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Abstract 

Two plausible influences on category learning are 
presentation format and the learner’s beliefs about future 
category uses. Standard experimental designs typically do not 
manipulate these two dimensions independently, and so their 
effects cannot be easily disentangled, particularly since both 
plausibly affect task difficulty. In the present paper, we 
independently manipulated the two influences, and found that 
they have different effects on learning difficulty and learned 
category representation. 

Keywords: category learning; presentation format; belief 
effects. 

Introduction and Related Research 

Concepts are widely recognized as crucial for cognition, 
whether they are the “glue that holds our mental world 

together” (Murphy, 2002, p. 1) or the “building blocks of 

thought” (Solomon, Medin, & Lynch, 1999, p. 99). The two 

standard experimental formats for category learning are 

classification and inference learning. In the classification 

learning format, people are shown all of the feature values 

for a case, and then asked to infer the category. They might, 

e.g., be shown a picture and asked whether it is a cat or a 

dog. In contrast, the inference learning format requires 

people to infer the value for some feature given the category 

label and values of the other features. They might be told 
that some animal with an obscured head is a dog, and then 

asked about the shape of its ears. Anderson (1990, 1991) 

conjectured on theoretical grounds that the learning format 

would (or should) not influence category representations. 

Recent empirical work suggests that learning format matters 

(e.g., Anderson, Ross, & Chin-Parker, 2002; Chin-Parker & 

Ross, 2002, 2004; Markman & Ross, 2003; Ross, 1996, 

1997, 1999; Yamauchi & Markman, 1998). This paper aims 

to separate the influence of learning format and goal beliefs. 
This separation is complicated by the fact that prior work 

has found differences in learning difficulty between 
classification and inference formats (e.g., Yamauchi & 
Markman, 1998). There are at least three possible sources of 
these differences. First, there may be intrinsic task difficulty 
differences between classification and inference learning 
formats (as argued in Yamauchi & Markman, 1998). That 
is, it may actually be harder to learn (when all else is equal) 

using one learning format rather than another. When testing 
Anderson’s conjecture, we should not try to control such 
variations in task difficulty due to learning format. 

Second, the differences in learning difficulty could be due 
to differences in the underlying statistical structure for the 
predictions. The target of learning varies between the two 
formats: in classification learning, one is learning to predict 
the category; in inference learning, the various features of 
the object provide the learning targets. Thus, even if the 
overall statistical structure of the category (i.e., the joint 
probability distribution over the class and features) is the 
same for both learning formats, we have no guarantees that 
the statistical structures for the two learning problems are 
the same. For example, Yamauchi & Markman (1998) use 
the same underlying category structure for both learning 
format conditions. However, in the inference learning 
format, the relationship between any target (i.e., feature) and 
the single category label is deterministic, while in the 
classification learning format, the relationship between the 
target (i.e., category) and any single feature is probabilistic. 
Presumably, task difficulty and category learning can be 
affected by prediction certainty, which is experimentally 
controllable but is unrelated to Anderson’s conjecture. 

Third, the learning target in the inference learning format 
almost always varies from case to case: the feature that 
participants must predict in one case is not necessarily the 
feature that they must predict for the next case in the 
learning sequence. Thus, if a category has more than one 
feature, classification learning will allow for significantly 
more repetition of particular cases than inference learning. 
Consider a typical category learning experiment with one 
binary category label and n binary features. (Throughout 
this paper, we will denote a particular case by LF1F2…Fn, 
where L is the category label and Fi the ith feature, and use 
‘?’ to denote the variable to be predicted in a particular 
case.) In the classification learning format, each learning 
exemplar has a fixed presentation: ?F1…Fn. In the inference 
learning format, however, each exemplar can be presented 
in n different ways: L?F2…Fn, …, LF1F2…?. The inference 
learning format thus has fewer repetitions of particular 
presentations, and so the learning problem is potentially 
harder. The potential difficulty here is due not to intrinsic 
features of inference learning, but rather to the fact that 
participants are asked to predict different features for 
different learning cases. Furthermore, classification learning 
participants arguably need only to learn a single conditional 
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probability distribution: namely, the probability of the 
category label given the features (i.e., P(L|F1F2…Fn). In 
contrast, inference learning participants must track either the 
full joint distribution, or n distinct conditional distributions: 
P(F1|LF2…Fn), …, P(Fn|LF1…Fn-1). Like the second source 
of task difficulty difference, variation in category learning 
caused by mental load and repetition is not evidence against 
Anderson’s conjecture. 

Both of these latter two influences on task difficulty arise 
from between-format differences in the learning target, but 
they are separable. For example, Nilsson and Olsson (2005) 
used an experimental design in which both classification 
learning and inference learning were probabilistic, thereby 
mitigating the second potential influence. Their results were 
significantly different from prior work, which suggests that 
variation in the statistical structure of the learning problem 
is an actual influence on category representation. At the 
same time, they failed to remove the asymmetry in mental 
load and repetition, since they varied the feature to be 
predicted across cases in the inference learning format. 

In order to balance task difficulty for the classification 
and inference learning formats and to properly address 
Anderson’s conjecture, we argue that one should use what 
we call a Fixed Inference Format in which participants are 
asked to infer the value of a feature given the class and other 
feature values, but where the target feature does not change 
from case to case. This learning format clearly does not 
suffer from the third potential source of task difficulty. In 
addition, it is much simpler to balance the prediction 
certainty problem for Fixed Inference format and traditional 
classification learning, since one has a fixed learning target 
in this format. 

In addition, prior work has not carefully separated out the 
influences of presentation format, and of participants’ 
beliefs about their overall goals and future category use. 
Exposure to one particular stimulus structure or presentation 
format during the learning phase presumably leads 
participants to form beliefs about the future tasks with 
which they will be faced. That is, the presentation format 
generates beliefs about the test phase goal, and those beliefs 
can potentially affect category representations. A more 
complete understanding of the role of learning format thus 
suggests that one should determine whether beliefs about 
subsequent category use (i.e., about the learning goal) 
directly influence the learned category representations.  

Experiment  

The overall goal of the present experiment is to separate out 

the influences on learned category representations of (i) 

presentation format and (ii) beliefs about subsequent use. 

The experiment is (in some ways) exploratory; in particular, 

participant behavior given Fixed Inference Format cases is 

currently unknown. The category structure used for the 

learning phase of the experiment is shown in Table 1.  
An important characteristic of this non-linear category 

structure is the statistical symmetry between L and F1. 
Specifically, P(L|F1) = P(F1|L) and P(L|F1F2F3F4) = P(F1 

|LF2F3F4). Note that any pair of categories with statistical 
symmetry between L and F1 and a probabilistic relationship 

between the category label and any feature will not be 
linearly separable.  

 

Table 1: Category structure for learning phase 
 

Category 1 

Exemplars 

1111 

1101 

1100 

1011 

0110 

Category 0  

Exemplars 

1110 

0100 

0011 

0010 

0000 

 

The experimental design is between-participant with 3  2 

conditions: three learning formats crossed with two goal 

beliefs. The learning formats are: Classification format 

(CF), in which the prediction target is always the category 

label; Fixed Inference format (FIF), in which the prediction 

target is always feature F1 (the italicized feature in Table 1); 

and Random Inference format (RIF), in which any feature 

can be the prediction target during learning (i.e., the target 

can vary from case to case). Although we believe that FIF is 

the more appropriate contrast for CF (as argued above), we 

include the RIF conditions as a replication control. 
The CF vs. FIF design allows us to address Anderson’s 

conjecture properly. If a label formally equals a feature, and 
different presentation formats do not affect learning as long 
as the statistics are equal (as argued in Anderson 1990, 
1991), then the CF and FIF conditions should not have 
different test phase performance. On the other hand, 
differential test phase performance suggests that a category 
label has different informational content than a feature; in 
other words, presentation format directly affects learning 
(and not just through differential task difficulty).  

We used two goal belief conditions: Classification goal 
(CG), in which participants are explicitly instructed that 
they will have to predict the category label for some novel 
instances after learning; and Inference goal (IG), in which 
participants are explicitly instructed that they will have to 
predict feature values for some novel instances in the test. 
Participants from all conditions are told that only the final 
goal is important and (when applicable) they are encouraged 
to ignore the fact that the actual format of learning might 
differ from the focus of the goal. The different goals were 
described in the experiment cover story, and reminders of 
the goal were displayed with each learning case.  

Participants 

122 Carnegie Mellon University students participated as 

part of a series of unrelated experiments. They were 

compensated $10 for the series, which took 45 to 60 

minutes to complete. The experiment was carried out on 

computers in the Laboratory for Symbolic and Educational 

Computing at Carnegie Mellon. 

Design and Materials 

The experiment focused on classification of (imaginary) 

insects. The cover story asked participants to play the role of 

biologist and learn to distinguish between two kinds of 
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bugs. The bugs were differentiated by the values of four 

binary features (eyes, legs, wings and tails). There are ten 

learning exemplars (see Table 1), and the learning phase 

consisted of a series of blocks, where each block contained 

each exemplar once in random order. The experiment used 

supervised learning in all conditions: see a case, predict a 
value, receive feedback, study the fully displayed case, and 

then move to the next case. The learning phase had at least 4 

blocks (i.e., 40 cases) and finished when the participant 

either obtained 90% accuracy within a block, or finished 30 

blocks (300 cases). All phases of the experiment were self-

paced. Note that there are six possible combinations of 

feature values that were never shown in the learning phase. 

Test phase judgments about those cases provide additional 

information about the learned category representation.   
In the test phase, participants were given both inference 

and classification tests. For the eight inference tests, 
participants were asked the eight possible questions of the 
form: “Given that this bug belongs to category [0/1], what 
value for its [Fi] is most likely?” (In the questions provided 
to participants, all variables and values were replaced with 
their actual names.) Participants responded using a slider 
that ranged from 100 (Fi definitely attains value 1) to 0 (Fi 
definitely attains value 0). For the sixteen classification 
tests, participants were presented a bug with all features and 
asked questions in the form of “How likely is it that this bug 
is a member of category [1]?” Participants responded using 
a slider that ranged from 100 (definitely a member of 
category [1]) to 0 (cannot be a member of category [1]). The 
first test phase block was always the one that was consistent 
with the stated goal for that participant. In other words, if 
the participants were in a classification goal condition, then 
they first saw the classification task in the test phase; in the 
inference goal conditions, they first saw the inference task 
in the test phase.  

Results and Discussion 

Because we aimed to separate out the influence of several 
different factors, we report our results in three sections. 

 

Task Difficulty. For conditions with the same format and 

different goals, there were no significant differences in the 

number of cases required to reach 90% performance (two-

sample t-tests). Since goal does not seem to affect task 

difficulty, we pooled the conditions to examine the effects 

of presentation formats on difficulty level. Figure 1 shows 

the percentages of participants reaching the 90% correctness 

threshold (rather than the 300-case limit) for the three 

learning formats: 90%, 70% and 50% for CF, FIF and RIF 

respectively. There is a significant difference between 
pooled Classification format and pooled Random Inference 

format (p = .021; binomial test), but not between pooled 

Classification format and Fixed Inference format (p = .149), 

or between Fixed Inference format and Random Inference 

format (p = .344). Because participants who failed to reach 

90% accuracy in any block presumably failed to learn the 

category structure, we exclude them from the remaining 

data analyses. 
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Figure 1: Percentage of participants reaching 90% 

accuracy in the learning phase 

 

We ran one-way ANOVA on the mean of the number of 

cases required to reach 90% performance. The means of the 

three pooled conditions are 95.56, 120 and 154.29 (Figure 

2). There is a significant difference among the three pooled 

conditions (p = .009; One-way ANOVA). In particular, 

Tukey HSD post hoc test shows that there is a significant 

difference between Classification format and Random 

Inference format (p = .006). The other differences  

Classification format vs. Fixed Inference format, and Fixed 

Inference format vs. Random Inference format are non-

significant (p = .332, p = .194 respectively).  
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Figure 2: Mean number of cases to reach 90% accuracy  

 

Both difficulty analyses conclude that it is significantly 

easier to learn in Classification format than in Random 

Inference format. This replicates the findings of earlier 

research that compared the difficulty of these two formats 

(e.g., Chin-Parker & Ross, 2002; Yamauchi & Markman, 

1998). However, since the Fixed Inference learning format 
is not significantly more difficult than the Classification 

learning format under either analysis, the difference 

between Random Inference and Classification formats does 

not seem to be due simply to learning format differences. At 

least part of the difference is likely due to variation on other 

dimensions (e.g., the increased memory burden in the 

Random Inference learning format).  

 

Format and Goal Main Effects. For six of the ten learning 

exemplars, the <Classification format, Classification goal> 

condition had the most accurate mean test phase 

classification rating, which is significantly more than chance 
(p = .002, binomial test). At a slightly coarser level of 

analysis, a condition with the Classification format yielded 
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the most accurate mean classification ratings for seven of 

the ten training exemplars, which is significantly more than 

chance (p = .019, binomial test). Similarly, conditions with 

the Classification goal yielded more accurate mean test 

phase classification ratings for nine of the ten training 

exemplars, which is significantly (p = .021, binomial test) 
more than chance. 

At a finer grain of analysis, we found a main effect (2-
way ANOVA) of the Presentation Format on mean test 
phase classification ratings for three learning exemplars 
(Figure 3): 0000 (p = .001); 1110 (p = .037); and 0110 (p = 
.017). (Since there were no interaction effects for these 
exemplars, we compared pooled ratings to determine 
learning format effects.) In particular, Tukey HSD post hoc 
test showed that, for exemplar 0000, there is a significant 
difference between Classification and Fixed Inference 
formats (p = .001), and between Classification and Random 
Inference formats (p = .003) with Classification format as 
more accurate in both pairs. For exemplar 1110, there is a 
significant difference between Fixed Inference and Random 
Inference formats (p = .011), with Fixed Inference format as 
more accurate. Finally, for exemplar 0110, there is a 
significant difference between Classification and Random 
Inference formats (p = .005) with Classification format as 
more accurate, and a slightly significant difference between 
Fixed Inference and Random Inference formats (p = .065), 
with Fixed Inference format as more accurate. All other 
pairwise differences were not significant.  
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Figure 3: Learning exemplars with format effects in 

classification test phase  

 

We found a main effect (2-way ANOVA) of Goal on two 

learning exemplars (Figure 4):  0011 (p = .029) and 0100 (p 

= .047). For both, Classification goal participants were more 

accurate in mean test phase classification ratings. 
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Figure 4: Learning exemplars with goal effects in 

classification test phase 

We also ran a two-way ANOVA to examine whether Goal 

or Presentation Format leads people to classify the six 

transfer exemplars differently. We found a main effect (2-

way ANOVA) of the Presentation Format factor on the 

transfer exemplar 1001 (p = .003) (Figure 5). Tukey HSD 

post hoc test showed that Classification format is 
significantly different from both Fixed Inference (p = .004) 

and Random Inference (p = .044), with Classification format 

participants reporting higher likelihoods that 1001 belongs 

to category 1. A mild main effect (2-way ANOVA) of the 

Presentation Format factor was also found for the transfer 

exemplar 0001 (p = .092) (Figure 5). Tukey HSD post hoc 

test showed that the rating of Classification format is mildly 

different from that of Random Inference format (p = .075), 

with Classification format participants giving a higher 

likelihood that 0001 belongs to category 0.  
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Figure 5: Transfer exemplars with format effects in 

classification test phase 

 

Overall, the main effect analyses of the test phase 

performance indicate that both Presentation Format and 
Goal belief influence how people learn categories, though 

the effects are not necessarily strong or omnipresent. 

Classification format leads to better performance in 

classification tasks when compared to Fixed Inference 

format and Random Inference format. Classification goal 

also seems to lead to better performance in classification 

tasks when compared to Inference goals. 

 

Format and Goal Interaction and Consistency Effects. 

We found an interaction effect of Goal and Presentation 

Format on learning exemplar 0010 (p = .029) (Figure 6). 

Pair-wise comparisons showed that responses in the 
<Classification format, Classification goal> condition are 

significantly different from those in the conditions with (i) 

Fixed Inference format and Classification goal (p = .007); 

and (ii) Random Inference format and Classification goal (p 

= .042). For both, <Classification format, Classification 

goal> yielded better performance.  
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Figure 6: Interaction effect for learning exemplar 0010 

in classification test phase 

 

For the transfer exemplars, we found an interaction (2-way 

ANOVA) of the Goal factor and the Presentation Format 

factor on the transfer exemplar 0101 (p = .048). Tukey HSD 

post hoc test showed that participants in the <Classification 

format, Classification goal> condition gave a significantly 

lower mean likelihood that exemplar 0101 belongs to 

category 1 than did those in the <Random Inference format, 
Classification goal> condition (p = .039) (Figure 7). 
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Figure 7: Interaction effect for transfer exemplar 0101 in 

classification test phase 
 

For the inference test phase, two-way ANOVA revealed an 

interaction effect (p = .042) of Goal and Presentation 

Format on ratings of the likelihood of F1 in individuals from 

category 1 (Figure 8). 
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Figure 8: Interaction effect in inference test phase for 

feature F1 given category 1 

 

Perhaps the most interesting interaction effect arises in the 

Fixed Inference format conditions. In those conditions, 

participants consistently learned to predict the same feature, 

(i.e., F1: the Wings) for all learning exemplars. Presumably, 

by repeatedly focusing on F1 throughout the learning phase, 

participants in Fixed Inference format should have learned 

F1 considerably better than participants in other conditions. 

Figure 9 reveals a different pattern. Of all six conditions, 
<Fixed Inference format, Inference goal> leads to the 

second-best performance for inferring F1 for category 1. In 

contrast, <Fixed Inference format, Classification goal> leads 

to the worst performance. The same pattern was repeated for 

test phase ratings of F1 for category 0. (Note that separate 

ratings were obtained for F1 for the two different 

categories.) Again, <Fixed Inference format, Inference 

goal> leads to the second-best performance, while <Fixed 

Inference format, Classification goal> leads to the worst 

performance. Given that these two conditions have the same 

presentation format (i.e., Fixed Inference format), the 

difference in the inference task should plausibly be 
attributed to the Goal factor. Within Fixed Inference format, 

possessing the Inference goal leads to significantly better 

performance on this inference task than possessing the 

Classification goal. This is naturally understood as a 

consistency effect: learning is impaired when the beliefs 

about final goal conflict with the presentation format. 
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Figure 9: Goal effects in Fixed Inference format for 

inference test phase performance 

 

Within the Classification format conditions, we also found a 

positive effect of consistency between the presentation 

format and the goal. For that format, one would expect 

consistency effects to arise in the classification test phase 

performance. The <Classification format, Classification 

goal> condition yielded more accurate classification ratings 
than the <Classification format, Inference goal> condition in 

9 out of 10 cases, which is significantly better than by 

chance (p = .011, chi-square test).  

In sharp contrast to these results, we found no format-

goal consistency effect within the Random Inference format. 

<Random Inference format, Inference goal> and <Random 

Inference format, Classification goal> lead to similar 

inference test phase performance on all 4 features for both 

categories. We conjecture that task difficulty is playing a 

key role here. When the learning task is relatively easy (i.e., 

in Fixed Inference or Classification format), people are able 
to attend to the goal, and so inconsistencies between goal 

and presentation can matter. In contrast, when the mental 

load is heavier (i.e., in Random Inference format), people 
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are sufficiently engaged in the learning task that they do not 

attend closely to the stated goal, and so do not notice the 

inconsistency. An alternative explanation is that all RIF 

participants had to memorize most of the exemplars to 

achieve 90% correctness threshold. If success is achieved 

through brute-force memorization of full cases, then 
different goals might not play a role. These explanations are 

not mutually exclusive, and substantially more evidence 

about precise cognitive loads and learning strategy is 

required to confirm these conjectures.  

Conclusions 

Because there are close connections between presentation 

format and task difficulty, it can be quite difficult to 

determine the source of differences in learned category 

representations. We offer here a novel type of presentation 

format Fixed Inference format that aims to remove 

between-format differences in task difficulty that are not 

due to intrinsic differences between inference and 

classification learning formats. We also aimed to determine 

whether participants’ belief about subsequent category use 
played a role in category learning. 

The experimental results suggest that previous findings 

of differential task difficulty might have been due to factors 

other than intrinsic differences between the learning 

formats. Factors such as variations in memory load may 

have played an important role, since the Fixed Inference 

format was not significantly more difficult than the 

Classification format on either measure of task difficulty. 

That being said, both analyses found the Fixed Inference 

format to be somewhat more challenging; we do not know 

whether the difference would prove to be statistically 
significant given a much larger sample size.  

We also found that both presentation format and beliefs 

about subsequent category use are relevant for the learned 

category representation. The effects are (in some ways) not 

as dramatic as have been reported previously in the 

literature. The artificiality of our particular experiment 

stimuli might be at least partly responsible for differences in 

the reported magnitude of format effects. 

Perhaps the most intriguing results are the findings of 

format-goal consistency effects for Classification and Fixed 

Inference formats, but not for the Random Inference format. 

Format-goal consistency has been studied in the educational 
psychology literature, but has received relatively little 

attention in concept learning. The present findings are 

particularly interesting since the consistency effects 

seemingly emerge only in “easier” conditions (though this is 

obviously speculative). We are currently investigating the 

nature and conditions under which these consistency effects 

robustly emerge. 
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