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Abstract 

 

Using Explanatory Item Response Models to Evaluate Complex Scientific Tasks Designed for 

the Next Generation Science Standards 

by 

Tina Chiu 

Doctor of Philosophy in Education 

University of California, Berkeley 

Professor Mark Wilson, Chair 

 

 

This dissertation includes three studies that analyze a new set of assessment tasks 

developed by the Learning Progressions in Middle School Science (LPS) Project. These 

assessment tasks were designed to measure science content knowledge on the structure of matter 

domain and scientific argumentation, while following the goals from the Next Generation Science 

Standards (NGSS). The three studies focus on the evidence available for the success of this design 

and its implementation, generally labelled as “validity” evidence. I use explanatory item response 

models (EIRMs) as the overarching framework to investigate these assessment tasks. These 

models can be useful when gathering validity evidence for assessments as they can help explain 

student learning and group differences.  

 In the first study, I explore the dimensionality of the LPS assessment by comparing the fit 

of unidimensional, between-item multidimensional, and Rasch testlet models to see which is most 

appropriate for this data. By applying multidimensional item response models, multiple 

relationships can be investigated, and in turn, allow for a more substantive look into the assessment 

tasks. The second study focuses on person predictors through latent regression and differential 

item functioning (DIF) models. Latent regression models show the influence of certain person 

characteristics on item responses, while DIF models test whether one group is differentially 

affected by specific assessment items, after conditioning on latent ability. Finally, the last study 

applies the linear logistic test model (LLTM) to investigate whether item features can help explain 

differences in item difficulties. 
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Chapter 1: Introduction 

 

1.1 Background and Motivation 

This research focuses on analyzing a new set of assessment tasks designed to measure 

specific science content knowledge—the structure of matter—and a specific scientific inquiry 

practice—argumentation—to look into student learning trajectories and to also provide a means 

for evaluating students’ achievement in these areas. These assessment tasks attempt to model some 

of the new science standards dimensions outlined in the Next Generation Science Standards 

(NGSS; NGSS Lead States, 2013). This dissertation will focus on the evidence available for the 

success of this design and its implementation—generally labelled as “validity” evidence. 

This introductory chapter is divided into three main sections. First, I provide essential 

background information on how validity in assessments is defined, followed by a brief overview 

of the recent science standards. Second, the Learning Progressions in Middle School Science (LPS) 

project is described, including details about the types of data collected. Finally, the remaining 

chapters are summarized.  

 

1.1.1 Validity Evidence and Assessments 

According to the Standards for Educational and Psychological Testing (American 

Educational Research Association (AERA), American Psychological Association (APA) & 

National Council on Measurement in Education (NCME), 2014), validity is “the degree to which 

evidence and theory support the interpretations of test scores for proposed uses of tests. Validity 

is, therefore, the most fundamental consideration in developing and evaluating tests” (pp. 11). A 

test itself cannot be deemed as valid or invalid; rather, it is the interpretations and use of the test 

scores that should be evaluated with various sources of evidence. The Standards list five different 

sources of validity evidence: test content, response processes, internal structure, relation to other 

variables, and consequential validity. 

Evidence based on test content refers to how well the content in a test measures the 

construct intended to be measured. This evidence type is closely tied to the alignment of a test, 

which usually consists of “evaluating the correspondence between student learning standards and 

test content” (AERA, APA, & NCME, 2014, pp. 15), and is thus of special interest in this 

dissertation. Clearly defining the construct and the assessment tasks based on the research 

literature is one method for gathering validity evidence of this sort.  

Evidence based on response processes, on the other hand, refers to whether test-takers are 

responding to the items in the way as intended by the test developers. For example, for a test on 

scientific reasoning, it is important to interview a sample of the intended test population to ensure 

that they are, in fact, using scientific reasoning skills to answer the items. Interviews and think-

alouds are some methods available to collect this useful information.  
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Internal structure evidence refers to “the degree to which the relationships among test items 

and test components conform to the construct on which the proposed test score interpretations are 

based” (AERA, APA, NCME, 2014, pp. 16). This means investigating whether the test measures 

more or less than it intends to measure. Tests that measure additional, unintended constructs are 

said to have construct-irrelevant variance (Haladyna & Downing, 2004), while those that do not 

measure the intended constructs are called construct-deficient (AERA, APA, NCME, 2014). 

Differential item functioning (DIF), a common method for testing construct-irrelevant variance, 

can be useful for testing the internal structure of an assessment.  

Relations to other variables explores the relationship of the test to other constructs or tests 

that may or may not be related to the construct of interest. For instance, a test intended to measure 

scientific reasoning should be more highly correlated to a test on overall science ability than to a 

test on overall math ability.  

Lastly, evidence for consequential validity refers to the use of the interpreted test scores as 

intended by the test developer to maximize the expected effects and to minimize the effects of 

unintended consequences. Using a test designed for formative classroom use, for example, as a 

high-stakes grade promotion test reflects an improper use of the test that may also lead to harmful 

consequences for its test-takers.   

These five types highlight the different aspects that need to be considered when evaluating 

the validity of a test for a particular use. Each additional use of the test score requires validation. 

Thus, if a test is used for both descriptive and predictive purposes, both interpretations must be 

validated (AERA, APA, NCME, 2014). The aim of this dissertation is to gather validity evidence 

for a science assessment for evaluating students on the structure of matter content domain and on 

their scientific argumentation skills.  

   

1.1.2 The Next Generation Science Standards (NGSS) 

Written to supplement the Framework for K-12 Science Education (National Research 

Council, 2012), the Next Generation Science Standards (NGSS; NGSS Lead States, 2013) 

provides performance expectations to reflect a reform in science education that includes three 

dimensions: (1) developing disciplinary core ideas (content), (2) linking these core ideas across 

disciplines or crosscutting concepts, and (3) engaging students in scientific and engineering 

practices—based on contemporary ideas about what scientists and engineers do. The emphasis, in 

particular, is on combining these three dimensions together so that core ideas are not taught in 

isolation, but connect to larger ideas that also involve real-world applications. Rather than learn a 

wide breadth of disconnected content topics, the goal is to develop a deeper understanding of a 

few core ideas that set a strong foundation for all students after high school. 

For the disciplinary core ideas dimension, four core domains were identified: physical 

sciences, life sciences, earth and space sciences, and engineering, technology, and applications of 

science. Each domain consists of more detailed areas. For instance, the physical sciences core 

domain includes areas such as the structure of matter, forces and motion, and chemical reactions. 

Seven crosscutting concepts were identified, as they were thought to have application across more 

than one domain of science. These concepts include: patterns, cause and effect, scale, proportion, 



 

 

3 

 

and quantity, systems and system models, energy and matter in systems, structure and function, 

and stability and change of systems. Lastly, there are eight science and engineering practices: 

asking questions and defining problems, developing and using models, planning and carrying out 

investigations, analyzing and interpreting data, using mathematics and computational thinking, 

constructing explanations and designing solutions, engaging in argument from science, and 

obtaining, evaluating, and communicating information. As the goal is the intersection of these 

three dimensions, each standard listed in the document contains at least one element from each of 

these three dimensions. 

With the call to meet these new standards, there is a need to consider: (1) how students 

learn or develop these types of knowledge and practices and (2) how to assess them to ensure 

proficiency and growth. The Learning Progressions in Middle School Science (LPS) project, 

described in the next section, examined two of these three dimensions from the NGSS and designed 

an assessment to reflect their integration.  

 

1.2 The Learning Progressions in Middle School Science (LPS) Project 

The data used for this dissertation is from the Learning Progression in Middle School 

Science (LPS) project, a four-year long project funded by the Institute of Education Sciences (IES). 

The project had three main research goals: (1) to develop a learning progression for a science 

content domain—structure of matter, (2) to develop a learning progression for scientific 

argumentation, and (3) to explore the relationship between science content knowledge and 

scientific argumentation. To accomplish these goals, the research team used the BEAR Assessment 

System (BAS; Wilson, 2005; Wilson & Sloane, 2000)—a multistage, intensive, and iterative 

procedural system for carefully designing and developing assessments. While the details of BAS 

are not discussed here, Wilson and Sloane (2000) and Wilson (2005) are excellent resources for 

interested readers.  

By following BAS through multiple iterations, the research team defined, developed, and 

refined both learning progressions and the assessment tasks using literature reviews, student 

cognitive labs, teacher interviews, discussions with content experts, and empirical analyses. Earlier 

analyses provided strong empirical evidence for both learning progressions (Osborne et al., 2013a; 

Osborne et al., 2013b; Wilson, Black, & Morell, 2013; Yao, 2013).  

In the next subsections, both the content and argumentation learning progressions are 

described briefly. Then, an overview of the data used for this dissertation is presented. This 

includes descriptions and examples of the assessment tasks. Demographic information for the 

sample is also provided.  

  

1.2.1 The Structure of Matter Learning Progression and the Particulate Explanations of 

Physical Changes (EPC) Construct 

The structure of matter learning progression is hypothesized to include six related, but 

distinct constructs. Shown in Figure 1.1, the constructs for this progression are represented by 

boxes with the arrows pointing towards more sophisticated constructs. Thus, the progression starts 
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at the bottom, with Macro Properties (MAC) as the easiest construct, followed by the Changes of 

State and other Physical Changes (PHS), and ends with Particulate Explanations of Physical (EPC) 

and Chemical (ECC) Changes as the most difficult constructs. Two additional constructs, 

Measurement and Data Handling (MDH) and Density (DMV), were identified as auxiliary 

constructs—constructs that aid in the understanding of the four core ones but not necessarily 

central. This classification was helpful because, due to time and resource constraints, not all 

constructs could be investigated in great detail. This allowed the research team to prioritize and 

gather good empirical evidence for the constructs of most interest. Although not illustrated in 

Figure 1.1, each construct contains more detailed descriptions, called construct maps, which covers 

increasingly sophisticated descriptions of student thinking in these areas.  

For this dissertation, only one construct from the content learning progression is used for 

analyses: Particulate Explanation of Physical Changes (EPC). This was chosen because concepts 

from this construct fit well with the argumentation items on the assessment, as they cover similar 

ideas. The construct map for EPC is shown in Figure 1.2. EPC contains two strands, A: molecular 

models of physical changes and B: molecular representations of different states of matter. Strand 

A consists of three sub-strands, describing phenomena for mixing and dissolving, compression 

and gases, and phase change and heating. Strand B consists of two sub-strands, density and 

arrangements and movements. Both strands contain three levels; Level 1 describes the simpler 

levels of understanding within each sub-strand, whereas Level 3 describes the more complex and 

sophisticated understandings within each sub-strand.  

 

 

Figure 1.1.  Structure of matter learning progression from the Learning Progressions in Science 

(LPS) Project.  
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Levels EPC Strand A : Molecular models of physical change EPC Strand C:  Molecular representations of different states of 

matter 

 Mixing and Dissolving Compression of gases Phase change and heating Density Arrangements and 

Movements 

3   Can explain that when a solid 

or liquid is heated, it occupies 

more volume because of the 

faster movements of molecules   

Can explain why with the same number 

of different molecules in the same 

volume, the densities of the two materials 

cannot be the same. 

Can explain why with different numbers 

of the same molecules in a given volume, 

the two materials cannot have the same 

density. 

Can explain why with different numbers 

of different molecules in a given volume, 

the two materials can have the same 

density. 

Knows that in ice the spaces 

between the molecules are 

empty. 

 

2 Knows that, when two 

different substances are 

mixed, the molecules of 

the substances mix 

together at random  

Knows that when sugar 

is dissolved in water, 

the sugar can’t be seen 

because it has split up 

and the pieces are 

mixed in the water.   

Knows that when a 

volume of gas is 

compressed (or 

expanded), the 

molecules move closer 

together (or further 

apart) and are still 

distributed at random, 

but the molecules do 

not change their size 

or their mass   

 

Knows that in phase changes, 

the molecules speed up - from 

solid to liquid and from liquid 

to gas  

 

Can give a partial explanation why with 

the same number of different molecules 

in the same volume, the densities of the 

two materials cannot be the same. 

Can give a partial explanation why with 

different numbers of the same molecules 

in a given volume, the two materials 

cannot have the same density. 

Can give a partial explanation why with 

different numbers of different molecules 

in a given volume, the two materials can 

have the same density. 

Can explain effects of the 

free movement of gas 

particles. 

Can describe the movements 

of molecules in ice, water 

and water vapor. 

Knows that the particles of a 

gas move freely to fill any 

space. 

1 Knows that when a 

substance is dissolved, 

the substance’s mass is 

conserved. 

 

Knows that when a gas 

is compressed (or 

expanded), the number 

of molecules in that 

gas does not change 

 Can recognize that with the same number 

of different molecules in the same 

volume, the densities of the two materials 

cannot be the same. 

Can describe the 

arrangements of molecules in 

ice, water and water vapor. 

 

Figure 1.2.  Construct map for Particulate Explanations of Physical Changes (EPC). 
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1.2.2 The Scientific Argumentation Learning Progression 

In addition to the content learning progression, a separate progression was developed for 

scientific argumentation, which is shown in Figure 1.3. Unlike for content, this learning 

progression reads from top to bottom, with the less sophisticated argumentation practices listed at 

the top and the most sophisticated at the bottom. It is based on Toulmin’s (1958) model of 

argumentation and contains three main elements: claims, evidence, and warrants. Claims are 

statements that an arguer states is true. Evidence are the data used to support these claims and these 

depend on the warrants, or the explanations of how the evidence supports the claims.  

The first column in the progression represents the three distinct levels (Levels 0, 1, and 2), 

each with its own sublevels (e.g. Levels 1a, 2a). Like for content, higher numbers represent more 

difficult practices and a deeper understanding of the area. The second and third columns represent 

whether an argument requires students to construct ones’ own element or critique someone else’s, 

while the fourth column includes a description of the level. These columns are based on the notion 

that argumentation is a dialectic between construction and critique (Ford, 2008). The construction 

of scientific claims, for instance, are subject to the critique and scrutiny by the community. 

Scientists often engage in both practices. In some more difficult levels (e.g. Level 2A), both of 

these skills—constructing and critiquing—are required.  

After some earlier analyses were completed, the research team decided to incorporate 

cognitive load theory into this progression as well. The idea is that the more elements that are 

required in an argument, the more sophisticated argumentation skills are required. The last column 

in the learning progression provides a visual representation of this addition. The grayed figures 

indicates which element is needed to successfully argue at a certain level and one can observe that 

the highest level in this progression also contains the most required elements.   
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Lev. Constructing Critiquing Description 
Representation of 

elements 

0   No evidence of facility with argumentation.   

0a 
Constructing 

a claim 
 Student states a relevant claim. 

 

0b  
Identifying a 

claim 
Student identifies another person’s claim.  

 

0c 
Providing 

evidence  
 Student supports a claim with a piece of evidence. 

 

0d  
Identifying 

evidence 
 

 

1a 
Constructing 

a warrant 
 Student constructs an explicit warrant that links their claim to evidence. 

 

1b  
Identifying a 

warrant 
Student identifies the warrant provided by another person. 

 

1c 
Constructing 

a complete 

argument 

 
Student makes a claim, selects evidence that supports that claim, and 

constructs a synthesis between the claim and the warrant.   
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1d 
Providing an alternative 

counter argument 

Student offers a counterargument as a way of rebutting another person’s 

claim. 
 

2a Providing a counter-critique 

 

Student critiques another’s argument.  Fully explicates the claim that the 

argument is flawed and justification for why that argument is flawed. 

  

2b 

Constructing 

a one-sided 

comparative 

argument 

 

Student makes an evaluative judgment about the merits of two 

competing arguments and makes an explicit argument for the value of 

one argument.  No warrant for why the other argument is weaker.  
 

2c 
Providing a two-sided 

comparative argument 

 

Student makes an evaluative judgement about two competing arguments 

and makes an explicit argument (claim + justification) for why one 

argument is stronger and why the other is weaker (claim + justification). 

 
 

2d 
Constructing a counter claim 

with justification 

This progress level marks the top anchor of our progress map. Student 

explicitly compares and contrasts two competing arguments, and also 

constructs a new argument in which they can explicitly justify why it is 

superior to each of the previous arguments.  

 

 

Figure 1.3.  Argumentation learning progression from the Learning Progressions in Science (LPS) project.
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1.2.3 Complex Tasks for 2013-2014 Data Collection 

LPS data from the 2013-2014 school year is used for this dissertation. In response to the 

NGSS, the items for this data collection were organized into “complex tasks”, which consist of (1) 

argumentation items assessing argumentation competency in a specific scientific context (e.g. two 

students arguing over what happens to gas particles placed in a container, (2) content science items 

situated within the same scientific context (e.g. what happens when you insert gas particles into a 

sealed container), and (3) content science items assessing knowledge of other concepts in the same 

science domain but not so closely associated with the context (e.g. compare the movement of liquid 

water molecules with the movement of ice molecules). In this dissertation, these three item types 

will be referred to as “argumentation”, “embedded content”, and “content” items, respectively. 

Figures 1.4, 1.5, and 1.6 illustrate, respectively, an example of each type of item from the same 

complex task (i.e. onions).  

Note that the embedded content and the argumentation items share common stimulus 

materials because they occur within the same context (e.g. why do people cry when they cut 

onions?). Content items do not share any of the stimulus materials and resemble more traditional 

content items. They are general questions with no specific context. They are, however, presented 

along with the other two item types.  

In total, there are three complex tasks that cover different contexts including chopping 

onions, placing gas particles in a jar, and dissolving sugar in water. In this dissertation, they will 

be referred to as “onions”, “gases”, and “sugar”, respectively. The assumption behind this 

“complex task” organization is tying in both the domain knowledge of the structure of matter in 

addition to the practice of scientific argumentation. Instead of just testing decontextualized content 

matter (content items), contextualized content items (embedded content) and contextualized 

argumentation items (argumentation) are presented alongside one another. By presenting these 

three types of items on the same assessment, the relationship among content domain knowledge 

and scientific argumentation competency can be further explored.    

For the dissertation, a subset of the original 2013-2014 LPS data is used, for a final total of 

39 items across the three complex tasks. Table 1.1 illustrates the distribution of these final item 

types across the three different contexts. There were 20 argumentation items, 7 embedded content, 

and 12 content items. All embedded content and content items were scored following the EPC 

construct map (shown in Figure 1.2), while all argumentation items were scored following the 

argumentation learning progression (shown in Figure 1.3).  
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Figure 1.4.  An example of an argumentation item from the Onions complex task.  

 

 

Figure 1.5.  An example of an embedded content item from the Onions complex task. 

Mark and Kian are discussing what happens when they chop onions. They 

have two different ideas. 

 
 

What is Mark's idea about why people cry when they cut onions? 

Mark's idea is that... 

 

 
 

Have you ever noticed that when people chop onions they look like they are 

crying? 

In the space below, explain how you think a chemical from the onion could get 

into a person's eye. 

A chemical could get into a person's eye by... 
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Figure 1.6.  An example of a content item from the Onions complex task.  

 

Table 1.1  

Distribution of types of items across the three complex tasks 

 Argumentation Embedded Content Content TOTAL 

Onions 9 1 4 14 

Gases 4 3 6 13 

Sugar 7 3 2 12 

TOTAL 20 7 12 39 

 

 

1.2.4 2013-2014 Data: The Students 

 In the spring of 2014, a total of 282 students from a large urban school district on the West 

Coast took the assessment. The assessment took one class period and was taken during regular 

school hours on a computer. Four students have provided no information for the test (i.e. all 

missing responses), leaving a final sample of 278 students. Unless otherwise noted, this sample 

was used for all analyses.  

Demographics are provided in Table 1.2. The sample consisted of 119 grade 8 and 159 

grade 10 students. Demographics information was missing for one student. There were more 

females (𝑛 = 172) than males (𝑛 = 105). A high percentage of this group of students were 

classified as gifted students (𝑛 = 169, 60.79%). Eleven (3.96%) were classified as special 

education students.  

Four different categories were available for the English proficiency status, as classified by 

the school district: (1) English language learners (ELL), (2) students who were once classified as 

ELL, but were no longer classified as such (Reclassified), (3) students who spoke a language other 

Describe the arrangement of molecules in ice, liquid water, and water vapor. 

The arrangement of molecules in ice is... 

Packed closer together than liquid water and in a repeating pattern 

Spread further apart than liquid water and in a repeating pattern. 

Packed closer together than liquid water and in a random pattern. 

Spread further apart than liquid water and in a random pattern. 
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than English at home, but were never classified as an ELL (Fluent), and (4) students whose primary 

language was English (English). The total counts for these four groups are 3, 110, 58, and 106, 

respectively.  

 

Table 1.2 

Demographics for students who took the LPS assessment in Spring 2014 (N=278) 

 Frequency* Percentage* 

Grade   

     Eighth 119 42.81 

     Tenth 159 57.19 

     TOTAL 278 100.00 

Sex   

     Female 172 61.87 

     Male 105 37.77 

     TOTAL 277 99.64 

English Proficiency Classification   

     English language learner (ELL) 3 1.06 

     Reclassified  110 39.57 

     Fluent 58 20.86 

     English 106 38.13 

     TOTAL 277 99.64 

Classification: Gifted   

     Yes 169 60.79 

     No 108 38.85 

     TOTAL 277 99.64 

Classification: Special Education   

     Yes 11 3.96 

     No 266 95.68 

     TOTAL 277 99.64 

*Note: Due to missing data, not all frequencies equal 278 nor do all percentages equal 100.  
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Table 1.3 provides some summary statistics for this group of students on several subjects. 

The grade point average (GPA) for students in science, English, and math were 3.38, 3.54, and 

3.26, respectively. The overall GPA average is 3.53 and follows the pattern that this particular 

sample of students perform generally well in school.  

 

Table 1.3 

Summary Statistics for students who took the LPS assessment in Spring 2014 (N=282) 

 Obs. Mean Std. Dev. Min Max 

Science GPA 271 3.38 0.74 0.5 4 

English GPA 271 3.54 0.52 2 4 

Math GPA 269 3.26 0.74 0 4 

Overall GPA 277 3.53 0.42 1.93 4 

 

In addition to GPA, results from a 2014 state science test were available. Although raw and 

standardized scores were not available, five group classifications were: “Advanced,” “Proficient,” 

“Basic,” “Below Basic,” and “Far Below Basic.” Table 1.4 has the frequencies for each of these 

categories by grade, since the eighth graders and tenth graders take different tests. Most students 

scored into the “Advanced” and “Proficient” categories, regardless of grade. However, there were 

41 tenth grade students (25.79%) who had missing data for this test. This can be due to a number 

of reasons, including absences during the exam and opting out.  

 

Table 1.4 

Frequency and percentage of students’ performance on state science test by grade 

State Science Test Frequency Percentage Frequency Percentage 

 Grade 8  Grade 10  

Advanced 87 73.11 90 56.60 

Proficient 21 17.65 25 15.72 

Basic 6 5.04 3 1.89 

Below Basic 4 3.36 0 0.00 

Far Below Basic 1 0.84 0 0.00 

Missing 0 0.00 41 25.79 

TOTAL 119 100.00 159 100.00 
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1.3 The Three Research Areas 

The purpose of this dissertation is to investigate sources of validity evidence to determine: 

(1) whether student responses to these complex tasks reflect student understanding in the structure 

of matter content domain and their scientific argumentation competency, and (2) to explore the 

relationship between these two learning progressions. I plan to accomplish these two interrelated 

goals by applying various explanatory item response models (EIRM; De Boeck & Wilson, 2004). 

These models can be useful when gathering validity evidence for assessments as they can help 

explain student learning and group differences.  

As all aspects of validity evidence are important to consider when evaluating assessments, 

these sources of evidence will be explored throughout this dissertation, with the main focus on 

evidence related to test content, internal structure, and relation to other variables. Evidence related 

to response processes and consequential validity are of lower interest as the first was already 

explored during the test development process (which followed the BEAR Assessment System or 

BAS; Wilson & Sloane, 2000) and the latter because the test is a low-stakes test, administered only 

once, for research purposes only and had no effects on students’ grades. 

The next chapter explores the dimensionality of the test by comparing unidimensional, 

between-item multidimensional, and Rasch testlet models to find the best-fitting model for the 

data. The second research area focuses on person and person-by-item predictors through applying 

a latent regression model and a differential item functioning (DIF) model, respectively. The last 

research area uses a linear logistic test model (LLTM) to identify vital item features for the test. 

Throughout all papers, validity evidence for test content, internal structure, and relation to other 

variables will be discussed.  

 

1.3.1 Model Selection and Software 

 This research is interested in comparing a group of models to find the relative best-fitting 

one that can explain the data well while also having a reasonable number of parameters. When 

models are nested, a likelihood ratio test can be used for direct comparison. However, when models 

are not nested but use the same data, two common measures can be used for model selection: 

Akaike’s Information Criteria (AIC; Akaike, 1974) and the Bayesian Information Criterion (BIC; 

Schwarz, 1978). For both criteria, the model with the lowest value is preferred as it indicates a 

better fit.  

AIC is defined as:  

 

AIC = 𝐺2 + 2𝑝 + 𝑇     (1.1) 

 

where 𝐺2 is the model deviance, 𝑝 is the number of parameters, and 𝑇 is an arbitrary constant. 

Since a lower value is preferred, one can see that a model is penalized for having more parameters, 

as denoted by the 2𝑝.  
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Similar to AIC, BIC is defined as: 

 

BIC = 𝐺2 + 𝑝 log (𝑛)     (1.2) 

 

where 𝐺2 and 𝑝 is the same as in Equation 1.1 and 𝑛 is the sample size. Like the AIC, the BIC also 

includes a penalty for a larger number of parameters. However, the BIC also includes the prior 

distribution, as denoted by the inclusion of the sample size.  

 Cleaning the data, descriptive analyses, and some graphs were completed using Stata 11 

(StataCorp, 2009). Wright maps were generated using the WrightMap package (Torres Irribarra 

& Freund, 2016) in R (R Core Team, 2015). Unless otherwise noted, ConQuest 3.0 (Adams, Wu, 

& Wilson, 2012) was used for all Rasch analyses in this paper. Estimation methods, constraints, 

and other settings may differ for each chapter and will be described accordingly. 
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Chapter 2: Multidimensional modeling of the complex tasks 

 

2.1 Introduction 

The complex tasks in the LPS assessment, described in the first chapter, consist of three 

item types (content, embedded content, and argumentation) that were designed to follow some of 

the recommendations from the Next Generation Science Standards (NGSS; NGSS Lead States, 

2013). This chapter investigates the relationship of these item types by applying multidimensional 

item response models, with the goal that this analysis will shed insight into the relationship 

between the scientific practice of argumentation and the content domain of structure of matter. 

Multidimensional models can provide more complex descriptions regarding student learning than 

unidimensional models (Briggs & Wilson, 2003; Hartig & Höhler, 2009), such as modeling 

nuisance dimensions (Wang & Wilson, 2005), group differences (Liu, Wilson, & Paek, 2008; 

Walker and Beretvas, 2003; Walker, Zhang, & Surber, 2008) and latent covariance structures (Wu 

& Adams, 2006). Thus, as an initial step towards understanding the nature of these complex tasks, 

a dimensionality analysis is appropriate to investigate the relationships between these three item 

types. Specifically, the main research questions for this chapter are: 

 

RQ1.  What is the relationship between scientific argumentation items, content knowledge 

items, and the embedded content items in the complex tasks? More specifically, 

what can these three item types reveal about the relationship between scientific 

content and scientific argumentation?   

 

To explore this research question, several models—of varying dimensions—are analyzed 

and compared to find the best-fitting model. This includes a model assuming (1) the items measure 

one latent dimension (e.g. an overall science proficiency dimension), (2) the items measure 

multiple latent dimensions (e.g. separate argumentation and content knowledge dimensions), and 

(3) the presence of a nuisance dimension (e.g. context of items is not of interest, but is important 

to take into account). These models are described in detail in the next section. By applying 

multidimensional item response models, multiple relationships can be investigated, such as the 

relationship between the embedded content and the content items, and in turn, allow for a more 

substantive look into the three item types.  
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2.2 Unidimensional, Between-item Multidimensional, and Testlet Models 

To investigate the dimensionality of these item types, several models are compared to find 

the relative best-fitting model. First, a unidimensional partial credit model (PCM; Masters, 1982) 

is applied to the data to test the assumption that the items measure only one underlying latent 

construct. This model serves as a baseline to test whether the complexity of multidimensional 

models are actually needed for this assessment. The PCM was chosen because it can handle all the 

items in the assessment, which include dichotomously and polytomously scored items. It models 

the log odds of the probability that student 𝑝 with ability 𝜃𝑝 will respond in category 𝑗 instead of 

category 𝑗 − 1 on item 𝑖, as shown in Equation 2.1 below:   

 

    log(
𝑃(𝑋𝑖=𝑗|𝜃𝑝)

𝑃(𝑋𝑖=𝑗−1|𝜃𝑝)
) = 𝜃𝑝 − 𝛿𝑖𝑗     (2.1) 

 

where 𝛿𝑖𝑗 is a parameter for the difficulty for step 𝑗 of item 𝑖 and 𝜃𝑝~𝑁(0, 𝜎𝜃𝑝

2 ).  

A graphical representation of this model is shown in Figure 2.1. To read this graphic, recall 

that there are three item types (content, argumentation, and embedded content) and three item 

contexts (sugar, onions, and gases), resulting in nine ‘context by type’ item combinations. These 

item combinations are shown as boxes throughout Figures 2.1 to 2.6. As an example, “SA” denotes 

an argumentation item that is about sugar dissolving in water, whereas “GE” is an embedded 

content item about gases. For Figure 2.1, notice that all nine combinations of items, regardless of 

context or type, are presumed to measure the same underlying latent dimension in this model which 

is represented by the circle. This underlying dimension is called “science” here, since all items are 

intended to measure science1.  

 

                                                 
1 Note that naming this dimension “science” is simply to show its generalness compared to the other models described 

later. The domain of science is large and these items as a whole would only measure a tiny portion of this domain. To 

be even more specific, this dimension could be titled “scientific argumentation and particulate explanations of physical 

changes.” For simplification, the simpler, less verbose title seems apt here.    
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Figure 2.1.  Diagram for the unidimensional model.   

 

This unidimensional model is not necessarily of interest as the test was designed to measure 

two latent constructs—scientific argumentation and structure of matter content. Thus, a two-

dimensional model would ideally fit this data better than the unidimensional model. For validity 

purposes, it is important to test the assumption that a multidimensional model would fit the data 

statistically significantly better than the unidimensional version.  

One way to model a multidimensional extension to the PCM includes adding a dimensional 

subscript 𝑑 to the person proficiency 𝜃𝑝. Thus, instead of a scalar, the person proficiency is now 

written as a vector 𝜽𝑝𝑑 = (𝜃11, … , 𝜃1𝐷 , … , 𝜃𝑝𝐷) which contains the latent trait estimates for each 

person 𝑝 on each dimension 𝑑. For example, in a two-dimensional model, each person would have 

two ability estimates, one for each of the dimensions. For a three-dimensional model, each person 

would have three ability estimates and so on. The between-item multidimensional extension is 

illustrated in Equation 2.2, where it is assumed that each item measures just one dimension (i.e., 

between-item dimensionality; Wang, Wilson, & Adams, 1997). This model fits well with the LPS 

data, as the items in this assessment have one underlying dimension that it measures (i.e. 

argumentation or content, but not both). 

 

 log(
𝑃(𝑋𝑖=𝑗|𝜃𝑝𝑑)

𝑃(𝑋𝑖=𝑗−1|𝜃𝑝𝑑)
) = 𝜃𝑝𝑑 − 𝛿𝑖𝑗      (2.2) 

 

The 𝛿𝑖𝑗 has the same meaning as in Equation 2.1. All item step parameters, then, would continue 

to have only one estimate.     
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 Figure 2.2 shows the two-dimensional between-item model. While Figure 2.1 had one 

circle representing a latent dimension, Figure 2.2 has two circles: one representing content and the 

other representing argumentation. The curved arrow connecting these two dimensions suggests 

that these dimensions are correlated. In this model, the items are assumed to measure one of two 

possible dimensions: scientific argumentation or structure of matter content. The embedded 

content items are assumed to measure the content dimension because they are content items that 

are embedded to a specific everyday context. In addition, these items were scored following the 

content construct map. If this model is statistically more significant than the model shown in Figure 

2.1, then it suggests that the items measure two distinct, correlated dimensions, rather than just one 

latent dimension.  

 

  

Figure 2.2.  Diagram for the two-dimensional between-item model.     

 

While the items were designed with two underlying constructs in mind, it is still useful to 

test whether this was actually true. Comparing the two-dimensional model with a unidimensional 

model is appropriate, as is adding an additional dimension. Thus, a three-dimensional between-

item model, where each of the three types of items were assumed to measure three distinct, but 

correlated dimensions, is tested. This model, shown in Figure 2.3, is similar to the previous model, 

but the embedded content items are considered to measure its own unique dimension. That is, the 

embedded content items measure a distinct construct that differs from the content items. If this 

model provides a statistically significantly better fit than the previous model (represented by Figure 

2.2) and there is a meaningful difference between the models’ effect size, then this suggests that 

the embedded content items are measuring something other than simply the same science content.  
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Figure 2.3.  Diagram for a three-dimensional between-item model. 

 

While the two- and three-dimensional between-item models take into account the differing 

item types, they do not account for the similar contexts (e.g. sugar, onions, gases) of some of the 

items. Although there is no particular interest in these contexts, they may still be important to 

account for due to the possible violation of local independence. Two of the three item types in the 

complex tasks (argumentation and embedded content) share a common context that may result in 

local dependence. In addition, all items within a complex task unit were grouped together due to 

similar content coverage. While the content items do not share the same stimuli as some of the 

argumentation and embedded content items, they cover similar content ideas as the other items 

within the same task. Checking the local independence assumption for these complex tasks seem 

appropriate for this data.  

The Rasch testlet model (Wang & Wilson, 2005) is a multidimensional model that can 

account for this local dependence between items, especially when this dependency is not of interest 

(e.g. a “nuisance” dimension). This model is written as: 

 

   log (
𝑃(𝑋𝑖=𝑗|𝜃𝑝𝑑)

𝑃(𝑋𝑖=𝑗−1|𝜃𝑝𝑑)
) = 𝜃𝑝𝑑 − 𝛿𝑖𝑗 + 𝛾𝑝𝑑(𝑖)   (2.3) 

 

where, like in the earlier equations, the log odds of the probabilities that person 𝑝 scoring in 

category 𝑗 as opposed to category 𝑗 − 1 to item 𝑖 is modeled. The parameters 𝛿𝑖𝑗 and 𝜃𝑝𝑑 have the 

same meaning as in Equation 2.2. Note that this means all items will continue to have the same 

number of difficulty parameters, 𝛿𝑖𝑗, as they remain fixed effects. The 𝛾𝑝𝑑(𝑖) is the random effect 

of testlet 𝑑(𝑖) with 𝛾𝑝𝑑(𝑖)~ 𝑁(0, 𝜎𝛾𝑝𝑑(𝑖)
2 ). Each testlet is modeled as an independent random effect 

that is orthogonal to each other and to any other dimensions. The 𝑖 subscript signifies the items 
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that belong to the testlet, while the 𝑝 subscript signifies that each person will have an estimate on 

the testlet dimension.  

Using this data as an example, assume three testlets—one for each of the contexts of the 

items (e.g. “onions,” “gases,” or “sugar”) in addition to the overall “science” dimension of interest, 

described in Equation 2.1. For this model, each student would have one estimated ability for the 

science dimension and three estimates for the testlets. Figure 2.4 provides an illustration of this 

example. Note that there are four circles—one representing the science dimension and three 

representing each one of the testlets. Because the testlets are assumed to be orthogonal to each 

other as well as to the science dimension, there are no curved arrows connecting them. As 

mentioned above, the testlets are modeled as independent random effects. All items are assumed 

to measure the science dimensions, the same as in Figure 2.1. Unlike the earlier model, each item 

also measures one of the three testlets.   

 

 

Figure 2.4.  Diagram for the testlet model with one underlying dimension.   

 

Another model of interest is assuming two main dimensions in addition to the testlets. 

Figure 2.5 shows an example of such a model, where all items are assumed to measure either the 

argumentation or content constructs, but the local dependence shared between items within the 

same task is accounted for through the testlet effects. For this model, each person will have two 

ability estimates—one for argumentation and one for content—and three testlet estimates. Note 

that, like in Figure 2.2, the argumentation and content dimensions are assumed to be correlated 

and this is represented by the curved arrow between them. However, none of the testlets are 

correlated with each other or with the main dimensions.   
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Figure 2.5.  Diagram for the testlet model with two underlying dimensions. 

 

For this chapter, the models shown in Figure 2.4 and Figure 2.5 will be referred to as the 

“one-dimensional testlet model” and the “two-dimensional testlet model,” respectively. The testlet 

models are considered to be within-item multidimensional models (Wang, Wilson, & Adams, 

1997), as all items map onto the main science, argumentation or content dimension and onto one 

of the three testlets.   

ConQuest 3.0 (Adams, Wu, & Wilson, 2012) was used with the default settings, which 

used Gauss-Hermite Quadrature estimation. Monte Carlo estimation was used for the testlet 

models, due to the large number of dimensions. For instance, in the two-dimensional testlet 

models, five dimensions are estimated (two main dimensions and three testlet dimensions). A total 

of five models will be compared in this chapter: the unidimensional model, two multidimensional 

between-item models, and two testlet models. For model identification, the person mean for each 

analysis was constrained to 0.00 on all dimensions. 
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2.3 Results 

 The results are divided into three sections. First, the results for the between-item 

multidimensional models are presented, followed by the results for the testlet models. Finally, all 

five models are compared to each other using the model selection criteria, described in Chapter 1, 

to see which has the best statistical fit.  

 

2.3.1. Between-item Multidimensional Models Results 

The results for three models, the unidimensional, two-dimensional, and three-dimensional 

between-item models are presented here. All models in this section contain 58 𝛿𝑖𝑗 parameters2. 

The unidimensional model includes one parameter for the estimated person variance for a total of 

59 estimated parameters. The two-dimensional model contains two parameters for the person 

variance (one for each dimension) and an additional parameter for the covariance for a total of 61 

parameters. Lastly, the three-dimensional model contains three person variance parameters and 

three covariance parameters for a total of 64 parameters.  

For the unidimensional model, the variance for the overall science dimension is 0.65 and 

the EAP/PV reliability is 0.83. All items had weighted fit mean square statistics in the conventional 

acceptable range (0.75 to 1.33; Adams & Khoo, 1996); thus none were flagged as items with misfit. 

This was a good sign, as these items were developed and refined after several iterations of data 

collection in the LPS project.   

Table 2.1 illustrates the results from the two-dimensional between-item model. The 

variance for argumentation and content dimensions are 0.69 and 0.90, respectively. The EAP/PV 

reliabilities are 0.75 and 0.80, respectively, while the correlation between the two dimensions is 

0.75. This correlation suggests that while the argumentation and content items are highly 

correlated, they appear distinct enough to differentiate. Similar to the unidimensional model, no 

items were identified as misfit items.  

The results and the correlation tables for the three-dimensional between-item model are 

presented in Tables 2.2 and 2.3, respectively. The EAP/PV reliability for the argumentation, 

embedded content, and content dimensions are 0.75, 0.73, and 0.76, respectively. The correlation 

between the argumentation and embedded content dimensions is the highest at 0.69. The 

correlations of the content dimension to the argumentation and embedded dimensions are 0.66 and 

0.62, respectively. There are two interesting results for this model: first, that the embedded content 

items are slightly more correlated with the argumentation items than the content items, and second, 

that the content items also correlate more with the argumentation items than the embedded content 

items. These results are surprising because the embedded content items are content items that are 

more context-specific (e.g. “what gets released when you chop an onion?” versus “how do gas 

molecules move?”). Both content and embedded content items are scored following the same 

content learning progression—and even more specifically, the EPC construct map—unlike the 

argumentation items. One would assume, then, that the content and embedded content items would 

                                                 
2 Of the 39 items, 16 items were polytomously scored (13 had three score categories [0, 1, 2] while the remaining 

three had four score categories [0, 1, 2, 3]).  
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be more correlated with each other than with items scored with a completely different learning 

progression (i.e. argumentation). However, based on these results, it seems that the context of the 

item plays a significant role for the correlation between the argumentation and the embedded 

content items. It is unclear why the correlation for the content items and argumentation are higher 

than for the embedded content items. This may simply be due to the few embedded content items. 

Like the earlier two models, no items were identified as misfit items.  

 

Table 2.1    

Results for the two-dimensional between-item model 

 Argumentation Content 

Variance 0.69 0.90 

EAP/PV Reliability 0.75 0.80 

Correlation 0.75  

 

Table 2.2 

Results for three-dimensional between-item model 

 Argumentation Embedded Content 

Variance 0.69 1.04 1.69 

EAP/Reliability 0.75 0.73 0.76 

 

Table 2.3 

Correlation table for the three-dimensional between-item model 

 Argumentation Content 

Embedded 0.69 0.62 

Content 0.66 -- 

 

Because the unidimensional, two-dimensional, and three-dimensional between-item 

models are nested, likelihood ratio tests can be used to directly investigate which models fit 

statistically significantly better. For these tests, the p-value was adjusted because it is at the 

boundary of the parameter space (Rabe-Hesketh & Skrondal, 2008, pp. 69). Results from the 

likelihood ratio test suggests that the two-dimensional between-item model has a better fit than the 

unidimensional model (𝜒2 = 66.59, 𝑑𝑓 = 2, 𝑝 < 0.001). 
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 A likelihood ratio test was also used to compare the fit of the two-dimensional and three-

dimensional between-item models. The three-dimensional model had a statistically significantly 

better fit than the two-dimensional model (𝜒2 = 89.09, 𝑑𝑓 = 3, 𝑝 < 0.001), suggesting that the 

three-dimensional model is more appropriate for the LPS data. Because this model had the superior 

fit of the three described in this section, it will be explored in further detail. 

 First, delta dimensional alignment (DDA; Schwartz & Ayers, 2011)—a technique for 

transforming multidimensional analyses to place dimensions on a common metric—was applied 

so that the three dimensions can be directly compared. This adjustment was needed as the results 

from multidimensional models cannot be directly compared because the mean of the student ability 

distributions for each dimension were constrained to 0.00 so that the model could be identified3. 

Because of this constraint, it is unreasonable to assume that the students have the same distribution 

on all dimensions, making comparisons across dimensions not meaningful.  

DDA adjusts the item parameters so that these comparisons can be made. Recall that the 

item step parameters in Equations 2.1 to 2.4 are denoted as 𝛿𝑖𝑗. This can also be rewritten as 𝛿𝑖 +

𝜏𝑖𝑗, where 𝛿𝑖 is the mean of the step difficulties, or the overall item difficulty, and 𝜏𝑖𝑗 is the 

deviance from this overall mean for step 𝑗 of item 𝑖. Thus, the transformation for the item 

parameters are:  

 

𝛿𝑖𝑑(𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑) =  𝛿𝑖𝑑(𝑚𝑢𝑙𝑡𝑖) (
𝜎𝑑(𝑢𝑛𝑖)

𝜎𝑑(𝑚𝑢𝑙𝑡𝑖)
) + 𝜇𝑑(𝑢𝑛𝑖)    (2.4)  

 

where 𝛿𝑖𝑑(𝑚𝑢𝑙𝑡𝑖) is the estimated item parameter from the multidimensional analysis, and 𝜎𝑑(𝑢𝑛𝑖) 

and 𝜎𝑑(𝑚𝑢𝑙𝑡𝑖) are the standard deviations for the item difficulty estimates in the unidimensional 

and multidimensional models, respectively. 𝜇𝑑(𝑢𝑛𝑖) is the mean of the item difficulty estimates 

from the unidimensional model.  

 

To transform the step parameters, the adjustment is: 

 

𝜏𝑖𝑗𝑑(𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑) = 𝜏𝑖𝑗𝑑(𝑚𝑢𝑙𝑡𝑖)(
𝜎𝑑(𝑢𝑛𝑖)

𝜎𝑑(𝑚𝑢𝑙𝑡𝑖)
)   (2.5) 

 

where 𝜏𝑖𝑗𝑑(𝑚𝑢𝑙𝑡𝑖)is the step parameter obtained from the multidimensional analysis and 𝜎𝑑(𝑢𝑛𝑖) and 

𝜎𝑑(𝑚𝑢𝑙𝑡𝑖) are the same as in Equation 2.4. After transforming these item and step parameters to the 

                                                 
3 As an alternative to constraining the student ability distributions to 0.00 for model identification, the sum of the item 

difficulties can also be constrained to 0.00 by setting the last item to the negative sum of all other items on the 

assessment. 
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same logit metric, the student abilities for each dimension can be re-estimated using these 

transformed parameters as anchors. Then, direct comparisons across dimensions can be made. 

Table 2.4 illustrates the updated results, including estimated population means, variances, 

and reliabilities. The estimated population mean for the argumentation, embedded content, and 

content dimensions are -1.48, -0.86, and -1.16 logits, respectively. While the argumentation 

dimension has the lowest estimated mean, it also has the lowest variance, suggesting that the 

students performed more similarly than in the other dimensions. The content dimension, on the 

other hand, had a slightly higher estimated mean, but had a much larger variance. This difference 

is clearly shown in the Wright map, shown in Figure 2.6. 

 

Table 2.4 

Results for three-dimensional between-item model, after application of DDA 

 Argumentation Embedded Content 

Person Mean (SE) -1.48 (0.06) -0.86 (0.07) -1.16 (0.09) 

Variance 0.68 0.97 1.53 

EAP/Reliability 0.75 0.73 0.75 

 

 The Wright map below has two distinct sections: one for the student ability distribution 

and one for the item difficulty distribution. Both of these distributions use the same scale, the logit 

scale, and this is found on the very right of the map. The Wright map is an extremely useful tool 

for presenting these two different sorts of distributions meaningfully. When the student ability 

estimate is the same as the item difficulty, then the student has a 50% chance of answering the 

item correctly. If the student has a lower estimated ability than the item difficulty, then she has 

less than a 50% chance of answering the item correctly. If the estimated ability is higher, then she 

has more than a 50% chance of answering the item correctly.  

The left three columns represent the student ability distributions—estimated from expected 

a-posteriori values (EAP)—for the argumentation (ARG), embedded content (EMB), and content 

(CON) dimensions, respectively. From the map, it is apparent that the distribution for the 

argumentation dimension peaks at about -1.50 logits. The embedded content dimension has a 

similar shape, but the peak is higher, suggesting that the embedded content items may be slightly 

easier for the students. For the content dimension, the distribution is flatter and wider with no sharp 

peak, which suggests that the content items on the assessment was less successful in discriminating 

the students on this dimension. 

 The right-hand section of the Wright map lists the items difficulties. Using the same 

notations as in Figures 2.1 to 2.5, the first letter refers to the context (e.g. “S” means it is an item 

in the “sugar” context), while the second letter refers to the item type (e.g. “A” is an argumentation 

item). In addition, the colors also denote the item type with blue, red, and green referring to 

argumentation, embedded content, and content items, respectively. The darker shades symbolize 

that the item was hypothesized to be easier, while the lighter shades suggest that the item was 
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hypothesized to be more difficult. For example, the dark blues represent Level 0 items, the medium 

blue represent the Level 1 items, and the light blue represent the Level 2 items for argumentation. 

Comparing the location of these items based on empirical data to the hypothesized difficulties 

based on the learning progression is an important step for gathering validity evidence for internal 

structure. If the hypothesized easier items cluster, or band, at the bottom of the Wright map, while 

the hypothesized difficult items band at the top of the Wright map, then this provides good validity 

evidence for the assessment. 
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Figure 2.6. Wright map for the three-dimensional between-item model, after delta dimensional alignment was applied. Blue, red, and 

green represents argumentation, embedded content, and content items, respectively.   
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For the argumentation items, some banding is obvious. The four items on the lower left-

hand corner are distinctly the easiest items and there are five light blue items (near the center of 

the Wright that are the most difficult. However, the other items in-between are less distinct with 

some items easier than anticipated and others more difficult than anticipated. Most argumentation 

items fell between the -4.00 and -2.00 logit range and were from all levels of the learning 

progression.   

Likewise for the embedded content and the content dimensions, the easiest and most 

difficult items in these dimensions show some clear distinction. However, the items in the middle 

do not band as intended. Most items lie between -4.00 and -2.00 logit. Overall, when comparing 

the student distributions to the item distributions, the test was easy for many of the students, as 

many items had an estimated difficulty of less than -2.00 logits, while there were many students 

with higher estimated abilities. This suggests that either more difficult items are needed to explore 

the dimensions further, or a more representative sample of students may be needed. Recall that 

there are a large number of tenth graders and most students in this sample were classified as 

“gifted” and performed generally well in school, as indicated by their overall GPA (see Chapter 

1).   

Lastly, one embedded content item is surprisingly the most difficult item on the assessment. 

It is the only item to have an estimated threshold of more than 2.00 logit. Upon closer examination, 

the item is in the sugar context and is an open-ended item, with four score categories. The point 

on the Wright map reflects the third threshold of the item—meaning that very few students scored 

a 3 on this item as compared to a 2, 1, or 0.  In order to receive a score of 3 rather than 2 for this 

item, students must mention both that the sugar molecules mixed with the water and that the sugar 

stays the same substance (i.e. does not combine to form a new substance). Only 5 students have 

scored a 3 (about 1.80%) compared to 99 who scored a 2 (about 35.61%). This indicates that this 

item needs to be revisited to investigate whether students were given a fair opportunity to answer 

at the highest score category (i.e. investigate how the item was worded).   

Overall, while the three-dimensional between-item model is statistically more significant 

than both the unidimensional and two-dimensional model, it is unclear exactly what the embedded 

items are measuring. The results indicate that they are measuring something distinct from the 

content dimension, even though these items are scored following a content construct map. They 

are also more correlated with the argumentation items. This could be due to the shared stimuli of 

the items sharing the same context and this local dependence will be explored further with the 

testlet models.  

 

2.3.2.  Testlet Models Results 

 Two testlet models were investigated. For the one-dimensional testlet model, the estimated 

variance for the science dimension is 0.60, while the EAP/PV reliability is 0.71. Both are slightly 

lower than for the unidimensional model, but this is anticipated since presumably, the testlets 

account for some of the variance. The variances for the “sugar,” “onions,” and “gases” testlets are 

0.31, 0.28, and 0.36, respectively. The reliabilities are 0.35, 0.30, and 0.42, respectively. The low 

reliabilities for the testlets are expected because of the small number of items per testlet. In 
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addition, they are uncorrelated to all other testlets or dimensions, so no additional information is 

provided through any of the other items.  

 The results for the two-dimensional testlet model are shown in Tables 2.5 and 2.6. The 

correlation between the argumentation and content dimensions was 0.68, which is slightly lower 

than the correlation between these dimensions when the testlets were not accounted for in the two-

dimensional between-item model. The reliabilities for the argumentation and content dimensions 

are 0.65 and 0.71, respectively.  

Table 2.6 shows the variances for the dimensions and testlets in the two-dimensional 

between-item, testlet with one dimension, and the testlet with two dimensions model. The 

variances are similar for the argumentation and content dimensions models, whereas the variances 

for the testlets are similar, regardless of the number of underlying dimensions. For the testlet model 

with one dimension, the variance is slightly lower than the variance for a simple unidimensional 

partial credit model, suggesting that some of the variance in the latter model was due to the shared 

context of the items.  

 

Table 2.5     

Results for the two-dimensional testlet model 

 Argumentation Content 

EAP/PV Reliability 0.65 0.71 

Correlation 0.68  

 

 

Table 2.6 

Variance in the two-dimensional between-item and testlet models with one and two dimensions 

 No Testlets (two-dimensional  

between-item model) 

Testlet Model – 

one dimension 

Testlet Model – 

two dimensions 

Science -- 0.60 -- 

Argumentation 0.69 -- 0.64 

Content 0.90 -- 0.91 

Sugar -- 0.31 0.39 

Onions -- 0.28 0.30 

Gases -- 0.36 0.41 
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Like the between-item multidimensional models, the testlet models can also be compared 

using a likelihood ratio test because they are nested models. When compared to the unidimensional 

PCM model, the one-dimensional testlet model was statistically more significant (𝜒2 =
146.27, 𝑑𝑓 = 23, 𝑝 < 0.001). When comparing the two testlet models, the two-dimensional 

testlet model had a more statistically significant fit (𝜒2 = 75.25, 𝑑𝑓 = 2, 𝑝 < 0.001). This 

matches the expectations of the LPS project, since the assessment was designed to measure two 

distinct constructs (i.e. structure of matter content and argumentation). The better fit of the two-

dimensional over the one-dimensional testlet model provides empirical support for the assessment. 

Because the two-dimensional testlet model had the best fit of the three models, some post-

hoc analyses may be useful to explore it further. Of specific interest is the students’ performance 

on the content and embedded content items, after accounting for the shared contexts. While both 

of these are content items with one having more specific contexts, how are student performances 

the same or different? To explore this question, item difficulty parameters were anchored—using 

the calibration from the two-dimensional testlet model. Student ability was estimated using these 

anchored parameters—first for just the embedded content items and secondly, just for the content 

items. Because both of these types of items were assumed to measure the same latent dimension 

in this model, plotting them together on the same Wright Map with no further techniques (e.g. 

delta dimensional alignment, as described in section 2.3.1) is acceptable and meaningful. This 

Wright map is shown in Figure 2.7.  
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Figure 2.7. Wright map for two-dimensional testlet model. Only content and embedded content items are plotted. 
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 Two student ability distributions are shown on the left-hand side of the Wright map: one 

for embedded content and one for content. From the frequency distribution, more students appear 

to have higher estimated abilities with the content items than for the embedded content items. The 

mean for the embedded content and content items are -0.47 and 0.21 logit, respectively. For the 

variance, it is 0.92 and 1.46, respectively. Thus, it seems that students performed slightly better on 

the content items than the embedded content items.  

 The item difficulty distributions are on the right-hand side of the Wright map and uses the 

same notations as Figures 2.1 to 2.5 and the earlier Wright map (i.e. first letter is for context, 

second letter is for item type). For this map, only the embedded content and content items are 

shown. The blue items represent items that measure the construct EPC strand A, while the red 

items represent items that measure EPC strand B (discussed previously in Chapter 1). Like the 

earlier Wright map, the darker shades represent the lower levels on the construct map (Level 1), 

whereas the lighter shades represent higher levels (Levels 2 or 3).  

 As a whole, it appears that the range of item difficulties are similar for both embedded 

content and content. Most item difficulties fell between -1.50 and 0.00 logit. In terms of banding, 

a clear pattern does not emerge for either item type or construct strand. Items hypothesized as 

easier (the darker shades) were not necessarily the easiest items while those hypothesized as the 

most difficult (the lighter shades) did not have the highest difficulty.  

 There are a good number of students who have more than a 50% chance of answering all 

the content items correctly. This is signified by the end of the student ability distribution for content 

which goes past the most difficult content item. There are many fewer students on the upper end 

of the embedded content distribution that have more than a 50% chance of answering all the 

embedded content items correctly. In fact, the range of the embedded content items seem to fit the 

distribution of the students well, despite only containing seven items.  

 While it is not immediately clear why the students struggled more with the embedded 

content items than the content, there are a few possible explanations. First, students may be more 

accustomed to the content items since they take on a familiar format. These items are general and 

decontextualized, whereas the embedded content items provide specific contexts for application. 

Students may simply have less experience with the application of structure of matter concepts to 

actual real-life situations. Second, the embedded content items contain a greater number of open-

ended items (five of seven), while most of the content items are multiple-choice (ten of twelve). 

Open-ended formats may be more difficult for students than multiple-choice items4.   

 

2.3.3. Model Selection  

Finally, all five models can be compared using AIC and BIC values, the fit indices 

described in Chapter 1. Table 2.7 illustrates the deviance, number of parameters, and AIC and BIC 

for all the models. According to this table, the two-dimensional testlet model had the best fit since 

it has the lowest AIC and BIC. The three-dimensional between-item model had the next best fit, 

followed by the one-dimensional testlet model. 

                                                 
4 This hypothesis is explored in Chapter 4. 
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 Because these three models (i.e. two-dimensional testlet, three-dimensional between-item, 

and one-dimensional testlet) had the lowest AIC and BIC values, it is apparent that (1) the contexts 

of the items really do matter, and (2) that there is more than one underlying dimension in the data. 

The two-dimensional testlet model assumes two latent dimensions while also accounting for the 

similar contexts of all the items. The three-dimensional between-item model assumes that the 

content and embedded content items measure different, but correlated constructs. We now know 

that the local dependence between items sharing the same context needs to be accounted for in 

these items and most likely explains the significance of the one-dimensional testlet over the two-

dimensional between-item model.  

 

Table 2.7 

Results for the unidimensional, two- and three-dimensional between-item models, and testlet 

models 

Model Deviance #Parameters AIC BIC 

Unidimensional 12679.52 59 12797.52 12823.72 

Two-dimensional 12612.93 61 12734.93 12762.02 

Three-dimensional 12523.84 64 12651.84 12680.26 

Testlet – one dimension 12533.25 62 12657.25 12684.78 

Testlet – two dimensions 12458.00 64 12586.00 12614.42 
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2.4 Discussion and Future Steps   

In this chapter, several multidimensional models were applied to the LPS data in an attempt 

to better understand the relationship between the three item types: content, argumentation, and 

embedded content. A total of five models, one unidimensional, two between-item 

multidimensional, and two testlet models, were compared. There were several interesting results 

from the analyses. First, all the multidimensional models performed statistically significantly 

better than the unidimensional model, which followed earlier results suggesting that argumentation 

and content are distinct, but correlated dimensions. Second, the results also indicate that 

accounting for the contexts of the items are important for this data, as the two-dimensional testlet 

model has the best fit of the five models tested.  

Another interesting result was the statistically significantly better fit of the three-

dimensional between-item model over the two-dimensional between-item model. This was 

surprising because the embedded content and content items were scored using the same content 

EPC construct map. Furthermore, the results showed that the embedded content items were more 

correlated with the argumentation items than the content items, which also provides evidence of 

the importance of accounting for the shared contexts of items. These results indicate that 

accounting for the local dependence in each task is important.  

 The two-dimensional testlet model had the best fit of all five models tested. This reflects 

the findings that (1) content and argumentation are separate dimensions, and (2) local dependence 

needs to be taken into account. This is especially important when conceptualizing the content and 

embedded content items. While both were scored using the same construct map, they cannot be 

assumed to be equivalent. This was shown in the post-hoc analyses where student performances 

on the two types of items differed. More students struggled with the embedded content than with 

the content. While the cause of this difference is unclear, it seems safe to say that adding specific 

contexts to content items may make them more difficult in general and they are no longer the same 

as the decontextualized, general content items.   

Some limitations for this data includes the limited number of items. While there appears to 

be a good number of argumentation items, content and embedded content items were more limited. 

In addition, the balance of open-ended to multiple-choice items for embedded content and content 

were unequal. For a more detailed look into these two types of items, it may be more meaningful 

to (1) have more items in general, and (2) have a good balance of multiple-choice and open-ended 

formats.  

In addition, as some of these models were mathematically complex (e.g. two-dimensional 

testlet model has a total of five estimated dimensions), increasing the sample size would provide 

more accurate estimations. Also, as mentioned previously, having a more representative sample as 

well as a larger grade range of students may provide some additional information on the item types 

and dimensions. 



 

 

36 

 

Chapter 3: Person regression models and person-by-item 

models for explaining complex tasks 

 

3.1 Introduction 

Explanatory item response models (EIRMs) have the potential to provide explanations for 

the item responses, rather than descriptive models where item responses are merely described by 

the estimated parameters (De Boeck & Wilson, 2004). Latent regression is an example of an EIRM, 

where the latent abilities are regressed onto person characteristics, such as gender, ethnicity, or 

socioeconomic status. For the complex tasks, examining student characteristics is valuable to see 

whether any of them can explain student performance.  

Differential item functioning (DIF) models are another example of an EIRM (Meulders & 

Xie, 2004). DIF uses person-by-item predictors to investigate whether one group is differentially 

affected by specific test items, after conditioning on latent ability (based on the set of items). DIF 

models are particularly important in investigating test fairness. This chapter applies a latent 

regression model and a DIF model to the complex tasks in order to gather more validity evidence 

for the Learning Progressions in Science (LPS) assessment. 

 

3.1.1 Test Fairness  

 In addition to the chapter on test validity, the Standards for Educational and Psychological 

Testing (AERA, APA, & NCME, 2014) also include a chapter dedicated solely to defining test 

fairness. While fairness is ultimately a validity issue, its importance to assessment is “an overriding 

foundational concern” (pp. 49). According to the chapter, “a test that is fair…reflects the same 

construct(s) for all test takers, and scores from it have the same meaning for all individuals in the 

intended population; a fair test does not advantage or disadvantage individuals because of 

characteristics irrelevant to the intended construct” (pp. 50). They include four different threats to 

fairness, including test content (i.e. content that confounds the measurement of the intended 

construct), test context (i.e. environmental aspects that may affect test performance), test response 

(i.e. the test elicits responses not intended by the construct), and opportunity to learn (i.e. students 

did not have the opportunity to learn the content). 

    DIF models are one way to test against improper test content and to test the internal 

structure of the assessment, one item at a time. Generally, DIF models compare the performance 

of two groups of interest on an item: a focal and a reference group. The basic idea for DIF is that, 

when DIF occurs, after conditioning on ability level, the item response distributions of these two 

groups of interest are not the same. That is, one group is differentially affected by something that 

was not part of the intended construct. A common example is when mathematics word problems 

differentially affect English Language Learners (ELLs) because of a high reading demand.  
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3.1.2 Research Questions 

 This chapter has two main research questions to investigate. Both questions require 

explanatory item response models and can explain student performance for these complex tasks. 

 

RQ2. Does gender, English language proficiency classification (EL classification), and grade 

have an effect on performance for these complex tasks?  

 

In order to answer RQ2, a latent regression model is appropriate. This model uses person 

predictors to explain the item responses. Gender has been a common covariate in studies because 

researchers are often interested in the performance differences between boys and girls in content 

assessments (Catsambis, 1995; Hyde & Linn, 2006; Liu, Wilson, Paek, 2008; Weinburg, 1995). 

The performance of ELLs is also a commonly investigated covariate, especially as it relates to 

science (Brown, 2007; Bunch, Walqui, & Pearson, 2014; Stevens, Butler, & Castellon-Wellington, 

2001). Lastly, because of the two different grade levels in our sample, it seems important to 

condition on grade as the tenth graders are more likely to perform better on the assessment due to 

more schooling.  

 

RQ3. Do any items exhibit differential item functioning (DIF) for boys and girls?  

 

For RQ3, a differential item functioning model is used. This analysis mainly serves as a 

validity check to ensure that few or no items are functioning differentially for boys than for girls. 

This analysis provides validity evidence to support or not support the internal structure of the 

assessment.  

 

3.1.3. Note on the Sample 

 While the overall sample for the data was described in Chapter 1, this section describes 

some of the issues that needed to be considered for the analyses in this chapter. For both research 

questions, one student was removed from the sample because there were no demographic 

information available for him/her. Therefore, this student can provide no additional information 

for the latent regression or differential item functioning (DIF) analysis.  

Students in the sample had four possible classifications for their English language 

proficiency: English Only, Fluent, Reclassified, and ELLs. English Only students are those who 

speak only English at home. Fluent students speak a language other than English at home but are 

considered fluent in English. Reclassified students were once classified as ELL but have tested out 

of the ELL category. ELLs are identified as needing additional supports in developing their English 

proficiency. 
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In order to answer the research questions, students in the ELL category were dropped 

because only three (1.06% of overall sample) fell into the category and it did not make sense to 

create an extra dummy variable for such a small group. It also did not make sense to collapse this 

group with any other group as they may have distinct differences. They were dropped from the 

sample, leaving a total of 274 students for investigating RQ2.  

 For RQ3, only the student with no demographics information was dropped, leaving a total 

of 277 students for this analysis.  

 

3.2 Explanatory Item Response Models for Person Predictors and Person-

by-Item Predictors  

 The multidimensional versions of both the latent regression and differential item 

functioning (DIF) models are used for this chapter, since the results from Chapter 2 show that 

those models are appropriate for this data. In particular, the models described in the next two sub-

sections will build on the three-dimensional between-item model. This was chosen over the two-

dimensional testlet model for several reasons. First, the between-item model allows for the 

comparison of the three item types as dimensions (i.e. argumentation, embedded content, and 

content). Second, the testlet model is a more complex model, requiring two additional dimensions 

(two main dimensions, and three testlet dimensions). Since the testlet dimensions are not of 

interest, this complexity seems unnecessary to model. This is especially the case for the DIF model, 

where many more parameters are estimated. Lastly, the three-dimensional between-item model 

had the second-best fit of the five models compared in the previous chapter, so it seems “good 

enough” to use for the analyses here.    

  

3.2.1 Multidimensional Latent Regression 

 To investigate RQ2, a multidimensional latent regression model (Liu, Wilson, Paek, 2008; 

Van den Noortgate & Paek, 2004) is applied to test the effects of gender, EL classification, and 

grade on the argumentation, embedded content, and content dimensions for the complex tasks. 

This model builds on the multidimensional partial credit model described in Equation 2.2 of 

Chapter 2. The difference though, is how the person parameter, 𝜃𝑝𝑑, is defined; all other terms stay 

the same as from the previous equation, Equation 2.2 (i.e. still modeling the log-odds of the 

probability of responding in category 𝑗 as opposed to category 𝑗 − 1). Specifically, 𝜃𝑝𝑑—the 

ability parameter for person 𝑝 on dimension 𝑑—is reformulated as: 

 

𝜃𝑝𝑑 = 𝛽0𝑑 + 𝛽1𝑑[𝑚𝑎𝑙𝑒] + 𝛽2𝑑[𝐹𝑙𝑢𝑒𝑛𝑡] + 𝛽3𝑑[𝑅𝑒𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑] + 

𝛽4𝑑[𝑔𝑟𝑎𝑑𝑒10] + 𝜖𝑝𝑑     (3.1) 
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where 𝜃𝑝𝑑 is regressed onto the dummy variables created for gender, EL classification, and grade, 

respectively. The coefficient 𝛽1𝑑 represents the mean difference in ability between male and 

female students on dimension 𝑑, after controlling for EL proficiency and grade. 𝛽2𝑑 and 𝛽3𝑑 are 

the coefficients for students classified as “Fluent” and “Reclassified,” respectively, and they 

represent the mean difference between these two groups and the reference group on dimension 𝑑, 

after controlling for the other covariates. The reference group is composed of those students 

classified as “English,” meaning that they speak only English at home. As noted above, students 

classified as “English Language Learners” were dropped from the sample. 𝛽4𝑑  is the coefficient 

for tenth graders, with eighth graders as the reference group. This coefficient represents the mean 

difference between eighth and tenth graders on dimension 𝑑, after controlling for gender and EL 

proficiency. 𝛽0𝑑 and 𝜖𝑝𝑑 represent the intercept and error terms for dimension 𝑑, respectively. 

 For this analysis, the three-dimensional between-item model was chosen as the 

unconditional model (i.e. model with no covariates) for comparison. The final item parameters 

from the three-dimensional between-item model from the previous chapter, after the delta 

dimensional alignment was applied, were used as item anchors to estimate the conditional model 

(model with the covariates or the multidimensional latent regression model)5. Using item 

parameter estimates from the unconditional model as anchors are appropriate here, since generally 

the conditional model will produce smaller standard errors even though there are negligible 

differences in the item parameter estimates (Adams, Wilson, Wu, 1997; Wu, Adams, Wilson, 

Haldane, 2007, pp.111-113).  

By incorporating the covariates into this model, one can illustrate their effects on the three 

item types (i.e. argumentation, embedded content, and content). In addition, by having the results 

from both the unconditional and conditional models, the 𝑅2 can be calculated to see how much 

additional variance is explained through the inclusion of these covariates.  

 

3.2.2 Differential Item Functioning (DIF) 

 Differential item functioning (DIF) techniques are a variety of methods6 that seek to test 

whether items have differential effects between the focal and reference groups. This chapter 

focuses specifically on Rasch-based DIF methods to explore RQ3. These models involve 

comparing two groups based on differences in the item parameters. Specifically, I build on 

Equation 2.2, the multidimensional partial credit model. This updated equation can be written as: 

 

                                                 
5 In addition, the unconditional model was estimated again using the same anchored item parameters with the updated 

sample. This was done so that the conditional model (model with regressors) can be compared directly to this 

unconditional model, due to the small decrease in the sample with the removal of the ELL students and the student 

with no demographic information.  
6 Only the Rasch-based method will be described in detail here. For an overview of the different types of methods 

available to test for DIF, readers should refer to Millsap & Everson (1993) and Osterlind & Everson (2009).  
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log(
𝑃(𝑋𝑖=𝑗|𝜃𝑝𝑑)

𝑃(𝑋𝑖=𝑗−1|𝜃𝑝𝑑)
) = 𝜃𝑝𝑑 − 𝛿𝑖𝑗 + 𝜁𝑓𝑜𝑐𝑎𝑙𝑍𝑝 + ∑ 𝑊𝑝𝑖ℎ𝛾𝑖ℎ

𝐻
ℎ=1     (3.2)  

 

where 𝜃𝑝𝑑 and 𝛿𝑖𝑗 are the same as that in Equation 2.2. Like in the previous chapter, all students 

will have three estimated 𝜃s, one for each dimension. 𝜁𝑓𝑜𝑐𝑎𝑙 is the main effect for the focal group 

across all dimensions and 𝑍𝑝 is an indicator variable for focal group membership for person 𝑝. 

Note that if 𝜁𝑓𝑜𝑐𝑎𝑙 is significant, it does not imply that DIF exists. Rather, this represents the 

average difference in ability on the assessment as a whole (i.e. there is no 𝑑 subscript in this term) 

for persons in the focal group and persons in the reference group sometimes referred to as 

differential impact. 𝑊𝑝𝑖ℎ is the person-by-item indicator that takes on the value of 1 if 𝑍𝑝 = 1 and 

item indicator ℎ = 1. 𝛾𝑖ℎ is the corresponding DIF parameter for item 𝑖, or the item-specific DIF. 

This parameter represents the additional difference in the item difficulty for a person in the focal 

group, as opposed to someone in the reference group. If there are no DIF effects for an item, then 

this value will be close to 0.00. For RQ3, the focal group is female students while male students 

make up the reference group.   

 To determine the magnitude of the DIF effects (as different from the statistical 

significance), Paek’s (2002) effect size recommendations (based on an ETS classification), will be 

used. Logit differences of less than 0.43 is considered “negligible,” between 0.43 and 0.64 is 

considered “intermediate,” and larger than 0.64 is considered “large.” Unfortunately, while these 

analyses may signal which items have meaningful and non-negligible DIF effects, the cause of 

DIF will be unknown. This is a limitation of DIF analyses, but qualitative analyses of these flagged 

items may provide insight into why DIF occurs.    

Like the multidimensional latent regression model from above, the number of dimensions 

chosen for this analysis is three—where each item type represents a dimension. Because the 

interest is on the differences in item parameters between the two groups, item parameters from 

previous analyses are not used as anchors. Constraints are set so that the last item for each 

dimension will be the negative sum of all other items in that dimension. Constraints are necessary 

for the model to be identified.   
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3.3 Results 

 

3.3.1 Latent Regression Results 

Results from the multidimensional latent regression are shown in Table 3.1. The increase 

in the 𝑅2, from using the conditional model as compared to the unconditional model, show that the 

covariates explain more of the variance for the embedded content dimension than for the other two 

dimensions. The increases in 𝑅2 are 37.62%, 26.62%, and 17.94% for the embedded content, 

argumentation, and content dimensions, respectively.  

The male students, on average, perform worse than female students by approximately 0.30 

logit on the argumentation dimension after controlling for EL classification and grade. There is no 

statistically significant difference between the genders on the other two dimensions. Not 

surprisingly, tenth graders outperformed the eighth graders on all dimensions, after controlling for 

El classification and gender. On average, they scored about 0.75, 1.14, and 0.94 logits higher than 

eighth graders for the argumentation, embedded content, and content dimensions, respectively. 

These differences were all statistically significant at an 𝛼 = 0.05 level.  

For the EL classification groups, there were some notable differences in group means. The 

reference group for this collection of covariates is students who only speak English at home. There 

were no statistically significant differences between students classified as Fluent and those 

classified as English in the argumentation and content dimensions. However, students classified 

as Fluent performed about 0.44 logits higher on embedded content than those classified as English, 

after controlling for gender and grade.  

Students in the Reclassified group performed about 0.38 and 0.50 logits worse than the 

English group on the argumentation and content dimensions, respectively, after controlling for 

gender and grade. There were no statistically significant differences between the two groups on 

the embedded content dimension.  
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Table 3.1 

Multidimensional latent regression results  

 Dimensions 

Variable Argumentation Embedded 

Content 

Content 

Male -0.30 (0.11)* 0.00 (0.13) 0.05 (0.17) 

EL Classification    

     Fluentǂ -0.06 (0.15) 0.44 (0.17)* 0.03 (0.22) 

     Reclassifiedǂ -0.38 (0.12)* 0.02 (0.14) -0.50 (0.19)* 

Tenth Grade 0.75 (0.11)* 1.14 (0.13)* 0.94 (0.17)* 

Intercept -1.61 (0.11)* -1.61 (0.13)* -1.50 (0.17)* 

𝑹𝟐 26.62% 37.62% 17.94% 

Noteǂ: Reference group are students who speak only English at home.  

Note*: Statistical significance at 𝛼 = 0.05 

  

 For the EL classification variable in Table 3.1, the reference group were students classified 

as speaking only English at home. However, it is also of interest to investigate the difference in 

performances between students who are classified as Fluent versus Reclassified. Table 3.2 shows 

the differences between these two groups, after controlling for gender and grade. The results 

indicate that the students in the Fluent group outperformed those in the Reclassified group in all 

three dimensions and these differences were statistically significant. The effect size is calculated 

by Cohen’s 𝑑 (Cohen, 1988) and typical cut-points for this estimate is that an effect size under 

0.20 is considered small, 0.50 is about medium, and anything above 0.80 is considered large. Using 

these cut-points, the effect size for EL classification is medium across all dimensions, when 

comparing the differences between Fluent and Reclassified students.  
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Table 3.2 

Post-hoc comparisons for students classified as Fluent and Reclassified 

Dimension Difference in Means 

(Fluent – Reclassified) 

T p-value Effect Size* 

Argumentation 0.32 (0.09) 3.39 0.001 0.48 

Embedded Content 0.41 (0.10) 4.11 <0.001 0.53 

Content 0.53 (0.15) 3.40 0.001 0.51 

Note*: Effect size below 0.20 is small, 0.50 is medium, and 0.80 is high (Cohen, 1988).  

 

Figures 3.1 to 3.3 provide a visual indication for the number of students by their EL 

classification at each ability estimate for the argumentation, embedded content, and content 

dimensions, respectively. Keep in mind that there were significantly fewer students in the Fluent 

category than for the other two groups (58 students compared to 110 Reclassified and 106 English 

students). In Figure 3.1, it is evident from the distributions that there are more of the English Only 

and Fluent students at the higher end of the ability scale (around -1.20 to 0.50 logit). The 

Reclassified students cluster near the middle (around -2.00 to -1.00 logit). 

In Figure 3.2, it is more difficult to distinguish between the differences for Reclassified 

and English Only students. Their patterns seem similar with both distributions having multiple 

peaks between -1.50 to 0.00 logit. However, there were more Fluent students clustered at the upper 

end of the distribution. These results confirm the findings from Table 3.1, where no significant 

differences were found between the English Only and Reclassified groups. However, both of these 

groups performed statistically significantly worse than the students classified as Fluent.  

Lastly, the distributions of students in the three English proficiency groups on the content 

dimension are shown in Figure 3.3. The Reclassified group have a few students at the lowest end 

of the ability distribution, and very few at the top end. Reclassified students performed about half 

a logit worse than both the English Only and the Fluent students, on average, after controlling for 

gender and grade. There were no statistically significant differences between the English Only and 

the Fluent students, and their distributions take on a similar shape.  
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Figure 3.1. Number of Reclassified, Fluent, and English Only students at each ability estimate for 

the argumentation dimension. 

 

 

Figure 3.2. Number of Reclassified, Fluent, and English Only students at each ability estimate for 

the embedded content dimension. 
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Figure 3.3. Number of Reclassified, Fluent, and English Only students at each ability estimate for 

the content dimension. 

 

 

3.3.2 Post-hoc Differential Item Functioning (DIF) Results: EL Proficiency 

In addition to investigating mean differences on all three dimensions between students in 

the Fluent and Reclassified groups (after controlling for gender and grade), we should investigate 

whether DIF occurs between these two groups as well. For this post hoc analysis, only students 

classified as Fluent (𝑛 = 58) and Reclassified (𝑛 = 110) were kept in the study, leaving a total 

of 168 students. The Reclassified students are treated as the focal group, while the Fluent students 

are the reference group7.  

The DIF analysis reconfirmed that there were statistically significant differences between 

the students in the Reclassified and Fluent group (𝜒2 = 6.39, 𝑑𝑓 = 1, 𝑝 = 0.01). Essentially, the 

results show that 𝜁𝑓𝑜𝑐𝑎𝑙 ≠ 0. The Fluent students, on average, performed about 0.26 logit higher 

than the Reclassified students. As mentioned previously, this reflects differential impact—not DIF. 

After controlling for this differential impact, none of the 39 items exhibited statistically significant 

DIF effects. However, this finding must be interpreted with some caution. Due to the reduced 

sample size (𝑛 = 168) and the large number of parameters needed to estimated (e.g. an extra 36 

item-specific DIF parameters were estimated—one for each item minus the three constraints for 

                                                 
7 It does not matter which group is designated as the focal and reference groups for the DIF analysis. Typically, the 

group of interest is set as the focal group (e.g. when comparing ELLs to non-ELLs, ELLs are usually designated as 

the focal group while non-ELLs make up the reference group). 
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the dimensions), the standard errors for these parameters were large. For future analyses, a larger 

sample size would be ideal for investigating these DIF effects between students classified as Fluent 

and Reclassified.    

 

3.3.3 Differential Item Functioning (DIF) Results: Gender 

 Results from the DIF model for gender show that female students, on average, score about 

0.26 logit higher than male students across the test and that this difference is statistically 

significant (𝜒2 = 4.74, 𝑑𝑓 = 1, 𝑝 = 0.03). Once again, this reflects differential impact (i.e. the 

average difference in ability on the assessment as a whole), not DIF. Of the 39 items, one item was 

flagged as having statistically significant DIF. This item is an argumentation item and is shown 

below in Figure 3.4. The logit difference between female and male students, on this item after 

controlling for the main effect of gender, is 1.00 logit, favoring boys. According to Paek’s (2002) 

effect size recommendations, this effect is considered large. 

As with the DIF analysis described in Section 3.3.2, these results should also be interpreted 

with caution. Although the sample size is larger (𝑛 = 277), it is still relatively small compared to 

the number of parameters that needed to be estimated8. A larger sample would help decrease the 

standard errors and is more powerful in identifying items that exhibit DIF. 

                                                 
8 A total of 101 parameters were estimated for this model, which included the 36 DIF parameters and the main effect 

for gender.  
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Figure 3.4. An argumentation item flagged as having statistically significant DIF.  

  

As mentioned previously, one of the problems with DIF analyses is that it only indicates 

which items exhibit DIF and does not provide any explanation for why this occurs. Looking more 

deeply into the items and using qualitative analyses may be helpful in pinpointing why DIF occurs. 

A useful step is investigating the item characteristic curves for male and female students together 

to visualize what happened. Figure 3.5 illustrates the item characteristic curves by score for male 

and female students. 
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Figure 3.5. Item characteristic curves for male (light green) and female (dark blue) students for 

argumentation item in Figure 3.4.  

 

 Female students are represented by the dark blue curves, while male students are 

represented by the light green curves. The solid curves are the expected item curves, while the 

dashed lines are the observed curves. The y-axis shows the probability of a correct response 

(expected or observed), while the x-axis shows the ability for the argumentation dimension. 

According to the estimated model, boys were expected to perform higher on this item than girls, 

as indicated by the difference between the two solid lines. According to the main effect of gender, 

girls are expected to perform about 0.26 logit higher than boys. However, the DIF effects for this 

argumentation item suggest that boys generally find this item easier than girls, after controlling for 

the main effect of gender. In terms of the observed probabilities, it appears that boys perform better 

than girls at all ability ranges (as shown by the dashed line), except around 1 logit where the girls 

performed better than expected and the boys performed worse than expected.  

As a first step towards examining these interesting empirical patterns, Table 3.3 illustrates 

the frequency counts and percentages for students by estimated argumentation ability. To highlight 

the unusual pattern around 1 logit, three ability intervals are shown: (a) between 0.66 and 1 logit, 

(b) between 1 and 1.33 logit, and (c) between 1.33 and 1.66 logit. (a) and (c) are provided to 

contrast (b), where the observed curves switch so that girls have a higher estimated probability 

than boys for answering this item correctly. Table 3.3 shows that with the exception of (b), a higher 

percentage of boys select the correct answer than girls. Boys within (b) selected “Neither” as a 

distractor more than those in (a) or (c). It was also interesting to see that no boys in any of these 

ranges selected “Kian.” In fact, out of the entire sample, only 1 boy selected “Kian” compared to 

10 girls.  
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Table 3.3 

Breakdown of responses to flagged item by gender and estimated ability in Argumentationǂ 

  𝟎. 𝟔𝟔 < 𝜽̂𝑨𝑹𝑮 < 𝟏  1 < 𝜽̂𝑨𝑹𝑮 < 𝟏. 𝟑𝟑  1.33 < 𝜽̂𝑨𝑹𝑮< 1.66 

  Girls Boys  Girls Boys  Girls Boys 

Both*  12 

55% 

13 

76% 

 21 

66% 

9 

60% 

 22 

67% 

15 

83% 

Kian  5 

23% 

0 

0% 

 1 

3% 

0 

0% 

 0 

0% 

0 

0% 

Mark  3 

14% 

3 

18% 

 4 

13% 

2 

13% 

 2 

6% 

2 

11% 

Neither  2 

9% 

1 

6% 

 6 

18% 

4 

27% 

 9 

27% 

1 

6% 

Total  22 17  32 15  33 18 
Noteǂ: Percentages are rounded and thus, may not add to 100%. 

Note*: “Both” is the correct answer. 

 

More analyses are needed to investigate why DIF occurs for this particular argumentation 

item. Since the majority of items in this assessment does not have statistically significant DIF 

effects, this provides support for the internal structure of the assessment.  
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3.4. Discussion and Future Steps 

 This chapter applies two different types of EIRMs to the LPS data, the multidimensional 

latent regression model and a Rasch-based DIF model, in an attempt to explain performance on 

the assessment using person predictors and person-by-item predictors, respectively. The results 

from these models also provide validity evidence for the assessment.  

 For the multidimensional latent regression model, several person predictors were used to 

investigate performance on the items, including gender, EL proficiency, and grade. As one might 

well have expected, grade was a statistically significant predictor across all dimensions, after 

controlling for the other covariates. This finding makes sense as tenth graders generally have more 

content knowledge and experience in argumentation, and in taking assessments than eighth 

graders—making it likely that they would outperform eighth graders on all of the tasks.  

Gender was a statistically significant predictor only on the argumentation dimension. This 

supports the findings by Asterhan, Schwarz, & Gil (2012) that all-female groups provided higher 

quality arguments than their all-male counterparts. However, other studies have suggested no 

significant gender difference for argumentation (Naylor, Keogh, & Downing, 2007; Wilson, 

Taylor, Kowalski, & Carlson, 2009). The lack of a significant difference in the content and 

embedded content dimensions supports the research literature, where it has generally been shown 

that female students in middle school grades tend to perform just as well as male students in science 

(Catsambis, 1995; Hyde & Linn, 2006; Weinburg, 1995).  

EL classifications also had statistically significant results for the latent regression. When 

comparing students classified as Fluent and English, the performance on the embedded content 

dimension differed—favoring those classified as Fluent. Both of these groups are fluent in English, 

so it was surprising to see a difference. However, not much is known about these embedded content 

items and this finding should be reinvestigated with new data to learn more about this relationship.  

When comparing Reclassified students with English students, the Reclassified students 

performed worse on the argumentation and content dimensions—with no significant estimated 

differences in the embedded content dimensions. While it is unsurprising that the Reclassified 

students performed worse on the two dimensions, it is informative to know that there were no 

differences on the embedded content dimension. English Only students may have also had 

difficulties with these items that did not resemble traditional science items.  

The post hoc analyses revealed that the Reclassified students consistently performed worse 

on all three dimensions than the Fluent students, after controlling for grade and gender. Even 

though both groups of students speak a language other than English at home, Reclassified students 

were, at one point, classified as ELLs who traditionally performed worse on assessments. It is 

unsurprising that they performed worse than the Fluent students across all the dimensions. In 

addition, a follow-up DIF analysis revealed no statistically significant DIF effects for Reclassified 

and Fluent students. This result suggests no interaction effects and provides evidence for the 

internal structure of the assessment.   
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For RQ3, a DIF analysis comparing male and female students identified only one item as 

having statistically significant DIF effects, thereby providing additional validity evidence for the 

internal structure of the LPS assessment. This was an argumentation item that heavily favored the 

male students. Just as for many DIF analyses, the cause of DIF for this item is unknown (i.e. we 

do not know why boys found this item easier), although speculation is possible, especially when 

supported by more detailed analyses. Future studies using additional approaches may help explain 

why DIF occurs, such as the model proposed by Xie and Wilson (2008) where they proposed a 

differential facets functioning model. Rather than test person-by-item effects, they tested person-

by-facets effects. In order to run this model, theories into what might be the cause of DIF are 

needed a priori.  

 While the analyses described in this chapter were informative, there were limitations to 

their interpretability. First, the sample size proved to be problematic, especially with detecting DIF 

as the standard errors were somewhat large. Future analyses should include a much larger sample 

size for a more powerful DIF analysis.  

 Related to the small sample size problem, there were very few students classified as ELLs9. 

While this could have simply reflected the lack of ELLs in the classrooms sampled, another 

possibility is that students are often reclassified out of the ELL category in the upper grades even 

if they do not meet the proficiency standards (Abedi, 2008). A more diverse and representative 

sample, encompassing a larger grade range, would be ideal for reinvestigating this assessment.  

 The previous chapter provided evidence for the multidimensional structure of the LPS 

assessment. This chapter focused on the person side of the Rasch partial credit model by testing 

person predictors and the interaction of these person characteristics with specific items. However, 

what can be learned from the item features? The next chapter examines the role of item predictors 

and its effectiveness in explaining student performance on these items.   

 

                                                 
9 Abedi (2008) has also discussed problems with the overall EL classification system in the U.S., which typically 

consists of a home language survey and English proficiency tests. These problems include inconsistencies in defining 

“English Language Learner”, difference in standards across states, as well as problems with the language surveys and 

proficiency tests themselves.  
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Chapter 4: Exploring the Item Features of the Complex 

Tasks 

 

4.1 Introduction 

In the previous chapter, the multidimensional latent regression model was applied to the 

Learning Progressions in Science (LPS) data to see whether certain person characteristics—

gender, English language (EL) proficiency, and grade—can help explain some of the variance in 

the performance on the complex tasks. The results showed that these characteristics were 

significant predictors across the three dimensions modeled. According to Wilson and De Boeck 

(2004), the latent regression model can be considered a “person explanatory” model because it 

provides explanations for the item responses through person characteristics.  

 This chapter adopts its complement, an “item explanatory” approach, where the focus is 

on investigating whether certain item features can explain differences in item difficulties. To 

accomplish this, the linear logistic test model (LLTM; Fischer, 1973) is applied to the LPS data. 

Item features must be identified a priori to be included in the model. The next section describes 

some of the item features that will be investigated in this chapter. Note that in this chapter, the 

terms “feature” and “property” will be used interchangeably to refer to the characteristics of the 

items.  

 

4.1.1 Item Features for the Complex Tasks 

As mentioned in the previous chapters, there are two notable item features for these 

complex tasks. The first is the three item types consisting of argumentation, embedded content, 

and content items. Relationships between these three types are of substantial interest in this 

dissertation, especially since it coincides with the LPS research question regarding the relationship 

between argumentation competency and content knowledge (Yao, 2013; Yao, Wilson, Henderson, 

& Osborne, 2015). While this feature was modeled in Chapters 2 and 3 as separate dimensions, 

modeling item types as an item property can still provide insight into their relationship with each 

other, especially with the addition of the embedded content items. Results from this analysis will 

provide information on whether a certain item type is easier or harder.  

The second relates to the item context of the items. For this instrument, the contexts were 

what happens when someone (a) chops onions, (b) places gas in a container, and (c) places sugar 

into a cup of water. In Chapter 2, these contexts were modeled as testlets and treated as “nuisance” 

dimensions. By treating these contexts as item features, though, allows for an examination of their 

effects on the item difficulties to see whether certain contexts are more difficult for students. 

Results from analyses in this chapter, particularly in regards to the item types and contexts, will 

be compared to the results in Chapter 2 to highlight similarities or differences in conclusions 

regarding the items and their features. 

The remaining three item features explored are not necessarily related to the content of the 

items, but are often tested in psychometric studies to see whether certain features have an 
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unintended effect on the item difficulties. For instance, the item format, which, in this case, is 

whether an item is open-ended or multiple-choice, is a common feature that is explored in studies 

that use the LLTM. Previous analyses have suggested that multiple-choice items are easier for 

students than open-ended ones (Hohensinn & Kubinger, 2011; Kubinger, 2008). Because the 

assessment includes a combination of both types of items, this feature will be investigated to see 

whether a similar finding holds true for the LPS data.  

Martiniello (2009), in investigating the features of mathematics items, has found that items 

with schematic representations can serve as a mediator for linguistically complex text for English 

language learners (ELLs). Schematic representations are defined as abstract pictures whose 

“schematic meaning is provided by the symbolic/visual representation in the item” (Martiniello, 

2009, pp. 166). This contrasts with items with pictorial representations, which are concrete images 

that simply illustrate the details of objects described in an item. Figures 4.1 to 4.3 illustrate an 

example of three different LPS items, one with a schematic representation, one with a pictorial 

representation, and one with no pictures, respectively. This feature is referred to as graphics in the 

model.   

 

 

Figure 4.1. A LPS item with a schematic representation. 
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Figure 4.2. A LPS item a pictorial representation. 

 

 

Figure 4.3. A LPS item with no pictures.  
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The last feature investigated is whether an item contains academic words. Academic 

vocabulary words are those that are not among the 2,000 most common words and occur most 

often in academic texts (Coxhead, 2000). Unlike technical vocabulary—which are the specialized 

words specific to a discipline, academic vocabulary words are more generalized and span across 

many content areas (Stevens, Butler, & Castellon-Wellington, 2001). This distinction is important 

for many studies investigating the language effects of content assessments—particularly for 

ELLs—because, while technical vocabulary is deemed to be construct-relevant, academic 

vocabulary is often seen as construct-irrelevant and, subsequently, may interfere with the 

interpretations of student scores on assessments (Avenia-Tapper & Llosa, 2015; Haag, Roppelt, & 

Heppt, 2015; Wolf and Leon, 2009). In this chapter, the focus is on the occurrence of academic 

words, not the specialized technical vocabulary, to test whether there are some extraneous 

construct-irrelevant effects. That is, do academic words contribute significantly to the difficulty of 

an item? Coxhead’s (2000) academic word list (AWL) is used here to identify academic words on 

the assessment10. Note that the word “evidence” is on the AWL, but will not be counted as an 

academic word in this chapter because “evidence” is central to the argumentation construct. Thus, 

“evidence” can be thought of as construct-relevant, whereas other words on the AWL may be 

considered construct-irrelevant. In the model, this feature will be referred to as AWL.  

 

4.1.2 Research Questions 

This chapter explores the effect of each item feature on overall item difficulty. A total of 

five item features is investigated for this chapter, including: type, context, format, graphics, and 

AWL. Specifically, the research questions are listed below: 

 

RQ4. Which of the following, if any, item features—type, context, format, inclusion of graphics, 

and inclusion of vocabulary from the Academic Word List—contribute to the explanation 

of item difficulty?  

 

RQ5. Does the item type feature interact with any of the other features to have a statistically 

significant effect on the item difficulties? 

  

 To investigate RQ4 and RQ5, the LLTM (see below for an introduction to the LLTM) is 

applied to the data using the five item features described in the previous section. For RQ5, 

interactions are included in the model—focusing on the item type. Because of the added 

complexities in interpreting interactions, only one feature was explored in further detail. Item type 

was chosen because it directly relates to the content of the items. Plus, as mentioned earlier, the 

                                                 
10 Cobb’s website Web Vocabprofile Classic at http://www.lextutor.ca/vp/eng/  automatically sorts texts and provides 

counts for four types of words: the 1000 most frequent words, 1001-2000 most frequent words, words on Coxhead’s 

(2000) Academic Word List, and off-list words. 

http://www.lextutor.ca/vp/eng/
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three item types are related to the main research questions for the LPS project. Thus, investigating 

interactions of item types with the other features can provide more information as to how this 

feature influences item difficulty. In addition, the models in these two research questions are 

nested, allowing for direct comparisons via a likelihood ratio test to find the better fitting model. 

These models will also be compared to the unidimensional partial credit model from Chapter 2 to 

see how well the models from RQ4 and RQ5 can recover these estimated item difficulties. If the 

item features related to the construct of interest (i.e. type) are selected and found to help predict 

item difficulty, then this can contribute evidence supporting the construct validity of the 

assessment (Embretson, 1983; Hartig, Frey, Nold, & Klieme, 2011).    

 

4.2 Explanatory Item Response Models for Item Features  

 

4.2.1 The Linear Logistic Test Model and Its Extensions  

The linear logistic test model (LLTM; Fischer, 1973) decomposes the item difficulty into 

a linear combination of item features. Because the items in the LPS data are polytomously scored, 

the extension for the LLTM is described here. This extension is sometimes referred to as the linear 

partial credit model (Fischer & Ponocny, 1994) which is also similar to the multifacet Rasch model 

(Linacre, 1989). This model builds off the partial credit model, which was shown in Equation 2.1. 

The difference, though, is how 𝛿𝑖𝑗 is modeled; all other terms stay the same (i.e. 𝜃𝑝 is the ability 

for person 𝑝 and we are still modelling the log-odds of the probability of responding in 

category 𝑗 as opposed to category 𝑗 − 1). 𝛿𝑖𝑗 is defined as: 

 

𝛿𝑖𝑗 = ∑ 𝛽𝑚𝑋𝑖𝑗𝑚
𝑀
𝑚=1      (4.1) 

 

where 𝑋𝑖𝑗𝑚 is the value for step 𝑗 of item 𝑖 on feature 𝑚 and 𝛽𝑚 is the regression weight for item 

feature 𝑚. Unlike in the previous two chapters, however, a multidimensional approach is not taken 

here. Notice that the item step parameter, 𝛿𝑖𝑗 from Equation 2.1, is replaced with the linear 

combination of the difficulties of the item features, rather than the individual item difficulties.  

 To answer RQ4, which is to investigate the effects of certain item features on item 

difficulty, the overall item difficulty across the steps can be written as: 

 

𝛿𝑖
𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝛽1𝑡𝑦𝑝𝑒𝑖 + 𝛽2𝑡𝑎𝑠𝑘𝑖 + 𝛽3𝑓𝑜𝑟𝑚𝑎𝑡𝑖 + 𝛽4𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠𝑖 +  𝛽5𝐴𝑊𝐿𝑖   (4.2) 
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where the coefficients for each feature determines if the item becomes easier or more difficult. 

That is, the overall item difficulty is calculated by adding the estimated coefficients for each 

feature. Thus, items with the same features are predicted to have the exact same item difficulty. 

For RQ5, interaction effects are added to Equation 4.2. As an example, Equation 4.3 shows the 

overall item difficulty for a model that includes interaction terms for type and all other features. 

 

𝛿𝑖
𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝛽1𝑡𝑦𝑝𝑒𝑖 + 𝛽2𝑡𝑎𝑠𝑘𝑖 + 𝛽3𝑓𝑜𝑟𝑚𝑎𝑡𝑖 + 𝛽4𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠𝑖 + 𝛽5𝐴𝑊𝐿𝑖 +  𝛽6𝑡𝑦𝑝𝑒𝑖 ∗ 𝑡𝑎𝑠𝑘𝑖 + 

𝛽7𝑡𝑦𝑝𝑒𝑖 ∗ 𝑓𝑜𝑟𝑚𝑎𝑡𝑖 + 𝛽8𝑡𝑦𝑝𝑒𝑖 ∗ 𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠𝑖 + 𝛽9𝑡𝑦𝑝𝑒𝑖 ∗ 𝐴𝑊𝐿𝑖  (4.3)   

 

Because Equation 4.2 can be found by constraining some of the parameters in Equation 4.3 

(i.e. 𝛽𝑘 = 0, for 𝑘 > 5), these two models can be directly compared using a likelihood ratio test. 

In addition, both these models are nested within the partial credit model. All three models will be 

compared directly and also with the model fit statistics AIC and BIC, as in previous chapters.  

      

4.3 Results 

 

4.3.1. Descriptive Statistics 

 Table 4.1 provides the frequencies for each of the five item features on the LPS assessment. 

Recall that the test included a total of 39 items. For the item type, the items are not distributed 

evenly across the three categories. Argumentation items make up approximately half of the items, 

while only 17.95% of the items are categorized as embedded content. On the other hand, the items 

are about evenly distributed for the item contexts, format, and graphics. Only 13 items, or 33.33%, 

contained academic words.  
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Table 4.1 

 

Frequencies for Each Item Feature on the LPS Assessment 

 

Item Feature Count Percentage 

Type   

    Argumentation 20 51.28 

    Embedded Content 7 17.95 

    Content 12 30.77 

Context   

    Sugar 12 30.77 

    Onions 14 35.90 

    Gases 13 33.33 

Format   

    Multiple-Choice 19 48.72 

    Open-Ended 20 51.28 

Graphics   

    Schematic 11 28.21 

    Pictorial 14 35.90 

    None 14 35.90 

Academic Words List (AWL)   

    Yes* 13 33.33 

    No 26 66.67 

Note*: “Yes” means that an item contains at least one AWL word. It does not account for the number of AWL words 

in an item.  
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4.3.2 Research Question 4: LLTM Results  

To answer RQ4, the LLTM was applied to the LPS data using item type, context, format, 

graphics, and AWL. Results from the analysis are shown below in Table 4.2. 

 

 

Table 4.2 

 

Results for Research Question 4: LLTM 

 

Item Feature Estimate (SE) 

Type  

    Argumentation 0.07 (0.03) 

    Embedded Content -0.49 (0.04) 

    Content 0.43* (0.04) 

Context  

    Sugar -0.07 (0.04) 

    Onions 0.01 (0.03) 

    Gases 0.06* (0.03) 

Format  

    Multiple-Choice 0.75 (0.02) 

    Open-Ended -0.75* (0.02) 

Graphics  

    Schematic 0.06 (0.03) 

    Pictorial 0.24 (0.04) 

    None -0.31* (0.03) 

Academic Words List (AWL)  

    Yes -0.15 (0.02) 

    No 0.15* (0.02) 

Note*: Indicates the result is constrained for the model to be identified. In ConQuest, this is done by setting the last 

category for each feature to be equal to the negative sum of all other categories for that feature.   
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 For the item type feature, the embedded content items were estimated to be the easiest, 

while the content items were identified as the most difficult. Argumentation items lie somewhere 

in between. The chi-square test of parameter equality is statistically significant (𝜒2 =
175.30 𝑑𝑓 = 2, 𝑝 < 0.001), suggesting that there is variation across these types. The mean-

squares value was 1.85 for the embedded content feature, suggesting that this features was not 

fitting the data well. Typically, mean-square values less than 0.75 and larger than 1.33 signal misfit 

(Adams & Khoo, 1996; Wilson, 2005). The large mean-square value for the embedded content 

may be a result of simply too few data points (there were only seven embedded content items). 

However, this needs further investigation. The other two features have acceptable mean-squares 

values.  

 The variation between the item context features, on the other hand, is much smaller—

maybe even non-existent. The estimates for these three contexts are so similar that their confidence 

intervals all overlap. This is confirmed by the chi-square test of parameter equality (𝜒2 =
4.37 𝑑𝑓 = 2, 𝑝 = 0.11). These results suggest that the item contexts do not vary in their difficulty. 

This finding is reassuring since the interest was never on how well students perform on items about 

sugar or onions, but rather on the types of items.   

 Surprisingly, the multiple-choice feature was estimated to increase the difficulty of an item 

by approximately 0.75 logit whereas the open-ended feature was estimated to decrease the 

difficulty by 0.75 logit. The fit statistics for the open-ended feature was large (MNSQ=1.44), while 

it was acceptable for the multiple-choice feature (MNSQ=0.86). These results suggest that there 

were greater variations among the open-ended items than in the multiple-choice items, which may 

explain the odd result. As an example, Figure 4.4 shows the Wright Map with the partial credit 

difficulty estimates (from Chapter 2) by multiple-choice (blue) and open-ended (red) items11. The 

map shows that the variation in estimated item difficulty is greater for the open-ended than for 

multiple-choice items. While there are easy multiple-choice and open-ended items, the two most 

difficult items are open-ended. Some open-ended items just required students to “identify a claim” 

which is a level 0b item on the argumentation construct map. Other items require students to 

“explain how the evidence supports your answer,” which is a level 2a argumentation item. 

Obviously, these two open-ended items should differ in their difficulty—the first is simply writing 

down a claim while the latter requires a more thoughtful explanation. These differences are not 

accounted for in the LLTM and shows some of the limitations of decomposing item difficulties 

into only a handful of features.  

                                                 
11 Note that, overall, most items were easy for this sample of students. The distribution of student abilities are generally 

higher than the distribution for the item difficulties as seen in the Wright Map (Figure 4.4).  
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Figure 4.4. Wright Map showing the item parameter estimates (estimated from partial credit model 

in Chapter 2), by multiple-choice (blue) and open-ended (red) format.  

 

 For the graphics feature, pictorial representations were found to be the most difficult, 

followed by the schematic representations, and lastly by no graphics in the items. However, note 

that the value for schematic representation is low (i.e. 0.06 logit), suggesting that it has little to no 

effect on item difficulty. There is significant variation for this feature, as the chi-square test of 

parameter equality is statistically significant (𝜒2 = 49.29, 𝑑𝑓 = 2, 𝑝 < 0.001). The fit-statistics 

for pictorial and no representations fell in the acceptable range, while it was much higher for the 

schematic representation feature (MNSQ=1.58). 

 Items with AWL words were estimated to decrease the item difficulty by about 0.15 logit, 

while items with no words from the AWL were estimated to increase the item difficulty by about 

0.15 logit. This difference was statistically significant (𝜒2 = 51.19, 𝑑𝑓 = 1, 𝑝 < 0.001). The 

mean-square fit statistics fell within the acceptable range. It is unusual that items with words from 

the AWL would be easier than items without words from the list. This finding requires more 

investigation into the actual words from the list and the items themselves.  
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One way to explore this finding further is to calculate the reading difficulty of items with 

AWL and those without. Here, the Flesch-Kincaid Readability index (Flesch, 1951; Kincaid, 

Fishburne, Rogers, & Chissom, 1975) was used. While there are plenty of other readability 

formulas available (Klare, 1984), the Flesch-Kincaid is one of the most popular and easily 

accessible automated indices. For this post-hoc analysis, the Flesch-Kincaid was derived using 

Microsoft Word 2013. It provides the reading level for a selected passage—in this case, the item. 

The average grade level for the items with AWL words is 6.69, compared to 5.07 for those without. 

This is about a 1.62 grade level difference, suggesting that the items with AWL words are more 

difficult to read. However, the sample includes eighth and tenth graders, so the average readability 

of all the items are well below their grades and may explain why items with AWL words are not 

any more difficult.   

  

4.3.3 Research Question 5: LLTM with Interactions Results  

  To answer RQ5, a LLTM with interactions model was also applied to the LPS data. 

Because the context item feature was not statistically significant from the simple LLTM, it was 

excluded from this model. Two interaction terms were generated for the features: type*format and 

type*AWL. Interactions between types with graphics were not modeled because all embedded 

content items had some sort of graphic representation accompanying them and none of the content 

items had pictorial representations. The results are shown below in Table 4.3.  

The interaction term type*format was statistically significant (𝜒2 = 51.03, 𝑑𝑓 = 2, 𝑝 <
0.001). Multiple-choice embedded content items contribute an additional 0.26 logit to the item 

difficulty, while multiple-choice content items contribute an additional -0.25 logit to the item 

difficulty. For argumentation items, it appears that format does not contribute much, if anything, 

to the item difficulty (i.e. the estimated parameter is small).  

 The interaction term type*AWL was also statistically significant (𝜒2 = 130.31, 𝑑𝑓 =
2, 𝑝 < 0.001). Argumentation items with AWL words contribute an additional estimated -0.30 

logit to the item difficulty, whereas embedded content items are estimated to contribute an 

additional 0.23 logit to the item difficulty. Lastly, content items with AWL words are estimated to 

contribute an additional 0.06 logit to the item difficulty. The interaction term shows some of the 

nuances of the effect of AWL—that is, with embedded content items, items containing words from 

the AWL are estimated to be slightly more difficult. However, for argumentation items, the 

opposite is true. Perhaps the conversational format of the argumentation items is easier for 

comprehension even with the inclusion of AWL words. Whether or not a content item contains 

AWL words does not seem to contribute much to the item difficulty, as the estimated parameter is 

small. This could be due to the fact that content items are familiar for students and they may be 

accustomed to encountering academic words in these types of items.   
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Table 4.3 

Results for Research Question 5: LLTM with Interactions 

Item Feature Estimate (SE)  Feature Interaction Estimate (SE) 

Type   Type*AWL  

     Argumentation (ARG) -0.18 (0.03)       ARG*Yes -0.30 (0.03) 

     Embedded (EMB) -0.29 (0.05)       EMB*Yes 0.23 (0.04) 

     Content (CON) 0.47* (0.04)       CON*Yes 0.06* (0.03) 

Format        ARG*No 0.30* (0.03) 

     Multiple-Choice (MC) 0.75 (0.03)       EMB*No -0.23* (0.04) 

     Open-Ended (OE) -0.75* (0.03)       CON*No -0.06* (0.03) 

Graphics   Type*Format  

     Schematic  0.06 (0.03)       ARG*MC -0.02 (0.03) 

     Pictorial 0.25 (0.03)       EMB*MC 0.26 (0.04) 

     None -0.31* (0.03)       CON*MC -0.25* (0.04) 

AWL        ARG*OE 0.02* (0.03) 

     Yes -0.01 (0.02)       EMB*OE -0.26* (0.04) 

     No 0.01* (0.02)       CON*OE 0.25* (0.04) 

Note*: Indicates the result is constrained for model to be identified. 

 

This interesting effect can be further explored by examining the academic words on the 

three types of items. Figure 4.5 lists the words from the AWL found on the assessment. From the 

list, most of the AWL words are on content items and include: energy, structure, spheres, volume, 

predict, and contact. Only one word appears on the embedded content items: chemical. Lastly, four 

words appear on the argumentation items: released, chemicals, selected, and created. The word 

family “chemical” is the only AWL word that is present on both embedded content and 

argumentation items. “Chemical” is also the only academic word listed in the embedded content 

items—and it is on one of the more difficult ones too. This word is interesting because it is on the 

content progress map (particularly on the Particulate Explanations of Chemical Changes (ECC) 

construct), so its difficulty may be considered partly construct-relevant for the embedded content 

item—though maybe appropriately not so for argumentation.  
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Academic Word List Item Type 

Energy Content 

Structure Content 

Spheres Content 

Chemical Embedded Content, 

Argumentation 

Released Argumentation 

Volume Content 

Selected Argumentation 

Predict Content 

Contact Content  

Created Argumentation 

Figure 4.5. The academic words on the LPS test and the corresponding item type. Coxhead’s 

(2000) Academic Word List (AWL) was used.  

 

This leads to a possibility of two academic word lists: (a) one where the academic jargon 

is specific to the content of the items, and (b) one where the AWL is general across contexts. Then, 

the following words can be categorized into group (a): energy, structure, spheres, chemical, 

released, and volume, and group (b): selected, predict, contact, and created. Another LLTM 

analysis was run, using this categorization for AWL. The results are shown below in Table 4.4. 

Because context was not statistically significant in the previous LLTM analysis, this variable was 

removed from the model. 

 This new division shows that items with AWL words specific to the science context of the 

items is associated with a difficulty increase of approximately 0.21 logit, whereas the presence of 

those that are more general across contexts is associated with a difficulty decrease of 

approximately 0.45 logit. In contrast, the absence of AWL words is associated with a higher 

difficulty by about 0.24 logit. These results show some of the nuances of AWL words, especially 

those used in a science context which have specific scientific meanings. More general AWL words 

were found to be associated with lower difficulty of an item by almost half a logit. However, it is 

still unclear why having no AWL words would be predicted to increase the difficulty of an item 

compared to the general AWL words.  
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Table 4.4 

 

Post-hoc LLTM analysis with updated AWL category 

 

Item Feature Estimate (SE) 

Type  

    Argumentation 0.14 (0.03) 

    Embedded Content -0.57 (0.03) 

    Content 0.43* (0.03) 

Format  

    Multiple-Choice 0.74 (0.02) 

    Open-Ended -0.74* (0.02) 

Graphics  

    Schematic 0.14 (0.03) 

    Pictorial 0.22 (0.03) 

    None -0.36* (0.03) 

Academic Words List (AWL)  

   Specific 0.21 (0.04) 

   General -0.45 (0.04) 

   None 0.24* (0.03) 

Note*: Indicates the result is constrained for the model to be identified.   
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4.3.4 Model Comparisons  

 Three models are compared below in Table 4.5. The unidimensional partial credit model 

listed here is the same as from Chapter 2 (Equation 2.1). All LLTM models will be directly 

compared to this partial credit model. The LLTM is the same as listed in Table 4.2. The LLTM 

with interactions is the same as listed in Table 4.3.  

 

Table 4.5 

Model Comparisons: Partial Credit Model, LLTM, LLTM plus Interactions 

Model # Parameters AIC BIC 

Partial Credit Model 59 12797.52 12823.72 

LLTM 12 17611.19 17616.52 

LLTM plus Interactions 14 17489.98 17496.20 

  

Likelihood ratio tests revealed that, as expected, the partial credit model had a statistically 

significantly better fit than the LLTM (𝜒2 = 4907.67, 𝑑𝑓 = 47, 𝑝 < 0.001) and the LLTM with 

interactions (𝜒2 = 4782.46, 𝑑𝑓 = 45, 𝑝 < 0.001). The significantly lower AIC and BIC values 

also confirm these results. The partial credit model has a substantially better fit than any of the 

LLTM models. However, it is often useful to examine the item features to see which play an 

important role in explaining item difficulty, especially if there is a strong theory behind the 

features. For instance, the LLTM confirms that there were no significant differences between the 

contexts in terms of difficulty.  

When comparing the two LLTM models, the LLTM with interactions has a statistically 

better fit than the LLTM (𝜒2 = 125.21, 𝑑𝑓 = 2, 𝑝 < 0.001) and this is confirmed by comparing 

the AIC and BIC values too.  

 Finally, Figures 4.6 and 4.7 provide a graphical view into how well the LLTM and LLTM 

with interactions, respectively, match with the partial credit model results. The y-axis for these 

two graphs is the step difficulties estimated from the partial credit model, while the x-axis is the 

step difficulties estimated from the LLTMs. From both graphs, it appears that the two LLTMs tend 

to underestimate the difficulties (i.e. most points are above the identity line). The correlations 

between the partial credit model with the LLTM and the LLTM with interactions are the same, 

and moderate at 𝑟 = 0.61. That is, the LLTM with interactions did not increase the correlation, as 

one might have expected. 
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Figure 4.6. Graph of step difficulties estimated from partial credit model with those estimated 

from the LLTM 

 

 

Figure 4.7. Graph of step difficulties estimated from partial credit model with those estimated 

from the LLTM with interactions 
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4.4 Discussion and Future Steps 

 The purpose of this chapter was to investigate how well certain item features can explain 

the item difficulties on the LPS assessment. There are several findings worth mentioning here. 

First, related to RQ4, item context was not a statistically significant predictor for item difficulties. 

This is reassuring, since the context was not part of the intended construct (i.e. we are not interested 

in whether students understand items about chopping onions more than dissolving sugar in water). 

In fact, these contexts were chosen in the hopes that they would be familiar enough for students to 

limit construct-irrelevant variance. All other features were statistically significant.  

However, it is important to keep in mind that some of the features were flagged for having 

large fit statistics. For instance, open-ended items (part of the format feature) were identified as 

having more variation than predicted. This could be due to the fact that some open-ended items 

required much shorter responses, while others required a more detailed explanation. Perhaps a 

more nuanced distinction between different types of open-ended items may be useful for future 

analyses. This could even be done with the multiple-choice items, where the number of response 

options varied from two to five. For this assessment, two items had two response options, two had 

five response options, and 15 had four response options.  

The interaction effects of type*AWL are noteworthy. At first, it seemed strange that the 

inclusion of academic words in items would decrease the difficulty. However, by examining the 

interaction effects, we found that this was only true for argumentation items. For the embedded 

content items, inclusion of AWL words actually increased the difficulty. Unfortunately, it is 

unclear why the trend is different for argumentation items. One possibility may be due to subject-

matter—argumentation items may appear more conversational (in general) than the other two item 

types, hence the inclusion of academic words do not actually interfere with understanding the item. 

Of course, further investigations into this finding is needed, especially testing for replicability. 

The post-hoc LLTM analysis, with the division of AWL words into specific and general 

categories, shows that the presence of AWL specific words is expected to contribute to the 

difficulty of an item as does the absence of AWL words. The presence of AWL general words was 

found to actually be associated with easier items. Future analyses examining AWL words in 

specific science contexts will be needed to provide more information into how these words may 

affect item difficulty.  

There are many possibilities for future explorations, especially if there is another round of 

data collection with this particular assessment. One easy extension is to add other item features 

that may have predictive ability for estimating difficulty. Differential facet functioning (DFF; Xie 

& Wilson, 2008) is another possible extension. This particular model was not explored in this 

chapter because only one item exhibited statistically significant DIF from Chapter 3. For future 

studies, if there were a more diverse sample with distinct groups to explore, then DIF and DFF can 

provide powerful explanatory information to the LPS items and constructs.  
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