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ABSTRACT 

In alluvial rivers, whose bed and banks are made up of mobile sediment, river geometry 

generally adjusts to just mobilize the most resistant material lining the channel. In essence, such 

rivers are freely formed by sediment transport processes (e.g. erosion, deposition, transport, 

storage). In laterally confined coarse-bedded rivers where adjustment of channel planform and 

gradient are more restricted this is not always the case, resulting in channel morphologies 

characterized by resistant boundaries and large substrates, and predominance of other modes of 

adjustment such as changes in bed roughness. While study of mountain river geomorphology and 

hydraulics has increased in last 30 years, there remains room for methodological advancement and 

basic science exploration, especially given availability of technological innovations in data 

collection, modeling, and data analysis. Thus, the goals of this dissertation were: (i) to advance 

methods for geomorphic and hydraulic assessment suited to mountain river settings; and (ii) 

improve foundational understanding of mountain river channel morphology, geomorphic 

processes, and process-morphology linkages. Using a 13.2-km segment of the mountainous Yuba 

River (Northern California) as a test bed river study site, three chapters present this work: 

In Chapter 1, a procedure was developed to map sub-meter resolution large bed elements 

(LBEs) from a 3D point-cloud and test the hypothesis that element configurations were organized 

to maximize flow resistance. The procedure, which involved applying a ground classification 

algorithm to produce a roughness surface model and extracting LBEs with a marker controlled 

watershed algorithm, resulted in mapping 42,176 LBEs in the study site. Scale and discharge-

dependent LBE concentration and spacing metrics quantified for multiple laterally and/or 

hierarchically nested spatial domains and classified using three flow-resistance based 
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hydrodynamic regimes confirmed nearly all segment- and reach-scale LBE concentrations 

corresponded to a state of maximum resistance. However, disparities between concentration and 

spacing metrics left open questions about resistance maximization as an extremal model of 

geomorphic adjustment. Finer scale analyses demonstrated spatial variability of LBE 

configurations, but identified maximum resistance act as an attractor state toward which conditions 

converge. Lastly, lateral variability of LBE metrics had implications for discharge-dependent 

resistance. 

Chapter 2 couples sub-meter resolution 2D hydrodynamic modeling with LBE mapping 

from Chapter 1 to present novel distributions of LBE relative submergences at multiple spatial 

scales and explores the dynamism of this hydraulic property across discharges and spatial domains 

(e.g. segment and reaches). Analysis confirmed the rate at which statistical and parametric 

properties changed between discharge-dependent LBE relative submergence datasets were 

statistically equivalent between study reaches, which we term ‘process-based similarity’. One 

interpretation of this consistent scaling is that it represents a dynamic equilibrium in channel 

adjustment toward a critical state that minimizes the variance of how resistance changes with 

discharge between reaches. The presented ability to account for more complete representation of 

bed-surface heterogeneity and the joint-distribution of local flow depths has far reaching 

implications. For instance, accounting for relative submergence distributions in resistance 

equations could improve prediction and address the limitation that a 1:1 relation exists between 

mean depth and mean velocity present in most resistance equations. Observation of discharge-

dependent dynamism of LBE height distributions also calls into question the practice of holding 

roughness coefficients constant, and the ability to map individual LBEs provides a sensible method 

for parameterizing spatially variable roughness lengths scales. 
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Finally, Chapter 3 presents an investigation into local topographic controls and 

morphodynamic processes involved in formation and/or persistence of morphological unit scale 

fluvial landforms (MU) and addresses five scientific questions about mountain river MUs and their 

hydro-morphological (HM) variables. The study applies a rigorous top-down classification 

followed by bottom-up analysis experimental design whereby a standard method involving meter-

scale 2D hydrodynamic modeling and a baseflow hydraulics decision tree were used to classify 

and map nine spatially explicit baseflow in-channel MU types in the study site. Discretizing the 

study site into cross-sectional polygons a total of 2539 cross-sections were identified as being 

dominated by a single MU type and a diverse set of 18 HM variables, representing an array of 

possible hydraulic and geomorphic controls on MU formation and/or maintenance, were measured 

at these cross-sections. Cumulatively, study results develop holistic descriptions of HM variable 

conditions where certain MUs and/or groups of MUs occurred, interpret processes involved in the 

formation/persistence of these MU types, and provide inference on how HM variables exert 

deterministic control. 
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CHAPTER 1.  SCALE DEPENDENT SPATIAL STRUCTURING OF MOUNTIN RIVER 

LARGE ELEMENTS MAXIMIZES FLOW RESTISTANCE 

1.1 Abstract 

Macro-roughness elements such as boulders and bedrock outcrops, collectively referred to 

as large bed elements (LBEs), are key features influencing hydrodynamics and morphodynamics 

in mountain rivers. Where LBEs are abundant and account for a substantial portion of total flow 

resistance, existing geomorphic theory, previous physical experiments, and limited field 

observations support the theory that LBE configurations adjust to maximize flow resistance. 

However, methods to explicitly map individual features along entire river segments are lacking, 

thus limiting analysis of LBE spatial structure in boulder-bedded rivers. In addressing these gaps, 

this study sought to develop a procedure for mapping LBEs from 3D point-clouds, explore LBE 

spatial structure in a real boulder-bedded river, and test the hypothesis that LBE configurations 

were organized to maximize flow resistance. The mapping procedure applied a ground 

classification algorithm to produce a roughness surface model, from which LBEs were extracted 

by a marker controlled watershed algorithm. Implementing the procedure, 42,176 LBEs were 

mapped in 13.2-km of the mountainous Yuba River (Northern California). Scale and discharge-

dependent LBE concentration and spacing metrics were quantified for multiple laterally and/or 

hierarchically nested spatial domains and classified to differentiate three flow-resistance based 

hydrodynamic regimes: isolated roughness, wake interference, and skimming flow. Of these 

regimes, wake interference corresponds to a state of maximum resistance, so hypothesis testing 

involved determining if this regime was dominant. Results confirmed 25 of 28 segment- and reach-

scale LBE concentrations were in the wake interference regime. However, spacing metrics 
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classified 24 of these same spatial domains in the skimming flow regime. Herein, concentration 

metrics quantify LBE density in a given spatial area, whereas spacing metrics represent LBE 

proximity to one another. While comparison of segment and reach-scale regime classifications by 

each metric concluded concentration was superior to spacing for regime classification purposes, 

these disparities leave open questions about this extremal model of geomorphic adjustment. Lastly, 

lateral variability of metrics across the river corridor had implications for discharge-dependent 

resistance. 

1.2 Introduction 

Macroroughness riverbed elements such as boulders and bedrock outcrops differentiate 

mountain rivers from most lowland gravel-or-sand bedded rivers (Bathurst, 1978; Grant et al., 

1990). Collectively referred to herein as large bed elements (LBEs), these features have a primary 

influence on hydraulic, hydrodynamic, and morphodynamic properties of mountain river channels 

as well as secondary effects on adjacent landscape processes (Table A1.1). In laterally confined 

coarse-bedded rivers where adjustment of channel planform and gradient are more restricted, 

extremal hypothesis, regime theory, physical experiments, and field observations support the 

theory that channels adjust bed roughness to maximize flow resistance, as this corresponds to a 

state of maximum stability (Abrahams et al., 1995; Adams, 2020; Church et al., 1998; Davies & 

Sutherland, 1983; Eaton & Church, 2009; Eaton et al., 2020; Wohl & Merritt, 2008). 

Where LBEs are abundant, such as in bedrock or boulder-bedded rivers, the latter defined 

as those with D50 ≥ 64 mm (sensu Bathurst, 1982), LBEs account for a substantial portion of total 

flow resistance (Chen et al., 2019). Links between LBE spatial structure metrics, such as LBE 

concentration and spacing, and flow resistance mean that such metrics can serve as a proxy for bed 

roughness adjustment and address whether LBEs are configured to maximize flow resistance 
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(Bathurst, 1978; Canovaro et al., 2007; Ferro, 1999; Papanicolaou & Tsakiris, 2017). However, 

study of this phenomenon, and the spatial structure of LBEs in natural river segments with 

abundant LBEs are still largely absent (Adams, 2020; Williams et al., 2019). This absence arises 

in part due to variability in how LBEs are defined and limited availability of continuous and 

comprehensive segment-scale LBE datasets (Benda, 1990; Grant & Swanson, 1995; Shobe et al., 

2016). 

Existing definitions of LBEs or macroroughness elements vary considerably in the peer-

reviewed literature (Table A1.2), but typically reference fixed lengths or scaled measures of grain 

diameter including but not limited to D > 0.5 m, D ≈ bankfull flow depth, and D90 (D is grain size 

diameter and the subscript is the percent of grains finer). While arguably of equal import to the 

processes describe in the paragraph above (Gippel et al., 1996), the inclusion of large woody 

materials (LWM) in LBE definitions has been variable or unclear (Table A1.2). Inconsistent 

definitions complicate LBE mapping, and the interpretation and comparison of LBE related study 

findings between rivers. Alternate metrics, such as surface roughness that can account for LWM, 

coupled with algorithmic mapping procedures offer opportunity to provide more consistent, 

transferable LBE mapping approaches across rivers. However, automated methods to map these 

features in natural environments from remotely sensed data products remain limited (Carbonneau 

et al., 2004; Resop et al., 2012). 

To address these gaps, we developed a semi-automated procedure for mapping LBEs from 

three-dimensional (3D) point clouds obtained via an airborne laser system. We then used results 

to explore the spatial structure of LBEs in a real boulder-bedded mountain river and address three 

specific scientific questions including whether LBEs were configured to maximize flow resistance. 

In the following sections, we first present background on LBE mapping (1.2.1), discuss factors 
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influencing LBE spatial structure (1.2.2), review hydrodynamic influences of LBEs (1.2.3), and 

finally present the questions of this study (1.2.4). Through objectively and systematically mapping 

LBEs, this study generated a large LBE dataset to test hypotheses providing insight into the spatial 

structure of LBEs in a real mountain river at multiple scales. 

1.2.1 Mapping LBEs in river corridors 

In-situ LBE mapping has been done manually with global positioning system (GPS) or 

total station survey equipment (Valle & Pasternack, 2006). Unfortunately, it may not be possible 

to map LBEs at all where access is limited or dangerous, which is a common situation in mountain 

rivers. Further, mapping all LBEs would be time consuming if hundreds-to-thousands of LBEs 

exist within a survey area, which may be the case at reach (~102-103 channel widths) and segment 

scales (~103-104 widths). Field survey methods for LBEs are also subject to the same problem of 

surveyor bias that occurs with mapping morphological units. 

Remote sensing techniques for studying river sedimentology have a history spanning over 

four decades (Piégay et al., 2020). Broadly, we divide remote sensing approaches into those based 

on imagery and those based on topographic data. Many image-based techniques have proven 

capable of predicting grain-size information from images (e.g., Butler et al., 2001; Purinton & 

Bookhagen, 2019; Warrick et al., 2009). However, methods often focus on predicting 

representative grain size metrics (D50 or D84), and do not facilitate mapping individual grains like 

LBEs. Software, such as Detert and Weitbrecht’s (2012) ‘BaseGrain’ and Purinton and 

Bookhagen’s (2019) ‘PebbleCounts’, that include this capability have limited testing in mountain 

rivers with heterogeneous surface roughness’s that complicate grain mapping (Pearson et al., 

2017), and appear difficult to apply beyond the reach scale due to computational and input data 

requirements. Alternately, LBEs are commonly manually digitized from aerial images (Chen et 
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al., 2019; Finnegan et al., 2019). All image-based methods have limited ability to map submerged 

LBEs, require high-resolution imagery (<<1 m pixels) to ensure mapping accuracy (Carbonneau 

et al., 2004), and do not explicitly measure particle heights (i.e. planimetric two-dimensional [2D] 

mapping only). 

Remote sensing of river topography likewise offers opportunities for studying river 

sedimentology and potential to overcome the 2D limitations of image-based methods (Brasington 

et al., 2012; Hodge et al., 2009). Generically, these approaches involve developing statistical 

models between measured sedimentological characteristics and topographic metrics, such as 

roughness height (Gomez, 1993) or the standard deviation, semi-variance, skewness, or kurtosis 

of detrended bed elevations within a submeter convolution kernel (Aberle & Smart, 2003; 

Schneider et al., 2015). Common topographic data sources include airborne or terrestrial laser 

systems (ALS and TLS, respectively) or photogrammetric techniques such as structure-from-

motion (SfM). Factors relevant to LBE mapping such as resolution (point density), spatial 

coverage, accuracy, post-processing requirements, and cost vary widely between methods 

(Tomsett & Leyland, 2019). For example, while TLS and SfM produce greater point densities than 

ALS, (~10,000 pts/m2 compared to ~10’s pts/m2 [Brasington et al., 2012]), they have greater time 

and labor requirement and may not be feasible in inaccessible mountain regions or for segment-

scale applications (Piégay et al., 2020; Tomsett & Leyland, 2019). A caveat of nearly all image- 

and topographic-based grain-size prediction approaches is reliance on statistical models calibrated 

with site-specific field measurements. When models are applied outside the systems in which 

they’re developed it is common for predictions to perform poorly on novel data (Pearson et al., 

2017). 

To our knowledge, Resop et al. (2012) provide the best example of semi-automated 
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mapping of LBEs in a natural setting. Using TLS, they applied a series of image-processing 

algorithms to a 2-cm digital terrain model (DTM) to segment and map individual boulders (>256 

mm) along 100 m of a boulder-bedded river. Their approach, derived from methods for mapping 

tree canopies, performed well at mapping the location and shape of boulders compared to field 

measurements. A multi-step un-validated GIS approach to map boulders in the mountainous South 

Yuba River from a combination of terrestrial ALS, bathymetric sonar, and GPS survey data is also 

presented by Pasternack and Senter (2011). Overall, remote sensing offers potential for new and 

continued research in river sedimentology including mapping LBEs. 

1.2.2 Organization of LBEs in river corridors 

In natural channels, LBE spatial structure, defined as the number, size, and arrangement of 

LBEs, evolves as landscapes are acted upon by hillslope, glacial, volcanic, tectonic, fluvial, and 

biogeomorphic forces that together produce three key processes: supplying LBEs to the channel 

or exhuming them; weathering and attrition of LBEs; and LBE transport, deposition, and storage 

(Table A1.1). Hillslopes and low-order tributaries (1st-3rd order) are the main source delivering 

new LBEs to the channel network through landslide related processes (Benda, 1990; Hewitt, 2002; 

Hungr et al., 2001). Once in the river corridor, LBEs can remain immobile or only intermittently 

mobile for periods lasting 102-106 years (e.g. Williams et al., 2019). On the other hand, 

observations support that LBEs up-to several meters in size may still be transported downstream 

more frequently (<102 year recurrence intervals) (Grant et al., 1990; Molnar et al., 2010). In-

channel LBEs also provide feedback on landscape evolution due to their ability to mediate incision, 

shape channel morphology, and influence sediment storage and transport (Golly et al., 2019; 

Hassan & Reid, 1990; Madej, 2001; Shobe et al., 2016). In-turn, these feedbacks, and associated 

changes to LBE spatial structure and channel boundaries, modify flow resistance. Applying the 
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simplifying assumption that channel adjustments are such that when resistance is low relative to 

hydraulic forces the channel boundary will adjust to increase hydraulic resistance and visa-versa, 

these feedbacks enable trajectories of LBE mediated channel adjustment toward conditions of 

maximum resistance while leaving room for more complex oscillations and non-equilibrium 

behavior (Chin & Phillips, 2007; Eaton & Church, 2009; Ferguson et al., 2019; Wohl & Merritt, 

2008). 

1.2.3 LBE influence on hydraulics and hydrodynamics 

Protrusion of LBEs into a flow-field exert resistance on the fluid via frictional shear 

(Bathurst, 1978) and pressure fluctuations (Einstein & Barbarossa, 1952), colloquially termed skin 

friction and form drag, respectively. In boulder-bedded rivers, form resistance from LBEs can 

account for a substantial portion (>90%) of total flow resistance (Chen et al., 2019). When an array 

of LBEs is present, as is the case in natural channels, the superpositioning of vortices further affects 

resistance, wake and turbulent flow structures, and flow-field recovery (Canovaro et al., 2007; 

Fang et al., 2017). 

Morris (1959) classified these combined effects into three basic hydrodynamic regimes: 

isolated roughness, wake interference, and skimming flow. Isolated roughness occurs when 

macroroughness feature spacing is large enough that wakes do not interact and the flow recovers 

before engaging the next downstream feature. Wake interference occurs when the wake from one 

feature extends to the next downstream feature and the flow never recovers. Lastly, skimming 

flows occur when features are close enough to form pockets of trapped highly irregular flow 

patterns with a relatively smooth flow structure above. 

Morris’s hydrodynamic regimes may be interpreted in terms of flow resistance (Fang et al., 

2017; Papanicolaou & Tsakiris, 2017). When LBEs are widely spaced, such as in the isolated 
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regime, total form resistance due to LBEs can be estimated as the sum of drag on individual LBEs 

(Gippel et al., 1996). As more LBEs occupy the flow-field, the resistance relationship becomes 

non-linear typically reaching a peak in resistance followed by a decrease that eventually plateaus 

regardless of the presence of additional LBEs. The initial transition from linear to non-linear 

behavior is hypothesized to indicate a regime shift from isolated roughness to wake interference, 

wherein resistance reaches its peak. The subsequent decrease in resistance and plateau region are 

associated with conditions of skimming flow where resistance is proportionally high but not at a 

maximum (Canovaro et al., 2007; Ferro, 1999). Thus, the wake interference regime has been 

assumed to broadly correspond with conditions of maximum flow resistance. 

Morris’s hydrodynamic regimes have served as a basis in many physical experiments 

describing how LBEs influence the flow-field and flow resistance (e.g., Canovaro et al., 2007; 

Ferro, 1999; Papanicolaou & Tsakiris, 2017). In these studies, Morris’s regimes have been 

represented using LBE concentration (Γ), which varies in how it is calculated but is defined here 

as the ratio of planform LBE area to wetted channel area; and/or non-dimensional spacing (𝜆∗), 

typically calculated as the distance (𝜆) between LBEs divided by the diameter of the upstream 

LBE (Dc). Strong correspondence in the above referenced studies between these LBE spatial 

structure metrics and flow resistance measurements allows a direct link connecting metrics with 

Morris’s regimes and conditions associated with maximum resistance. Conceptually, provided 

availability of a census of LBEs, these same LBE spatial structure metrics may be extended to 

classify Morris’s regimes in natural settings and test the degree that conditions associated with 

maximum resistance are present at multiple spatial scales. 

1.2.4 Scientific questions 

The sections above highlight three scientific questions concerning the mapping and spatial 
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structure of LBEs in natural channels. First, can ALS data be used to accurately map sub-meter-

scale resolution LBEs along entire river segments? Second, are LBEs configured to maximize flow 

resistance, and if so at what typical spatial scales (segment, reach, and cross-section) does this 

occur? Third, does LBE spatial structure vary laterally to provide differential discharge-dependent 

roughness? 

1.3 Study River Segment 

The field site was a confined 13.2-km segment of the mountainous Yuba River (Northern 

California) draining 1853 km2 of the western Sierra Nevada range (Figure 1.1). It is comprised of 

a low sinuosity, boulder-bedded, 5th order mountain river confined within a steep-walled bedrock 

and forested hillside canyon, which is common among rivers draining the western slope of the 

northern Sierra Nevada range (Guillon et al., 2020). The river has a mean bed slope of 1.96% but 

exhibits localized variability, with many 10 – 100 m long (100 – 101 widths) stretches having slopes 

exceeding 10%. Like many bedrock-confined rivers, the study site lacks a contiguous floodplain 

having only localized areas supporting accumulation of alluvium at major tributary junctions, 

meander bends, or other areas of local valley widening (Fryirs et al., 2016). Despite this ambiguity, 

a previously reported morphologically determined bankfull discharge (Qbf) of 10.7 m3/s (YCWA, 

2013) was used to enable comparison of metrics across sites respective of scale. For analytical 

purposes, the study site was delineated into six geomorphic reaches on the sole basis of channel-

bed slope breaks (Figure 1.2). 

Based on limited sedimentological data, bed substrates alternate between bedrock and 

alluvial sections (YCWA, 2013). Alluvial substrate, where present, is a heterogeneous mixture of 

materials dominated by coarse fractions (medium gravel/cobbles and larger). Contemporary 

sources of coarse clastic materials result from hillslope process, exhumation of boulders or 
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bedrock, historic hydraulic mining activities, and in-channel stores. Uniformly steep hillslopes are 

present along the study site with large areas exceeding 0.8 m/m, a regional slope threshold 

identified by Hurst et al. (2012) for producing landslides and scree cones. Curtis et al. (2005) also 

found mass wasting processes to dominate over other erosional processes (e.g. surface erosion), 

thus providing a relatively abundant supply of LBEs for delivery to the valley-bottom. Review of 

aerial imagery (Google Earth®) from 1957 to present shows landslides, debris flows, and rock falls 

throughout the study site. Quaternary glaciation present in the easternmost portions of the Yuba 

basin did not extend to the study site, however it is plausible that outwash deposits remain. 

The region’s alluvial-sediment processes are also affected by anthropogenic influences. 

New Bullards Bar (NBB) Dam is a 196.6 m high concrete arch dam on the North Yuba River near 

Dobbins, CA. Closed in 1969, the dam is a complete barrier to bedload transport into the study site 

passing only wash load. Two additional dams, Log Cabin Dam and Our House Dam, situated 

upstream of the study site in the Middle Yuba watershed, also act as partial barriers to downstream 

sediment transport. 
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Figure 1.1. Map of study site, tributaries, gages, and infrastructure facilities, Yuba River, CA. 



12 

 

Figure 1.2. Longitudinal profile showing the extent and slope (m/m) of geomorphic reaches. 

1.4 Methods 

The three scientific questions were answered in order, as they build on each other. To 

address the first study question, a field campaign and remote sensing survey were carried out to 

collect topo-bathymetric point clouds and locate real LBEs in the study river segment (sections 

1.4.1-1.4.2). A procedure for mapping LBEs along river channels from ALS 3D point-cloud data 

was developed, tested, and applied to map LBEs in a real boulder-bedded mountain river (section 

1.4.3). Question 1 was answered using performance metrics comparing predicted LBEs to 

observed LBEs, using two different analyses (section 1.4.3). Next, to address the second question, 

LBE data were coupled with results from a 2D hydrodynamic model (section 1.4.4) to define LBE 

spatial structure metrics within multiple discharge-dependent portions of the river corridor (section 

1.4.5). Specifically, Γ and 𝜆∗ values were calculated at segment, reach, and cross-sectional (0.1 
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width) scales. These were then compared to thresholds associated with Morris’s wake interference 

regime from the literature to test the hypothesis that LBEs were organized to maximize flow 

resistance at these three spatial scales, as indicated by LBE spatial structure metrics corresponding 

with the wake interference regime. Finally, the third question regarding lateral distribution of LBE 

structure and flow resistance was answered by quantifying differences in LBE spatial structure 

metrics for different incremental inundation corridors, as defined in section 1.4.5.1. 

Because this study has many detailed methods and additional results, supplementary 

materials are provided in APPENDIX 1. References to “Text A”, “Table A”, and “Figure A” 

followed by a number refer to locations in APPENDIX 1 where that item can be located. 

1.4.1 Topo-bathymetric mapping 

Between September 27-29, 2014 ALS data were collected within the study site by a 

professional surveying firm (Quantum Spatial, https://www.quantumspatial.com/) using a Riegl 

VQ-820-G bathymetric sensor system and a Leica ALS50 Phase II system (near infrared) mounted 

in a Cessna Grand Caravan. The initial ground classified point density was 2.3 pts/m2. Following 

a process to address ground misclassification errors, this density was increased to 13.9 pts/m2 (Text 

A.1.3.1). ALS collection was conducted during a period of low discharge estimated at 1.19 m3/s 

at the downstream study site boundary. This discharge is exceeded 89.4% of the time based on the 

period October 1968 – February 2016 (Wiener & Pasternack, 2016a). 

ALS data were supplemented with boat-based bathymetric observations, imagery-derived 

bathymetric estimates (sensu Legleiter et al., 2004), and systematically placed augmented points 

(sensu Valle & Pasternack, 2006). Single beam echo sounding data was collected by kayak 

between July 8 and 9th 2015 during low-flow conditions (0.89 m3/s) using an Ohmex Sonarmite. 

The boat’s 3D position was tracked using a Trimble 5800 Real Time Kinematic (RTK) GPS tied 
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to a local base station. Average boat-based point density was 0.53 pts/m2. 

Through verification and merging of individual datasets, an extremely detailed and 

accurate topographic map was created (Text A.1.3.1; Wiener & Pasternack, 2016b). The final bare 

Earth mapping included > 21 million points at an average point-spacing of 0.25 m (~ 16 pts/m2). 

Points were used to create a 0.46 m x 0.46 m resolution raster (bare Earth DTM), the final map 

product used in the study. 

1.4.2 Observed LBE dataset 

For the purpose of parameterizing and assessing the study’s LBE mapping approach an 

observed LBE dataset consisting of independently mapped LBEs was generated within a portion 

of the study segment from high-resolution aerial imagery. Imagery was collected for the 

downstream 1.2 km of the study site on September 20, 2016 using a DJI Phantom 3 Professional 

quadcopter uncrewed aerial vehicle equipped with on-board GPS, camera, and camera gimbal. The 

discharge on this day was estimated at 1.02 m3/s (a low flow) at the downstream boundary Images 

were processed and a 2.6 cm resolution composite orthomosaic photograph was generated using 

Agisoft Photoscan Professional version 1.3 (Photoscan) following methods described by Carey et 

al. (2019). No terrain products were produced from the captured images. 

The composite orthomosaic photograph, which contained numerous visible LBEs, was 

georeferenced to align with the study’s ALS data. Next, LBEs visible in the orthomosaic 

photograph were manually digitized. Selecting which LBEs to digitize was done by randomly 

panning to different portions of the orthomosaic and digitizing all LBE that were clearly visible 

and differentiable from the bare earth and water. Digitizing was capped at a single 8-hour day 

effort. A total of 1194 digitized LBEs overlapping the region of topographic data collection 

(section 1.4.1) served as the LBE dataset (LBEo) (Figure 1.3). 



15 

 

Figure 1.3. Portion of orthomosaic with manually digitized large bed elements (LBEo) outlined by 
black lines. Only a portion of visible LBEs were digitized. 

1.4.3 LBE mapping 

For this study, we do not propose a universal definition for LBEs. Instead we developed 

and applied a novel procedure (Figure 1.4) for mapping terrain features, in this case sub-meter 

scale LBEs, from 3D topographic point clouds. The procedure takes into consideration existing 

LBE definitions, site-specific sedimentology, and establishing consistent methods for parameter 

specification to aid transferability of the mapping procedure. The procedure comprised two main 

steps, generating a roughness surface model (RSM) and extracting LBEs from the RSM. To answer 

the first scientific question the accuracy of both steps required independent and step-wise 

assessment. Therefore, multiple RSMs were generated, and then multiple approaches were used to 

extract LBEs from the best performing RSM. In each step, test metrics were used to compare RSM 

and extraction results and LBE observations and identify the best outcomes. The best performing 



16 

outcomes were vetted against benchmark values reported by Kaartinen et al. (2012) and Marconi 

et al. (2019) to determine if they met scientific norms to be considered accurate representations. 

1.4.3.1 Roughness surface model generation and testing question 1 

A RSM is the vertical difference between ‘complete’ and ‘smoothed’ DTMs. The RSM 

concept is similar to that of a canopy height model, a common product for mapping tree-crowns 

(Chen et al., 2006; Popescu & Wynne, 2004). Here, the complete DTM is the bare earth DTM 

described in section 1.4.1 and the smoothed DTM is essentially the bare earth DTM stripped of 

large roughness features, which methodologically differs from detrending the bare earth DTM. 

When these surfaces are differenced, the intent is for LBEs to ‘stick-out’ of the resulting RSM, as 

this allows them to be extracted in the second step of the mapping procedure. 

Absent a unanimously accepted method for creating smoothed DTMs, a series of smoothed 

DTM point clouds and associated rasters were generated using the open source 

‘lasground_new.exe’ ground classification algorithm (Isenburg, 2016), which applies an adaptive 

TIN approach to iteratively classify ground points from an unclassified point cloud based on six 

user defined parameters. This approach was selected as it proven to be effective at correctly 

classifying ground points in areas of variable terrain (Zhang & Whitman, 2005), is parametrically 

flexible, and its parameters (Table 1.1; Text A.1.3.3) can be related to measurements meaningful 

to mapping terrain features. The algorithm was run using the bare Earth 3D point cloud and a range 

of parameter values informed by physically based metrics (Table 1.1), such as site specific 

representative grain sizes, as inputs, to produce 14 unique smoothed DTM rasters (Table A1.3). 

Smoothed DTM rasters were then assessed heuristically based on visual observations of: (i) 

removal of clearly discernable LBEs; and (ii) retaining topographic characteristics of the original 

ground surface such as slope breaks, small-scale terrain undulations, and meso-scale terrain 
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features. Based on this qualitative assessment, six smoothed DTMs were selected for further 

processing and evaluation (Table A1.3). 

The first of these processing steps involved subtracting each smoothed DTM raster from 

the complete DTM raster to produce six unique RSM rasters. Next, a binary threshold approach 

was used to map discrete sets of preliminary LBEs from each RSM. This was done by assigning a 

random selection of 70% of the LBEo data to a ‘training’ dataset and then calculating the average 

RSM value of all raster cells located along the exterior boundary of each LBEo polygon in the 

training set for each RSM, independently. Threshold values above which a RSM pixel was 

considered LBE were determined by taking the average of these sets of values for each RSM, 

respectively (Text A.1.3.3). 

Sets of preliminary LBEs were evaluated by comparing predicted LBE polygons with the 

remaining 30% of the LBEo data (‘test data’) using four performance metrics: producers accuracy 

(PA), producers overlap (PO), a modified Jaccard similarity index (MJI) and missed-to-excess 

ratio (MER). The four metrics were chosen to balance sensitivity to omission (i.e. missing a real 

LBE) and commission (i.e. mapping an erroneous LBE) errors, whereby PA and PO were 

considered to penalize omission and be less sensitive to commission compared to MJI and MER, 

which penalize commission while allowing omission (Shao et al., 2019). Jaccard index (JI) and 

PA are common metrics in classification exercises whereas PO and MER were devised for this 

study. PA, PO, and MJI all range from 0-1 and MER ranges from 0-∞. Higher values of all metrics 

indicate better mapping accuracy but not necessary better precision. Metrics were formulated to 

control for the situation where an LBE was predicted but missed in the observed dataset. Details, 

including numerical formulations, are provided in APPENDIX 1 (Text A.1.3.3). 

Metrics were calculated for each preliminary LBE dataset and then independently rescaled 
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from 0-1 using standard normalization techniques. The arithmetic mean of normalized values was 

used as a global performance metric to select the best ground classification algorithm parameter 

set and associated RSM (‘preferred RSM’). Once identified, performance metrics of the preferred 

RSM were evaluated to determine if it could support accurate LBE extraction. 

1.4.3.2 LBE extraction and accuracy testing for question 1 

The procedure’s second step involved extracting LBEs from the preferred RSM and testing 

the accuracy of the extraction, as the second and more important test to answer question 1. The 

threshold technique described in section 1.4.3.1 offered one option for LBE extraction. However, 

while this simple and efficient method was considered reasonable for evaluating ground 

classification algorithm parameters to select the preferred RSM, both preliminary LBE mapping 

assessment and extensive research on tree-canopy mapping indicated alternative LBE extraction 

methods could improve mapping accuracy (Kaartinen et al., 2012). Drawing from forestry 

research, five LBE extraction approaches were identified for testing: (i) RSM with vertical 

threshold; (ii) Gaussian filtered RSM with vertical threshold; (iii) RSM with marker-controlled 

watershed segmentation (MCWS) algorithm and constant window size; (iv) RSM with MCWS 

and variable window size; and (v) Gaussian filtered RSM with MCWS and constant window size. 

Comparing tree-crown mapping algorithms, Kaartinen et al. (2012) demonstrated that MCWS 

performed equally well or outperformed more computationally expensive and parametrically 

complex approaches not tested in this study. 

Approaches differed in regard to computational expense, number of parameters, and 

implementation. To evaluate mapping performance, multiple parameter sets were tested for each 

approach. Each parameter set was used to generate a set of predicted LBEs for the area covering 

the LBEo dataset. Parameter values for each approach were either data-driven (i.e., derived from 
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the LBEo data) or selected from a range of reasonable physically meaningful values (i.e., LBE 

heights). To constrain parameter spaces only data-driven calculations were used for approaches 

(ii-v). Ultimately, 12, 6, 10, 2, and 14 parameter sets were specified for approaches (i-v), 

respectively, resulting in a total of 44 LBE datasets (LBEp), each a distinct mapping of LBEs 

(Table A1.4). Details of each approach and rationale for parameter selection are provided in 

APPENDIX 1 (Text A.1.3.3). 

Once mapped, LBEp datasets were assessed for accuracy using the same performance 

metrics as in step one, but compared to the entire LBEo dataset. In addition to this internal 

comparison, PA and MJI scores were also evaluated against benchmark values from forestry 

research. Kaartinen et al. (2012) report PA values from past studies between 0.40-0.93 and found 

matching rates, a metric similar to PA, between 0.28-0.66 (median of 0.56) when benchmarking 

32 tree-extraction algorithms. For MJI, JI scores from Marconi et al. (2019) were used for 

comparison. Their values ranged between 0.056-0.340 (median of 0.167). 

The suite of performance metrics and summary global performance metric were 

informative, but had limitations in identifying a best approach and single parameter set. For one 

thing, the LBEo data did not constitute a complete set of all LBEs, therefore the ability to optimize 

parameters was unrealistic. Further, the metrics did not address all mapping issues or errors such 

as over- or under-segmentation. Thus, metrics were coupled with visually based qualitative 

assessment of mapping performance covering the entire study segment to select one approach and 

parameter set used to generate LBEs for whole study segment (‘preferred dataset’). 

Mapping performance of the preferred dataset was considered accurate if PA and MJI 

scores exceeded the median benchmark values provided above. However, LBEs from the preferred 

dataset were still not without uncertainty, which could influence answering study questions 2 and 
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3. Therefore, two additional steps were taken to filter out uncertain LBEs (Text A.1.3.3). First, 

LBEs were removed where the majority of topographic data was from imagery-derived 

bathymetric estimates or augmented points (section 1.4.1; Text A.1.3.1). Second, LBE polygons 

were removed where topographic data resolution and/or topographic variability were relatively 

low, presuming these would result in poor LBE predictions. This was accomplished by comparing 

lidar point densities and mean standard deviation in elevations (𝜎  within LBEo and LBEp 

polygons from the preferred dataset to set thresholds for these metrics below which LBEp polygons 

were removed. The final set of LBE polygons was used for all further analysis in this study. The 

minimum LBE polygon size was a single raster cell (0.46 m x 0.46 m). Dc values for each LBE 

were set as the max RSM value within each polygon.  
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Figure 1.4. (a) Flowchart depicting simplified large bed element (LBE) mapping procedure with 
(b) detail of ‘RSM generation’ process and (c) oblique views of example complete, smoothed, and 
roughness surface model (RSM) digital terrain models (DTMs) from a small portion of the study 
site with resultant final predicted LBEs. In (a) and (b) light-gray rounded rectangles with dark text 
are output data, gray ovals with dark text are processing steps, dark-gray ovals with white text are 
input parameters or input data, and gray rectangles with white text are assessment steps. Arrows 
indicate directionality and interactions that generate new outputs or inform process steps/inputs. 
Key outputs from step 1 (preferred RSM) and step 2 (preferred LBE dataset) are outlined in bold.
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Table 1.1. Ground classification algorithm parameter descriptions, range used in study, and details 
for large bed element (LBE) mapping†. 

Parameter Description‡ 
Range 
used in 

study (m) 

Information 
used to select 

range 
LBE mapping details‡ 

Step Window size used 
to select points to be 
iteratively classified. 

1.52-4.57 DTM/RSM 
raster cell size 

Controls removal of cohesive 
terrain features such that features 
larger than the window-size are 
preserved in ground classification 
(Zhang & Whitman, 2005). 
Recommend setting larger than 
planform diameter of average 
LBEs but less than maximum LBE 
diameter and/or scale of dominate 
terrain features. Length of ~3-9 
raster cells used to set range in this 
study. 

Bulge Specifies how much 
the TIN is allowed 
to bulge up when 
including points as 
it is getting refined. 

0.03-0.30 Preliminary 
testing and user 
manual 

Typically 1/5-1/10 step size, 
smaller values recommended for 
creating a smoothed DTM. 

Spike Threshold at which 
points forming 
spikes above the 
coarsest TIN get 
removed. 

0.03-0.50 Representative 
grain sizes and 
minimum LBE 
heights from 
previous 
studies 

Length scale(s) collectively control 
if points are classified as ground or 
removed based on how much 
points extend below or protrude 
above an otherwise smooth but 
variable bed surface. Estimated 
D50 (0.128-0.256 m) and D16 
(0.032-0.064 m) values (YCWA, 
2013), and two representative LBE 
sizes for boulders from the Udden-
Wentworth scale (Wentworth, 
1922), 0.256 m and 0.5 m, used to 
set range in this study. 

Down-
spike 

Threshold at which 
points forming 
spikes below the 
coarsest TIN get 
removed. 

0-0.50 

Offset The maximal offset 
up to which points 
above the current 
ground estimate get 
included. 

0.03-0.50 

Intensity Specifies the search 
level for initial 
ground point 
classification. 

extra-
hyper 

Preliminary 
testing and user 
manual 

Use intense search setting (hyper, 
ultra, extra) for steep, hilly terrains 
and simplified search settings 
(fine, coarse) for flat terrains. 

†Acronyms in table are as follows: digital terrain model (DTM), roughness surface model (RSM), 
triangular irregular network (TIN), and D is grain size diameter and subscript is percent of grains finer. 
‡See http://lastools.org/ for more details 

1.4.4 Two-dimensional hydrodynamic modeling 

Wetted areas were required to assess the discharge-dependent LBE spatial structure in 



23 

different portions of the channel. Wetted areas were generated from steady-state hydrodynamic 

simulations performed at ~ 1-m resolution using the free, public, 2D model, Sedimentation and 

River Hydraulics—Two-Dimensional model (SRH-2D) v. 2.2 (Lai, 2008). This is a proven code 

capable of simulating hydraulic conditions in mountain rivers with abundant LBEs (Brown & 

Pasternack, 2014; Strom et al., 2016). Simulations were run for four discharges (1.54, 10.73, 82.12, 

and 343.6 m3/s) from an approximate baseflow to a ~ 3.5-yr flood. Model development, 

parameterization, and performance assessment are thoroughly documented in APPENDIX 1 (Text 

A.1.3.4). The 2D model performed comparably to similar published models (e.g. Lisle et al., 2000; 

Pasternack et al., 2006). 

1.4.5 LBE spatial analysis 

Having extracted a set of accurate LBE polygons from ALS point clouds, four subsets of 

the data were made comprising the set of final LBE polygons that intersected with the wetted area 

polygon of each simulated discharge. In this manner, discharge served to hierarchically nest spatial 

domains, since lower discharge wetted areas were always located within higher discharge wetted 

areas. These data are referred to herein as ‘discharge-dependent LBE datasets’. From these data, 

LBE spatial structure was characterized in terms of concentration (Γ) and spacing (λ) metrics to 

answer questions 2 and 3. Specifically, metrics were used to classify segment, reach and cross-

sectional spatial domains according to Morris’ hydrodynamic regimes to assess if LBEs were 

configured to maximize flow resistance, per question 2. Concentrations were also analyzed by 

lateral distribution per question 3. 

1.4.5.1 Spatially stratified LBE concentrations 

Each LBE is a polygon with a plan view (2D) area. To geospatially quantify Γ, it is defined 

as the areal proportion of LBE polygons within any larger domain. In this study, the larger domain 



24 

varied depending on the analysis. 

For question 2, the larger domain was the river’s wetted area at a given discharge clipped 

to different portions of the study segment depending on the analysis scale. First, Γ was computed 

at the segment scale four times, once per discharge investigated (section 1.4.4) by clipping the 

LBE polygons with a wetted area polygon. This yielded four segment-scale wetted area Γ values. 

In addition, 24 more reach-scale wetted area Γ values were computed by clipping each discharge’s 

segment-scale wetted area and the LBE polygons with the individual polygon for each of the six 

geomorphic reaches. The final segment- and reach-scale spatially stratified dataset consisted of 28 

Γ values. Lastly, longitudinal Γ profiles were generated for the full extent of each wetted area at 

abutting 3-m wide, cross-sectional polygons stationed along the river corridor (Text A.1.3.5). 

Cross-sectional Γ values were calculated by dividing the area of LBE within each cross-sectional 

polygon by the polygon’s area. This cross-sectional analysis provides the resolution of LBE 

patterns needed to evaluate local topographic, hydraulic, and morphodynamic factors compared to 

what is possible with averages at segment and reach scales. 

To answer question 3, the four segment-scale wetted areas were used to create three 

incremental inundation corridor polygons. Incremental inundation corridor is defined as the river’s 

terrain that is dry at a lower discharge and wet at a higher discharge (Figure 1.5). LBE polygons 

were clipped by each incremental inundation corridor polygon and Γ was computed for each of 

these three domains. These domains isolate analysis to the series of adjacent, non-overlapping 

regions of the river corridor that become successively inundated and geomorphically active with 

increasing discharge. In addition, each segment-scale incremental inundation corridor was clipped 

by the geomorphic reach polygons, once again yielding 28 domains (4 flows times six reaches plus 

4 whole-segment flow areas) for testing. 
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1.4.5.2 LBE spacing calculations 

Next, LBE-to-LBE spacings were used to further evaluate LBE spatial structure and as a 

second test of whether LBEs were organized to maximize flow resistance. First, longitudinal 

(streamwise) distances between upstream and downstream LBEs (𝜆 ) were estimated using a 

channel-oriented, path-based approach (Figure 1.6; Text A.1.3.5). Distances were non-

dimensionalized (𝜆∗) by dividing each 𝜆  by the Dc value of the upstream LBE. Because multiple 

paths could emanate from each upstream LBE, LBEs could have multiple 𝜆∗ values. Thus, a single 

spacing value (𝜆∗) was calculated for each LBE as the median of all 𝜆∗ values. Next, each LBE 

was assigned to the discharge-dependent cross-section containing the LBE polygon’s centroid. 

Finally, 𝜆∗  values for all LBEs originating in each cross-section were averaged yielding one 

spacing value per cross-section per discharge (𝜆∗). 

1.4.5.3 Hydrodynamic regime and flow resistance inferences 

All Γ and 𝜆∗ values were framed according to Morris’s (1959) hydrodynamic regimes to 

evaluate spatial patterns and the dynamic percentage of channel in each regime, and test for 

conditions that maximize flow resistance at the designated spatial scales. Synthesizing multiple 

studies, bounds for Γ regime classification were set such that Γ < 0.08 (e.g. 8% percent of spatial 

domain) corresponded to the isolated roughness regime, Γ values between 0.08-0.30 to the wake 

interference regime, and Γ > 0.30 were classified as skimming flow (Canovaro et al., 2007; Fang 

et al., 2017; Ferro, 1999; Nowell & Church, 1979; Papanicolaou et al., 2001). Regime 

classification for 𝜆∗ used spacing thresholds reported by Papanicolaou and Tsakiris (2017), where 

𝜆∗  > 6ꞏDc corresponded to the isolated roughness regime, 𝜆∗  values between 2-6ꞏDc to wake 

interference, and 𝜆∗ < 2ꞏDc to skimming flow (also see Gippel et al., 1996; Tan & Curran, 2012). 
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 Since 𝜆∗ calculations were done at the cross-sectional scale and it was desirable to have 

segment- and reach-scale spacing based regime classifications, individual 𝜆∗  values in each 

discharge-dependent segment and reach domain were classified using the same 𝜆∗  regime 

thresholds as above. Domains were then classified as the single regime having the highest 

percentage of classified 𝜆∗. In this manner each spatial domain was assigned a regime classification 

using both Γ and a spacing metric (𝜆∗  or 𝜆∗ ). Conditions of maximum flow resistance were 

assumed to correspond to the wake interference regime (section 1.2.3). Thus, this criterion was 

used to test if LBEs were configured to maximize flow resistance for each metric for each spatial 

domain as appropriate to answer question 2. Cross-section regime classifications were further used 

to characterize local spatial variability, or lack thereof, in tendencies to maximize flow resistance. 

Lastly, regime predictions from segment- and reach-scale Γ and 𝜆∗, and cross-sectional Γ 

and 𝜆∗  values were compared for consistency in the form of confusion matrices showing the 

number of regimes classified similarly and how regime classifications differed between metrics, if 

this occurred. To interrogate metric appropriateness, LBE counts and median LBE areas were 

calculated at each channel cross-section. These metrics are also linked to local flow resistance (e.g. 

Canovaro et al., 2007; Gippel et al., 1996) and serve as an independent check on the ability of Γ 

and 𝜆∗ to characterize LBE spatial structure. These data were stratified by classification regime for 

each metric, Γ and 𝜆∗, independently, and statistical distributions were heuristically compared. 

Interpretation was that less overlap in distributions between regimes for the same metric was an 

indicator of better classification accuracy, since regimes correspond to different levels of flow 

resistance (Fang et al., 2017). Cross-sectional LBE counts and median LBE area data were also 

compared between sections classified the same and differently by each metric to help explain 

potential discrepancies in cross-section classifications (Text A.1.3.5). 
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Figure 1.5. Typical output from 2D model simulations showing the baseflow wetted area (blue) 
and the subsequent incremental inundation corridors occurring as strips between successive higher 
discharges. For example, pink is the incremental inundation corridor between 1.54 and 10.73 m3/s. 
Flow is from right to left.  
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Figure 1.6. Arbitrary portion of the study segment illustrating path approach for large bed element-
to-large bed element (LBE-to-LBE) spacing analysis depicting set of offset longitudinal path-lines 
for (a) 1.54 m3/s and (c) 343.6 m3/s discharge simulations. (b) and (d) depict zoomed in views of 
the inset boxes shown in panels (a) and (c) showing path-lines, LBEs, and densified vertices used 
in calculating non-dimensional LBE spacing (𝝀∗

𝒍  values. Example longitudinal LBE spacing (λl) 
measurements along path-lines between upstream and downstream LBEs are depicted in red in 
panel (b) and (d). 

1.5 Results 

1.5.1 Question 1 results (LBE mapping) 

Qualitative assessment of the 14 smoothed DTMs determined certain ground classification 

parameter sets performed better than others (Table A1.3). Generally, larger step sizes (~3 and 4.5 

m), smaller spike and offset values (0.128 m [D50] and 0.064 m [D16] versus 0.5 m), and 

intermediate down-spike values (0.128 m, 0.256 m, and 0.15 m) were best at filtering-out LBEs 

while maintaining character of the overall terrain. Ultimately, the study site’s estimated D50 (0.128 
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m) was identified as the best measure for the spike and offset parameters, together with a slightly 

larger value of ~2ꞏD50 (0.256 m) for the down spike parameter. 

Quantitative assessment of preliminary LBEs mapped from the best six smoothed DTMs 

found P-LBE-10 to perform best, making the associated RSM the preferred RSM (Table A1.11). 

Preliminary LBEs from this RSM had the best global performance metric and second best MJI 

(0.183), MER (0.014), and PA (0.836) scores. PA scores for all six preliminary LBE datasets were 

between 0.794-0.864 and MJI scores were between 0.107-0.212. These values are near the high 

end of the benchmark values reported by Kaartinen et al. (2012) and Marconi et al. (2019), 

indicating an accurate representation of observations. 

Comparing performance metrics between extraction approaches, there were within-

approach and between-approach differences, with no one approach being best for all metrics. 

Correlations between performance metrics were also weak (r <|0.57|), thus supporting the use of 

multiple performance metrics. Selective results from the five LBE extraction approaches are 

presented in Table 1.2 with complete results for all 44 LBEp datasets in Table A1.12. Between 

approaches, Gaussian filtered RSMs generally resulted in lower PA scores but higher PO scores, 

suggesting filtering produced fewer predicted LBEs but those that were mapped had good 

correspondence with coincident observed LBEs. One issue encountered with Gaussian filtering 

was rescaling of RSM values, as this complicated attempts to use physically-based metrics for 

parameter selection. With regard to PO, MJI, and global performance metrics, MCWS approaches 

(iii – v) performed better than vertical threshold approaches (i and ii). Trends for MER scores were 

not consistent, but vertical threshold approaches appeared to outperform MCWS approaches. No 

distinction was present between MCWS and vertical threshold approaches for PA performance as 

variation was more strongly controlled by within-approach parameters. Within approaches, larger 
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parameter values for marker detection and feature extraction in the MCWS algorithm (Text 

A.1.3.3.2) and larger vertical thresholds acted to reduce the spatial extent of LBE mapping. All 

else being equal, this had the effect of decreasing PA and PO scores and increasing MJI and MER 

scores. The interpretation here is that more constrained LBE mapping reduced commission errors 

at the expense of creating omission errors. Overall, tested approaches performed comparatively 

well as all datasets exceeded the selected MJI benchmark of 0.164, and 40 of 44 datasets exceeded 

the PA benchmark of 0.56. However, since MCWS approaches consistently performed best, they 

are recommended over vertical threshold approaches when mapping LBEs or similar landscape 

features. 

Based on performance metrics and visualizing predicted LBE polygons, the MCWS-V-2 

dataset from approach (iv), RSM with MCWS and variable window size, was selected as the 

preferred LBE dataset. Values for the main MCWS parameters controlling the minimum RSM 

value for a pixel to be considered a marker (minimum marker RSM height) and the minimum RSM 

value for a pixel to be included in the segmentation (minimum crown RSM height) for the MCWS-

V-2 dataset were scaled to ~2.4ꞏD50 (0.312 m) and ~2.1ꞏD50 (0.272 m), respectively (Text 

A.1.3.3.2; Table A1.12). This dataset had the 27th best PA score (0.756), 33rd best PO score (0.720), 

7th best MJI score (0.45), and 3rd best MER score (0.086) but had the 3rd best global performance 

metric score, thus representing a balance between accuracy and precision that favored avoidance 

of commission errors over excess prediction. PA and MJI scores also exceeded the specified 

benchmark thresholds, thus this dataset’s LBE mapping was considered satisfactory. Qualitatively 

this dataset also performed well with regard to LBE segmentation. For instance, while datasets 

MCWS-C-6 and MCWS-C-8 from approach (iii), RSM with MCWS and constant window size, 

had better global performance metric scores, visualization found resulting LBEs were over-
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segmented (Figure 1.7). Notably, no approach was able to discern boulders from bedrock outcrops 

or fully decouple individual boulders from boulder clusters, meaning, at times, clusters were 

aggregated into individual polygons. 

Like many predictive sedimentological models there is potential for overfitting parameter 

values of the MCWS-V-2 dataset to the LBEo data used for calibration and validation that could 

result in poor mapping performance when applied to the study segment as a whole. However, since 

the main MWCS parameters only define minimum RSM threshold values for what constitutes an 

LBE, mapping performance was consistent across the RSM and would only be impacted if the 

definition of an LBE substantially changed between reaches. Based on expert opinion, the set of 

observed LBEs was assumed representative of LBEs in the study site, and thus presumed suitable 

for specifying parameters to be applied to all study reaches. The fact that LBEs were mapped in 

varying abundances throughout the study site with only small areas lacking any LBEs is taken as 

reasonable support of this assumption. Qualitative assessment of mapped LBEs over the whole of 

the study segment and the fact that MCWS parameters were not set to optimize performance 

metrics also reduced potential overfitting. 

Prior to filtering, MCWS-V-2 mapped a total of 46,471 individual LBEs in the study site. 

Of these, 302 LBEs (0.6%) were completely removed and an additional 497 LBEs (1.0%) were 

partially removed due to uncertainty in topographic source data. After this initial filtering, an 

additional 2,722 LBEs (5.9 %) did not meet the identified lidar point density criteria (>2.9 pts/m2) 

and 3,081 LBEs (6.7%) did not meet the 𝜎  criteria (>0.03 m) resulting in 3,993 more LBEs (8.6%) 

being removed, leaving 42,176 polygons in the final LBE dataset (Text A.1.3.3.2). Geometrically 

the final set of LBE polygons had Dc values (i.e., heights) ranging from the minimum of 0.312 m 

to 19.7 m and areas ranging from 0.2 to 234.4 m2 (Figure 1.8). Filtering and the tendency to favor 
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low commission over omission errors meant the final mapping underestimated the total number of 

LBEs. Lastly, while focus was on mapping boulders and bedrock outcrops, LWM would be 

included in the final dataset if features met parametric mapping criteria, though previous surveys 

suggest low densities of LWM in the study site (YCWA, 2013). 

Table 1.2. Selected performance metrics of predicted large bed element datasets with best and 
worst global performance score for each mapping approach. Maximum values for each metric are 
highlighted in light-gray and bolded and minimum values are italicized. Preferred dataset in red 
font†. 

ID PA PO MJI MER 

Global 
Performance 
(Normalized 

mean) 
(i) RSM with vertical threshold 
V-1 0.894 0.774 0.269 0.030 0.445 
V-11 0.669 0.659 0.371 0.086 0.521 
(ii) Gaussian filtered RSM with vertical threshold 
GV-1 0.760 0.705 0.333 0.054 0.458 
GV-3 0.611 0.779 0.246 0.051 0.352 
(iii) RSM with MCWS and constant window size 
MCWS-C-8 0.798 0.715 0.464 0.083 0.738 
MCWS-C-10 0.809 0.828 0.392 0.025 0.581 
(iv) RSM with MCWS and variable window size 

MCWS-V-1 0.760 0.715 0.460 0.083 0.714 
MCWS-V-2 0.756 0.720 0.450 0.086 0.718 
(v) Gaussian filtered RSM with MCWS and constant window size 
GV-MCWS-C-3 0.712 0.810 0.436 0.057 0.674 
GV-MCWS-C-14 0.780 0.874 0.339 0.020 0.535 
†Acronyms in table are as follows: producers accuracy (PA), producers overlap (PO), modified Jaccard 
similarity index (MJI), missed-to-excess ratio (MER), roughness surface model (RSM), and marker 
controlled watershed segmentation (MCWS). 
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Figure 1.7. Comparison of large bed element (LBE) segmentation performance among algorithms. 
(a) uncrewed aerial system image, (b) MCWS-V-2, (c) MCWS-C-6, and (d) MCWS-C-8. Note 
tendency for greater polygon segmentation in panels (c) and (d). MCWS-V-2 (b) was selected as 
the preferred LBE dataset.  
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Figure 1.8. Overlain kernel densities of large bed element (LBE) (a) diameter (Dc), and (b) area 
probability densities for the four discharge-dependent LBE datasets. Note x-axis of both panels 
have been truncated for visual purposes. 

1.5.2 LBE concentrations 

LBEs were present individually and in clusters throughout the river corridor. Visually 

speaking, LBEs conformed to a variety of morphological configurations. Clustered LBEs appeared 

in seemingly random as well as organized arrangements often forming transverse orientations and 

step-like structures. Reticulate configurations were discernable but more difficult to identify 

(Figure 1.9). 

At the segment scale, Γ of each wetted area monotonically increased from 18.2% at 

baseflow to 26.5% at flood-flow (Table 1.3). The trend indicates that as discharge increased the 

rate at which new LBE area was inundated (e.g. within the wetted area) exceeded the rate that new 

portions of the river corridor became inundated. This was facilitated by increasingly higher Γ 

values in each incremental inundation corridor (Table 1.3) and meant that, on a per-wetted-area 
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basis, increasingly higher Γ existed along channel margins. 

Reach-scale results also found wetted area Γ to increase with discharge, although Reach 6 

had nearly uniform values across discharges (Table 1.3). Changes in reach-scale wetted area Γ 

were also strongly influenced by inundation corridor Γ values, such that higher inundation corridor 

Γ generally resulted in greater increases in wetted area Γ between discharges (Figure A.1.9). A 

Pearson bivariate correlation of 0.86 between the differences in reach-scale wetted area Γ between 

subsequent discharges and inundation corridor Γ values supports this interpretation. Across 

discharges, reaches showed consistent trends in relative Γ magnitude. For instance, while each 

reach’s wetted area Γ values varied with discharge, ranking values at any given discharge resulted 

in the same ordering across all discharges. As such, Reach 2 always had the highest wetted area Γ, 

whereas Reach 6 was always lowest. This consistent ordering suggests possible reach-scale wetted 

area Γ dependencies on hillslope and fluvial geomorphic, topographic, and geometric factors 

influencing LBE supply, storage, and/or transport. 

Cross-sectional Γ trends for each wetted area varied spatially and with discharge (Figure 

1.10). Mainly, the increased granularity of these results highlight Γ spatial variability and 

tendencies for semi-oscillatory and more irregular LBE patterns. Longitudinally, Γ profiles were 

characterized by constant high-frequency oscillations of varying amplitude and non-constant low-

frequency fluctuations Figure 1.10). The non-parametric Mann-Kendall test indicated slight, but 

non-trivial (p < 0.05), decreasing downstream trends in all profiles. Comparison of all possible 

profile combinations found relatively high correlations (r > 0.8). Key features recurring throughout 

the profiles were sequences of LBE clustering as indicated by rising limbs in the profiles, which 

peaked or temporarily plateaued, and subsequently declined along diffusive style decay pathways. 

These patterns were emphasized after processing profiles with a 130 m (5 widths) centered 
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moving-window mean filter.  
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Figure 1.9. Typical configurations of clustered and individual large bed elements (LBEs) within 
the study site’s bankfull channel overlain on shaded detrended relief that include (a-c) low 
concentration, isolated and clustered LBEs; (d-f) moderate concentration, transverse and step 
structures; and (g-i) high-concentration mixtures of steps, transverse structures and possible 
reticulate formations. LBEs outside the bankfull channel are partially transparent. Representative 
LBE concentration (Γ) and cross-sectionally averaged non-dimensional LBE spacing (𝝀∗

𝒍 ) values 
for each panel are shown. These values were calculated by averaging bankfull cross-sectional Γ 
and 𝝀∗

𝒍  values for all cross-sections present in each panel.  
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Table 1.3. Discharge-dependent large bed element concentration (Γ) within each simulated wetted 
area and inundation corridor for study segment and reaches. Values between 0.08-0.30 are within 
the wake interference regime and are highlighted in gray. 

Reach 

Wetted area Γ Incremental inundation corridor Γ 

Simulated discharge (m3/s) Discharges bounding inundation corridor (m3/s)
1.54 10.73 82.12 343.6 1.54 - 10.73 10.73-82.12 82.12-343.6 

Segment 0.182 0.211 0.242 0.265 0.321 0.329 0.348 
1 0.161 0.181 0.212 0.236 0.257 0.301 0.340 
2 0.230 0.269 0.310 0.332 0.411 0.428 0.414 
3 0.191 0.218 0.255 0.286 0.346 0.368 0.386 
4 0.225 0.261 0.288 0.304 0.372 0.369 0.364 
5 0.150 0.178 0.207 0.235 0.295 0.300 0.328 
6 0.089 0.098 0.099 0.102 0.167 0.102 0.114 
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Figure 1.10. Longitudinal profiles of cross-sectional large bed element (LBE) concentration (Γ) 
values for each discharge-dependent LBE dataset. Light-gray lines are values at each cross-section. 
Black lines are moving average within a 130 m centered moving window. Dashed horizontal lines 
are thresholds for Morris’s (1959) hydrodynamic regimes at 0.08 and 0.30, respectively. Black 
vertical markers at top show reach breaks. 

1.5.3 LBE spacings 

Discharge-dependent streamwise spacing metrics (𝜆 , 𝜆∗, and 𝜆∗) spanned a wide range but 

always had positively skewed distributions showing a strong tendency for closely spaced LBEs 

(Figure A.1.10). The 𝜆∗ results, which were for individual LBEs, depict clear clustering trends 

(Figure A.1.10), whereas 𝜆∗ longitudinal profiles, which depict spacing averaged at the cross-
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sectional scale, illustrate greater variability in spacing behavior (Figure 1.11). For instance, 𝜆∗ 

profiles were quite erratic, and like Γ profiles, exhibited high-and-low frequency oscillations of 

varying amplitudes and consistencies. 

 

Figure 1.11. Longitudinal profiles of discharge-dependent cross-sectionally averaged non-
dimensional large bed element spacing (𝝀∗

𝒍 ) values. Light-gray lines are values at each cross-
section. Black lines are moving average within a 130 m centered moving window. Dark dots along 
top of plot are cross-sections with zero values. Vertical black bars show reach breaks. Note the y-
axis range is limited to 0-60 for visual purposes despite higher values occurring. 

1.5.4 Question 2 results (maximum resistance) 

Segment scale wetted area Γ values were all in the range of values associated with Morris’s 

(1959) wake interference regime (Table 1.3). At the reach scale, 21 of 24 wetted area Γ results 
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were also within the wake interference regime, signifying LBEs in these spatial domains were 

predominantly configured to maximize flow resistance. Similarly, cross-sectional Γ values found 

wake interference to be the most common regime in all segment scale wetted areas and in 18 of 24 

reach-scale wetted areas (Figure 1.12). Across discharges and spatial domains between 42-66% of 

cross-sections were classified in either isolated roughness or skimming flow regimes, thus 

demonstrating localized divergences from the wake interference regime. At higher discharges the 

proportion of cross-sections classified as wake interference and/or skimming flow increased as the 

proportion classified as isolated roughness decreased. Longitudinal profiles of cross-sectional Γ 

show oscillations were commonly around the thresholds of the wake interference regime (Figure 

1.10). 

Classifying segment- and reach-scale domains based on percentages of classified 𝜆∗ values 

found that with the exception of Reach 6, which was always in the isolated flow regime, all 

domains were in the skimming flow regime (Table 1.4). On the other hand, percentages of 

classified cross-sectional 𝜆∗ values found that while skimming flow was the most prevalent regime 

in the segment-scale baseflow wetted area, wake interference was most prevalent in the wetted 

areas of the three higher discharges (Figure 1.13). In the study reaches, 8 of 24 wetted areas had 

the highest percentages of cross-sectional 𝜆∗ values in wake interference regime, 10 had the most 

in the skimming flow, and six had the most in the isolated flow regime (Figure 1.13). At higher 

discharges the proportion of cross-sections classified as wake interference and isolated roughness 

generally increased. 

Trends in 𝜆∗  and 𝜆∗  values contrast with results using Γ, which found LBE density to 

increase in these same domains. The differences are not mutually exclusive and could result from 

presence of high-density clusters of LBEs being relative widely spaced along channel margins as 
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larger portions of the river-valley were included in the calculations, compared to more closely 

spaced, lower density LBE clusters in the baseflow channel. Sensitivity to the spacing thresholds 

used to characterize the regimes certainly exists, however these results support that LBEs were 

closely spaced and structured to maximize resistance at certain scales and in certain portions of the 

river corridor. Further, like cross-sectional Γ values, oscillations in 𝜆∗ longitudinal profiles were 

commonly around the thresholds of the wake interference regime (Figure 1.11). In this sense the 

wake interference regime may represent an attractor state toward which conditions, on aggregate, 

converge. 

 

Figure 1.12. Percentages of cross-sectional large bed element (LBE) concentration (Γ) values by 
spatial domain classified according to Morris’s (1959) hydrodynamic regimes for each discharge-
dependent LBE dataset. Bars highlighted bold are the dominate regime for each flow. Labeled bars 
had majority (>50%) of cross-sections in one regime. Reaches are ordered from left to right 
moving upstream consistent with Figure 1.10.  
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Table 1.4. Percentage of individual non-dimensional large bed element (LBE) spacing (𝝀∗
𝒍 ) values 

classified according to Morris’s (1959) hydrodynamic regimes for each discharge-dependent LBE 
dataset. For each domain and flow the regime with the highest percentage of classified 𝝀∗

𝒍  is 
highlighted in gray and bolded. Abbreviations are such that: IF – isolated roughness; WI – wake 
interference; and SF – skimming flow. 

Reach 
Simulated discharge (m3/s) 

1.54 10.73 82.12 343.6 

IF WI SF IF WI SF IF WI SF IF WI SF 

Segment 23.68 28.39 47.93 24.25 28.94 46.81 25.47 28.81 45.72 26.25 28.35 45.40 

1 29.14 26.91 43.94 29.07 27.60 43.33 28.50 27.78 43.72 28.98 26.20 44.81 

2 17.33 24.96 57.71 16.95 26.79 56.26 17.13 26.34 56.53 18.01 26.51 55.48 

3 21.75 29.83 48.42 22.80 29.77 47.44 23.91 30.74 45.36 23.64 29.41 46.95 

4 17.54 30.73 51.72 19.19 31.14 49.67 22.41 30.77 46.82 24.16 31.44 44.40 

5 26.42 29.85 43.73 28.14 30.36 41.50 29.53 29.68 40.80 29.61 29.27 41.12 

6 52.81 29.21 17.98 55.97 23.63 20.40 57.89 24.26 17.85 60.95 22.59 16.46 

 

 

Figure 1.13. Percentages of cross-sectionally averaged non-dimensional large bed element (LBE) 
spacing (𝝀∗

𝒍 ) values within the study segment and each reach classified according to Morris’s 
(1959) hydrodynamic regimes for each discharge-dependent LBE dataset. Bars highlighted bold 
are the dominate regime for each flow and study domain. Labeled bars had majority (>50%) of 
cross-sections in one regime. Reaches are ordered from left to right moving upstream consistent 
with Figure 1.11.  
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1.5.5 Comparing hydrodynamic regimes from concentration and spacing metrics 

Numerous tests performed for question 2 using Γ and spacing metric results require 

reconciliation. Comparison of segment and reach-scale regime classifications by Γ and 𝜆∗ found 

only 3 domains were classified the same by each metric. The two most common classification 

discrepancies were Γ-based wake interference sections classified as isolated and skimming flow 

regimes according to 𝜆∗ values (Table 1.5). Comparison of all cross-sections found only 44% were 

classified the same by each metric. The three most common classification discrepancies were Γ-

based wake interference sections classified as isolated and skimming flow regimes according to 

𝜆∗ values, and Γ-based skimming flow sections classified as wake interference by 𝜆∗ (Table 1.5). 

This resulted in greater portions of the study site classified as skimming flow according to 𝜆∗ and 

𝜆∗ compared to Γ. As mentioned in section 1.5.4, uncertainty in regime thresholds could explain 

some of the disparity between methods. Adjusting 𝜆∗ thresholds to maximize the percent of cross-

sections classified the same, with the constraint that wake interference was within the range of 1 

≤ 𝜆∗ ≤10, improved the percent predicted the same by both metrics to 51% and resulted in the 

following thresholds: isolated roughness for 𝜆∗ >10, wake interference for 3 ≤ 𝜆∗  ≤10, and 

skimming for 𝜆∗ <3. Higher 𝜆∗  values for the upper bound of the wake interference regime 

continued to improve consistency between metrics, but values greater than 10 for this threshold 

are not supported by the literature (Canovaro et al., 2007; Tan & Curran, 2012). 

One issue that emerged when using 𝜆∗ values to classify cross-sections was if only one or 

a few LBEs were present per section, and all 𝜆∗ values were small (i.e., <2), the section would be 

classified as skimming flow despite few LBEs being present. At the other extreme, a lack of 

downstream LBEs would identify a section with potentially high LBE concentrations in the 

isolated roughness regime. This issue was highlighted by results of comparing distributions of 
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cross-sectional LBE counts and median LBE areas classified by Γ and 𝜆∗ , which found 

distributions of these metrics were more distinct and generally increased when progressing from 

isolated flow to skimming flow for Γ classified regimes, whereas distributions were more uniform 

between 𝜆∗ classified regimes (Text A.1.4.4; Figure A.1.11; Figure A.1.12). Several patterns also 

emerged when comparing LBE count and median LBE area distributions of similarly classified 

cross-sections with those having classification discrepancies (Figure A.1.13 and Figure A.1.14). 

For instance, LBE counts of sections classified as wake interference by Γ but as isolated roughness 

or skimming flow by 𝜆∗ were lower than for similarly classified sections (i.e. both in wake 

interference regime). This is reasonable for isolated roughness regime classification discrepancies, 

but unexpected for sections classified in the skimming flow regime. Since median LBE areas were 

lower for 𝜆∗-based isolated roughness sections and higher for 𝜆∗-based skimming flow sections 

compared to similarly classified sections, this suggests 𝜆∗-based isolated roughness classification 

discrepancies might have been driven by lower numbers of smaller LBEs with longer downstream 

spacings compared to similarly classified sections, and that 𝜆∗-based skimming flow classification 

discrepancies might have been driven by lower numbers of larger LBEs with shorter downstream 

spacings (Text A.1.4.4). In light of these issues and the established relationship between Γ and 

flow resistance (e.g. Canovaro et al., 2007; Nitsche et al., 2011), Γ is taken as a more reliable 

metric for the resistance based regime classification of natural channel cross-sections employed in 

this study.  
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Table 1.5. Confusion matrix of the number of domains classified into each of Morris’s (1959) 
hydrodynamic regimes using (a) segment- and reach-scale large bed element (LBE) concentration 
(Γ) (rows) and individual non-dimensional large bed element (LBE) spacing (𝝀∗

𝒍 ) (columns) 
values, and (b) cross-sectional Γ (rows) and cross-sectionally averaged non-dimensional LBE 
spacing (𝝀∗

𝒍 ) (columns) values. Numbers along diagonals were classified the same by both metrics. 
Abbreviations are such that: IF – isolated roughness; WI – wake interference; and SF – skimming 
flow. 

(a) Segment and 
reach scale 

(n = 28) 

𝜆∗ (b) Cross-section 
scale 

(n = 16,832) 

𝜆∗ 

IR WI SF IR WI SF 

Γ 
IR 0 0 0 

Γ 
IR 1346 435 387 

WI 4 0 21 WI 3411 3320 1997 

SF 0 0 3 SF 866 2344 2726 

1.5.6 Question 3 results (lateral LBE structure) 

Wetted area and incremental inundation corridor Γ values served as indicators for how 

LBE spatial structure varied laterally in the study segment. In contrast with the results for question 

2, the vast majority, 23 of 28, incremental inundation corridor Γ values were classified in the 

skimming flow regime, and only 5 were in the wake interference regime. Incremental inundation 

corridor Γ values always exceeded wetted area Γ values for the same domain. As described in 

section 1.5.2 this meant that on a per-area basis more LBEs were located along channel margins 

than in the baseflow and representative bankfull channels (Table 1.3). Within the same domain, 

changes in incremental inundation corridor Γ values were variable, at times increasing (Segment 

and Reaches 1, 3, and 5), decreasing (Reach 4), or fluctuating (Reaches 2 and 6) as discharge 

increased. Together, these results indicate LBE spatial structure varied laterally, thus providing 

differential discharge-dependent roughness in the study segment. 

1.6 Discussion 

1.6.1 Mapping LBEs in a mountain river 

The study’s semi-automated mapping procedure facilitated a systematic census of LBEs 

within a 13.2-km mountain river. Using open-source software and operations that could be 



47 

implemented in any GIS, the procedure is transferable across rivers with the caveat that 

parameterization will likely be site-dependent. Accurate mapping of LBEs from ALS data is 

valuable as these systems are capable of covering broader spatial ranges than other topographic-

based remote sensing methods (Tomsett & Leyland, 2019). Compared to imagery-based methods, 

mapping LBEs from 3D point cloud data also had the benefit of retaining heights that LBEs 

protruded above a smoothed bed, which could be useful for ecological, hydraulic, and hazard 

analysis (Brasington et al., 2012). The mapping procedure also allows for mapping of LWM or 

other sources of macroroughness, as inclusion of such features is only constrained by topographic 

data resolution and algorithm parameters. The study’s 0.46 m DTM resolution and the site’s lack 

of LWM likely precluded extensive mapping of LWM as LBEs. However, given adequate data 

resolution, parameters could be tuned to map a ranged of desired roughness features captured by 

the unique RSM generation process. 

The finding that all tested LBE extraction approaches performed well, based on most LBEp 

datasets exceeding PA and MJI benchmarks for matching tree-crowns, is motivating given all 

approaches were parametrically simple and computationally efficient at the segment scale. Still, 

some approaches outperformed others as demonstrated by the range of PA scores (0.416-0.901). 

Importantly, high PA values alone may be misleading, as simply mapping more LBEs results in 

higher PA scores. For example, several LBEp datasets with high PA scores had relatively low MJI 

and MER scores, justifying the need for multiple performance metrics (Table A1.12). Further 

cross-comparison of findings was constrained by absence of studies reporting performance metrics 

for LBE mapping. However, aspects of mapping performance were still interrogated and found the 

primary factors controlling mapping performance were: (i) parameter selection for smoothed DTM 

creation; (ii) approach for LBE extraction; and (iii) extraction algorithm parameterization. 
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Establishing physical and/or consistent data-driven methods for setting ground 

classification parameters as part of RSM generation is relevant for transferability of the LBE 

mapping procedure. As described in section 1.4.3.1, four physically based length scales informed 

the range of several key parameters tested and found D50 was best for parameterizing the 

algorithm’s spike and offset parameters, and ~2ꞏD50 was best for the down spike parameter. These 

parameters can roughly be thought of in terms of controlling which grains should be included in 

the RSM and which should be removed. The outcome of this study was that grains ~D50 in height 

were retained in the RSM, and those larger were removed. This common sedimentological length 

scale provides a physical basis for parameter selection but further applications are required to 

evaluate its transferability or universality for smoothed DTM creation in other systems. 

Approaches for LBE extraction varied in terms of mapping accuracy and ease of 

implementation. Performance metrics and heuristic assessment found approach (iv), MCWS with 

a variable window size, produced the best set of predicted LBEs. Generally, MCWS approaches 

(iii-v) outperformed vertical threshold approaches (i-ii) for mapping LBEs or similar landscape 

features, however, mapping performance typically varied more within-approaches having different 

parameters than between approaches having similar parameters (sections 1.4.3.2 and 1.5.1; Text 

A.1.3.3.2). 

Similar to the smoothed DTM creation process, consistent methods for parametrizing 

feature extraction algorithms aid transferability of the LBE mapping procedure. Data-driven 

parameter calculations in this study were simple to implement in any GIS, only requiring a RSM 

and a small set (102-103) of observed LBEs. Observed LBEs could be digitized from imagery 

sources or field surveyed if necessary. Since MCWS approaches performed best, discussion is 

limited to methods for scaling the approach’s minimum marker and minimum crown RSM height 
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input parameter values (see section 1.5.1 and Text A.1.3.3 for details). Calculated minimum RSM 

values for a pixel to be considered a marker for the top five performing MCWS approaches scaled 

between ~2.4-3.3ꞏD50 (0.312-0.423 m). Holding other parameters constant, there was little 

difference in global performance metric scores for this range of values, suggesting, sensitivity to 

this parameter was low. In the sense this parameter controls the minimum height defining 

roughness elements it bears resemblance to Nikuradse’s (1933) equivalent sand-grain roughness, 

ks, which is typically related to characteristic grain sizes through various scaling relationships. The 

ks parameter is ubiquitous in hydraulic resistance equations and is often scaled by multiplying D50 

by a factor greater than unity based on understanding that the largest particles present dominate 

flow resistance (e.g. Powell, 2014). Marker RSM values in this study fall within the broad range 

of ks scaling relationships, but are lower than what has been recommended for coarse-bedded rivers 

(e.g., 5-7ꞏD50) (Powell, 2014; Weichert, 2006). RSM values do not have a 1:1 correspondence with 

grain sizes as the former represents topographic offsets from a variable but smooth bed surface, 

which could account for why the minimum RSM value range was smaller than typical D50 scaling 

of ks values. The smaller D50 scaling for minimum RSM values may simply serve to retain a range 

of smaller LBEs in the mapping procedure than what is considered in resistance equations with 

larger ks values. Estimates of the minimum RSM for pixels to be included in the segmentation 

process, essentially a control on the lateral extent of LBE mapping, for the top five performing 

MCWS approaches scaled between ~1.5-2.1ꞏD50 (0.192-0.272 m). These values were between 

~0.61-0.87ꞏminimum RSM values. Mapping performance was more sensitive to this parameter, 

and higher values had better global performance metric scores. These improvements diminished 

when values were above ~1.3ꞏD50 (0.169 m) (Table A1.4 and Table A1.12). Further applications 

are required to evaluate the robustness of these scaling ranges for MCWS based LBE mapping in 
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other systems. 

Beyond performance metrics, visualization noted differences in each approach’s ability to 

distinguish individual LBEs versus aggregate features (i.e., over- and under-segmentation). 

Vertical threshold approaches appeared less capable of segmenting abutting LBEs, whereas 

MCWS methods performed better in this regard, as segmentation was an implicit part of the 

extraction algorithm. Depending on one’s goals, some amount of LBE under-segmentation may 

be acceptable. For instance, mapping particle clusters and/or coarse bedforms such as channel 

steps are of interest in many studies (Hassan & Reid, 1990; Wittenberg & Newson, 2005). 

Alternately, over-segmentation can serve to differentiate complex LBE forms into discrete 

sections, provided each section has a peak identifiable by the marker algorithm. This could be 

applied toward the study of LBE granular structures, the differential sculpting of complex bedrock 

features, and/or allow classification of different cluster types, as a few examples. 

1.6.2 LBE lateral spatial structure and resistance 

Analyzing LBE spatial structure metrics made it possible to gain insight into LBE 

organization in the study site at multiple spatial scales. A notable pattern that emerged from 

quantifying Γ within wetted areas and incremental inundation corridors of discharges ranging from 

baseflow (1.54 m3/s) to a 3.5-yr flood event (343.6 m3/s) was that on a per-area basis more LBEs 

were located along channel margins than in the baseflow and representative bankfull channels 

(Table 1.3). This was true for the segment as a whole and within each reach, confirming it was 

neither scale-dependent nor only a localized phenomenon. 

One explanation for higher Γ along channel margins is preferential deposition of hillslope 

derived LBEs in these areas rather than in the bankfull channel portion of the valley bottom. Benda 

(1990) made this observation in the Oregon Coast Range where boulders from debris flows were 
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deposited before the flow front, thus leaving various disconnected fans, levees, and/or terraces 

above channel bottoms. Depositional patterns (e.g. size, shape, and location) of wasting events are 

influenced by sedimentological and morphological hillslope properties and often differentiate by 

movement type (Hungr et al., 2001). For instance, pre-frontal boulder deposition is common 

among debris floods and rock avalanches, whereas coarse materials tend to be present at the front 

of landslides and debris flow deposits (Hewitt, 2002; Hungr et al., 2001). The site’s high potential 

for mass wasting processes (Curtis et al., 2005), provide abundant possibilities to supply LBEs to 

the study site’s valley-bottom. However, the degree to which various modes of wasting and 

associated depositional mechanics are responsible for observed lateral Γ patterns remain unclear, 

and theory suggests fluvial transport amongst other factors play a role. For example, mass 

movements are often conceptualized as being randomly located along rivers (e.g. Ouimet et al., 

2007), which contrasts with the distinct sequences of high- and low-density LBE clusters in the 

baseflow and bankfull channels (Figure 1.10) and more diffuse and uniformly distributed LBEs 

along high flow channel margins (Table 1.3). Redistribution of channel margin LBEs to more 

uniformly paved configurations during historic high magnitude discharges offers one plausible 

explanation. The fact that LBEs were comprised of boulders, boulder clusters, and bedrock 

outcrops could mean Γ differences were simply due to the presence of exposed bedrock surfaces 

along channel margins. Weathering and attrition leading to more rapid breakdown of baseflow and 

bankfull channel LBEs could also account for a portion of lateral Γ differences (Attal, 2017). 

While Γ values were highest along margins it is relevant to reiterate that baseflow and 

bankfull channel Γ values were still relatively high, often at levels conceptualized to maximize 

flow resistance, thus necessitating supply of LBEs to these portions of the valley bottom as well. 

Tight hillslope-channel coupling (sensu Whiting & Bradley, 1993) theoretically supports 
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deposition of hillslope derived materials in the bankfull channel. Conceptually, channel margins 

could act as interim storage locations for LBEs to enter the channel through destabilization 

processes occurring during infrequent high magnitude discharges (Golly et al., 2019). This is one 

of many fluvial-hillslope feedbacks known to modulate LBE delivery and depositional processes 

(Shobe et al., 2016). In addition to destabilizing channel margins, infrequent high magnitude 

discharges also promote disturbance and transport of bankfull channel LBEs and coarse-bedforms, 

which are thought to re-organize during smaller more frequent flood events, often achieving 

oscillatory or semi-oscillatory patterns similar to those observed in the study sites baseflow and 

bankfull channels (Grant et al., 1990). The study site’s largest recorded flood occurred in 1997 at 

a magnitude of 2165.6 m3/s. It is assumed this ~ 34-yr flood was capable of mobilizing LBEs 

several meters in size but the geomorphic work performed relative to the above processes and 

detangling relative roles of hillslope and fluvial processes driving lateral Γ differences require 

additional study. 

Regardless of explanatory factors, the nested Γ sequence along the study site’s river 

corridor confirmed LBE spatial structure did vary laterally and provides the means for differential 

roughness as an increasing density of macroroughness features are encountered as discharges 

increase. This structuring has potential implications toward the commonly held convention that 

average resistance decreases as discharge increases, as is the case in lower gradient channels with 

well-defined banks and less abundant LBEs (Powell, 2014). In confined river canyons with 

abundant LBEs that lack a clear bankfull channel, the discharge-resistance relation response may 

differ from convention depending on relative contributions of resistance from LBEs versus 

changing hydraulic conditions (Bathurst, 1978; Pagliara et al., 2008). Hypothetically, if resistance 

borne by LBEs in incremental inundation corridors increases faster than the amount lost from 
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increasing width-to-depth ratios and mid-channel LBEs becoming highly submerged (i.e. flow 

depth to Dc ratio ~10 [sensu Weichert, 2006]) and no longer contributing much resistance it is 

possible for spatially averaged resistance to increase, remain constant, or only minimally decrease 

up to a point these relationships no longer hold (Abu-Aly et al., 2014; Cassan et al., 2017). In the 

study site, the latter condition would certainly occur when the river canyon is inundated and LBEs 

submerge faster than new LBEs are encountered. Ferguson et al. (2019) found a similar scenario 

in a relatively smooth, trapezoidal, bedrock channel where resistance initially increased with 

discharge due to increased sidewall roughness, before subsequently decreasing. Notably, increased 

LBE submergence in the study site’s baseflow and bankfull channels at higher discharges would 

result in substantial resistance heterogeneity along channel cross-sections, potentially necessitating 

variable roughness length scales along different portions of the channel margins such as proposed 

by Ferguson et al. (2019). 

1.6.3 Segment and reach resistance maximization 

The question of whether LBEs were configured to maximize flow resistance was answered 

using LBE concentrations (Γ) and LBE-to-LBE spacing (𝜆∗) metrics at multiple spatial scales. At 

segment and reach scales, 25 of 28 wetted area Γ values corresponded to Morris’s (1959) wake 

interference regime which served as a hydrodynamic process-based mechanism for maximizing 

resistance. On the other hand, based on percentages of classified 𝜆∗ values no discharge-dependent 

segment or reach scale domains corresponded to the wake interference regime (Table 1.4). 

Between metrics, there is reason to accept Γ is more reliable for this analysis (section 1.5.5), 

therefore the remainder of this section focuses on that metric with the understanding that 𝜆∗ results 

contribute uncertainty to the supposition that LBEs were configured to maximize resistance. 

Interestingly, segment- and reach-scale Γ results did not document any cases of isolated roughness. 
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The three Γ values not classified in the wake interference regime had concentrations of 

0.31, 0.33, and 0.304, respectively (Table 1.3). These are just outside the regime’s specified range 

(0.08-0.30) but are within a broader range of values reported in the literature that may still serve 

to maximize resistance. For example, in 394 runs in a flume with three macroroughness element 

configurations (random, transverse stripe, and longitudinal strip), Canovaro et al. (2007) found 

flow resistance was maximized at macroroughness concentration of ~30%. Similarly, Pagliara et 

al. (2008) found friction factor increased for macroroughness concentrations up to ~30%, the 

maximum concentration of their 197 experimental runs in a fixed-bed flume with randomly 

patterned elements. Powell (2014) reviewed multiple studies, including those above, and reported 

resistance was maximized at macroroughness concentrations between 20-40%. Other experiments, 

such as those by Nowell and Church (1979) who found resistance maximized at a macroroughness 

density of 8.3%, support the possibility of resistance maximizing at lower concentrations. The 

range of Γ corresponding to maximum resistance in these studies contribute uncertainty to the 

study’s simplifying assumption that the wake interference regime always corresponds to maximum 

resistance. However, in the absence of unifying Γ-resistance relations, the interpretation remains 

that discharge-dependent LBEs in the study segment and most reaches were configured to 

maximize or nearly maximize resistance. 

Notably, omission and commission errors and over- and under-segmentation in the final 

LBE dataset would affect Γ and 𝜆∗ values and associated regime classifications. Regarding Γ, 

omissions would result in underestimation effects that could be partly balanced by commission 

errors, whereas over- and under-segmentation wouldn’t effect this metric. Assuming a 25% 

maximum omission rate (i.e. 25% increase in Γ), which is reasonable according to PA performance 

(Table 1.2), 5 of the 25 segment- and reach-scale Γ values in the wake interference regime would 
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switch to the skimming flow regime. However, all baseflow domains would remain in the wake 

interference regime and most Γ values would remain below 0.4. For 𝜆∗, omissions would also 

generate underestimation effects, while commission and over- and under segmentation could have 

opposite effects due to creating more closely abutting LBEs. 

Comparative Γ measurements from other mountain rivers are somewhat lacking, but a few 

are available in the scientific literature. Resop et al. (2012) mapped 31.8% areal cover of boulders 

(> 0.256 mm diameter) within a 2nd order, cobble-boulder forested Appalachian mountain stream. 

Boulder (> 0.5 m) concentrations reported by Nitsche et al. (2011) for 14 steep mountainous 

reaches in the European Alps were between 0-40%. Other reporting posits that large particles 

generally occupy 2-50% of the bed area in coarse-bedded rivers (Wittenberg & Newson, 2005). 

Outside natural rivers, the mobile-bed flume experiments of Church et al. (1998) and Hassan and 

Church (2000) found reticulate structures of “stone cells” to occupy 10-25% of final stable bed 

configurations. These experiments were conducted both with and with-out sediment feed under 

various flow conditions, typically in the range producing partial transport. Eaton et al. (2020) 

proposed a morphologic stability criteria for laterally confined gravel-bed streams of immobile 

grains occupying 20% of the areal proportion of the bed. Together, these findings provide some 

support that macroroughness features in mountain rivers occur within the wake interference 

regime. Still, inconsistencies in how LBE/macroroughness features are classified and quantified, 

the complexity of processes involved in how LBEs are supplied to and stored in channels, potential 

Γ dependencies with other morphometric properties, the need to potentially account for other 

sources of roughness (e.g. spill and vegetative roughness), and the continuously evolving nature 

of LBE distributions mean more study is needed to understand the wake interference regime as an 

attractor state for maximizing resistance toward which natural channels evolve (Molnar et al., 
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2010). Further, the idea that LBEs organize to maximize resistance fundamentally requires both 

an active supply of LBEs in the landscape, which itself depends on several factors including but 

not limited to regional lithology, climate, vegetation, tectonics, and age of the landscape (Attal, 

2017; Neely & Dibase, 2020); and a river style where roughness is the primary mode of channel 

adjustment, which is only true for certain river styles (Brierley & Fryirs, 2005; Fryirs et al., 2016). 

Notably, both these limiting conditions are present in the study site. 

The positive relationship between channel slope and Γ, is a good example of one previously 

documented morphometric dependency (Grant & Swanson, 1995; Nitsche et al., 2012). Recent 

study on this topic posits a negative autogenic feedback exists between Γ, channel slope, and 

hillslope processes such that following a change in base level, river incision acts to steepen 

adjacent hillslopes, thereby increasing LBE delivery to channels (Shobe et al., 2016). The physical 

protection and resistance provided by LBEs mediate further channel incision, ultimately allowing 

for occurrence of overly steep channel slopes compared to equilibrium profiles expected by 

landscape evolution modeling theory. Like the works cited above, results from this study also 

found positive relationships between reach-averaged slope and Γ (Figure 1.14). More detailed 

analysis of the relationship between LBEs and morphometric properties, such as slope, is enticing 

but beyond the scope of this effort. 
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Figure 1.14. Reach scale large bed element (LBE) concentration (Γ) versus reach averaged slope 
for each discharge-dependent LBE dataset. Discharges in legend are in m3/s. 

1.6.4 Cross-section resistance maximization 

Unlike previous efforts aggregating Γ at larger spatial scales (Nitsche et al., 2011), this 

study included both Γ and 𝜆∗ calculations at river cross-sections (10-1 width). This granularity 

highlighted spatial variability of Γ and 𝜆∗, and associated Morris regimes, in the study site. For 𝜆∗, 

this is also the first time we aware of this type of LBE spacing metric being calculated in a natural 

setting at any scale. In many mountain rivers the expectation that all cross-sections would conform 

to a single hydrodynamic regime such as the wake interference regime is unrealistic. This type of 

uniform, plane-bed channel morphology contrasts with both the diversity of river styles present in 

mountainous regions as well as the tendency for bedform development (Brierley & Fryirs, 2005; 

Grant et al., 1990). This divergence was exemplified by the oscillatory nature of the study site’s Γ 
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and 𝜆∗  profiles (Figure 1.10; Figure 1.11), which includes definitive bedforms (Wiener & 

Pasternack, 2019). Nevertheless, the tendency for oscillations to be centered about the wake 

interference regime supports the notion that portions of the channel must be attracted to this state, 

which is compatible with theory for regular to semi-regular coarse bedforms patterns to maximize 

resistance and promote channel stability (Abrahams et al., 1995; Madej, 2001). In this regard there 

may be interest to use Γ and/or 𝜆∗ as more basic units of geomorphic analysis in addition to or in 

lieu of more traditional metrics involving channel unit classification (Adams, 2020; Grant et al., 

1990). 

Discrepancies in cross-sectional Γ and 𝜆∗  based regime classifications highlighted 

potential uncertainties in thresholds used to classify regimes and potential issues using 𝜆∗  for 

classifying Morris’s hydrodynamic regimes in natural rivers. While Γ was taken as a more reliable 

metric for the purposes of this study, spacing metrics like 𝜆∗ and 𝜆∗ still have utility in describing 

hydraulic properties in natural channels as they correspond with flow disruption and recovery 

length scales (Bathurst, 1978; Tan & Curran, 2012). Spacing metrics can also be used to address 

open questions of whether clustering mechanisms dominate over dispersive mechanisms in the 

longitudinal spacing of LBEs in mountain rivers (Madej, 2001). Taken together, the study’s 

concentration and spacing metrics form scale-dependent phase-spaces providing more complete 

representations of a river channel’s LBE spatial structure (Figure A.1.15). For instance, if a river 

has Γ in the wake-interference regime and 𝜆∗ in the skimming regime, as was often the case for 

baseflow conditions in the study site, this suggests individual LBEs are present in closely spaced 

clusters (i.e., low 𝜆∗), but that the clusters are widely spaced (i.e., relatively low Γ). Visualizing 

discharge-dependent metric trajectories on phase-spaces can aid in describing how LBE spatial 

structure and resistance change as different portions of the river corridor become inundated. Lastly, 
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it is reasonable to posit that data plotting in discrete regions of a Γ-λ phase-space could discriminate 

different channel morphologies and/or where different modes of channel adjustment such as 

planform, gradient, or bed roughness would likely dominate (Eaton & Church, 2009). 

1.6.5 Resistance maximization as an attractor state 

Results of the study found LBEs in the study segment and several other mountain rivers 

were often present in spatial configurations associated with maximizing flow resistance. However, 

findings do not address the question of how and why channels might adjust toward a state of 

maximum flow resistance. The why of this question remains part of a set of open questions on 

landscape evolution and fluvial morphodynamics that are outside the scope of the effort. However, 

acceptance of the extremal/regime theory hypothesis that channels adjust their boundaries to 

maximize flow resistance provides a limited answer, even if the validity of this hypothesis remains 

open (Eaton & Church, 2009). 

How LBE configurations might evolve to maximize flow resistance can be explored 

through conceptual trajectories of landscape adjustment under the assumption that channels 

adjustment their boundary conditions to increase hydraulic resistance when resistance is low 

relative to hydraulic forces and visa-versa. Firstly, if LBEs are present in configurations above 

those associated with maximum flow resistance high LBE densities covering the channel bed 

would reduce incision (Shobe et al., 2016; Sklar & Dietrich, 2004). This would be expected to 

reduce hillslope LBE supply through reduced upslope propagation of hillslope steepening and 

increased hillslope stability (Attal et al., 2015; Shobe et al., 2016). During periods of reduced 

supply, other factors such as attrition, weathering, and transport could serve to reduce LBE 

configurations. Where LBE supply remains high, a cyclical feedback of resistance induced 

deposition creating more planar beds and thus more transportable LBEs could develop LBE 
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configurations that oscillate between maximize resistance and those exceeding this condition (i.e., 

skimming flow) (Eaton et al., 2020; Wohl & Merritt, 2008). 

Alternately, LBE configurations lower than those that maximize flow resistance can drive 

feedbacks increasing LBE supply, deposition, or other adjustments that increase resistance. For 

instance, with less LBE cover incision processes would increase leading to greater hillslope LBE 

supply (Shobe et al., 2016). Lower resistance also means channels are less stable during floods, 

which can lead to hillslope destabilization that increases LBE supply, and increased LBE transport 

(Ferguson et al., 2019; Golly et al., 2019; Wohl & Merritt, 2008). The latter may be 

counterintuitive, but can promote bedform development through jamming type interactions and/or 

armor development that can then increase resistance through exhumation, increased deposition, 

and/or reduced transport of LBEs supplied by hillslopes (Wohl & Merritt, 2008). Though 

simplified, these feedbacks provide reasonable trajectories of LBE mediated channel adjustment 

toward conditions of maximum resistance while leaving room for more complex oscillations and 

non-equilibrium behavior. 

1.7 Conclusions 

In a recent commentary on the importance of larger-than-average particles, Williams et al. 

(2019) stated the need to, “appraise the presence, sources, distribution and role of large grain 

deposits in contemporary riverscapes.” In this study we present and use a semi-automated 

procedure to systematically map LBEs at the segment scale within a mountain river from 3D point-

cloud data. The suite of performance metrics employed found application of a MCWS algorithm 

to return the best LBE prediction results amongst tested methods, with performance comparable 

to efforts from the field of forestry for mapping tree-crowns. To allow transferability of the 

procedure, effort was taken to rely on physical or data-driven techniques for parameter selection. 
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The study site’s D50 served as a reference scale for mapping algorithm parameters, but further 

application is required to understand the universality or range of appropriate scaling factors. 

Ultimately, given the availability of a 3D point cloud, reasonable LBE mapping was proven to be 

easily implementable across a variety of spatial scales. This could prove valuable toward 

improving sediment transport predictions (Yager et al., 2007) and habitat characterizations (Gippel 

et al., 1996) in mountain rivers where accurate accounting of LBEs is critical (Piégay et al., 2020). 

Following mapping, novel exploration of LBE spatial structure was conducted using LBE 

concentrations and streamwise LBE-to-LBE spacing metrics for multiple laterally and/or 

hierarchically nested spatial domains at multiple spatial scales. Greater LBEs concentrations along 

channel margins compared to baseflow and representative bankfull channels provided the 

foundation for an untested conceptualization for spatially averaged resistance to increase, remain 

constant, or only minimally decrease with discharge, which differs from current conventional 

understanding. Segment- and reach-scale LBE configurations supported the hypothesis that LBEs 

were often organized to maximize flow resistance on the basis of the hydrodynamic flow regimes 

originally proposed by Morris (1959), however conflicting results, uncertainty in regime 

thresholds and the assumption that the wake interference regime always corresponds to maximum 

resistance, and uncertainty regarding the relative role of fluvial versus other geomorphic 

mechanisms driving LBE organization leave open questions about this extremal model of 

geomorphic adjustment. Analysis of river cross-sections demonstrated the spatial variability of 

LBE configurations, but findings also served to reinforce that the wake interference regime may 

act as an attractor state toward which conditions converge but from which there is freedom to 

deviate in response to dynamic forces shaping the LBE landscape (Phillips, 1999). Further study 

of LBEs in other mountain rivers at multiple spatial scales is required to better understand the 
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regularity and mechanisms by which LBEs are structured to maximize resistance and variability 

around the wake interference regime. Nevertheless, the fact that LBEs were often configured to 

maximize resistance as well as documenting differential patterns in the lateral spatial structure of 

LBEs in the river corridor may have practical applications for synthetic river design and guiding 

river management or restoration actions such as designing LBE configurations or having reach 

scale LBE concentrations in the wake interference regime as a process-based goal. 
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CHAPTER 2.  ‘PROCESS-BASED SIMILARITY’ REVEALED BY DISCHARGE-

DEPENDENT RELATIVE SUBMERGENCE OF THOUSANDS OF LARGE BED 

ELEMENTS 

2.1 Abstract 

Relative submergence of macroroughness elements such as boulders and bedrock outcrops, 

or large bed elements (LBEs), collectively, is a primary control on hydraulics and 

morphodynamics in steep, coarse-bedded rivers. However, in practice, the property is typically 

represented by singular, often reach- or cross-section-averaged values that mask bed-surface 

heterogeneity and joint distributions of local flow depths. By coupling sub-meter resolution 2D 

hydrodynamic modeling with spatially explicit mapping of LBEs from a 13.2 km segment of a 

boulder-bedded mountain river, we present complete distributions of LBE relative submergences 

at multiple spatial scales and explore their dynamism across discharges. Through distribution 

fitting and statistical analysis of resultant discharge-dependent LBE relative submergence datasets, 

it was confirmed that segment- and reach-scale datasets exhibited similar statistical properties and 

were able to be drawn from the same type of distribution. Further, the rate at which statistical and 

parametric properties changed between discharge-dependent datasets were statistically equivalent 

between spatial domains, which we term ‘process-based similarity’. Commonality in distribution 

type and the uniform between-discharge scaling relationships suggest mutual self-organizing 

processes associated with the size-frequency distribution, spatial arrangement, and submergence 

of LBEs were present between most domains. Implications of relative submergence distributions 

on estimating roughness coefficients, hydraulic resistance equations, and geomorphic processes 

are discussed. 
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2.2 Introduction 

Morphology, defined here as the baseline landform topography and overlying structural 

elements, of relative high-gradient (≥1.5% channel slope), coarse-bedded (D50 ≥ 5 mm) river 

channels typically includes predominantly immobile macroroughness features such as boulders 

and bedrock outcrops. Generally occupying 2-50% of the bed surface area (Wittenberg & Newson, 

2005; Wiener & Pasternack, 2022), these large bed elements (LBEs) protrude from the bed-surface 

into the flow-field, often extending above the water surface over a range of discharges. Protrusion 

of LBEs into the flow exert resistance on the fluid (Robert, 1990), reduce energy available for 

sediment transport (Yager et al., 2007; Monsalve & Yager, 2017), influence the temporal and 

spatial structure of mean and turbulent flow characteristics (Lacey & Roy, 2008; Cooper et al., 

2013; Groom & Friedrich, 2019), and influence the mosaic of physical habitat conditions (Kondolf 

et al., 1996; Crowder & Diplas, 2006). 

The manner in which LBEs effect these same properties is strongly related to the degree of 

LBE relative submergence (h/Dc), where h is local flow depth and Dc is the diameter of the particle 

of interest, typically normal to an arbitrary datum representing the mean bed surface (Papanicolaou 

& Tsakiris, 2017). Standard practice is to quantify relative submergence using singular, often 

reach- or cross-section-averaged h and a single characteristic grain size (Di), where the subscript i 

is the percent of grains finer (e.g. D50 and D84) (Nitsche et al., 2011; Schneider et al., 2015; 

Ferguson et al., 2017). However, heterogeneity of LBE sizes and configurations present along the 

bed and banks of coarse-grained rivers means a variety of h/Dc values are likely present at any 

given discharge. Owing to limited availability of continuous and comprehensive segment-scale 

LBE datasets (Benda, 1990; Resop et al., 2012; Shobe et al., 2016) that are rarely if ever coupled 

with measurements of local flow depths, few if any studies document statistical distributions of 
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relative submergences for complete sets of LBEs present in natural rivers or how such distributions 

change with discharge. Accounting for such variability is critical for resolving local and spatially 

averaged flow hydraulics and sediment fluxes (Monsalve & Yager, 2017; Groom & Friedrich, 

2019). 

Thus, a main goal of this study was to document discharge-dependent distributions of h/Dc 

in different spatial domains (i.e. segment and river reaches) in a confined mountain river with 

abundant LBEs. These data were used to test two general hypotheses. First, based on studies 

documenting roughness height distributions of water-worked coarse-grained surfaces (natural or 

experimental) to be unimodal, positively skewed, and leptokurtic (Robert, 1990; Gomez, 1993; 

Hodge et al., 2009), it was hypothesized that h/Dc distributions would have these same properties 

(general hypothesis 1). Second, it was hypothesized that statistical properties of h/Dc distributions 

in a given spatial domain would change between discharges, specifically that the combination of 

depth changes at previously wetted and partly-to-fully submerged LBEs and new LBEs becoming 

wetted along expanding channel margins would cause h/Dc distribution variance to increase and 

central tendency measures such as mean and mode to remain relatively constant and/or increase 

(Aberle et al., 2010; Yochum et al., 2014; Wiener & Pasternack, 2022) (general hypothesis 2). 

To accomplish the study’s main goal and address these hypotheses, depth predictions from 

a two-dimensional (2D) hydrodynamic model were coupled with novel, spatially explicit mapping 

of LBEs from a confined, boulder-bedded river (i.e. D50 ≥ 64 mm [sensu Bathurst, 1982]) with 

abundant LBEs to develop h/Dc distributions for a series of discharges. Acknowledging the 

potential for alternative behaviors beyond those hypothesized, changes in h/Dc distributions were 

also compared to six idealized evolutionary trajectories based on testable, statistical 

representations of discharge-dependent h/Dc distributions plausible for coarse-grained, partly-
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confined to confined rivers. We begin by briefly reviewing concepts of surface roughness and 

relative submergence (2.2.1), present the six conceptual h/Dc distribution evolution styles (2.2.2), 

and finally present the questions of this study (2.2.3). Documenting spatially explicit h/Dc 

dynamics in this manner offers a novel approach for representing bed-surface heterogeneity with 

implications to the study of channel hydraulics and geomorphology. 

 Background 

In coarse-grained natural rivers, bed roughness has predominately been quantified using 

four classes of methods: (i) characteristic particle-size approaches (Bunte & Abt, 2001); (ii) 

random-field approaches (Nikora et al., 1998; Aberle et al., 2010); (iii) statistical representations 

such as the standard deviation, skewness, or kurtosis of detrended bed-surface elevations within a 

sub-meter convolution kernel (Aberle & Smart, 2003; Yochum et al., 2012); and (iv) hybrid 

approaches combining aspects of the aforementioned approaches with additional metrics 

representing the size and/or spatial arrangement of roughness elements (Schlichting, 1936; Nitsche 

et al., 2012). Each class has strengths and weaknesses, review of which is outside the scope herein, 

and the question of how to measure bed roughness remains open for debate (Hodge & Hoey, 2016). 

Regardless, the result of applying these methods is typically generation of a single bed-roughness 

length-scale coefficient (Δ) for spatial domains ranging from grain patches to entire river reaches. 

While singular Δ values are practical, such as for use with spatially averaged hydraulic resistance 

equations (Powell, 2014), the fact remains they are composite approximations that mask 

significant heterogeneity of natural channel sediments (Furbish, 1987; Robert, 1990). Inclusion of 

multiple roughness length scales or other approaches that better represent spatially explicit 

topographic variability conjecturally offer potential to address such limitations (Smith, 2014; 

Ferguson et al., 2019). 
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Once determined, it is common practice for Δ values to be held fixed irrespective of stage 

(e.g. Nitsche et al., 2011; Yochum et al., 2012; Ferguson et al., 2017; see Aberle et al. [2010] and 

Abu-Aly et al. [2014] as exceptions). Fixing Δ ignores the discharge-dependent topographic 

variability of the portion of the bed in contact with the flow, which has implications for landscape 

evolution modeling, resistance estimates, and other applications (Ferguson et al., 2017). 

Theoretical and empirical correspondence between R/Δ, where R is hydraulic radius and Δ is 

parameterized from one of the methods described above (e.g., D50, D84, σz [standard deviation of 

detrended bed elevations], etc.) and common resistance coefficients (e.g., Manning’s n or the 

Darcy-Weisbach friction factor f), has resulted in scaled relative submergence variables of this 

form being ubiquitous in hydraulic resistance equations (i.e. ∝ ∝
∆

). The most common 

functional relationships of these equations being of logarithmic or power-law forms (e.g. Powell, 

2014). Notably, the assumption that h~R, which has minimal errors only for large width-to-depth 

ratios (>20), is regularly applied (Bathurst, 1985). 

On the basis of such resistance equations, many workers document that total resistance 

values decrease monotonically as flow and depth increase (i.e. as relative submergence increases) 

(Powell, 2014). Universality of this norm remains debated, especially in boulder-bedded and 

bedrock-alluvial channels, and findings based on fixed roughness coefficients contribute added 

uncertainty (Abu-Aly et al., 2014; Hodge & Hoey, 2016; Cassan et al., 2017; Ferguson et al., 2017; 

Wiener & Pasternack, 2022). For instance, if Δ is fixed, discharge-dependent resistance estimates 

of many resistance equations simply reduce to being a function of local depth-discharge 

relationships. The underlying assumption is then that there exists a 1:1 correspondence between h 

and resistance for all systems with common Δ values. These factors, amongst others (e.g. Comiti 

et al., 2009; Yochum et al., 2012), contribute to scatter when comparing h/Δ versus hydraulic 
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resistance observations (Rickenmann & Recking, 2011) and why no single resistance equation is 

universally accepted for steep rivers with abundant LBEs and low relative submergence flows 

(Nitsche et al., 2012). By addressing discharge-dependent h/Dc distributions, this study provides 

new inference into the efficacy of fixing Δ and an approach that better represents bed-surface 

heterogeneity compared to singular Δ values. 

Flow structures and sediment-transport patterns are also influenced by LBE submergence. 

Locally, LBEs induce pressure gradients that drive flow acceleration over and around elements 

followed by downstream deceleration and flow separation. These changes in momentum generate 

turbulence and large amounts of turbulent kinetic energy (Groom & Friedrich, 2019). The size and 

structure of LBE driven wakes and vortex structures are variable and difficult to predict. However, 

under idealized conditions, flows around isolated LBEs include a horseshoe vortex region 

extending ~0.5-1 Dc upstream and a downstream dual wake (primary and far wake) system 

extending up to ~7 Dc downstream (Shamloo et al., 2001; Tan & Curran, 2012). These structures 

result in characteristic patterns of scour and deposition that differ depending on submergence and 

can facilitate development of stable sediment patches (Shamloo et al., 2001; Monsalve & Yager, 

2017). 

A threshold value of 3.5 has been associated with shifts in depositional tendencies, wherein 

under high relative-submergence (HRS) conditions (h/Dc > 3.5), mobile particles preferentially 

deposit in wakes downstream of LBEs, and under low relative-submergence (LRS) conditions 

(h/Dc < 3.5) the probability of upstream deposition is heightened (Papanicolaou & Tsakiris, 2017). 

Threshold values for h/Dc have also been used to classify regimes where different resistance types 

(e.g. grain, form, spill) are believed to dominate (Bathurst, 1985) and to define scales for separating 

vertical velocity profiles into distinct layers with unique properties and governing functional 
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equations (e.g. Shamloo et al., 2001; Cooper et al., 2013). With these associations in mind, 

mapping spatially explicit LBE configurations and flow properties such as h/Dc can enable more 

detailed, localized, geomorphic and hydraulic analysis than permitted by spatially averaged values. 

 Styles of LBE relative submergence response to discharge 

The evolution of river channel h/Dc distributions from one discharge to another involves 

two main processes: (i) depth changes at previously wetted, partly-to-fully submerged LBEs result 

in a new distribution of h/Dc values at just these LBEs; and (ii) new LBEs become wetted along 

the expanding channel margin and their distribution is convolved with the new distribution of 

previously wetted LBEs. For each change in discharge, these two processes occur in tandem to 

form unique sets of discharged-dependent h/Dc values. The manner of h/Dc distribution changes 

therein depends on discharge-dependent LBE spatial structure (i.e. location of LBEs in the river 

valley and which LBEs are wetted at different discharges) and hydrodynamics. In confined river 

canyons, several workers have documented higher LBE concentrations occurring along hillslope 

margins outside of valley bottom baseflow and/or bankfull channels (Benda, 1990; Sklar et al., 

2020; Wiener & Pasternack, 2022). While the mechanisms for such configurations remain unclear, 

these circumstances provide conditions to initially hypothesize that h/Dc distributions in a given 

spatial domain (e.g. river reach) would remain nearly constant across a range of discharges as 

newly encountered, low submergence LBEs compensate for valley bottom LBEs that become 

increasingly submerged (Figure 2.1a). This contrasts somewhat with the expectations stated in the 

study’s second general hypothesis, and notably, increased depths at previously wetted LBEs mean 

some degree of increase in the number of highly submerged particles and an increase in the right-

tail of h/Dc distributions is unavoidable. 

Statistical equivalency of discharge-dependent h/Dc distribution properties, such as 
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distribution type and statistical moments, are indicators that mechanisms conserving h/Dc scaling, 

such as those described above, are present between one or more discharges. This type of statistical 

self-similarity (Style 1) has been posited as an emergent property of dynamical systems with many 

interacting elements and extended spatial degrees of freedom, whereby internal dynamics and 

feedbacks result in system properties evolving toward a critical equilibrium state with self-similar 

distributions (Sornette, 2000). In fluvial geomorphology, statistical self-similarity has been related 

to the geometric properties of river networks and the size and spacing of aeolian, fluvial, glacial, 

and submarine landforms, but remains a controversial topic (Furbish, 1987; Baas, 2002; Ely et al., 

2018). Variability in LBE configurations and channel morphology, expected increases in the right-

tail of h/Dc distributions, and uncertainty of equilibrium state may conflict with the case for 

statistical self-similarity (Style 1). Therefore, five other conceptual discharge-dependent h/Dc 

distribution evolution Styles for partly-confined to confined rivers were theorized drawing on 

concepts of self-similarity and self-organized criticality (Sapozhnikov & Foufoula-Georgiou, 

1999; Baas, 2002) (Figure 2.1). 

Figure (b) depicts the case where h/Dc distributions in a given domain have similar central 

tendencies across discharges, but differ in shape as variance increases (Style 2). This trajectory 

follows from slight imbalances between how depth increases at previously wetted LBEs relative 

to the number of newly wetted, presumably low submergence, LBEs that contribute to heavier tails 

but maintain overall central tendency (Figure A.2.1a). This style is consistent with the study’s 

second general hypotheses and could emerge in a river channel with several laterally nested 

floodplain-like alluvial surfaces hosting abundant LBEs, provided low-flow channel LBEs rapidly 

submerged simultaneous with the incremental shallow submergence of floodplain LBEs at 

successively greater discharges. This style reflects processes of increasing entropy, and divergence 
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toward greater hydrogeomorphic diversity around a steady attractor state (Chin & Phillips, 2007). 

Figure 2.1(d) shows the case where distribution shape and variance in a given domain 

remain constant but central tendency increases with discharge (Style 3). Mathematically, this 

occurs if depth increases uniformly at all previously wetted LBEs and no new LBEs are 

encountered as discharges increase. This could be physically plausible for highly concave cross-

sections (e.g. incised or canyon-confined channels) with LBEs relegated to the low-flow portions 

of the valley bottom, though the prospect of spatially uniform increases in depth is questionable in 

most rivers. In the context of rivers with hierarchically nested LBE non-uniformity (Pasternack et 

al., 2021; Wiener & Pasternack, 2022), conditions to achieve Style 3 generally require depths at 

previously wetted LBEs to increase at relatively uniform rates with magnitudes nearly equal to the 

shifts in central tendency (e.g. depth increases are normally distributed with low variance and 

means close to shift magnitudes), and depths at newly wetted LBEs to increase rapidly such that 

submergences are similar to the shifted distributions (Figure A.2.1b). This Style is comparable to 

simple stabilization of landscape patterns whereby self-organizing processes drive stability in 

pattern wavelengths, the pattern here being the shape and variance of discharge-dependent h/Dc 

distributions (Ely et al., 2018). 

Figure 2.1(f) reflects the case where central tendency and variance are not conserved 

between discharge-dependent h/Dc distributions in a given domain, but distributions evolve such 

that rates at which parametric and certain statistical properties increase (i.e. slopes of property-

discharge relationships) are equivalent between domains (Style 4). Unlike the within-domain 

conservation mechanisms of Style 1, this style involves statistical similarity across domains in the 

combined effects how depths change at each domain-specific set of previously wetted LBEs, and 

in the h/Dc values of newly wetted LBEs, and is referred to as ‘process-based similarity’. This style 
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reflects a mutualistic nature to how h/Dc distributions change across spatial domains similar to the 

phenomena of dynamic self-similarity (Sapozhnikov & Foufoula-Georgiou, 1999) and is 

indicative of universal autogenic dynamics (Ely et al., 2018). This style is also consistent with the 

study’s second general hypothesis. 

Styles 2-4 above all involve continuous, though not necessarily linear, changes in h/Dc 

distribution properties between discharges. Thresholds are a ubiquitous paradigm in fluvial 

geomorphology with utility for revealing activity of morphodynamic processes (Phillips, 2006; 

Pasternack et al., 2021), therefore it is valuable to consider these same Styles in the form of 

threshold type behaviors. Threshold Styles mimic the continuous Styles but involve small, gradual 

changes in h/Dc distribution properties over a narrow range of geomorphically-related discharges 

followed by dramatic shifts in distribution properties due to changes in inundated channel 

morphology. Figure 2.1(c and e) depict threshold type h/Dc evolution for Styles 2 and 3, referred 

as 2(b) and 3(b), respectively. Style 2(b), which involves stepped increases in variance, could occur 

in a valley with a triangular main channel cross-section and one or more side channels with variable 

LBE configurations. If LBE configurations in the main channel were laterally uniform, h/Dc 

distributions would remain relatively constant to the point where flows begin to inundate side 

channels. Rapid addition of the newly wetted LBEs with variable h/Dc values to the increasingly 

inundated main channel LBEs would drive the hypothetical stepped response. Style 3(b), which 

involves similar variances and stepped increases in central tendency, could occur in a confined 

valley with an inset, triangular, main channel with laterally uniform LBEs but few LBEs outside 

the main channel. Here, the threshold changes in h/Dc central tendency would be driven by non-

linearity of the compound channel’s stage-discharge relationship when stage exceeds the inset 

channel and flows onto the floodplain. These processes may repeat if multiple threshold are 
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present. 

The Styles described in this section cover a range of h/Dc behaviors pertinent to partly-

confined to confined rivers, but are not all-inclusive. Notably, as discharge increases the central 

tendency and variance of all h/Dc distributions are portrayed to increase or remain static, but are 

never theorized to decrease. For a river with a broad, well-defined floodplain having LBEs 

outnumbering those in the main channel, transition to out-of-bank flow could result in a decrease 

in h/Dc distribution central tendency. Certainly this and other Styles not included here are possible 

considering the diversity of global river morphology.  
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Figure 2.1. Conceptual representations of discharge-dependent h/Dc distribution dynamism. (a) 
Style 1 where distributions exhibit statistical self-similarity. (b) Style 2 wherein central tendency 
remains constant but variance increase with discharge. Two examples are provided where spatial 
domain A has constant modal values between discharges, and spatial domain B has constant 
means. (c) Style 2(b) which is similar to Style 2 but has h/Dc distributions that are nearly identical 
(represented by lines with considerable overlap) followed by distributions with threshold shifts in 
variance. (d) Style 3 wherein shape and variance are constant but central tendencies increase with 
discharge. (e) Style 3(b) which is similar to Style 3 but has threshold shifts in central tendency. (f) 
Style 4 wherein the rate of change of parametric and statistical properties are equivalent between 
domains. In each panel, increasing discharge is represented by increased line thicknesses. Different 
line styles represent h/Dc distributions for different domains. The number of discharge-dependent 
h/Dc distributions (lines) and domains shown are illustrative and differ between panels. 

 Scientific questions 

The sections above highlight two scientific questions concerning documenting h/Dc 

distributions in natural channels. First, what are the discharge-dependent distributions of h/Dc in 

different spatial domains (i.e. segment and river reaches) in a confined mountain river with 

abundant LBEs? Second, within or between spatial domains, do discharge-dependent h/Dc 
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distributions exhibit statistical self-similarity (Style 1), or do behaviors match one or more of the 

study’s other proposed Styles? The subsequent sections of this study document our approach to 

addressing these questions and the study’s two general hypotheses. Lastly, the implications of 

accounting for h/Dc distributions on channel roughness, hydraulic resistance, and geomorphic 

processes are discussed. 

2.3 Study River Segment 

A 13.2-km segment of the mountainous Yuba River (Northern California) draining 1853 

km2 of the western Sierra Nevada range was used to test concepts (Figure 2.2). The study segment 

is comprised of a low-sinuosity, boulder-bedded, 5th-order mountain river confined within a steep-

walled bedrock and forested hillside canyon. The river here has a mean bed slope of 2%, but 

exhibits localized variability with many 10 – 100 m long (100 – 101 channel widths) stretches 

having slopes exceeding 10%. Multi-scale analysis required delineation of geomorphic reaches, 

thus the study segment was delineated into six geomorphic reaches on the sole basis of channel-

bed slope breaks, which ranged from 0.8-2.6 % (Figure 2.3). 

Based on limited sedimentological data, bed substrates alternate between bedrock and 

alluvial sections with estimates of larger boulders (> 512 mm) or bedrock covering over 60% of 

the channel (YCWA, 2013). Alluvial substrate, where present, is a heterogeneous mixture of 

materials dominated by coarse fractions (medium gravel/cobbles and larger). The presence of large 

bounders and the heterogeneity of sizes makes manual grain-size quantification difficult and labor 

intensive, if attempted. That said, Wolman (1954) pebble counts by YCWA (2013) consisting of 

sampling of a minimum of 100 pebbles along channel cross-sections within very limited portions 

of the study segment found average D50 values of 193 and 106 mm in the upstream and downstream 

most portions of the site, respectively, and a D84 value of 512 mm in both portions of the site. 
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Fluvial landforms present comprise a diverse suite of individual morphological units (Wiener & 

Pasternack, 2019) including cascades, step-pools, and riffle-pools, as well as forced and 

intermediate morphologies (Thompson et al., 2006). 

Like many bedrock-confined rivers, the study segment lacks a contiguous floodplain 

having only localized areas supporting accumulation of alluvium at major tributary junctions, 

meander bends, or other areas of local valley widening. Remaining channel margins are comprised 

of coarse colluvium/alluvium and bedrock. Hydrodynamic modeling (section 2.4.3) found the 

limited number of alluvial surfaces (e.g. bars) to become inundated over a range of discharges. 

This non-uniformity corroborates evidence that bankfull discharge in mountain rivers be thought 

of as a range of recurring discharges (Radecki-Pawlik, 2002). Despite this ambiguity, it remains 

helpful for dimensional and comparative purposes to identify a single bankfull flow. A previously 

reported morphologically determined bankfull discharge of 10.73 m3/s (YCWA, 2013) was used 

for this purpose. The associated segment-averaged bankfull wetted width and depth, estimated on 

the basis of hydraulic modeling, were 26 and 1.34 m, respectively. 

Previous assessment to understand study segment morphology and hydro-morphodynamic 

controls has been conducted by Pasternack et al. (2021) and Wiener and Pasternack (2022). 

Geomorphic covariance structure analysis of study segment width and bed undulations by 

Pasternack et al. (2021) revealed a threshold stage of ~161 m3/s above which landform structure 

was found to be organized and freely self-maintaining via flow convergence routing 

morphodynamics. Through mapping study segment LBEs (section 2.4.2) Wiener and Pasternack 

(2022) identified complex multi-scalar LBE organizational patterns often corresponding with 

Morris’s (1959) wake interference regime that theoretically maximizes flow resistance for the 

channel. They also found LBE concentrations located along channel margins continuously 
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increased outside the baseflow and representative bankfull channels. 

 

Figure 2.2. Map of study segment, tributaries, gages, and infrastructure facilities, Yuba River, CA. 



86 

 

Figure 2.3. Longitudinal profile showing the extent and slope (m/m) of geomorphic reaches. 

2.4 Methods 

The two scientific questions and hypotheses were answered in order, as they build on each 

other. To address the first question, a field campaign and remote sensing survey were carried out 

to collect topo-bathymetric point clouds in the study river segment (section 2.4.1). Spatially 

explicit LBE data derived from the final topo-bathymetric point cloud (section 2.4.2) were coupled 

with results from a 2D hydrodynamic model (section 2.4.3) to estimate element-explicit relative 

submergence values for all LBEs, for discharges ranging from a representative baseflow condition 

to a valley-filling flood stage with an estimated 13.7-year recurrence interval (section 2.4.4). To 

address the second question, resulting h/Dc data were analyzed and fit by several common 

parametric distributions. Statistical and parametric properties of the data were compared using a 

hypothesis testing framework to address the study’s two general hypotheses (section 2.4.5) and 
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test which of the envisioned h/Dc distribution evolution Styles best described h/Dc behavior in the 

study segment (section 2.4.6). Because this study has many detailed methods and additional 

results, supplementary materials are provided in APPENDIX 2. References to “Text A”, “Table 

A”, and “Figure A” followed by a number refer to locations in APPENDIX 2 where that item can 

be located. 

 Topographic and bathymetric mapping 

Between September 27-29, 2014 Airborne Light Detection and Ranging (LiDAR) data 

were collected within the study segment by a professional surveying firm (Quantum Spatial, 

https://www.quantumspatial.com/) using a Riegl VQ-820-G bathymetric sensor system and a 

Leica ALS50 Phase II system (near infrared) mounted in a Cessna Grand Caravan. These data 

were supplemented with boat-based bathymetric observations, imagery-derived bathymetric 

estimates (sensu Legleiter et al., 2004), and systematically placed augmented points (Valle & 

Pasternack, 2006). Through verification and merging of each individual dataset, an extremely 

detailed and accurate topographic dataset was created (Wiener & Pasternack, 2022). The final bare 

Earth mapping included > 21 million points at an average point-spacing of 0.25 m (~ 16 pts/m2). 

Points were used to create a 0.46 m x 0.46 m resolution digital terrain model (DTM) raster (bare 

Earth DTM), the final map product used in the study. 

 LBE mapping 

Spatially explicit mapping of LBEs in the study segment was previously completed by 

Wiener and Pasternack (2022). Summarily, their procedure applied a ground classification 

algorithm to the study segment’s bare Earth point cloud to create a ‘smoothed’ DTM raster. The 

smoothed DTM raster was differenced from the bare Earth DTM to generate a roughness surface 

model (RSM) raster. A marker-controlled watershed segmentation algorithm was used to extract 
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LBEs from the RSM. Mapping performance was comparable to or better than benchmark values 

from forestry research for mapping tree crowns, which is a reasonable proxy given the absence of 

performance metrics for mapping LBEs. 

The study segment census yielded a total of 42,176 LBEs. Minimum LBE size was a single 

raster cell (0.46 m x 0.46 m). Mapping revealed LBEs to be present individually and in clusters 

throughout the river corridor in a variety of spatial configurations (Figure 2.4). The Dc value for 

each LBE was set as the max RSM within each polygon. In the final LBE map it was not possible 

to differentiate boulders from bedrock outcrops or fully decouple individual boulders from boulder 

clusters, meaning, at times, clusters were aggregated into individual polygons. 

To spatially stratify LBEs within multiple discharge-dependent portions of the river 

corridor, LBE data were subset into five groups comprising the set of LBE polygons that 

intersected with each simulated discharge’s wetted area polygon (section 2.4.3). LBE polygons 

that only partially intersected a wetted area polygon or only intersected the wetted area along their 

border were included in a group’s set of LBEs. This allowed bank attached LBEs to be included 

in each subset as long as they were partially inundated. These subsets are referred to as ‘discharge-

dependent LBEs’. In this manner, discharge served to hierarchically nest spatial domains, because 

lower discharge wetted areas were always located within higher discharge wetted areas. Thus, 

discharge is often used in the context of a spatial reference throughout this study. 
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Figure 2.4. Typical configurations of LBEs within the study segment’s bankfull channel overlain 
on shaded relief that include: (a) low concentration isolated and clustered LBEs, (b) moderate LBE 
concentrations with transverse and step structures, and (c) high LBE concentrations with mixtures 
of steps, transverse structures and possible reticulate formations. LBEs outside the bankfull 
channel are partially transparent. Polygon boundaries define individually mapped LBEs but may 
include clustered boulders as noted in text. 

 Two-dimensional hydrodynamic modeling 

Steady-state hydrodynamics of the study segment were simulated at ~ 1-m resolution using 

the free, public 2D model known as Sedimentation and River Hydraulics—Two-Dimensional 
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model (SRH-2D) v. 2.2 (Lai, 2008). This is a proven code capable of simulating complex hydraulic 

conditions in mountain rivers (Brown & Pasternack, 2014; Strom et al., 2016). The decision to use 

2D modeling represented a compromise between performance and accuracy compared to simpler 

1D models and more complex 3D modeling (Benjankar et al., 2015). It also reflected the study’s 

need for spatially explicit simulation of hydraulic conditions, specifically the delineation of wetted 

areas and flow-depth prediction aggregated at 100-102 m2 scales. Simulations were run for five 

geomorphically or otherwise relevant discharges (1.54, 10.73, 82.12, 343.6, and 1184.6 m3/s) from 

an approximate baseflow to an ~13.7-yr flood (Table 2.1). Detailed description of model 

development, parameterization, and performance assessment are presented by Wiener and 

Pasternack (2022). Depth prediction performance, which was most relevant to this study because 

it is used to compute relative submergence, is summarized below. This study does not investigate 

velocity. 

Depth predictions were assessed using two tests and a suite of standard model performance 

metrics (Pasternack, 2011; Moriasi et al., 2007). First, deviations between observed and predicted 

water-surface elevations (WSEs) were assessed at 147,644 discrete point locations distributed 

throughout the 13.2-km domain. Observed WSE measurements were obtained as part of LiDAR 

data collection. Discharge during the period of LiDAR collection was estimated at 1.19 m3/s. 

Simulation of this discharge was used to generate the set of predicted WSE values at the 

observation locations. The mean absolute deviation between measured and predicted WSE was 

0.162 m. The majority (53%) of absolute deviations were less than the independently reported 

0.117 m vertical accuracy uncertainty of the bathymetric LiDAR, which aligns with the 

expectation that 2D model WSE deviations should not exceed uncertainty in the topographic data 

(Pasternack, 2011; Brown & Pasternack, 2012). 
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For the second test, depth measurements made at 61 independent locations with a standard 

wading rod during a period of discharge of 3.51 m3/s were compared to collocated model 

predictions for this same flow. Mean absolute deviation between measured and predicted depths 

was 0.092 m. The coefficient of determination (R2) for predicted versus observed fixed-point 

depths was 0.80 (p<0.001) and the linear regression slope was 0.87 (p<0.001). These values are 

considered very good amongst 2D models (Brown & Pasternack, 2012) and certainly exceed 

recommended minimum norms for model performance (Pasternack, 2011). Among hydrologist-

preferred metrics, depth predictions significantly outperformed standards for Nash-Sutcliffe 

efficiency, percent bias, and the root mean square error-observations standard deviation ratio. 

Overall, the 2D model met relevant modeling standards and performed comparably to similar 

models from published articles (Lisle et al., 2000; Pasternack et al., 2006). 

Table 2.1. Simulated discharges. 

Simulated 
discharge 

(m3/s) 

Approximate 
annual recurrence 

interval (years) 

Segment 
averaged 

Froude number 

Number 
of wetted 

LBEs 
Description 

1.54 1 0.11 13976 Representative baseflow taken as 
average of daily dry season (July 1 - 
September 31) flows at downstream 

boundary from 1930-2015. 
10.73 1.06 0.18 17792 YCWA (2013) morphologically 

estimated bankfull flow. 
82.12 1.59 0.28 24249 Flow observed to inundate several 

alluvial channel margins and with 
~1.59-year recurrence, which nearly 
corresponds to most probable annual 

flood (Langbein, 1949). 
343.6 3.46 0.35 31314 Maximum flow for which 2014-2015 

boundary conditions were available 

1184.6 13.7 0.39 39319 Boundary condition opportunistically 
collected for January 9, 2017 flood. 

 Relative submergence calculations 

For an individual particle, relative submergence is typically defined as the ratio of the 
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approach flow depth (h) to particle height (Dc) (Papanicolaou & Tsakiris, 2017). In physical 

experiments and natural environments, the manner in which h and Dc are estimated varies widely, 

often involving spatial averaging or back-calculation of depths (Bathurst, 1985; Ferguson et al., 

2017) and uncertainty about the bed-level datum from which to measure Dc (Aberle & Smart, 

2003). For each LBE in this study, Dc was specified as described in section 2.4.2 and h was 

calculated as the arithmetic mean of model predicted depths added to RSM heights in all raster 

cells occupied by each LBE as well as cells within a one-cell buffer around the feature: 

 ℎ ∑ ∑ ℎ 𝑅𝑆𝑀 ℎ 𝑅𝑆𝑀 ∈ ℎ ℎ 0 𝑎𝑛𝑑 ℎ ℎ 0  (EQ.1) 

where i is an index for cells where the LBE is present, j is an index for cells located within a one-

cell buffer of the LBE, q is the number of LBE cells, and r is the number of buffer cells (Figure 

2.5). 

Using EQ. 1, h/Dc was calculated for each LBE at each simulated discharge. As study 

question 1 was interested in h/Dc distributions in different spatial domains over a range of 

discharges, results were hierarchically organized at reach and segment scales to generate a total of 

35 discharge-dependent h/Dc datasets (i.e., wetted areas from the five discharge simulations for 

the entire segment [5 datasets] plus the same five wetted areas clipped to each of the six reaches 

[30 more datasets]). Organizing by discharge-dependent LBEs excluded ‘dry’ LBEs with h/Dc 

values of zero from each dataset. An additional four segment-scale datasets were generated for 

LBEs within the portions of the channel that became inundated between discharges, (i.e., 

incremental inundation corridor) (Figure 2.6). These subsets were generated the same as the 

discharge-dependent datasets (section 2.4.2) but using incremental inundation corridor polygons 

to select LBEs instead of wetted area polygons (Wiener & Pasternack, 2022). This domain isolates 

analysis to the series of nested, non-overlapping portions of the river corridor that become 
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successively inundated and geomorphically active with increasing discharge, and addresses how 

h/Dc distributions vary among just these discharge-dependent river margins. 

The calculations described above provide reasonable proxies for field-based measurements 

of h and Dc that would otherwise be impossible to obtain under the range of simulated conditions 

for the number of LBEs considered in this study. These estimates are not without potential issues 

and uncertainty. To explore uncertainty, one alternative method for calculating h as well as an 

alternative for calculating Dc at each LBE were implemented (Text 1A.2.3.4). The alternative h 

metric, ĥ, was calculated as the maximum depth near each LBE according to: 

 ℎ max ℎ 𝑅𝑆𝑀 , ℎ 𝑅𝑆𝑀 ∈ 𝑖 1: 𝑞 , 𝑗 1: 𝑟  (EQ.2) 

The alternate to Dc was to use the average RSM value within each LBE (𝐷). This generated a total 

of four possible relative submergence calculations reflecting sensible upper and lower bounds for 

each LBE for comparison.  
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Figure 2.5. Conceptual illustration showing (a) plan-view of hypothetical LBE in gray with one-
cell buffer region in blue and profile views along dark line in (a) of (b) natural conditions and (c) 
how natural conditions are represented in this study along with measurements needed for LBE 
relative submergence calculation. Note, question marks in (b) indicate uncertainty in how h and 
Dc should be measured under natural conditions.  
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Figure 2.6. Typical output from 2D model simulations showing the baseflow wetted area (blue) 
and the subsequent incremental inundation corridors occurring as strips between successive higher 
discharges. For example, pink is the incremental inundation corridor between 1.54 and 10.73 m3/s. 
Flow is from right to left. 

 LBE relative submergence general hypothesis testing 

To test the study’s two general hypotheses, the mean (x̄), standard deviation (σ), mode (φ), 

coefficient of skewness (g), and kurtosis (β2) were calculated for all 39 h/Dc datasets (Text 

1A.2.3.5). Testing criteria for a dataset to be positively skewed and leptokurtic were g>0.5 and 

β2>3, respectively. Unimodality was evaluated by visualizing h/Dc dataset probability densities. If 

over 66% of datasets were each unimodal, positively skewed, and leptokurtic we accepted general 

hypothesis 1. 

In testing general hypothesis 2, regarding changes in h/Dc distribution statistical properties 

between datasets, measures of central tendency (x̄ and φ) and variance of h/Dc datasets within a 

given domain (i.e. the study segment or a given reach) were compared either qualitatively, or using 
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non-parametric (e.g. Mann-Whitney U and Levene’s tests) or appropriate parametric tests (e.g. 

Welch’s t-test and F-test), whereby statistical equivalency was based on metrics being 

indistinguishable at a 95% confidence level. A positive test for this hypothesis in a given domain 

was based on two criteria. First, variance had to monotonically increase between discharge-

dependent datasets and statistically equivalency of variance between datasets had to be rejected. 

Second, central tendencies had to be either statistically equivalent or if not statistically equivalent 

had to increase between discharge-dependent datasets. If either of these criteria were not met the 

test was rejected for that domain. Since modal values were derived from h/Dc histograms, if values 

between subsequent datasets were within one bin-width they were considered equivalent (Text 

1A.2.3.5; Table A.2.1). General hypothesis 2 was accepted if positive tests were confirmed for the 

study segment as a whole and half the reaches. 

 LBE relative submergence distribution and styles analysis 

In the first step toward h/Dc distribution Style hypothesis testing, data were fit with several 

parametric distributions (i.e. Normal, Log-normal, Weibull, Exponential, and Gamma) using 

maximum likelihood and method of moment estimators. All fitting was conducted using the 

‘fitdistrplus’ R package (Delignette-Muller & Dutang, 2015). These distributions are common 

amongst natural phenomena and have been found to accurately describe the size, shape, or spacing 

of sedimentological and morphological attributes of fluvial bedforms (Van der Mark et al., 2008; 

Singh et al., 2012), submarine turbidites (Rothman et al., 1994), and other Earth surface landforms 

(Ely et al., 2018). 

An initial requirement of all hypothesized Styles was that h/Dc distributions were from the 

same distribution type. Thus, fitted h/Dc distributions were evaluated on the basis of whether they 

were best fit by the same type of distribution within (i.e. between discharge-dependent datasets in 
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the same domain) and between spatial domains. Fits were compared using negative, log-likelihood 

values to select the best-fitting distribution for each dataset. Selected distributions were then 

evaluated with non-parametric or distribution-appropriate parametric goodness-of-fit tests (i.e. 

Anderson-Darling, Kolmogorov-Smirnov, and/or Shapiro-Wilk tests). Consistency in distribution 

type supports a common basis for coupling in the self-organizing processes driving: (i) LBE spatial 

arrangements and size-frequency distributions, and (ii) how spatially variable hydrodynamics act 

to submerge these features in the compared domains over the range of discharges (Baas, 2002, 

Hillier et al., 2016). Such inference is tentative, as multiple generative processes cannot be ignored 

as a means for arriving at a common set of distributions (Sornette, 2000). 

If distributions in a given segment- and/or reach-scale domain were all of the same type, 

h/Dc behavior was tested relative to hypothesized Styles. Testing details for all Styles are 

summarized below and in Table 2.2, with additional details in supplemental materials (Text 

1A.2.3.6). Broadly, distribution fitting parameters were compared between all discharge-

dependent h/Dc datasets (i.e. 10 tests per parameter per domain) to assess equivalency using non-

parametric or distribution appropriate parametric tests (e.g. likelihood-ratio tests, t-test, F-test), 

whereby statistical equivalency between distributions was based on all parameters being 

indistinguishable at a 95% confidence level. Statistical properties of raw h/Dc data (e.g. mean [x̄], 

standard deviation [σ], mode [φ], coefficient of skewness [g], and kurtosis [β2]) were also 

compared within domains either qualitatively, or using non-parametric (e.g. Mann-Whitney U and 

Levene’s tests) or appropriate parametric tests (e.g. Welch’s t-test and F-test), whereby statistical 

equivalency was based on measures of central tendency and variance being indistinguishable at a 

95% confidence level (Text 1A.2.3.6). The above analyses were extended to multiple spatial 

domains for each of those best fit by the same distribution type, whereby fitting parameters and 
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statistical properties were compared between all relevant datasets. 

Acceptance of the Style 1 hypothesis required statistical equivalency of all discharge-

dependent h/Dc dataset properties within a given domain (i.e. distribution type, fitting parameters, 

and statistical properties), thus indicting that mechanisms, such as those hypothesized in section 

2.2.2 that conserve h/Dc distribution scaling were present. Presence of statistical self-similarity 

across multiple domains would support even greater invariance of h/Dc distributions in the study 

segment. Acceptance of Style 2 in a given domain was based on central tendency being statistically 

equivalent between all discharge-dependent datasets and having to reject that variances were equal. 

Contrarily, Style 2 was rejected if central tendencies were not statistically equivalent between 

discharge-dependent datasets or any variances were statistically equivalent between datasets. 

Acceptance of Style 3 required variance to be statistically equivalent and rejecting that central 

tendencies were equal between datasets in a given domain. Style 3 was rejected if either of these 

criteria were not upheld. 

Unlike Styles 1, 2, and 3, acceptance of Style 4 was based on statistical similarity in how 

discharge-dependent h/Dc distributions changed between domains. Style 4 testing first required 

that both central tendency and variance were not equivalent between discharge-dependent h/Dc 

datasets within compared domains (i.e. rejection of all previous Styles). Statistical models were 

then fit to obtain slopes for the rate that parametric and statistical properties in each domain 

changed with discharge. A positive test for Style 4 was based on two criteria: (i) data were 

reasonably fit (F-test, p<0.05) by the same type of model (e.g. linear, power-law, etc.); and (ii) 

statistical equivalency of modeled slopes between domains. Slope comparison was conducted 

using the approach of Paternoster et al. (1998) by employing a test statistic computed according to 

their equation 4 as follows: 
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 𝑍   (EQ. 3) 

where b1 and b2 are regression slopes for the models being compared, SEb1 and SEb2 are standard 

errors of the regression slopes from the respective models, and Z is a test statistic that follows a t-

distribution with degrees of freedom (𝑛 𝑛 4) with 𝑛  and 𝑛  equal to the number of samples 

in each dataset. The acceptance criteria for Style 4 was that x̄, σ, and distribution parameter slopes 

would be equivalent (Text 1A.2.3.6). 

Tests for threshold Styles 2(b), 3(b), and 4(b) involved a combination of the tests for Styles 

1-4, whereby acceptance was based on two criteria. The first criteria was equivalency of all dataset 

properties between at least one set of successive discharges (i.e. same criteria as Style 1). Next, 

was that these data be preceded or followed by a dataset with a dramatic difference in relevant 

parameters (i.e. variance for Style 2(b) and central tendency for Style 3(b)). Given the stringency 

of Style 1 testing, acceptance of the first criteria was loosened such that datasets could have small, 

gradual changes in h/Dc distributions between discharges. Specifically, if the percent change in all 

h/Dc dataset properties were less than 5% between discharges, the set of discharges were 

considered similar and thus acceptable with this component of threshold Style behavior. In 

characterizing magnitudes of threshold shifts in distribution properties a separate set of non-

dimensional metrics was developed by normalizing the percent change in h/Dc dataset properties 

between discharges by the percent change in averaged depth for the same spatial domain according 

to the general formulation: 

 Φ∆
∗   

  
 

  ;  Φ �̅�, 𝜎, 𝜑  (EQ.4) 

where k is an index for discharge, ℎ is domain averaged model predicted flow depth, and Φ∆
∗  is a 

generic non-dimensional metric for a h/Dc dataset property (Ф). Small (<1) or zero Φ∆
∗  values 
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illustrate cases of little or no change between discharges relative to changes in flow depth, whereas 

larger relative changes occur as Φ∆
∗  values exceed unity. A value of 1.2 was used as a threshold 

indicating dramatic shifts (sensu Wyrick et al., 2014). Thorough testing for threshold styles was 

partly limited by the number and relative magnitudes of simulated discharges. Lastly, the 

possibilities of accepting multiple Styles or rejecting all Styles in favor of alternative behaviors 

were left open. 

Incremental inundation corridor h/Dc datasets served to isolate sets of LBEs along channel 

margins and were largely composed of those LBEs that became newly wetted between discharges. 

While h/Dc behavior in these domains was not tested relative to hypothesized Styles, data were 

analyzed for statistical self-similarity using the same set of tests.  
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Table 2.2. Testing details for styles of LBE relative submergence response to discharge. 

Style Description 
Domain(s) 
compared 

Acceptance criteria† 
Example tests for 
statistical 
equivalency 

1 Statistical self-
similarity 

within or 
between 

Fitting parameters and statistical 
properties equivalent between all 
datasets. 

likelihood-ratio test 
(Held & Bove, 2014) 
Welch's t-test 
F-test 

2 Constant central 
tendency shifting 
variance 

within Central tendency equivalent between 
all datasets and rejection of 
equivalency of variance between all 
datasets. 

Welch's t-test (central 
tendency) 
Mann-Whitney U test 
(central tendency) 
F-test (variance) 
Levene's test 
(variance) 

2(b) Constant central 
tendency 
threshold type 
shifting variance 

within Central tendency equivalent between 
all datasets. Statistical self-similarity 
between at least two successive 
datasets. Rejection of equivalency of 
variance in dataset preceding or 
following self-similar data 
accompanied by dramatic shift in 𝜎∆

∗. 
3 Constant 

variance shifting 
central tendency 

within Variance equivalent between all 
datasets and rejection of equivalency 
of central tendency between all 
datasets. 

3(b) Constant 
variance 
threshold type 
shifting central 
tendency 

within Variance equivalent between all 
datasets. Statistical self-similarity 
between at least two successive 
datasets. Rejection of equivalency of 
central tendency in dataset preceding 
or following self-similar data 
accompanied by dramatic shift in �̅�∆

∗ 
or 𝜑∆

∗ . 

4 Process-based 
similarity 

between Rejection of Styles 1, 2, 2(b), 3, and 
3(b). Slope of discharge-dependent x̄, 
σ, and distribution parameters 
equivalent between domains. 

Equality of regression 
coefficients test 
(Paternoster et al., 
1998)  

4(b) Threshold type 
process-based 
similarity 

between Rejection of Styles 1, 2, 2(b), 3, 3(b), 
and 4. Statistical self-similarity of at 
least two successive datasets in two or 
more domains for the same set of 
discharge-dependent data. Slope of 
discharge-dependent �̅�, σ, and 
distribution parameters equivalent for 
remaining non self-similar data 
between same domains. 

†Style rejected if any acceptance criteria not met. 
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2.5 Results 

 Question 1 (LBE relative submergence distributions) and general hypothesis results 

Distributions of h/Dc values in 38 of 39 segment, reach, and incremental inundation 

corridor spatial domains were leptokurtic (β2>3) and had moderate-to-high positive skewness 

(g>0.5) (Figure 2.7; Figure 2.8; Figure 2.9; Table A.2.2; Table A.2.3). Only the dataset in Reach 

6 associated with the largest discharge (1184.6 m3/s) was platykurtic (β2<3) and had moderate 

positive skewness (0<g<0.5). With the exception of the six reach-scale datasets associated with 

the largest discharge, Reach 6 LBEs within the 82.12 wetted area, and Reach 3 and Reach 6 LBEs 

within the 343.6 m3/s wetted area, the remaining 30 datasets were unimodal (Figure A.2.2). 

Altogether 28 of 39 datasets (72%) were unimodal, positively skewed, and leptokurtic, thus 

general hypothesis 1 was accepted with the caveat that not all datasets had these characteristics. 

Despite these basic similarities, datasets showed clear differences with regard to 

distribution shape and other statistical properties. Across all segment- and reach-scale domains, 

higher discharges corresponded with monotonic increases in h/Dc dataset means and standard 

deviations, and decreases in skewness, kurtosis, α, and β values (Table A.2.2). Thus, the dominant 

trajectory was for squatter, wider, less positively skewed h/Dc distributions (Figure 2.7; Figure 

2.8). Monotonic increases in h/Dc means and standard deviations also fulfilled part of the criteria 

for accepting general hypothesis 2. Consistent with the next set of acceptance general hypothesis 

2 criteria, comparison of central tendencies using the non-parametric Mann-Whitney U test and 

variances using Levene’s test (R Core Team, 2021; Fox & Weisberg, 2019) between subsequent 

discharge-dependent datasets in each domain required rejecting that these properties were 

equivalent above a 95% confidence level (p <<0.05) for all comparisons. Changes in modal values 

on the other hand were more variable. While modes tended to increase slightly between discharges, 
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decreases occurred on five occasions (Table A.2.2). Decreases were all within one bin-width of 

the preceding value, therefore trends in modal values were considered to either increase or remain 

relatively constant. While the modal decreases leave room for speculation, this fulfilled the final 

criteria for accepting general hypothesis 2. 

Notably, the magnitude that h/Dc properties changed varied within and between domains, 

and especially across discharges. Visual inspection suggests there was greater similarity in data 

associated with the same discharge between domains (e.g. Reach 4, 1.54 m3/s LBE data compared 

to Reach 5, 1.54 m3/s LBE data) compared to similarity that occurred in the sequences of h/Dc 

values within any given domain. That said, the manner in which distribution shapes changed over 

the series of discharge-dependent datasets appeared comparable between spatial domains. These 

trends are evaluated further in the context of Style testing the next sections.  
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Figure 2.7. Histograms of (a-d) segment-scale h/Dc probability densities (bars) overlain with fitted 
gamma distribution (red lines) for discharge-dependent LBE datasets associated with 1.54, 10.73, 
82.12, and 343.6 m3/s and (e) kernel density of all segment-scale h/Dc probability densities overlain 
together. For panels a-d the count (n), mean (x̄), standard deviation (σ), mode (φ), skewness (g), 
and kurtosis (β2) of each dataset is shown as well as the shape (α) and rate (β) parameters from 
fitted gamma distributions.  
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Figure 2.8. Overlain kernel densities of h/Dc probability densities for the five discharge-dependent 
LBE datasets within each geomorphic reach (a-f). Summary statistics and fitted gamma 
distribution parameters shown.  
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Figure 2.9. Histograms of (a-d) each incremental inundation corridor’s h/Dc probability density 
(bars) overlain with fitted log-normal distribution (red lines) and (e) kernel density of all 
incremental inundation corridor probability densities overlain together. Summary statistics and 
fitted log-normal distributions parameters (μ and σln) shown. 

 Question 2 results (distribution types and within domain style testing) 

Acceptance criteria for all Styles required h/Dc datasets to be from the same distribution 

type. Distribution fitting found four of five segment-scale h/Dc datasets to be best fit by two-

parameter Gamma distributions, and one best fit by a Weibull distribution (LBEs associated with 

the 1184.6 m3/s wetted area) (Figure 2.7). This was supported by the Anderson-Darling goodness-

of-fit test applied with Braun’s (1980) correction to account for parameters being estimated from 

the data (Faraway et al., 2019), which concluded it was not possible to reject that the 1.54-343.6 

m3/s datasets were drawn from Gamma distributions and the 1184.6 m3/s dataset from a Weibull 

distribution at the 95% confidence level (p >>0.05). This test also supported that it was not possible 

to reject that the 1184.6 m3/s dataset could be drawn from a Gamma distribution. 

At the reach scale, 24 of 30 datasets were best fit by two-parameter Gamma distributions, 
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and six were best fit by Weibull distributions (i.e. Reach 1, 4, and 5 LBEs associated with 1184.6 

m3/s wetted area; Reach 6 LBEs associated with 82.12, 343.6, and 1184.6 m3/s wetted areas) 

(Figure A.2.2). Goodness-of-fit testing confirmed it was not possible to reject these data were 

drawn from the aforementioned distributions above the 95% confidence level (corrected 

Anderson-Darling test; p >>0.05) and also supported it was not possible to reject that all datasets 

could be drawn from Gamma distributions at the 95% confidence level. 

Acceptance of the Style 1 hypothesis required all discharge-dependent h/Dc dataset 

properties within a given domain to be statistically equivalent. Given nearly all segment- and 

reach-scale h/Dc datasets were best fit by or could reasonably be drawn from Gamma distributions, 

fitted parameters (i.e. shape [α] and rate [β]) were evaluated for statistical equivalency through 

pair-wise comparison of all unique dataset combinations using the likelihood-ratio-test of 

Krishnamoorthy et al. (2015). Within domain testing required rejecting that parameters were equal 

above a 95% confidence level for all comparisons, thus requiring rejection of the Style 1 

hypothesis. These results also conflicted with the acceptance component of the three threshold 

Styles associated with gradual changes occurring between at least two successive h/Dc datasets 

(Table 2.2). Percent changes in h/Dc x̄, σ, g, β2, α, and β values between discharges, the second 

criteria used to indicate gradual behavior for threshold Style testing, exceeded the 5% test limit for 

all comparisons, and exceeded 5% for all but three φ comparisons (Table A.2.2). The absence of 

small, gradual changes between h/Dc datasets necessitated rejection of threshold Styles 2(b), 3(b), 

and 4(b) for the set of tested discharges. Percent change results provided additional support for 

rejecting Style 1, which unlike statistical tests were not biased by large LBE sample sizes. Non-

dimensional metrics (Φ∆
∗  ) calculated to test for dramatic shifts as part of assessing threshold Style 

behavior further demonstrated changes in h/Dc dataset properties were more continuous and 
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involved dramatic changes between discharges (Figure 2.10). All segment and reach scale �̅�∆
∗ and 

𝜎∆
∗ values exceeded 1.2, the specified threshold for dramatic shifts. Specifically, values above unity 

indicated changes in h/Dc dataset means and variances increased at rates more rapid than average 

flow depths increased. In contrast, φ∆
∗  values were predominantly below 1.2 and included both 

negative and zero values. Notably, simultaneous exceedances of both �̅�∆
∗ and 𝜎∆

∗ above the shift 

threshold at each discharge also conflicted with acceptance criteria of Styles 2(b) of 3(b) that were 

based on shifts occurring for only one property at a time (Table 2.2). 

Next, results of segment and reach datasets testing were evaluated on the basis of statistical 

equivalency of central tendency and variance relative to Style 2 and 3 acceptance criteria. Given 

datasets were not normally distributed, central tendencies were compared using the non-parametric 

Mann-Whitney U test and variances were compared using Levene’s test (R Core Team, 2021; Fox 

& Weisberg, 2019). All within domain tests were rejected above a 95% confidence level (p 

<<0.05), thus requiring rejection of Styles 2 and 3. Though not explicitly part of the testing criteria, 

the relatively large percent changes in x̄ and σ values and magnitude of �̅�∆
∗ and 𝜎∆

∗ values described 

above further supported rejecting these Styles. 

Comparison of between segment- and reach-scale domain h/Dc dataset properties for the 

purpose of determining if statistical self-similarity existed across multiple domains had mixed 

results. Only 19 of 150 possible α value comparisons could not be rejected as being equal above a 

95% confidence level, and equality of β values was rejected for all comparisons (Figure A.2.3a). 

Comparison between reaches found only 36 α and 12 β values of the 425 possible pair-wise 

combinations for each variable could not be rejected as being equal (Figure A.2.3). Similar results 

occurred for tests assessing statistical equivalency of variance and central tendency between 

segment- and reach-scale h/Dc datasets (Text 1A.2.4.2; Figure A.2.4). These results indicate h/Dc 
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statistical self-similarity did not exist between spatial domains. Of the datasets with roughly 

equivalent h/Dc distribution properties, the vast majority were for LBEs associated with the same 

discharge (Text 1A.2.4.2). Therefore, greater similarity in h/Dc datasets existed between domains 

at the same discharge compared to similarity that occurred within any given domain over the range 

of tested discharges. 

Results presented thus far demonstrate study segment h/Dc values exhibited discharge-

dependent dynamism inconsistent with several hypothesized Styles in favor of more mutualistic 

changes. Covariation between the mean and standard deviation of geometry properties of Earth 

surface landforms have been previously reported by Ely et al. (2018) and Van der Mark et al. 

(2008). Ely et al. (2018) made this observation studying lengths and widths of multiple drumlin 

datasets, while Van der Mark et al. (2008) document that the heights, lengths, crest elevations, and 

trough elevations of fine-grained bedforms from field and flume experiments had such relations. 

Evaluating bivariate trends of h/Dc dataset properties identified several covarying relationships. 

For example, decreases in segment-scale Gamma distribution parameters α and β were marked by 

strong linear correlation (R2 = 0.994, p = 0.003). This indicates there was a mutualistic and 

predictable nature to how values changed between discharges, with the caveat that analysis was 

based on only five data points (Figure 2.11a). The same pattern was observed in each reach 

independently, but only partially when looking at all reaches together as Reach 6 had somewhat 

distinct parameter values (Figure 2.11b). A strong linear correspondence was also present across 

discharges between h/Dc x̄ and σ values, showing a connection between increasing spread and 

central tendency (Figure 2.11c-d). These results support that changes in parametric and statistical 

properties between domains were consistent, such as envisioned by Style 4. The nature of these 

changes are reviewed in greater detail next. 
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Figure 2.10. Segment- and reach-scale non-dimensional 𝒙∆
∗ , 𝒔∆

∗ , and 𝝋∆
∗  values illustrating relative 

magnitudes of change in h/Dc distribution properties between datasets. Smaller values indicate less 
change between datasets. The horizontal dashed lines at 1.2 represent a threshold for dramatic 
shifts between datasets.  
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Figure 2.11. Scatter plots of (a) segment and (b) reach scale fitted Gamma distribution parameters 
(β vs α) for discharge-dependent h/Dc distributions and (c) segment and (d) reach scale standard 
deviation (σ) versus mean (x̄) discharge-dependent h/Dc values. Gray dashed line in panels (a) and 
(c) are lines of best fit for segment data. Regression equations and statistics are shown in the upper 
left corners. Short and long dashed lines in (b) and (d) are lines of best fit for all reaches and for 
data from only reaches 1-5, respectively. Numbers next to segment points are discharge in m3/s 
associated with the data point. Discharge decreases from top-right to bottom-left in (b) and from 
bottom-left to top-right in (d). 

 Between domain process-based similarity 

Results presented in section 2.5.2 required rejection of Styles 1, 2, 3(b), 3, and 3(b). This 

was a necessary criteria of Style 4, which envisioned discharge-dependent h/Dc distributions to 

evolve consistently between domains, such that rates at which parametric and designated statistical 

properties changed were equivalent. Visually, relationships between h/Dc dataset parametric and 
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statistical properties versus discharge appeared to follow power-laws, therefore data in each 

domain were modeled by fitting linear models to log-transformed discharges and h/Dc dataset 

properties (i.e. x̄, σ, φ, g, β2, α, and β values), resulting in seven models per domain and 49 models 

total (Figure A.2.5). Model fitting was completed in the R programming language using ordinary 

least squares regression. With the exception of modal values, and the caveat that only five data 

points were used per model, models explained relatively large amounts of variance (i.e. adjusted-

R2 between 0.776 and 0.989 for x̄, σ, g, β2, α, and β models and between 0.183 and 0.858 for φ 

models) and thus were considered reasonably accurate. Further, with the exception of six of the 

seven models for modal values all slope coefficients were statistically significant (F-test, p <0.05) 

(Table A.2.4). 

Model slopes (i.e. power-law exponents) of each response metric were compared between 

all unique domains pairs using EQ. 3. Of the 84 relevant slope comparisons (21 per metric for x̄, 

σ, α, and β), only the Segment and Reach 6 α-slope comparison was rejected for equivalency above 

a 95% confidence level (|Z|≥2.776). This meant that all other α slopes, and all x̄, σ, and β slopes 

were considered equivalent between all pairs, consistent with the Style 4 acceptance criteria (Table 

2.2). Of the additional 63 comparisons between φ, g, and β2 slopes, 23 were rejected (Text 

1A.2.4.3). This meant 20 of 21 unique domain pairs had roughly equivalent x̄, σ, α, and β slopes 

and 7 of the 21 domain pairs had roughly equivalent slopes for all variables (Figure 2.12). 

Collectively, we view these results as indication of Style 4 being both reasonable and certainly the 

most representative Style for h/Dc distribution behavior in the study segment. 
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Figure 2.12. Network graphs showing spatial domains as nodes (colored circles) with connections 
(lines) to other domains indicating domains had equivalent slopes for (a) x̄, σ, α, and β values, and 
(b) for all variables. ‘S’ and ‘R’ are shorthand for segment and reach, respectively. Domains that 
are absent did not have equivalent slopes with any other domains for specified variables. 

 Incremental inundation corridor relative submergence 

All four incremental inundation corridor h/Dc datasets were best fit by Log-normal 

distributions, which was supported at the 95% confidence level by the corrected Anderson-Darling 

test (Figure 2.9). This finding was only corroborated for the 1.54-10.73 m3/s corridor data when 

applying the Shapiro-Wilk test (Millard, 2013), which is considered a relatively powerful test for 

normally distributed data. Because data were best fit by log-normal distributions, central 

tendencies were compared with Welch’s t-test and variances were compared using F-tests (R Core 

Team, 2021). Despite slightly stronger visual resemblances between datasets than those present 

when comparing datasets in other domains (Figure 2.7; Figure 2.8; Figure 2.9), all tests were 

rejected above a 95% confidence level (p <<0.05) suggesting h/Dc values of LBEs along the 

incrementally wetted channel margins were each statistically unique. Isolating the independent 
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sets of h and Dc values in each corridor found distributions of Dc values to exhibit greater similarly 

across the four corridors (Figure A.2.6). This was confirmed using the non-parametric overlapping 

index (Pastore & Calcagni, 2019), which found comparison of all possible sets of Dc values to 

have index values between 0.88-0.94 versus index values between 0.31-0.67 for h comparisons. 

The index varies from 0-1 for end-member conditions of no distribution overlap and perfect 

distribution overlap, respectively. This means variations in flow depths along channel margins 

played a larger role in differences between incremental inundation corridor h/Dc datasets compared 

to diversity in LBE heights. 

 Submergence trends and alternate calculations 

Many hydrogeomorphic factors influence h/Dc distribution changes, however isolating the 

following three components of the data aided interpretation of several trends described in the 

previous results sections: (i) the number and (ii) h/Dc values at newly wetted LBEs at each 

discharge; and (iii) how depths change at previously wetted LBEs between discharges. An example 

of this scrutiny is provided in Figure 2.13(a-d), which depicts superimposed frequency histograms 

of segment-scale h/Dc values at the set of newly wetted LBEs with histograms of h/Dc changes 

that occurred at each set of previously wetted LBEs for each change in discharge (Text 1A.2.4.5). 

It is clear that depth increases at previously wetted LBEs drastically overshadow addition of new, 

low-submergence LBEs and drive trends to less positively skewed h/Dc distributions with higher 

mean h/Dc values. This was quantitatively supported by independently calculating the difference 

in the mean of each h/Dc dataset resulting solely from the addition of newly wetted LBEs (Δx̄n) 

versus the mean difference due to depth changes at previously wetted LBEs (Δ x̄ p), which 

confirmed the latter always exceeded the former (Figure 2.13[a-d]) (Text 1A.2.4.5). Though not 

depicted, the same results were found at the reach-scale. More minor trends, such as isolated 
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decreases in modal values were also partly explained by variability in the relative magnitude of 

the independent dataset components depicted in Figure 2.13(a-d). For instance, addition of a large 

number of newly wetted, very low submergence LBEs between 82.12-343.6 m3/s, simultaneous 

with only moderate depth increases at previously wetted LBEs were assumed responsible for the 

observed decrease in modal values between the two datasets (Figure 2.7). A final observation 

regarding the influence of changing flow depths versus LBE configurations on h/Dc results was 

that the distribution of segment-scale Dc values remained relatively constant across discharges 

even with the addition of new LBEs, whereas flow depths at LBEs were, unsurprisingly more 

dynamic (Figure 2.13[e-n]). Overlap indexes comparing all possible segment-scale Dc datasets 

varied between 0.81-0.96 versus between 0.13-0.70 for h comparisons. The same pattern was true 

for all reach-scale datasets (Text 1A.2.4.5). This result corroborates those above that study segment 

h/Dc distribution changes were more strongly influenced by the magnitude and variability of h 

changes at each successive set of previously wetted LBEs compared to configurations, heights, 

and flow depths at newly wetted LBEs. 

Amidst near universal trends for increasing h/Dc values at higher discharges it is relevant 

to highlight that a substantial portion of LBEs remained emergent (h/Dc<1), below the LRS regime 

threshold (h/Dc<3.5), or below other thresholds used to differentiate bed morphology effects on 

hydraulic and sedimentological processes across discharges (Table 2.3). For instance, even at the 

highest simulated discharge, 10.5% of LBEs would be emergent and 40.2% would still influence 

hydraulics at the water surface (e.g. h/Dc<3, Cooper et al., 2013). It is also important to recall that 

conditions at LBEs within laterally nested, discharge-dependent portions of the river corridor did 

not change equally between discharges. For example, considering LBEs within the baseflow 

channel, only 1.4% of these features remained emergent across all discharges. A complete 
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accounting of the percent of LBEs intersecting each wetted area that exceeded relevant h/Dc 

thresholds at each higher discharge are included in Table A.2.5. 

Compared to the alternative methods for calculating h and Dc (section 2.4.4), the preferred 

metric, h/Dc, yielded the lowest values, and thus may have a tendency for underestimation. 

Potential underestimation is expected to be relatively minimal as values across methods were 

comparable in magnitude. Regressing h/Dc values against the calculation method with the highest 

values, ĥ/𝐷, found a scaling factor of 1.38 minimized error between estimates, which serves as an 

expected value for the magnitude of uncertainty. Comparisons of h/Dc values with the other two 

calculation methods, ĥ/Dc and h/ 𝐷,  returned scaling factors of 1.09 and 1.26, respectively. 

Regardless of calculation method, discharge-dependent distributions of relative submergence were 

consistent in their shape and how they changed between datasets (Figure A.2.8). Ultimately, the 

h/Dc calculation method allowed reasonable approximation of relative submergence values for 

thousands of macroroughness features over 13 km of river spanning a range of discharges, for 

which there is scientific as well as practical value, such as mapping submerged hazards (Strom et 

al., 2017). 
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Figure 2.13. Frequency histograms of (a-d) segment-scale h/Dc values at LBEs that become newly 
wetted between each successive discharge (dark gray bars) superimposed with histograms of 
changes to h/Dc values that occurred at previously wetted LBEs between each discharge (light gray 
bars) and probability density histograms of (e-i) Dc values and (j-n) h values at LBEs within each 
segment-scale, discharge-dependent LBE dataset. The percentage of newly wetted LBEs (nn) 
relative to the total number of LBEs (nt) at each ending discharge (second number in header) are 
shown in (a). Differences in mean h/Dc dataset values due solely to the addition of newly wetted 
LBEs (Δx̄n) and those due solely to changes in h at previously wetted LBEs (Δx̄p) are also shown 
in (a). For (e-n) note greater similarity of Dc values between datasets compared to h values.
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Table 2.3. Percentage of segment-scale h/Dc values exceeding certain thresholds at each discharge. 

Simulated Discharge 
(m3/s) 

Threshold† 

1 2 3 3.5 4 10 
1.54 17.7 2.5 0.8 0.5 0.3 0.0 

10.73 37.7 9.3 3.0 1.7 1.0 0.0 
82.12 63.8 37.6 20.9 15.5 11.5 0.2 
343.6 78.1 60.1 46.7 40.9 35.7 4.9 

1184.6 89.5 77.9 68.7 64.1 59.8 24.2 
†Thresholds correspond to following: 1 – Emergent vs submerged conditions; 2 – h at double LBE height; 
3 – Approximate threshold flow depth where form-induced sublayer always extends to water surface 
(Cooper et al., 2013); 3.5 – Transition from LRS to HRS regime (Papanicolaou & Tsakiris, 2017); 4 – 
Transition from intermediate to small-scale roughness (Bathurst, 1985) and surface effects are negligible 
(Shamloo et al., 2001); and 10 – Threshold for applicability of canonical hydraulically rough boundary-
layer theory (Katul et al., 2002). 

2.6 Discussion 

 LBE relative submergence distributions and styles 

In light of the questions and hypotheses posed by this study two initial takeaways were that 

results largely confirmed general hypothesis 1, that h/Dc distributions across multiple discharge-

dependent spatial domains were unimodal, leptokurtic, and positively skewed (Figure 2.7; Figure 

2.8; Figure 2.9) and that changes between h/Dc distributions over a series of discharges were 

primary as predicted by general hypothesis 2. Despite these basic similarities, both variability in 

h/Dc dataset properties and more complex evolutionary behaviors were observed. 

In considering how h/Dc values would evolve, an initial hypothesis was that distributions 

would remain constant in any given spatial domain across discharges (Style 1). Despite segment- 

and reach-scale datasets being reasonably drawn from the same distribution type (Gamma), visual 

and statistical differences confirmed h/Dc distributions were not conserved. Thus, the Style 1 

hypothesis was rejected. Statistical comparison within and between domains also required 

rejection of Styles 2 and 3, and conditionally rejecting threshold Styles 2(b), 3(b), and 4(b). 

Complete rejection of threshold style behavior was limited by the number of flow simulations, as 
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processes associated with these Styles could have been hidden between simulated discharges. 

However, propensity for continuous changes in h/Dc distribution properties did not favor these 

styles being present in the study segment. Ultimately, what did emerge was strong evidence for 

process-based similarity (Style 4) being the most appropriate behavioral model to explain h/Dc 

dynamics in the study segment. 

The observation that reach-scale h/Dc distributions evolved in essentially the same manner 

between discharges, has theoretical and practical relevance. One broad interpretation of the 

consistent scaling is that common self-organizing processes associated with the size-frequency 

distribution, spatial arrangement, and submergence of LBEs were present between domains 

(Sapozhnikov & Foufoula-Georgiou, 1999; Hillier et al., 2016). Each of these properties involves 

complex feedbacks in the fluvial-hillslope system that are difficult to disentangle. However, if Dc 

is taken to represent the bed-roughness length-scale coefficient (Δ), and the set of h/Dc data are 

proportional to reach-averaged flow resistance, as is widely accepted (Powell, 2014), study results 

indicate that while individual reach-scale resistance magnitudes might differ, the rate of change in 

resistance with discharge between reaches were roughly equal. Interpreted in the context of regime 

theory and extremal hypotheses, this suggests a degree of mutual reach-scale channel adjustment 

and implies attraction to a common critical state (Adams, 2020; Eaton & Church, 2009). In laterally 

confined rivers, modification of bed resistance is both the most rapid and often only independent 

degree of channel adjustment available (Adams, 2020). Where bed resistance is dominated by 

LBEs, physical experiments, theory, and field measurements provide evidence that LBEs 

configurations self-organize toward conditions that maximize flow resistance as this promotes 

channel stability (Adams, 2020; Church et al., 1998; Eaton & Church, 2009). Consistent with these 

studies, previous analysis found 21 of 24 discharge-dependent reach-scale LBE datasets in the 
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study segment were configured to maximize flow resistance (Wiener & Pasternack, 2022). Recent 

experiments by Carollo & Ferro (2021) and boundary layer theory analysis of Cassan et al. (2017) 

applicable to rough bedded rivers indicate resistance is maximized when relative submergences 

are in the range ~0.55-1. If taken as a target, in order to keep the bulk of h/Dc values in this range 

as stage/discharge increases requires new low submergence LBEs be added in numbers that 

account for depth increases at previously wetted LBEs. This evolution is consistent with general 

hypothesis 2 and aligns better with Styles 1, 2, and 4 compared to Style 3. Looking at study 

segment mean and modal values h/Dc, only at the lowest discharges were mean values in the 0.55-

1 range. On the other hand, with the exception of Reach 6 nearly all modal values were in this 

range. Thus, our interpretation of h/Dc process-based similarity in the study segment is that it 

represents a dynamic equilibrium in channel adjustment toward a critical state that minimizes the 

variance of how resistance changes with discharge between reaches (Wohl & Merritt, 2008). 

Lateral confinement, observed LBE configurations, and modal h/Dc value support that the critical 

state toward which reaches adjust coincides with one that maximizes flow resistance. Though 

further analysis is required, h/Dc process-based similarity and deviation therefrom could serve as 

a quantitative metric to assess the degree that a series of connected river reaches are in equilibrium 

(Sapozhnikov & Foufoula-Georgiou, 1999), or may simply indicate if such reaches differ in their 

primary mode of channel adjustability. 

Similarity in the magnitude of reach-scale h/Dc dataset properties at the same discharge 

can also be used to make inference about channel adjustment (Wohl & Merritt, 2008; Schneider et 

al., 2015). For instance, the coefficient of variation (CV) of mean reach-scale h/Dc values (x̄) were 

less than 10% at each distinct discharge (Table A.2.2). Using the logic at the beginning of the 

preceding paragraph and substituting x̄ values in place of R/D84, rough estimates of the Darcy-
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Weisbach friction factor in each reach at each discharge can be made using the unbiased and widely 

used variable-power resistance equation of Ferguson (2007) (see section 2.6.3 and Text 1A.2.5.3 

for equation). For the calculations, the assumption that h~R is applied, which is simplifying, but 

not uncommon in practice (Bathurst, 1985), and reasonable given the comparative nature of the 

exercise. The CV of these resistance estimates do not exceed 16% between reaches for any given 

discharge. This is phenomenologically similar to the findings of Wohl and Merritt (2008), who 

found the range of bankfull flow resistance values (f) to be constant between geographically 

distributed mountainous steam reaches with different channel morphologies. They concluded such 

uniformity was consistent with the extremal hypotheses that channels were adjusted to maximize 

resistance. 

Contrary to h/Dc process-based similarity at the segment- and reach-scale, greater self-

similarity was observed between incremental inundation corridor h/Dc distributions. While these 

data bore greater visual resemblance to the Style 2 conceptualization (Figure 2.9), statistical testing 

did not confirm this or any other Style (i.e. central tendencies and variances were considered not 

statistically equivalent). Nonetheless, results indicated that independent sets of h and Dc values in 

each corridor were more constant between discharges than these same metrics were when 

considered for the entire river corridor (Figure A.2.6; Figure 2.13). Factors driving this similarity, 

especially the uniformity of Dc values along channel margins require additional exploration that is 

outside the scope of this effort (e.g. Sklar et al., 2020). However, it is logical to expect that the set 

of depths along incremental channel margins in a confined river canyon would be relatively 

shallow. Shallow depths together with near constant LBE Dc values explain the comparatively 

lower variance and lower overall magnitudes of h/Dc values in the incremental inundation 

corridors. 
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Lastly, of the reach-scale h/Dc datasets, the wider and lower gradient Reach 6 stood out in 

its evolutionary behavior. At the highest simulated discharge (1184.6 m3/s) h/Dc values in this 

reach had near zero skewness and followed a more bell-to-uniform shaped distribution compared 

to the positively skewed, unimodal distributions in the five upstream reaches (Figure 2.8; Table 

A.2.2). This more uniform h/Dc distribution resulted from relatively low numbers of newly wetted 

LBEs being encountered simultaneous with large relative increases in depth at both previously 

wetted and newly wetted LBEs. These changes align with the canonical power-law form of channel 

width and depth hydraulic geometry relationships for an inundated U-shaped valley, whereby rates 

of channel width increase are low compared to rates of depth increase (Gonzalez & Pasternack, 

2015). Convergence toward a uniform h/Dc distribution may be a common limiting state for 

confined river canyons at high discharges when the valley bottom is inundated and few new LBEs 

are encountered. Indeed, h/Dc distributions of the study’s other reaches also appeared to evolve 

toward this limiting state. Presence of more V-shaped valley geometries with greater abundances 

of LBEs in these other domains may partly explain the slower trajectory toward uniform h/Dc 

distributions that could still occur at discharges higher than those simulated. 

 Evolution toward a relative submergence limiting-state 

Evolution of h/Dc values toward uniform distributions may help explain field and 

experimental observations from bedrock-alluvial channels of reach-averaged flow resistance being 

stable at high discharges (Richardson & Carling, 2006; Hodge & Hoey, 2016; Ferguson et al., 

2019). While empirical data and most resistance equations confirm the rate at which resistance 

decreases drastically diminishes with discharge (e.g. Powell, 2014), such observations contrast 

with the idea that resistance should continuously decrease as increasing stage drowns-out bed 

roughness. Mechanisms driving the decoupling of flow resistance from discharge have been 
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previously attributed to increasing sidewall roughness driving lateral and turbulent flow mixing 

and due to spatial variability of the flow-field being separated into a central core of high-velocity 

flow surrounded by marginal slack-water zones (Richardson & Carling, 2006; Hodge & Hoey, 

2016). Boundary layer theory also supports that hydraulic roughness is independent of depth for 

h/Dc>10, which under certain simplifying assumptions (e.g. uniform flow) would lead to constant 

resistance (Katul et al., 2002; Cassan et al., 2017). If resistance is considered proportional to the 

set of h/Dc data, and resistance contributed by LBEs with h/Dc<10 vastly exceeds resistance 

contributed by LBEs with h/Dc>10, then evolution toward uniform h/Dc distributions with a 

constant lower h/Dc bound and finite upper h/Dc bound above 10 would result in resistance being 

constant. 

To address the emergent question of whether the study segment’s h/Dc distribution 

approaches a uniform distribution, study results were used to statistically model h/Dc distributions 

for flows higher than those initially tested. In doing so, the segment-scale, power-law relationship 

between discharge and β (Figure 2.14a) was used to initially calculate simulated β values for a 

range of discharges (see section 2.5.2; β -discharge model was selected over α-discharge model 

based on slightly better accuracy [R2 = 0.988 versus 0.959]). Next, α values were predicted using 

the previously modeled β-α relationship (Figure 2.11a). Figure 2.14b shows the resulting series of 

simulated h/Dc gamma distributions using predicted parameters for discharges ranging between 

1.1-4500 m3/s, the upper bound of which has an ~500-year recurrence level. 

The simulated data spotlight the transition from high frequencies of relatively low h/Dc 

values at low flows to more uniformly distributed values at higher flows, which match observations 

in the study segment. Technically, if α approaches unity and β approaches zero the Gamma 

probability density function equals zero for all values. For segment- and reach-scale h/Dc 
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distributions, the study found both conditions to be true as discharge increased (Figure 2.11). 

However, if it is assumed that β is asymptotic to zero, as indicated in the β-discharge relationship 

(Figure 2.14a), and α can be estimated using the statistical relationship in Figure 2.11a, then 

simulated h/Dc values for increasingly larger discharges always approach a uniform distribution 

with probabilities approximately equal to the increasingly smaller β values. Physically, this would 

suggest that at very high discharges there are few, but always nearly equal numbers of, low 

submergence LBEs along the channel margins and highly submerged LBEs in topographic lows, 

with a mix of h/Dc values between these extremes. As discussed above, the nearly uniform 

distribution of h/Dc values provides a preliminary theoretical means for resistance to become 

constant at higher discharges. Such theoretical stochastics require further investigation, but at 

present could be useful in guiding design of synthetic river channels, numerical simulations, or 

physical experiments with LBEs. 

 

Figure 2.14. (a) Fitted Gamma distribution rate (β) parameters versus discharge (m3/s) for segment-
scale discharge-dependent h/Dc data and (b) simulated h/Dc distributions for discharges ranging 
between 1.3-4500 m3/s. 
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 Implications of relative submergence distributions 

As discussed in section 2.6.1, a near-universal takeaway of this study was that distributions 

of h/Dc values were unimodal, leptokurtic, and positively skewed. We are not aware of h/Dc 

datasets for comparison, however, Hodge et al. (2009) found distributions of surface elevations in 

two gravel-cobble-bed English rivers were positively skewed. Additionally, Gomez (1993), Day 

(1976), and Aberle and Nikora (2006) independently found roughness heights to evolve toward 

skewed and leptokurtic distributions during armoring in gravel-bedded flumes, and several 

workers document heights of finer-grained bedforms such as dunes to follow distributions with 

similar characteristics (Van der Mark et al., 2008; Singh et al., 2012). 

Coarse-bedded (D50 ≥ 5 mm) rivers generally display skewed, often lognormal grain-size 

distributions (GSDs) (Bunte & Abt, 2001). Relationships between surface GSDs and roughness 

height distributions typically don’t exhibit 1:1 correspondence as they are influenced by several 

factors such as imbalances in sediment supply-to-transport ratios that promote fining and 

development of planar beds or from heterogeneous packing, spacing, and clustering of grains 

(Kirchner et al., 1990; Gomez, 1993). Nonetheless, for armored beds, it is reasonable that 

roughness height distributions would follow the general form of surface GSDs as large particles 

protrude further into the flow (Kirchner et al., 1990; Gomez, 1993). A universal trend for skewed 

roughness height distributions has implications for random-field based approaches to roughness 

approximation. These methods generally rely on the assumption that bed elevations are 

homogenous and Gaussian distributed (Nikora et al., 1998), otherwise requiring higher-order 

structure functions when beds are anisotropic and non-Gaussian (i.e. skewed and leptokurtic) 

(Aberle & Nikora, 2006). 

A fundamental limiting assumption of most reach-averaged resistance equations is that for 
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a given Δ value, a 1:1 relation exists between mean depth and mean velocity (Ferguson, 2007). 

Attempts to reduce scatter between observed and predicted resistance have typically involved the 

addition of variables (e.g. slope and LBE concentration) into resistance equations (Nitsche et al., 

2012), the use dimensionless variables (Ferguson, 2007; Rickenmann & Recking, 2011), or 

partitioning approaches (David et al., 2011). David et al. (2011), for example, employed a drag 

force approach to estimate grain resistance by summing drag contributions from all individual 

large grains present in their study reach. These resistance estimates were always higher than those 

from typical resistance equations, but were still considered to underestimate grain resistance at low 

flows. The linearity assumption of such additive approaches is complicated by wake interactions 

that result in non-linear relations between LBE concentrations and resistance (e.g., Wiener & 

Pasternack, 2022). 

Conceptually, the inclusion of multiple roughness length scales (Ferguson et al., 2019) or 

methods that better characterize bed roughness and depth heterogeneity, such as the discharge-

dependent relative-submergence distributions presented in this study, could address the 

equifinality issues described above (Ferguson, 2012). To this end, a simple numerical example is 

introduced to demonstrate one way h/Dc distributions may be used to estimate resistance. For the 

example, the four resistance equations of Bathurst (1985), Ferguson (2007), Katul et al. (2002), 

and Thompson and Campbell (1979) (Bathurst, Ferguson, Katul, and T&C) were selected and 

solved traditionally and with a h/Dc distribution-based approach (see Text 1A.2.5.3 for equations). 

We focus on these four equations as they are widely referenced, apply to and provide unbiased 

solutions for coarse-bedded rivers with low submergence, provide solutions for the same common 

resistance coefficient (f), and beyond empirical coefficients only require input of h/D84 (i.e. h~R). 

Each equation uses D84 to parameterize Δ, consistent with the view that large particles dominate 
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flow resistance. While effectiveness of D84 and characteristic particle sizes in general in estimating 

resistance are the subject of controversy (Yochum et al., 2012), alternatives (e.g. σz most 

commonly) are not without drawbacks and have not always outperformed particle-size approaches 

in application (Schneider et al., 2015). 

For the traditional approach each equation was solved for each reach at each simulated 

discharge using a single h/D84 value, as intended by their original formulation. Estimates of h were 

made by averaging model predicted depths over each reach. A constant D84 of 0.512 m obtained 

from previous sampling (YCWA, 2013) was used for all calculations. These were used to solve 

each equation for f, and are referred to as ‘traditional–f’ values. Next, the same resistance equations 

were solved for f, but this time numerically integrating over each reach-scale h/Dc dataset as input 

for h/D84 (Text 1A.2.5.3). These are referred to as ‘integrated–f’ values. 

Comparison found integrated–f values were on average ~6.8 times larger than traditional–

f values, which is not surprising given the range of lower submergence values present in the former 

(Figure 2.15a). Differences varied by equation, as integrated–f values computed using the Bathurst 

equation were on average ~16.1 times larger than traditional–f values, whereas integrated–f values 

were only ~3.1-4.3 times larger for the other three equations. Several workers have demonstrated 

popular resistance equations, including those referenced above, tend to underestimate resistance 

coefficients (n and f) in course-bedded rivers at low flows, resulting in velocity overestimation and 

shear-stress underestimation (e.g. Yochum et al., 2012; Ferguson et al., 2017). Notably, error 

trends are not universal, and a tendency for resistance under-prediction at lower relative 

submergence and over-prediction at higher relative submergence is well documented (Rickenmann 

& Recking, 2011). 

At this time, it remains unclear if resistances calculated using the integrated approach 
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actually outperformed traditional estimates. However, the integrated approach does provide more 

complete representation of bed-surface heterogeneity and the joint-distribution of local flow 

depths. The approach also allows unique resistance value to be estimated for any given discharge 

and spatial domain and we believe it has potential for improving resistance estimation despite the 

greater input data requirements. For instance, for a given reach and given discharge, the integration 

approach provided a marginal degree of similarly collapse between equations as the CV of 

integrated–f values were reduced by ~2.9% compared to traditional–f CV values, which we 

interpret as a positive outcome. Additional analysis on these fronts is beyond the scope of this 

study, but could be an area of future research, especially given availability of improved methods 

for remotely-sensed depth measurements (Legleiter & Harrison, 2019).  
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Figure 2.15. (a) Comparison of reach-scale Darcy-Weisbach friction factor (f) estimates made 
using h/D84 – f and h/Dc integrated– f calculation methods; and (b) calculated f versus discharge 
for all reaches. In (a) data from each reach are represented by unique symbols. Symbols are colored 
according to resistance equation and sized according to corresponding discharge simulation. 
Dashed gray line is the 1:1 line. In (b) symbols correspond to the method used to calculate f and 
are colored according to resistance equation. 

 Resistance trends and fixed roughness coefficients 

Separate analysis in the study segment by Wiener and Pasternack (2022) found LBE 

concentrations increased with stage. Together with results from this study this has ramifications 

toward two conventions in engineering hydraulics: (i) that reach-average resistance decreases as 

discharge increases; and (ii) that Δ remain constant in a given domain regardless of discharge. To 

the first point, across all study domains, higher discharges corresponded with increased mean h/Dc 

values and less positively skewed h/Dc distributions as the drowning-out of LBEs in the channel 

center outweighed addition of low submergence LBEs along channel margins. This translated into 

monotonic decreases in reach-scale resistance based on the common equations referenced in 

section 2.6.3 (Figure 2.15b). These decreases are partly a result of the underlying assumptions of 
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these equations, which may be ill-specified for very low submergence conditions (h/Dc<1). For 

instance, at low stages, river flows diverge around emergent LBEs forming multiple flow paths 

(Reid & Hickman, 2008). Drag forces from LBEs are also drastically reduced when h/Dc<0.5 due 

to slower flow velocities and reduced frontal-area exposure (Lamb & Brun, 2017). As stage 

increases and LBEs become fully submerged, drag forces increase and momentum is extracted 

throughout the flow depth. The hydraulic efficiency and reduced momentum loss from LBEs at 

low stage support theory that resistance may initially increase as LBEs become fully submerged 

(Reid & Hickman, 2008; Cassan et al., 2017). As stage continues to rises and LBEs become further 

submerged, drag forces tend to stay relatively constant, but the portion of the velocity profile 

influenced by LBEs shrinks (Lamb & Brun, 2017). Thus, while drag forces may be large, the effect 

on mean velocity and total discharge often becomes negligible and a decrease or leveling off of 

resistance occurs (Lamb & Brun, 2017). This leveling off of resistance in main channel may be 

partly offset by new emergent LBEs along channel margins. 

Study segment hydrodynamic simulation found an increasingly prominent and 

longitudinally connected central-core of high velocity flow became established at higher 

discharges. This core was surrounded by regions with lower velocities often forming recirculating 

zones along the channel periphery. The separation of the flow-field in this manner mirrors expected 

changes in resistance described above based on observed h/Dc conditions (Table 2.3; Table A.2.5). 

Namely, that as main channel LBEs became deeply submerged their resistance contribution 

became less impactful to velocities in the channel center, simultaneous with the central portion of 

the channel becoming progressively decoupled from resistance contributed from LBEs along 

channel margins. Ultimately, the manner in which variable conditions at LBEs distributed 

throughout a channel interact to influence average resistance remains a challenge and findings of 
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this study illustrate the importance of considering spatial variability in channel morphology and 

hydraulics (Hodge & Hoey, 2016). 

On the second point regarding fixed Δ values, while changes in discharge-dependent Dc 

values were subtle (Figure 2.13; Figure A.2.6; Figure A.2.7), they would be ignored by a constant 

Δ, suggesting scrutiny of this common practice is required (Ferguson et al., 2019). Aberle et al. 

(2010) also found statistical moments of bed elevations (i.e., standard deviation, skewness and 

kurtosis) to depend on discharge in a low-gradient, sand-bedded river and Yochum et al. (2104) 

confirmed the same in several high-gradient coarse-bedded rivers. Using mean Dc values or 

another representative Dc percentile appears to be the simplest alternative for specifying discharge-

dependent variable roughness. Isolating distributions of Dc values in incremental inundation 

corridors (Figure A.2.6) may also provide a sensible method for parameterizing spatially variable 

roughness lengths scales along different portions of the channel margins such as proposed by 

Ferguson et al. (2019). Interestingly, mean Dc values decreased slightly at higher discharges in all 

study domains, which could be an indication of reduced roughness. However, we posit that higher 

LBE concentrations along channel margins along with unaccounted sources of roughness and 

resistance provide the means for spatially averaged resistance to increase, remain constant, or only 

minimally decrease with discharge, a topic that remains the focus of continued study (Abu-Aly et 

al., 2014; Cassan et al., 2017; Ferguson et al., 2019). 

 Dynamism of local relative submergence 

As stated by Groom and Friedrich (2019), “Understanding the spatial patterns and structure 

of flow properties across a bed has fundamental implications for geomorphic processes and local 

ecology.” Thus far we have focused on LBE relative submergence conditions aggregated at 

segment and reach scales, however element-explicit h/Dc values produced by the methods 
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presented herein can be used to study submergence patterns and dynamics at many spatial scales, 

such as at individual LBE or clusters of elements. For discussion purposes, an example using 

element-explicit h/Dc values for more local-scale analysis is presented below. The example focuses 

on documenting h/Dc conditions that would be encountered by an arbitrary object traveling along 

a portion of the river’s thalweg under different discharge conditions. While highly simplified, the 

object could be representative of a particle or organism, such as a fish or macroinvertebrate, 

moving along this dominate flowline. An arbitrary 520-m (~20 channel widths) portion of Reach 

1 was selected as the domain of interest. Within the domain, the object’s path was set as the 

baseflow thalweg and LBEs within 1 m of the thalweg were identified and assigned a longitudinal 

position along the thalweg, assuming these represent LBEs that interact with the object or visa-

versa. Discharge-dependent h/Dc values at these LBEs were recorded and plotted longitudinally 

(Figure 2.16). 

Firstly, it can be observed that numerous LBEs with variable h/Dc conditions would be 

encountered along the object’s journey. If relevant h/Dc values are known (e.g. a range of h/Dc 

values that provide physical habitat for an aquatic organism of interest), inference may be drawn 

from the sets of encountered conditions. For instance, from the perspective of bedload particles 

traveling along the specified route, at discharges at or below 10.73 m3/s, nearly all LBEs were in 

the LRS regime (h/Dc<3.5). This condition is associated with enhanced deposition of mobile 

bedload upstream of LBEs (Monsalve & Yager, 2017; Papanicolaou & Tsakiris, 2017). Thus, it 

may be inferred that there would be many opportunities for deposition and intermittent storage 

upstream of these LBEs. Monsalve & Yager (2017) also found LRS regime bedload deposition 

promoted cluster formation and increased stability of stoss-side sediment patches with little effect 

on wake GSD or bed elevations (see also Wittenberg & Newson, 2005). At higher discharges 
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(≥82.12 m3/s), most encountered LBEs were in the HRS regime (h/Dc<3.5), which is associated 

with increased probability for mobile particle deposition in LBE wakes (Papanicolaou & Tsakiris, 

2017). Notably, higher transport capacities and associated selective entrainment or equal mobility 

of the bed and increased potential for cluster destabilization and LBE mobilization during these 

higher discharges may limit depositional processes (Wittenberg & Newson, 2005). Patch stability 

at a given LBE, a feature of interest in river management (Kondolf et al., 1996), is likely enhanced 

by persistence of LRS or HRS regime conditions across a wide range of discharges that would be 

easy to track from the data. In the example, the few LBEs remaining in the LRS regime at high 

discharges may, for instance, harbor sediment patches and provide shelter from surrounding higher 

velocities and turbulent intensities important to aquatic organisms (Crowder & Diplas, 2006; 

Lacey & Roy, 2008). Lastly, while no attempt is made to track time and flow-dependent particle 

movements, as discharge cycles between periods of baseflow and flood the transition of LBEs 

between LRS and HRS regimes provide a plausible mechanism for intermittent, localized storage 

and transport as bedload particles hop-scotch downriver between locations that favor deposition. 

This stage-dependent LBE morphodynamic control may mediate sediment yield and facilitate 

observed long term storage (>103 of years) of theoretically highly mobile grains in mountain rivers 

(Faustini & Jones, 2003; Sutfin & Wohl, 2019). 

Despite its simplicity, the example above yields high-level incite regarding how LBE 

relative submergence dynamics can lead to unique patterns for sediment storage and transport 

through mountain river systems and provide crucial environmental conditions for aquatic biota. It 

is acknowledged we have barely broached the surface of how element-explicit h/Dc values may be 

used in river science and management, but the hope is presenting these concepts can stimulate 

further research. 
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Figure 2.16. (a) Selected 520 m portion of Reach 1 used to illustrate discharge-dependent h/Dc 
conditions at each LBE encountered by object moving along the baseflow thalweg. (b) 
Longitudinal plots of LBE locations (circles) along the thalweg scaled (circle size) based on 
relative submergence and color coded as being in the LRS (gray) or HRS (red) regimes. Each row 
in (b) depicts h/Dc conditions at the same set of LBEs for the discharge depicted on the vertical 
axis. (c) Histograms of h/Dc values for each discharge, also stacked following the same order as in 
panel (b). Flow in (a) is from top to bottom. The object encounters 678 LBEs. 

2.7 Conclusions 

To our knowledge this is the first time complete distributions of h/Dc values have been 

presented and studied for a natural boulder-bedded river. In doing so we were able to document 

discharge-dependent h/Dc distributions at multiple spatial scale, address hypotheses regarding h/Dc 

behavior, and discuss the hydraulic and geomorphic implications of study results and accounting 

for h/Dc distributions more generally. Through fitting and statistical analysis of discharge-

dependent h/Dc datasets we confirmed segment- and reach-scale data exhibited similar general 

statistical properties (i.e. positive skewness), were able to be drawn from the same type of 
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distribution, but also varied between spatial domains and across discharges. LBE height 

distributions were also all found to be positively skewed, highlighting the non-Gaussian nature of 

this property which has implications for how bed roughness is characterized. Dynamism of LBE 

heights, albeit only slight across discharges calls into question the practice of holding roughness 

coefficients constant, and highlights the need to uniquely represent this property across discharge 

conditions. Comparing solutions of four common hydraulic resistance equations found resistance 

estimates incorporating complete h/Dc distributions had higher resistance than those based on more 

standard singular h/D84 estimates, the latter of which has often been criticized for issues of 

underestimation. While untested, greater accounting in resistance equations of discharge-

dependent relative submergence over larger portions of the riverbed could be relevant toward 

improved resistance estimation and help collapse scatter in existing h/Δ-channel resistance 

relationships (Schneider et al., 2015; Monsalve & Yager, 2017). 

A key aspect of this study was analyzing the evolution of h/Dc between discharges. Results 

confirmed changes in study segment h/Dc distributions were predominately as hypothesized, such 

that in each domain variance in h/Dc values increased and central tendencies either increased or 

remained relatively constant over the series of tested discharges. Further analysis of these changes 

against six plausible evolutional Styles revealed statistical and parametric properties of study 

segment h/Dc distributions evolved consistently between discharges, between spatial domains, thus 

exhibiting what we term process-based similarity (Style 4). Applying study results to simulate h/Dc 

values at discharges beyond those tested showed continued evolution toward uniform conditions, 

which supported previous findings of resistance becoming constant at high discharges. While the 

universality of relative-submergence stochastics presented requires further testing, the unique 

distributions and discharge-dependent relationships can serve as an immediate reference for 
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studies wishing to better understand effects of h/Dc diversity on boulder-bedded rivers. 
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CHAPTER 3.  HYDRO-MORPHOLOGICAL VARIABLE LINKAGES WITH 

MORPHOLOGICAL UNIT SCALE FLUVIAL LANDFORMS IN A BOULDER-

BEDDED MOUNTAIN RIVER 

3.1 Abstract 

Fluvial landforms at the 1-10 bankfull channel-width scale, termed morphological units 

(MUs), are considered the building blocks of river systems, reflect distinct formative processes, 

and are valuable as a basic unit for assessing instream habitat or overall riverine health. To date, 

only limited treatment exists on MU typologies, governing hydro-morphological (HM) variables, 

and morphogenesis of spatially explicit MU locations for high gradient, coarse-bedded mountain 

rivers. This study addressed five scientific questions about mountain river MUs and their HM 

variables: (i) Do MU types have statistically unique combinations of HM variables? (ii) What HM 

variables are the strongest statistical discriminators of MU type? (iii) Are MU types located in 

portions of the river valley with expected assemblages of HM attributes? (iv) Are at-a-station 

hydraulic geometry variables better at discriminating/predicting MU types better than channel 

geometry variables? And, (v) what level of MU predictive capability can be achieved with HM 

variables? The testbed used to answer these questions was the confined 13.2-km segment of the 

high gradient, coarse-bedded, mountainous Yuba River (northern California). A meter-resolution, 

topo-bathymetric digital terrain model was produced from green and near-infrared airborne lidar, 

echo sounding, and limited depth-from-color estimation. Employing a standard method involving 

meter-scale 2D hydrodynamic modeling and a baseflow hydraulics decision tree, nine spatially 

explicit baseflow in-channel MU types were mapped. MU types included three pool unit types, 

alluvial step, steep plane bed (i.e. a passable riffle analog), and several transitional unit types. 
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Meanwhile, a set of 15 HM variables representing an array of possible hydraulic and geomorphic 

controls on MU occurrence were measured at river cross-sections where a single MU type was 

found to dominate. Selected HM variables included common (channel-bed slope; width-to-depth 

ratios) and novel (bankfull cross-section geometry index; baseflow-to-valley width ratio) ones. 

Combinations of multi-variate statistical analysis and heuristic assessment confirmed MU types 

had distinct HM variable assemblages and were located in portions of the river valley with 

expected assemblages of HM attributes based on scientific literature for each HM variable. 

Pairwise statistical analysis and a Random Forest machine learning algorithm determined baseflow 

width, baseflow-to-valley width ratio, bankfull width-to-depth ratio, and baseflow water surface 

slope had the greatest power to discriminate MU types and predict MU occurrence. The most 

parsimonious Random Forest model with ten HM variables as predictors achieved a median 

accuracy over 80% on 1000 sets of independent resampled MU test datasets. Taken together, study 

results provide a depth of geomorphic interpretation on local topographic controls and 

morphodynamic processes involved in MU formation as well as how HM variables exert fluvial 

control. 

3.2 Introduction 

Classification and mapping of riverine landforms at the 1–10 average bankfull channel 

widths (𝑊 ) or ‘morphological unit’ scale provides multifaceted benefits and is of broad interest 

to the river science community (Hawkins et al., 1993; Bisson et al., 2006; Belletti et al., 2017). 

While several terms exist describing this scale of fluvial landform (e.g. Wyrick et al., 2014; 

Wheaton et al., 2015), morphological unit (MU) is the preferred term for this study. Baseflow 

channel MUs (used interchangeably with MU herein) are defined following Wyrick et al. (2014) 

as discernible riverine landforms revealed by the combination of underlying topographic form and 
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hydraulics generated as water moves through the channel. MUs are considered the geomorphic 

building blocks of river systems reflecting distinct local form–process associations (Brierley & 

Fryirs, 2005; Belletti et al., 2017) and their study can aid in understanding relationships between 

river channel form and process (Lane & Richards, 1996; Wyrick & Pasternack, 2014). 

The peer-reviewed scientific literature (‘literature’) contains a plethora of methods to 

classify and map MUs ranging from early efforts employing field-based, visual assessment of 

baseflow topographic and hydraulic indicators (Grant et al., 1990; Halwas & Church, 2002), to 

modern algorithmic, multi-dimensional approaches for automated MU mapping using variables 

derived from sources such as field measurements, remotely sensed meter-to-sub-meter scale digital 

terrain models (DTMs) and aerial imagery, and/or two-dimensional (2D) hydrodynamic model 

outputs (Wheaton et al., 2015; Mahdade et al., 2020; van Rooijen et al., 2021; Woodworth & 

Pasternack, 2022). A constant across all methods is the use of pre-specified hydro-morphological 

(HM) variables representing the size, shape, sedimentology, roughness, topography, optical 

properties, and/or hydraulics of the river corridor in a decision framework that classifies MU types 

and can be used to delineate MU polygons. Broadly, decision frameworks can be supervised (top-

down) or unsupervised (bottom-up). Supervised frameworks involve pre-determined types of MUs 

with set or well-defined HM variable criteria (Wyrick et al., 2014; Wheaton et al., 2015). Variables 

and criteria in supervised frameworks often derive from conceptual models of MU form and 

function, which can be iteratively adjusted to reflect localized knowledge and landform diversity 

(Brierly et al., 2013). Unsupervised frameworks on the other hand are purely statistical and make 

no a priori assumption on the set of MUs. While unsupervised MU classification emerges from 

data-driven, bottom-up analysis of HM variable statistical similarity (dissimilarity) and/or 

clustering, heuristic decision making is typically required to define and describe the final number 
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of MU types (Helm et al., 2020; van Rooijen et al., 2021). Unsupervised approaches can also miss 

important but rare MU types (Wyrick et al., 2014). 

Once mapped, MU spatial configurations can be analyzed to address fundamental landform 

questions (Grant et al., 1990; Wyrick & Pasternack, 2014; Kasprak et al., 2016; Woodworth & 

Pasternack, 2022). If both MU locations and independent HM variables measured at MU locations 

are available, bottom-up statistical analysis can be used to determine if MUs occur in riverscape 

settings with specific HM variable assemblages (Peterson & Rabeni, 2001; Wyrick & Pasternack, 

2014; Lane et al., 2022). Building on the concept that MUs reflect distinct form-process 

associations, where HM variables have direct or inferential physical linkages to morphogenetic 

processes known to control MU formation and/or persistence (Caamaño et al., 2009; Thompson, 

2012; Brown et al., 2016; Pasternack et al., 2018a), such variables can be used to test and compare 

the influence of such processes on channel morphology when provided with an independent set of 

landform locations (Montgomery et al., 1995; White et al., 2010; Thompson & Fixler, 2017; 

Pasternack et al., 2018b; Byrne et al., 2021). Development of MU process-morphology linkages 

with HM variables is often confounded by issues like process-blending (e.g. MU morphogenesis 

involving multiple processes or the same process operating at different spatial scales through a 

range of flow conditions), equifinality, complementary and/or conflicting influences between HM 

variables, uncertain or incomplete MU process-morphology understanding, and covariation 

amongst HM variables (e.g. Pasternack et al., 2018a; Palucis et al., 2017). 

Nonetheless, HM variables with even tenuous MU process-morphology connections that 

serve as strong MU discriminators are relevant toward understanding factors influencing the 

geomorphic structure and organization of riverscapes. For example, extracting a variety of HM 

variables, Golly et al. (2019) derived a set of diagnostic morphological parameters to test several 
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models of step-formation against field observations of step morphology in a steep mountain 

stream. The quintessential work of Grant et al. (1990) similarly used MU-HM variable statistical 

relationships to provide insight into the morphogenesis of mountain river ‘channel units’. Wyrick 

and Pasternack (2014) also found a diverse suite of MUs in a gravel-cobble river to be 

distinguished by HM variables suggesting some degree of deterministic control on MU locations. 

While methods for MU classification and mapping are important (e.g. Wheaton et al., 

2015), they have been addressed in many more publications compared to the topic of bottom-up 

MU-HM variable analysis, especially in high-gradient (≥1.5% channel slope), coarse-bedded (D50 

≥ 5 mm, where D is grain-size diameter and the subscript is percent of grains finer) natural rivers. 

Further, when performed, bottom-up MU-HM variable analysis has often been limited to a few 

HM variables, such as channel-bed slope and grain-size distribution (GSD) metrics (e.g. D50, D84) 

(Grant et al., 1990; Halwas & Church, 2002). These same variables are ubiquitous in many 

classification methods, thus introducing potential spurious outcomes if used in the classification 

process itself (Grant et al., 1990; Halwas & Church, 2002; Helm et al., 2020). Channel-bed slope 

and GSD metrics are linked to geomorphic processes via their relationship with sediment transport 

competence (Kasprak et al., 2016), but generally lack well-defined direct or inferential MU 

process-morphology links as to why they would control occurrence of certain MUs versus others 

(Golly et al., 2019). Channel-bed slope has also been posited to serve as only a rough indicator of 

MU occurrence (Montgomery et al., 1995), and distinct GSD metrics between MU types have been 

found to develop more as a response to MU formation rather than as a casual mechanism 

(Thompson & Fixler, 2017; Hassan et al., 2021). Such limitations highlight the need to study other 

HM variables in the context to which they control MU occurrence. 
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 Scientific questions 

Thus, this study sought fundamental insights into the relations among MU types and HM 

variables by answering five novel scientific questions. (i) Do MU types have statistically unique 

combinations of HM variables? (ii) What HM variables are the strongest statistical discriminators 

of MU type? (iii) Are MU types located in portions of the river valley with expected assemblages 

of HM attributes based on linkages between HM variables and process-based mechanisms that 

preferentially support and maintain certain MU assemblages? (iv) Are at-a-station hydraulic 

geometry (AHG) variables better at discriminating/predicting MU types better than channel 

geometry variables? And (v) what level of MU predictive capability can be achieved with HM 

variables, and what is the most parsimonious combination of HM variables for predicting MU 

types? 

This study is novel in several regards. The steep, boulder-bedded canyon study segment 

presents a challenging setting for MU mapping and prediction, yet a unique, highly detailed dataset 

was obtained. The set of HM variables considered is broader than those from previous bottom-up 

studies. It includes variables that were expected to be predictive of MU occurrence based on past 

literature, and novel variables representing an array of possible hydraulic and geomorphic controls 

on MU formation and/or maintenance that have not been investigated before. Findings from 

addressing these questions are relevant for advancing basic understanding of fluvial landforms. 

They are also valuable for guiding river management and restoration activities, which often have 

the goal of creating specific MU configurations (Thompson, 2012; Helm et al., 2020). 

In the next sub-section we begin by reviewing generalized MU types for coarse bedded 

rivers and list selected HM variables and the expectation of these variables for the generalized MU 

types. HM variables were drawn from previous studies documenting empirical discriminatory 



151 

properties and/or descriptive process-morphology linkages between MUs and HM variables. In 

this manner, we hypothesize that MU types will have unique combinations of HM variables on the 

basis of multi-variate statistical analysis. Similarly, on the basis that HM variable expectations for 

each MU are based on review of the literature (APPENDIX 3) we hypothesize that a combination 

of statistical and heuristic assessment will confirm MU types are located in portions of the river 

valley with expected assemblages of HM attributes. 

 Generalized MU types, selected hydro-morphological variables, and MU expectations 

for coarse-bedded rivers 

A diversity of named in-channel MU types have been described for coarse-bedded rivers 

(Bisson et al., 1982; Grant et al., 1990; Hawkins et al., 1993; Church & Zimmermann, 2007; 

Wheaton et al., 2015). Despite differences in definitions and classification methods, commonalities 

allow simplification of MU types into five end-member groups based on relative combinations of 

collocated, low flow water depth and water speed (velocity) (Figure 3.1; APPENDIX 3). Pools, 

riffles, and steps are by far the most commonly referenced MUs in the literature, and are often 

defined using characteristics beyond low flow depth and water speed (Wheaton et al., 2015). The 

other two end-members contain less common MU types that function as transitional units between 

pools and riffles/steps. 

Beyond MUs, river corridors are characterized by a suite of continuous hydraulic, 

geometric, sedimentological, and topographic conditions that can be measured at multiple spatial 

scales (Nardini et al., 2020). Once specific metrics and a spatial-scale of interest are defined, these 

hydro-morphological conditions form the basis to measure HM variables. MUs on the other hand 

occupy the river corridor at discrete, stage independent locations, and thus can be viewed as a 

discrete categorical variable. Once mapped, MUs can define the spatial scale to measure HM 
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variables, thereby reducing continuous riverscape conditions to discrete measurements that can 

provide multi-variate data detailing HM variable conditions at each MU type. 

A total of 18 HM variables were considered and organized into the following 6 groups: 

channel-size variables, channel-shape variables, channel-obstruction/roughness variables, gradient 

variables, longitudinal change variables, and AHG exponent variables (Table 3.1. Summary of 

selected hydro-morphological (HM) variables.). Selected variables were those most relevant to 

MU types and morphogenetic processes occurring in coarse-bedded mountain rivers, those easy to 

obtain using basic survey methods or derive from digital terrain models (e.g. Golly et al., 2019), 

and were influenced by data available in a testbed river study segment (section 3.3). A 

comprehensive literature review of the selected HM variables including process-morphology 

linkages and relative expectations for the generalized set of MU types for each variable is provided 

in APPENDIX 3. 

Hypothesized and testable expectations for each variable for the generalized set of MU 

types were developed from the literature (Table 3.2. Hypothesized hydro-morphological (HM) 

variable expectations for generalized morphological unit (MU) types†.; APPENDIX 3). Several of 

the considered variables are stage dependent, and some variables are calculated at multiple stages 

(i.e. wetted width). This served two purposes. First, MU formation and attributes of low flow 

channel morphology are predominately driven by processes active during high flows (Grant et al., 

1990; Wyrick & Pasternack, 2014; Thompson, 2018), thus inclusion of variables calculated at low 

flow often have potential to be good discriminators of MU type (Wyrick & Pasternack, 2014; Helm 

et al., 2020). Second, there is uncertainty regarding the stage at which morphogenetic processes 

are active and/or dominant in shaping channel morphology (Sawyer et al., 2010; Pasternack et al., 

2018b, Thompson, 2018, Pasternack et al., 2021). In alluvial rivers, bankfull stage is regularly 
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viewed as determining channel geometry (Leopold & Wolman, 1957; Dunne & Jerolmack, 2020) 

and cited as the stage at which HM variables are determined (Wyrick et al., 2014; Helm et al., 

2020). However, in mountain rivers, discharges necessary for shaping topographic structure, 

performing landform maintenance, and/or reorganizing bedforms or boulders may be significantly 

higher than bankfull (Turowski et al., 2013; Pasternack et al., 2021; Polvi, 2021). Thus, several 

HM variables are calculated at multiple stages including a representative baseflow stage, which 

corresponds to flows whose hydraulics reveal overlying landforms, a representative banfkull stage, 

which can be determined statistically or morphologically (Williams, 1978), and a representative 

formative stage corresponding to a stage known to maintain landforms or perform geomorphic 

work (Sawyer et al, 2010; Pasternack et al., 2021). In certain settings, such as low gradient alluvial 

rivers, bankfull and formative stages may be the same. 

Taking these factors into consideration, each variable was identified a priori as being 

primarily for MU prediction or having stronger process-morphological linkages (Table 3.1. 

Summary of selected hydro-morphological (HM) variables.). High flow variables with process-

linkages were viewed to serve as controls on MU occurrence. Alternately, because baseflow 

prediction variables describe MU morphology after formation, they are viewed as responses to 

formative processes, and more controlled by MU occurrence. Variables calculated at multiple 

stages but having the same expectations reflect uncertainty regarding the discharge at which a 

linked process may be active and the associated expectations would be relevant (Table 3.2. 

Hypothesized hydro-morphological (HM) variable expectations for generalized morphological 

unit (MU) types†.). Potential correlation between HM variables is acknowledged, but was not 

viewed as reason to remove variables from consideration. 
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Figure 3.1. Generalized in-channel morphological unit (MU) end-members are dichotomized 
based on the primary axes of relative low flow depth and relative velocity shown in black. 
Alternative variables used to dichotomize these MU types are shown on the secondary axis in gray. 
Main end-members are underlined with units common to these end-members listed below. Not all 
MU end-members may be present across all river styles. Note that the horizontal and vertical 
dashed lines shown need be a constant value nor span the full range of the variable; dashed line 
could be rectangular step functions, sloped lines, or curves.
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Table 3.1. Summary of selected hydro-morphological (HM) variables. 

HM variable 
Primary study 
purpose 

Rationale/Process-morphology linkage References 

Channel-size variables 
Baseflow wetted width (WBs) (m) MU prediction Flow convergence routing† Halwas & Church, 2002; Wyrick & 

Pasternack, 2014; Brown et al., 2016; 
Pasternack et al., 2018a; Golly et al., 2019 

Formative wetted width (WF) (m) 
Process linkage 

Jammed-state step formation; flow 
convergence routing† Q13.7 wetted width (W13.7) (m) 

Channel-shape variables 
Bankfull width-to-depth (W/hBf) 
(m/m) 

Process linkage Bar instability; bar formation Florsheim, 1985; Furbish, 1998; Wilkinson et 
al., 2008; Wyrick & Pasternack, 2014; 
Carbonari et al., 2020 Formative width-to-depth (W/hF) 

(m/m) 
Process linkage 

Baseflow-to-valley width 
(WBS/WV) (m/m) 

Process linkage Hillslope sediment (dis)connectivity; 
entrenchment/confinement; flow 
convergence routing; jammed-state 
step formation; keystone step 
formation; 

Wolman & Eiler, 1958; Whiting & Bradley, 
1993; Grant & Swanson, 1995; White et al., 
2010; Pasternack et al., 2018a; Golly et al., 
2019 

Bankfull cross-section geometry 
index (ϴ) (-) 

Process linkage Flow convergence routing; flow 
resistance; channel stability; transport 
competence 

Richards, 1976a; Dingman, 2007; White et al., 
2010; Gonzalez & Pasternack, 2015; 
Pasternack et al., 2018a 

Channel-obstruction/roughness variables 
Bankfull LBE concentration (ΓBf) 
(m2/m2) 

Process linkage Jammed-state step formation; keystone 
step formation; flow resistance; 
topographic steering; bar instability 

Buffington et al., 2002; Church & 
Zimmermann, 2007; Harrison & Keller, 2007; 
Chartrand et al., 2011; Golly et al., 2019 

Formative LBE concentration 
(ΓF) (m2/m2) 

Process linkage 

Gradient variables 
Baseflow bed-slope (SBs) (m/m) MU prediction Transport competence‡; flow 

resistance; topographic hydraulic 
effects (backwater) 

Richards, 1976ab; Grant et al., 1990; Halwas 
& Church, 2002; Wyrick & Pasternack, 2014 
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HM variable 
Primary study 
purpose 

Rationale/Process-morphology linkage References 

Baseflow water surface slope 
(WSSBs) (m/m) 

MU prediction Flow resistance; topographic hydraulic 
effects (backwater) 

 
Richards, 1976ab; Grant et al., 1990; Halwas 
& Church, 2002; Wyrick & Pasternack, 2014 

Q13.7 water surface slope 
(WSS13.7) (m/m) 

Process linkage Transport competence 

Longitudinal change variables§ 
Baseflow wetted width change 
(ΔWBs) (m/m) 

MU prediction Topographic hydraulic effects 
(backwater); flow convergence routing† 

Grant et al., 1990; Pasternack et al., 2018a; 
Golly et al., 2019; Saletti & Hassan, 2020; 
Wang et al., 2021 Formative wetted width change 

(ΔWF) (m/m) 
Process linkage Jammed-state step formation; keystone 

step formation; flow convergence 
routing 

Formative shear stress change 
(ΔτF) (nꞏm-2/m) 

Process linkage Keystone step formation; flow 
convergence routing 

At-a-station hydraulic geometry exponent variables¶ 
Width exponent (b) (-) Process linkage Flow convergence routing; flow 

resistance; channel stability; transport 
competence 

Richards, 1976a; White et al., 2010; Gonzalez 
& Pasternack, 2015; Pasternack et al., 2018a Depth exponent (f) (-) Process linkage 

Velocity exponent (m) (-) Process linkage 
†Flow convergence routing process-morphology linkage is a dual-stage mechanism primary driven by conditions at higher flows (e.g. formative 
discharge). 
‡Process-linkage based on correlation between SBs and WSS at higher flow stages. 
§Change determined upstream of MU over distance of 2 times average bankfull width. 
¶Based on hydraulics from baseflow-to-valley filling flood stage. 
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Table 3.2. Hypothesized hydro-morphological (HM) variable expectations for generalized morphological unit (MU) types†. 

Generalized 
MU 

Channel-size variables Channel-shape variables 
Channel-

obstruction/roughness 
variables 

WBs WF W13.7 W/hBf W/hF WBs/WV ϴ3  ΓBf ΓF 

Step-type L L‡ L‡ H H L unconfined U-to-
convex shaped 

H H 

Riffle-type L H H H H L H H 
Pool-type H L L L L H confined U-shaped L L 
Chute-type 

L L-I L-I L-I L-I L 
confined U-to-

rectangular shaped 
L-I L-I 

Slackwater-
type I I-H I-H I-H I-H I 

V-to-rectangular 
shaped 

I-H I-H 

                      

Generalized 
MU 

Gradient variables Longitudinal change variables 
At-a-station hydraulic geometry 

exponent variables 
SBs WSSBs WSSF ΔWBs ΔWF ΔτF b f m 

Step-type H H Reduced 
differences 
in medians 

between 
units 

compared to 
WSSBs 

Negative Negative‡ Positive‡ H H L 

Riffle-type H H Negative Positive Negative H H L 
Pool-type L L Positive Negative Positive L L H 
Chute-type I-H I-H Near-zero Near-zero Near-zero L-I I I-H 
Slackwater-
type I I Near-zero Near-zero Near-zero I I-H I 

†Expectations defined and colored along fuzzy gradient: low (L), intermediate (I), and high (H); or as otherwise noted. Grey-scale color gradient 
goes from light-to-dark along low-to-high gradient. MU-HM variable pairs with multiple expectations, such as L-I or I-H, reflect higher 
uncertainty and potential for variable to span a wider range of values. 
‡Dominant expectation listed but values at step units expected to be bimodal to represent both jammed-state (low WF and W13.7, negative ΔWF, 
and positive ΔτF) and keystone (high WF and W13.7, positive ΔWF, and negative ΔτF) formation models. 
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3.3 Study river segment 

A 13.2-km segment of the mountainous Yuba River (Northern California) draining 1853 

km2 of the western Sierra Nevada range was used as the study testbed (Figure 3.2). The study 

segment is comprised of a low sinuosity, boulder-bedded, 5th order mountain river confined within 

a steep-walled bedrock and forested hillside canyon. The river here has a mean bed slope of 1.98% 

but exhibits localized variability with many 10 – 100 m long (100 – 101 channel widths) stretches 

having slopes exceeding 10%. The Yuba River watershed has an extensive history of human 

modification including hydraulic gold mining, land-use change, flow regulation and diversion, and 

channelization (YCWA, 2013). Presently, water resources in the vicinity of the study area are 

heavily regulated for flood protection, power generation, and water management. Detailed Yuba 

catchment hydrologic information is readily available (YCWA, 2012; Wiener & Pasternack, 

2016). 

The regions alluvial-sediment processes are also affected by anthropogenic influences. 

New Bullards Bar Dam, a 196.6 m high concrete arch dam on the North Yuba River near Dobbins, 

CA, serves as a complete barrier to bedload transport conveying only limited wash load. Log Cabin 

Dam and Our House Dam, both situated upstream of the study segment in the Middle Yuba 

watershed (Figure 3.2), also act as significant barriers to sediment transport (Curtis et al. 2005; 

YCWA, 2013). Sediment discontinuity has resulted in winnowing of finer sized materials in the 

study segment (YCWA, 2013). Based on limited sedimentological data, bed substrates alternate 

between bedrock and alluvial sections with estimates of larger boulders (> 512 mm) or bedrock 

covering over 60% of the channel (YCWA, 2013). Sediment storage capacity contrasts between 

sections, with bedrock sections lacking large storage capacity and the limited alluvium present 

commonly being restricted to deep pools, zones of low velocity, along intermittent bars, zones of 
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recirculating flow, or at major tributary junctions, meander bends, or other areas of local valley 

widening (Curtis et al., 2005; James, 2005). Where present, alluvial substrate is a heterogeneous 

mixture of materials dominated by coarse fractions (medium gravel/cobbles and larger). The 

presence of large boulders and the heterogeneity of sizes makes manual grain-size quantification 

difficult and labor intensive, if attempted. That said, Wolman (1954) pebble counts by YCWA 

(2013) within very limited portions of the study segment found average D50 values of 193 and 106 

mm in the upstream and downstream most portions of the site, respectively, and a D84 value of 512 

mm in both portions of the site. 

Like many bedrock-confined rivers, the study segment lacks a contiguous floodplain. 

Hydrodynamic modeling (section 3.4.1) found the limited number of alluvial surfaces (e.g. bars) 

to become inundated over a range of discharges. This non-uniformity corroborates evidence that 

bankfull discharge in mountain rivers be thought of as a range of recurring discharges (Radecki-

Pawlik, 2002). Despite this ambiguity, it remains helpful for dimensional and comparative 

purposes to identify a single bankfull flow and a previously reported morphologically determined 

bankfull discharge of 10.73 m3/s (YCWA, 2013) was used for this purpose. 

Previous geomorphological assessments to understand study segment morphology and 

hydro-morphodynamic controls have been conducted by Wiener and Pasternack (2019), 

Pasternack et al. (2021), and Wiener and Pasternack (2022). Based on reach averaged bed-slope, 

median grain size (D50), W/hBf, and bankull relative roughness (h/D50) reported by Wiener and 

Pasternack (2019) and YCWA (2013), the upstream most ~3.5 km of the study segment most 

closely aligns with Montgomery and Buffington’s (1997) proposed ‘step-pool’ channel 

morphology, whereas the downstream most ~0.7 km would be classified ‘pool-riffle’ and the 

remainder of the segment would be considered ‘plane-bed’ (Buffington & Montgomery, 2013). 
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Geomorphic covariance structure (GCS) analysis of width and bed undulations by 

Pasternack et al. (2021) revealed a threshold stage of ~161 m3/s above which study segment 

topographic structure was consistent with flow convergence routing morphodynamics. While this 

conceptually provides a mechanism for freely self-maintaining GCS landform organization, the 

authors found long intervals of the study segment where flow convergence routing was not active 

and landform organization was likely driven by other processes. Notably, landforms in their study, 

which were based on classification of detrended standardized bed elevations and estimates of 

standardized width, differ from the MUs that are the focus of this study. 

Through mapping study segment macroroughness elements, Wiener and Pasternack (2022) 

identified complex multi-scalar roughness element organizational patterns often corresponding 

with Morris’s (1959) wake interference regime that theoretically maximizes flow resistance for 

the channel. They also found roughness element concentrations located along channel margins 

continuously increased outside the baseflow and representative bankfull channels. 
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Figure 3.2. Map of study segment, tributaries, gages, and infrastructure facilities, Yuba River, CA. 

3.4 Methods 

 Experimental design and data generation 

The study’s questions and hypotheses were answered in order using a rigorous but 

transparent experimental design (Figure 3.3). To answer the first question of whether MU types 

have unique combinations of HM variables, the top-down, supervised hydraulic method of Wyrick 

et al. (2014) was used to classify and map MUs within the study segment. Next, 15 of the 18 HM 
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variables were selected and measured at river cross-sections where a single MU type was found to 

dominate. The set of 15 HM variables did not include the three AHG variables based on potential 

for spurious correlation with the Wyrick et al. (2014) MU classification and mapping scheme (see 

section 3.4.3). A suite of statistical approaches were then used to test if MU types had unique 

combinations of HM variables (section 3.4.2.1), to evaluate the discriminatory power of individual 

HM variables (section 3.4.2.2), and test if MU types occurred in locations with expected HM 

variable attributes (section 3.4.2.3). Despite potential correlation, discriminatory ability of AHG 

variables were also evaluated and compared to other HM variables (section 3.4.3). Lastly, a 

machine learning algorithm (Random Forest) was used to develop and test models for MU 

occurrence prediction based on HM variables (section 3.4.4). Summaries of data sources, MU 

delineation, and HM variable calculations are provided below with extensive details in 

APPENDIX 3. 

The first data source needed for MU classification and mapping, and determining HM 

variables was a topographic map. A 0.46 m x 0.46 m resolution DTM raster was created from 

airborne light detection and ranging (lidar) data, boat-based bathymetric observations, imagery-

derived bathymetric estimates (e.g. Legleiter et al., 2004), and systematically placed augmented 

points (Valle & Pasternack, 2006) that together had an average density of ~ 16 pts/m2. Next, 

steady-state hydrodynamics were simulated at ~ 1-m resolution using the Sedimentation and River 

Hydraulics—Two‐Dimensional model (SRH‐2D) v. 2.2 (Lai, 2008). Simulations were run for 

four geomorphically or otherwise relevant discharges (1.54, 10.73, 161.0, and 1184.6 m3/s) from 

an approximate baseflow to an ~13.7-yr flood (Table 3.3). Overall, the 2D model met relevant 

modeling standards and performed comparably to similar models from published articles (e.g. 

Lisle et al., 2000; Pasternack et al., 2006). 
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Using these data sources, MUs were delineated using the hydraulics‐based landform 

classification method of Wyrick et al. (2014) (see also Wyrick & Pasternack, 2014; Woodworth 

& Pasternack, 2022). First, a supervised classification approach (i.e. decision tree) discriminated 

the river’s bivariate baseflow depth-velocity phase-space into a set number of MUs with discrete 

bivariate ranges. Second, the phase-space classification was applied to 2D model depth and 

velocity rasters to classify each cell, which were agglomerated into contiguous MU patches. Final 

hydraulic thresholds delineated nine baseflow channel MU types covering the entire extent of the 

river’s baseflow wetted area (Figure 3.4). This set of MU polygons were analyzed in the context 

of their abundance (counts and areal coverage), lateral diversity, adjacency probabilities, and 

longitudinal spacing using the methods of Wyrick and Pasternack (2014). These analyses were not 

specific to addressing study questions, but are useful for documenting MU organization and spatial 

patterns, which has value toward advancing understanding of mountain river fluvial morphology. 

Because HM variables were designed to be measured at river cross-sections, the box 

counting procedure of Wyrick and Pasternack (2012) was used to generate a series of 

longitudinally abutting 3-m wide, baseflow cross-sectional polygons (‘cross-sections’) stationed 

along the river corridor. Baseflow cross-sections were assigned to a specific ‘dominant’ MU if at 

least 50% of a cross-sectional polygons area was occupied by a single MU types polygons. Cross-

sections without a dominant MU were labeled as ‘mixed’. Of the 4236 baseflow cross-sections, 

2539 were found to be dominated by a single MU type (Table 3.4). 

Lastly, values for 15 selected HM variables were determined directly at or numerically 

related to the same set of 4236 baseflow cross-sectional polygons used when defining dominant 

MUs (Table 3.5). While most HM variable calculations followed previous methods (Table 3.5), 

ϴ3 calculations were somewhat novel and warrant brief description. ϴ3 values were derived by 
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fitting rescaled cross-sectional elevations (zn) and cross-stream distances (xn) determined at 

bankfull cross-sections with a power function of the form: 

 𝑧 𝜃 |𝑥 𝜃 |  (EQ. 5) 

where {ϴi} are three fitting parameters. The function is symmetrical about ϴ2, and can take on 

various shapes depending on combinations of ϴ1 and ϴ3 (Figure 3.5). The ϴ3 parameter primary 

determines the shape of the cross-section. For ϴ3=1, the equation produced a perfect V-shaped 

section. As ϴ3 increases above unity sections become increasingly concave-up (U-shaped) 

approaching a rectangular cross-section as ϴ3 goes to infinity, whereas for ϴ3 less than unity 

sections are convex. Despite its flexibility, Eq.5 only produces smooth, symmetric cross-section 

shapes. In this manner, cross-section models are unable to account for in-channel topographic 

variability associated with roughness features, bedforms, and channel asymmetries. The function 

may also have difficulty fitting multi-thread channels. Detailed calculation methods for all HM 

variable are described in APPENDIX 3. 
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Figure 3.3. Conceptual experimental design. First 2D morphological units (MUs) are classified 
and mapped across the baseflow river corridor. Next hydro-morphological (HM) variables are 
extracted from the river corridor at cross-sections where individual MU types are found to 
dominate. Selected HM variables can include those with potential predictive capability of where 
MU types are likely to occur and/or process-morphology linkages with hydrogeomorphic 
processes and/or models associated with MU formation and/or persistence. Bottom-up statistical 
analysis is used to answer questions, test hypothesized HM variable expectations for classified 
MU types, and inform other outcomes. The hydrogeomorphic process of flow convergence routing 
and jammed-state and keystone step formation models are depicted as they have direct or 
inferential links to HM variables and strong associations with the formation of specific MUs. They 
are represented using graphical illustrations from Pasternack et al. (2018b) and Golly et al. (2019), 
respectively.  
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Table 3.3. Simulated discharges. 

Simulated 
discharge 

(m3/s) 

Approximate annual 
recurrence interval 

(years) 
Description 

1.54 1 Representative baseflow taken as average of unimpaired daily 
dry season (July 1 - September 30) flows at downstream 
boundary from 1930-2015. Used for morphological unit 
delineation. 

10.73 1.06 YCWA (2013) morphologically estimated bankfull flow. 
161.0 2.37 Flow above which study segment was found to be freely self-

maintaining via flow convergence routing morphodynamics 
and used herein as the ‘formative’ discharge (Pasternack et al., 
2021).  

1184.6 13.7 Maximum simulated flow based on boundary conditions 
collected for January 9, 2017 flood event. Used herein as the 
'Q13.7' discharge. 

 

 

Figure 3.4. Phase-space plot of depth and velocity thresholds showing morphologic unit hydraulic 
domains.  
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Table 3.4. Cross-sections dominated by a single morphological unit (MU) type. 

MU Type Number of cross-sections 

Alluvial Pool 87
Forced Pool 389
Deep Forced Pool 34
Slackwater 1360
Glide 207
Run 11
Steep Plane Bed 365
Alluvial Step 49
Chute 37

Sub-total 2539

Mixed 1697

Total 4236
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Table 3.5. Summary of hydro-morphological (HM) variable calculations including data sources 
and reference for calculation method. 

HM variable Data source† Method Reference 
Baseflow wetted width 
(WBs) 

2D model baseflow wetted area Wyrick & Pasternack, 2012; 
2014 

Formative wetted width 
(WF) 

2D model formative wetted area Wyrick & Pasternack, 2012; 
2014 

Q13.7 wetted width (W13.7) 2D model Q13.7 wetted area Wyrick & Pasternack, 2012; 
2014 

Bankfull width-to-depth 
(W/hBf) 

2D model bankfulll wetted area; 2D 
model bankfull depth raster 

Wyrick & Pasternack, 2012; 
2014 

Formative width-to-depth 
(W/hF) 

2D model formative wetted area; 2D 
model formative depth raster 

Wyrick & Pasternack, 2012; 
2014 

Baseflow-to-valley width 
(WBs/WV) 

2D model baseflow wetted area; 
detrended digital terrain model (DTM) 

White et al., 2010; Wyrick & 
Pasternack, 2012; 2014 

Bankfull cross-section 
geometry index (ϴ3) 

DTM - 

Bankfull LBE 
concentration (ΓBf) 

DTM Wiener & Pasternack, 2022 

Formative LBE 
concentration (ΓF) 

DTM Wiener & Pasternack, 2022 

Baseflow bed-slope (SBs) smoothed DTM; LBEs Wyrick & Pasternack, 2012; 
2014 

Baseflow water surface 
slope (WSSBs) 

2D model baseflow water surface 
elevation (WSE) raster 

Wyrick & Pasternack, 2012; 
2014 

Formative water surface 
slope (WSSF) 

2D model formative WSE raster Wyrick & Pasternack, 2012; 
2014 

Baseflow wetted width 
change (ΔWBs) 

2D model baseflow wetted area Wyrick & Pasternack, 2012; 
2014; Golly et al., 2019 

Formative wetted width 
change (ΔWF) 

2D model formative wetted area Wyrick & Pasternack, 2012; 
2014; Golly et al., 2019 

Formative shear stress 
change (ΔτF) 

2D model formative shear stress raster Wyrick & Pasternack, 2012; 
2014; Golly et al., 2019 

†Source data obtained from Pasternack et al. (2021), Wiener and Pasternack (2022), or this study. 
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Figure 3.5. Example cross-sections generated by Eq. 5 [zn =ϴ1(|x- ϴ2|) ϴ3], where zn is normalized 
elevation and x is normalized cross-stream distance, with different combinations of ϴ1 and ϴ3, and 
a constant ϴ2 set equal to 0.5. Vertical exaggeration is 0.5. 

 Statistical analysis linking MUs and HM variables 

The following subsections describe methods used to evaluate relationships between MUs 

and HM variables. They also explain how the first three study questions were answered. 

3.4.2.1 Question 1: multivariate differences methods 

To determine if MU types had statistically unique combinations of HM variables, 

differences in HM variables between all MU types were evaluated using PERMANOVA at an 

alpha of p ≤ 0.05 (Anderson, 2001). As a further test, MU stratified HM variable assemblages were 

evaluated a posteriori by pairwise PERMANOVA adjusted for multiple inference following Holm 

(1979). A criteria of 27 of 36 pairwise tests being positive was taken as a threshold for upholding 

the hypothesis that MU types have unique HM variable combinations. This criteria corresponds to 

the case where each MU is similar to one other unique MU, but not more than that. To aid in 

visualizing MU similarity and provide initial inference on the strength of HM variables in 
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differentiating MUs, non-metric multidimensional scaling (NMDS) was used to collapse 

information from multiple dimensions into two NMDS dimensions and principal component 

analysis (PCA) was used to show the amount of variance in the data explained by each HM variable 

(APPENDIX 3). 

3.4.2.2 Question 2: pairwise analysis methods 

To investigate HM variable discriminatory power, pairwise analysis was performed using 

Welch's ANOVA and Games-Howell tests (Games et al., 1979; Peters, 2018). Initially, HM 

variables were tested independently between MUs at the 95% confidence level (p ≤ 0.05) using 

Welch's ANOVA test (i.e. one test for each HM variable). This test also serves to compliment the 

pairwise PERMANOVA testing in addressing the question of if MU types had unique 

combinations of HM variables. A majority of positive tests (≥8) was taken as a secondary criteria 

for upholding the hypothesis that MU types have unique HM variable combinations. 

Post-hoc analysis was performed using the Games-Howell (GH) test at the 95% confidence 

level (α = 0.05) adjusted for multiple inference following Holm (1979). Variables were ranked 

based on the number of significant GH pairwise comparisons relative to the number of all possible 

MU combinations (i.e. 36 different combinations for 9 MU types) to determine which were the 

strongest discriminator of MU types. Following the approach of Lane et al. (2022), a variable was 

generally considered significant in discriminating MU types if more than 50% of differences 

between MU pairs (18) were significant above α = 0.05. Lastly, the number of significant GH tests 

between each unique pair of MUs were quantified to evaluate HM variable similarity between MU 

pairings. 

3.4.2.3 Question 3: heuristic expectation assessment methods 

To address the question of whether MUs occurred in locations with expected assemblages 
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of HM attributes, distributions of HM variables for each MU were visualized using violin plots 

and evaluated heuristically in combination with HM variable summary statistics and results of the 

pairwise analysis (APPENDIX 3). Specifically, median HM variable values were stratified and 

ordered by MU type and used to determine if the sequence of ordered values followed the 

expectations listed in Table 3.2. A fuzzy classification was used to convert the ranked median HM 

variable values to the ordinal expectations in Table 3.2. Separate ordination schemes were needed 

to compare outcomes for ϴ3, WSSF, ΔWBs, ΔWF, and ΔτF to expectations listed in Table 3.2 

(APPENDIX 3). For each HM variable, the expected order was considered met if a supermajority 

7 of 9 reclassified ranked MU outcomes corresponded to the hypothesized ordinal expectations. 

The overall hypothesis that MUs occurred in locations with expected HM attributes was upheld if 

the majority of HM variables (≥8) followed the expected order. A simple transference scheme was 

applied to map the final set of MU types to the most representative generalized MU type listed in 

Section 3.2.2 based on similar combinations of baseflow depth and velocity (Figure A.3.3). 

 Question 4: hydraulic topography variables as alternative to channel geometry index 

methods 

Beyond the limitations of Eq. 5 described in Section 3.4.1, there are several reasons why 

ϴ3 may not perform well in terms of discriminating MU types. First, this study only mapped 

baseflow channel MUs, whereas ϴ3 represents the bankfull channel. It is plausible that bankfull 

geometry might control or predict features inside them (White et al., 2010), so it is worth testing, 

but ultimately that may not materialize. Second, hydraulically defined MUs simply may not be 

well differentiated by this proxy metric for cross-sectional geometry. Finally, MUs by any 

classification but especially by hydraulics may be sensitive to non-local effects that are not 

captured by cross-section geometry variables like ϴ3 (MacWilliams et al., 2006; Saletti & Hassan, 
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2020; Hassan et al., 2021). In light of these considerations and despite the potential for spurious 

correlation, we sought to explore the AHG geometry exponents, b, f, and m, as additional HM 

variables. 

Following the hydraulic topography approach of Gonzalez and Pasternack (2015), b, f, and 

m exponents of the canonical hydraulic geometry equations for width, depth, and velocity were 

estimated at each cross-section (APPENDIX 3). Fitting leveraged results from additional 2D 

model simulations, yielding a total of eight discharges between 1.54 m3/s and a valley-filling flood 

of 1184.6 m3/s. Discriminatory power of the resulting three additional HM variables was assessed 

following the pairwise analysis approach described in Section 3.4.2.2 and compared to ϴ3 and 

other HM variables. 

 Question 5: random forest prediction models 

Random Forest (RF) is a supervised machine learning algorithm that aggregates individual 

classification and regression trees built from random subsets of predictors into a less biased 

ensemble model (Breiman, 2001). The use of RF is widespread, and has proven effective in fluvial 

geomorphology for extrapolation of river classification to unmeasured stream intervals (Guillon 

et al., 2020; Donadio et al., 2021), for mapping fluvial and other Earth surface landforms 

(Rabanaque et al., 2021; Szabó et al., 2020; Woznicki et al., 2019), and for modeling the spatial 

pattern of GSD (Diaz-Gomez et al., 2021). To address the final study question regarding MU 

predictive capability a total of four RF models were developed using different combinations of 

HM variables as predictors. Description of each model, model development, and model testing are 

summarized below and detailed in APPENDIX 3. 

Model development followed a consistent training-validation approach. Prior to model 

fitting, HM variables were rescaled using min-max normalization. Based on imbalances in the 
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number of cross-sections dominated by each MU type, stratified balanced partitioning was used to 

split data into datasets for model training and testing. A 75/25% split rate for each MU type was 

used to resample data to ensure at least two samples of each MU type made it into each training 

and testing dataset (i.e. only 11 sections were dominated by run). Resampling was repeated 1000 

times for each model. For each resample, models were fit using the training dataset and validated 

using the testing data. Model performance was assessed using Matthews’s correlation coefficient 

(MCC) and accuracy (i.e., ratio of number of accurately predicted classes to total classes). Overall 

model performance was based on the median MCC and accuracy from all resampling events. 

Hyperparameter tuning for each model followed a grid search approach with a similar validation 

approach as model development. 

The first RF model included all 15 HM variables as predictors (‘complete model’). A 

reduced predictor model was based on identification of the most parsimonious set of HM variables 

(‘parsimonious model’). Predictors for the parsimonious model were identified through an 

intermediate step of fitting multi-nominal logistic regression models for all possible HM variable 

combinations (i.e., 32,767 models) on the complete MU dataset, and using AIC model selection to 

identify the most parsimonious combination (Burnham & Anderson, 2002). A third reduced 

predictor model was developed using only b, f, and m (section 3.4.3) as predictors (‘AHG model’). 

A final ‘null model’ with no HM variables was developed for comparison purposes. All models 

were assessed using the same procedure described above. 

The RF models described above were limited to predicting MU types for the ~ 60% of 

channel cross-sections having a single dominant MU type, therefore an independent test dataset 

was created and used to further assess model performance in a more difficult context that 

encompassed another portion of the study segment. Specifically, cross-sections previously 
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identified as mixed but having 30-50% of their area composed of a single MU type were identified 

and incorporated into a new dataset. These cross-sections had no dominant MU, but are considered 

to have a single “subdominant” MU. This dataset consisted of 1633 of the 1697 mixed cross-

sections, and an additional ~39% of the total number of baseflow cross-sections (Table A.3.3). 

Instead of training new models on these data, the four models (complete, parsimonious, AHG, and 

null) trained on the cross-sections with a single dominant MU were applied to these sections and 

evaluated following the same procedure and performance metrics described above. The only 

difference was instead of training models on a portion of the dominant MU cross-sections, models 

were trained on the full dataset. 

3.5 Results 

 Morphologic unit types 

This study mapped and analyzed 4,285 MU polygons, yielding a large dataset to drive 

robust statistical inquiry. Analysis of this final set of processed MU polygons (i.e., the set of 

polygons comprising a continuous mapping over the entirety of the baseflow wetted area) 

confirmed the study segment to be comprised of complex, non-random patterns of unequally 

distributed fluvial landforms (Figure 3.6). The most aerially abundant MU was slackwater, 

occupying ~42% of the mapped extent (Table 3.6). The next two most abundant MUs were forced 

pool and glide. Deep forced pool, alluvial step, and chute had the least aerial abundance. Based on 

counts of individual MU polygons, slackwater and glide were still the most common units followed 

by alluvial pool, steep plane bed, and chute (Table 3.6). Forced pool and deep forced pool were 

the least common MUs by count. 

Lateral distribution analysis found the study segment had, on average, ~ 5 MU types per 

cross-section. Even higher lateral diversity was common in locations of bifurcated flow (Figure 
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3.6). Based on visual assessment, several configurations appeared more common than others. 

Slackwater and glide polygons were regularly present along the channel margins. Pool unit 

polygons were often laterally sandwiched between slackwater with a succession to deeper pools 

toward the channel center. Units with higher baseflow water speeds exhibited similar transitions. 

Chute and steep plane bed polygons were each commonly located next to glide and slackwater 

units. The shallow and rapid flow of alluvial step unit polygons were found laterally adjacent to 

steep plane bed, glide, and slackwater units. 

Adjacency probability results identified strong patterns of non-random collocation and 

avoidance between unit types (Table A.3.4). Contrary to traditional findings, pool units and high 

baseflow velocity units (i.e., steep plane bed, chute, and alluvial step) exhibited greater-than-

random avoidances with one another. Instead, units including glide, run, and slackwater that were 

envisioned as entrances and exits to the pools and high baseflow velocity units, did act as 

transitions between such areas (Figure A.3.4). Groupings of collocated high baseflow velocity 

units as well as low baseflow velocity units could partly be an artifact of the classification method, 

but since these units reflect the spatial configuration of different topographic and hydraulic 

conditions, they still represent an objective depiction of landform organization. 

Lastly, longitudinal spacing analysis of run, steep plane bed, alluvial step, chute, and 

aggregated pool units found unit-to-unit spacings were primarily uni-modally distributed with 

peaks between 2 and 5 average bankfull widths (𝑊 ) (Figure A.3.5). Alluvial step had the tightest 

mean spacing of 2.5ꞏ𝑊 . Chute, pool units, and run were all similarly spaced with mean values 

of 3.8, 3.9, and 4.0ꞏ𝑊 , respectively. Steep plane bed had the longest distance between units at a 

mean spacing of 6.4ꞏ𝑊 . Pool units, steep plane bed, run, and chute showed slight bi-modal 

spacing distributions with secondary peaks between 6-10ꞏ𝑊 . Similar mean and modal spacings 
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amongst pool, run, and chute units suggest units occur together in periodic sequences through the 

study segment as part of larger geomorphic unit couplets (Figure A.3.5). Since none of the units 

in the longitudinal analysis were typically found to have strong lateral adjacency tendencies, the 

chute-run portion of these couplets may be an important transition from steep plane bed and 

alluvial step units into pool units. 

 

Figure 3.6. Example MU configurations overlain on detrended DTM illustrating typical lateral 
distributions and adjacencies. Flow directions are from top-to-bottom or left-to-right. 
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Table 3.6. Baseflow channel morphological unit (MU) polygon abundance metrics. 

Morphological unit 
Area 
(m2) 

Area (%) 
Number 

(‐) 
Number 

(%) 

Alluvial Pool  27617 11.7 581 13.6 

Forced Pool  31088 13.2 176 4.1 

Deep Forced Pool  4817 2.0 10 0.2 

Slackwater  98496 41.8 1227 28.6 

Glide  28964 12.3 840 19.6 

Run  9242 3.9 308 7.2 

Chute  7561 3.2 376 8.8 

Steep Plane Bed  22951 9.7 511 11.9 

Alluvial Step  4924 2.1 256 6.0 

Total 235659 100 4285 100 

 Hydro-morphological variables 

HM variables exhibited diverse ranges of values (Figure 3.7; Table A.3.5). After rescaling 

variables by subtracting the mean and dividing by the range, it emerged that variables had similar 

overall ranges but differing magnitudes of dispersion based on common dispersion measures such 

as standard deviation and inter-quartile range (Figure 3.7; Table A.3.5). Comparing unscaled 

variables, only 5 of 105 pairs of HM variables were highly correlated (r > 0.7): WBs and WBs/WV, 

WF and W13.7, WF and W/hF, W13.7 and W/hF, and W/hBf and W/hF (Figure A.3.6). 
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Figure 3.7. Violin plots of hydro-morphological (HM) variables at (a) all 4236 cross-sections and 
(b) at 2539 cross-sections with a dominant morphological unit (MU). Violin plots of normalized 
HM variables at (c) all 4236 cross-sections and (d) at 2539 cross-sections with a dominant MU. 
Note logarithmic x-axis in panels (a) and (b). Violins represent kernel density of each variable. 
Points in each violin are mean values and lines in each violin show one standard deviation from 
mean. Dashed gray lines separate the five groups of selected HM variables. 

 Morphological unit-hydro-morphological variable relations 

Cross-sections dominated by a single MU had diverse and often unique ranges of HM 

variable values (Figure 3.8). Summary statistics of each HM variable for each MU type are 

provided in Table A.3.7. Example cross-sections fit by Eq. 5 for each MU type are presented in 

Figure 3.9. Notably, locations with highly irregular and complex topography were difficult to fit 

using the flexible albeit simple form of Eq 5. Results of analyses used to address the first three 
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study questions are presented in the following subsections. 

 

Figure 3.8. Violin plots of hydro-morphological (HM) variables by morphological unit (MU) type. 
Violins represent kernel density of each variable. Points in each violin are mean values and lines 
in each violin show one standard deviation from mean. 
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Figure 3.9. Example of a cross-section fit with Eq 5 for each morphological unit (MU) type. Points 
are observed values and line is predicted values from Eq 5, where zn is normalized elevation and 
xn is normalized cross-stream distance. Examples shown correspond to the cross-section with the 
75% percentile slope metric for each MU. Goodness-of-fit metrics (slope and R2) and bankfull 
cross-section geometry index (ϴ3) are shown. 

3.5.3.1 Question 1: multivariate differences results 

On the basis of the 15 selected HM variables, MU types were significantly different from 

one another (PERMANOVA; p << 0.01). Pairwise PERMANOVA tests indicated all 36 MU-MU 
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comparisons differed above a 95% confidence level (p ≤ 0.05) according to unadjusted test results 

and after applying Holm’s (1979) correction. This exceeded the criterion of 27 positive tests for 

upholding the hypothesis that MU types have unique HM variable combinations (section 3.4.2.1), 

but may not be surprising given the large number of HM variables. 

Collapsing variables to the first two NMDS dimensions provided some degree of clustering 

in the data even if regions of overlap remained (Figure 3.10). Stress from the 2D NMDS analysis 

was 0.157, indicating a ‘useable’ ordination, but also that a higher-dimension solution could 

improve inference and potentially provide greater clustering/grouping in the data (Clarke, 1993). 

The first and second principle component axes explained 30.9 and 25.4% of the variance in the 

data, respectively (Figure 3.10). The first component was dominated by channel size and shape 

variables (i.e. wetted widths, width-to-depth ratios, and valley confinement [WBs/WV]). The 

second principal component was dominated by gradient and channel-obstruction/roughness 

variables, which to some degree reflect mean velocity. This meant that moving from bottom-left 

to top-right in the NMDS ordination there is a shift from wider, lower gradient units in more valley 

confined settings to units with steeper gradients and greater LBE concentrations in areas with less 

valley confinement (Figure 3.10). 
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Figure 3.10. Plot of the first two non-metric multidimensional scaling (NMDS) dimensions. Large 
points are the mean NMDS values for the set of cross-sections dominated by each morphological 
unit (MU) type, small points are values for individual cross-sections dominated by a single MU 
type, and ellipses are one standard deviation from mean. Vectors represent the influence of hydro-
morphological variables on the variance between MUs. Longer vectors explain more variance 
between MUs. 

3.5.3.2 Question 2: pairwise analysis results 

Welch’s ANOVA test results indicated all HM variables were different between MUs (p 

<< 0.01), which met the second criterion for upholding the hypothesis that MU types have unique 

HM variable combinations. Next, post-hoc analysis by pairwise GH tests determined HM variables 

differed in their ability to differentiate MU types (Table 3.7). Based on unadjusted p values, 12 

HM variables exceeded the 18 pairs threshold to be considered a significant discriminator of MU 

occurrence. This dropped to eight HM variables when using adjusted p values. The maximum 

number of significant adjusted tests, 33 of 36 possible, was achieved by WBs, followed by WBS/WV, 
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WSSBs, WSSF, and W/hBf, indicating MU types differed along the individual gradients of these 

variables more-so than the others. The least explanatory variable was ΔWF, which after adjustment 

had only one significant test. Large dispersion and/or overlap of HM variable values across MU 

types likely influenced the ability of some HM variables, such as WF, W13.7, ϴ3, SBs, and ΔτF to 

differentiate MU types according to the GH test (Figure 3.8). 

Not all variables discriminated the same MU types from one another (Figure A.3.8). 

Numbers of significant adjusted GH tests also varied between different MU pairings, meaning 

some MUs had greater similarity to others based on HM variables (Table 3.8). The greatest number 

of differences were generally between high baseflow velocity units (i.e. steep plane bed and 

alluvial step) and pool units. The fewest number of differences were between run and most other 

MU types. Other similar pairings included: alluvial pool with forced pool, glide with run and the 

three high baseflow velocity units, and the high baseflow velocity units with one another. No MU 

pairing was found to have significant differences for all HM variables, and no pairings were found 

to have no differences in HM variables based on GH tests.  
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Table 3.7. Counts of significant morphological unit-morphological unit (MU-MU) differences 
based on Games-Howell test for each hydro-morphological (HM) variable applied at the 95% 
confidence level using unadjusted p values and values adjusted for multiple inference following 
Holm (1979). Bold numbers exceeded the 18 significant pairs needed to be considered a significant 
discriminator of MU occurrence. Variables in bold and highlighted in gray exceeded the 18 
significant pairs for both unadjusted and adjusted p values. 

HM variable 
Number of 

significant tests 
unadjusted p value 

Number of 
significant tests 
adjusted p value 

Rank based on 
number of 
adjusted 

significant tests 
Baseflow wetted width (WBs) 33 32 1 

Formative wetted width (WF) 18 16 9 

Q13.7 wetted width (W13.7) 20 15 10 

Bankfull width-to-depth (W/hBf) 29 26 5 

Formative width-to-depth (W/hF) 19 15 10 

Baseflow-to-valley width (WBs/WV) 31 30 2 

Bankfull cross-section geometry index (ϴ3) 16 10 13 

Bankfull LBE concentration (ΓBf) 26 22 7 

Formative LBE concentration (ΓF) 21 20 8 

Baseflow bed-slope (SBs) 19 12 12 

Baseflow water surface slope (WSSBs) 30 30 2 

Formative water surface slope (WSSF) 31 27 4 

Baseflow wetted width change (ΔWBs) 25 23 6 

Formative wetted width change (ΔWF) 2 1 15 

Formative shear stress change (ΔτF) 12 9 14 
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Table 3.8. Counts of significant morphological unit-morphological unit (MU-MU) differences 
based on adjusted and unadjusted Games-Howell tests for each hydro-morphological variable 
between each MU pairing. Unadjusted test results are shown in parenthesis next to adjusted results. 
Numbers in bold correspond to MU pairings with ≥8 significant differences in HM variables out 
of the possible 15 variables. 

 
Forced 
Pool 

Deep 
Forced 
Pool Slackwater Glide Run 

Steep 
Plane 
bed 

Alluvial 
Step Chute 

Alluvial Pool 5 (7) 11 (12) 7 (8) 10 (11) 4 (7) 12 (12) 11 (12) 10 (11) 
Forced Pool  10 (11) 13 (14) 14 (14) 4 (5) 14 (14) 11 (12) 9 (11) 

Deep Forced Pool   11 (12) 12 (13) 7 (7) 12 (13) 11 (13) 10 (11) 
Slackwater   8 (9) 4 (5) 12 (12) 8 (8) 8 (10) 

Glide   3 (6) 6 (7) 6 (6) 6 (8) 
Run   3 (7) 3 (4) 1 (3) 

Steep Plane bed   5 (6) 5 (6) 
Alluvial Step    3 (5) 

 

3.5.3.3 Question 3: heuristic expectation assessment results 

Heuristic assessment found hypothesized MU expectations were met for 9 of 15 selected 

HM variables (Figure 3.8; Table 3.9). This exceeded the criterion of eight needed to accept the 

hypothesis that MUs occurred in locations with expected assemblages of HM attributes, but does 

mean expectations were not met for several variables. Of HM variables whose expectations were 

met, the complete set of expectations (9 of 9) were met for WBs, W/hF, and WBs/Wv. Of the six HM 

variables where MU expectations were not met, WF, W13.7, ϴ3, and ΔWF had 6 of 9 MU 

expectations met, while only 5 of 9 MU expectations were met for ΓBf, and ΔτF (APPENDIX 3). 

While not included as part of the hypothesis testing criteria, expectations were also met for all 

three AHG exponent variables (Table 3.9). The total number of HM variable expectations met for 

each MU type ranged from 8 for run to all 18 for alluvial step (Table 3.9).
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Table 3.9. Summary of whether hydro-morphological (HM) variables met hypothesized morphological unit (MU) expectations†. 

Generalized 
MU 

Study 
segment 

MU‡ 

Channel-size variables Channel-shape variables 

WBs WF W13.7 W/hBf W/hF WBs/WV ϴ3
¶ 

E R E R E R E R E R E R E R 
Step-type AS L 3 L§ 4 I§ 6 H 8 H 9 L 1 unconfined U-to-

convex shaped 
V-shaped (convex)* 

Riffle-type SPB L 4 H 6 H 7 H 9 H 8 L 4 V-shaped (convex)* 
Pool-type AP 

H 
8 

L 
8 

L 
8 

L 
5 

L 
4 

H 
7 

confined: U-shaped 
U-shaped* 

FP 7 3 3 3 2 8 U-shaped (rectangular)* 
DFP 9 9 9 2 1 9 U shaped (V-shaped)* 

Chute-type RN 
L 

2 
L-I 

1 
L-I 

1 
L-I 

1 
L-I 

3 
L 

3 confined: U-to-
rectangular shaped 

V-shaped 
CH 1 2 2 4 5 2 V-shaped (convex-to-U)

Slackwater-
type 

SL 
I 

6 
I-H 

7 
I-H 

5 
I-H 

6 
I-H 

6 
I 

6 V-to-rectangular 
shaped 

convex (V-shaped) 
GL 5 5 4 7 7 5 V-shaped* 

Expectation met 9 of 9 - 
Yes 

6 of 9 - 
No 

5 of 9 - 
No 

7 of 9 - 
Yes 

9 of 9 - 
Yes 

9 of 9 - 
Yes 

6 of 9 - No 

 

Generalized 
MU 

Study 
segment 

MU‡ 

Channel-obstruction/roughness variables Gradient variables 

ΓBf ΓF SBs WSSBs WSSF 

E R E R E R E R E R 
Step-type AS H 7 H 8 H 9 H 9 

Reduced 
differences 
in medians 

between 
units 

compared 
to WSSBs 

Sum of 
absolute 

differences 
in medians 
reduced by 

50% 
compared 
to WSSBs 

Riffle-type SPB H 5 H 7 H 8 H 8 
Pool-type AP 

L 

2 

L 

2 

L 
4 

L 
3 

FP 3 3 3 2 
DFP 1 1 1 1 

Chute-type RN 
L-I 

8 
L-I 

4 
I-H 

2 
I-H 

4 
CH 9 9 7 7 

Slackwater-
type 

SL 
I-H 

6 
I-H 

5 
I 

5 
I 

5 
GL 4 6 6 6 

Expectation met 5 of 9 -No 8 of 9 - Yes 8 of 9 - Yes 8 of 9 - Yes Yes 
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Generalized 
MU 

Study 
segment 

MU‡ 

Longitudinal change variables†† 
At-a-station hydraulic geometry 

exponent variables Expectation 
met 

(n=18) 
ΔWBs ΔWF ΔτF b f m 

E R E R E R E R E R E R 
Step-type 

AS (-) (-) (-)§ 

(~0) 
(-  

& bi-
modal) 

(+)§ 
(+) 
(bi-

modal) 
H 8 H 8 L 1 18 

Riffle-type SPB 
(-) 

(-) 
(~0) 

(+) (-) (~0) (-) 
(+) 

 (~0) 
H 6 H 9 L 2 15 

Pool-type AP 

(+) 

(+) 
(~0) 

(-) 

(~0) 
(-) 

(+) 

(-) 

L 

3 

L 

4 

H 

7 14 

FP 
(+) (~0) (-) 2 3 8 16 

DFP 
(+) 

(~0) 
(+) 

(-) 1 1 9 14 

Chute-type RN 

(~0) 

(-) 
(~0) 

(~0) 
(~0) 

(~0) 

(~0) 
(-) 

L-I 
7 

I 
2 

I-H 
6 8 

CH 
(-) (~0) 

(+) 
(~0) 

9 5 3 12 

Slackwater-
type 

SL 

(~0) 

(+) 
(~0) 

(~0) 

(+) 
(~0) 

(~0) 

(-) 
(~0) 

I 

4 
I-
H 

6 

I 

5 17 

GL (-) 
(~0) 

(~0) 
(+) 
(~0) 

5 7 4 16 

Expectation met 
8 of 9 - Yes 6 of 9 - No 5 of 9 - No 

7 of 9 - 
Yes 

8 of 9 - 
Yes 

8 of 9 - 
Yes 

 

†Expectations (E) defined and colored along fuzzy gradient: low (L), intermediate (I), and high (H); or as otherwise noted. Grey-scale color 
gradient goes from light-to-dark along low-to-high gradient. MU-HM variable pairs with multiple expectations, such as L-I or I-H, reflect higher 
uncertainty and potential for variable to span a wider range of values. Results (R) are ordered median values from low (1) to high (9), or otherwise 
noted. Ranks are related to ordinal expectations and colored using the following overlapping fuzzy classification: low (1-4), low-intermediate (2-
5), intermediate (4-6), intermediate-high (5-8), and high (6-9). Expectations and results of the same color indicate expectation was met. 
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‡Steep plane bed (SPB), alluvial step (AS), alluvial pool (AP), forced pool (FP), deep forced pool (DFP), run (RN), chute (CH), slackwater (SL), 
and glide (GL). 

§Dominant expectation listed but values at step units expected to be bimodal to represent both jammed-state (low WF and W13.7, negative ΔWF, 
and positive ΔτF) and keystone (high WF and W13.7, positive ΔWF, and negative ΔτF) formation models. 

¶ϴ3 values interpreted as follows: <1 convex, ~1 V-shaped, >1 U-shaped, and >2.5 rectangular. First results are based on two-sided t.test relative 
to unity, secondary result in parenthesis is additional heuristic interpretation based on distribution of data. Expectation upheld if either result met 
expectation and are marked with a * symbol. 

††Grey-scale color gradient goes from light-to-dark along negative-to-positive gradient. First results are based on two-sided t.test relative to zero, 
secondary result in parenthesis is additional heuristic interpretation based on distribution of data. 

 



 

191 

 Question 4: hydraulic topography variable results 

Based on results in the sections above, it emerged that ϴ3 was only an intermediate 

discriminator of MU type relative to other HM variables (e.g. ranking 13 of 15 with 10 significant 

adjusted GH tests; Table 3.7). Further, MU types often had different ϴ3 values than expected 

(Table 3.9). Alternately, pairwise analysis found AHG exponents had among the strongest MU 

discriminatory ability compared to the 15 selected HM variables having 32, 16, and 26 significant 

adjusted GH tests for b, f, and m, respectively (Figure 3.11). This meant b, which reflects the rate 

that width increases with discharge (stage), tied for having the most discriminatory power of all 

HM variables. Results also generally aligned with hypothesized expectations across MU types 

(Table 3.9; APPENDIX 3). 
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Figure 3.11. (a) Violin plots of at-a-station hydraulic topography exponents, b-f-m, for each 
morphological unit (MU). Violins represent kernel density of each variable. Points in each violin 
are mean values and lines in each violin show one standard deviation from mean. (b) Ternary 
diagram of b-f-m values for each MU cross-section (small points) and median b-f-m value for each 
MU across all cross-sections (large points). Lines in ternary diagram show conditions where b=m, 
f=m, b=f, and b+f=m, respectively. b, f, and m are exponents of the canonical hydraulic geometry 
equations for width, depth, and velocity, respectively. 

 Question 5: random forest model results 

The complete RF model had a median MCC of 70.1% and median accuracy of 81.0% based 

on 1000 comparisons with testing data. Across resampling, Gini impurity varied but several HM 

variables emerged as consistently being important, including WBs, W/hBf, and WSSBs (Figure 

3.12). These same variables were also identified as strong discriminators of MU type by pairwise 

analysis (section 3.5.3.2). Results of the AIC model selection found the most parsimonious model 

included the following ten predictors: WBs, WF, W13.7, W/hBf, W/hF, ΓBf, ΓF, WSSBs, ΔWF, and ϴ3. 

The parsimonious model had a median MCC of 69.5% and median accuracy of 80.5% on 

the testing data. Comparing models, the complete model offered only minor improvement over the 

parsimonious model. Both models provide substantial improvement over the null model’s 

accuracy of 53.9% (MCC could not be computed for the null model as each class is not predicted). 

The final RF model with the three AHG exponents, b, f, and m, had a median MCC of 

71.1% and median accuracy of 81.6% on the test data. This slightly exceeded performance of the 

other RF models. However, it is unclear if such improvement is due to AHG exponents being 

better predictors or simply due to spurious correlation between these predictors and the MU 

classification system, which both derive from hydraulic measurements. 

Misclassifications were similar between complete, parsimonious, and AHG RF models. 

The top four most common misclassifications were glide as slackwater, slackwater as steep plane 

bed, steep plane bed as glide, and alluvial pool as slackwater which, on average accounted for 
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between 35.5-57.7% of total test set misclassifications across models. Several other common errors 

included misclassifying glide sections as steep plane bed, alluvial step as steep plane bed, and 

forced pool as slackwater. Higher total misclassification rates among these pairings were 

somewhat influenced by imbalance in MU dominated cross-sections as there were simply more 

slackwater, steep plane bed, forced pool, and glide sections to be misclassified (Table 3.4). Other 

misclassifications were consistent with MU pairings that exhibited few differences in HM 

variables based on numbers of significant adjusted GH tests (Table 3.8). 

Applying the complete model trained on the full set of dominant MU cross-sections to the 

subdominant MU cross-section dataset yielded a median MCC of 27.5% and median accuracy of 

47.5%. The parsimonious model had median MCC and accuracy scores of 26.4% and 46.9%, 

respectively. These scores are on the same order as the median accuracy of the null model (45.8%), 

suggesting predictions from these models were comparable to random selection. This performance 

is surprising given that subdominant MU cross-sections had similar appearing HM variable 

distributions to those with a single dominant MU (Figure A.3.9). Median MCC and accuracy 

scores from the AHG model of 32.2% and 51.3% offered some improvement, but were still 

relatively low.  
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Figure 3.12. Boxplots of hydro-morphological (HM) variable importance from complete random 
forest model across 1000 resamplings. HM variables are organized by group and separated by 
dashed gray lines. Numbers along right axis are ranked importance values from highest (1) to 
lowest (15) according to mean Gini impurity. 

3.6 Discussion 

Using the top-down MU classification approach of Wyrick et al. (2014) a spatially explicit 

census of 4,285 individual MU polygons among nine baseflow MU types were mapped within a 

13.2-km coarse-bedded, mountain river. Discretizing the study river segment into cross-sectional 

polygons a total of 2539 cross-sections were identified as being dominated by a single MU type 

and a diverse set of 18 HM variables were measured at these cross-sections. Bottom-up 
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multivariate (PERMANOVA) and pairwise (ANOVA; GH) statistical analyses supported our 

initial hypothesis that MU types had statistically unique combinations of 15 selected HM variables, 

and a combination of statistical and heuristic analyses supported our hypothesis that MU types 

occurred in portions of the river valley with expected assemblages of these same HM attributes. 

Cumulatively, study results can be used to develop holistic descriptions of HM variable conditions 

where certain MUs and/or groups of MUs occurred, interpret processes involved in the 

formation/persistence of these MU types, and provide inference on how HM variables exert 

deterministic control. 

Notably, other factors such as lithology, vegetation, hillslope properties, non-local factors, 

and flow and sediment regimes known to influence channel morphology were not included as HM 

variables, so interpretations are given in the context of what was measured. Many of the HM 

variables are also unidimensional in nature, whereas processes involved in MU formation and 

maintenance (e.g. sediment routing, eddy formation with jet flow, vortex scour) are often 

multidimensional (Booker et al., 2001; Thompson, 2018; Hassan et al., 2021). Additionally, 

findings and discussion in the subsequent sections are focused on the ~60% of the channel where 

a single MU type was found to dominate. These locations can be viewed as strong representations 

of the form of each MU type, but means ~40% of the channel characterized by greater lateral MU 

diversity is not considered and would benefit from further inquiry. This may be an underlying 

disadvantage of 2D MU delineation schemes as applied in the context of this study, as many cross-

sections will not have a dominant MU Type (Wyrick & Pasternack, 2014). However, all linear 

cross-section and longitudinal profile-based MU classification schemes result in portions of the 

channel being omitted from classification (e.g. Jarrett 1993; Helm et al., 2020) in addition to 

ignoring lateral variably. 
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 Synthesis of hydro-morphological links with morphological unit spatial patterns 

The study’s three pool unit types consistently occurred in channel locations where WBs was 

comparatively high. At 161.0 and 1184.7 m3/s these same locations had more variable or 

intermediate WF and W13.7 values (Figure 3.8; Table 3.9). This transition likely reflects backwater 

conditions created by downstream hydraulic controls (e.g. negative pool exit slopes, downstream 

topographic highs, downstream high LBE concentrations) becoming inundated at higher flows 

stages and resulting in more uniform flows widths (Richard, 1976; Caamaño et al., 2009). 

However, cross-sections dominated by alluvial pool and deep forced pool still occurred where WF 

and W13.7 tended to be highest. This meant alluvial pool and deep forced pool were often spatially 

nested in locations with similar relative multi-stage width conditions (e.g. wide-in-wide; 

Pasternack et al., 2021). In contrast, forced pool dominated cross-sections occurred where median 

WF and W13.7 were third lowest (narrowest), which was lower than median WF and W13.7 values at 

steep plane bed and alluvial step dominated cross-sections. 

Conditions at alluvial pool and deep forced pool sections are somewhat counterintuitive to 

the dual-stage flow convergence routing mechanism for pool maintenance, whereas the high flow 

switch in width between forced pool and steep plane bed/alluvial step is in-line with the 

conceptualization that this width switch provides the means for pools to scour at higher discharge 

and maintain relief with adjacent riffle type MUs (MacWilliams et al., 2006; Thompson, 2011; 

Pasternack et al., 2018a). One explanation for why width conditions at alluvial pool and deep 

forced pool were inconsistent with the flow convergence routing mechanism could relate to the 

inability of the study’s wetted width variables to capture pool asymmetries and other 2D or 3D 

flow patterns, which produce hydrodynamic conditions associated with high flow sediment routing 

involved in pool-riffle maintenance (Booker et al., 2001). Other HM variables also offer possible 
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explanations. All pool units occurred in confined valley settings (i.e. high WBs/Wv), and ΔWF 

results indicate formative widths were typically constant or narrowing downstream toward the 

majority of pool dominated cross-sections functioning like a nozzle in concept (section 3.5.3.3). 

Together, these conditions would facilitate high-stage formation of jet flow and flow convergence 

associated with pool scour. 

Among other HM variables, pool dominated cross-sections had the lowest median WSSBs, 

ΓBf, and ΓF of all MUs, occurred in settings with comparatively low W/hBf and W/hF, and had 

amongst the lowest SBs values (Figure 3.8; Table A.3.7). These findings were consistent with 

hypothesized expectations derived from past studies (Table 3.9; section 3.2.2). Further, although 

pool dominated cross-sections had the lowest median WSSF, average percent increases between 

WSSBs and WSSF at pool sections were only second to increases at run sections, which is consistent 

with findings of Richards (1976ab) amongst others (e.g. Thompson, 2018). Lastly, pool units 

occurred in locations where ΔWBs was mainly positive (upstream baseflow channel width 

increased toward unit), and where ΔτF was typically negative or near-zero (upstream formative 

shear stresses decreased or were constant toward unit). Negative ΔτF is interpreted as promoting 

depositional conditions that are contrary to expectations for maintenance of pool units at formative 

discharges. However, the metric does not account for overall magnitude of τ, and the cross-

sectional averaging of τ may miss locations of peak τ associated with high-stage sediment routing 

through pool units (Strom et al., 2016). Longitudinal change metrics are also susceptible to the 

scale over which they are calculated (Golley et al., 2019; Nardini et al., 2020). The three change 

metrics, were calculated over a region 2ꞏ𝑊  upstream of each dominant MU cross-section 

(Golley et al., 2019). Given, MU spacing results (section 3.5.1) this aligns with the typical spacing 

between alluvial step units and certain pool units, but may not be sufficient to represent conditions 
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approaching MUs with larger spacings and/or that dominate cross-sections wider than 𝑊 . 

Cross-sections dominated by steep plane bed and alluvial step occurred in channel 

locations with HM attributes that were essentially the opposite of pool units. Such locations were 

comparatively narrow at baseflow and of intermediate width at formative discharge (e.g. nozzles 

nested in nozzles; Pasternack et al., 2021), and had comparatively high W/hBf, W/hF, ΓBf, ΓF, SBs, 

and WSSF (Figure 3.8; Table 3.9). These unit’s cross-sections had the highest median WSSBs, but 

unlike pool units, average percentage changes between WSSBs and WSSF were not only the lowest 

among all MU types but tended to slightly decrease, indicative of a drowning out of topographic 

controls. Above the formative discharge, widths increased rapidly leading to steep plane bed and 

alluvial step dominated cross-sections having the third and fourth highest median W13.7 values, 

respectively. According to longitudinal change variables ΔWBs was mainly negative (narrowing), 

ΔWF was negative or near-zero (narrowing or constant), and ΔτF tended to be positive (increasing). 

An initial interpretation of ΔWF and ΔτF tendencies is that these locations would not be 

depositional at the formative discharge and that deposition would only occur at higher discharges, 

if ever under contemporary flow and sediment regimes that involve flow regulation, land use 

impacts, and altered sediment supply and transport processes (Turowski et al., 2013; Polvi, 2021; 

see section 3.6.3). Similarly, while comparatively narrow WF values clash with expectations for 

steep plane bed to serve as a riffle analog under the guise of the flow convergence routing 

mechanism, the fact that these units occurred where W13.7 was rapidly increasing and the valley 

was unconfined (i.e. low WBs/Wv) is consistent with evidence that stages much higher than 

bankfull may be required to initiate the dual-stage width switch in confined mountain rivers where 

LBEs are abundant and account for a substantial portion of total flow resistance (White et al., 2010; 

Pasternack et al., 2021; Wiener & Pasternack, 2022). Comparatively high ΓBf and ΓF at steep plane 
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bed and alluvial pool dominated cross-sections also help explain the discrepancy with the flow 

convergence routing mechanism. High LBE concentrations serve to increase flow resistance, 

promote deposition or at least reduce energy available for sediment transport, and increase 

transverse velocities (e.g. Furbish, 1998; Wiener & Pasternack, 2022). Such increased flow 

resistance could compensate for the difference in mass and energy conservation typically achieved 

by flow widths at riffle type units exceeding pool units (Caamaño et al., 2009; Brown et al., 2016). 

For instance, de Almeida and Rodriguez (2011) found riffle crest coarsening increased entrainment 

thresholds and reduced riffle erosion, which together served to stabilize riffle locations. These 

same changes in sedimentological properties have been found to promote fine sediment deposition 

at riffles during infrequent large flood events (Chartrand et al., 2015; Hassan et al. 2021). 

Under most flow conditions mountain rivers are often considered supply limited. This can 

change during infrequent large flood events when sediment supply overwhelms transport 

capacities (Turowski et al., 2013). Despite relatively high hillslope sediment productions rates 

(Curtis et al., 2015), sediment discontinuity in the study segment may limit this type of flood-based 

deposition, meaning finer sediments are mostly transported downstream (section 3.6.3). Increased 

roughness at steep plane bed and alluvial step dominated cross-sections may increase potential for 

flood deposition, but sedimentological observations are needed to support this supposition. LBEs 

mapped in the study segment by Wiener and Pasternack (2022) had minimum dimensions of 0.46 

x 0.46 x 0.312 m. Thus, channel reformation associated with LBE mobilization and liberation of 

stored in-channel sediment supplies likely remains limited to large infrequent flood events 

(Turowski et al., 2013; Polvi, 2021). 

Interpreting steep plane bed and alluvial step HM variables in the context of jammed-state 

hypothesis had mixed results. Consistent with the hypothesis, both units dominated where WF was 
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narrower than expected and where formative channel widths were narrowing (i.e. negative ΔWF). 

However, the comparatively large W13.7 values at these units are not only more aligned with the 

keystone model of step formation, but slightly counterintuitive to the idea that jamming of large 

grains should occur at higher discharges when grains are increasingly mobile (Grant et al., 1990; 

Golly et al., 2019; Saletti & Hassan, 2020). Median W13.7 values may be influenced by the fat 

upper tail of the distributions, and both steep plane bed and alluvial step sections occurred over a 

range of W13.7 values (Figure 3.8). The keystone model also posits that expanding channel widths 

and decreasing downstream shear stress serve as mechanisms for keystone deposition. Neither of 

these conditions prevailed at steep plane bed or alluvial step cross-sections at the formative 

discharge. Greater uniformity of W13.7 across MU types and preliminary evaluation of conditions 

at Q13.7 indicate width changes still tend to be evenly distributed about zero and changes in τ to be 

positive. Calculating a representative step forming grain-size (DSFG) for the study segment based 

on DSFG/D90 ratios from Table 1 of Curran (2007) yields an average DSFG of 0.7 m. Based on WF 

values, this results in jamming-ratios at alluvial step cross-sections ranging from 34.7-78.7, which 

are ~6-13 times larger than the upper-bound of 6 commonly recognized as supporting step-pool 

channel morphologies (Chin & Wohl, 2005; Church & Zimmermann, 2007; Comiti & Mao, 2012). 

Notwithstanding, both jamming and keystone deposition appear to play relevant roles on the 

occurrence of steep plane bed and alluvial step units in the study segment. The wide range of WF 

and W13.7 values and both negative and positive ΔτF values at our steep plane bed and alluvial step 

units require additional evaluation to determine at what flow(s) these formation models dominate 

and if models spatially overlap or occur more independently (section 3.6.2). 

As a final interpretation of where steep plane bed and alluvial pool units were found to 

dominate, not only did these cross-sections have the highest median W/hBf and W/hF, but only one 
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alluvial step and one steep plane bed dominated cross-section had W/hBf <10. This changed to 3 

of 49 alluvial step, and 14 of 365 steep plane bed dominated cross-sections for the criteria that 

sections had W/hF <10. The W/h value of 10 has been recognized as a lower threshold for bar 

instability and the formation of alluvial bars and coarse grained bedforms (Furbish, 1998; 

Wilkinson et al., 2008), thus bar instability appears to be a complimentary morphogenetic process 

influencing steep plane bed and alluvial step dominance in the study segment. Alternately, despite 

having comparatively low W/hBf and W/hF values, many alluvial pool and forced pool cross-

sections occurred where W/hBf and W/hF were above 10. Therefore, the threshold served as a lower 

bound for the occurrence of steep plane bed and alluvial step, but did not prohibit pool and other 

units from dominating cross-sections with W/hBf and W/hF values above the threshold. 

With regard to transitional units such as glide and slackwater, cross-sections dominated by 

these units had HM variables with comparatively intermediate values. Between units, glide tended 

to occur in cross-sections that were slightly narrower at all flows, had higher WSSBs, and had less 

valley confinement than slackwater dominated cross-sections. Individual glide polygons were 

often mapped at steep plane bed to pool-head or pool exit-slope to steep plane bed transitions, 

whereas slackwater was ubiquitous along the periphery of low gradient portions of the baseflow 

channel (section 3.5.1). The abundance of slackwater dominated cross-sections and polygons 

provides some justification for the majority of the study segment being aligned with the ‘plane 

bed’ classification of Montgomery and Buffington (1997). However, the presence of other MU 

types conflicts with their description of plane bed lacking bedforms patterns. Based on the 

influence of LBEs and local variations in bed slope, the study segment appears to be better 

described as an intergraded mix of the channel morphologies that includes step-pool, cascade, 

forced morphologies, and intermediate morphologies (Thompson et al., 2006; Polvi, 2021). 
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Cross-sections dominated by chute, and to a lesser degree run, had similar HM variable 

attributes as steep plane bed and alluvial step sections with a few notable differences. Chute and 

run sections had much lower W/hBf and W/hF, were less confined (i.e. lower WBs/Wv), and had 

typically higher ΓBf. High LBE concentrations persisted at chute sections at the formative 

discharge (i.e. high ΓF), but not at run dominated sections. High ΓBf and ΓF at chute sections may 

have been due to bank attached bedrock outcrops being included in the spatially explicit LBE 

dataset (Wiener & Pasternack, 2022). This is not taken as problematic as it aligns with the view 

that this unit occurs in highly confined steep sections of deeply eroded bedrock (Table A.3.2). 

Resistance borne from high ΓBf and ΓF may balance the erosive capacity of chute cross-sections 

resulting from high bed and water surface slopes (e.g. SBs, WWSBs, and WSSF), and promote 

stability of such units (Wiener & Pasternack, 2022). Lower W/hBf and W/hF at chute and run cross-

sections may result by proxy of the classification scheme, which specified a priori that these units 

have relative high baseflow depths and water speeds, which by mass conservation would likely 

require narrow flow widths. 

Lastly, of the ~ 40% of channel cross-sections classified as mixed, ~ 96% were found to 

have a single sub-dominant MU type (section 3.4.4; Table A.3.3). Visual comparison found HM 

variable distributions from these section were similar to those with the same dominant MU type, 

but had greater dispersion and more overlap between MU types (Figure 3.8; Figure A.3.9). Several 

factors could be involved in the less distinct, more complex MU patterns in these locations. For 

example, high flow processes could be less effective at shaping the baseflow channel in these 

cross-sections, because these cross-sections had slightly higher average LBE concentrations and 

were often in locations of bifurcated flow. Such perturbations could drive greater baseflow 

hydraulic diversity and may also indicate portions of the channel that are prone to disturbance, in 
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disequilibrium, or more resistant (section 3.6.3). More research is needed to understand mountain 

river locations with a large number of MUs distributed across the baseflow channel. 

 Decoupling processes and morphological unit variability 

The idea that comparable sets of morphogenetic processes were locally active throughout 

the study segment where specific MU types occurred is bolstered by three results. First, each MU 

type had a relatively large set of dominant cross-sections. Second, MU types had statistically 

unique HM variable combinations. Third, many HM variables had reasonable internal consistency 

within each set of MU dominated cross-sections (Figure 3.8) (Lane & Richards, 1996). While this 

type of local control does not explicitly conflict with the position held by hierarchical channel 

classification models that MU scale landforms are strongly dictated by larger scale (e.g. reach 

scale) physical channel attributes, it does highlight that local control can drive greater 

morphological variability than suggested by reach scale morphology alone (Wyrick et al., 2014; 

Byrne et al., 2020; Lane et al., 2021). 

Decoupling local processes was complicated by several HM variables having multiple 

process-linkages (Table 3.1), several processes emerging as being relevant to 

formation/maintenance of the same MU type, and different processes emerging as being relevant 

to the same MU at different discharges (section 3.6.1). Establishment of combinations of HM 

variables values uniquely aligned with expectations for different process mechanisms associated 

with each MU type could serve as a first-order approach to decouple or elucidate the relevance of 

individual processes at individual MU locations. Further research is needed. 

Another key finding of this study was that the sets of cross-sections dominated by each 

MU type had diverse and often overlapping ranges of HM variable values (Figure 3.8). An initial 

interpretation of these outcomes was the potential for multiple MU types to occur in locations with 
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similar HM variable conditions. This was certainly true for a number of MU types as illustrated 

by consistency between MU pairings that had relatively few differences in HM variables based on 

pairwise analysis (section 3.5.3.2) and those misclassified in the RF predictive analysis (section 

3.5.5). While HM variable values mostly aligned with expectations from other MU studies, ranges 

of certain HM variables were outside those previously measured (Table A.3.9), and expectations 

were not met for the majority of variables (6 of 11) believed to have stronger process-morphology 

linkages (Table 3.1; Table 3.9). This resulted in MU dominated cross-sections that appear as 

‘outliers’ (Figure 3.8), and/or cross-sections where HM variable expectations were not met. These 

locations may represent a variety of phenomena, and while it is outside this effort to address all 

examples, discussion of a limited set of these locations is provided in APPENDIX 3. 

 Morphological unit expectations not met 

Study results confirmed that the four HM variables, WBs, SBs, WSSBs, and ΔWBs, viewed 

as being primarily for MU prediction (Table 3.1) were typically powerful at discriminating and/or 

predicting MU types and conformed to MU expectations derived from past studies (Table 3.9). To 

the contrary, expectations were not met for six of the other 11 HM variables associated with higher 

flow stages and presumed to have stronger process-morphological linkages. These variables also 

tended to have less discriminatory and predictive power. This brings up questions about what 

processes are active in the study segment and how study segment MU types are formed and/or 

maintained. 

One commonality among MU types with the possible exception of alluvial step was that 

based on HM variables all units appear to occur in erosional, or at least not in strongly depositional 

settings, at high flow stages. Pasternack et al. (2021) also found that overall canyon confinement 

meant sediment moving down the study segment would only tend to deposit in local valley width 
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expansions or move quite far downstream to where the canyon finally widens. Sediment 

discontinuity in the watershed has also impacted the study segment’s contemporary alluvial 

processes and it remains unclear if the channel is in a state of adjustment to historic changes in the 

basin rather than in some balance to the current flow and sediment regimes (James, 2005; YCWA, 

2013). The result is that all MU types may be highly winnowed. Absent historical observations of 

the channel’s alluvial state, this does not mean study segment morphologies are not self-formed 

(Whipple, 2004), and the topographic signature of currently morphologies are clearly sculpted into 

the channels bedrock in the form of semi-rhythmic undulations in the vertical dimension 

(Pasternack et al., 2021; Figure A.3.2). In this manner, channel morphology is more defined by 

undulations in the vertical dimension in response to variations in width at the highest flows and by 

differences in coarse-grained sedimentology, and channel adjustments are primarily through 

changes in resistance (Chin, 2002; Polvi, 2021; Wiener & Pasternack, 2022). 

Drawing from the HM variable results, one broad process interpretation for the MU 

patterns is that valley-scale topography is responsible for creating zones of differential scour with 

pool units occurring in locations of greatest high flow scour, and steep plane bed and alluvial step 

units occurring where resistance is high, the valley is unconfined, and/or at locations of mass 

wasting. This concept is supported by the findings of Pasternack et al. (2021) who found that above 

~161 m3/s study segment topographic structure was increasingly associated with localized zones 

of laterally convergence and divergent flows being in-phase with topographic lows and 

topographic highs. 

Because variables associated with Q13.7 were more informative than those from the 

formative discharge in terms of explaining MU formation, analysis of HM variables at discharges 

higher than those currently available may further elucidate processes that explain MU patterns. 
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For instance, high potential for mass wasting provides abundant contemporary possibilities to 

supply LBEs to the study segment valley-bottom (Curtis et al., 2005). Wiener and Pasternack 

(2022) found study segment longitudinal LBE concentrations to be semi-oscillatory with 

sequences of LBE clustering suggesting some degree of historic fluvial transport. Given the size 

of LBEs in their study, mobilization and deposition would only occur during infrequent large flood 

events. Confined valley settings also have low capacity for planform channel adjustment over 

historic timescales (Fryirs, 2017), and a final plausibility is that contemporary channel morphology 

is inherited from past extreme flood events (Polvi, 2012) outside the current flow regime, such as 

landslide outburst floods or melting of Quaternary glaciers present in the easternmost portions of 

the Yuba ca. 10,000 yBP (James et al., 2002; James, 2004). 

Separate interpretation on why expectations were not for several HM variables and how 

study segment MU types were formed are given in terms of the study design. Delineation of 

baseflow channel morphology using baseflow depths and velocities is a proven method used by 

the fluvial geomorphology community (van Rooijen et al., 2021; Woodworth & Pasternack, 2022), 

and the study’s final set of MU polygons were mapped at a scale consistent with previous examples 

(e.g. Comiti & Mao, 2012; Wyrick & Pasternack, 2014; Wheaton et al., 2015). A potential issue 

arises when comparing these baseflow defined fluvial landforms to processes occurring at higher 

discharges. At baseflow, the spatial pattern of study segment hydraulics change rapidly leading to 

high subdivision of the channel into the selected MU types (Figure 3.6). For instance, glide and 

run units were commonly mapped at steep plane bed to pool-head and pool exit-slope to steep 

plane bed transitions, and given their location and relative topographic position may be part of 

residual pool areas (Figure A.3.2; section 3.5.1; Figure A.3.4). 

Because baseflow hydraulics define MU locations and are intended to embody underlying 
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topography, baseflow HM variables in turn are strongly controlled by MU type. At higher flows, 

hydraulic controls present at low flow are drowned out and the scale of contiguous hydraulic 

characteristics expands across MU types. Thus, subdivisions present at baseflow vanish at high 

flow and leave room to question if such subdivisions are morphologically significant in the context 

of evaluating processes. This raises the question of what scale is appropriate to study governing 

processes (Thompson, 2018). The study’s focus on the cross-sectional scale may have further 

compounded this issue, as analyses are made independent of adjacent MU types or even cross-

sections dominated by the same MU type. Separating variables into those with stronger process-

morphological linkages (e.g. W13.7) and those viewed as responses to formative processes (e.g. SBs, 

WBs, and WSSBs) aided in interpreting how HM variables exert deterministic control, however this 

issue remains complicated by the inevitable ‘chicken-egg’ paradox of whether HM variable 

conditions precede MU occurrence or if morphodynamic processes driving MU formation and 

subsequent HM variable conditions occur more simultaneously (Brierley & Fryirs, 2005). These 

questions remain open problems. Nevertheless, it remains our view that MU dominated cross-

sections in the study segment are strong representations of the form of each MU type and HM 

variables at these sections reflect local controls on MU formation and/or persistence or at least the 

channel’s response to such processes. 

 Utility of HM variables and Random Forest predictive approach 

The set of HM variables used in this study spanned a larger range of geometric, hydraulic, 

and geomorphic attributes than past studies performing bottom-up MU classification and/or 

analysis (Grant et al., 1990; Peterson & Rabeni, 2001; Halwas & Church, 2002; Wyrick & 

Pasternack, 2014; Helm et al., 2020). HM variables varied in terms of their ability to discriminate 

MU types, but together results of the pairwise and RF predictive model analyses determined 
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WSSBs, WBs, W/hBf, and WBs/Wv had the greatest power to discriminate/predict MU occurrence 

(Table 3.7; Figure 3.12). Combining variables together in a series of RF models achieved median 

predicative accuracies ranging from 80.5-81.6% compared to resampled independent test data. 

Misclassifications of the study’s RF models were most commonly between MU pairings that had 

few differences in HM variables (Table 3.8) and/or occupied more of the channel. These accuracies 

are comparable to classification accuracies reported in similar studies made in comparison with 

training data, whereas this study’s accuracies are based on comparison with independent test data 

(Table 3.10). Further, variables from the referenced studies are not always easily or meaningfully 

transferable between rivers (Peterson & Rabeni, 2001; Marcus et al. 2003), and typically provide 

only minimal interpretation in terms of process-based explanation for why MUs were accurately 

predicted. 

When considering what makes a good prediction, the effort taken in this study to describe 

MU process-morphology linkages underlying the study’s HM variables should enable better 

transferability for MU prediction across a range of river morphologies, even if it is most suitable 

for high-gradient, coarse-bedded rivers (Wheaton et al., 2015; Belletti et al., 2017). For instance, 

outside of directly applying the study’s RF models in other settings, the set or a subset of the 9 

HM variables that had their MU expectations met (Table 3.9) could theoretically serve as the basis 

for a top-down fuzzy MU classification system. Classification would occur as an inverse problem 

whereby raw HM variable measurements made at channel cross-sections would be converted into 

ordinal data (i.e. the expectations in Table 3.2 or Table 3.9) and then related back to the MU type 

that most closely aligns with the set of ordinal expectations. More generally, the study’s top-down 

classification followed by bottom-up analysis experimental design provides an objective basis for 

evaluating channel morphology and developing unbiased MU predictive models (Helm et al., 
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2020). 

A key methodological advance in this study, even if it only yielded one predictor variable, 

was adaptation of Eq. 5 (e.g. Dingman, 2007) and use of ϴ3 in lieu of AHG exponents as a HM 

variable. Although ϴ3 had only moderate discriminatory capability compared to AHG exponents, 

the ability of ϴ3 to holistically describe channel cross-section shape without having to compute 

AHG metrics has geomorphic relevance that warrants further study. Similarly, equations, such as 

Eq. 5, that can produce a variety of cross-section shapes could prove useful in creating artificial 

river topographies (Brown & Pasternack, 2019) and in procedural river design (Pasternack & 

Zhang, 2021). 

Lastly, the low predictive capacity of using models trained on cross-sections with a single 

dominant MU to predict subdominant MUs illustrates a potential shortcoming of applying an MU 

dominance approach in settings with a large relative abundance of high MU lateral diversity. A 

portion of this low predictive capability can be explained by the lateral distribution analysis 

(section 3.5.1), which found MU types were often adjacent to MUs having common HM attributes 

that were difficult to differentiate from each other (Table 3.8). For instance, slackwater, glide, 

alluvial pool, and forced pool units were often found in lateral succession, as were alluvial step, 

steep plane bed and glide units. The study’s RF models can be modified to output the probability 

that each MU is predicted for each cross-section. These probabilities could potentially elucidate 

where predictions were confounded by similarity between MU types. A model trained on the 

subdominant cross-section dataset would also likely have performed better. However, both efforts 

are beyond the scope of this study.  
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Table 3.10. Classification accuracies of this study and other studies of bottom-up MU 
classification. 

Study Method Variables MU types Accuracy Site details 
This study Random forest 18 hydro-

morphological 
variables 

9: deep forced pool, 
forced pool, alluvial 
pool, slackwater, 
glide, run, chute, 
steep plane bed, 
alluvial step 

80.5-
81.6% 

Steep 
boulder-
bedded 
mountain 
river 

Helm et al. 
(2020) 

PCA-
clustering 

5: hydraulic radius, 
median grain size 
(D50), local bed and 
water surface slope, 
and reach bed slope 

5: riffle, slackwater, 
glide, run, and pool 

85%† Forested, 
gravel-bed 
stream 

Marcus et 
al. (2003) 

Maximum 
likelihood 
principal 
component 

128-band 
hyperspectral 
imagery 

4: glides, riffles, 
pools, and eddy drop 
zones 

67.7-
85.5%† 

Three 
cobble-
gravel bed 
streams 

Peterson and 
Rabeni 
(2001) 

Discriminant 
analysis 

6: area, mean 
depth, velocity, and 
aerial coverage of 
aquatic vegetation, 
woody debris, and 
bedrock 

11 ‘channel units’ 75% and 
80%‡ 

Headwater 
and 
downstream 
reaches of 
cobble-
coarse sand 
bed Ozark 
stream 

Jowett 
(1993) 

Linear 
discriminant 
analysis 

2: water surface 
slope and either 
velocity/depth ratio 
or Froude number 

3: pool, run, and 
riffle 

65-66%† Braided 
gravel-bed 
river 

Grant et al. 
(1990) 

Linear 
discriminant 
analysis 

slope riffles 73%† Two steep 
coarse-
bedded 
mountain 
rivers 

†Accuracy on training data 
‡Average five-fold cross validation classification accuracy 

 Bespoke morphological units 

Common definitions of MU types across the scientific community are helpful, but can be 

detrimental in their potential for inducing misclassification and a lack of recognition of fluvial 

diversity and variability in unique settings. Effort was taken to relate study MU types to the most 

representative MU type of those common in the scientific literature while still honoring local 



 

211 

landform diversity (Brierly et al., 2013). We believe study results corroborate these comparisons, 

but several differences require reconciliation. Our alluvial step units, which were more akin to a 

hybrid step-riffle (Table A.3.2), had HM variable values often outside ranges from the step-pool 

literature (Table A.3.9). Differences from traditional definitions make direct comparison difficult, 

nonetheless, many alluvial step units were identified as steps using the step-pool classification 

algorithm of Zimmermann et al. (2008) (APPENDIX 3) and HM variables at alluvial step cross-

sections both followed expectations and were phenomologically consistent with models of step 

formation (Golly et al., 2019; Saletti & Hassan, 2021). This suggests either a broader 

reconceptualization of steps and where they can occur is warranted, or simply reinforces an 

important morphological difference between the alluvial step units in the study segment and more 

traditional step morphology. 

Riffles are one of the mostly commonly defined channel features in alluvial and mixed 

bedrock-alluvial channels with bed slopes ranging between ~0.1-2% (Thompson, 2018). Steep 

plane bed was used as a riffle analog to provide comparison to this common feature, however, 

results question this relation (sections 3.6.1). Firstly, field observations found steep plane bed units 

lacked a defined crest and were comprised of semi-random configurations of very coarse 

substrates. HM variable results also question the idea that steep plane bed were depositional at 

high flows via the flow convergence routing mechanism, which is a common conceptualization 

for riffles. Certainly other processes have been associated with riffle formation and maintenance 

(e.g. Pasternack et al., 2018a; Thompson, 2018; Hassan et al., 2021), and HM variable 

interpretations support that jamming, instabilities related to channel geometry and LBE 

concentrations, and differential resistance due to high LBE concentrations play a role at steep plane 

bed dominated cross-sections. 



 

212 

These disconnects and the bespoke nature of study segment MU types may limit 

transferability of study findings to systems with similar segment or reach scale characteristics and 

anthropogenic influences. However, the study segment is not unique, and these conditions are 

often present in the northern Sierra Nevada range and globally (e.g. Guillon et al., 2020). Several 

of the processes presumed active in the study segment have been identified for their role in 

controlling channel morphology in lower gradient alluvial rivers (Table 3.1). Thus, despite 

differences in the study segment and the delineated MU types, study findings should still have 

applicability to a range of coarse-grained alluvial and mixed bedrock-alluvial rivers. 

3.7 Conclusions 

Organized in response to processes of water flow and sediment transport, river channel 

morphology at the MU scale exhibits complex patterns and morphodynamic feedbacks that drive 

local patterns of topographic variability (Pasternack & Zhang, 2021). Using a large dataset of nine 

baseflow channel MU types and a diverse set of 18 HM variables having either predictive 

capability or representing an array of possible hydraulic and geomorphic controls, this study 

describes physical conditions at cross-sections dominated by a single MU type in far more detail 

than has previously been completed. The study’s rigorous, objective, and data-driven analyses 

addressed five key questions on MU diversity, HM variable control on where MU types tended to 

occur, and if locations dominated by single MU types were consistent with expectations based on 

previous observations and MU process-morphology linkages with HM variables. Although some 

MU types had similar HM variable attributes, multi-variate statistical analyses confirmed MU 

types were different. This not only aids in validating the top-down, supervised classification 

approach of Wyrick et al. (2014) used to classify and map MU types in the study segment, but 

aligns with geomorphic theory that MUs represent distinct local form–process associations 
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(Brierley & Fryirs, 2005; Belletti et al., 2017). Building on this, a key discovery was that MUs had 

diverse ranges of HM variable values often outside ranges reported by MU studies in other high-

gradient, coarse-bedded rivers. Additional statistical and predictive analyses determined several of 

the 15 selected HM variables, WSSBs, WBs, W/hBf, and WBs/Wv, as well as all three AHG exponents 

(b, f, and m) were effective in discriminating and predicting MU locations. Although less 

instrumental, less common or novel variables like ϴ3, ΔWBs, ΔWF, ΔτF provided new insight into 

conditions supporting different MU types and methodological advances in how to describe channel 

morphology. 

Though not all hypothesized HM variable expectations were met for each MU type, the 

majority (9 of 15) of expectations being met confirmed the studies hypothesis that MUs would be 

located in portions of the river valley with typical assemblages of HM attributes. Focus on 

describing MU-HM variable process-morphology linkages allowed analysis and identification of 

several morphogenetic processes likely active in the study segment, even if expectations for 

several HM variables were not met and decoupling the influence of different processes on specific 

MU locations remained a challenge. Viewed inversely, HM variables could prove useful in 

geomorphic assessment as first-order criteria for testing river restoration designs for the presence 

of processes known to create and/or maintain common fluvial landforms (Brown et al., 2016). For 

the geomorphic and river management communities, the study’s top-down classification to 

bottom-up analysis approach provides a useful framework for verifying geomorphic classification, 

understanding factors relevant to supporting diverse set of MU types, and testing process-

morphology linkages. 

Finally, Random Forest models developed with all 15 selected HM variables and a reduced 

predictor model with only 10 variables achieved classification accuracies of 81.0% and 80.0%, 
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which are comparable to past studies but for a broader diversity of MU types. This accuracy was 

surpassed by an even simpler model with only AHG exponents as predictors (81.6%). Notably, 

each of these models did not perform well when attempting to predict subdominant MUs at cross-

sections with more complex lateral MU configurations. While universality and transferability of 

these models requires further testing, they can serve as an immediate reference for studies wishing 

to better understand MU patterns in high-gradient, coarse-bedded rivers. 
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APPENDIX 1. Supporting Information for Scale dependent spatial structuring of 

mountain river large bed elements maximizes flow resistance 

This appendix provide supplemental materials that include information on the following 

topics: 

 Details on topographic and bathymetric data collection, processing, and mapping 

(A.1.3.1); 

 Details of large bed element (LBE) mapping procedure including performance metrics, 

extraction algorithms, post-extraction filtering, and geometric assessment (A.1.3.3); 

 Details of two-dimensional hydrodynamic modeling including model selection, 

parametrization and calibration, model validation, and model sensitivity to roughness 

parameterization (A.1.3.4); 

 Details of LBE spatial analysis including cross-section polygon creation and path-based 

approach for streamwise spacing calculations (A.1.3.5) 

 Additional LBE mapping results (A.1.4.1); 

 Additional LBE spacing analysis results (A.1.4.3); 

 Additional hydrodynamic regime comparison analysis results and discussion (4.4 and 

A.1.5.4); and 

 References 

The organization of this appendix uses the same outline and headings of the chapter to 

which this supplements. Subject headings followed by the word “none” indicate no supplemental 

information is provided for that section.
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 Introduction 

Table A1.1. Summary of LBE influences on river channels and landscapes. 

Topic Summary Selected references 
Hydraulics and 
hydrodynamics  

LBEs are a primary source of flow resistance in mountain rivers. Locally, LBEs 
generate complex wake and vortex structures that cause deviations from idealized 
logarithmic vertical velocity profiles. Collectively, LBEs act to influence flow 
patterns and the spatial distribution of hydraulic properties (depth, velocity, bed shear 
stress) that govern other fluvial processes such as sediment transport. 

Baiamonte & Ferro, 1997; Bathurst, 1978, 1985, 
1987; Byrd et al., 2000; Canovaro et al., 2007; 
Fang et al., 2017; Ferguson et al., 2017; Ferro, 
1999; Gippel et al., 1996; Gomez, 1993; Groom 
& Friedich, 2019; Hardy et al., 2009; Lacey & 
Roy, 2008; Lamarre & Roy, 2005; Monsalve et 
al., 2017; Morris, 1959; Pagliara et al., 2008; 
Schneider et al., 2015a, 2015b 

Sediment 
transport and 
retention 
dynamics 

LBEs influence localized patterns of erosion and deposition. This in-turn effects the 
granular structure of the bed and the formation, stability, and sedimentological 
characteristics of sediment patches. The presence of LBEs can enhance bed stability 
through interlocking, imbrication, and hiding effects that therein influence the 
entrainment and transport of adjacent grains and patches. By extracting energy from 
the flow in the form of resistance and stabilizing the bed LBEs regulate the storage 
and export of sediments. So called LBE 'sticky spots' can even provide potential for 
long term storage (1000's of years) which contrasts with traditional views of 
mountain rivers as conveyor belts for sediment transport. Collectively, LBE 
interactions aggregate to exert primary control of sediment storage within and fluxes 
of sediment out of mountain rivers systems. 

Billi, 1988; Faustini & Jones, 2003; Ghilardi et 
al., 2014; Kirchner et al., 1990; Lancaster et al., 
2001; Laronne et al., 2001; Nitsche et al., 2011; 
Paola et al., 1992; Paola & Seal, 1995; 
Papanicolaou & Tsakiris, 2017; Reid & Hassan, 
1992; Sear, 1992, 1995, 1996; Shamloo et al., 
2001; Sutfin & Wohl, 2019; Thompson, 2001, 
2008; Thompson et al., 2016; Yager et al., 2007, 
2012 

Channel stability 
and organization 
of fluvial 
landforms 

LBEs comprise a key constituent of coarse-bedforms including stone clusters, 
transverse ribs, stone cells, and alluvial steps. These bedforms all tend to increase 
channel resistance which is hypothesized to directly correlate with conditions of 
maximum bed stability. LBEs specifically promote stability through interlocking and 
imbrication with surrounding substrates. Evidence suggests LBEs in natural rivers 
may organize in order to maximize flow resistance and promote channel stability. 

Brayshaw, 1985; Buffington et al., 2002; Church 
et al., 1998; Church & Zimmermann, 2007; 
Grant et al., 1990; Hassan & Reid, 1990; Madej, 
2001; Nowell & Church, 1979; Zimmermann & 
Church, 2001 

Landscape 
evolution 

LBEs are a product of landscape evolutions processes but also have direct autogenic 
feedbacks on channel and hillslope evolution due to their ability to mediate fluvial 
incision and shape channel morphology. 

Attal et al., 2015; Benda & Dunne, 1997; Glade 
et al., 2019; Johnson et al., 2009; Shobe et al., 
2016; Sklar & Dietrich, 2004; Turowski et al., 
2007, 2008 

Morphodynamic 
processes 

Through their ability to steer the flow, influence hydraulics and sediment transport 
processes, regulate landscape evolution, and self-organize LBEs have first order 
control on the morphodynamic evolution of rivers channels. 

MacKenzie & Eaton, 2017; Piedra et al. 2012; 
Tan & Curran, 2012; Williams et al., 2019; 
Wittenberg & Newson, 2005 
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Table A1.2. Existing definitions of LBEs. 

Reference LBE definition 
Grant et al., 1990 Clasts with diameters on the same order as the depth 

of the bankfull channel; wood not included. 
Grant et al., 1990 Clasts equaling or exceeding the 90th percentile of 

the bed material; wood not included. 
Hassan et al., 2019 Clasts equaling or exceeding the 95th percentile of 

the bed material; wood not included. 
Ferguson et al., 2017; Thompson, 2008 Clasts with b-axis equal to or greater than 0.256 m; 

wood not included. 
Finnegan et al., 2019 Clasts with planform diameter equal to or greater 

than 0.3 m; wood not included. 
Benda, 1990; Nitsche et al., 2011; 
Schneider et al., 2015a 

Clasts with b-axis equal to or greater than 0.5 m; 
wood not included. 

Shobe et al., 2016 Clasts with b-axis equal to or greater than 1 m; wood 
not included. 

Grant & Swanson, 1995 Clasts that protrude from an otherwise relatively 
level surface by at least 1.5 m; wood not included. 

Lisle, 1986; Thompson, 2001 Boulders or protrusions with the longest dimension 
larger than one-third bankfull width; wood included. 

Weichert, 2006; (see also Bathurst, 
1985; Shamloo et al., 2001) 

Review of roughness length scale definitions where 
‘large-scale’ features are generally defined as having 
relative submergencea values < 3; wood not 
included. 

Fang et al., 2017; Monsalve et al., 
2017; Papanicolaou & Tsakiris, 2017 

Relative submergence threshold value of 3.5 used to 
define a ‘low relative submergence regime’ for 
replicating flows around LBE-like objects in flumes; 
wood not included. 

aRelative submergence defined as ratio of flow depth to LBE diameter. 

 Study River Segment 

None. 

 Methods 

A.1.3.1 Topo-bathymetric mapping 

This was the first time a detailed topographic map has been produced of the Yuba River 

between New Bullards Bar Dam and Colgate Powerhouse (study site). Position of the aircraft 

performing ALS collection was measured twice per second (2 Hz) by an onboard differential GPS 
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unit, and aircraft attitude was measured 200 times per second (200 Hz) as pitch, roll and yaw 

(heading) from an onboard inertial measurement unit (IMU). To allow for post-processing 

correction and calibration, aircraft and sensor position and attitude data are indexed by GPS time. 

The average overall ground classified density including bathymetric bottom was 3.96 points/m2, 

while the bathymetric bottom return density alone was 2.30 points/m2. Average discharge over this 

time period was estimated to be 1.19 m3/s at the downstream study site boundary, which is 

hereafter referred to as the ‘lidar baseline’ flow condition. 

Review of the initial bare-earth and sub-aqueous bathymetry lidar files (ground points) 

from Quantum Spatial indicated a significant number of true ground points associated with 

boulders, exposed bedrock, and other high variability terrain features had been erroneously 

rejected (i.e., Type I errors). Using a publically available ground classification algorithm 

(Isenburg, 2016) a procedure was developed to reclassify and reincorporate these Type I errors 

back into the ground point dataset (Wiener & Pasternack, 2016). The objective of this process was 

balancing proper classification of previous Type I errors without introducing new Type II errors 

(e.g. incorrectly classified ground points). Following processing, the revised lidar dataset was 

subjected to significant vetting through visualization methods and hand editing to remove lingering 

classification errors. The reclassification procedure increased average point density of the final 

ground point dataset from 9.0 to 13.9 pts/m2 (Wiener & Pasternack, 2016). 

In addition to (mis)classification issues, NIR and Green lidar have inherent coverage and 

water-depth penetration limitations. Despite overall excellent lidar penetration and coverage, the 

survey did not yield ground returns for ~ 40,873 m2 of in-water areas representing ~ 22% of the 

open water area present at the time of the survey. Supplemental bathymetric observations at three 

locations within the study site were made between July 8 and 9, 2015 by kayak using a single-
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beam echosounder coupled to a real-time kinematic global positioning system (RTK GPS) 

covering an area of ~13,530 m2 (~ 33% of area missing data). 

Limited access and rugged terrain within the river canyon largely prevented kayak and foot 

access to much of the remaining areas lacking bathymetric data. To fill these data gaps an approach 

developed by Legleiter et al. (2004) linking known water depths to an image-derived quantity ‘X’, 

defined as the natural logarithm of two multi-spectral imagery wavelengths, was used to predict 

water depths and derive additional bathymetric data (depth-derived data; Wiener & Pasternack, 

2016). Source imagery for depth-to-X statistical models was obtained from the National 

Agricultural Inventory Program (NAIP). The source imagery, dated from 2014, was close to the 

date of lidar acquisition, and the 1-m resolution imagery included three spectral bands; green (460 

nm, width 60 nm); red (635 nm, width 50 nm), and blue (560nm, width 50nm). Rasters of lidar 

intensity returns were used to georeference NAIP imagery with other topographic/bathymetric data 

to ensure proper alignment of depth-derived data. 

Depth data for training depth-to-X statistical models was derived from water surface 

elevations (WSE) obtained during the lidar acquisition and final lidar ground points such that 

depths were approximated as: WSE minus ground surface elevation. Edge effects were minimized 

by only selecting points at least 2 meters from the georeferenced imagery’s waters’ edge. The 

training dataset consisted of 137,022 estimated depth points. For each depth point, underlying 

imagery band wavelength values were sampled and statistical relationships (linear and/or 

polynomial regression models) were created relating depth to all possible band ratio combinations 

(i.e., X values). Statistical models were evaluated based on goodness of fit criteria such as R2 

values. Models were also tested in a predictive mode against an independent depth dataset (i.e. the 

single-beam soundings) using three performance metrics: (i) lowest root mean square error 



 

A-6 

(RMSE); (ii) linear regression slope between predicted depths and observed sounding depths 

closest to unity; and (iii) R2 between predicted depths and observed sounding depths closest to 

unity. 

The depth-to-X method has typically been applied to lowland, shallow, relatively clear 

flowing, gravel-bottom rivers with higher resolution imagery (Legleiter et al., 2004). Locations 

within the study site where the method was implemented were characterized by complex and 

heterogeneous terrain and substrates, varying water turbidity, and generally high depths. Due to 

differences in statistical model performance, the final mapping approach included a suite of depth-

to-X predictive models spatially distributed along the river. Use of one model over another was 

based on an analysis of localized fit using the same metrics above (Wiener & Pasternack, 2016). 

A total of 168,965 depth-derived ground points covering an area of ~ 15,783 m2 were predicted 

and included in the final topographic map (~ 39% of area missing data). To fill remaining locations 

lacking topographic data all available data sources were used to strategically place “augmented 

points”. Ground elevations at these locations were assigned manually based on best professional 

judgement and neighboring points. A total of 2,182 augmented ground points, many analogous to 

‘breaklines’, were manually input and included in the final topographic map. Merging all data 

sources resulted in a total of 69,784,144 topographic points. Of these 21,279,867 points at an 

average spacing of 0.25 m and average density of ~ 16 pts/m2 were located within the river 

corridor. 

Lidar accuracy was assessed independently based on estimates of absolute accuracy, the 

error of the lidar derived ground surface compared to a more accurate survey method. Absolute 

accuracy was computed by comparison of the lidar ground surface to 23 ground check points and 

24 bathymetric check points from an RTK-GPS survey. The Fundamental Vertical Accuracy 
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(FVA), a measure of error reported at the 95% confidence level (i.e. 1.96*RMSE), for ground 

points and bathymetric points were 0.037 m and 0.117 m, respectively. A full account of the 

mapping efforts, accuracy of mapping data, and post-processing of data is detailed in Wiener and 

Pasternack (2016). 

A WSE point dataset was also provided by Quantum Spatial. Review of the WSE data 

indicated the presence of numerous erroneous points. Spuriously high and low water surface points 

were manually removed resulting in a final dataset of 147,644 points representing the lidar baseline 

flow condition water surface (Wiener & Pasternack, 2016). Triangular irregular network (TIN) 

based interpolation methods were used to generate a continuous surface from the verified WSE 

points where sufficient data was present. 

A.1.3.2 Observed LBE dataset 

None. 

A.1.3.3 LBE mapping 

A.1.3.3.1 Roughness surface model generation and testing question 1 

This section presents additional details on the procedure for mapping LBEs from 3D 

topographic point clouds. In the procedure’s first step, the “lasground_new.exe” ground 

classification algorithm of Isenburg (2016) was used to create a series of smoothed digital terrain 

models (DTMs) needed for creating roughness surface models (RSMs). As discussed in the main 

text the algorithm applies an adaptive TIN approach to iteratively classify ground points from an 

unclassified point cloud and requires input of a point cloud and six user-defined parameters. The 

approach for setting the algorithm’s parameters is described below, focusing on the spike, offset, 

down-spike, and step parameters as these were found to disproportionally influence the algorithm’s 
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performance. 

To constrain the range of ground classification algorithm parameter values an initial 

‘larger’ parameter space was informed by several physically based metrics. For example, 

roughness length scales such as a representative grain size or a minimum LBE height were 

considered when setting the range for spike, offset, and down-spike parameter values. These 

parameters control if points are classified as ground or removed from the algorithm’s iteratively 

generated ground surfaces. Summarily, the specified length scale(s) define thresholds for ground 

point classification based on how much points extend below or protrude above an otherwise 

smooth but variable bed surface. Previously reported estimates of the study site’s D50 and D16 

values (D is particle diameter and the subscript is the percent of particles finer) of 0.128-0.256 m 

and 0.032-0.64 m, respectively, and two representative LBE sizes, 0.256 m and 0.5 m, were used 

to define the range of parameters (Table A1.3). The latter two values correspond to the diameter 

of boulders in the Udden-Wentworth scale (Wentworth, 1922) and a common length used to define 

LBEs (Table A1.2), respectively. 

The algorithm’s ‘step’ parameter, which controls the size of the search window used to add 

points to the ground surface was also informed by physical considerations. Larger window sizes 

function to remove increasingly larger terrain features such that cohesive terrain features bigger 

than the window-size are often preserved in the final ground classification. However, larger 

window sizes can also modify the underlying terrain through non-ground classification, especially 

where steep slopes or rapidly undulating terrain features are present (Zhang & Whitman, 2005). 

For RSM generation and LBE mapping purposes, where the goal is creating a smoothed ground 

surface that retains the dominant topographic features of the original ground surface, a reasonable 

recommendation is for window sizes to be larger than the typical planform diameter of LBEs 
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expected to be present or that are desired to be mapped but smaller than the expected/desired 

maximum LBE diameter or scale of dominate terrain features. For this study, step sizes ranged 

between 1.5 – 4.6 m (~3-9 DEM raster cell lengths). 

Altogether, 14 unique parameter combinations were established and used to generate 

smoothed point clouds and associated DTMs (Table A1.3). The 14 smoothed DTMs were assessed 

qualitatively with LAStools 3D visualization software based on two visual criteria: i) removal of 

clearly discernable LBEs; and ii) retaining the dominant topographic character of the original 

ground surface (i.e., location of slope breaks, small-scale terrain undulations, meso-scale terrain 

features). As discussed in the main text, six DTMs were selected to create a series of unique RSMs 

and a binary threshold approach was used to map discrete sets of preliminary LBEs from each 

RSM. After assigning a random selection of 70% of the LBEo data to a ‘training’ dataset the 

average RSM value of all raster cells located along the exterior boundary of each LBEo polygon 

in the training set were calculated for each RSM, independently. The average of these values 

served as the vertical threshold for each RSM (Figure A.1.1). While thresholds were unique for 

each RSM, they were obtained through a numerically consistent approach to avoid introduction of 

bias. 

To identify the preferred ground classification algorithm parameter combination and 

associated RSM, preliminary LBEs mapped from each smoothed DTM were quantitatively 

compared to the remaining 30% of the LBEo data using the study’s four performance metrics. Prior 

to conducting this analysis LBEo training and test data subsets were compared for similarity to 

provide confidence that training LBE data characteristics did not differ significantly from LBE test 

data, and thus not bias the mapping process. Metrics selected for this comparison were LBE 

planform area and max RSM raster value (Dc) of each LBE in the respective datasets. Comparison 
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was performed using Welch’s t-test and the Kolmogorov-Smirnov test. Testing concluded an 

inability to reject the null hypotheses that distributions of these metrics had equivalent means and 

came from the same family of distribution at the 95% confidence level (p>>0.05). 

Quantitative assessment of predicted LBEs used four performance metrics. Details of each 

metric are described in the following paragraphs. 

The first metric, Producers accuracy (PA), is the ratio of the number of predicted LBEs 

(Np) spatially intersecting observed LBEs (No) to the number of observed LBEs: 

 𝑃𝐴  
∩

 (Eq. A.1.1) 

PA is widely applied across disciplines (Barsi et al., 2018; Labatut & Cherifi, 2011; Shao et al., 

2019) and in this context simply measures the hit-rate of predicted LBEs relative to observed 

LBEs. Since PA does not penalize for over-mapping the metric is entirely focused on accuracy 

without consideration of precision or commission errors. 

The next metric, Producers overlap (PO), is the ratio of the area of predicted LBEs (Ap) 

spatially overlapping the area of observed LBEs (Ao) to the area of observed LBEs from the set of 

observed LBEs that spatially intersect predicted LBEs: 

 𝑃𝑂  
∩

∈ ∩
 (Eq. A.1.2) 

This metric is simply the relative percent of total observed LBE area that is correctly predicted for 

the subset of observed LBEs that overlap with a predicted LBE. By constraining the denominator 

to only intersecting observed and predicted LBEs this metric focuses on the accuracy of how well 

those LBEs were predicted. Albeit similar to other metrics this formulation is believed to be 

unique. 

Both PA and PO metrics range from 0-1 with higher values indicating better precision and 
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accuracy, respectively. One caveat is that both metrics benefit from more area being predicted as 

LBE and lack a penalty for commission errors. For example a rectangle covering the entire domain 

of observed LBEs would result in the max value of unity for both metrics. PO also does not 

penalize for omission errors and thus should be used in consideration with other metrics that do, 

such as PA. 

Two other metrics, modified Jaccard similarity index (MJI) and missed-to-excess ratio 

(MER), penalize commission errors while being less sensitive to omission errors. The Jaccard 

similarity index is a common metric for comparing polygons that penalizes both omission and 

commission (Labatut & Cherifi, 2011). However, since the full set of observed LBEs was unknown 

the metric has been modified and is calculated as the ratio of the area of intersect between predicted 

LBEs and observed LBEs to the area of union between predicted LBEs and observed LBEs from 

the set of observed LBEs that spatially intersect predicted LBEs and the set of predicted LBEs that 

spatially intersect observed LBEs: 

 𝑀𝐽𝐼  
∩

∪
∈ 𝑁 ∩ 𝑁  & 𝑁 ∩ 𝑁   (Eq. A.1.3) 

The metric assumes that excess LBEs predicted in the vicinity of an observed LBE should be 

penalized. The MJI metric ranges from 0-1 with a value of unity indicating perfect mapping for 

the set of LBEs considered. 

Lastly, MER is defined as the ratio of the area of observed LBEs less the area of intersection 

between observed and predicted LBEs (e.g., area of missed observed LBE mapping) to the area of 

predicted LBEs less the area of intersection between predicted and observed LBEs (e.g., area of 

excess predicted LBE mapping): 

 𝑀𝐸𝑅  
  ∩

  ∩
 Eq. A.1.4  

Here it is assumed that a greater extent of predicted LBE mapping should yield a high probability 
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of overlap with observed LBEs and penalizes the amount of observed LBE area that is missed 

scaled by excess predicted LBE mapping. The MER metric ranges from 0 - ∞. Larger MER values 

are presumed better for several reasons. First, it is more ideal for only small areas of observed 

LBEs to be missed resulting is less variation in the numerator between predictions. Second, 

preliminary analysis suggests excess LBE prediction tends to be much greater than missed area 

(denominator >> numerator) across predictions and excess area is more variable between 

predictions. Thus higher MER values are associated with less missed mapping per unit excess 

mapping and functionally MER values do not exceed unity under the above described 

circumstances. Though similar to miss rate we are not aware of other studies using the MER metric. 

Table A1.3. Parameters and qualitative assessment of 14 smoothed DTMs. Selected DTMs marked 
with *. 

ID 
Step 
(m) 

Bulge 
(m) 

Spike 
(m) 

Down 
spike 
(m) 

Offset 
(m) 

Intensity 

Qualitative finding 
(LBE removal; 

Terrain 
modification)ab 

P-LBE-1* 3.05 0.03 0.15 0.30 0.15 extra Excellent; Moderate 
P-LBE-2 1.52 0.03 0.15 0.30 0.15 extra Moderate; Moderate 
P-LBE-3* 4.57 0.03 0.15 0.30 0.15 extra Excellent; Moderate 
P-LBE-4 3.05 0.03 0.15 0.0 0.15 extra Poor; Moderate 
P-LBE-5 3.05 0.30 0.15 0.30 0.15 extra Moderate; Moderate 
P-LBE-6 3.05 0.03 0.15 0.30 0.15 hyper Moderate; Moderate 
P-LBE-7 3.05 0.03 0.50 0.25 0.50 extra Poor; Excellent 
P-LBE-8 3.05 0.03 0.25 0.25 0.25 extra Poor; Excellent 
P-LBE-9 3.05 0.03 0.13 0.50 0.13 extra Moderate; Moderate 

P-LBE-10* 3.05 0.03 0.13 0.25 0.13 extra Excellent; Moderate 
P-LBE-11* 3.05 0.03 0.03 0.13 0.03 extra Excellent; Moderate 
P-LBE-12* 3.05 0.03 0.06 0.13 0.06 extra Excellent; Moderate 
P-LBE-13* 4.57 0.03 0.06 0.13 0.06 extra Excellent; Poor 
P-LBE-14 4.57 0.03 0.13 0.25 0.13 extra Excellent; Poor 

aLBE removal performance increases from: poor to moderate to excellent. 
bTerrain modification performance increases from: poor to moderate to excellent. 
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Figure A.1.1. Conceptual depiction of how vertical threshold were calculated from LBEo training 
data. The training data was constant but RSM heights would vary between smoothed DTMs. 

A.1.3.3.2 LBE extraction and accuracy testing for question 1 

Approaches for LBE extraction tested in this study were informed by methods for mapping 

tree-crowns from remotely-sensed imagery and/or topographic data. Tree-crown mapping methods 

can be broadly classified into those that apply mathematical morphology (Andersen et al., 2001; 

Koukoulas & Blackburn, 2005), object-based image analysis (Jakubowski et al., 2013; Sullivan et 

al., 2009), edge-detection, local-maxima filtering and detection (Argamosa et al., 2016; Popescu 

& Wynne, 2004), clustering (Culvenor, 2002; Morsdorf et al., 2004), valley-following (Leckie et 

al., 2003), region-growing (Barnes et al., 2017; Dalponte et al., 2019), watershed segmentation 

(Chen et al., 2006; Koch et al., 2006; Kwak et al., 2007), and graph based (Strîmbu & Strîmbu, 

2015) approaches. Nearly all approaches use a canopy height model (CHM) as a starting point. 

Smoothing CHMs with low-pass mean or Gaussian filters prior to crown mapping is also typical 

(Kwak et al., 2007; Chen et al., 2006). Crown mapping approaches differ in their computational 

expense, number of parameters, and public availability. Given the goal of mapping LBEs at the 
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river segment scale, computational efficiency was a necessary consideration when testing 

approaches. Reproducibility using open-source software was also favored. Details on the five LBE 

extraction approaches used in this study are provided in the following paragraphs. 

The simplest and most computationally efficient strategies, (i) RSM with vertical threshold 

and (ii) Gaussian filtered RSM with vertical threshold, involved applying a vertical threshold to 

the RSM or filtered RSM. Areas above the threshold were considered LBE and those below were 

masked out as non LBE. This is similar to Otsu’s (1979) binary threshold approach, the only 

difference being how thresholds were specified. Conceptually, vertical thresholds could be data-

driven based on LBE training data, optimized through comparison with LBE testing data using the 

study’s performance metrics, based on representative length scales, be statistical (sensu Otsu, 

1979), or set qualitatively. For approach (i) 12 thresholds were tested (Table A1.4). Eleven values 

between 0.1524-0.4572 m set in increments of 0.03048 m were tested as these covered a wide 

range of reasonable LBE length scales. The final threshold value of 0.283 m was derived from 

averaging the set of averaged RSM values for cells along the boundary of each observed LBE 

polygon (Figure A.1.1). 

For approach (ii) three parameters were needed: two for the Gaussian filter (standard 

deviation of kernel [σ] and window-size) and the vertical threshold. A total of six parameter 

combinations were tested using three different sigma values (0.152, 0.305, and 1.524 m), two 

different window sizes (3 cells and 5 cells), and vertical thresholds calculated as the average of all 

averaged Gaussian filtered RSM values for cells along the boundary of each observed LBE 

polygon (Table A1.4). When applying a Gaussian filter to CHMs, Dralle and Rudemo (1996) 

found tree-crown mapping to be insensitive to the sigma parameter but that window-size did 

influence performance due to the effect on the smoothed CHMs. For tree-crown mapping they 
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recommended window sizes should be less than the crown size of the smallest tree of interest. 

Gaussian filtering was done in R code using the ‘spatialEco’ package (Evans, 2019). Raster 

masking using the vertical thresholds for approach (i) and (ii) were done with the ArcGIS spatial 

analyst extension tool suite and converted to polygons using the raster to polygon tool. 

Marker-controlled watershed segmentation (MCWS) approaches: (iii) RSM with MCWS 

and constant window-size; (iv) RSM with MCWS and variable window-size; and (v) Gaussian 

filtered RSM with MCWS and constant window-size, were slightly more complex and 

computationally intensive. All MCWS approaches involved two steps: first, markers or “LBE 

tops” were detected from the RSM; and second, markers were used to delineate distinct LBEs from 

the RSM. The number of parameters for each approach varied and are listed in Table A1.4. 

Markers were retrieved from the RSM using a variable-window local-maxima filter 

algorithm (sensu Popescu & Wynne, 2004) implemented in R code using the ‘ForestTools’ 

package (Plowright & Roussel, 2020). The algorithm requires input of an RSM, a parameter 

controlling the minimum RSM value for a pixel to be considered a marker, and a search window 

size. The window-size in the algorithm can be set as a constant or vary as a function of RSM pixel 

value. Both constant and variable window sizes were tested. Functions to define window-size can 

be based on observed data and/or assumptions of idealized relationships between feature height 

and area (Popescu & Wynne, 2004; Chen et al., 2006). Comparing the relationship between Dc and 

planform area for the observed LBE data with several functions for ideal spheroid objects found 

over 98% of LBEs to geometrically reside in-between models for an oblate (wide) spheroid and a 

prolate (tall) spheroid, in the domain of spherical objects (section A.1.3.3.2.2). Therefore, a 

spherical model where window-size was set equal to the pixel RSM value divided by two was used 

to define the variable window-size (e.g., window size was set equal to the planform radius of each 
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potential LBE based on RSM value). In order to control for very small window sizes that would 

add to computational time and also be inefficient at mapping LBEs (Chen et al., 2006), a constraint 

was placed requiring a minimum window-size. Two minimum sizes were tested, 3 and 5 m, 

respectively which equated to windows with radii of ~3 and ~5 raster cells. 

In order to constrain the parameter spaces of approaches (iii-v) only data-driven 

parameterization methods were used when specifying other input parameters. Values for the 

minimum RSM value for a pixel to be considered a marker were based on five calculations from 

the observed LBE data using different approximations for the minimum height observed features 

protruded above the smoothed DTM raster: 

 (1) the median of the set of averaged RSM values for cells within each observed 

LBE polygon; 

 (2) the average of the set of averaged RSM values for cells within each observed 

LBE polygon; 

 (3) the average of the set of maximum RSM values for cells within each observed 

LBE polygon; 

 (4) the median of the set of averaged RSM values for points generated every 0.31 

m along a border line located one raster cell inward of each observed LBE 

polygon's border; and 

 (5) the average of the set of averaged RSM values for raster cells along each 

observed LBE polygon's border. 

Following marker identification, LBE polygons were created using a watershed 

segmentation function (sensu Beucher & Meyer, 1993) implemented in R code using the 

‘ForestTools’ package (Plowright & Roussel, 2020). The segmentation algorithm requires input 

of markers, a RSM raster, and a parameter that controls the minimum RSM value for a pixel to be 

included in the segmentation. Values for the minimum RSM parameter were based on six 
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calculations using the observed LBE data to approximate the minimum value that the edge of 

observed features protruded above the smoothed DTM raster: 

 (1) the median of the set of median values of RSM values for points generated 

every 0.31 m along each observed LBE polygon's border; 

 (2) the median of the set of averaged RSM values for points generated every 0.31 

m along each observed LBE polygon's border; 

 (3) the average of the set of averaged RSM values for points generated every 0.31 

m along each observed LBE polygon's border; 

 (4) the median of all RSM values for points generated every 0.31 m along each 

observed LBE polygon's border; 

 (5) the average of the set of minimum RSM values for cells along each observed 

LBE polygon's border; and 

 (6) the average of the set of minimum RSM values for cells within each observed 

LBE polygon. 

Ultimately, 10 parameter combinations were tested for approach (iii), two combinations for 

approach (iv), and 14 combinations for approach (v) (Table A1.4).
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Table A1.4. Parameters for 44 predicted LBE datasets. 

ID Parameters 

(i) RSM with vertical threshold: One parameter - vertical threshold (m) 

V-1 0.152 
V-2 0.183 
V-3 0.213 
V-4 0.244 
V-5 0.274 
V-6 0.305 
V-7 0.335 
V-8 0.366 
V-9 0.396 
V-10 0.427 
V-11 0.457 
V-12 0.283 

(ii) Gaussian filtered RSM with vertical threshold: Three parameters - vertical threshold (m); σ (m); window size (# of cells) 

GV-1 0.031 0.152 3 
GV-2 0.031 0.305 3 
GV-3 0.031 1.524 3 
GV-4 0.011 0.152 5 
GV-5 0.011 0.305 5 
GV-6 0.011 1.524 5 
(iii) RSM with MCWS algorithm and constant window size: Three parameter - minimum marker height (m); minimum crown height (m); window 
size (m)a 

MCWS-C-1 0.283 (5) 0.033 (5) 3 
MCWS-C-2 0.297 (1) 0.118 (1) 3 
MCWS-C-3 0.297 (1) 0.169 (4) 3 
MCWS-C-4 0.423 (2) 0.07 (6) 3 
MCWS-C-5 0.423 (2) 0.169 (4) 3 
MCWS-C-6 0.423 (2) 0.272 (3) 3 
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ID Parameters 
MCWS-C-7 0.312 (4) 0.192 (2) 3 
MCWS-C-8 0.312 (4) 0.272 (3) 3 
MCWS-C-9 0.283 (5) 0.033 (5) 6 
MCWS-C-10 0.423 (2) 0.07 (6) 6 
(iv) RSM with MCWS algorithm and variable window size: Three parameter - minimum marker height (m); minimum crown height (m); window 
size functiona 

MCWS-V-1 0.312 (4) 0.272 (3) {3 if (RSM/2) <3; else (RSM/2)} 
MCWS-V-2 0.312 (4) 0.272 (3) {5 if (RSM/2) <5; else (RSM/2)} 
(v) Gaussian filtered RSM with MCWS and constant window size: Five parameter - σ (m); window size (# of cells); minimum marker height (m); 
minimum crown height (m); window size (m)a 

GV-MCWS-C-1 0.152 3 0.031 (1) 0.016 (1) 0.914
GV-MCWS-C-2 0.305 3 0.027 (1) 0.019 (1) 0.914
GV-MCWS-C-3 0.305 3 0.027 (1) 0.024 (4) 0.914
GV-MCWS-C-4 0.305 3 0.043 (2) 0.024 (4) 0.914
GV-MCWS-C-5 0.914 3 0.026 (1) 0.025 (4) 0.914
GV-MCWS-C-6 0.914 3 0.042 (2) 0.025 (4) 0.914
GV-MCWS-C-7 1.524 3 0.026 (1) 0.019 (1) 0.914
GV-MCWS-C-8 0.152 5 0.011 (1) 0.006 (1) 0.914
GV-MCWS-C-9 0.305 5 0.009 (1) 0.007 (1) 0.914
GV-MCWS-C-10 0.914 5 0.008 (1) 0.007 (1) 0.914
GV-MCWS-C-11 0.914 5 0.013 (2) 0.009 (4) 0.914
GV-MCWS-C-12 0.914 5 0.02 (3) 0.009 (4) 0.914
GV-MCWS-C-13 1.524 5 0.013 (2) 0.01 (4) 0.914
GV-MCWS-C-14 1.524 5 0.008 (1) 0.007 (1) 0.914
aNumber in parenthesis next to minimum marker height and minimum crown height parameters corresponds to calculation method listed on pages 
19-20 of supplement. 
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A.1.3.3.2.1 Filtering 

As discussed in the main text, two steps were taken to address uncertainty and filter the 

preferred predicted LBE dataset (LBEp). Topographic sources such as imagery-derived 

bathymetric estimates and augmented points were considered to have greater uncertainty than 

lidar. Therefore, a convex hull was generated surrounding areas where topographic information 

was derived from these data. Predicted LBE polygons with >50% of their area overlapping this 

area were removed. Remaining portions of LBEp polygons overlapping the area of uncertain 

source topography were erased using the convex hull polygon. The resulting set of LBE polygons 

is referenced herein as LBEp-1. 

A second filtering process was used to remove additional LBEp-1 polygons in areas with 

low topographic point densities and low standard deviation in elevations. The belief that these 

factors would results in poor LBE predictions was supported by comparing metrics from polygons 

in the LBEo dataset that were completely missed in the preferred LBEp dataset versus those that 

were at-least partially mapped. To do this, each LBEo polygon was defined as being matched or 

missed based on spatial intersection with the preferred LBEp polygons. Lidar point densities 

(points/m2) and the mean standard deviation of gridded elevations (𝜎 ) were calculated for each 

LBEo where local standard deviation (σz) was calculated individually for each raster cell using the 

bare-earth point cloud. Point densities and 𝜎  for LBEo polygons matched by the predicted LBEs 

were generally greater than those for missed LBEo polygons. Further, comparison of point density 

and 𝜎  from matched and missed LBEo polygons using Welch’s t-test and the Kolmogorov-

Smirnov test concluded that the null hypotheses that distributions had equivalent means and came 

from the same family of distribution could both be rejected above the 95% confidence level 

(p<<0.05). Thresholds for point density and 𝜎  to filter the LBEp-1 data were generated by 
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maximizing the difference in relative frequency within the first break of histograms of missed and 

matched LBEo polygons by iteratively adjusting histogram break values with the two constraints 

that matched and missed histograms had the same break values, and that frequencies of the first 

three breaks had a monotonic trend. The break values maximizing the difference in point density 

and 𝜎  were 2.9 points/m2 and 0.03 m, respectively. These values were used to filter the LBEp-1 

data by removing polygons with either point densities or 𝜎  values below the respective thresholds. 

A.1.3.3.2.2 Geometry 

Geometric analysis included comparing the Dc-to-LBE planform area relationship for each 

LBE in the final LBE dataset to that of several idealized spheroidal geometries (Figure A.1.2). For 

example, the top (planform) area of perfect sphere is 𝜋0.5𝐷 . Relations for oblate and prolate 

spheroids are shown in Figure A.1.2. 

 

Figure A.1.2. (a) LBE planform area versus LBE height (Dc) overlain with relations for several 
idealized spheroidal geometries and (b) visual examples of idealized spheroids. 

A.1.3.4 Two-dimensional hydrodynamic modeling 

For this study, the 2D model known as Sedimentation and River Hydraulics—Two-
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Dimensional model (SRH-2D) v. 2.2 was used to predict hydrodynamics. The Surface-water 

Modeling System (SMS) v. 11.2 graphical user interface (Aquaveo, Inc.) was used for pre- and 

post-processing model inputs, parameters, and outputs. SRH-2D v. 2.2 solves the 2D dynamic 

wave equations (i.e. the depth-averaged St. Venant equations) (Lai, 2008). The model uses a finite 

volume numerical scheme that can handle subcritical and supercritical flow. The model also 

incorporates seamless wetting-drying algorithms that results in fewer tuning parameters needed to 

generate solutions. Model outputs include WSE (m), water depth (h) (m), depth-averaged velocity 

components (longitudinal, U, and lateral, V) (m/s), depth-averaged water speed (𝑈) (m/s), Froude 

number, and shear stress (τ) (N/m2). SRH-2D was developed by the U.S. Bureau of Reclamation 

and is freely available to the public. For more information, see 

https://www.usbr.gov/tsc/techreferences/computer%20software/models/srh2d/index.html. Model 

development followed the Pasternack (2011) textbook. 

The model’s finite-volume numerical solver requires input of a computational mesh. Three 

computational meshes with ~ 1 m internodal spacing were made to cover the extent of inundation 

associated with flows spanning two orders of magnitude (e.g. approximately 1.2–343.6 m3/s) 

(Figure A.1.3). SMS software was used to build the final suite of meshes based on the approach 

described by Pasternack (2011). 

The two primary model parameters in SRH-2D include bed roughness as approximated 

using variable Manning's n and isotropic kinematic eddy viscosity (E). For model development, 

unresolved roughness (e.g. not represented in the bare-earth topography) was initially estimated 

using a constant Manning's coefficient (n) of 0.1 (Pasternack & Senter, 2011). After simulating 

the lidar baseline flow condition for the whole river, predicted WSEs were compared to the 

147,644 collocated WSE measurements from the lidar data. Initial WSE assessment showed the 
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model systematically over-predicted water depth. As a result, additional simulations were 

conducted with constant roughness coefficients values of 0.07, 0.08, and 0.09, respectively. 

Computational time limited the assignment and calibration of spatially based roughness values for 

this study. Testing found a uniform value of 0.09 worked best as this value minimized mean square 

error between measured and predicted WSE values, and observed and predicted velocity 

magnitudes. This calibrated value, which is physically realistic for the setting (Yochum et al., 

2014), was used in all subsequent flow simulations. Sensitivity to large (> 0.01) variations in n 

values have been observed in 2D models and it is important to address this level of uncertainty 

(Pasternack, 2011). Sensitivity analysis testing the model’s response to such incremental variations 

in n values found differences in predicted depths and velocities to be relatively minimal (section 

A.1.3.4.2). 

The bed roughness parameter in a 2D model can vary spatially to account for variable bed 

sediment facies and several methods exist to estimate roughness (Pasternack, 2011). However, use 

of a constant roughness value is common in 2D modeling and has been shown to both perform 

well (L’Hommedieu et al., 2020; MacWilliams et al., 2006; Pasternack & Senter, 2011; Reid et 

al., 2020) and produce results similar to models with spatially varied roughness (Lisle et al., 2000). 

Further, 2D model hydraulic predictions are equally if not more sensitive to topographic 

inaccuracies than to typical model calibration parameters such as roughness (McKean et al., 2014; 

Pasternack, 2011; Pasternack et al., 2006). Available methods to estimate spatially varying 

roughness are generally qualitative (Yochum et al., 2014), empirical (Cienciala & Hassan, 2013; 

Lisle et al., 2000), or based on iterative numerical simulation (Pasternack, 2011). In addition to 

varying spatially, roughness may change with discharge. Numerical analysis, flume experiments, 

and observations in natural rivers suggest that roughness values decrease rapidly with increasing 
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discharge, especially at flows exceeding a channel’s banks, prior to stabilizing (Ferguson et al., 

2017; Richardson & Carling, 2006; Yang et al., 2007). Contrary to these findings, several 2D 

modeling studies in gravel-bed rivers have found that roughness does not decrease with increasing 

stage (Brown & Pasternack, 2008; Pasternack, 2008; Sawyer et al., 2010; Strom et al., 2017). In 

these studies, contact with new types of roughness elements such as boulder clusters, bedrock 

outcrops, vegetation, and valley width variations maintain high roughness values as discharge 

increases. Ferguson et al. (2017) also found resistance to increase at high discharges due to macro-

roughness elements of rock walls in a bedrock confined river. It is also possible that selective 

transport and continued armoring of the bed during increasing discharge could result in near 

constant bed roughness over a wide range of discharges (Gomez, 1993). Abu-Aly et al. (2014) in 

applying a methodology to account for spatially distributed effects of riparian vegetation found 

overall roughness to increase with increasing discharge for a 28.3-km segment of a meandering 

gravel-bed river. Much like the rivers in these studies the study site was characterized by multiple 

scales of landform heterogeneity whereby increasing stage continuously encountered new forms 

of resistance, supporting that a decrease in roughness with increasing discharge was unwarranted. 

Undeniably, if the model roughness parameter had been allowed to vary spatially, the submergence 

of macro-roughness features in the low-flow channel with increasing stage would likely have been 

associated with a localized decrease in roughness. However, for the reasons previously described 

roughness was held spatially constant. 

SRH-2D requires the user to select a turbulence closure scheme and the input of an eddy 

viscosity coefficient. These inputs are used in calculating the turbulent eddy viscosity term in the 

turbulent stress forces portion of the equation of motion and influence the degree of turbulent 

mixing incorporated into the solution process (Lai, 2008). 2D models are particularly sensitive to 
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the eddy viscosity parameterization used to cope with turbulence (Nelson et al., 2016). In the model 

used in this study, eddy viscosity (E) was a variable in the system of model equations, computed 

using the following standard equations developed from many studies of turbulence in rivers: 

 𝐸 𝑒∗ℎ ∙ 𝑢∗ (Eq. A.1.5) 

 𝑢∗ 𝑈 𝐶  (Eq. A.1.6) 

 𝐶 g /  (Eq. A.1.7) 

where e* is the non-dimensional eddy viscosity coefficient, u* is shear velocity, 𝑈  is depth-

averaged water velocity at a point, Cd is a drag coefficient, and g is the gravitational acceleration 

constant. Equation A.1.5 is a parabolic turbulent eddy model (Zero-Equation) common in 

hydraulic applications and has been shown to perform well within a variety of riverine settings 

compared to observed conditions and other turbulence models (Lai, 2008; Nelson et al., 2016). 

These equations allow E to vary throughout the model domain, yielding more accurate transverse 

velocity gradients. However, a comparison of 2D and 3D models for a shallow gravel-bed river 

demonstrated that, even with spatial variation in E, rapid lateral variations in velocity are not 

simulated to the degree that occur in natural channels, presenting a fundamental limitation of 2D 

models like SRH-2D (MacWilliams et al., 2006). 

The eddy viscosity coefficient term is channel-geometry-dependent, typically varying 

between 0.3 and 1.0 in larger rivers. Two-dimensional modeling of carefully controlled shallow 

flumes found that an eddy viscosity coefficient value of 0.075-0.1 is better in shallow 

gravel/cobble settings (Pasternack & MacVicar, 2013). Subsequent application of a value of 0.1 

in the Yuba River did well at capturing the relative size, shape, and flow direction of eddies, with 

this lower value also helping to decrease over-prediction of low velocities (Brown & Pasternack, 

2012; Pasternack & Senter, 2011). An eddy viscosity coefficient of 0.1 was used for all simulations 



 

A-26 

in this study. 

To run the 2D model, boundary conditions must be input at all inflow and outflow 

locations. For inflow locations, discharge must be specified across the face of all upstream 

boundaries as well as any additional tributary inflow junctions. A corresponding water surface 

elevation (WSE) must also be defined at the downstream boundary. The study site had two primary 

upstream inflow boundaries; flows originating from NBB dam into Reach 1 and inflow from the 

Middle Yuba; and one downstream boundary (Figure A.1.3). Several highly ephemeral tributaries 

also drain into the study site contributing appreciable flow during climate driven high flow events. 

In this study, model simulations were grouped into two classes based on input conditions, the 

methods used to specify model inputs, and reason for conducting the simulation. Specifically, these 

are (1) calibration and validation flows, and (2) geomorphic synthetic flows. These simulation 

classes are described next. 

The first class, calibration and validation flow simulations, involved attempting to 

replicate hydraulic and hydrologic conditions in the study site associated with specific periods of 

data collection. These simulations were used to calibrate model parameters and assess performance 

of the calibrated model. For these simulations, boundary conditions were assigned to match gauged 

and/or estimated flow conditions during the associated period of data collection. Discharges at the 

upstream input boundary were based on USGS gaging station 11413517 or data provided by Yuba 

Water Agency (YWA). Discharges at the Middle Yuba River were based on USGS gaging stations 

11408880 and 11409400 or data provided by YWA as well as estimated accretionary flow. WSEs 

at the downstream boundary were estimated from a site specific rating-curve or from field 

measured conditions using RTK-GPS. 

The second class of simulation, geomorphic synthetic flow simulations, involved modeling 
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a range of hypothetical flow conditions of relevance to understanding the hydraulic mechanisms 

governing the channel’s LBE patterns. Using the calibrated model parameters, a series of four 

discharges were simulated spanning a range of hydrologic conditions. The four selected discharges 

represent flows of potential geomorphic importance and are all referenced to the bankfull discharge 

(10.73 m3/s) for non-dimensional scaling considerations. The geomorphic synthetic flows 

simulated include a representative baseflow condition of 0.14x bankfull flow, bankfull flow, and 

two multiples (7.7x and 32x) of the estimated bankfull flow. The 32x bankfull flow simulation 

corresponded to the peak value for which boundary conditions were available (i.e., availability of 

downstream stage measurement). The four selected discharges have estimated yearly recurrence 

intervals of 1.00, 1.06, 1.59, and 3.46, respectively. 

Ultimately, simulated flows included two calibration and validation flow simulations and 

four geomorphic synthetic flow simulations. The complete array of all specific discharge inputs 

and downstream WSE values for every 2D model simulation are given in Table A1.5. Model input 

locations including tributary locations are depicted in Figure A.1.3. For all simulations, SRH-2D 

outputs raw hydraulic variable values computed at computational mesh nodes. For each model 

simulation, a number of steps were taken to process data for later analyses with certain calculations 

made using the raw (nodal) results and others using post-processed results (e.g. rasterized data). 

ArcGIS software (ESRI, Redlands, CA) was used to process and analyze 2D model outputs. 

Initially, wetted area polygons were created for each flow simulation sensu Pasternack (2011) 

using interpolated depths greater than zero as the minimum threshold. These wetted area polygons 

were then used as the interpolation boundaries for each respective flow simulation in the creation 

of hydraulic variable rasters. All rasters were derived from TIN-based surface models re-sampled 

to 0.46 m resolution grids to provide an equal-area basis for analysis. 
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Figure A.1.3. Extent of 2D model low-flow and high-flow computational meshes and location of 
inflow/outflow boundaries.  
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Table A1.5. 2D Model input and parameter values 

Total 
discharge 

(m3/s) 

Reach 1 
input 
(m3/s) 

Middle 
Yuba input

(m3/s) 

Number of 
tributary 

inputs 
(-) 

Total 
tributary 

inputs 
(m3/s) 

Downstream 
WSEa 
(m) 

Calibration and validation simulations 
1.19 0.16 1.02 1 0.01 169.60 

3.51 n/ab n/ab 1 0.19 169.61 
Geomorphic synthetic flow simulation 

1.54 1.40 0.14 0 0 169.51 
10.73 10.59 0.14 0 0 169.91 
82.12 81.98 0.14 0 0 170.94 
343.60 343.45 0.14 0 0 172.06 

a Elevations referenced to North American Vertical Datum of 1988 
b Simulation of lower 4.2 km of study site. Only required input of total discharge 
and tributary input. 

A.1.3.4.1 2D Model Assessment 

Two-dimensional hydrodynamic models have inherent strengths and weaknesses, thus 

there is need to assess a model’s representation of reality and understand and accept uncertainty in 

the results. SRH-2D is a proven tool capable of simulating hydraulic conditions in natural rivers 

(Brown & Pasternack, 2014; Lai, 2008; Pasternack & Senter, 2011). However, there is still a risk 

of poor model performance. The scope of model assessment is outlined below. Table A1.6 

provides a summary of model assessment testing. 

A suite of tests typical of those carried out in the peer-reviewed journal literature for the 

assessment of 2D models were performed to characterize model performance and uncertainty 

(Pasternack, 2011). Tests included mass conservation checks, lidar baseline WSE assessment, and 

fixed-point depth and velocity assessment (Table A1.6). For the lidar baseline WSE and fixed-

point depth and velocity assessment some tests were done using raw (i.e., signed) or absolute (i.e., 

unsigned) deviations between observed and predicted values, and some on the signed or unsigned 
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percent errors. WSE was analyzed in terms of deviations, not percent error (Brown & Pasternack, 

2012). In contrast, percent error of depth and velocity are meaningful because deviations may be 

a substantial fraction of the observed values. Often percent error for low values of depth or velocity 

are not evaluated due to low values having inflated numerical errors. Regression and correlation 

analyses as well as the standard error of the regression slope (SES) and standard error of the 

regression intercept (SEI) between predicted vs. observed values were computed to add further 

statistical rigor. Descriptive statistics of model deviations and percent errors and the results of the 

regression analysis were all used to evaluate model performance. In addition to these metrics 

commonly used by the 2D hydrodynamic modeling community, three metrics: Nash-Sutcliffe 

efficiency (NSE), percent bias (PBIAS), and the root mean square error-observations standard 

deviation ratio (RSR), commonly used in the hydrological modeling community to assess 

performance of discharge prediction (Moriasi et al., 2007) were also computed. 

Table A1.6. Summary of 2D model assessment testing 

Total 
discharge 

(m3/s) 

Mass 
conservation 

WSE 
Fixed-point 

velocity 
magnitude 

Fixed-point 
depth 

Manning's 
n 

sensitivity 

Calibration and validation simulations 
1.19 X X X 
3.51 X X X X 

Geomorphic synthetic flow simulation 
1.54 X X 
10.73 X X 
82.12 X X 
343.60 X        

A.1.3.4.1.1 Mass Conservation 

The first key model performance criteria, mass conservation, was evaluated by computing 

the percent difference between specified inflow and model-predicted outflow. Computationally, 
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mass conservation losses increase in the downstream direction as error accumulates, therefore 

good mass conservation should show little difference in discharge at the downstream model 

boundary from the total input discharge. Mass conservation error in a 2D model can be anywhere 

in the 0.01–2% range (Pasternack, 2011) with errors greater than ~ 2-3% a potential sign of poor 

model performance (Pasternack & Senter, 2011). This range is typically smaller than uncertainty 

associated with stream gauges and other discharge measurement methods such as flumes and weirs 

or stream stage-gauge relations that may be off by upwards of ~ 5-10% of actual values. Mass 

conservation losses at the downstream model boundary were all less than 1%, well within what is 

considered acceptable (Table A1.7). 

Table A1.7. 2D model mass conservation performance summary 

Total discharge 
(m3/s) 

Total outflow 
(m3/s) 

Percent error  
(%) 

Calibration and validation simulations 
1.19 1.18 -0.60 
3.51 3.50 -0.17 

Geomorphic synthetic flow simulation 
1.54 1.54 -0.41 
10.73 10.67 -0.60 
82.12 82.11 -0.01 
343.60 342.69 -0.27 

A.1.3.4.1.2 WSE Evaluation 

The next key test was ability of the 2D model lidar baseline simulation to match lidar-

measured WSEs as this is a proxy for matching wetted area. Even though lidar-measured WSE 

values were used to calibrate Manning's n for this simulation, the final deviations between 

observed and predicted values were non-zero. Thus, deviations between observed and final 

calibrated WSE predictions were used to characterize uncertainty in water depth after calibration. 
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Longitudinal profiles of observed and predicted WSEs were used to evaluate the spatial 

distribution of error in WSE deviations. Profiles were generated by discretizing points along the 

lidar baseline thalweg at 0.91 m intervals. At each point, model predicted WSE and observed WSE 

were interpolated. The distribution of signed deviations between these values should be centered 

about zero as this demonstrates no bias in model predictions. 

There are no formal standards for evaluating WSE deviations to indicate when a model is 

invalid, but the greater the deviation from zero the more unreliable the model. Topographic error 

is a dominant factor explaining 2D model depth prediction errors that warrants consideration in 

model evaluation. It is presumptuous to expect model prediction to be more accurate than 

topographic deviations, as such, best practices suggest that depth or WSE deviations should not 

exceed uncertainty in the topographic data (Brown & Pasternack, 2012; Pasternack, 2011; 

Pasternack & Senter, 2011). The FVA for ground points and bathymetric lidar points in this study 

were 0.037 m and 0.117 m, respectively (section A.1.3.1), but high topographic variability is likely 

to yield larger uncertainties. Generally, WSE deviations falling within the range of bathymetric 

lidar uncertainty were considered suitable for this study. The performance standards reported by 

Moriasi et al. (2007) for the additional discharge prediction metrics are NSE > 0.5, PBIAS within 

25%, and RSR < 0.7, however the exact interpretation of these thresholds in this study remains 

unclear due to limited use of these metrics in 2D model assessment. 

Comparison of lidar based WSEs to 2D model predictions consisted of 147,644 paired data 

points distributed throughout the 13.2 km study domain, a considerably larger sample size than 

studies relying solely on field measured WSEs. All deviation statistics were calculated as observed 

(lidar measured) minus predicted (2D model), meaning that positive deviations represent model 

WSE and depth under-prediction and negative deviations model WSE and depth over-prediction. 
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Mean signed WSE deviation error (ME) was -0.077 m and mean absolute error (MAE) was 0.162 

m. Water surface deviations displayed a near equal balance of over-versus under-predictions with 

a slight tendency toward 2D model over-prediction, as reflected by the negative ME value Figure 

A.1.4a). A majority (53%) of the raw WSE point deviations had less absolute error than the 0.117 

m FVA of the bathymetric lidar and 81.6% of the data within 0.25 m, which is close to two times 

the FVA of the bathymetric lidar (Table A1.8). Additional metrics from the regression and 

correlation assessment analysis as well as NSE, PBIAS, and RSR were all within the standards of 

satisfactory model performance (Table A1.9). 

Locations with the largest WSE over-prediction were dispersed throughout the model 

domain, but were often clustered upstream of hydraulic controls, specifically in areas of relatively 

deep water immediately upstream of narrow channel constrictions. Comparison of the complete 

topographic surface with 2D model computational mesh surfaces revealed a smoothing effect 

present at many of these constrictions due to the resampling procedure used to create the up-scaled 

mesh surfaces. This smoothing resulted in reduced channel conveyance and artificially high bed 

elevations that, when modeled created a backwater effect over-elevating upstream conditions. 

These simulated backwater conditions help explain the WSE over-prediction in these settings. A 

qualitative review of the spatial distribution of WSE deviations also revealed that areas of large 

over-prediction (e.g. model predicted depths were too high) tended to be in locations with low 

WSE point densities, thus questioning the accuracy of the observed values and making quantitative 

review of these large errors more difficult. 

Review of WSE deviations identified at least 15 locations displaying the physical 

conditions described above. These locations included 7,743 points with WSE over-prediction 

deviations greater than 0.1 m and represent ~ 5% of the total WSE comparison dataset. Removal 
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of these points from the WSE assessment dataset (‘selected WSE dataset’) and re-assessment of 

WSE deviations improved model predicted WSE descriptive statistics. The ME and MAE for the 

selected WSE dataset were -0.042 m and 0.132 m, respectively. Similar improvements were 

observed in the percentage of data meeting several deviation thresholds (Table A1.8) and other 

performance metrics (Table A1.9). 

WSE deviations varied longitudinally, illustrating the spatially varying nature of water 

surface errors (Figure A.1.5). Black points in Figure A.1.5 represent locations of poor model 

prediction described above. These points coincide with nearly all regions of large model over-

prediction and it is likely other areas of over-prediction have similar unidentified topographic 

controls. Visually, locations of both over- and under- prediction appear to be located in distinct 

spatially cohesive patches. This grouping of errors as well as the lack of systematic error in WSE 

deviations may in-part reflect the decision to use a constant roughness coefficient value rather than 

spatially varied roughness. 
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Figure A.1.4. Histograms of 2D model WSE deviations for the (a) entire WSE dataset and (b) 
selected WSE dataset.  
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Table A1.8. Non-exceedance probabilities of WSE deviations meeting different thresholds of 
performance for entire WSE dataset and selected WSE dataset. 

All WSE dataset   Selected WSE dataset 

Absolute WSE 
deviation 

(m) 

Non-
exceedance 
probability  

(%) 

 
Absolute WSE 

deviation 
(m) 

Non-
exceedance 
probability  

(%) 

0.025 13.8 0.025 14.5 
0.05 26.6 0.05 28.1 
0.1 47.6 0.1 50.2 

0.117a 52.7 0.117a 55.6 

0.155b 61.7 0.155b 65.1 
0.25 81.6 0.25 86.0 
0.5 95.3   0.5 99.0 

aLidar bathymetric FVA 
bCombined bathymetric and terrestrial lidar FVA 

Table A1.9. Regression and hydrologic metrics for entire WSE dataset and selected WSE dataset 
assessment. 

Test Statistic All WSE dataset 
Selected WSE 

dataset 
n 147644 139901 

Regression Slope 1.00 1.00 
Regression 
Intercept 0.06 -0.03 

R2 1.00 1.00 
SES 9.9E-06 7.4E-06 
SEI 0.00 0.00 

ME (m) -0.08 -0.04 
MAE (m) 0.16 0.13 

PBIAS 0 0 
RSR 3.8E-03 2.8E-03 
NSE 1.00 1.00 
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Figure A.1.5. Longitudinal profile of deviation between observed and predicted WSE. Positive 
deviation corresponds to model under-prediction and negative deviation to model over-prediction. 
Black dots are areas of poor performance potentially due to topographic uncertainty. Horizontal 
dashed lines are bathymetric lidar FVA (± 0.117m). 

A.1.3.4.1.3 Fixed-point Depth and Velocity 

The next test was assessment of the model for fixed-point depth and velocity performance. 

This test is less relevant toward the study purpose of accurately mapping wetted areas for the 

simulated discharges, but nonetheless provides a relevant check of model performance. Depth and 

velocity data were collected on April 8, 2016 at 61 independent locations in the downstream 

portion of the study site in a location with complex, shallow hydraulics. The discharge 

corresponding to the period of measurement was estimated as 3.51 m3/s, herein referred to as the 

‘velocity assessment’ discharge simulation. The data collection strategy used focused on sampling 

the range of velocities present in the river at this discharge opposed to more traditional cross-

section based sampling strategies. This design allows quantitative testing of a model’s ability to 

predict over a range of velocities (Pasternack & Senter, 2011). Measurements were made with no 

a priori knowledge of the spatial pattern of velocity and prior to model simulation to ensure no 
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sampling bias. Velocity measurements were made in wadable areas using a SonTek FlowTracker 

Handheld Acoustic Doppler Velocimeter (ADV) mounted to a depth setting wading rod. Depth 

measurement errors were ±1 cm. Velocity measurement error reported by the manufacturer is ±1% 

of measured velocity + 0.25 cm/s. Depth-averaged velocities were estimated by sampling velocity 

at 10 Hz averaged over 20 s at 0.6ꞏdepth from the water surface (Pasternack, 2011). The position 

of each measurement were simultaneously surveyed using RTK-GPS. 

Correlation and regression analyses between predicted vs. observed depth and velocity 

values yielded several variables for evaluation. The coefficient of determination (R2) metric 

describes variance about the best fit slope, an indicator of model precision. R2 values of ~ 0.6 for 

water speed are common for 2D models with values in the ~ 0.7-0.85 range considered very good 

(Brown & Pasternack, 2012). R2 values for depth are typically higher (~ 0.7-0.8) than those for 

velocity (~0.5-0.8) and values in these ranges are recommended as a minimum standard for model 

performance (Pasternack, 2011). The accuracy of model predictions is better described by the slope 

term in the regression equation than R2 values. A value of unity represents no bias in the model 

predictions. The y-intercept of the regression equation also indicates potential model bias. Over 

prediction of low velocities and under prediction of high velocities have been reported in previous 

2D modeling studies (Brown & Pasternack, 2012). Based on recommendations by Pasternack 

(2011) standards for demonstrating model suitability using comparison of predicted vs observed 

velocity data are a slope term >0.8 and a y-intercept <10% of the maximum observed velocity. 

Model accuracy was also evaluated from statistical analysis of unsigned depth and velocity 

percent error. Mean and/or median velocity errors >50% suggest poor model performance whereas 

mean and median error values of ~ 10-15% for depth and ~ 15-30% for velocity are considered 

reasonable (Pasternack, 2011). Percent error for low values often exceed 200% due to the strong 
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influence of even small deviations. To address this issue separate velocity tests for low and high 

values may be performed with a threshold value between 0.3 m/s to 0.9 m/s used to differentiate 

velocities (Brown & Pasternack, 2012; Pasternack, 2011; Strom et al., 2016). Depth measurement 

with a depth setting wading rod as well as RTK-GPS topographic data have much greater point 

accuracy and probability of being measured directly from the river bed than lidar point data 

collection. Comparison of lidar derived vs. field observed elevations at the fixed-point depth 

observation sites were reviewed to address systematic differences that might influence depth 

measurement uncertainty. 

Comparison of model predicted hydraulics (depth and depth-averaged velocity) with field 

measured estimates showed predicted values closely approximated observed conditions (Table 

A1.10). Coefficient of determination (R2) values between predicted and observed hydraulics were 

0.80 for depth and 0.84 for velocity (p<0.001 for both tests). Linear regression between predicted 

and observed values yielded regression slopes of 0.87 for both depth and velocity (p<0.001 for 

both tests) and y-intercepts of 0.04 (p<0.001) and 0.03 (p=0.28), respectively (Figure A.1.6 and 

Figure A.1.7). These y-intercept values scale to 2.9% and 2.4% of the maximum observed depth 

and depth-averaged velocity, consistent with acceptable performance standards. 

Regression slopes and intercepts all indicate slight bias toward the model over-predicting 

depths and velocities. This precludes errors being associated with the selected roughness 

coefficient, as adjusting this value to improve prediction of one metric would have been at the 

detriment of the other. Residuals between predicted and observed velocity suggest over-prediction 

was somewhat more prevalent in slow flowing than faster areas (i.e., 63% of points with velocities 

less than 0.3 m/s were over-predicted versus only 45% of points with velocities greater than 0.3 

m/s), a common occurrence in 2D model performance. Velocity residuals had slight 
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heteroscedasticity further suggesting error dependence on the magnitude of velocity, whereas 

depth residuals were relatively trendless (Figure A.1.7). 

Descriptive statistics comparing observed and predicted values corroborated the findings 

described above including the tendency to over-predict slow velocities and slightly under-predict 

fast velocities. The mean percent error (MPE) of all velocity observations regardless of magnitude 

was -25% (median percent error of -5%), with the negative sign connoting model over-prediction. 

Velocity points were stratified into bins above and below 0.3 m/s. Low velocity points had a MPE 

of -48% (median percent error of -17%) and high velocity points a MPE of -1% (median percent 

error of 4%). Mean absolute percent velocity error (MAPE) for velocities below 0.3 m/s, velocities 

above 0.3 m/s, and all data were 64%, 20% and 43%, respectively. Median absolute percent error 

for these same subsets of data were 30%, 19% and 24%, respectively. With the exception of 

observations in the low velocity bin (i.e., fixed-point velocities < 0.3 m/s) nearly all metrics were 

within the 20–30% benchmark for this study. In addition to descriptive statistics comparing 

observed and predicted hydraulics and metrics from the regression and correlation analysis NSE, 

PBIAS, and RSR values were also all within the standards of satisfactory model performance 

(Table A1.10).  
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Table A1.10. Regression and hydrologic metrics for fixed-point depth and velocity assessment. 

Test Statistic Fixed-point depth Fixed-point velocity 
n 60 61 

Regression Slope 0.87 0.87 
Regression 
Intercept 0.04 0.03 

R2 0.80 0.84 
SES 0.06 0.05 
SEI 0.05 0.02 

MPE (%) -6.0 -25.4 
MAPE (%) 9.0 43.1 

PBIAS 8.8 6.1 
RSR 0.54 0.43 
NSE 0.70 0.82 

 

 

Figure A.1.6. (a) Scatter plot of observed versus 2D model predicted depth with 1:1 line (dark 
black line), line of best fit (gray dashed line) as well as equation of best fit line and coefficient of 
determination and (b) deviations between observed and predicted depth versus observed depth. 
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Figure A.1.7. (a) Scatter plot of observed versus 2D model predicted velocity with 1:1 line (dark 
black line), line of best fit (gray dashed line) as well as equation of best fit line and coefficient of 
determination and (b) deviations between observed and predicted depth versus observed depth. 

A.1.3.4.2 2D Model Roughness Sensitivity 

The scale of model sensitivity to large (> 0.01) variations in n values was tested through 

studying changes of model predicted depths and velocities. Lidar baseline flow simulation results 

were compared using variable roughness coefficient values of 0.07, 0.08, 0.09, and 0.10, 

respectively. For each pair of simulations (e.g. a simulation with n=0.07 was compared to 

simulations with n=0.08, n=0.09, and n=0.10), differences in predicted depths at all nodes that 

were wet in both simulations were computed. The same was done for velocity. Average deviations 

for both variables were computed for each simulation pairing and trends were assessed. This 

analysis was repeated for the velocity assessment discharge simulation and a more limited analysis 

comparing n values of 0.09 and 0.10 was performed for a wider range of discharges (those listed 

in Table A1.6 and 2.68, 32.20, and 160.98 m3/s). 

Average sensitivity of predicted depth and velocity at the lidar baseline discharge to the 

range of tested roughness values were well described by a linear model fit using least squares (R2 
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values of 1.0 and 0.98, respectively, p<0.10). Similar linear scaling was also observed for the 

velocity assessment discharge simulation of 3.51 m3/s (R2 values of 1.0 and 0.98 for depth and 

velocity sensitivity, respectively, p<0.10). While these results are based on a small number of 

samples (six data points), the findings encourage the assumption that average model sensitivity to 

changes in Manning’s n scaled linearly regardless of discharge (i.e., there was a constant 

magnitude change in average predicted depth and velocity per 0.01 unit change in Manning’s n for 

each discharge). Average sensitivity of model predicted depths and velocities to increase in 

Manning’s n of 0.01 (e.g. average change in hydraulics going from 0.08 to 0.09 or 0.09 to 0.1) for 

the range of simulated discharges are depicted in Figure A.1.8. Sensitivities are generally small 

and represent only a small portion of average hydraulic conditions. For example, although model 

sensitivity is greater at higher discharges, average depth and velocity conditions also increase with 

discharge and the ratio of sensitivity to predicted depths and velocities was between 2-3% of 

average conditions for all discharges. In essence it would take large changes in roughness values 

to markedly change bulk predicted hydraulics, though large local affects are certainly possible that 

were not captured by this limited analysis.  
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Figure A.1.8. Semi-log plot of 2D Model average (a) depth and (b) velocity sensitivity to an 
increase in Manning’s n of 0.01 over various simulated discharges. 

A.1.3.5 LBE spatial analysis 

The heterogeneous and hierarchical nature of the study site, like essentially all rivers, 

required implementation of a disaggregation and aggregation procedure (Alber & Piegay, 2011) 

to allow longitudinal analysis of river characteristics at appropriate scales. Spatial disaggregation 

and aggregation was accomplished using a box counting procedure described by Wyrick and 

Pasternack (2012). Simplistically, the procedure involves generating points longitudinally along a 

river centerline, creating station-lines perpendicular to these points, and buffering the station lines 

into individual polygons that are then clipped to the wetted area or other boundary of interest. 

The disaggregation and aggregation process is sensitive to the location and tortuosity of 

the alignment used to generate the longitudinal series of points. An overly tortuous path results in 

highly overlapping sections and polygons that also miss covering portions of the wetted area, while 

an overly simple alignment such as using a valley centerline for interpretation of all flows may 

result in clipped polygons that are not perpendicular to the main direction of flow, particularly at 

lower flows. To address this issue two longitudinal alignments were generated based on the 
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centerlines of the bankfull (10.73 m3/s) and max flood flow (343.6 m3/s) simulations. Centerlines 

were delineated using the Polygon Centerline ToolTM (https://www.beachbumgis.com/). The 

bankfull alignment was used to generate cross-sectional polygons for all simulated flows below 

bankfull (10.7 m3/s) and the max flood flow alignment was used for all remaining flows. Prior to 

applying the box counting procedure the bankfull and flood flow centerlines were simplified using 

the ArcGIS simplify line (point remove algorithm with 4.6 m offset) and smooth line (Bezier 

interpolation) tools. Points were spaced along the revised alignments every 3 m, yielding a series 

of 3-m cross-sectional polygons distributed down the river for each simulated discharge. Notably 

there was some overlap or underlap of rectangles at locations of high channel curvature. These 

areas were determined to balance out and no manual adjustment of the polygons occurred. 

As discussed in the main text, a path-based approach was developed for the LBE-to-LBE 

spacing analysis to estimate longitudinal distances (𝜆 ) between each LBE and downstream LBEs. 

In the first step, the unique centerline for each simulated wetted area was repeatedly offset by 1.5 

m on each side until the entire wetted area of each discharge was covered with paths (e.g. a new 

offset would be completely outside the wetted area), thus creating a set of longitudinal paths 

parallel to the bulk flow direction for each flow simulation. Paths were clipped to each wetted area 

and vertices were added along paths to densify vertex spacing to a maximum of 0.25 m. Each 

vertex was assigned its projected coordinates (x,y) and a binary code if it fell within a LBE (1) or 

not (0). Distances along paths between each upstream LBE and all downstream LBEs where a 

contiguous path was present were computed. If no downstream LBE was encountered the 

calculation was left blank for that LBE. Other factors considered in the calculations included that 

an LBE could be downstream of itself and that multiple paths and associated spacing values could 

exist from an upstream LBE to one or more downstream LBEs. These were considered to 
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accurately reflect field conditions and not conflict with the goals of the analysis. Zero spacing 

values were not supported by the calculation. Instead, abutting LBEs were assigned the distance 

between sequential vertices resulting in a maximum error equal to the maximum spacing interval 

(0.25 m). The maximum error in 𝜆  values for non-abutting LBEs was twice the maximum vertex 

spacing (0.5 m). Both these errors were unlikely worst-case scenarios given vertex densities were 

often less than the maximum spacing. Very long spacings were also rare given that most paths 

either encountered an LBE or terminated at a channel margin. 

 Results 

A.1.4.1 Question 1 results (LBE mapping) 

As stated in the main text, qualitative assessment of the 14 smoothed ground surfaces 

determined certain parameter sets performed better than others. Generally, larger step sizes (~3 

and 4.5 m), smaller spike and offset values (0.128 m [D50] and 0.064 m [D16] verses 0.5 m), and 

intermediate down-spike values (0.128 m, 0.256 m, and 0.15 m) in the ground classification 

algorithm were best at filtering-out LBEs while maintaining character of the overall terrain (Table 

A1.3). 

Results of the quantitative assessment of preliminary LBEs mapped from the best six 

smoothed surfaces are depicted in Table A1.11. Based on the global performance metric, P-LBE-

10 was found to perform best, making the associated RSM the study’s preferred RSM. 

Performance metrics of all 44 LBEp datasets from the five LBE extraction approaches are 

presented in Table A1.12.  
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Table A1.11. Performance metrics of predicted LBEs for six selected parameter combinations. 
Maximum values for each metric highlighted in light-gray and bolded and minimum values are 
italicized. Preferred dataset in red font. 

ID 
Minimum vertical 

threshold (m) PA PO MJI MER Normalized mean 
P-LBE-1 0.23 0.794 0.680 0.212 0.017 0.500 
P-LBE-3 0.28 0.822 0.690 0.161 0.011 0.349 

P-LBE-10 0.28 0.836 0.696 0.183 0.014 0.552 
P-LBE-11 0.41 0.864 0.737 0.107 0.009 0.500 
P-LBE-12 0.32 0.833 0.707 0.153 0.010 0.401 
P-LBE-13 0.32 0.830 0.706 0.149 0.010 0.372 

 

Table A1.12. Performance metrics of all 44 predicted LBE datasets. Maximum values for each 
metric for each approach are highlighted in light-gray and bolded while minimum values are 
italicized. Global maximum values for each metric are highlighted in dark-gray, bolded and 
underlined while global minimums are italicized and underlined. Preferred dataset in red font. 

ID PA PO MJI MER Normalized mean

(i) RSM with vertical threshold 

V-1 0.894 0.774 0.269 0.030 0.445
V-2 0.876 0.759 0.284 0.034 0.451
V-3 0.856 0.747 0.311 0.038 0.474
V-4 0.839 0.735 0.339 0.043 0.500
V-5 0.822 0.722 0.347 0.048 0.505
V-6 0.802 0.709 0.352 0.054 0.505
V-7 0.785 0.696 0.358 0.059 0.509
V-8 0.755 0.687 0.361 0.065 0.509
V-9 0.732 0.675 0.365 0.072 0.513
V-10 0.703 0.665 0.369 0.079 0.516
V-11 0.669 0.659 0.371 0.086 0.521
V-12 0.816 0.718 0.351 0.050 0.507

(ii) Gaussian filtered RSM with vertical threshold 

GV-1 0.760 0.705 0.333 0.054 0.458
GV-2 0.642 0.762 0.298 0.051 0.409
GV-3 0.611 0.779 0.246 0.051 0.352
GV-4 0.757 0.706 0.332 0.054 0.457
GV-5 0.600 0.789 0.309 0.049 0.423
GV-6 0.514 0.842 0.315 0.045 0.426

(iii) RSM with MCWS algorithm and constant window size 

MCWS-C-1 0.901 0.837 0.422 0.018 0.647
MCWS-C-2 0.760 0.789 0.445 0.046 0.645
MCWS-C-3 0.828 0.763 0.453 0.050 0.676
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ID PA PO MJI MER Normalized mean
MCWS-C-4 0.825 0.827 0.432 0.025 0.630
MCWS-C-5 0.772 0.774 0.455 0.061 0.700
MCWS-C-6 0.742 0.727 0.469 0.087 0.740
MCWS-C-7 0.819 0.752 0.456 0.063 0.708
MCWS-C-8 0.798 0.715 0.464 0.083 0.738
MCWS-C-9 0.879 0.838 0.374 0.019 0.586
MCWS-C-10 0.809 0.828 0.392 0.025 0.581

(iv) RSM with MCWS algorithm and variable window size 

MCWS-V-1 0.760 0.715 0.460 0.083 0.714
MCWS-V-2 0.756 0.720 0.450 0.086 0.718

(v) Gaussian filtered RSM with MCWS and constant window size 

GV-MCWS-C-1 0.886 0.854 0.402 0.017 0.629
GV-MCWS-C-2 0.847 0.858 0.384 0.019 0.600
GV-MCWS-C-3 0.712 0.810 0.436 0.057 0.674
GV-MCWS-C-4 0.608 0.838 0.440 0.063 0.673
GV-MCWS-C-5 0.691 0.815 0.431 0.058 0.665
GV-MCWS-C-6 0.593 0.842 0.433 0.063 0.663
GV-MCWS-C-7 0.840 0.859 0.379 0.019 0.594
GV-MCWS-C-8 0.893 0.863 0.393 0.015 0.627
GV-MCWS-C-9 0.829 0.870 0.358 0.018 0.570
GV-MCWS-C-10 0.657 0.894 0.361 0.035 0.572
GV-MCWS-C-11 0.501 0.870 0.399 0.065 0.614
GV-MCWS-C-12 0.416 0.887 0.393 0.075 0.617
GV-MCWS-C-13 0.479 0.860 0.403 0.074 0.627
GV-MCWS-C-14 0.780 0.874 0.339 0.020 0.535
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A.1.4.2 LBE concentrations 

 

Figure A.1.9. Difference in wetted area Γ between discharges versus inundation corridor Γ. Data 
are colored by reach. Lines with arrows between points indicate direction of increasing discharges 
from data points associated with 10.73 to 82.12 to 343.6 m3/s. Some arrows have been offset for 
visual purposes. 

A.1.4.3 LBE spacings 

As stated in the main text, distributions of discharge-dependent streamwise spacing metrics 

were positively skewed and indicated a strong tendency for closely spaced LBEs. Histograms of 

𝜆 , 𝜆∗, and 𝜆∗ distributions are depicted in Figure A.1.10. 
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Figure A.1.10. Histograms of streamwise spacing metrics (a-d) 𝝀𝒍 , (e-h) 𝝀∗
𝒍 , and (i-l) 𝝀∗

𝒍  for 
discharge-dependent LBEs. For visual purposes X-axis values have been truncated to a maximum 
value of 40 despite higher values occurring. 

A.1.4.4 Question 2 results (maximum resistance) 

None. 

A.1.4.5 Comparing Hydrodynamic Regimes from Concentration and Spacing Metrics 

As stated in the main text, comparison of cross-sections classified into Morris’s (1959) 

hydrodynamic regimes using 𝜆∗ and Γ found only 44% sections were classified the same by each 
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method. Table A1.13 depicts a complete confusion matrix of how cross-sections were classified 

according to each metric for each discharge-dependent LBE dataset. 

Visualizing distributions of cross-sectional LBE counts found data were more distinct 

between hydrodynamic regimes classified by Γ compared to regimes classified by 𝜆∗, the former 

showing clear stepwise increases in the number of LBEs per cross-section when going from 

isolated flow to wake interference to skimming flow, whereas the latter had more uniform counts 

across regimes (Figure A.1.11). Similar, albeit more muted patterns, were observed comparing 

distributions of cross-sectional median LBE areas (Figure A.1.12). 

Comparing LBE count and median LBE area distributions of similarly classified cross-

sections with those having the three most common classification discrepancies (i.e., Γ-based wake 

interference sections classified as isolated roughness and skimming flow regimes according to 𝜆∗, 

and Γ-based skimming flow sections classified as wake interference according to 𝜆∗), several 

patterns emerged. Firstly, LBE counts of sections classified as wake interference by Γ but as 

isolated roughness or skimming flow by 𝜆∗ were lower than for similarly classified sections (i.e. 

both in wake interference regime) (Figure A.1.13). Median LBE areas were also lower for 𝜆∗-

based isolated roughness sections and higher for 𝜆∗-based skimming flow sections compared to 

similarly classified sections (Figure A.1.14). This result is what would be expected, but together 

with LBE count data suggests 𝜆∗-based isolated roughness classification discrepancies might have 

been driven by lower numbers of smaller LBEs with longer downstream spacings compared to 

similarly classified sections, and that 𝜆∗-based skimming flow classification discrepancies might 

have been driven by lower numbers of larger LBEs with shorter downstream spacings. 

Comparing Γ-based skimming flow sections classified as wake interference by 𝜆∗ found 

LBE counts to be higher and LBE medians areas to be lower than sections classified the same by 
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both metrics (i.e. both in skimming flow regime) (Figure A.1.13 and Figure A.1.14). This suggests 

larger numbers of smaller LBEs were present in dissimilar sections relative to similar sections, 

which does not point to clear reasons for the discrepancies. Notably these sections had higher LBE 

counts and median areas than sections classified in the wake regime by both metrics, which 

supports the Γ-based skimming flow classification and again suggests there may be uncertainty 

with the 𝜆∗ metric. 

Table A1.13. Confusion matrix of the number of cross-sections classified into each of Morris’s 
(1959) hydrodynamic regimes using 𝝀∗

𝒍  (columns) and Γ (rows) values for each discharge-
dependent LBE dataset. Numbers along diagonals were classified the same by both metrics. 
Abbreviations are such that: IF – isolated roughness; WI – wake interference; and SF – skimming 
flow. 

(a) 1.54 m3/s  𝜆∗  (b) 10.79 m3/s  𝜆∗ 

IF WI SF  IF WI SF 

Γ 
IF 509 165 182  

Γ 
IF 397 134 129 

WI 780 743 619  WI 796 806 569 

SF 203 381 654  SF 197 512 696 

                     
(c) 82.12 m3/s 𝜆∗   (d) 343.6 m3/s 𝜆∗  

IF WI SF  IF WI SF 

Γ 
IF 279 83 48  

Γ 
IF 179 53 28 

WI 891 875 468  WI 944 896 341 

SF 216 661 668  SF 250 790 708 
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Figure A.1.11. Violin plots of LBE count distributions for cross-sections classified into each of 
the three hydrodynamic regimes using Γ and 𝝀∗

𝒍  values for each discharge-dependent LBE dataset.
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Figure A.1.12. Violin plots of median LBE area distributions for cross-sections classified into each 
of the three hydrodynamic regimes using Γ and 𝝀∗

𝒍  values for each discharge-dependent LBE 
dataset.  
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Figure A.1.13. Violin plots of cross-sectional LBE count distributions for each discharge-
dependent LBE dataset stratified by how sections were classified into hydrodynamic regimes by 
both Γ and 𝝀∗

𝒍  values. X-axis values are unique codes for all possible regime classification 
combinations. The first number corresponds to the Γ-based regime classification and the second 
number to the 𝝀∗

𝒍 -based regime classification. Values are coded as follows: 1 – isolated roughness; 
2 – wake interference; and 3 – skimming flow.  
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Figure A.1.14. Violin plots of cross sectional LBE median area distributions for each discharge-
dependent LBE dataset stratified by how sections were classified into hydrodynamic regimes by 
both Γ and 𝝀∗

𝒍  values. X-axis values are unique codes for all possible regime classification 
combinations. The first number corresponds to the Γ-based regime classification and the second 
number to the 𝝀∗

𝒍 -based regime classification. Values are coded as follows: 1 – isolated roughness; 
2 – wake interference; and 3 – skimming flow. 

A.1.4.6 Question 3 results (LBE lateral structure) 

None. 

  Discussion 

A.1.5.1 Mapping LBEs in a mountain river 

None. 

A.1.5.2 LBE lateral spatial structure and resistance 

None. 
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A.1.5.3 Segment and reach resistance maximization 

None. 

A.1.5.4 Cross-section resistance maximization 

 

Figure A.1.15. (a) 3D phase-space showing reach-scale Γ (x-axis) and percentage of 𝜆∗ values 
classified as WI (y-axis) and IF (z-axis). Vertical gray planes are Γ thresholds for Morris’s 
hydrodynamic regimes. Regime thresholds for spacing were not able to be shown on this phase-
phase, but can be inferred from the two spacing dimensions. (b) 2D phase-space showing cross-
section scale Γ and 𝜆∗ values for 20 randomly selected cross-sections. Vertical and horizontal bold 
dark lines are thresholds for Morris’s hydrodynamic regimes. Abbreviations are such that: R – 
Reach; IF – isolated roughness; WI – wake interference; and SF – skimming flow. 

A.1.5.5 Resistance maximization as an attractor state 

None. 

 Conclusions 

None. 
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APPENDIX 2. Supporting Information for ‘Process-based similarity’ revealed by 

discharge-dependent relative submergence dynamics of thousands of large bed elements 

This appendix provide supplemental materials that include information on the following 

topics: 

 Details of statistical assessment of LBE relative submergence distributions and 

alternative methods used to calculate LBE relative submergence (1A.2.3.4); 

 Details of LBE relative submergence analysis methods (1A.2.3.5 and 1A.2.3.6); 

 Additional LBE relative submergence distribution results (1A.2.4.1); 

 Additional LBE relative submergence distribution type and Style results (1A.2.4.2); 

 Additional process-based similarity Style results (1A.2.4.3); 

 Additional incremental inundation corridor relative submergence results (1A.2.4.4); 

 Additional submergence trends and alternative relative submergence calculation results 

(1A.2.4.5); 

 Additional discussion on relative submergence implications including resistance 

equations (1A.2.5.3); and 

 References. 

The organization of this appendix uses the same outline and headings of the chapter to 

which this supplements. Subject heading followed by the word “none” indicate no supplemental 

information is provided for that section. 

A.2.1 Introduction 

None. 

A.2.1.1 Background 

None. 
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A.2.1.2 Styles of LBE relative submergence response to discharge 

As stated in the main text, the evolution of river channel h/Dc distributions from one 

discharge to another involves: (i) depth changes at previously wetted LBEs result in a new 

distribution of h/Dc values at just these LBEs; and (ii) new LBEs become wetted along the 

expanding channel margin (i.e. the incremental inundation corridor [IIC]) and their distribution is 

convolved with the new distribution of previously wetted LBEs. The assumption for this study is 

that h/Dc values at newly wetted LBEs would be relatively low compared to the set of previously 

wetted LBE and depth at most previously wetted LBEs would increase with increasing discharge. 

Both assumptions are realistic for partly-confined to confined rivers, but may not always be the 

case. For each change in discharge the two processes described above occur in tandem to form 

each unique set of discharged-dependent h/Dc values. Examples of how these processes could 

result in the conceptualized Style 2 and Style 3 conditions are described in the main text and 

graphically depicted in Figure A.2.1.  



 

A-72 

 

Figure A.2.1. Conceptual illustration showing how a h/Dc distribution at an initial discharge (solid 
dark line) can evolve to a new h/Dc distribution at a second discharge (solid red line) through 
combination of the new h/Dc distribution of previously wetted LBEs (solid gray line) and the 
incremental inundation corridor h/Dc distribution (dashed gray line) that result in conditions 
conceptualized in (a) Style 2 and (b) Style (3). 

A.2.1.3 Study questions 

None. 

A.2.2 Study river segment 

None. 

A.2.3 Methods 

A.2.3.1 Topographic and bathymetric mapping 

None. 

A.2.3.2 LBE mapping 

None. 
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A.2.3.3 Two-dimensional hydrodynamic modeling 

None. 

A.2.3.4 Relative submergence calculations 

As discussed in the main text, relative submergence calculations were not without potential 

issues and uncertainty, and thus one alternative method for calculating depth (h) as well as an 

alternative method for calculating LBE representative grain size (Dc) at each LBE were explored. 

The alternative grain size metric, 𝐷, could be informative if LBEs have complex shapes that are 

poorly represented by a single maximum height. For reference, a perfect hemisphere would have 

𝐷  𝐷 . If area was held equal, a wider spheroid would have a 𝐷 that was a larger percentage of 

Dc, a taller spheroid would have a 𝐷 that was a smaller percentage of Dc, and a cube or rectangle 

would have 𝐷  𝐷 . Most of the predicted LBEs, resembled hemispherical to hemispheroidal 

objects such that 71 percent were in the range of 0.25𝐷 𝐷  0.75𝐷  (Wiener & Pasternack, 

2022). Therefore, 𝐷 is generally less than Dc for LBEs in the study segment. The alternative depth 

metric, ĥ, is always less than or equal to h. Using the two particle size metrics (Dc and 𝐷) and two 

measures for depth (h and ĥ), four relative submergence values were calculated for each LBE for 

each discharge to address sensitivity of the calculation methods. 

A.2.3.5 LBE relative submergence general hypothesis testing 

Statistical properties of all 39 h/Dc distributions were calculated using the R programming 

language and included the arithmetic mean [x̄], standard deviation [σ], mode [φ], coefficient of 

skewness [g], and coefficient of kurtosis [β2] (R Core Team, 2021). Both g and β2 were calculated 

using the ‘EnvStat’ package (Millard, 2013). Modal values were calculated from frequency 

histograms using the midpoint of the bin with the highest count. The number of bins for each 

dataset followed the approach of Freedman and Diaconis, (1981) (Table A.2.1). 
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Table A.2.1. Segment- and reach-scale h/Dc histogram bin-widths (m) used for modal calculations. 

Discharge 
(m3/s) 

Spatial Domain 

Segment Reach 1 Reach 2 Reach 3 Reach 4 Reach 5 Reach 6 

1.54 0.05 0.1 0.05 0.1 0.05 0.05 0.1 

10.73 0.05 0.1 0.1 0.1 0.1 0.1 0.1 

82.12 0.1 0.2 0.2 0.5 0.2 0.2 0.5 

343.6 0.2 0.5 0.5 0.5 0.5 0.5 0.5 

1184.6 0.5 1 1 1 0.5 1 1 

A.2.3.6 LBE relative submergence distribution and styles analysis 

As discussed in the main text, statistical properties of h/Dc data (e.g. x̄, σ, φ, g, and β2) were 

compared within domains either qualitatively, or using non-parametric or appropriate parametric 

statistical tests. Comparison of φ, g, and, β2 values was done qualitatively, simply comparing 

relative magnitudes and trends of how values changed between datasets. Comparison of x̄ and σ 

values between datasets was done using Welch’s t-test and F-test, respectively, for normally 

distributed h/Dc datasets and with the Mann-Whitney U and Levene’s tests, respectively, for non-

normally distributed h/Dc datasets (R Core Team, 2021; Fox & Weisberg, 2019). Normality was 

assessed based on the best fitting distribution for each dataset. 

Six conceptual discharge-dependent h/Dc distribution behavior styles were presented in the 

main text (Section 2.2.2), additional details on hypothesis testing for Styles 2-4 not described in 

the main text are presented below. For all Styles central tendency was tested between datasets 

using either Welch’s t-test or Mann-Whitney U test for normally and non-normally h/Dc datasets, 

respectively, and variance was tested using either F-test and Levene’s test for normally and non-

normally h/Dc datasets, respectively. As stated in the main text, Style 4 testing first required that 

within each given domain, central tendency and variance were both not equivalent between 

discharge-dependent h/Dc datasets. Next, to determine the rate that parametric and statistical 

properties changed between discharges statistical models were fit for each domain using discharge 
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as a dependent variable and h/Dc dataset properties (i.e. �̅�, σ, φ, g, β2, and ϴ values, where ϴ is a 

placeholder for distribution parameters) as independent variables. Slopes of the fitted statistical 

models were compared to test if rates at which h/Dc dataset properties changed were equivalent 

(e.g. Paternoster et al., 1998). Notably, while comparing the rate of change of all dataset properties 

could be of general interest, the expectation that all properties would evolve at similar rates is not 

necessarily appropriate. For example, let us presume h/Dc distributions are positively skewed and 

leptokurtic, and thus may be reasonably modeled as having log-normal distributions. Applying the 

following system of discharge-specific linear scaling relationships: 

 

𝐹
,

 𝜆 ∙ 𝐹
,

 𝐶

𝐹
,

 𝜆 ∙ 𝐹
,

 𝐶
 (Eq. A.2.1) 

where F() is the frequency distribution of h/Dc values, i is and index for discharge, j is an index for 

domain, λ is a unique scalar for each discharge, and C is a unique constant for each discharge by 

definition only x̄ , σ, μ, and σln would have equivalent discharge-dependent slopes between 

domains, where μ and σln are the first and second parameters of the log-normal distribution 

estimated according to maximum likelihood, respectively. Values for g, and β2 would be constant 

across discharges (i.e. zero slope for all domains) and non-linear scaling of φ values result in non-

equivalent slopes between domains. While these between domain variable relationships are 

specific for log-normally distributed data, they remain true for several other distributions including 

Gamma distributed data. Scaling relationship in EQ. A.2.1 are much simpler than the complex 

convolution of previously wetted and newly wetted LBE h/Dc values that occur between 

discharges, but provide a basis for the Style 4 acceptance criteria that only x̄, σ, and distribution 

parameters would have equivalent discharge-dependent slopes between domains. 
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A.2.4 Results 

A.2.4.1 Question 1 (LBE relative submergence distributions) and general hypothesis results 

Table A.2.2. Segment- and reach-scale h/Dc dataset statistical properties. 

Discharge 
(m3/s) 

Spatial Domain Reach-scale 
CVa Segment Reach 1 Reach 2 Reach 3 Reach 4 Reach 5 Reach 6 

�̅� (-) 

1.54 0.73 0.82 0.68 0.75 0.70 0.70 0.67 0.08
10.73 1.02 1.18 0.96 1.04 0.95 0.96 0.89 0.10
82.12 1.97 2.22 1.85 2.09 1.79 1.94 1.69 0.10
343.6 3.63 4.00 3.37 3.90 3.26 3.71 3.48 0.08

1184.6 6.78 7.17 6.33 7.06 6.22 6.93 7.99 0.09

 s (-) 

1.54 0.53 0.69 0.44 0.58 0.44 0.44 0.29 0.29
10.73 0.81 1.04 0.71 0.84 0.67 0.65 0.41 0.29
82.12 1.67 1.99 1.58 1.76 1.41 1.55 1.03 0.21
343.6 3.15 3.54 3.01 3.49 2.63 3.16 2.11 0.18

1184.6 5.66 6.21 5.43 6.14 4.79 5.86 4.23 0.15

 φ (-) 

1.54 0.53 0.55 0.53 0.55 0.53 0.73 0.75 0.17
10.73 0.68 0.55 0.65 0.45 0.65 0.75 0.85 0.22
82.12 0.85 0.70 0.70 0.75 0.70 0.70 0.75 0.04
343.6 0.70 0.75 0.75 0.75 0.75 0.75 3.25 0.87

1184.6 0.75 1.50 1.50 1.50 0.75 0.50 5.50 0.98

 g (-) 

1.54 3.98 3.94 2.39 4.08 2.90 3.30 2.84 0.20
10.73 2.85 2.62 2.18 2.84 2.71 2.27 2.62 0.10
82.12 1.73 1.62 1.75 1.67 1.70 1.38 1.08 0.17
343.6 1.39 1.30 1.54 1.38 1.31 1.16 0.65 0.25

1184.6 1.24 1.18 1.38 1.40 1.08 1.10 0.36 0.35

 β2 (-) 

1.54 37.52 33.18 14.29 33.30 21.76 27.31 25.69 0.28
10.73 18.74 15.27 10.90 17.81 17.42 14.14 22.98 0.25
82.12 7.30 6.39 6.98 7.06 7.47 5.23 5.71 0.13
343.6 5.15 4.59 5.76 5.12 4.96 3.99 3.42 0.18

1184.6 4.50 4.07 5.03 5.13 4.01 3.73 2.73 0.22

 α (-) 

1.54 2.53 2.05 2.75 2.30 2.93 2.92 5.75 0.43
10.73 2.05 1.65 2.09 1.95 2.52 2.33 4.72 0.44
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Discharge 
(m3/s) 

Spatial Domain Reach-scale 
CVa Segment Reach 1 Reach 2 Reach 3 Reach 4 Reach 5 Reach 6 

82.12 1.53 1.33 1.55 1.48 1.77 1.58 2.51 0.25
343.6 1.31 1.22 1.31 1.21 1.50 1.28 2.16 0.25

1184.6 1.32 1.21 1.33 1.30 1.49 1.24 2.58 0.34

 β (-) 

1.54 3.45 2.49 4.02 3.08 4.19 4.19 8.56 0.48
10.73 2.00 1.39 2.18 1.87 2.66 2.44 5.29 0.52
82.12 0.78 0.60 0.84 0.71 0.99 0.81 1.48 0.34
343.6 0.36 0.30 0.39 0.31 0.46 0.34 0.62 0.30

1184.6 0.19 0.17 0.21 0.18 0.24 0.18 0.32 0.26
aCoefficient of variation (CV) calculated as ratio of standard deviation and mean of reach-scale values. 

Table A.2.3. Incremental inundation corridor h/Dc dataset statistics. 

Discharge 
(m3/s) 

Value 

x̄ (-) 

1.54-10.73 0.75
10.73-82.12 1.14
82.12-343.6 1.55

343.6-1184.6 2.28

 σ (-) 

1.54-10.73 0.33
10.73-82.12 0.70
82.12-343.6 1.14

343.6-1184.6 2.07

 φ (-) 

1.54-10.73 0.63
10.73-82.12 0.75
82.12-343.6 0.75

343.6-1184.6 0.90

 g (-) 

1.54-10.73 1.45
10.73-82.12 1.84
82.12-343.6 1.84

343.6-1184.6 1.64

 β2 (-) 

1.54-10.73 3.86
10.73-82.12 4.54
82.12-343.6 4.22

343.6-1184.6 2.79
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Discharge 
(m3/s) 

Value 

 μ (-) 

1.54-10.73 -0.26
10.73-82.12 -0.37
82.12-343.6 -0.03

343.6-1184.6 0.22

 σln (-) 

1.54-10.73 0.48
10.73-82.12 0.42
82.12-343.6 0.55

343.6-1184.6 0.64

A.2.4.2 Question 2 results (distribution types and style testing) 

A.2.4.2.1 Goodness-of-fit testing 

All distribution goodness-of-fit testing was done in R code using a permutation based 

approach, whereby a random set of 500 values was selected from each dataset for use in each test. 

This process was repeated 500 time for each test. Fit was considered good if the arithmetic mean 

of p values from the set of 500 tests was > 0.05. The corrected Anderson-Darling test was 

performed using the ‘ad.test’ function from the Goftest package (Faraway et al., 2019). Additional 

test results not reported directly in the main text are presented below. 

As discussed in the main text, 24 of 30 reach-scale datasets were best fit by two-parameter 

Gamma distributions, and six were best fit by Weibull distributions (Figure A.2.2). The two-

parameter Gamma distribution is parameterized by a shape parameter (α) and an inverse scale or 

rate (β) parameter with probability density function for random variable x: 

 𝑓 𝑥; 𝛼, 𝛽 𝑥 𝑒     𝑓𝑜𝑟 𝑥 0 | 𝛼, 𝛽 0  (Eq. A.2.2) 

where Γ  is the Gamma function. Equivalent α values but different β’s correspond to distributions 

with similar overall shapes that scale such that the ratio of variances (𝜎 ) are roughly proportional 
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to the ratio of squared β values ( ) and the ratio of mean (𝑥) and modal (φ) values are roughly 

proportional to the ratio of β values. Thus, α’s being equal, lower β values result in similarly shaped 

distributions with larger variance and increasing central tendency and vice versa for larger β 

values. Alternately, when β is constant and α varies, distributions take different shapes and ratios 

of means and variances scale proportionally to the ratio of α values (
̅

̅
). 
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Figure A.2.2. Histograms of reach-scale discharge-dependent h/Dc probability densities (bars) 
overlain with best fitting distribution (red lines) (a-dd). The ‘R’ in plot titles denotes reach and the 
number next to R is the reach number. The next number in the plot titles is discharge in m3/s. 
Panels are organized such that each row is a different geomorphic reach and each column is a 
different discharge. 

A.2.4.2.2 Parameter and statistical testing 

For comparing fitted Gamma distribution shape (α) and rate (β) parameters the likelihood-
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ratio-test of Krishnamoorthy et al. (2015) returns two test statistics representing p values for each 

dataset for each individual test. If both test statistics were > 0.05 then equality of parameters was 

rejected above a 95% confidence level. Figure A.2.3.(a) depicts a network graph showing the 19 

of 150 possible between segment and reach domain combinations with α values ‘equal’ above a 

95% confidence level. Overall, 8 of 19 datasets with equivalent α values occurred for LBEs 

associated with the same discharge. Figure A.2.3.(b and c) depict network graphs of the between 

reach pair-wise combinations with equivalent α and β values, respectively. No segment-to-reach 

or reach-to-reach pairs had similar parameters across all discharge-dependent datasets. Figure 

A.2.4 depicts network graphs showing positive results (i.e. fail to reject null hypothesis) of the 

between segment- and reach-scale domain Mann-Whitney U and Levene’s testing (p > 0.05). Only 

12 and 5 of 150 between segment and reach datasets had positive Mann-Whitney U and Levene’s 

tests, respectively. Of the 425 possible tests, between reach datasets had 24 and 13 positive Mann-

Whitney U and Levene’s tests, respectively. All but three of these between reach tests occurred at 

the same discharge.  
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Figure A.2.3. Network graphs of spatial domains as nodes (colored circles) with links (lines) to 
other domains indicating equivalency between (a) segment- and reach-scale α values, (b) between 
reach-scale α values, and (c) between reach-scale β values. Nodes are colored by domain and sized 
by discharge. ‘S’ and ‘R’ are shorthand for segment and reach, respectively. The number next to 
R is the reach number. The number next to F is the discharge: 1 – 1.54; 2 – 1.73; 3 – 81.12; 4 – 
343.6; and 5 – 1184.6 m3/s. Domains or links that are absent did not have equivalent properties. 
Link line thicknesses are weighted by p values.  
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Figure A.2.4. Network graphs of (a) Mann-Whitney U and (b) Levene’s tests between segment-
scale and reach datasets and (c) Mann-Whitney U and (d) Levene’s tests between reach-scale 
datasets. Nodes are colored by domain and sized by discharge. ‘S’ and ‘R’ are shorthand for 
segment and reach, respectively. The number next to R is the reach number. The number next to 
F is the discharge: 1 – 1.54; 2 – 1.73; 3 – 81.12; 4 – 343.6; and 5 – 1184.6 m3/s. Domains or links 
that are absent did not have equivalent properties. Link line thicknesses are weighted by p values. 

A.2.4.3 Processed-based similarity 

Relationships between parametric and statistical properties versus discharge and associated 

power-law models are shown in Figure A.2.5. Details of the models, including model coefficients, 

adjusted-R2 values, and F-test p-values are provided in Table A.2.4. . Of the 23 rejected slope 

comparisons five were comparing the φ model of Reach 5 to Reaches 1, 2, 3, 4, and 5; five were 

comparing the g model of Reach 6 to the Segment and to Reaches 1, 3, 4, and 5; six were comparing 
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the g model of Reach 2 to the Segment and to Reaches 1, 3, 4, 5, and 6; six were comparing the β2 

model of Reach 2 to the Segment and to Reaches 1, 3, 4, 5, and 6; and one was comparing the α 

model of Reach 1 to Reach 5. 

 

Figure A.2.5. Log-log plot of statistical and parametric properties (x̄, σ, φ, g, β2, α, and β values) 
versus discharge (points) and fitted power law models (dashed lines). Spatial domains are 
differentiated using point shape and color.  
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Table A.2.4. Summary of discharge (Q) vs h/Dc dataset property (Ф) power-law models of the 
form Ф = a’(Q)b including model parameters (a’,b), adjusted-R2, and F-test p-values. 

Spatial 
Domain a' b 

adjusted-
R2 

F-test p-
value 

�̅� (-) 

Segment 0.53 0.3351 0.96 0.003 
R1 0.61 0.3259 0.96 0.002 
R2 0.50 0.3347 0.96 0.003 
R3 0.54 0.3410 0.96 0.002 
R4 0.50 0.3280 0.95 0.003 
R5 0.49 0.3490 0.95 0.003 
R6 0.44 0.3671 0.91 0.007 

 σ (-) 

Segment 0.39 0.36 0.97 0.001 
R1 0.53 0.33 0.97 0.001 
R2 0.32 0.38 0.98 0.001 
R3 0.42 0.36 0.97 0.002 
R4 0.32 0.36 0.97 0.001 
R5 0.30 0.40 0.97 0.001 
R6 0.19 0.41 0.96 0.002 

 φ (-) 

Segment 0.57 0.05 0.38 0.162 
R1 0.44 0.13 0.62 0.070 
R2 0.46 0.13 0.64 0.066 
R3 0.41 0.14 0.60 0.077 
R4 0.54 0.05 0.86 0.015 
R5 0.80 -0.04 0.18 0.263 
R6 0.46 0.30 0.62 0.070 

 g (-) 

Segment 4.25 -0.18 0.98 0.001 
R1 4.08 -0.19 0.97 0.001 
R2 2.56 -0.09 0.98 0.001 
R3 4.17 -0.17 0.92 0.006 
R4 3.44 -0.16 0.94 0.004 
R5 3.39 -0.17 0.95 0.003 
R6 4.18 -0.32 0.92 0.006 

 β2 (-) 

Segment 40.10 -0.34 0.96 0.002 
R1 33.98 -0.33 0.95 0.003 
R2 15.37 -0.16 0.98 0.001 
R3 34.80 -0.30 0.93 0.005 
R4 27.26 -0.28 0.96 0.002 
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R5 28.60 -0.32 0.93 0.005 
R6 37.16 -0.38 0.91 0.007 

 α (-) 

Segment 2.59 -0.11 0.95 0.004 
R1 2.04 -0.08 0.93 0.005 
R2 2.77 -0.12 0.94 0.004 
R3 2.38 -0.10 0.90 0.009 
R4 3.11 -0.11 0.94 0.004 
R5 3.10 -0.14 0.97 0.002 
R6 5.96 -0.15 0.78 0.031 

 β (-) 

Segment 4.87 -0.44 0.98 0.001 
R1 3.32 -0.41 0.99 0.000 
R2 5.56 -0.45 0.99 0.000 
R3 4.38 -0.44 0.98 0.001 
R4 6.16 -0.44 0.97 0.001 
R5 6.27 -0.49 0.98 0.001 
R6 13.40 -0.52 0.97 0.001 

A.2.4.4 Incremental inundation corridor relative submergence 

As discussed in the main text, comparison of Dc values within each incremental inundation 

corridor were found to have greater similarity than h values across the four corridors (Figure 

A.2.6). 
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Figure A.2.6. Histograms of (a-d) Dc values and (e-h) h values at LBEs within each incremental 
inundation corridor. Note greater similarity of Dc values between datasets compared to h values. 

A.2.4.5 Submergence trends and alternate calculations 

To isolate sets of h/Dc values at newly wetted LBEs between discharges, only those LBEs 

that were not wetted at lower discharges were included (e.g. for 10.73-82.12 m3/s dataset only 

LBEs not wetted at 10.73 m3/s considered). In order to isolate how depths changed at previously 

wetted LBEs between discharges, differences in h/Dc values between successive discharges (e.g. 

h/Dc at 10.73 m3/s minus h/Dc at 1.54 m3/s) were calculated for each LBE. From these data only 

those LBEs that were wetted at lower discharges were included (e.g. for 10.73-82.12 m3/s dataset 

only LBEs wetted at 10.73 m3/s considered), essentially the opposite of the incremental inundation 
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corridor and the set of newly wetted LBE. 

Differences in h/Dc dataset means resulting solely from the addition of newly wetted LBEs 

(Δx̄n) were calculated for each change in discharge by subtracting the mean of the set of h/Dc values 

resulting from combining h/Dc values at newly wetted LBEs with h/Dc values of previously wetted 

LBEs from the prior discharge (e.g. for 10.73-82.12 m3/s this comprised combining h/Dc values 

from the 82.12 m3/s dataset for LBEs that were not wetted at 10.73 m3/s and h/Dc values from the 

10.73 m3/s dataset) from the mean of the complete h/Dc dataset of the higher discharge (e.g. using 

the same example, the 82.12 m3/s dataset). Differences in h/Dc dataset means due solely to depth 

changes at previously wetted LBEs (Δ x̄ p) were calculated for each change in discharge by 

subtracting the mean of h/Dc values from each subsequently higher discharge for the set of LBEs 

that were wetted at the prior discharge (e.g. for 10.73-82.12 m3/s h/Dc values came from the higher 

discharge but were limited to the set of LBEs that were wetted at 10.73 m3/s) from the mean of the 

complete h/Dc dataset. 

As discussed in the main text, comparison of reach-scale discharge-dependent Dc values 

were found to be visually similar within each reach, independently (Figure A.2.7). Overlap index 

values from comparing all possible reach-scale Dc datasets within each independent reach varied 

between 0.69-0.98 versus between 0.07-0.73 for h comparisons. 

As discussed in the main text, LBE submergence did not occur equally within each laterally 

nested discharge-dependent portion of the river corridor, such that LBEs located in the baseflow 

channel were often more submerged at any given discharges relative to LBEs in other portions of 

the river corridor. The percent of LBEs intersecting each wetted area that exceeded relevant h/Dc 

thresholds at each higher discharge are presented in Table A.2.5.. 

Lastly, as discussed in the main text discharge-dependent distributions of relative 
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submergence were consistent in their shape and how they changed between datasets regardless of 

method for calculating h and Dc. For instance, segment-scale distributions of h/Dc, h/𝐷, ĥ/Dc, and 

ĥ/D were all positively skewed and predominantly leptokurtic (Figure A.2.8). The majority of 

datasets (8 of 15) were best fit by Gamma distributions with the rest best fit by Weibull 

distributions. Calculations using h/Dc had the lowest average values as Dc>𝐷 and h<ĥ. Alternately, 

ĥ/D had the highest average values.  
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Figure A.2.7. Histograms of LBE heights (Dc) for reach-scale discharge-dependent LBEs (a-dd). 
Panels are organized such that each row is a different geomorphic reach and each column is a 
different discharge.  
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Table A.2.5. Percentage of segment-scale h/Dc values for just those LBEs within each discharges 
wetted area exceeding certain thresholds at each higher discharge. 

Simulated Discharge 
(m3/s) 

Threshold 

1 2 3 3.5 4 10 
LBEs in 1.54 m3/s wetted area 

10.73 45.9 11.8 3.8 2.2 1.3 0.0
82.12 81.4 52.7 31.0 23.6 17.9 0.4
343.6 94.6 79.8 64.8 57.6 51.3 9.3

1184.6 98.6 93.4 86.0 81.4 76.9 35.9

LBEs in 10.73 m3/s wetted area 

82.12 77.8 48.9 27.9 20.9 15.5 0.3
343.6 93.5 78.4 63.7 56.8 50.6 8.4

1184.6 98.5 92.8 85.5 81.1 76.8 36.7

LBEs in 82.12 m3/s wetted area 

343.6 90.0 73.3 58.3 51.5 45.3 6.4
1184.6 98.0 91.3 83.6 79.3 75.1 35.3

LBEs in 343.6 m3/s wetted area 

1184.6 96.7 88.0 79.5 75.0 70.6 30.3
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Figure A.2.8. Overlain kernel densities of segment-scale relative submergence probability 
densities for all five discharge-dependent LBE datasets based on relative submergence calculated 
according to (a) h/Dc, (b) h/𝑫, (c) ĥ/Dc, and (d) ĥ/𝐃. 

A.2.5 Discussion 

A.2.5.1 LBE relative submergence styles 

None. 

A.2.5.2 Evolution toward steady-state relative submergence 

None. 

A.2.5.3 Implications of relative submergence distributions 

As discussed in the main text, the resistance equations of Bathurst (1985), Ferguson (2007), 

Katul et al. (2002), and Thompson & Campbell (1979) were used to estimate reach-scale flow 

resistance (f): 
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Bathurst (1985): 

 4 5.62 log  (Eq. A.2.3) 

Ferguson (2007): 

 
/

  

 (Eq. A.2.4) 

Katul et al. (2002) [from Ferguson, 2007]: 

 1 log 0.65 cosh 1  (Eq. A.2.5) 

Thompson & Campbell (1979) [from Ferguson, 2007]: 

 2.5 1 . ln  (Eq. A.2.6) 

Equation (A.2.5) of Katul et al. (2002) is the result of integration of a mixing layer type equation 

with a vertical velocity profile represented by a hyperbolic tangent function and mixing layer 

thickness k. In (A.2.5) k is set equal to 1ꞏD84 Ferguson’s (2007). In Thompson and Campbell’s 

(1979) modified Keulegan equation (A.2.6) k is set equal to 2.37ꞏD84. In Ferguson’s (2007) 

variable-power equation (A.2.4) value for a1 and a2 are 6.5 and 2.5, respectively as recommended 

by Rickenmann and Recking (2011). For calculations, the assumption that h~R is applied. 

The expected value of a continuous distribution of random variable x is defined as: 

 𝐸 𝑥 𝑥 ∙ 𝑓 𝑥 𝑑𝑥 (Eq. A.2.7) 

which can be simplified and solved with numerical integration as: 

 𝐸 𝑥 ∑ 𝑥 ∙ 𝑝 𝑥  (Eq. A.2.8) 

Thus, substituting (A.2.8) into (A.2.3) for instance with x = h/Dc yields: 

 ∑ 𝑝 4 5.62 log  (Eq. A.2.9) 
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The same was done when solving equations A.2.4-A.2.6 using expected values of each reach-scale 

h/Dc dataset as input for h/D84. 

A.2.5.4 Resistance trends and fixed roughness coefficients 

None. 

A.2.5.5 Dynamism of relative submergence 

None. 

A.2.6 Conclusions 

None. 
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APPENDIX 3. Supporting Information for Hydro-morphological variable linkages with 

morphological unit scale fluvial landforms in a boulder-bedded mountain river 

This appendix provide supplemental materials that include information on the following 

topics: 

 Details of generalized MU types and literature review of the selected HM variables 

(1A.3.1.2); 

 Details of two-dimensional hydrodynamic modeling including parametrization and 

calibration, and model validation (1A.3.3.1); 

 Details of morphological unit (MU) classification, delineation, assessment, and analysis 

methods (1A.3.3.1); 

 Details of hydro-morphological (HM) variable calculations (1A.3.3.1); 

 Details of heuristic assessment methods (1A.3.3.2.3); 

 Details of at-a-station hydraulic-topography exponent calculations (1A.3.3.3); 

 Details of random forest model parameterization (1A.3.3.4); 

 Additional MU analysis results (1A.3.4.1); 

 Additional HM variable results (1A.3.4.2); 

 Additional MU-HM variable statistical relationship results (1A.3.4.3); 

 Additional MU-HM variable pairwise analysis results (1A.2.4.3.2); 

 Additional MU-HM variable heuristic expectation analysis results (1A.2.4.3.3); 

 Additional at-a-station hydraulic-topography results (1A.3.4.4); 

 Additional random forest model results (1A.3.4.5); 

 Comparison of HM variable ranges in this study to past studies (1A.3.5.2); and 

 References. 

The organization of this appendix uses the same outline and headings of the chapter to 

which this supplements. Subject heading followed by the word “none” indicate no supplemental 

information is provided for that section. 
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A.3.1 Introduction 

None. 

A.3.1.1 Scientific questions 

A.3.1.2 Generalized in-channel MU types, selected hydro-morphological variables, and MU 

expectations for coarse-bedded rivers 

As discussed in the main text MU types can be coarsely simplified into five end-member 

groups based on relative combinations of collocated, low flow water depth and water speed 

(velocity). At one quadrant lies pool type MUs that have relatively high flow depths and low flow 

speeds. Opposite this quadrant are units that have relatively low flow depths and high flow speeds 

(riffle type and step type). Riffle and step type units are further differentiated based on step type 

units having higher water speeds and bed slopes, and coarser grain sizes. Pools, riffles, and steps 

are by far the most commonly referenced MUs in the scientific literature, and are often defined 

using characteristics beyond low flow depth and water speed (Wheaton et al., 2015). For instance, 

pools typically occur in lower gradient channel sections than rifles, which occur in lower gradient 

sections than steps (Grant et al., 1990; Halwas & Church, 2002; Wyrick & Pasternack, 2014). The 

other two end-members contain less common MU types that function as transitional units between 

pools and riffles/steps. The first of these are units with both relatively low baseflow flow depths 

and flow speeds (slackwater type). Common MUs in this quadrant include slackwater and glide. 

Opposite these units are those that have both relatively high baseflow flow depths and flow speeds, 

which include run, chute, and rapid units (chute type). 

A total of 18 HM variables were considered for this study based on the concept that HM 

variables measured at the MU scale exert local control on the formation and/or persistence of 

specific MU types through associated process-morphology linkages or at least reflect the channel’s 
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response to such processes (Grant et al., 1990; Belletti et al., 2017; Byrne et al., 2020; Lane et al., 

2022). Non-local factors such as downstream hydraulic controls and MU-to-MU interactions (i.e. 

scour pools downstream of steps) also influence MU occurrence (Lisle, 1986; Harrison & Keller, 

2007; Chartrand et al., 2011; Wheaton et al., 2015). Thus, three longitudinal change HM variables 

were included to capture a subset of non-local factors including changes in channel width and 

shear stress upstream of MUs (Golly et al., 2019). A comprehensive review of the selected HM 

variables including process-morphology linkages for the generalized set of MU types for each 

variable is provided in the subsections below organized by the following 6 groups: channel-size 

variables, channel-shape variables, channel-obstruction/roughness variables, gradient variables, 

longitudinal change variables, and at-a-station hydraulic geometry (AHG) exponent variables. 

Channel-size variables: 

Wetted widths are indirectly linked to several morphogenetic processes associated with the 

formation and/or persistence of several MU types. Width is a component of jamming ratio, defined 

as the ratio of channel width to step forming grain diameter. Jamming ratio describes the 

probability that stable force chains will be established across the channel via granular interactions 

and arrangements (e.g. Church & Zimmermann, 2007; Golly et al., 2019), which are the basis of 

the jammed-state hypothesis, a popular step formation model. Ratios of 2-6 are suggested as being 

critical for step formation (Church & Zimmermann, 2007). If the jamming ratio’s representative 

grain size is uniform in a study domain then wetted width alone is the main determinant of step 

formation potential. Wetted width and multi-stage downstream width variability also figure 

prominently in the flow convergence routing mechanism (MacWilliams et al., 2006; Pasternack et 

al., 2018), which for this study is assumed to be interchangeable with the velocity reversal 

hypothesis (Thompson, 2011). This process of stage-dependent scour and deposition within 
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longitudinally sequenced zones of laterally convergent and divergent flow whereby scour shifts 

from topographic highs (riffles) to topographic lows (pools) with increasing discharge is believed 

to play a critical role in the formation and maintenance of riffle-pool couplets (MacWilliams et al., 

2006; Brown et al., 2016; Hassan et al., 2021). Under the flow convergence routing mechanism, 

shifts in scour typically arise due to changes in flow width and bed elevation, and field 

observations, numerical modeling, and one-dimensional (1D) mass and energy conservation 

suggest maintenance and/or formation of riffle-pool couplets is generally achieved if flow widths 

at riffles are wider than pools at some channel-forming flow (Caamaño et al., 2009; Brown et al., 

2016). Empirical observations have also found MUs to be differentiated by baseflow width 

measurements (Halwas & Church, 2002; Wyrick & Pasternack, 2014). Wetted width’s dependence 

on stage makes the question of which width measurements to include as HM variable(s) 

challenging. Consistent with the dual-stage nature of the flow convergence routing mechanism we 

have included width measurements at three representative stages as HM variables: baseflow width 

(WBs), width at a formative discharge (WF), and width at highest discharge for which 

measurements were available, which corresponds to a valley-filling flood event with an ~13.7-yr 

recurrence interval (W13.7). The inclusion of WF and W13.7 reflect uncertainty in terms of which 

stage may have the strongest, if any, control on MU formation processes. Despite its relevance to 

the flow convergence routing mechanism, WBs has limited control on MU formation, which takes 

place at higher discharges, and is primarily included for predictive purposes. 

Channel-shape variables: 

A channel’s width-to-depth ratio (W/h) serves as a proxy for how bed shear stress (τ) is 

portioned between the channel bed and banks, is an indicator of channel stability, and has been 

widely used to characterize channel morphology (Florsheim, 1985; Church & Jones, 1982; Wyrick 
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& Pasternack, 2014). W/h has been linked to the formation of fluvial landforms (e.g. alluvial bars 

as well as more coarse grained irregular bedforms) via the process of bar instability (Furbish, 1998; 

Wilkinson et al., 2008). Bar instability involves longitudinal variations in sediment transport that 

arise due to instabilities in motion of water and sediment flowing over erodible beds (Nelson, 1990; 

Furbish, 1998). Topographic steering of flow around bed and/or bank attached obstacles is key to 

generating initial instabilities in the flow field that drive bar formation (Nelson, 1990). The view 

of riffles and step landforms as a manifestation of alluvial bar forms is not uncommon, thus 

facilitating a link between bar instability and MUs (Furbish, 1998; Venditti et al., 2017). Findings 

for gravel-bed rivers suggest bar instability occurs when W/h>10. However, observation of bars 

and bedforms in coarse-grained rivers with W/h<10 remain (Florsheim, 1985; Wilkinson et al., 

2008). While factors such as high transverse velocities, topographically induced flow deflections, 

coarse sediment and hydraulically rough channels, width variations, and large-scale turbulent 

eddies that influence deposition and explain bar and bedform formation complicate the connection 

between bar instability and MU formation (Furbish, 1998; Wilkinson et al., 2008), W/h still has 

explanatory power in differentiating between MU types and which MUs may occur (Wyrick & 

Pasternack, 2014). Bankfull and formative width-depth ratios (W/hBf and W/hF) are included as 

HM variables with the expectation that pool units have the lowest W/h values followed by 

transitional units followed by riffles/step units. 

Width-to-valley width ratios (W/WV), a measure of hillslope connectivity, have been 

related to the potential for mass wasting deposits to enter the bankfull channel (Whiting & Bradley, 

1983), were found to correspond to general patterns of flood scour and deposition (Wolman & 

Eiler, 1958), and were found to corresponded with boulder densities and spatial patterns of 

hillslope landforms (Grant & Swanson, 1995). The ratio is also a proxy for entrenchment ratio, a 
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measure of valley confinement and lateral channel adjustment (Rosgen, 2001; Beechie & Imaki, 

2014). While, MU process-morphology linkages with W/WV are less developed, hillslope 

connectivity and delivery of coarse sediment to the channel are relevant to jammed state and 

keystone step formation models (Golly et al., 2019). Local valley expansions, that can be captured 

by W/WV measurement, have also been found to support persistence of riffles across river types 

with inferred connection to the flow convergence routing mechanism (White et al., 2010). For this 

study we use the ratio of baseflow width-to-valley width (WBs/WV) as a means to capture large 

multi-scale width variability. Expectations for WBs/WV are for pool units to have higher WBs/WV 

values than riffles/step units and transitional MUs to have intermediate values. 

Cross-sectional channel geometry is a primary control on hydraulics and morphodynamic 

processes (Ferguson, 1986; Dingman, 2007; Pasternack et al., 2021; Byrne et al., 2021), and 

observations support that MUs are associated with certain cross-section shapes (Lane & Richards, 

1996; Caamaño et al., 2009; Wheaton et al., 2015; Hassan et al. 2021). However, variables that 

holistically describe channel cross-section shape, such as whether sections are U-shaped, V-

shaped, or convex-up shaped, and their confinement, remain somewhat lacking, and have not been 

directly used to discriminate MU types. Several mathematical functions exist to model cross-

section geometry but are often limited to simple shapes such as triangles, rectangles, trapezoids, 

and parabolas, and have limited flexibility to fit multiple shapes (e.g. Brown & Pasternack, 2019; 

Ohara and Yamatani, 2019). More parametrically flexible functions such as power-laws, sigmoids, 

and ellipsoids may offer opportunity to fill this gap. For instance, equation 11 in Dingman (2007), 

which is of a power-law form, was able to produce a variety of cross-section shapes by modifying 

a single parameter. Parameters of this nature are referred to herein as cross-section geometry index 

variables. Canonical AHG relations, which can be interpreted in the context of archetypical cross-
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section shapes, provide a framework for establishing expectations between MU type and this kind 

of geometric variable (Ferguson, 1986; Rhodes, 1977; Gleason, 2015). For instance, Hopkins and 

Pasternack (2017) separate the classic ternary diagram of AHG exponents (i.e. b-f-m) into five 

representative shapes with varying degrees of confinement, concavity, and convexity (Figure 

A.3.1). The flow convergence routing mechanism suggests certain MU types should plot in distinct 

portions of the AHG ternary diagram, such that pools have low rates of width increase (b), high 

rates of velocity increase (m), and low-to-intermediate rates of depth increase (f), whereas riffles 

are essentially the opposite (Richards, 1976). These behaviors were confirmed by Gonzalez and 

Pasternack (2015) for riffle and pool MU types in a partially-confined wandering gravel-bed river. 

Thus, the connections between AHG exponents and MU type, and AHG exponents and cross-

section shape enable expectations to be drawn between MU type and cross-section shape. For this 

study we explore the use of a bankfull cross-section geometry index (ϴ) based on equation 11 in 

Dingman (2007) as an HM variable. Expectations for ϴ were based on expert judgment and the 

limited references documented above. 

Channel obstruction/roughness variables: 

Macro-roughness elements such as boulders and bedrock outcrops, collectively referred to 

as large bed elements (LBEs), exert resistance and steer the flow. LBEs are a basic building block 

of alluvial steps and are linked to the formation of forced pool morphologies (Buffington et al., 

2002; Church & Zimmermann, 2007; Harrison & Keller, 2007; Chartrand et al., 2011; Thompson, 

2012). Flow resistance tends to increase with LBE concentration (Γ), defined as the ratio of 

planform LBE area to wetted channel area (Wiener & Pasternack, 2022). Higher flow resistance 

can promote deposition of keystones or promote particle jamming in-line with step formation 

models and the process of bar instability (Golly et al., 2019). Higher Γ are also associated with 
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increasing transverse velocities and other flow instabilities needed for bar and coarse bedform 

formation (Furbish, 1998). However, like other GSD metrics, there is uncertainty whether Γ 

patterns are more a cause of MU formation or result from processes associated with MU 

morphology after formation (Thompson & Fixler, 2017; Hassan et al., 2021). Bankfull and 

formative LBE concentrations (ΓBf and ΓF) are included as HM variables with the expectation that 

Γ is highest for riffle/step units followed by transitional and then pool units. 

Gradient variables: 

Channel-bed slope (‘slope’) is perhaps the most common HM variable that has been use to 

discriminate channel morphologies at both MU and reach scales (Grant et al., 1990; Rabeni & 

Jacobson, 1993; Halwas & Church, 2002; Montgomery & Buffington, 1997; Byrne et al., 2020). 

The general view presented in these studies is that slope represents a continuum along which 

typical MUs occur. We view slope as a variable that influences contemporary geomorphic 

processes such as sediment transport capacity and is an important boundary condition for certain 

MUs, but that other causal mechanisms are needed to influence MU formation (Montgomery et 

al., 1995). For instance, the references above support that MUs tend to occur in discrete slope 

ranges, but such ranges can be relatively large, there is often overlap between ranges associated 

with certain MUs, and slope alone is not descriptive or diagnostic of a specific MU formation 

process (Montgomery et al., 1995; Byrne et al., 2020). Local measurements of baseflow slope (SBs) 

was included as a HM variable. In addition to slope, local baseflow water surface slope (WSSBs) 

and formative water surface slope (WSSF) are included as HM variables. Our view is that 

differences in WSSBs occur purely in response to presence of different MU types with little 

process-based control, but the variable has been included due to use in other studies to discriminate 

MU types (Wyrick & Pasternack, 2014). Similar to previous studies the expectation is for MUs to 
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occur along a low-to-high continuum of these gradient variables from pool-to-transitional-to-riffle 

and step units. At formative discharge differences in WSS are expected to decrease between units 

relative to WSSBs (Richards, 1976; Thompson, 2018). 

Longitudinal change variables: 

Non-local factors can play a significant role in MU formation and persistence (Grant et al., 

1990; Caamaño et al., 2009; Pasternack et al., 2018). For example, the jammed-state hypothesis 

posits that downstream narrowing should increase potential for step formation, and the keystone 

step formation model highlights decreasing downstream shear stress as a mechanism for deposition 

of keystones (Golly et al., 2019; Saletti & Hassan, 2020; Wang et al., 2021). Local width and bed 

shear stress changes also figure prominently in the flow convergence mechanism whereby at 

baseflow, pools are expected to be located where widths are expanding (divergent flow) and riffles 

in locations of channel narrowing (convergent flow), and as stage increases above some formative 

discharge these tendencies switch (MacWilliams et al., 2006; Thompson, 2011; Brown et al., 

2016). Thus, longitudinal changes in baseflow width (ΔWBs), formative width (ΔWF) and 

formative bed shear stress (ΔτF) were included as HM variables. To be consistent with Golly et al. 

(2019) and Saletti & Hassan (2020), these variables reflect longitudinal changes occurring at a 

constant stage rather than changes occurring between stages. Based on observations from the 

references above the expectation is for ΔWBs to increase (positive) toward pool units, decrease 

(negative) toward riffle and step units, and stay relatively constant (near-zero) for transitional units. 

Expectations for ΔWF are the opposite as those for ΔWBs, with the exception for step units to be 

in locations with both increasing (keystone model) and decreasing (jammed-state) values. 

Expectations for ΔτF are to increase toward pool units, decrease to riffle units, stay relative uniform 

toward transitional units, and increase or decrease to step units. 
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AHG exponent variables: 

Canonical AHG relations provide a simple mathematical framework to describe discharge-

dependent hydraulics (i.e. width, depth, and velocity) (e.g. Gleason, 2015). As discussed above in 

the section describing cross-section geometry index variables, theory and observation support that 

riffle and pool MU types have typical and distinct AHG exponents (Richards, 1976; Gonzalez & 

Pasternack, 2015), whereas b-f-m expectations for other MU types are less defined. One issue 

using AHG exponents as HM variables is the potential for spurious connection if MUs are mapped 

from 2D hydraulics as proposed by several approaches (Legleiter & Goodchild, 2005; Hauer et al., 

2009; Wyrick et al., 2014; Tamminga et al., 2015). Nonetheless, the AHG exponents b, f, and m 

were considered for use as HM variables. 

 

Figure A.3.1. Conceptual ternary diagram of canonical at-a-station hydraulic geometry exponents 
and associated cross-section archetypes (Hopkins & Pasternack, 2017). 

A.3.2 Study river segment 

None. 
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A.3.3 Methods 

None. 

A.3.3.1 Experimental design and data generation 

Topographic and bathymetric mapping 

Conducting 2D modeling for MU classification and mapping and determining HM 

variables both required topographic data as an input. Between September 27-29, 2014 Airborne 

Light Detection and Ranging (LiDAR) data were collected within the study segment by a 

professional surveying firm (Quantum Spatial, https://www.quantumspatial.com/) using a Riegl 

VQ-820-G bathymetric sensor system and a Leica ALS50 Phase II system (near infrared) mounted 

in a Cessna Grand Caravan. ALS collection was conducted during a period of low discharge 

estimated at 1.19 m3/s at the downstream study site boundary. These data were supplemented with 

boat-based bathymetric observations, imagery-derived bathymetric estimates (sensu Legleiter et 

al., 2004), and systematically placed augmented points (Valle & Pasternack, 2006). Through 

verification and merging of each individual dataset, an extremely detailed and accurate 

topographic dataset was created (Wiener & Pasternack, 2022). The final bare Earth mapping 

included > 21 million points at an average point-spacing of 0.25 m (~ 16 pts/m2). Points were used 

to create a 0.46 m x 0.46 m resolution digital terrain model (DTM) raster, the final map product 

used in the study. 

Two-dimensional hydrodynamic modeling 

Steady-state hydrodynamics were simulated at ~ 1-m resolution using the free, public 2D 

model known as Sedimentation and River Hydraulics—Two-Dimensional model (SRH-2D) v. 2.2 

(Lai, 2008). This is a proven code capable of simulating complex hydraulic conditions in mountain 
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rivers (Brown & Pasternack, 2014; Strom et al., 2016). The decision to use 2D modeling 

represented a compromise between performance and accuracy compared to simpler 1D models 

and more complex 3D modeling (Benjankar et al., 2015). It also reflected the study’s need for 

spatially explicit simulation of hydraulic conditions, specifically the delineation of wetted areas 

and flow-depth and velocity predictions aggregated at 100-102 m2 scales. Simulations were run for 

four geomorphically or otherwise relevant discharges (1.54, 10.73, 161.0, and 1184.6 m3/s) from 

an approximate baseflow to an ~13.7-yr flood. A summary of model development, 

parameterization, and performance assessment is provided in Table A.3.1. Additional details of 

depth and velocity prediction performance, which were most relevant to this study are below. 

Depth and depth-averaged velocity predictions were assessed using a suite of tests and 

standard model performance metrics (Pasternack, 2011; Moriasi et al., 2007). First, deviations 

between observed and predicted water-surface elevations (WSEs) were assessed at 147,644 

discrete point locations distributed throughout the 13.2-km domain. Observed WSE measurements 

were obtained as part of LiDAR data collection. Discharge during the period of LiDAR collection 

was estimated at 1.19 m3/s. Simulation of this discharge was used to generate the set of predicted 

WSE values at the observation locations. The mean absolute deviation between measured and 

predicted WSE was 0.162 m. The majority (53%) of absolute deviations were less than the 

independently reported 0.117 m vertical accuracy uncertainty of the bathymetric LiDAR, which 

aligns with the expectation that 2D model WSE deviations should not exceed uncertainty in the 

topographic data (Pasternack, 2011; Brown & Pasternack, 2012). 

For a second test, depth and depth-averaged velocity measurements made at 61 

independent locations with a standard wading rod during a period of discharge of 3.51 m3/s were 

compared to collocated model predictions for this same flow. Mean absolute deviation between 
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measured and predicted depths and velocities were 0.09 m and 0.08 m/s, respectively. Coefficient 

of determination (R2) values for predicted versus observed fixed-point depths and depth-averaged 

velocities were 0.80 and 0.84 (p<0.001), respectively, and linear regression slopes were both 0.87 

(p<0.001). These values are considered very good amongst 2D models (Brown & Pasternack, 

2012) and certainly exceed recommended minimum norms for model performance (Pasternack, 

2011). Among hydrologist-preferred metrics, depth predictions significantly outperformed 

standards for Nash-Sutcliffe efficiency, percent bias, and the root mean square error-observations 

standard deviation ratio. 

Table A.3.1. Summary of two-dimensional hydrodynamic model development, parameterization, 
and performance. 

Model Parameter Description 
Mesh Generator and 
Modeling Interface 

Surface-water Modeling System (SMS) v. 11.2 graphical user 
interface (Aquaveo, Inc.) 

2D Hydrodynamic Model 
Numerical Code 

Sedimentation and River Hydraulics—Two-Dimensional model 
(SRH-2D) v. 2.2 

Model domains For the whole river, there were 4 overlapping model domains used 
to simulate incrementally larger ranges of discharge. The 'low-
flow' domain was used to simulate discharges <10.73 m3/s, the 
'bankfull' domain was used to simulate discharges between 10.73-
32.2 m3/s, the 'high-flow' domain was used to simulate discharges 
between 82.12-343.6 m3/s, and a final 'flood' domain was used to 
simulate a discharge of 1184.6 m3/s. A portion of the low-flow 
domain was clipped to the downstream 1.2 km of the study site for 
the purpose of simulating a discharge of 3.51 m3/s, which 
corresponded to flow during the period of wading depth and 
velocity measurement collection. For maps and details about them, 
see (Wiener & Pasternack, 2022). 

Computational mesh 
resolution 

Internodal spacing for all computational meshes was ~0.96 m. 

Discharge range of 
model 

For the whole river the range was 1.19-1184.6 m3/s. The latter 
corresponding to a flow with an ~13.7 annual recurrence interval. 
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Model Parameter Description 
Downstream WSE 
data/model source 

WSEs at the downstream boundary were estimated from a site 
specific rating-curve or from field measured conditions using 
RTK-GPS. 

River roughness 
specification 

Because the scientific literature reports no consistent variation of 
Manning’s n as a function of stage-dependent relative roughness 
for the whole wetted area of a river (i.e., roughness/depth), a 
calibrated constant value of 0.09 was used for all simulations 
(Wiener & Pasternack, 2022). This calibrated value was physically 
realistic for the setting (Yochum et al., 2014) and sensitivity 
analysis testing the model’s response to small (< 0.01) incremental 
variations in n values found differences in predicted depths and 
velocities to be relatively minimal (Wiener & Pasternack, 2022). 

Eddy viscosity 
specification 

Parabolic turbulence closure with an eddy velocity that scales with 
depth, shear velocity, and an on-dimensional eddy viscosity 
coefficient (e*) that can be selected between ~0.05 to 1 based on 
expert knowledge and local data indicators. An eddy viscosity 
coefficient of 0.1 was used for all simulations in this study. 

Hydraulic validation 
range 

Lidar point observations of WSE were collected at 1.19 m3/s. 
Wading depth, velocity, and WSE fixed-point observations were 
collected at 3.51 m3/s. 

Model mass conservation 
(Calculated vs Given Q) 

0.01-0.6% 

WSE prediction accuracy At 1.19 m3/s there are 147,644 lidar-based discrete WSE point 
locations distributed throughout the 13.2-km domain. Mean raw 
deviation is -0.08 m. 27% of deviations within 0.05 m, 48% of 
deviations within 0.1 m', 82% within 0.25 m, and 95% within 0.5 
m. 53% of deviations were less than 1.96*(root mean square error) 
of the bathymetric lidar points. 

Wading depth prediction 
accuracy 

From 61 independent locations, predicted vs observed depths 
yielded a coefficient of determination (R2) of 0.84 and linear 
regression slope of 0.87. Mean absolute deviation between 
observed and predicted depths was 0.092 m. 

Wading velocity 
magnitude prediction 
accuracy 

From 61 independent locations, predicted vs observed velocities 
yielded a coefficient of determination (R2) of 0.80 and linear 
regression slope of 0.87. Median error of 5%. Percent error 
metrics include all velocities (including V<0.3 m/s, which tends to 
have high error percents) yielding a rigorous standard of reporting. 

Baseflow morphological unit delineation 

Morphological units were delineated using the hydraulics-based landform classification 
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method of Wyrick et al. (2014). MU mapping concepts, details of Wyrick’s method, and example 

applications of the method for MU mapping purposes are exhaustively described in Wyrick et al. 

(2014), Wyrick & Pasternack (2014,) and Woodworth & Pasternack (2022). To avoid unnecessary 

repetition of details found in these references, this section is limited to providing a brief summary 

of the Wyrick et al. (2014) method and how it was used to map MUs in the study segment. 

Wyrick’s method is founded on the established theory that baseflow hydraulics conform to 

topographic controls and thus reveal overlying landforms that are created at higher stages (Keller 

& Melhorn, 1978; Aadland, 1993; Rabeni & Jacobson, 1993; Coarer, 2007), and that MUs occupy 

discrete combinations of baseflow depth and velocity that can be quantitatively delineated using 

2D model outputs (Wyrick & Pasternack, 2014; Woodworth & Pasternack, 2022). Summarily, the 

method involves two steps. First, a supervised classification approach (i.e. decision tree) is used 

to discriminate a river’s bivariate baseflow depth-velocity phase-space into a set number of MUs 

with discrete bivariate ranges created on an expert basis using knowledge about a particular fluvial 

setting, statistical analysis of baseflow hydraulics, and hydraulic thresholds from other MU studies 

(Pasternack & Senter, 2011, Wyrick & Pasternack, 2014). Second, the phase-space classification 

is applied to 2D model output rasters to classify each cell. Adjacent cells of the same MU type are 

then agglomerated into contiguous MU patches. 

The selected baseflow condition of 1.54 m3/s was calculated from the study segment’s 

estimated unimpaired historic flow record (October 1, 1930 to September 30, 2015) as the 

arithmetic mean of all daily flows occurring during the dry season (July 1 – September 30) and is 

~ 0.14 of the estimated bankfull discharge (Wiener & Pasternack, 2016). This is consistent with 

baseflow recommendations from other studies for delineating MUs (Wyrick & Pasternack, 2014). 

Further, Wyrick and Pasternack (2012) found MU mapping is not sensitive to the selected baseflow 
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discharge for discharge variations within ~ ±15%. 

Trial MU patches were generated from baseflow model predicted depth and velocity 

hydraulic rasters with 0.48 m resolution using ArcGIS Spatial Analyst. Hydraulic thresholds and 

the number of initial MUs were informed by previous studies (Grant et al., 1990; Hauer et al., 

2009; Pasternack & Senter, 2011; Wyrick & Pasternack, 2014). Expert judgment from field 

experience was used to adjust MU names and descriptions as well as to iteratively evaluate depth 

and velocity threshold values. Statistical analysis was also used to differentiate MU types and set 

thresholds. 

Final hydraulic thresholds delineated nine baseflow channel MUs covering the entire extent 

of the baseflow river channel’s wetted area. This diversity is consistent with recommendations to 

identify units beyond the common riffle, step, and pool MUs associated with steep channels 

(Comiti & Mao, 2012). Despite potential challenges in delineating thresholds, the approach is at 

least open to review/re-evaluation by all stakeholders; it is fully objective for the majority of the 

river not used to “calibrate” the thresholds; it is superior to ground-based delineation by individuals 

(which is not even possible in this remote mountain segment) that result in subjective and highly 

variable classifications (Roper & Scarnecchia, 1995); the ‘place-based’ framework upholds 

relevant localized landform diversity (Brierly et al., 2013); and supervision offers advantages over 

‘black-box’ statistical clustering approaches for reasons explained by Wyrick et al. (2014). The 

2D delineation of MUs over the entire baseflow wetted area also honors lateral variability in 

channel morphology that is ignored by many common top-down 1D delineation techniques reliant 

on topographic differences measured along a single longitudinal profile, such as the Richard’s 

(1976) zero-crossing method or bedform differencing technique of O’Neill and Abrahams (1984) 

(e.g. Wyrick & Pasternack, 2014; Mahdade et al., 2020). The ultimate result was a transparent, 
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objective, and continuous mapping of 2D MU polygons within the entirety of the baseflow wetted 

area. While units were delineated purely on the basis of simulated baseflow depths and velocities, 

Table A.3.2 provides qualitative descriptions of the delineated units, including where they 

generally occurred in the channel and how these slightly bespoke units relate to the diversity of 

previously described in-channel MU types. Unit types also largely conformed to the common 

conceptualization that pool units types occur at topographic lows, alluvial step and steep plane bed 

units occur at topographic highs, and other units have more intermediate topographic positions 

(Thompson, 2018) (Figure A.3.2). 

The final MU set included three separate types of pool units: deep forced pools, forced 

pools, and alluvial pools. All pools occur in topographic lows (Figure A.3.2), and are characterized 

by high baseflow depths and low baseflow velocities. At the highest distinction, pools are 

separated as being free-formed or forced (Montgomery and Buffington, 1997), where forced pools 

are deepened relative to the rest of the channel due to scouring induced by an adjacent hard 

obstruction that causes localized high flow convergence and convective acceleration for a range 

of flows that can be different in each case. Pool types have been found to be difficult to 

automatically distinguish using hydraulics alone (Wyrick and Pasternack 2014). In this study, a 

qualitative-statistical based approach was used to differentiate more alluvial vs forced pool types. 

Firstly, differentiation of alluvial vs forced pool types was made based on observation of distinct 

slope breaks in a depth histogram of hydraulic raster cells with velocities below the 0.112 m/s 

threshold for pool units. A minimum raster cell depth of 1.22 m was specified for all pools and 

depth breaks at 1.98 and 3.86 m were used to classify the other pool subclasses (i.e., forced pool 

and deep forced pool). This depth stratification resulted in a bathtub ring effect with shallower 

pool units (alluvial pool and forced pool) encircling deeper pool units. 
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The final MU set also included delineation of alluvial step units, which occurred in 

topographic highs (Figure A.3.2). The peer-reviewed literature generally defines steps as 

composed of transverse, channel spanning accumulations of cobbles, boulders, wood, or other 

debris that occur in sequence with pools (Chin & Wohl, 2005; Church & Zimmermann, 2007). 

The alluvial step units delineated in this study differ from the traditional definition since there was 

no requirement to span the channel or be adjacent to a pool. In this sense they may be more akin 

to ‘rapid steps’ and ‘stone lines/stone cells’ (Church & Zimmermann, 2007). The complex and 

vertical nature of step morphology makes automated delineation difficult, and past examples are 

rare (Cavalli et al., 2008; Zimmermann et al., 2008; Trevisani et al., 2010). In order to verify our 

delineation, alluvial step locations (‘MU Steps’) were compared to an independent set of steps 

mapped using the step-pool classification algorithm of Zimmermann et al. (2008) (‘Zimmermann 

steps’). Summarily, the Zimmermann et al. (2008) algorithm works as follows: based on input of 

a longitudinal profile of channel bed elevations the algorithm uses geometric relations from the 

step-pool literature to classify input points along the profile as ‘step’, ‘pool’, or ‘other’. The model 

is sensitive to the alignment of the profile as well as the density of input point elevations 

(Zimmermann et al. 2008). To address these limitations a total of seven longitudinal profiles of 

channel bed elevations were used as inputs to the algorithm. Alignments for the profiles were based 

on thalweg profiles derived from simulations of the following discharges: 1.54, 2.68, 10.73, 32.2, 

82.12, 161.0, and 343.6 m3/s (Wiener & Pasternack, 2022). This decision was based on the 

assumption that thalweg profiles from a range of flow simulations would increase the likelihood 

of encountering steps along the channel profile, if present. All profiles were evaluated by the 

algorithm with point spacings of 0.30 m and 0.91 m, respectively, resulting in classifying a total 

of 478,116 points along 14 profiles. No changes to the default setting of the algorithm were made. 
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While Zimmermann et al. (2008) define steps as having to span the channel, the algorithm does 

not make this distinction. 

The resulting Zimmermann step locations were compared to the MU step mapping to 

determine the percentage of steps classified as step by the other method, respectively. Based on 

areal intersection with all MU polygons, ~53% of the Zimmermann steps occurred within MU step 

polygons. The remaining ~47% of Zimmermann steps were split evenly as being mapped steep 

plane bed and chute MU polygons. Of the 504 individual MU step polygons that intersected with 

the input profiles used to map the Zimmermann steps, 104 (21%) intersected steps mapped by the 

Zimmermann et al. (2008) algorithm. Neither classification method is without uncertainty and the 

inclusion of buffers of ~3 m and ~6.1 m around the MU step polygons increased positive 

intersection with the Zimmermann steps to 211 (42%) and 310 (62%) of MU steps, respectively. 

The majority of step locations being classified the same by both methods is reassuring, but 

underscores that many of our alluvial step units may differ from the traditional definition. 

Once mapped, MU polygons were further processed to obtain additional data products 

needed specifically for this study. To address rasterization artifacts of the delineation process small 

MU polygons were eliminated based on a minimum MU size threshold of 8.6 m2 (41 pixels, or 

~9x10 m2). This corresponds to the minimum polygon size that would retain at least ~ 90% of the 

baseflow channel’s wetted area (sensu Wyrick &Pasternack, 2014). Because HM variables were 

designed to be measured at river cross-sections the box counting procedure of Wyrick and 

Pasternack (2012) was used to generate a baseflow series of longitudinally abutting 3-m wide, 

cross-sectional polygons (‘cross-sections’) stationed along the river corridor (Wiener & 

Pasternack, 2022). Baseflow cross-sections were then assigned to a specific ‘dominant’ MU if at 

least 50% of a cross-sectional polygons area was occupied by a single MU types polygons. Cross-
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sections without a singular dominant MU were labeled as ‘mixed’. Of the 4236 baseflow cross-

sections, 2539 were found to be dominated by a single MU type, meaning ~40% of cross-sections 

did not have a single dominant MU type. Dominance by individual MU types varied, resulting in 

strong class imbalance in MU dominated cross-sections. For instance, ~83% of dominant cross-

sections consisted of three MU types: slackwater, forced pool, and steep plane bed. 

Lastly, as discussed in the main text, the final set of processed MU polygons were analyzed 

in the context of their abundance (counts and areal coverage), lateral diversity, adjacency 

probabilities, and longitudinal spacing. These analyses were conducted using the methods of 

Wyrick and Pasternack (2014) and are briefly summarized in the subsections below. 

Spatial abundance 

The total number (counts) and areal coverage of each MU type were quantified and 

percentages were calculated reflecting each unit’s occurrence probability. Methods did not differ 

from those of Wyrick and Pasternack (2014). 

Lateral diversity 

Lateral diversity was assessed by counting the number of distinct MU polygons at each 

cross-section. Methods did not diverge from those of Wyrick and Pasternack (2014). 

Adjacency probability 

MU adjacency tendencies were evaluated using an updated version of the transition 

probability analysis method of Grant et al. (1990) (Wyrick & Pasternack, 2014). For each MU 

type, the total number of adjacencies were summed and individual unit adjacencies were 

represented as percentages of the total. MU adjacency probabilities were compared to the concept 

that randomly occurring MUs would exhibit equal probability of occurrence, which equates to 



 

A-116 

each MU having an occurrence probability equal to 100/N, where N is the total number of MU 

types. Normalizing MU adjacency probabilities by the random probability indicates where certain 

MUs exhibit ‘preference’ (normalize probability >1) or if they can be thought of as geomorphically 

‘avoided’. Adjacencies within 20% of unity (i.e., 0.8–1.2) were considered near-random (Wyrick 

& Pasternack, 2014). 

Longitudinal spacing 

Spacing of like MU types were determined by relocating the centroid of MU polygons to 

the nearest (i.e., perpendicular) point along the channel's baseflow thalweg (Wiener & Pasternack, 

2022). Point-to-point distances along the thalweg of like MUs were calculated. Spacing distances 

were normalized by dividing by the average bankfull channel width (𝑊 ), consistent with the 

literature (Keller 1972; Chin and Wohl 2005). The analysis was limited to the streamwise 

dimension meaning laterally adjacent units of the same type were not counted separately. A manual 

evaluation and ‘cleaning’ of the aligned centroids was performed to address locations where 

multiple MU polygons occurred, but were clearly part of a single landform such as at cross-sections 

where the same MU was present separately along opposite banks and locations where a larger MU 

community was separated by pixilation. The three pool MU types were also aggregated to allow 

more homogenous comparison of pool spacing with other studies. Furthermore, MUs that occurred 

ubiquitously along the channel, plane bed and glide, were not included, meaning the focus was on 

those MUs that were primarily longitudinally distributed: run, steep plane bed, alluvial step, chute, 

and aggregated pools.  
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Table A.3.2. Qualitative descriptions of baseflow channel morphological units. 

Unit Name Definition and Description 

Deep Forced 
Pool 
  

Occur where plunging or highly concentrated, high velocity (jet) flow 
from upstream vertical drops or channel constrictions scours into bedrock 
and/or alluvial deposits formed due to downstream backwater control. High 
velocity jet flow may be present at low stage due to drops but most scour 
likely occurs at high stage. These excessively deepened areas often occur 
where bedrock canyon walls impinge on pool areas. 

 
Forced Pool 

 

Similar to deep forced pools, these features occur where plunging or 
highly concentrated jet flow from upstream vertical drops or channel 
constrictions scour alluvium or bedrock. The magnitude of the force involved 
is less than in deep forced pools such that these are not scoured nearly as 
deep. Impinging bedrock canyon walls that function to limit width expansion 
also aid in scour. 

 
Alluvial Pool Alluvial pools also occur in erosional zones, but those less associated 

with the strong scour involved in forced pool formation. Alluvial pools in this 
setting occur in less laterally confined areas of flow convergence, at pool-tail 
locations downstream of forced pools, adjacent to the thalweg in zones of 
recirculating flow, in moderately deep and slow-moving baseflow waters 
upstream of topographic highs, as shallow baseflow plunge pools in step-pool 
complexes, and along the channel periphery where higher flows activate new 
flow paths. It is unclear if locations along the channel periphery are more 
reflective of a forced pool setting associated with less frequently occurring 
higher flows. 
 

Slackwater Areas with shallow-to-moderately deep baseflow depths with low 
gradient, variable bed roughness, and low baseflow water speeds often 
occurring along the periphery of the channel and other units, especially pools, 
glides, and runs. Analogous with terms such as “plane bed” or “pocket 
water”. Aside from the criteria to span the channel and potentially lower 
gradients, these areas, at least locally, conform to the general plane bed 
channel description provided by Montgomery et al. (1997), by lacking bar 
forms, having high relative roughness, and lacking rhythmic bedforms except 
where local flow obstructions result in forced forms (pools/riffles/steps). 
Encompass zones of recirculating flow at baseflow discharges due to channel 
boundaries and LBEs. 

 
Glide Transitional units of low-to-moderate baseflow depths and moderate 

baseflow water speeds representing areas of changing slope or 
convergent/divergence flow patterns, and acceleration changes based on 
morphological forcing (e.g. lateral and/or vertical flow changes). Often 
located at steep plane bed to pool-head or pool exit-slope to steep plane bed 
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Unit Name Definition and Description 

transitions, in intermediate locations within cascades/step-pool sections, and 
around forcing elements. 

 
Run Areas of deep, moderate baseflow water speeds with steeper, smooth 

relatively unbroken baseflow water surface slope (e.g. low Froude number). 
Occur in the channel center or locations of most flow momentum in relatively 
wide channel areas or adjacent to LBE forcing elements due to topographic 
steering and scour. Often follow chutes in transition to lower baseflow 
velocity features. 

 
Chute Areas of deep, high velocity flow at baseflow with smooth relatively 

unbroken baseflow water surface slope (e.g. low Froude number). Occur in 
abrupt channel expansions where increased cross-sectional area causes 
concentrated flow in the form of a hydraulic jet, or adjacent to LBE forcing 
elements where flow has been steered. Also occur in highly confined steep 
sections of deeply eroded bedrock (e.g. gorge) or convergent constrictions 
adjacent/downstream of shallow high velocity baseflow units. 

 
Steep Plane 
Bed 

Topographic highs with areas of shallow, high baseflow water speeds. 
Similar to slackwater but with rougher water surface textures and steeper bed 
and baseflow water surface slopes. Areas envisioned to be depositional at 
high flow stages or at least have stable accumulations of coarse substrates. 
These areas encompass various channel morphologies that could not be 
individually distinguished from each other using only hydraulics, such as 
riffles, forced riffles, cascading flow, and rapids. While areas may lack 
defined crests they are the most representative riffle analog of all MU types. 

 
Alluvial Step Areas with shallow, very high baseflow water speeds, characterized by 

rough water surface textures and steep bed and baseflow water surface slopes. 
Generally occur where low flows are cascading over a transverse LBE 
resulting in an abrupt/rapid drop in water surface elevation. Unit differs 
somewhat from traditional definition of a step due to limitation in mapping 
approach. Mapped areas have highly convergent flow during baseflow 
conditions. 
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Figure A.3.2. Violin plot of detrended bed elevations by morphological unit (MU) type for 
dominant MU cross-sections. Violins represent kernel density of each variable. Points in each 
violin are mean values and lines in each violin show one standard deviation from mean. Detrended 
bed elevation data is from Pasternack et al. (2021). 

Hydro-morphological variables 

A total of 15 HM variables having either predictive capability or representing an array of 

possible geometric, hydraulic, and geomorphic controls on baseflow channel fluvial landforms 

were selected from the set of 18 HM variables to address the first three study questions. Focus was 

put on selecting HM variables reflecting purely topographic or morphological aspects of the 

riverscape that were decoupled from hydraulics such as depth and velocity, as these form the basis 

of the Wyrick et al. (2014) MU classification and mapping scheme. This required removing the 

three AHG variables from initial consideration. HM variables were determined directly at or 

numerically related to the same set of 4236 baseflow cross-sectional polygons used when defining 

dominant MUs. The process for calculating HM variable values is described below. 

Firstly, the box counting procedure of Wyrick and Pasternack (2012) was used to generate 

several discharge-dependent series of longitudinally abutting 3-m wide, cross-sectional polygons 
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stationed along the river corridor (Wiener & Pasternack, 2022). Simplistically, the procedure 

involves generating points longitudinally along a river centerline, creating station-lines 

perpendicular to these points, buffering the station lines into individual polygons, and clipping the 

polygons using a wetted area or other boundary of interest. However, the process is sensitive to 

the location and tortuosity of the alignment used to generate the longitudinal series of points. An 

overly tortuous path results in highly overlapping sections and polygons that also miss covering 

portions of the wetted area, while an overly simple alignment such as using a valley centerline for 

interpretation of all flows may result in clipped polygons that are not perpendicular to the main 

direction of flow, particularly at lower flows. To address this issue, two longitudinal alignments 

were generated based on the centerlines of the bankfull (10.73 m3/s) and 343.6 m3/s flood flow 

simulations. Centerlines were delineated using the Polygon Centerline ToolTM 

(https://www.beachbumgis.com/). The bankfull alignment was used to generate cross-sectional 

polygons for all simulated flows below bankfull (10.7 m3/s) and the flood flow alignment was used 

for all remaining flows. 

Prior to applying the box counting procedure, the bankfull and flood flow centerlines were 

simplified using the ArcGIS simplify line (point remove algorithm with 4.6 m offset) and smooth 

line (Bezier interpolation) tools. Points were spaced along the revised alignments every 3 m, 

yielding a series of 3-m long cross-sectional polygons distributed down the river for each 

alignment. These polygons were then clipped using wetted area polygons of the baseflow (1.54 

m3/s), bankfull (10.73 m3/s), formative (161.0 m3/s), and Q13.7 (1184.7 m3/s) flow simulations to 

create a unique set of cross-sectional polygons for each discharge. Wetted area polygons were 

created for each flow simulation sensu Pasternack (2011) using interpolated depths greater than 

zero as the minimum threshold. Notably there was some overlap or underlap of polygons at 
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locations of high channel curvature. These areas were determined to balance out and no manual 

adjustment of the polygons occurred. 

The next step was to calculate HM variables using the appropriate set of discharge-

dependent cross-sectional polygons. Wetted widths (WBs, WF, and W13.7), width-to-depth ratios 

(W/hBf and W/hF), and water surface slopes (WSSBs and WSSF) were determined using wetted 

areas and hydraulic rasters derived from 2D model outputs following the approaches of Wyrick 

and Pasternack (2012, 2014). For instance, baseflow width (WBs) was simply calculated as the 

average width of each baseflow cross-sectional polygon, whereas formative width (WF) was the 

average width of each formative cross-sectional polygon since polygons were clipped using wetted 

areas from these respective discharges (Wyrick & Pasternack, 2014). Cross-sectionally average 

hydraulic values such as depth (h), water surface elevation (WSE), and bed shear stress (τ) needed 

to calculate bankfull and formative width-to-depth ratios (W/hBf and W/hF), water surface slopes 

(WSSBs and WSSF), and formative shear stress change (ΔτF) were calculated using the ArcGIS 

zonal statistics tool with the appropriate set of discharge-dependent cross-sectional polygons and 

0.46 m resolution hydraulic rasters generated from raw SRH-2D outputs as inputs (Pasternack, 

2011; Wyrick & Pasternack, 2012, 2014; Wiener & Pasternack, 2022). Valley width, needed for 

determining WBs/WV, was delineated as the detrended elevation corresponding to the contact 

between the soil-mantled, vegetated hillside and the river corridor (White et al., 2010; Pasternack 

et al., 2021). With specific regard to estimation of τ, values were calculated at each node in the 2D 

model using manning’s equation (Lai, 2008): 

 
𝜏
𝜏 𝜌𝐶 𝑈

𝑉
𝑈 𝑉 ;   𝐶 /  (Eq. A.3.1) 

where τx and τy are bed shear stresses in the x and y horizontal Cartesian coordinate directions, ρ 
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is the density of water, U and V are depth-averaged velocity components in x and y directions, g 

is acceleration due to gravity, and n is manning’s coefficient. Like other hydraulics, raw SRH-2D 

output τ values were used to generate discharge-dependent 0.46 m resolution rasters. 

Water surface slopes (WSSBs and WSSF) were determined following the approach 

described by Wyrick and Pasternack (2012, 2014). Specifically, for each relevant discharge, mean 

WSEs were calculated at each cross-section from 0.43 m WSE rasters generated from SRH-2D 

outputs as described above. WSS was then calculated as the difference in mean WSE between 

upstream and downstream sections lagged two sections apart divided by the 12-m longitudinal 

distance. Local variability in channel bed elevations and WSS are known to make estimates of 

WSS and slope in mountain rivers challenging (Nitsche et al., 2012). The study’s averaging and 

smoothing techniques help address, but do not alleviate uncertainty. To quantify expected 

estimation errors in WSSBs and WSSF resulting due to variability in simulated WSE values, the 

standard error of the mean WSEs (SEMwse) was calculated for each cross-section according to: 

 𝑆𝐸𝑀  (Eq. A.3.2) 

where σwse is the standard deviation of WSEs in each cross-section and nwse is the count of WSE 

measurements in each cross-section. The maximum absolute expected error in WSS at each cross-

section (WSSe) were then obtained by recalculating WSS by adding the SEMwse of the upstream 

cross-section (SEMwse-u) to the mean WSE of the upstream cross-section (𝑊𝑆𝐸 ) and subtracting 

the SEMwse of the downstream cross-section (SEMwse-d) to the mean WSE of the downstream 

cross-section (𝑊𝑆𝐸 ) and then differencing this from the original WSS measurement: 

 𝑊𝑆𝑆    (Eq. A.3.3) 

Since, WSSe represents error magnitude, absolute percent estimation errors were calculated by 

dividing each WSSe by WSS from the same cross-section. Both error statistics were calculated for 
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all WSSBs and WSSF cross-sections, respectively, and stratified and summarized by cross-sections 

dominated by a single MU type. Beyond this scale of uncertainty, simulated WSEs are not without 

error. The mean deviation between 139,901 paired simulated and observed WSEs distributed 

throughout the 13.2 km study domain was 0.042 m. However, these deviations were found to have 

a near equal balance of over-versus under-predictions (Wiener & Pasternack, 2022), which 

complicates how such errors would propagate into cross-sectionally averaged WSE and WSS 

calculations. WSE simulation error is acknowledged but not addressed further at this time. 

Channel-bed slope (SBs) was determined similar to the approach for WSSBs whereby the 

mean bed elevation of each baseflow cross-section was calculated from the DTM and then slope 

was calculated as the difference in mean bed elevation between upstream and downstream sections 

lagged two section apart divided by the 12-m longitudinal distance (Wyrick & Pasternack, 2014). 

In order to calculate SBs without the influence of macro-roughness features (Nitsche et al., 2012), 

a ‘smoothed’ DTM was created by removing LBEs from the DTM prior to calculating cross-

sectional mean bed elevations. The first step in making the smoothed DTM was to use LBE 

polygons to create a multi-part polygon ‘deletion mask’, whereby topographic/bathymetric points 

inside the mask were removed from the bare Earth point cloud (‘preliminary smoothed point 

cloud’). Only LBEs with 90% of their planform area inside the baseflow simulated wetted area 

were included in the deletion mask. A small buffer equal to ½ the DTM cell resolution (~0.23 m) 

was added around each of these LBEs to account for edge effects. Bank attached LBE points were 

retained in each preliminary smoothed point cloud by creating a ~0.46 m buffer region along the 

simulated baseflow wetted edge and removing any LBE in this region from the deletion mask. To 

densify regions where points had been deleted, new points were randomly placed within each 

polygon of the deletion mask at a density equal to the density of the original bare Earth point cloud 
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(16 pts/m2). Elevations at these new points were interpolated with ordinary kriging using the 

preliminary smoothed point cloud data as input. To add surface texture to these points consistent 

with their surroundings, random noise was added to each point elevation by drawing from a normal 

distribution with mean of zero and standard deviation of 0.064 m, which corresponds to the study 

segment’s estimated D16. Lastly, smoothed point cloud data were converted to a DTM using TIN-

based surface models re-sampled to a 0.46 m resolution grid. 

Expected SBs estimation error metrics including the maximum absolute expected error and 

maximum absolute percent error in SBs at each cross-section were calculated the same as for WSS 

variables but using bed elevations from the smoothed DTM instead of WSEs. Error in bed 

elevation measurements also propagate to create uncertainty in SBs estimates. Reported root means 

square error (RMSE) between co-located lidar and RTK GPS bed measurements were 0.02 m for 

near-infrared laser lidar ground points and 0.06 m for green lidar bathymetric points (Wiener & 

Pasternack, 2022). Like WSS simulation errors it is not straightforward to determine how this 

measurement error influences SBs estimates. 

Regarding, bankfull and formative LBE concentrations (ΓBf and ΓF), these data were 

previously calculated in the study segment by Wiener and Pasternack (2022). Summarily, their 

procedure applied a ground classification algorithm to the study segment’s bare Earth point cloud 

to create a ‘smoothed’ DTM raster. The smoothed DTM raster was differenced from the bare Earth 

DTM to generate a roughness surface model (RSM) raster. A marker-controlled watershed 

segmentation algorithm was used to extract LBEs from the RSM. Mapping performance was 

comparable to or better than benchmark values from forestry research for mapping tree crowns, 

which is a reasonable proxy given the absence of performance metrics for mapping LBEs. The 

study segment census yielded a total of 42,176 LBEs. Minimum LBE size was a single raster cell 
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(0.46 m x 0.46 m). For this study Γ is defined as the areal proportion of LBE polygons within any 

larger domain. ΓBf and ΓF were geospatially quantified by clipping the LBE polygons with the 

associated discharge’s wetted area polygon. 

Determination of longitudinal change variables (ΔWBs, ΔWF, and ΔτF) followed the 

approaches described by Golly et al. (2019). Specifically, ΔWBs and ΔWF were calculated as the 

slope (ΔW/Δx, where x is distance) of how these variables changed upstream of each dominant 

MU cross-section using linear regression. As such, negative values correspond to the channel 

narrowing toward an MU and positive values to the channel expanding. ΔτF was similarly 

calculated as the slope (Δτ/Δx) of cross-sectionally averaged τ value changes upstream of each 

dominant MU cross-section. Negative ΔτF values indicate shear stress decreasing toward an MU 

and positive values as shear stress increasing. A fixed upstream distance of 52 m (17 cross-

sections), corresponding to 2ꞏ𝑊 , was used as the spatial scale over which all longitudinal change 

variable calculations were made (Golly et al., 2019). Cross-sectionally averaged τ values were 

derived from model generated τ rasters as described above. We acknowledge there is uncertainty 

in τ predicted from the 2D model. However, we consider this uncertainty no greater than τ 

estimates derived from the DuBois equation (i.e. depth-slope product) which are ubiquitous in 

studies of geomorphic classification and analysis (e.g. Buffington & Montgomery, 2013; Golly et 

al., 2019; Saletti & Hassan, 2020). For instance, in a 2D model with larger average depth and 

velocity percent errors Pasternack et al. (2006) found 56% of tested 2D model shear velocity 

predictions were within the 95% confidence limit of the best field-based estimation method and at 

least as accurate as field measurements. 

Lastly, ϴ3, which served as a proxy for hydraulic geometry exponents was derived by 

fitting observed cross-sectional elevations (z) with a mathematical model for cross-section 
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geometry. Elevations were obtained by stationing points at 0.25 m increments along the centerline 

of each cross-sectional polygon and sampling elevations from the DTM. The extent of each cross-

section centerline was determined by the wetted area from the 2D model bankfull simulation 

(10.73 m3/s). Note that this differs from the spatial domain used for MU delineation which included 

only the baseflow wetted area. Elevations and cross-stream distances at each cross-section were 

independently rescaled from 0-1 using min-max and max normalization, respectively. For each 

section, normalized elevations (zn) were fit using a power function of the form: 

 𝑧 𝜃 |𝑥 𝜃 |  (Eq. A.3.4) 

where x is normalized cross-stream distance and {ϴi} are three fitting parameters. The function is 

symmetrical about ϴ2, and can take on various shapes depending on combinations of ϴ1 and ϴ3. 

The ϴ3 parameter primary determines the shape of the cross-section. For ϴ3=1, the equation 

produced a perfect V-shaped section. As ϴ3 increases above unity sections become increasingly 

concave-up (U-shaped) approaching a rectangular cross-section as ϴ3 goes to infinity, whereas for 

ϴ3 less than unity sections are convex. In this manner, the equation allows for cross-sectional 

geometries consistent with the hypothesized expectations for different MU types. The ϴ1 

parameter dictates the vertical scaling of predicted zn values and is somewhat inversely correlated 

with ϴ3 in order to constrain zn values in the 0-1 range. Thus, only ϴ3 was included as an HM 

variable. Despite its flexibility, Eq. A.3.4 only produces smooth, symmetric cross-section shapes. 

In this manner, cross-section models are unable to account for in-channel topographic variability 

associated with roughness features, bedforms, and channel asymmetries. The function may also 

have difficulty fitting multi-thread channels. 

Fitting was performed by non-linear least squares regression with the ‘minpack.lm’ R 

package which employs a modification of the Levenberg-Marquardt algorithm (Elzhov et al., 



 

A-127 

2016), yielding a unique model and ϴ3 value for each cross-section. We are not aware of 

performance standards with which to assess the goodness of model fits. In this absence, the ability 

to model cross-sectional topography with Eq. A.3.4 was heuristically assessed with four metrics. 

First, the best fit slope and coefficient of determination (R2) were calculated for each cross-section 

by regressing observed vs model predicted zn. These metrics describe model precision and 

accuracy, respectively. Slopes closer to unity and higher R2 values are generally considered better. 

Linear correlation between observed and predicted zn was assessed using Pearson’s correlation 

coefficient (r). Lastly, the percentage of observed zn falling outside of each model’s 95% prediction 

interval, an indicator of poor model fit, were calculated for each cross-section. Fits were considered 

satisfactory if each of the following criteria were met: i) the majority of slope values were between 

0.5-1.5, ii) the majority of R2 values exceeded 0.5; iii) the majority of r values exceeded 0.7, a 

common benchmark for high correlation (Mukaka, 2012); and iv) the majority of cross-sections 

had at least 95% of observed zn within 95% prediction intervals. Use of Eq. A.3.4 and the bankfull 

wetted area relative to other options were determined based on preliminary evaluation of several 

potential mathematical cross-section models [e.g. parabolic, catenary, sigmoid, and ellipsoid; 

sensu Brown and Pasternack (2019) and Ohara and Yamatani (2019)] and wetted extents on the 

basis of goodness-of-fit and heuristic assessment of how well MUs were differentiated by fitting 

parameters of tested mathematical models. 

Once HM variables were calculated for the appropriate set of discharge-dependent cross-

sectional polygons the final step was to relate all calculations to the set of baseflow cross-sectional 

polygons. This was necessary as it was this set of cross-sections that were classified as having 

dominant MUs. Transferring baseflow and bankfull HM variables was easy as these sections 

overlap since they are both based on the bankfull centerline. Transferring formative HM variables 
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and valley widths (Wv) needed to calculate baseflow-to-valley width ratios (WBs/WV) was slightly 

more involved and involved two transference schemes. In the first scheme, the set of 

formative/valley cross-sectional polygons that occupied at least 10% of each baseflow cross-

section polygon area based on spatial overlap were initially identified. Next, the average of HM 

variables from these sets of formative/valley cross-sectional polygons were calculated and 

transferred to the associated baseflow cross-section polygon. This scheme was used to transfer WF, 

W13.7, W/hF, Wv, WSSF, and ΓF to the set of baseflow cross-section polygon. The second scheme 

used to transfer formative wetted width change (ΔWF) and ΔτF to the set of baseflow cross-section 

polygon involved first identifying the downstream-most formative cross-section polygon with the 

greatest amount of spatial overlap with each baseflow cross-section polygon. Next, ΔWF and ΔτF 

values calculated for the identified formative cross-section polygon were transferred to the 

associated baseflow cross-section polygon. 

Covarying adjustment of river channel morphology (e.g. planform, gradient, bed 

roughness, etc.; Palucis et al., 2017), and similarity between certain HM variables meant there was 

potential for high correlation between HM variables. Thus, pairwise correlations were calculated 

for all possible HM variable pairings. High correlation (r > 0.7 or < -0.7) was not viewed as reason 

to remove variables from use in addressing study questions, but is relevant for interpretative 

purposes. 

A.3.3.2 Statistical analysis linking MUs and HM variables 

None. 

A.3.3.2.1 Question 1: multivariate differences methods 

PERMANOVA analysis was conducted on the basis of a Euclidian dissimilarity matrix at 

an alpha of p ≤ 0.05 (Anderson, 2001). NMDS and PCA were conducted using the ‘metaMDS’ 
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and ‘rda’ functions from the ‘vegan’ R package (Oksanen et al., 2019). Analyses were calculated 

based upon Euclidean distance with HM variables that were rescaled using min-max 

normalization. 

A.3.3.2.2 Question 2: pairwise analysis methods 

Welch's ANOVA determines if statistically significant differences exist in population 

means for each variable between MU types. The test accounts for heterogeneity of variance and 

unbalanced sample sizes between MUs better than traditional analysis of variance (ANOVA) and 

the non-parametric Kruskal-Wallis test (Liu, 2015). Further, the test is robust against the 

assumption of normality, which is invalidated for nearly all variables. 

Post-hoc analysis for each HM variable found significant by Welch’s ANOVA was 

performed using the Games-Howell (GH) test at the 95% confidence level adjusted for multiple 

inference following Holm (1979). This analysis identifies distinct MU types for each variable, and 

is proven to be valid for unbalanced samples with heterogeneous variance that do not meet the 

normality assumption (Games et al., 1979). HM variables were also ranked based on the number 

of significant GH pairwise tests to compare their relative discriminatory capabilities. 

A.3.3.2.3 Question 3: heuristic expectation assessment methods 

As shown in Table 2 in the main text expectations for generalized MU types were defined 

along a fuzzy gradient: low (L), intermediate (I), and high (H). In addition to the main categories, 

multiple expectations, such as low-to-intermediate (L-I) or intermediate-to-high (I-H), reflect 

higher uncertainty and potential for variable to span a wider range of value. To compare HM 

variable results from the set of study segment MUs to the generalized set of MU types ranked 

median HM variable values were ordered from low (1) to high (9) and related to ordinal 
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expectations and colored using the following fuzzy classification: low (1-4), low-intermediate (2-

5), intermediate (4-6), intermediate-high (5-8), and high (6-9). The ordination scheme for ϴ3 

values was interpreted as follows: <1 convex, ~1 V-shaped, >1 U-shaped, and >2.5 rectangular. 

Comparisons to these values was made heuristically based on visualizing distributions of ϴ3 values 

for each MU and based on performance of a two-sided t.test relative to unity. The expectation for 

WSSF was for differences in median WSS between units to reduce relative to differences at 

baseflow. Differences for each variable were calculated as the sum of absolute differences in 

median WSS between all unit combinations. The ordination scheme for longitudinal change 

variables (ΔWBs, ΔWF, and ΔτF) was based on whether values were negative, positive, or near-

zero. Comparisons to these values was made heuristically based on visualizing distributions HM 

variable values for each MU and based on performance of a two-sided t.test relative to zero. 

Figure A.3.3 depicts the transference scheme to map the final set of MU types to the 

generalized MU types list in section 3.2.2 of the main text.  
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Figure A.3.3. Scheme to relate study segment morphological units (MUs) to generalized MU types. 
Each study segment MU (on left) is connected via a path to one generalized MU type (on right). 

A.3.3.3 Question 4: hydraulic topography as alternative to topographic HM variables 

methods 

The b, f, and m exponent of each cross-section were calculated following the hydraulic 

topography approach of Gonzalez & Pasternack (2015) using the canonical hydraulic geometry 

equations for width, depth, and velocity. Specifically, average width, depth, and velocity were 

calculated at the set of flood flow cross-sectional polygons (section A.3.3.1) clipped to the wetted 

area extents from the following eight discharge simulations: 1.54, 2.68, 10.73, 32.2, 82.12, 161.0, 

343.6, and 1184.6 m3/s. Average hydraulics were calculated from 2D model hydraulic rasters 

(Wiener & Pasternack, 2022) using the ArcGIS zonal statistics tool. Hydraulic topography 

goodness-of-fit relationships were evaluated the same as Eq. A.3.4 (Section A.3.3.1). 
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A.3.3.4 Question 5: random forest prediction models 

Matthews’s correlation coefficient (MCC) is considered more robust compared to accuracy 

(i.e., ratio of number of accurately predicted classes to total classes) when class imbalance is high 

(Chicco et al., 2021). MCC ranges from -100 to 100%, with values at the extremes corresponding 

to cases of perfect misclassification and perfect classification, respectively, and an MCC of zero 0 

being the expected value for a Bernoulli trial of equal probability. Overall model performance was 

based on the median MCC from all resampling events. 

As discussed in the main text, RF models require tuning of four hyperparameters: number 

of trees to ensemble (ntree), number of variables randomly sampled as candidates at each split 

(mtry), the fraction of observations to sample (sample.fraction), and the maximum depth of each 

tree (Breiman, 2001). First, the number of trees was determined by fitting each model on the full 

dataset with ntree values between 500 and 3000 in increments of 20. The mtry hyperparameter for 

these preliminary models was set to the default of the square-root of the number of predictors. 

Models were evaluated based on classification accuracy on the trained samples and ntree values 

were selected as the minimum value where classification accuracy was both relatively low and 

stable. Remaining hyperparameter tuning for each model followed a grid search approach whereby 

mtry varied from 2 to the max number of predictors in increments of 1, sample.fraction varied 

between 0.5 and 0.9 in increments of 0.5, there was no limit on max tree depth, and ntree was 

specified as described. Each hyperparemeter combination was evaluated based on classification 

accuracy on the trained samples, and the set of hyperparemeter with the best classification accuracy 

were selected. All model development and testing was done using the ‘Ranger’ R package (Wright 

& Ziegler, 2017). 

Of the 1697 baseflow cross-sections not dominated by a single MU type, 1633 were found 
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to have a single sub-dominant MU (Table A.3.3). 

Table A.3.3. Cross-sections previously classified as mixed (n = 1697) but with a single sub-
dominant morphological unit (MU) type. 

MU Type Number of cross-section 

Alluvial Pool 110
Forced Pool 183
Deep Forced Pool 7
Slackwater 748
Glide 223
Run 29
Steep Plane Bed 248
Alluvial Step 49
Chute 36

Total 1633
 

A.3.4 Results 

A.3.4.1 Morphological unit types 

None. 

Adjacency probability 

Results of the adjacency probability analysis are presented in Table A.3.4 and Figure A.3.4.
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Table A.3.4. Adjacency probabilities between the starting unit (top row) to all other units (left 
column). Grayed boxes represent values that are much larger than random (≳1.2), i.e., a 
‘collocation’. Values much less than random (≲0.2) represent an ‘avoidance’. 

  
Alluvial 

Pool 
Forced 
Pool 

Deep 
Forced 
Pool Slackwater Glide Run Chute 

Steep 
Plane 
Bed 

Alluvial 
Step 

Alluvial Pool - 1.6 0.0 4.8 0.1 2.4 0.0 0.0 0.0 
Forced Pool 4.7 - 0.1 2.2 0.0 2.0 0.0 0.0 0.0 

Deep Forced Pool 0.0 6.5 - 0.0 0.0 2.5 0.0 0.0 0.0 
Slackwater 2.9 0.4 0.0 - 3.9 1.5 0.2 0.1 0.0 

Glide 0.3 0.0 0.0 4.0 - 1.7 0.9 1.4 0.7 
Run 2.5 1.0 0.0 2.7 1.7 - 1.0 0.0 0.0 

Chute 0.0 0.0 0.0 0.5 3.6 1.5 - 2.5 0.9 
Steep Plane Bed 0.0 0.0 0.0 0.1 5.0 0.0 2.0 - 1.9 

Alluvial Step 0.0 0.0 0.0 0.0 0.0 0.0 2.7 6.3 - 
 

 

Figure A.3.4. Collocation adjacency diagram between MUs. 

Longitudinal spacing 

Results of the longitudinal spacing analysis are presented in Figure A.3.5. 
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Figure A.3.5. Histograms of unit-to-unit non-dimensional spacings for (a) aggregated pool, (b) 
run, (c) chute, (d) steep plane bed, and (e) alluvial step units. All spacings have been normalized 
by dividing spacing by average bankfull width (𝑊 ). For each MU the average spacing () is 
shown. 

A.3.4.2 Hydro-morphological variables 

Additional details of HM variables are provided below. 

Visual comparison found HM variable ranges and distribution shapes were similar between 

the 2539 cross-sections with a single dominant MU and the complete set of 4236 baseflow cross-

sections, indicating the set of cross-sections with dominant MUs were representative of the range 

of HM variable conditions present in the entire study segment. 

As discussed in the main text, HM variables exhibited diverse ranges of values and levels 

of dispersion (Table A.3.5). Specifically, channel-obstruction/roughness variables (ΓBf and ΓF), 

channel-size variables (WBs, WF, and WF), certain gradient variables (SBs and WSSBs), and certain 

channel-shape variables (W/hF and WBs/WV) had greater dispersion than longitudinal change 

variables (ΔWBs, ΔWF, and ΔτF) and the remaining variables (W/hBf, ϴ3, and WSSF). Comparing 

unscaled variables, only 5 of 105 pairs of HM variables were highly correlated (r > 0.7): WBs and 
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WBs/WV, WF and W13.7, WF and W/hF, W13.7 and W/hF. and W/hBf and W/hF (Figure A.3.6). 

Goodness-of-fit metrics used to assess Eq. 1 exceeded the study’s performance criteria 

(section A.3.3.1) indicating the function performed satisfactorily at fitting cross-section geometry 

(Figure A.3.7). Specifically, 60.8% of observed vs predicted zn regression slope values were 

between 0.5-1.5, exceeding the 50% benchmark. The median R2 from regressing observed vs 

predicted zn values at all cross-sections was 0.60, which was above the specified 0.5 benchmark. 

The median r value between observed vs predicted zn values for all cross-sections was 0.78, 

exceeding the 0.7 benchmark. For the final benchmark, over 63% of cross-sections had at least 

95% of observed zn values within their model’s 95% prediction interval, thus exceeding the 

specified majority (>50%) criteria. 

Maximum expected estimation errors in WSSBs, WSSF, and SBs due to variability in 

smoothed bed elevations and simulated WSS values had mean values of 0.0004, 0.0005, and 

0.0044 m/m across all cross-section, respectively. While the magnitude of these errors is relatively 

small, they result in mean percent errors in WSSBs, WSSF, and SBs across all cross-section of 25.5, 

13.4, and 55.9% due to the small magnitude of estimated WSSBs, WSSF, and SBs values. Both error 

metrics varied by MU type, meaning MU types with low WSSBs, WSSF, and SBs values often had 

high percent errors even if error magnitude was comparatively small (Table A.3.6). Mean SEM 

values for baseflow WSEs, formative WSEs, and smoothed bed elevations were 0.004, 0.005, and 

0.04 m, respectively (4, 5, and 40 mm). As described in section A.3.3.1, mean deviation in 

simulated versus observed WSE was 0.042 m and RMSE between lidar and RTK GPS bed 

measurements was 0.02 m for exposed ground points and 0.06 m for bathymetric points. These 

values are roughly the same magnitude as the mean SEM for smoothed bed elevations and thus 

may be expected to contribute a similar magnitude of uncertainty. Ultimately, bed elevation 
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measurement and WSE simulation errors are likely to contribute additional uncertainty, but are 

outside the scope of this effort to fully quantify given complications in how these localized and 

often balanced errors (i.e. measurement/prediction over and under observed) propagate into 

WSSBs, WSSF, and SBs values).
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Table A.3.5. Summary statistics of hydro-morphological (HM) variables. For each HM variable, values are shown in the following 
order: arithmetic mean, standard deviation, inter-quartile range, minimum, and maximum. Numbers in parentheses are standard 
deviation and inter-quartile range of rescaled variables. Dashed lines separate groups of HM variables. 

HM Variable 

Summary statistic 

Arithmetic 
mean 

Minimum Maximum 
Standard 
deviation 

Interquartile-
range 

Standard 
deviation 
(rescaled) 

Interquartile-
range 

(rescaled) 

Baseflow wetted width 
(WBs) 20.6 4.2 76.1 8.5 9.4 0.1 0.1 

Formative wetted width 
(WF) 40.2 16.7 86.9 11.4 13.5 0.2 0.2 

Q13.7 wetted width (W13.7) 
60.2 26.4 112.2 14.5 16.5 0.2 0.2 

Bankfull width-to-depth 
(W/hBf) 26.4 2.3 163.8 17.7 18.0 0.1 0.1 

Formative width-to-depth 
(W/hF) 16.4 3.5 62.6 9.0 9.0 0.1 0.1 

Baseflow-to-valley width 
(WBs/WV) 0.3 0.1 0.9 0.1 0.2 0.1 0.2 

Bankfull cross-section 
geometry index (ϴ3) 1.1 0.0 10.0 1.0 1.0 0.1 0.1 

Bankfull LBE 
concentration (ΓBf) 0.2 0.0 0.9 0.2 0.2 0.2 0.3 

Formative LBE 
concentration (ΓF) 0.3 0.0 0.8 0.1 0.2 0.2 0.2 

Baseflow bed-slope (SBs) 
0.0 ‐0.2 0.3 0.1 0.1 0.1 0.1 
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HM Variable 

Summary statistic 

Arithmetic 
mean 

Minimum Maximum 
Standard 
deviation 

Interquartile-
range 

Standard 
deviation 
(rescaled) 

Interquartile-
range 

(rescaled) 

Baseflow water surface 
slope (WSSBs) 0.0 0.0 0.2 0.0 0.0 0.1 0.1 

Formative water surface 
slope (WSSF) 0.0 0.0 0.2 0.0 0.0 0.1 0.1 

Baseflow wetted width 
change (ΔWBs) 0.0 ‐1.2 1.1 0.2 0.2 0.1 0.1 

Formative wetted width 
change (ΔWF) 0.0 ‐0.8 1.6 0.2 0.3 0.1 0.1 

Formative shear stress 
change (ΔτF) ‐0.2 ‐21.4 47.9 3.6 3.2 0.1 0.0 
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Figure A.3.6. Upper-triangular matrix showing Person’s correlation coefficient between all 
combinations of hydro-morphologic (HM) variables for (a) all channel cross-section, and (b) only 
those cross-section with a single dominant morphological unit.  
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Figure A.3.7. Histograms of goodness-of-fit metrics between observed zn values and those 
predicted with Eq. A.3.4, including: (a) best-fit slope, (b) coefficient of determination (R2), (c) 
Pearson’s correlation coefficient (r), and (d) the percentage of observed zn falling outside of each 
model’s 95% prediction interval. 

Table A.3.6. Maximum expected estimation errors and percent errors in baseflow water surface 
slope (WSSBs), formative water surface slope (WSSF), and baseflow bed-slope (SBs) calculations 
stratified and averaged across cross-sections dominated by a single morphological unit (MU) type. 

MU type WSSBs WSSF SBs 

Magnitude Percent Magnitude Percent Magnitude Percent 

Alluvial Pool 1.1E-05 36.3 2.0E-04 4.0 0.004 208.8

Forced Pool 1.4E-05 92.1 1.6E-04 16.5 0.007 55.2

Deep Forced Pool 2.7E-06 25.4 1.5E-05 11.3 0.013 33.1

Slackwater 2.8E-04 8.4 4.3E-04 27.5 0.004 83.2

Glide 3.9E-04 3.7 5.3E-04 5.0 0.003 47.2

Run 3.2E-05 5.4 9.5E-04 3.1 0.012 61.9

Chute 7.8E-04 2.8 1.3E-03 3.2 0.008 18.4

Steep Plane Bed 1.0E-03 1.9 7.5E-04 3.5 0.003 26.5

Alluvial Step 1.4E-03 1.4 1.3E-03 3.0 0.004 5.9
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A.3.4.3 Morphological unit-hydro-morphological variable relations 

Summary statistics including the mean, standard deviation, minimum, and maximum of 

each HM variable for each MU type are reported in Table A.3.7. 

As discussed in section A.3.4.2, goodness-of-fit metrics indicated performance of Eq. 

A.3.4 was satisfactory and yielded a range of ϴ3 values representing a variety of cross-section 

shapes. These same goodness-of-fit metrics varied by MU type, but with the exception of the 

regression slope, R2, and r metrics for cross-sections dominated by steep plane bed performance 

remained satisfactory when stratified by MU type (Table A.3.8). 

Table A.3.7. Summary statistics of hydro-morphological (HM) variables stratified by 
morphological unit (MU) type. For each MU and HM variable, values are shown in the following 
order: arithmetic mean, standard deviation, minimum, and maximum. Dashed lines separate 
groups of HM variables. 

HM variable 
Alluvial 

Pool 
Forced 
Pool 

Deep 
Forced 
Pool 

Slackwater Glide Run 
Steep 
Plane 
Bed 

Alluvial 
Step 

Chute

Baseflow 
wetted width 
(WBs) 

24.56 23.62 53.89 21.70 16.62 8.79 14.90 9.65 7.95 
6.87 6.23 19.46 6.99 4.78 2.28 4.89 2.68 2.10 
13.00 8.99 16.38 7.60 6.79 5.42 5.98 5.86 4.23 
40.97 51.01 76.12 53.97 41.63 13.84 39.89 18.06 13.90 

Formative 
wetted width 
(WF) 

42.12 35.15 61.77 41.96 38.64 32.01 38.79 36.19 35.57 
9.49 9.91 19.54 11.53 9.41 9.05 9.39 7.14 10.29 
27.87 16.73 20.53 18.02 19.21 22.98 19.41 24.35 23.07 
69.17 84.76 81.58 86.89 75.25 53.25 76.99 55.08 57.62 

Q13.7 wetted 
width (W13.7) 

63.33 54.24 78.36 60.95 59.43 49.05 63.15 60.67 51.77 
13.17 12.91 9.72 14.81 12.53 10.53 13.83 13.51 10.26 
37.80 28.55 51.17 26.35 37.61 36.04 36.75 38.35 36.14 
92.09 93.22 87.04 112.20 110.57 67.07 111.44 89.08 75.99 

Bankfull 
width-to-depth 
(W/hBf) 

16.62 10.58 8.54 27.19 31.81 7.63 41.23 35.80 18.86 
5.72 3.27 2.14 15.82 18.55 4.69 19.75 13.45 15.48 
7.85 3.74 4.26 5.50 6.63 2.33 8.41 9.25 4.79 
31.03 21.76 11.86 163.85 123.27 16.20 159.95 65.52 64.77 

Formative 
width-to-depth 
(W/hF) 

15.11 9.29 7.47 17.51 17.54 12.30 19.76 19.87 17.33 
5.98 4.16 1.72 9.19 8.54 6.16 9.20 7.42 9.22 
7.31 3.64 3.48 4.72 5.04 7.13 6.15 8.60 8.79 
30.65 36.77 10.36 59.93 62.58 28.34 58.06 36.84 41.33 
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HM variable 
Alluvial 

Pool 
Forced 
Pool 

Deep 
Forced 
Pool 

Slackwater Glide Run 
Steep 
Plane 
Bed 

Alluvial 
Step 

Chute

Baseflow-to-
valley width 
(WBs/WV) 

0.34 0.39 0.63 0.32 0.26 0.18 0.23 0.17 0.16 
0.10 0.12 0.20 0.10 0.07 0.07 0.08 0.06 0.06 
0.15 0.16 0.22 0.10 0.08 0.10 0.07 0.08 0.08 
0.61 0.92 0.85 0.74 0.46 0.28 0.53 0.36 0.37 

Bankfull 
cross-section 
geometry 
index (ϴ3) 

1.99 2.15 1.30 0.82 0.84 1.20 0.78 0.78 0.89 
1.13 1.15 0.73 0.82 0.80 1.08 0.98 0.65 0.94 
0.09 0.00 0.61 0.00 0.00 0.33 0.00 0.00 0.00 
4.85 5.28 3.17 5.50 6.10 3.27 10.00 3.00 4.22 

Bankfull LBE 
concentration 
(ΓBf) 

0.14 0.15 0.06 0.24 0.21 0.46 0.24 0.30 0.46 

0.10 0.11 0.04 0.15 0.15 0.19 0.15 0.19 0.16 
0.00 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.10 
0.49 0.48 0.17 0.87 0.84 0.68 0.67 0.67 0.82 

Formative 
LBE 
concentration 
(ΓF) 

0.16 0.19 0.07 0.25 0.30 0.29 0.31 0.33 0.36 
0.09 0.09 0.08 0.12 0.13 0.23 0.13 0.18 0.12 
0.01 0.00 0.02 0.01 0.05 0.09 0.00 0.03 0.12 
0.38 0.60 0.44 0.81 0.70 0.77 0.77 0.68 0.66 

Baseflow bed-
slope (SBs) 

0.00 0.00 0.01 0.00 0.01 -0.03 0.06 0.10 0.06 
0.03 0.05 0.13 0.05 0.04 0.07 0.04 0.04 0.08 
-0.08 -0.15 -0.19 -0.14 -0.08 -0.13 -0.06 -0.02 -0.12 
0.08 0.17 0.25 0.21 0.17 0.09 0.20 0.21 0.25 

Baseflow 
water surface 
slope (WSSBs) 

0.00 0.00 0.00 0.01 0.01 0.00 0.05 0.10 0.04 
0.00 0.00 0.00 0.02 0.02 0.00 0.03 0.04 0.04 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 
0.00 0.03 0.00 0.15 0.13 0.00 0.18 0.21 0.17 

Formative 
water surface 
slope (WSSF) 

0.01 0.00 0.00 0.02 0.02 0.05 0.03 0.05 0.05 
0.01 0.01 0.00 0.02 0.02 0.02 0.03 0.03 0.03 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 
0.04 0.08 0.00 0.11 0.08 0.07 0.22 0.15 0.13 

Baseflow 
wetted width 
change (ΔWBs) 

0.05 0.08 0.40 0.03 -0.06 -0.08 -0.09 -0.18 -0.18 
0.18 0.18 0.43 0.18 0.18 0.09 0.16 0.14 0.22 
-1.04 -0.27 -0.45 -1.25 -0.85 -0.26 -0.62 -0.43 -1.09 
0.52 1.04 1.15 0.80 0.28 0.03 0.34 0.09 0.10 

Formative 
wetted width 
change (ΔWF) 

-0.04 -0.01 0.09 0.03 0.01 0.00 -0.04 0.06 -0.04 
0.24 0.25 0.28 0.21 0.19 0.23 0.23 0.46 0.21 
-0.52 -0.71 -0.33 -0.75 -0.52 -0.44 -0.63 -0.63 -0.66 
0.60 0.77 0.55 0.90 0.63 0.34 1.10 1.58 0.51 

Formative bed 
shear stress 
change (ΔτF) 

-0.62 -1.34 -1.07 -0.44 0.76 -2.16 1.38 2.77 1.41 

1.66 2.30 1.52 3.04 2.86 4.23 5.03 8.78 4.69 

-5.41 -10.12 -6.12 -16.79 -10.04 -9.04 -20.05 -21.41 -5.25 

2.79 4.74 0.01 12.27 9.85 2.54 47.87 35.60 10.23 
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Table A.3.8. Goodness-of-fit metrics between observed zn values and those predicted with Eq. 
A.3.4 stratified by cross-sections dominated by a single morphological unit (MU) type. Values not 
meeting performance criteria are highlighted in gray. 

MU Slope 
Coefficient of 
determination 

(R2) 

Pearson 
correlation 
coefficient 

(r) 

Percent of observed zn 
in 95% prediction 

interval 

Alluvial Pool 0.87 0.76 0.88 66.7 
Forced Pool 0.94 0.82 0.91 70.2 
Deep Forced Pool 1.00 0.89 0.94 61.8 
Slackwater 0.53 0.53 0.73 61.2 
Glide 0.57 0.54 0.74 63.8 
Run 0.73 0.71 0.84 81.8 
Chute 0.59 0.59 0.77 78.4 
Steep Plane Bed 0.48 0.46 0.68 64.1 
Alluvial Step 0.59 0.65 0.81 59.2 
Performance criteria 0.50 0.50 0.70 50.0 

 

A.2.4.3.1 Question 1: multivariate differences results 

None. 

A.2.4.3.2 Question 2: pairwise analysis results 

As discussed in the main text, not all HM variables discriminated the same MU types from 

one another. Complete results of the pairwise Games-Howell (GH) tests are depicted as ‘heatmaps’ 

in Figure A.3.8. 
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Figure A.3.8. Heatmaps of adjusted p-values from pairwise Games-Howell tests between all 
unique morphological unit (MU) comparisons for each hydro-morphological variable. Color 
scaling is such that the yellow fill corresponds to MU pairs with adjusted p-values between 0.1-1, 
light-gray fill to pairs with adjusted p-values between 0.05-0.1, and darker-gray and dark blue fills 
to pairs with adjusted p-values <0.05. Acronyms for MUs are as follows: alluvial pool (AP), forced 
pool (FP), deep forced pool (DFP), slackwater (SL), glide (GL), run (RN), steep plane bed (SPB), 
alluvial step (AS), and chute (CH). 
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A.2.4.3.3 Question 3: heuristic expectation assessment results 

As reported in the main text, of the six HM variables where MU expectations were not met, 

WF, W13.7, ϴ3, and ΔWF had 6 of 9 MU expectations met, while only 5 of 9 MU expectations were 

met for ΓBf, and ΔτF. Both WF and W13.7 were slightly narrower than expected at run units and 

wider than expected at alluvial pool and deep forced pool units. Unsurprisingly, there was much 

greater overlap of WF and W13.7 between all MU types compared to WBs as higher flow stages 

likely inundated local topographic controls. With regard to the flow convergence routing 

mechanism’s expectation that pool type units would become narrower than riffle type units at 

higher flow stages and have lower WF and/or W13.7 values (section A.3.1.2), one explanation is 

that neither the formative or Q13.7 discharge were high enough to elicit such a switch. Alternately, 

for forced pools, narrowing would be expected upstream of the pool, not necessarily in the pool 

itself, which was partly corroborated by the majority (57%) of ΔWF values being negative for 

alluvial pool and forced pool units. The possibility also remains whether such a switch would ever 

occur in the study segment’s confined and high roughness setting (Pasternack et al., 2021). As 

discussed in section A.3.1.2 expectations for ϴ3 were based on expert judgment largely in the 

absence of substantive examples. In addition to knowledge gaps and other limitations discussed in 

the main text, the inability of Eq. 1 to effectively represent confinement may have contributed to 

why expectations for this variable were not met. With regard to ΔWF, all MUs had high dispersion 

and overlap in their distributions, which complicated interpretations. The two main ΔWF 

expectations not met were that, first upstream formative channel widths decreased toward cross-

section dominated by steep plane bed more often than they increased, the latter being associated 

with conditions promoting high flow deposition common to riffles, and second was that formative 

channel widths tended to increase leading into deep forced pool units. For ΓBf, steep plane bed had 
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slightly lower and run and chute had higher than expected concentrations. High concentrations at 

chute and run units are likely due to bedrock outcrops being mapped as LBE and included in 

concentration calculations (Wiener & Pasternack, 2022). Lastly, contrary to expectations, ΔτF was 

predominantly positive (increasing) immediately upstream and leading into steep plane bed units 

and was negative or constant (decreasing or near-zero) when leading into pool units. The latter 

may result from backwater conditions upstream of forced pools. 

A.3.4.4 Question 4: hydraulic topography variable results 

Metrics used to assess AHG relationship goodness-of-fit (section A.3.3.3) exceeded the 

study’s specified criteria for all metrics. Specifically, 99.8, 99.0, and 100% of observed vs 

predicted width, depth, and velocity regression slope values were between 0.5-1.5, respectively, 

which all exceed the 50% benchmark. The median R2 from regressing observed vs predicted width, 

depth, and velocity values at all cross-sections were 0.95, 0.97, and 0.98, which are above the 

specified 0.5 benchmark. The median r value between observed vs predicted width, depth, and 

velocity values for all cross-sections were 0.97, 0.98, and 0.99, exceeding the 0.7 benchmark. 

Lastly, over 70.2, 67.9, and 97.2% of cross-sections had at least 95% of observed width, depth, 

and velocity values within their model’s 95% prediction interval, thus exceeding the specified 

majority (>50%) criteria. While not one of the study’s specified goodness-of-fit metrics, mean 

pseudo-R2 of the fit hydraulic topography relationships were 0.93, 0.95, and 0.98 for width, depth, 

and velocity. 

Results also generally aligned with hypothesized expectations across MU types such that 

pool units had higher m values, lower b values, and lower f values than units with high baseflow 

velocities (section A.3.1.2). The lower f values in pools compared to steep high baseflow velocity 

units indicates that as discharge increased momentum transfer in pool units primarily occurred via 
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stronger increases in velocity than depth, but occurred via stronger increases in width and depth 

compared to velocity in steep high baseflow velocity units. These latter units also had greater LBE 

concentrations. Other units such as slackwater, glide, and run had intermediate b, f, and m values. 

Chute units, which tended to be very narrow at baseflow, increased in width rapidly but had 

relatively low increases in velocity likely due to depth increases and relatively high LBE 

roughness. 

A.3.4.5 Question 5: random forest model results 

As discussed in the main text, distributions of HM variables at cross-sections with only a 

single sub-dominant MU type appeared similar to distributions with a single dominant MU Figure 

A.3.9). 
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Figure A.3.9. Violin plots of hydro-morphological variables by morphological unit (MU) type for 
sub-dominant MU cross-sections. Violins represent kernel density of each variable. Points in each 
violin are mean values and lines in each violin show one standard deviation from mean. 

A.3.5 Discussion 

None. 
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A.3.5.1 Synthesis of hydro-morphological links with morphological unit spatial patterns 

None. 

A.3.5.2 Decoupling processes and morphological unit variability 

As noted in the main text, several MU dominated cross-sections appear as either statistical 

‘outliers’, and/or did not meet HM variable expectations. These locations may represent a variety 

of phenomena including: variability in how the form of each MU manifested in the study segment 

(Phillips, 2014); channel morphologies that have not adjusted to changes in water flow and 

sediment transport or recent disturbances (Lane & Richards, 1996; Tooth & Nanson, 2013); 

influence of non-local factors or factors not included in the study (Buffington et al., 2002; 

Carbonari et al., 2020); competition, exclusion, merging, cannibalization among MUs during 

formation (Furbish, 1998); the influence of multiple processes (Pasternack et al., 2018); or simply 

errors or uncertainty in HM variable calculations (Table A.3.6; section A.3.3.1). While it is the 

scope of this effort to address all outliers or examples where expectations were not met, some 

notable examples warrant discussion. 

Firstly, several deep forced pool cross-sections had comparatively low WBs, WF, and W13.7. 

These locations also had lower WBs/Wv, ΔWBs, and ΔWF than other deep forced pool cross-

sections. Thus, our interpretation is that increased valley confinement and width convergence 

served to balance the lower WF and W13.7 values in terms of maintaining conditions that promote 

scour associated with deep forced pool units. A separate subset of deep forced pool cross-sections 

was also found to have relatively high SBs, with some values exceeding 0.2 m/m. These values 

were specifically associated with the entrance slope to a large scour pool formed immediately at 

the base of the New Bullards Bar Dam emergency spillway. While these data were not removed 

from the analysis, it is clear this location was formed by spillway operations. A final subset of 
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outliers to highlight, were several steep plane bed, alluvial step, and chute dominated cross-

sections that had high WF values relative to cross-sections dominated by the same MU type. 

Comparatively, these sections had higher W/hBf and W/hF, lower WBs/Wv (i.e. less confined), and 

had lower ΔWBs and higher ΔWF. This meant that wider steep plane bed, alluvial step, and chute 

dominated cross-sections were nested in wider portions of the river valley and experienced greater 

width expansion at formative discharge.
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Table A.3.9. Comparison of the range of hydro-morphological (HM) variables for each morphological unit (MU) type in this study 
(values in top row next to each HM variable) with values available from past studies for similar MU types (values in bottom row next 
to each HM variable)†. 

HM variable Alluvial Pool Forced Pool 
Deep Forced 

Pool 
Slackwater 

Baseflow wetted width (WBs)‡ 0.698 - 2.041 0.507 - 2.09 0.816 - 3.791 0.476 - 2.546 
0.245 - 0.93 1.58 

Bankfull width-to-depth (W/hBf) 8.591 - 30.294 3.743 - 18.543 4.257 - 11.619 8.755 - 143.945 
26.00 90.00 

Baseflow bed-slope (SBs) -0.064 - 0.048 -0.137 - 0.123 -0.194 - 0.255 -0.124 - 0.158 
-0.145 - 0.2 0.01 - 0.05 

Baseflow water surface slope (WSSBs) 0 - 0 0 - 0.021 0 - 0 0 - 0.125 
-0.092 - 0.072 0.03 

Baseflow wetted width change (ΔWBs) -1.038 - 0.499 -0.255 - 0.674 -0.445 - 0.948 -1.246 - 0.732 
- - - - 

Formative wetted width change (ΔWF) -0.3 - 0.604 -0.711 - 0.715 -0.332 - 0.551 -0.752 - 0.831 
- - - - 

Formative shear stress change (ΔτF) -4.819 - 1.69 -9.525 - 4.745 -2.258 - 0.012 -16.794 - 11.685 

- - - -   
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HM variable Glide Run Steep Plane Bed Alluvial Step Chute 

Baseflow wetted width (WBs)‡ 0.403 - 2.073 0.27 - 0.427 0.306 - 1.308 0.292 - 0.769 0.211 - 0.524 
0.96 - 1 0.78 0.94 - 1.14 0.21 0.47 

Bankfull width-to-depth (W/hBf) 7.043 - 123.266 2.512 - 9.799 9.746 - 159.955 11.111 - 65.524 4.846 - 64.774 
64 - 73 82.00 89 - 114 - 113.00 

Baseflow bed-slope (SBs) -0.062 - 0.069 -0.127 - 0.004 -0.022 - 0.177 0.027 - 0.208 -0.05 - 0.25 
-0.162 - 0.1 -0.025 - 0.147 -0.075 - 0.25 0.019 - 0.697 0.02 - 0.29 

Baseflow water surface slope (WSSBs) 0.001 - 0.105 0 - 0.004 0.01 - 0.159 0.044 - 0.209 0.002 - 0.169 
-0.046 - 0.088 -0.042 - 0.78 -0.016 - 0.765 - 0.42 

Baseflow wetted width change (ΔWBs) -0.849 - 0.137 -0.177 - 0.022 -0.597 - 0.337 -0.433 - 0.095 -0.491 - 0.054 
- - - -0.582 - 0.584 - 

Formative wetted width change (ΔWF) -0.516 - 0.632 -0.218 - 0.337 -0.626 - 1.1 -0.393 - 1.452 -0.271 - 0.169 
- - - -0.582 - 0.584 - 

Formative shear stress change (ΔτF) -7.732 - 9.48 -9.043 - 2.42 -19.134 - 47.872 -21.405 - 35.6 -4.69 - 8.437 

- - - -2326.9 - 2484.2 - 
†Ranges from past studies were derived from Grant et al. (1990); Jowett (1993); Halwas and Church (2002); Wyrick and Pasternack (2014); 
Golly et al. (2019); and Helm et al. (2020). Comparative values were not available for all HM variables for all MU types. Ranges of comparative 
values are shown where available, otherwise singular values typically represent availability of mean values only. 
‡WBs values were normalized by dividing by segment average baseflow wetted width to allow comparison with other studies. 
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A.3.5.3 Morphological unit expectations not met 

None. 

A.3.5.4 Utility of HM variables and Random Forest predictive approach 

None. 

A.3.5.5 Bespoke morphological units 

None. 

A.3.6 Conclusion 

None. 

A.3.7 References 

Aadland, L. P. (1993). Stream Habitat Types: Their Fish Assemblages and Relationship to Flow. 
North American Journal of Fisheries Management, 13(4), 790-806. doi:10.1577/1548-
8675(1993)013<0790:SHTTFA>2.3.CO;2 

Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. 
Austral Ecology, 26(1), 32-46. doi:https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x 

Beechie, T., & Imaki, H. (2104). Predicting natural channel patterns based on landscape and 
geomorphic controls in the Columbia River basin, USA. Water Resour Res. 50: 39–57. 

Belletti, B., Rinaldi, M., Bussettini, M., Comiti, F., Gurnell, A. M., Mao, L., . . . Vezza, P. 
(2017). Characterising physical habitats and fluvial hydromorphology: A new system for 
the survey and classification of river geomorphic units. Geomorphology, 283, 143-157. 
doi:https://doi.org/10.1016/j.geomorph.2017.01.032 

Benjankar, R., Tonina, D., & McKean, J. (2015). One-dimensional and two-dimensional 
hydrodynamic modeling derived flow properties: impacts on aquatic habitat quality 
predictions. Earth Surface Processes and Landforms, 40(3), 340-356. 
doi:10.1002/esp.3637 

Breiman, L. (2001). Random Forests. Machine Learning 45, 5–32. 
https://doi.org/10.1023/A:1010933404324 



 

A-155 

Brierley, G., Fryirs, K., Cullum, C., Tadaki, M., Huang, H. Q., & Blue, B. (2013). Reading the 
landscape:Integrating the theory and practice of geomorphology to develop place-based 
understandings of river systems. Progress in Physical Geography: Earth and 
Environment, 37(5), 601-621. doi:10.1177/0309133313490007 

Brown, R.A., & Pasternack, G.B. (2012). Monitoring and assessment of the 2010-2011 
gravel/cobble augmentation in the Englebright Dam Reach of the lower Yuba River, CA. 
Prepared for the U.S. Army Corps of Engineers, Sacramento District. Retrieved from 
University of California at Davis, Davis, CA.: 
http://pasternack.ucdavis.edu/files/5313/7692/9028/EDRreport_20121215_FINAL.pdf 

Brown, R. A., & Pasternack, G. B. (2014). Hydrologic and topographic variability modulate 
channel change in mountain rivers. Journal of Hydrology, 510(Supplement C), 551-564. 
doi:https://doi.org/10.1016/j.jhydrol.2013.12.048 

Brown, R. A., & Pasternack, G. B. (2019). How to build a digital river. Earth-Science Reviews, 
194, 283-305. doi:https://doi.org/10.1016/j.earscirev.2019.04.028 

Brown, R. A., Pasternack, G. B., & Lin, T. (2016). The Topographic Design of River Channels 
for Form-Process Linkages. Environmental Management, 57(4), 929-942. 
doi:10.1007/s00267-015-0648-0 

Buffington, J. M., Lisle, T. E., Woodsmith, R. D., & Hilton, S. (2002). Controls on the size and 
occurrence of pools in coarse-grained forest rivers. River Research and Applications, 
18(6), 507-531. doi:https://doi.org/10.1002/rra.693 

Buffington, J. M. & Montgomery, D. R. (2013). Geomorphic classification of rivers. In: Shroder, 
J.; Wohl, E., ed. Treatise on Geomorphology; Fluvial Geomorphology, Vol. 9. San 
Diego, CA: Academic Press. p. 730-767. 

Byrne, C. F., Pasternack, G. B., Guillon, H., Lane, B. A., & Sandoval-Solis, S. (2020). Reach-
scale bankfull channel types can exist independently of catchment hydrology. Earth Surf. 
Process. Landforms, 45: 2179– 2200. https://doi.org/10.1002/esp.4874. 

Byrne, C. F., Pasternack G. B., Guillon, H., Lane, B. A., & Sandoval-Solis, S. (2021). Channel 
constriction predicts pool-riffle velocity reversals across landscapes. Geophysical 
Research Letters. DOI: 10.1029/2021GL094378. 

Caamaño, D., Goodwin, P., Buffington, J. M., Liou, J. C., & Daley-Laursen, S. (2009). Unifying 
Criterion for the Velocity Reversal Hypothesis in Gravel-Bed Rivers. Journal of 
Hydraulic Engineering, 135(1), 66-70. doi:doi:10.1061/(ASCE)0733-
9429(2009)135:1(66) 



 

A-156 

Carbonari, C., Recking, A., & Solari, L. (2020). Morphology, Bedload, and Sorting Process 
Variability in Response to Lateral Confinement: Results From Physical Models of 
Gravel-bed Rivers. Journal of Geophysical Research: Earth Surface, 125(12), 
e2020JF005773. doi:https://doi.org/10.1029/2020JF005773 

Cavalli, M., Tarolli, P., Marchi, L., & Dalla Fontana, G. (2008). The effectiveness of airborne 
LiDAR data in the recognition of channel-bed morphology. CATENA, 73(3), 249-260. 
doi:https://doi.org/10.1016/j.catena.2007.11.001 

Chartrand, S. M., Jellinek, M., Whiting, P. J., & Stamm, J. (2011). Geometric scaling of step-
pools in mountain streams: Observations and implications. Geomorphology, 129(1), 141-
151. doi:https://doi.org/10.1016/j.geomorph.2011.01.020 

Chicco, D., Tötsch, N., & Jurman, G. (2021). The Matthews correlation coefficient (MCC) is 
more reliable than balanced accuracy, bookmaker informedness, and markedness in two-
class confusion matrix evaluation. BioData Mining, 14(1), 13. doi:10.1186/s13040-021-
00244-z 

Chin, A., & Wohl, E. (2005). Toward a theory for step pools in stream channels. Progress in 
Physical Geography: Earth and Environment, 29(3), 275-296. 
doi:10.1191/0309133305pp449ra 

Church, M., & Jones, D. (1982). Channel bars in gravel-bed rivers. In Gravel-Bed Rivers, Hey 
RD, Bathurst JC, Thorne CR (eds). Wiley: New York; 291–338. 

Church, M., & Zimmermann, A. (2007). Form and stability of step-pool channels: Research 
progress. Water Resources Research, 43(3), n/a-n/a. doi:10.1029/2006WR005037 

Coarer, Y. L. (2007). Hydraulic signatures for ecological modelling at different scales. Aquatic 
Ecology, 41(3), 451-459. doi:10.1007/s10452-005-9005-3 

Comiti, F., & Mao, L. (2012). Recent Advances in the Dynamics of Steep Channels Gravel-Bed 
Rivers (pp. 351-377). 

Dingman, S.L. (2007). Analytical derivation of at-a-station hydraulic–geometry relations. 
Journal of Hydrology, 334: 17– 27. https://doi.org/10.1016/j.jhydrol.2006.09.021 

Elzhov, T.V., Mullen, K.M., Spiess A., & Bolker, B. (2016). minpack.lm: R Interface to the 
Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus 
Support for Bounds. R package version 1.2-1. https://CRAN.R-
project.org/package=minpack.lm 

Ferguson, R. I. (1986). Hydraulics and hydraulic geometry. Progress in Physical Geography: 
Earth and Environment, 10(1), 1–31. https://doi.org/10.1177/030913338601000101 



 

A-157 

Florsheim, J. L. (1985). Fluvial requirements for gravel bar formation in northwestern California 
[Master’s Thesis, Hombolt State University]. 

Furbish, D. J. (1998). Irregular bed forms in steep, rough channels: 1. Stability analysis. Water 
Resources Research, 34(12), 3635-3648. doi:https://doi.org/10.1029/98WR02339 

Games, P. A., Keselman, H. J., & Clinch, J. J. (1979). Tests for homogeneity of variance in 
factorial designs. Psychological Bulletin, 86(5), 978–984. https://doi.org/10.1037/0033-
2909.86.5.978 

Gleason, C. J. (2015). Hydraulic geometry of natural rivers: A review and future directions. 
Progress in Physical Geography: Earth and Environment, 39(3), 337–360. 
https://doi.org/10.1177/0309133314567584 

Golly, A., Turowski, J. M., Badoux, A., & Hovius, N. (2019). Testing models of step formation 
against observations of channel steps in a steep mountain stream. Earth Surface 
Processes and Landforms, 44(7), 1390-1406. doi:https://doi.org/10.1002/esp.4582 

Gonzalez, R. L., & Pasternack, G.B. (2015). Reenvisioning cross-sectional at-a-station hydraulic 
geometry as spatially explicit hydraulic topography. Geomorphology, 246: 394–406. 
http://dx.doi.org/10.1016/j.geomorph.2015.06.024 

Grant, G. E., & Swanson, F. J. (1995). Morphology and Processes of Valley Floors in Mountain 
Streams, Western Cascades, Oregon Natural and Anthropogenic Influences in Fluvial 
Geomorphology (pp. 83-101): American Geophysical Union. 

Grant, G. E., Swanson, F. J., & Wolman, M. G. (1990). Pattern and origin of stepped-bed 
morphology in high-gradient streams, Western Cascades, Oregon. GSA Bulletin, 102(3), 
340-352. doi:10.1130/0016-7606(1990)102<0340:PAOOSB>2.3.CO;2 

Halwas, K. L., & Church, M. (2002). Channel units in small, high gradient streams on 
Vancouver Island, British Columbia. Geomorphology, 43(3), 243-256. 
doi:https://doi.org/10.1016/S0169-555X(01)00136-2 

Harrison, L. R., & Keller, E. A. (2007). Modeling forced pool–riffle hydraulics in a boulder-bed 
stream, southern California. Geomorphology, 83(3), 232-248. 
doi:https://doi.org/10.1016/j.geomorph.2006.02.024 

Hassan, M. A., Radić, V., Buckrell, E., Chartrand, S. M., & McDowell, C. (2021). Pool-riffle 
adjustment due to changes in flow and sediment supply. Water Resources Research, 57, 
2020WR028048. https://doi.org/10.1029/2020WR028048 

Hauer, C., Mandlburger, G., & Habersack, H. (2009). Hydraulically related hydro-morphological 
units: description based on a new conceptual mesohabitat evaluation model (MEM) using 



 

A-158 

LiDAR data as geometric input. River Research and Applications, 25(1), 29-47. 
doi:10.1002/rra.1083 

Helm, C., Hassan, M. A., and Reid, D. (2020). Characterization of morphological units in a 
small, forested stream using close-range remotely piloted aircraft imagery, Earth Surf. 
Dynam., 8, 913–929, https://doi.org/10.5194/esurf-8-913-2020 

Holm, S. (1979). A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian 
Journal of Statistics, 6(2), 65-70.  

Hopkins, C. E., & Pasternack, G. B. (2017). Near-census Delineation of Laterally Organized 
Geomorphic Zones and Associated Sub-width Fluvial Landforms. Abstract EP43A-1876 
presented at 2017 Fall Meeting, AGU, New Orleans, LA., 11-15 Dec. 

Jowett, I. G. (1993). A method for objectively identifying pool, run, and riffle habitats from 
physical measurements. New Zealand Journal of Marine and Freshwater Research, 27:2, 
241-248, DOI: 10.1080/00288330.1993.9516563 

Keller, E. A. 1972. ‘Development of alluvial stream channels: A five stage model’, Geological 
Society of America Bulletin, 83, 1531-1536.  

Keller, E. A., & Melhorn, W. N. (1978). Rhythmic spacing and origin of pools and riffles. GSA 
Bulletin; 89 (5): 723–730. doi: https://doi.org/10.1130/0016-
7606(1978)89<723:RSAOOP>2.0.CO;2 

Lai, Y. G. (2008). “SRH-2D version 2: Theory and User’s Manual Sedimentation and River 
Hydraulics – Two-Dimensional River Flow Modeling”. Retrieved from U.S. Department 
of the Interior, Bureau of Reclamation, Technical Service Center, Sedimentation and 
River Hydraulics Group. Denver, Colorado.: 
https://www.usbr.gov/tsc/techreferences/computer%20software/models/srh2d/index.html 

Lane, B., Guillon, H., Byrne, C., Pasternack, G. B., Kasprak, A., & Sandoval-Solis, S. (2022). 
Channel-reach morphology and landscape properties are linked across a large 
heterogeneous region. Earth Surface Processes and Landforms, 47(1), 257-274. 
doi:https://doi.org/10.1002/esp.5246 

Lane, S. N., & Richards, K. S. (1997). Linking River Channel Form and Process: Time, Space 
and Causality Revisited. Earth Surf. Process. Landforms, 22: 249-260. 
https://doi.org/10.1002/(SICI)1096-9837(199703)22:3<249::AID-ESP752>3.0.CO;2-7 

Legleiter, C. J., & Goodchild, M. F. (2005). Alternative representations of in-stream habitat: 
classification using remote sensing, hydraulic modeling, and fuzzy logic. International 
Journal of Geographical Information Science, 19(1), 29-50. 
doi:10.1080/13658810412331280220 



 

A-159 

Legleiter, C. J., Roberts, D. A., Marcus, W. A., & Fonstad, M. A. (2004). Passive optical remote 
sensing of river channel morphology and in-stream habitat; physical basis and feasibility. 
Remote Sensing of Environment, 93(4), 493-510. 
doi:http://dx.doi.org/10.1016/j.rse.2004.07.019 

Lisle, T. E. (1986). Stabilization of a gravel channel by large streamside obstructions and 
bedrock bends, Jacoby Creek, northwestern California. Geological Society of America 
Bulletin, 97, 999-1011.  

Liu, H. (2015). Comparing Welch ANOVA, a Kruskal-Wallis test, and traditional ANOVA in 
case of heterogeneity of variance [Master’s Thesis, Virginia Commonwealth University]. 
Biostatistics Commons. https://doi.org/10.25772/BWFP-YE95 

MacWilliams, M. L., Wheaton, J. M., Pasternack, G. B., Street, R. L., & Kitanidis, P. K. (2006). 
Flow convergence routing hypothesis for pool-riffle maintenance in alluvial rivers. Water 
Resour. Res., 42, W10427.  

Mahdade, M., Le Moine, N., Moussa, R., Navratil, O., & Ribstein, P. (2020). Automatic 
identification of alternating morphological units in river channels using wavelet analysis 
and ridge extraction. Hydrol. Earth Syst. Sci., 24(7), 3513-3537. doi:10.5194/hess-24-
3513-2020 

Montgomery, D. R., & Buffington, J. M. (1997). Channel-reach morphology in mountain 
drainage basins. GSA Bulletin, 109(5), 596-611. doi:10.1130/0016-
7606(1997)109<0596:CRMIMD>2.3.CO;2 

Montgomery, D. R., Buffington, J. M., Smith, R. D., Schmidt, K. M., & Pess, G. (1995). Pool 
Spacing in Forest Channels. Water Resources Research, 31(4), 1097-1105. 
doi:https://doi.org/10.1029/94WR03285 

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. 
(2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in 
Watershed Simulations. Transactions of the ASABE, 50(3), 885. 
doi:https://doi.org/10.13031/2013.23153 

Mukaka, M. M. (2012). Statistics corner: A guide to appropriate use of correlation coefficient in 
medical research. Malawi medical journal : the journal of Medical Association of 
Malawi, 24(3), 69–71. 

Nelson, J. M. (1990). The initial instability and finite-amplitude stability of alternate bars in 
straight channels. Earth-Science Reviews, 29(1), 97-115. 
doi:https://doi.org/10.1016/0012-8252(0)90030-Y 



 

A-160 

Nitsche, M., Rickenmann, D., Kirchner, J. W., Turowski, J. M., & Badoux, A. (2012). 
Macroroughness and variations in reach-averaged flow resistance in steep mountain 
streams. Water Resources Research, 48(12). doi:https://doi.org/10.1029/2012WR012091 

Ohara, N., & Yamatani, K. (2019). Theoretical Stable Hydraulic Section based on the Principle 
of Least Action. Scientific Reports, 9(1), 7957. doi:10.1038/s41598-019-44347-4 

Oksanen J., Blanchet F.G., Friendl, F., Kindt R., Legendre, P., McGlinn, D., Minchin, P.R., 
O'Hara,, R. B. Simpson, G.L., Solymos, P., Stevens, M. H., Szoecs, E., & Wagner, H. 
(2020). vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-
project.org/package=vegan 

Pasternack, G. B. (2011). 2D Modeling and Ecohydraulic Analysis. Seatle, WA: Createspace. 

Pasternack, G. B., Gilbert, A. T., Wheaton, J. M., & Buckland, E. M. (2006). Error Propagation 
for Velocity and Shear Stress Prediction Using 2D Models For Environmental 
Management. Journal of Hydrology, 328:227-241. 
https://doi.org/10.1016/j.jhydrol.2005.12.003 

Palucis, M. C., & Lamb, M. P. (2017). What controls channel form in steep mountain streams? 
Geophysical Research Letters, 44(14), 7245-7255. 
doi:https://doi.org/10.1002/2017GL074198 

Pasternack, G. B., Baig, D., Weber, M. D., & Brown, R. A. (2018). Hierarchically nested river 
landform sequences. Part 1: Theory. Earth Surface Processes and Landforms, 43(12), 
2510-2518. doi:https://doi.org/10.1002/esp.4411 

Pasternack, G. B., Gore, J. L., & Wiener, J. S. (2021). Geomorphic covariance structure of a 
confined mountain river reveals landform organization stage threshold. Earth Surface 
Processes and Landforms, 46(13), 2582-2606. doi:https://doi.org/10.1002/esp.5195 

Pasternack, G. B., & Senter, A. E. (2011). 21st Century instream flow assessment framework for 
mountain streams. Retrieved from California Energy Commission, PIER. CEC-500-
2013-059.: https://www.energy.ca.gov/2013publications/CEC-500-2013-059/CEC-500-
2013-059.pdf 

Phillips, J. D. (2014). Badass geomorphology. Earth Surf. Process. Landforms, 40, 22– 33, doi: 
10.1002/esp.3682. 

Rabeni, C. F., & Jacobson, R. B. (1993). The importance of fluvial hydraulics to fish-habitat 
restoration in low-gradient alluvial streams. Freshwater Biology, 29(2), 211-220. 
doi:10.1111/j.1365-2427.1993.tb00758.x 

Richards, K. S. (1976). Channel width and the riffle-pool sequence. Geological Society of 
America Bulletin, 87(6), 883-890. doi:10.1130/0016-7606(1976)87<883:cwatrs>2.0.co;2 



 

A-161 

Rhodes, D. D. (1977). The b-f-m diagram; graphical representation and interpretation of at-a-
station hydraulic geometry. American Journal of Science, 277(1), 73-96. 
doi:10.2475/ajs.277.1.73 

Roper, B. B., & Scarnecchia, D. L. (1995). Observer Variability in Classifying Habitat Types in 
Stream Surveys. North American Journal of Fisheries Management, 15(1), 49-53. 
doi:10.1577/1548-8675(1995)015<0049:OVICHT>2.3.CO;2 

Rosgen, D.L. (2001). A stream channel stability assessment methodology. Proceedings of the 7th 
Federal Interagency Sedimentation Conference; Reno, Nevada. 

Saletti, M., & Hassan, M. A. (2020). Width variations control the development of grain 
structuring in steep step-pool dominated streams: insight from flume experiments. Earth 
Surface Processes and Landforms, 45(6), 1430-1440. 
doi:https://doi.org/10.1002/esp.4815 

Strom, M. A., Pasternack, G. B., & Wyrick, J. R. (2016). Reenvisioning velocity reversal as a 
diversity of hydraulic patch behaviours. Hydrological Processes, 30(13), 2348-2365. 
doi:10.1002/hyp.10797 

Tamminga, A., Hugenholtz, C., Eaton, B., & Lapointe, M. (2015). Hyperspatial Remote Sensing 
of Channel Reach Morphology and Hydraulic Fish Habitat Using an Unmanned Aerial 
Vehicle (UAV): A First Assessment in the Context of River Research and Management. 
River Res. Applic., 31, pages 379– 391, doi: 10.1002/rra.2743 

Thompson, D. M. (2011). The velocity-reversal hypothesis revisited. Progress in Physical 
Geography, 35(1), 123-132. doi:doi:10.1177/0309133310369921 

Thompson, D. M. (2012). The challenge of modeling pool–riffle morphologies in channels with 
different densities of large woody debris and boulders. Earth Surface Processes and 
Landforms, 37(2), 223-239. doi:10.1002/esp.2256 

Thompson, D.M. (2018). Pool-riffle Sequences. Reference Module in Earth Systems and 
Environmental Sciences. https://doi.org/10.1016/B978-0-12-409548-9.11029-2. 

Thompson, D. M., & Fixler, S. A. (2017). Formation and maintenance of a forced pool-riffle 
couplet following loading of large wood. Geomorphology, 296, 74-90. 
doi:https://doi.org/10.1016/j.geomorph.2017.08.030 

Tooth, S., & Nanson, G. C. (2000). Equilibirum and nonequilibirum conditins in dryland rivers. 
Physical Geography, 21:3, 183-211, DOI: 10.1080/02723646.2000.10642705 

Trevisani, S., Cavalli, M., & Marchi, L. (2010). Reading the bed morphology of a mountain 
stream: a geomorphometric study on high-resolution topographic data. Hydrol. Earth 
Syst. Sci., 14(2), 393-405. doi:10.5194/hess-14-393-2010 



 

A-162 

Valle, B. L., & Pasternack, G. B. (2006). Field mapping and digital elevation modelling of 
submerged and unsubmerged hydraulic jump regions in a bedrock step-pool channel. 
Earth Surface Processes and Landforms, 31(6), 646-664. doi:10.1002/esp.1293 

Venditti, J. G., Nelson, P. A., Bradley, R. W., Haught, D., & Gitto, A. B. (2017). Bedforms, 
Structures, Patches, and Sediment Supply in Gravel-Bed Rivers Gravel-Bed Rivers (pp. 
439-466). 

Wang, J., Hassan, M. A., Saletti, M., Chen, X., Fu, X., Zhou, H., & Yang, X. (2021). On How 
Episodic Sediment Supply Influences the Evolution of Channel Morphology, Bedload 
Transport and Channel Stability in an Experimental Step-Pool Channel. Water Resources 
Research, 57(7), e2020WR029133. doi:https://doi.org/10.1029/2020WR029133 

Wheaton, J. M., Fryirs, K. A., Brierley, G., Bangen, S. G., Bouwes, N., & O'Brien, G. (2015). 
Geomorphic mapping and taxonomy of fluvial landforms. Geomorphology, 
248(Supplement C), 273-295. doi:https://doi.org/10.1016/j.geomorph.2015.07.010 

White, J. Q., Pasternack, G. B., & Moir, H. J. (2010). Valley width variation influences riffle–
pool location and persistence on a rapidly incising gravel-bed river. Geomorphology, 
121(3–4), 206-221. doi:https://doi.org/10.1016/j.geomorph.2010.04.012 

Whiting, P. J., & Bradley, J. B. (1993). A process-based classification system for headwater 
streams. Earth Surface Processes and Landforms, 18(7), 603-612. 
doi:https://doi.org/10.1002/esp.3290180704 

Wiener, J., & Pasternack, G.B. (2016). Accretionary Flow Analysis- Yuba River from New 
Bullards Bar to Colgate Powerhouse. Prepared for Yuba County Water Agency. 
University of California, Davis, CA. Retrieved from 
http://pasternack.ucdavis.edu/research/projects/ncrs/mountain-river-eco-geo 

Wiener, J. S., & Pasternack, G. B. (2022). Scale dependent spatial structuring of mountain river 
large bed elements maximizes flow resistance. Accepted. Geomorphology. 

Wilkinson, S. N., Rutherfurd, I. D., & Keller, R. J. (2008). An experimental test of whether bar 
instability contributes to the formation, periodicity and maintenance of pool–riffle 
sequences. Earth Surface Processes and Landforms, 33(11), 1742-1756. 
doi:https://doi.org/10.1002/esp.1645 

Wolman, M. G., & Eiler, J. (1958). Reconnaissance study of erosion and deposition produced by 
the flood of August 1955 in Connecticut. Eos, Transactions American Geophysical 
Union, 39(1), 1-14. doi:https://doi.org/10.1029/TR039i001p00001 

Woodworth, K. A., & Pasternack, G. B. (2022). Are dynamic fluvial morphological unit 
assemblages statistically stationary through floods of less than ten times bankfull 



 

A-163 

discharge? Geomorphology, 403, 108135. 
doi:https://doi.org/10.1016/j.geomorph.2022.108135 

Wright, M.N., & Ziegler, A. (2017). ranger: A Fast Implementation of Random Forests for High 
Dimensional Data in C++ and R. Journal of Statistical Software, 77(1), 1-17. 
doi:10.18637/jss.v077.i01 

Wyrick, J. R., & Pasternack, G. B. (2012). Landforms of the Lower Yuba River. Prepared for the 
Yuba Accord River Management Team. University of California, Davis. Retrieved from: 
http://www.yubaaccordrmt.com/Annual%20Reports/Mapping%20and%20Modeling/LY
R%20Landforms%20Report%20%285-9-2012%29.pdf 

Wyrick, J. R., & Pasternack, G. B. (2014). Geospatial organization of fluvial landforms in a 
gravel–cobble river: Beyond the riffle–pool couplet. Geomorphology, 213(Supplement 
C), 48-65. doi:https://doi.org/10.1016/j.geomorph.2013.12.040 

Wyrick, J. R., Senter, A. E., & Pasternack, G. B. (2014). Revealing the natural complexity of 
fluvial morphology through 2D hydrodynamic delineation of river landforms. 
Geomorphology, 210, 14-22. doi:10.1016/j.geomorph.2013.12.013 

Yochum, S. E., Comiti, F., Wohl, E., David, G. C. L., & Mao, L. (2014). Photographic guidance 
for selecting flow resistance coefficients in high-gradient channels. Retrieved from 
https://www.fs.usda.gov/treesearch/pubs/46250 

Zimmermann, A. E., Church, M., & Hassan, M. A. (2008). Identification of steps and pools from 
stream longitudinal profile data. Geomorphology, 102(3), 395-406. 
doi:https://doi.org/10.1016/j.geomorph.2008.04.009 




