusters.

4.4.3 Comparison of our classification to that of Louf and Barthelemy [LB14b]

Classifying cities based on street networks is an area of interest in urban analytics. Street net-

works can affect congestion [LB14a], accidents [MG11,TSW20], and property crime [BBB94].

Prior papers have sought to characterize street networks based on network features [HSY20],

machine-learning methods [TSW20], orientation [Boe19b], and other approaches.

We compare our results to the city classification of Louf and Barthelemy [LB14b], who

associated each city with a conditional probability distribution that captures the areas and

shapes of its blocks. We choose their method as a point of comparison because they studied

a wide range of cities and (like us) codified cities from a block-based perspective. They

used the word “fingerprint” as a monicker for their block-based representation of cities. In

our method, we codify cities according to their PHs, which we generate using the level-

set construction of Section 4.1.2. Both the approach of [LB14b] and our approach capture

information that is based on city blocks, although our PH representation differs substantially

from the fingerprints of [LB14b].

Louf and Barthelemy clustered cities into four groups, whereas we have chosen to clus-

ter our cities into three groups. In [LB14b], European and North American cities largely
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inhabit the same cluster (group three in [LB14b]), but they appear in distinct subclusters,

demonstrating that there is a substantive difference between cities from the two regions. Our

method finds that North America has largest proportion of cities with gridlike streets among

all of the regions and that Europe has the smallest proportion of such cities.

In contrast to the above situation, Africa, Asia, and South America have a fairly balanced

composition of city types, with a potential equatorial band of non-gridlike cities. Louf and

Barthelemy observed several clusters (groups one, two, and four in [LB14b]) that occur

predominantly in Africa, Asia and Oceania (which they combined into one entity), and

South America. Notably, none of our clusters are as dominant as group three (which they

described as having heterogeneous block sizes and shapes) in [LB14b], although we do observe

that our cluster of cities with interrupted grids (such cities are characterized in part by their

heterogeneous block sizes) is also our largest cluster.

Now that we have compared our results to those of [LB14b], we briefly compare and

contrast the types of information that the two methods can capture. Recall that our level-

set construction for PH generates filtered simplicial complexes that first consist of streets

and then expand outward to absorb the blocks between them. The PH of these filtered

simplicial complexes thereby gives a low-dimensional representation of the original image of

a city street network. Because irregularly shaped blocks are absorbed into the surrounding

streets at a different pace than regular blocks, we capture information about the regularity

of each block. Louf and Barthelemy’s method also uses information about the regularity of

block shape. See Equation (3.2) in [LB14b] for a precise mathematical statement of how they

measured the regularity of blocks. It is related to so-called “compactness measures” [Gil02]

used in the study of gerrymandering [BS18,DT18], which compare the area of a shape to

the area of a circle in which the shape is circumscribed.

Because the original image of a street network includes information about the spatial

relationships between blocks, the PH that results from our approach also encodes some of

this information. By contrast, Louf and Barthelemy’s fingerprints do not encode information
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about the spatial relationships of blocks to each other. Additionally, our method captures

information from dead ends, which Louf and Barthelemy discarded.

Overall, although both our approach and that of [LB14b] use a block-based representation

to characterize cities, there are subtle differences in the way that the two approaches encode

block information. The commonality of a block-based perspective results in some similarities.

For example, the clusters that result from the two approaches seem to be based heavily on

block size and regularity. However, our approach appears to prioritize spatial relationships

between different clusters of blocks (specifically, whether blocks are arranged in a grid); such

information is not captured in the approach of [LB14b]. Consequently, the two approaches

capture different city morphologies, and we expect them to be useful as complementary

techniques for studying structures in spatial complex systems.

4.5 Scientific images

4.5.1 Spiderwebs

In this section, I discuss an application to the topology of spiderwebs from [FP20c]. See Sec-

tion 2.4.1 for background on the data set that I used in this case study.

We use five images from the NASA technical briefing [NCR95] and two images from

Witt [Wit71] of various webs that were spun by spiders under the influence of a variety of

psychotropic substances, apply a level-set construction to compute PH, and perform average-

linkage hierarchical clustering to yield the dendrogram in Figure 4.20. We show the images

of the spiderwebs and their associated PDs in Figure 4.21.

Our classification places the drug-free spider into its own cluster. The drug-free spiderweb

is characterized by a clear central hole, threads radiating outward at approximately even

intervals, and completed rings of threads that surround the center. We place marijuana,

peyote, and LSD in the same cluster. In these webs, there is a clearly identifiable center,
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and most of the radial threads are evenly-spaced, straight, and radiate outward directly

from the center. However, for the webs in this cluster, rings of threads are either difficult

to see or are incomplete. The final cluster consists of chloral hydrate, caffeine, and speed.

In the caffeinated spider’s web, one cannot even clearly identify a center1. One can locate a

center in the webs of the spiders that were under the influence of speed or chloral hydrate

(a sedative that is used in sleeping pills), but many of the radial threads do not join the

center and some of the radial threads are not straight. Almost no complete rings of thread

are visible in any of the three webs in this cluster.

Figure 4.20: Classification of webs that were spun by spiders under the influence of various

psychotropic substances.

4.5.2 Snowflakes

In this section, I discuss an application to snowflake crystals from [FP20c].

We start with twelve different images (from [Lib19]) of snowflakes with different crys-

talline structures. (See Figure 2.5 in Section 2.4.2.) From these images, we compute level-set

1The web that was produced by the caffeinated spider is always fun to point out when giving presentations.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4.21: Webs spun by (a) drug-free spiders, compared with webs spun by spiders that

were under the influence of (b) chloral hydrate (sleeping pills), (c) marijuana, (d) speed, (e)

caffeine, (f) peyote, and (g) LSD. [The images for panels (a)–(e) are from [NCR95], and the

images for panels (f) and (g) are from [Wit71].]
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(a) (b) (c)

Figure 4.22: Snowflakes can have a variety of crystalline structures, as we illustrate with

(a) Snowflake A, (b) Snowflake B, and (c) Snowflake D. We show the snowflake structures

in the top row and their associated PDs in the bottom row. We show the structures of our

full set of snowflakes in Figure 2.5. [The images in the top row are from [Lib19].]
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complexes and PHs. We then perform average-linkage hierarchical clustering on the PDs to

produce the dendrogram in Figure 4.23.

Figure 4.23: Dendrogram from clustering the snowflakes in Figure 2.5.

The images of snowflakes consist of edges (the black lines in our images) and cells (the

white spaces that are bounded by the edges). We refer to the outer areas that extend from

the center of the snowflakes as their “points”. The twelve snowflakes have fairly regular

crystalline structures, so our computation of PH predominantly records information about

the distribution of cell sizes in a snowflake. The inherent hexagonal nature of snowflakes

and the regularity of their crystalline structures largely overwhelms our ability to use PH to

glean information about their spatial relationships and irregularities.

Examining the clusters (see Figure 4.23) reveals that snowflake A and snowflake B each re-

side in their own cluster, and the remaining snowflakes split into two more clusters. Snowflake

A’s PD (see Figure 4.22a) is dominated by a feature in H1 with an early birth and a late

death. (See the point at the top-left corner of the diagram.) This arises from the large

feature that is formed by the bold ring around the center of the snowflake. None of the other

snowflakes have a bold central ring. More generally, we observe few features in the PD for

snowflake A. By contrast, snowflake B’s features are largely close to the diagonal (see Fig-

ure 4.22b) because the initial manifold of the snowflake does not have large holes. Notably,
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we do not observe any points in the top-left region of its PD. The cell sizes in snowflake B

are smaller than those in most of the other snowflakes, and even its central ring structure

includes a large number of small holes. The remaining snowflakes either have more large

holes than snowflake B, or they do not have a bold central ring like the one in snowflake A.

Note that Snowflake B has a PD that is much closer than that of Snowflake A to those of

the other snowflakes.
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CHAPTER 5

Using topology to study neighborhood segregation

This chapter contains research from my work at the 2018 Voting Rights Data Institute.

I worked in collaboration with Eion Blanchard (University of Illinois Urbana-Champaign),

Moon Duchin (Tufts University), Austin Eide (University of Nebraska, Lincoln), and Patrick

Girardet (University of California, San Diego). The Voting Rights Data Institute is a six-

week workshop held by the Metric Geometry and Gerrymandering Group that focuses on

collaborations around a variety of topics related to gerrymandering and voting access. Our

project focused on using topological tools to attempt to detect and understand residential

segregation. This work is not complete, but my collaborators and I explored several ideas

for novel methods over the course of the project. I present them in the following sections.

Much of the text in the following sections is extracted from my write-up on the project.

5.1 Segregation

Racial segregation is an important phenomenon with far-reaching implications across various

facets of society. In this work, we focus on racial segregation in America. Because of its

continued relevance in policymaking and social justice, racial segregation has been a topic

of broad study in social science, demography, economics, and various other fields [LPG07,

LS84,DC20]. While these studies have yielded many insights into specific factors that lead

to segregation and its effects on social outcomes for various communities, there continue to

be many questions about the mechanisms that drive neighborhood segregation. In our study,

we present a topological framework with which we can study racial segregation and show
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that it is able to capture properties of racial segregation in various United States cities. This

framing of racial segregation allows us to apply powerful topological tools to the study of

neighborhood formation and community development.

Racial segregation has been studied for decades in social science and history. Some studies

have examined the causes of racial segregation [Sei98,Rot17], and others have examined the

impacts of segregation on education [Moo01], economic outcomes [RM10], crime [PK93], and

more. Various computational tools have been developed for measuring and understanding

segregation [MD88,LPG07]. In addition to statistics and measures of residential segregation,

various models have been developed to study the dynamics of segregation [Zha11,CMR08,

Cha03, Sch71] While these measures and models have contributed to understanding the

mechanisms of racial segregation, we believe that there is value in studying segregation and

neighborhood formation in terms of topological obstructions in an appropriate space.

In the context of neighborhood segregation, we can interpret the boundaries between

neighborhoods as obstructions. These obstructions have both demographic and spatial ele-

ments. For example, in the city of Chicago, the border between Hyde Park and Kenwood

separates two adjacent neighborhoods with very different demographics (due mostly to the

location of University of Chicago in Hyde Park). If we can build an appropriate topological-

space approximation of the South Side of Chicago, we can detect this obstruction as a

topological feature. In this project, our goal is to find general ways of building topological-

space approximations whose topological features correspond to neighborhood boundaries.

This places the problem of racial segregation into a topological setting, allowing us in turn

to apply topological tools like homology to studying the structure of racial segregation.

We focus on building topological spaces that capture demographic and spatial proper-

ties of interest. We then probe these spaces with PH to detect topological obstructions.

We propose two novel constructions, which we then demonstrate are capable of capturing

boundaries of racial segregation. We then perform a cross-sectional study to various U.S.

cities to demonstrate the viability of our methods.
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5.2 Methods

To apply PH to a data set, the data must first be transformed into a suitable filtered complex.

We use filtered simplicial complexes (in which the base units are collections of n-simplices)

because of the availability of PH packages that take filtered simplicial complexes as an

input. We must carefully select the construction of filtered simplicial complex to obtain

meaningful results from a PH computation. I discuss the difficulty of constructing filtered

simplicial complexes in Section 3.4.1, and I study the impact of making an appropriate choice

in Section 4.3. In the following subsections, we describe two novel methods that we use to

build these filtered simplicial complexes to capture the properties that we seek. Because of

the reliance of neighborhood formation on both demographic composition and spatial factors,

our methods incorporate both existing demographic and spatial data into our construction

of filtered simplicial complexes.

5.2.1 Demographic edges

We use spatial data to build a graph for the area that we study, where graph adjacency

is determined by rook adjacency of two census tracts. As discussed in Section 4.3 in the

context of precincts, two census tracts are rook adjacent if they share an edge. This graph

is nearly planar (non-planarity can result from a variety of map drawing degeneracies, but it

affects a relatively small fraction of census tracts), and we compute the approximate planar

faces of the graph [DCV08].

To construct a filtered simplicial complex, we begin by adding a 0-simplex (i.e., a vertex)

for every census tract. We then add 1-simplices (i.e., edges) according to demographic simi-

larity. We add 2-simplices (i.e., faces) whenever all of the edges of a planar face in the graph

is in the simplicial complex. By adding 1-simplices according to decreasing demographic

similarity, we create a filtered simplicial complex whose filtration parameter is demographic

distance.
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This particular construction yields what is essentially an approximation of demographic

space, with a spatial component that helps determine some of the connectedness properties

of the space. Accordingly, one should interpret the features of the homology of this filtered

simplicial complex as obstructions in demography. In Section 5.3.1 we will discuss how to

interpret this simplicial complex and its homology.

5.2.2 Spatial edges

In our second method for constructing a filtered simplicial complex, we also begin by building

a network from a map and computing its planar faces. Once again, the 0-simplexes of this

filtered simplicial complex are census tracts. However, we now determine the edges by spatial

adjacency, and we fill in the “planar” faces only when all vertices of the face are sufficiently

demographically similar. Our filtration parameter is again given by demographic similarity.

The primary difference between this method and the one in Section 5.2.1 is that this

filtered simplicial complex is an approximation of physical space, rather than demographic

space, with the demographic similarities determining connectedness. In a similar vein to our

demographic-edge construction, we now interpret obstructions as existing in physical space.

We further discuss this interpretation in Section 5.3.2.

5.3 Results

To illustrate the differences between our two choices of filtered simplicial complexes and their

homologies, we begin by examining Washington, D.C. as a case study. In Section 5.3.3, we

will discuss results on Chicago, but we begin with Washington, D.C. because of its small size

(and ensuing fast computation time) and well-studied segregation patterns. In Figure 5.1, we

highlight the majority black neighborhoods on the eastern side of the city. We use the ACS

category “Black or African American” in the racial breakdown of each neighborhood. These

segregation patterns were largely the result of housing discrimination and several waves of
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large-scale migration into the city [DC20].

Figure 5.1: City of Washington, D.C. colored by the proportion of Black or African American

residents. [This image was created by Eion Blanchard.]

5.3.1 Demographic edges and interpretations for a case study of Washington,

D.C.

We first consider a filtered simplicial complex that we build with demographic edges, as

described in Section 5.2.1. By using this filtered simplicial complex as a starting point for the

PH package Dionysus [The17], we obtain the barcode showed in Figure 5.2. In this barcode,

we observe a large number of topological features of various lengths. In general, the length of

a particular bar does not necessarily indicate that the corresponding feature is an important

one (as discussed in Section 3.4). However, our choice of filtered simplicial complex yields

a specific interpretation for barcodes of various length. Longer bars correspond to larger
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obstructions; in the demographic space that we examine, we can interpret these bars as

describing the mixing properties of populations.

(a) (b)

Figure 5.2: We show (a) Filtered simplicial complex with demographic edges constructed

from Washington, D.C. racial data and (b) its associated barcode. In (a), we color simplices

that enter the filtration by time of entry, with the latest filtrations in the lightest colors.

In (b), we observe many features in the PH. The longest bars correspond to simplices that

form around the middle region of the city. From Figure 5.1, we observe that the Black

or African American population of Washington, D.C. is concentrated mostly around the

eastern portions of the city. The filtered simplicial complex captures the east/west divide in

the demographics of the city. The highest-birth-time simplices (colored in bright yellow) span

the East/West divide in areas where the proportion of Black or African American residents

changes gradually across census tracts.

Each feature in the barcode in Figure 5.2 corresponds to a topological cycle that is not a

boundary. Therefore, there is some cycle in the 1-skeleton of the filtered simplicial complex.

That is, we can move through the demographic space around that cycle by moving from

one census tract to another, where the only allowable steps are through census tracts that

are sufficiently similar. However, because the cycle is not a boundary, the path through

physical space that corresponds to this cycle in demographic space does not surround a
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meaningful region of the map. For example, it may not pass through adjacent census tracts,

or it may surround a census tract whose demographics do not match those of the cycle.

Because we allow cycles through demographically similar regions that might be very far

apart physically, many of these cycles persist throughout the entire filtration. We identify

these infinite-persistence cycles in Figure 5.2 using yellow bars. We focus our attention on

those features that do eventually die.

For this construction, we use demographic edges to approximate demographic space.

As we increase the filtration parameter ε, the number of 1-simplices increases very quickly,

resulting in a large simplicial complex and slow computations.

5.3.2 Spatial edges and interpretations for a case study of Washington, D.C.

If we instead consider a filtered simplicial complex with spatial edges, as described in Sec-

tion 5.2.2, we can obtain information about spatial obstructions. In Figure 5.3, we show the

barcode for the PH of the filtered simplicial complex that we construct for Washington, D.C..

Our choice of construction implies that longer barcodes correspond to physical obstructions.

5.3.3 A second case study: Chicago

As another case study, we also construct both types of filtered simplicial complex for the

city of Chicago. Segregation patterns in Chicago were informed by and crystallized by

the construction of superhighways that cut through the city [Tom17]. Historical records

indicate that these highways were used specifically to break up neighborhoods with large

Black or African American populations. Highways were also used to create barriers between

neighborhoods with different demographic makeups during “city beautification initiatives”.

The presence of these highways as physical obstructions has continued to lock relatively

poor Black or African American populations into certain neighborhoods of the city, and the

pattern of highways is visible in racial choropleths of Chicago.
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(a) (b)

Figure 5.3: We show (a) the filtered simplicial complex with spatial edges that we construct

from Washington, D.C. racial data and (b) its associated barcode. In (a), we color simplices

that enter the filtration by time of entry, with the latest filtrations in the lightest colors. In

(b), we observe many features in the PH. The longest bars correspond to simplices that form

around the middle region of the city. We highlight infinite persistence bars in yellow for ease

of reading the barcode. The filtered simplicial complex captures the east/west divide in the

demographics of the city. The highest-birth-time simplices connect adjacent census tracts

with large differences in their proportion of Black or African American residents.
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(a)
(b)

Figure 5.4: (a) Highways of Chicago from Google Maps. (b) Census tracts of Chicago

colored by their proportion of Black or African American residents. Comparing (a) and (b),

the patterns of highways are visible in the choropleth in (b).

We constructed only the filtered simplicial complex with spatial edges for the city of

Chicago because it has many more census tracts than Washington, D.C. Because every

possible pair of census tracts contributes a demographic edge, it was intractable for us to

compute the filtered simplicial complex with demographic edges in the Chicago case for our

project. In Figure 5.5, I show the filtered simplicial complex and its associated barcode for

the spatial-edges filtered simplicial complex of Chicago. The longest features straddle the

locations of the highways. [Image in (b) was created by Eion Blanchard.]
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(a) (b)

Figure 5.5: We show (a) the filtered simplicial complex with spatial edges that we from

Chicago racial data and (b) itsassociated barcode. In (a), we color simplices that enter

the filtration by time of entry, with the latest filtrations in the lightest colors. In (b), we

observe many features in the PH. We highlight infinite length features in yellow to increase

readability of the barcode. The filtered simplicial complex follows some of the major highway

lines in Chicago. We observe a variety of brighter simplices that are on the South Side, an

area known for containing many segregated neighborhoods.
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CHAPTER 6

Ongoing projects

In this chapter, I discuss several current projects with social-science applications. The first

project, which I discuss in Section 6.1, focuses on adaptations of bounded-confidence models.

It is in collaboration with Heather Zinn Brooks (UCLA), Yacoub H. Kureh (UCLA), and

Mason A. Porter (UCLA). We aim to explore the behavior of bounded-confidence models

on generalizations of network structures like multilayer networks. In Section 6.2, I discuss

a project that is in collaboration with Yacoub H. Kureh (UCLA), Alexis Piazza (ACLU

Los Angeles), and Victor Leung (ACLU Los Angeles). We seek to model homelessness in

California schools to improve identification of schools and school districts that undercount

homeless students.

6.1 Adaptations of bounded-confidence models

Along with my collaborators Heather Zinn Brooks, Yacoub H. Kureh, and Mason A. Porter,

I am interested in exploring opinion dynamics in networks that are not graphs. In this

section, I describe our current research in this area. In Chapter 7, I will describe a planned

future project for exploring a simplicial version of a bounded-confidence model. We have

briefly discussed model formulation, but subsequent research on this model is future work.

86



6.1.1 Multilayer bounded-confidence models

In today’s world, people consume and digest information from a large variety of sources. As

a result, our opinions can be informed by information that spreads over multiple networks

(which one can encode as “layers” in a multilayer network [KAB14]), that we may treat dif-

ferently. For example, different types of news may spread on Facebook versus Twitter versus

traditional news outlets, or an individual may have different groups of contacts that spread

different types of information. In this project, we examine dynamical systems on multilayer

networks to model how information that spreads over different layers can change individuals

opinions. Specifically, we wonder whether multilayer networks will lead to different spreading

properties than the single-layer networks that were explored in [MVP18,BP20].

6.1.1.1 Model statement

We begin by proposing multilayer versions of a Hegselmann–Krause bounded-confidence

model [HK02] (defined in Section 3.5.1). In this work, we study a simple model in which

there are only two layers and an individual’s opinion on each layer is the same. As a future

extension, we may suppose that an individual can express different opinions on different

layers. Individuals can be affected by both intralayer connections and interlayer connections.

In our model, individuals are connected between layers only to themselves. Therefore, our

multilayer networks are examples of multiplex networks [KAB14]. An individual updates

their opinion according to a synchronous update rule as follows:

xv(t+ 1) =

∑
α,β∈L

∑
w∈V Avwαβxw(t)1|xv(t)−xw(t)|<c∑

α,β∈L
∑

w∈V Avwαβ1|xv(t)−xw(t)|<c
. (6.1)

where our notation follows the multilayer network notation from Section 3.6.1. Additionally,

xv(t) is the opinion of individual v at time t, the adjacency tensor A encodes a multilayer

network, and c is the confidence bound. If we allow A to be a weighted adjacency tensor,

we can incorporate individuals weighting some layers (in our context, some social-media
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platforms) as more important than others.

The update rule in Equation (6.1) does not specify a number of layers. We will perform

experiments on two-layer networks and leave experiments on networks with more layers as

future work. We observe that in our model, the higher the number of layers, the more layers

an individuals are connected to themselves on. As a result, individuals in networks with

more layers will weight their own opinion more highly.

6.1.1.2 Results on networks with G(N, p) layers

We begin by considering two-layer networks in which each layer is a G(N, p) network (defined

in Section 3.1.1.3) with n nodes and an independent, homogeneous probability p for each

edge to exist. In Figure 6.1, we show one such network and the opinion history of each node

on that network from time t = 0 until convergence.

(a) (b)

Figure 6.1: (a) One layer of a two-layer network. We construct the network in each layer

using a G(N, p) model with N = 100 and p = 0.1 in each layer. We color nodes by initial

opinion. (b) Opinion dynamics of the network in (a). The nodes in this network converge

to a single opinion.

We vary N , p, c, and the “interlayer weight”, which is the weight that we assign to
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interlayer edges. For each set of parameters, we generate 1000 networks and initialize the

opinions of all nodes in the network uniformly at random from the interval [−1, 1]. We then

update the opinions of nodes according to our update rule in Equation (6.1) until convergence

or until we exceed some maximum run time. In our experiments, this maximum was 10000

time steps.

After each simulation has converged (or exceeded maximum run time), we compute the

number of clusters (which we take to be the number of connected components after the

simulation finishes). We then generate heatmaps based on the mean and median number

of clusters across our simulations. Previous work on multilayer networks has indicated that

interlayer edge weights can impact measures of network structure and dynamical processes

on such networks [BP18, PWC19], so we illustrate the effects of changing this parameter.

In Figure 6.2, we show results for a selection of these parameters.

(a) N = 100 and p = 0.02 (b) N = 100 and p = 0.06 (c) N = 100 and p = 0.1

Figure 6.2: Heatmaps of the mean number of clusters at convergence for two-layer networks

in which each layer is an instance of a G(N, p) network with N = 100. Interlayer edge weight

is on the vertical axis, and confidence bound is on the horizontal axis. The number of clusters

changes very little with respect to interlayer edge weight. The number of clusters decreases

as we increase p. This is consistent with results on single-layer G(N, p) networks [MVP18].

Varying the interlayer weight (which we have taken to be homogeneous for all nodes

in our examples) seems to have little effect on the number of clusters, indicating that this

particular form of multilayer network does not behave markedly differently from single-layer
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G(N, p) networks. However, this result is not entirely unexpected. Our model is equivalent

to running a Hegselmann–Krause bounded-confidence model on a network that is the sum

of two G(N, p) networks in the following sense.

If we take the adjacency matrices of two G(N, p) networks with no self-edges and add

them componentwise, we obtain all of the interlayer edges and edge weights of our two-

layer G(N, p) network. If we then add self-edges with weight equivalent to the intralayer

edge weight in our two-layer model, we account for all intralayer edges. In a single-layer

Hegselmann–Krause model, individuals place a weight on their own opinions as well. There-

fore, with the exception of any edges that occur in both layers of a network, our two-layer

network is equivalent to a single-layer network that includes self-weightings. For small val-

ues of p, few edges occur in both layers of the network. As a result, as p → 0, the two-

layer Hegselmann–Krause model behaves like a single-layer Hegselmann–Krause model on a

G(N, 2p) network. For very high values of p, many edges occur in both layers of the network,

so that the limiting behavior as p→ 1 is equivalent to the behavior of a single-layer network

with half the self-weighting (because at p = 1, every intralayer edge occurs in both layers,

doubling the weights of those edges).

6.1.1.3 Possible alternative multilayer networks

We expect that networks that have more structure (e.g., cycle graphs, lattice graphs, or

stochastic block models) than G(N, p) networks may yield results that are more distinctive

than those on single-layer networks. To this end, we will proceed by examining networks

with two layers of ring networks, lattice networks, and others. We are also considering

networks in which the two layers do not have the same parameters (e.g., G(N, p) networks

with different values of p in the two layers) or where the two layers do not have the same type

of network structure. Alternatively, we are considering varying the interlayer edges either by

not connecting all individuals to themselves across layers or by allowing individuals to have

different opinions on the different layers.
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6.2 Homelessness underreporting

Under the 1987 McKinney–Vento Homeless Assistance Act [Mck87], federal law requires

that a variety of services be provided to homeless people. Specifically, the McKinney–

Vento Act is a conditional funding act that provides federal grants to states in exchange for

compliance with the act. Under the McKinney–Vento Act, schools must ensure that homeless

children have free transportation to and from school. Additionally, homeless children must

be allowed to attend their school of origin (the school they were attending before they

became homeless) regardless of current residence. It also requires schools to register homeless

children even if they cannot provide required documents (such as immunization records or

proof of residence). To implement the terms of the McKinney–Vento Act, states must have

a designated statewide homeless coordinator and local school distracts much appoint Local

Education Liaisons. Liaisons are responsible for notifying homeless families of their rights

under the act, facilitating access to their school of origin, and ensuring that school staff are

aware of homeless students’ rights under the act.

In practice, many homeless children who are enrolled in schools are not reported as home-

less. The McKinney–Vento Act defines homeless children as those who “lack a fixed, regular,

and adequate nighttime residence” [Mck87], but this definition does not necessarily align with

the general population’s perception of what it means to be homeless. Additionally, according

to the 2019 California audit of Youth Experiencing Homelessness (YEH) [How19], available

data suggests that California Local Education Agencies (LEAs) are not doing enough to

identify youth experiencing homelessness. This is defined to be youth who are currently

homeless. While homeless education experts generally estimate that 5–10% of economically

disadvantaged youth experience homelessness [How19], four of the six LEAs in the audit

reported 3% or fewer of economically disadvantaged students as experiencing homelessness.

While it is unclear precisely why homeless students are underidentified, LEAs frequently

do not sufficiently train school staff to identify homeless youth, and they may not disseminate
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information to local schools about homeless education programs and services [How19]. State

homeless education programs suffer from low staffing rates, leading to difficulty overseeing

homeless education programs and ensuring that they are properly implemented.

The 2019 YEH audit concluded that LEAs that coordinate more with homeless service

organizations do a better job of identifying youth experiencing homelessness. In the audit,

LEAs that coordinated with homeless service organizations had lower rates of absenteeism,

suspension, and dropping out than statewide averages, indicating that intervention at the

LEA level can help homeless students achieve better educational performance. Identifying

homeless youth is therefore a critical step for providing them with access to the support that

they need.

In this work, my collaborators and I seek to develop models to aid in the identification

of homeless youth. Specifically, because we believe that the majority of LEAs are underre-

porting (potentially severely) the number of enrolled homeless students, one of our major

goals is to develop a model to identify which LEAs and schools are the most likely to need

intervention.

6.2.1 Data exploration

One of the challenges in data about homelessness is its lack of reliability. Based on [How19],

we suspect that the vast majority of LEAs are underreporting severely, but we do not have

any way of knowing which LEAs are reliable. Because we believe that income and cost of

living are likely to be correlated with the number of students experiencing homelessness, we

have been searching for correlations between American Community Survey (ACS) income

data [Bur16a] and the Calfornia Longitudinal Pupil Achievement Data System (CALPADS)

[Edu19] data set, which records the number of enrolled homeless students at each school.

Initially, my focus has been to look for geographical patterns in homelessness or income

level at the LEA level, but it is difficult to find geographical patterns that seem meaningful.
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My collaborator Yacoub Kureh has been searching for correlations between the CALPADS

homelessness data set and ACS data, but we have been unable to find meaningful correla-

tions. (We suspect this is because of the inherent unreliability of the homelessness data.)

In Section 6.2.2, I describe our plans for moving forward on the project. As these plans are

currently in progress, we do not yet have results, but I include them in this thesis because

we have put a significant amount of thought into model formulation.

Figure 6.3: California LEAs colored by median income in dollars. Aside from higher income

levels in urban areas, we are not able to discern any patterns.
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Figure 6.4: California LEAs colored by fraction of enrolled students who are experiencing

homelessness. Similar to the choropleth for income in Figure 6.3, we do not observe any

geographical patterns.
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Figure 6.5: Scatter plot of median income versus ratio of homeless students to enrolled

students. Here, we use the Unduplicated Pupil Count (UPC) from CALPADS to determine

number of enrolled students. Each point of the scatter plot represents one California LEA.

Although the scatter plot appears to be bounded above by a line with negative slope, we

observe no clear correlation. It is possible that if underreporting were corrected, we would

observe a negative correlation, as one may expect.

6.2.2 Plans for modeling

Because of the difficulty of working with the full CALPADs homelessness data set, our

collaborators at the ACLU are hoping to conduct surveys of some LEAs. We hope that

these surveys will be able to serve as a training set. Because we have limited surveying

resources, one important question that we need to consider is how to obtain a representative

95



sample to survey.

Experts on homelessness in schools agree that overreporting does not happen [Pia19]. To

this end, one sampling strategy that we have considered is to target the LEAs that we think

are most likely to be underreporting with surveys, because these are the LEAs that provide

the least information. Experts have estimated that the homeless student population of an

LEA or school should be roughly 5% of its “free and reduced lunch” population [Pia19], so we

will assume that schools that report more than 5% of its free-and-reduced-lunch population

as homeless are reporting correctly.

We propose several approaches to incorporate these assumptions into our models. The

first is to use only those schools that we assume (based on the 5% mark) to be correctly

reporting to build a model for inferring rates in the remaining schools. For example, we can

use income data from the ACS to perform linear regression. This method is very simple, but

it will likely be biased toward schools that report the largest numbers. For example, some

schools serve only homeless populations, so they report 100% homelessness.

Another approach is to attempt to use statistical inference to identify underreporting

schools, based on priors that we obtain using the assumptions on underreporting and home-

lessness rates.

Let X be the unobserved variable that represents the true homelessness variable, and let

X̃ be the observed proxy homelessness variable. We use x to denote a realization of X (and

x̃ a realization of X̃), defined as follows:

x =
h

l
, x̃ =

h̃

l
, (6.2)

where h is the true size of the homeless population, h̃ is the observed homeless population,

and l is the free and reduced lunch population.

Let MX be the misclassification variable, which controls whether X is correctly reported

(in which case Mx = 1) or not (Mx = 0). We then assume that no district is overreporting.
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That is, we assume

p(Mx = 1|x̃ ≥ 0.05) = 1 , p(Mx = 1|x̃ < 0.05) = θ ,

where θ ∈ [0, 1] is a parameter.

We also assume that if x̃ = ρ̃ is underreported, the true homeless variable x is uniformly

distributed in [ρ̃, 1]. We use the uniform distribution for simplicity.

We are interested in estimating x given x̃. Using Bayes’ Theorem, we can compute

p(x = ρ| x̃ = ρ̃) =
p(x = ρ, x̃ = ρ̃)

p(x̃ = ρ̃)

=
p(x = ρ, x̃ = ρ̃|Mx = 0) + p(x = ρ, x̃ = ρ̃|Mx = 1)

p(x̃ = ρ̃)

=
1ρ̃<ρ1 ˜ρ<0.05p(x = ρ| x̃ = ρ̃) + 1ρ=ρ̃

p(x̃ = ρ̃)

=
1ρ̃<ρ1 ˜ρ<0.05

1
1−ρ̃ + 1ρ=ρ̃

p(x̃ = ρ̃)

=
1ρ̃<ρ1 ˜ρ<0.05 + 1ρ=ρ̃(1− ρ̃)

(1− ρ̃)p(x̃ = ρ̃)
.

From this derivation, we have the conditional probability distribution

p(x = ρ| x̃ = ρ̃) =
1ρ̃<ρ1 ˜ρ<0.05 + 1ρ=ρ̃(1− ρ̃)

(1− ρ̃)p(x̃ = ρ̃)
. (6.3)

With the observed distribution P (X̃), Equation (6.3) allows us to maximize the likelihood

that p(x = ρ| x̃ = ρ̃), thereby inferring the value of the true homelessness variable x. This

method depends heavily on our assumptions on the distributions of X and MX .

We propose using a combination of these two methods to identify the LEAs that are

most worth surveying. Once we have surveyed data, we will adjust our inference model by

adding the newly surveyed LEAs to the training set.
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CHAPTER 7

Conclusions and future work

In this thesis, I have discussed a variety of tools for exploring the structure of complex

systems. In the following sections, I summarize key results from the thesis and describe

future projects that extend some of the ideas in this thesis.

7.1 Key Results

With my advisor Mason A. Porter, I developed two novel methods for building simplicial

complexes from map-based network data (see Chapter 4). Both methods can be applied more

generally to spatial data sets. We used our new methods to characterize voting patterns,

city street networks, scientific images, and random graphs. We also identified voting islands

in California precincts, detected patterns in city street layouts (e.g., we quantified the sense

that American cities are particularly gridlike), and categorized spiderwebs based on web

regularity.

My collaborators Eion Blanchard, Moon Duchin, Austin Eide, and Patrick Girardet,

and I suggested some methods for thinking about the interplay of various notions of space

(see Chapter 5). We appllied our techniques to neighborhood segregation to identify neigh-

borhood boundaries.

My collaborators Heather Zinn Brooks, Yacoub H. Kureh, and Mason A. Porter, and

I proposed an extension (see Section 6.1) of the Hegselmann–Krause model for opinion

dynamics to multilayer networks. We are currently investigating the convergence behaviors
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of this model for different network structures.

My collaborators Yacoub H. Kureh, Victor Leung, Alexis Piazza, and I proposed methods

(see Section 6.2) for identifying LEAS that are underreporting youth experiencing homeless-

ness.

7.2 Future research

7.2.1 Topological tools for temporal networks

Much of my thesis work has focused on how to transform a data set into a topological object.

In my future work, I intend to extend topological ideas from Morse theory to the study of

data that varies in time. Morse theory allows one to compute changes in the topology of a

space using Morse functions [MSW63]. This provides a computationally efficient approach

for quantifying changes in topology.

I want to extend some of the ideas from my thesis research to build complex topological

objects, potentially based on data sets on a variety of temporal scales. This will allow me

to explore changes in network structure over time, which would meaningfully extend the

current scope of topological data analysis.

7.2.2 Dynamical processes on simplicial networks

Another area that I seek to explore in the future is the concept of simplicial networks. Many

social relationships are not pairwise, and there are a variety of applications (e.g., team-based

competitions and peer pressure) that incorporate ideas of group influence. Framing networks

as simplicial complexes provides one method of modeling these types of relationships [IPB19,

HK20].

Because of the computational and conceptual complexity that is presented by the question

of orientation in simplicial complexes, there remains a lot of work to be done on understand-
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ing simplicial models of dynamical processes. In particular, I hope to bring some of my topo-

logical expertise to bear on the problem of opinion formation (e.g., in bounded-confidence

models) in simplicial models. Specifically, I plan to work on models for understanding opin-

ion formation in a simplicial network. How does peer pressure affect opinion formation?

Can this lead to different types of consensus and polarization effects than in single-layer or

multilayer networks?

7.3 Summary

Over the course of my Ph.D., I have helped develop and apply a variety of methods that

incorporate topological notions of “closeness” into the study of complex systems, with a focus

on social systems. I have performed case studies that demonstrate the value of topological

tools for understanding global structure in networks and complex systems more generally,

and some of these case studies have helped shed light on specific spatial applications (such

as cities, voting, and spiderwebs). The methods that I have developed are computationally

efficient for applications to 2D spatial networks, and they provide a new way of thinking about

planar network data as topological spaces, rather than as graphs. I believe that applying this

type of topological framework to applications can allow one to explore a variety of problem

spaces in new and exciting ways, leading to new insights on the structure of complex systems.
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