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Essays on Stock and Options Market

Abstract

As the second-largest economy globally, China’s economy has developed rapidly in

recent years, and China’s stock market has developed particularly fast as one of

the most representative and important markets. Its total market capitalization had

grown from 4.03 trillion US Dollars in 2010 to 8.52 trillion US Dollars in 2019. It is

an important investment channel for individual investors on the supply side. It also

provides financing opportunities for enterprises on the demand side. The fast growth

has brought many systemic problems that need to be solved urgently, like imperfect

regulation and informed trading. Considering these characteristics, I choose China’s

stock market as the theme for deep research and study.

The first chapter studies the informed trading problem in China’s A-Share

market. It investigates the abnormal drop of stock returns on announcement day

for the listed firms on A board in China’s stock market. It finds that the firms who

reported a huge irrational goodwill impairment experienced a more significant decline

before the announcement day, and their rebounds in abnormal return are, on average,

more powerful after the announcement day. There is a significant negative jump in

stock return on announcement day for these abnormal firms, while the other firms’

jump is not significant. The difference in difference model over various cut-off days

suggests that external reasons like informed trading are not the dominating factor

determining the decline in abnormal returns of the abnormal firms before announce-

ment day. Rather, the internal difference between firms plays a more important role

in the stock disaster.
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The second chapter focuses on the profit potential of China’s stock indexes

by applying neural network models. The chapter uses a neural network approach

to predict China’s stock indexes’ returns from the Shanghai Stock Exchange(SSE)

and the Shenzhen Stock Exchange(SZSE). It compares the ARIMA model, Multiple

Layer Perception(MLP) model, and Recurrent Neural Network(RNN) model in terms

of mean squared error and forecast accuracy to study the added value of improvement

from model architecture. It turns out that MLP and RNN models failed to provide

a significantly better prediction than ARIMA models if using historical information

of stock prices alone. The paper also uses a standard quantitative trading strategy

to backtest the value of predictions from these three models. The paper finds that

the ARIMA model predicts the SSE Composite Index well, while the RNN model is

the best in predicting Industrial Index and Composite Index. Most of the strategy’s

annualized returns surpassed the return of the benchmark stock index in the bear

market from 2017 to 2020, which offers investors a better choice in their stock trading.

While my first two chapters focus on China’s stock market, my third part

of the dissertation studies the US’s options market. China has not yet established

a developed options trading system like the US, and the options market is an indis-

pensable supplement of a complete stock market. Actually, China’s options trading

for stock indexes started in 2019. As the first stock index options product in China’s

domestic market, CSI 300 stock index options were listed and traded on the China

Financial Futures Exchange on Dec 23rd, 2019. Considering the fact, Chapter 3, joint

work with my colleague Yitian Xiao, study the US’s options market. It is well known

that the options market enables traders to hedge positions in asset markets, thereby

reducing risk exposure. Traders can choose from many different strike prices – analo-

gous to the coverage level in an insurance contract – when hedging. In Chapter 3, we

argue that the hedging motive leads a typical hedger to take positions slightly out of

the money, i.e., just below the asset’s current value. We develop a simple theoretical

model and validate its predictions using data on S&P 500 options. In particular, we
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show that trading volume follows the natural position of hedgers. Our results imply

that hedging is fundamental to the value of options markets because the trading fol-

lows the hedgers. Moreover, we show empirically that gambling motivation could be

a good supplement to explain our stylized facts.
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Chapter 1

Goodwill Impairment and

Informed Trading

1.1 Introduction

In January 2019, big news broke out in China’s stock market. Around 100 Chinese

listed firms disclosed announcements about their performance in 2018, they all claimed a

huge profit loss in their announcements, and the main reason these firms provided is good-

will impairment. Announcing profit loss is normal for managers to update shareholders’

expectations and potential investors on a firm. Still, three features make this event become

big news. First, the magnitude of the profit losses given by these firms is huge and irra-

tional. Second, the main reason for the profit loss is all goodwill impairment. Last, these

announcements all occurred together within one week. These characteristics make the event

an interesting question worth studying.

Therefore, this paper aims to study the event and investigate the reason for its

appearance. The crucial questions the paper focuses on are: are these firms who claimed

crazy goodwill impairment different from the firms who did not claim such an announce-

ment? Further, are these firms behave differently only around announcement day or behave

differently all the time? These questions could potentially be answered from different per-

spectives. On the one hand, based on the observation of clustering negative announcements,
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it is natural for investors to suspect the existence of informed trading. Key information

about the huge goodwill impairment may have already been leaked before announcement

day so that its stock price behaves differently from other firms. On the other hand, it is

also possible that these firms who made irrational goodwill impairment are naturally differ-

ent from the other firms who did not. They have attributes and characteristics essentially

different from other firms, so that they chose the timing of announcement and reason for

profit loss differently. Actually, if these firms only behave differently on announcement day,

this would be considered evidence for informed trading because it is abnormal for firms to

change their behavior only around the announcement date. Otherwise, we could conclude

that firms are heterogeneous so that they behave differently due to their own attributes

rather than informed trading.

Since informed trading is an indispensable topic in the paper, defining the concept

before the further discussion is beneficial. The informed trading here refers to trading based

on the information not reflected in stock prices yet. The information includes more accurate

signals about the stock market in the future. It could be information leak from the manager

of a firm or information about other firms’ stock prices, but it does not include the tacit

understanding across different firms. For example, if one firm announced goodwill impair-

ment, other firms may follow the forerunner and use the same excuse for free automatically.

Such tacit understanding may not need any concrete collusion behaviors. Actually, they

could follow the forerunner because they are naturally very similar firms, and they face a

similar situation like profit loss. This could not be considered informed trading formally,

but it is harmful to China’s stock market’s sustainable development.

To precisely differentiate the firms who made a crazy announcement from other

firms who did not, I define ”target firm” and ”non-target firm” to name them in the paper.

Specifically, a target firm is a firm whose announced profit loss is greater than 1 billion Chi-

nese Yuan(RMB), while a non-target firm is a firm whose announced profit loss is less than

the bar. The ”target” and ”non-target” do not mean acquisition in accounting. Rather,

they are used to differentiate two groups of firms, one abnormal group whose firms all re-

ported announced profit loss is greater than 1 billion RMB and one normal group whose

firms did not claim irrational announcement. The reason for the profit loss given by the

2



target firms is goodwill impairment. Goodwill impairment is an accounting terminology

referring to the goodwill carrying value of an asset exceeding its fair value. It is created

to inform investors that one firm is not worth as much as they thought. Usually, there is

a drop in stock price after one firm reported a goodwill impairment in its announcement.

It is normal and legal. However, it is very abnormal to observe many listed firms claimed

large amounts of goodwill impairment together within one week of Jan 2019. The cluster-

ing goodwill impairments caused heavy losses for investors in China’s stock market. For

example, Tianshen Entertainment claimed that its profit loss ranges from 7.3 to 7.8 billion

RMB on Jan 30. As a result, its close price plummeted from 4.73 to 4.26 within one day.

Still, some firms did not experience a sharp drop in stock price. Ningbo Donly claimed a 1.7

billion goodwill impairment with 700 million extra impairment from one of its subsidiary

companies, which leads to an overall 2.5 billion loss, but its stock price surprisingly rose

after the announcement came out. This is because its stock price has already reached the

bottom of the historical price in the second half-year of 2018, and some investors think it is

good timing to conduct a bottom-fishing strategy. Since different firms have different per-

formances on stock prices after an announcement comes out, the paper’s central question

is to test the difference between the target firms and the non-target firms. The empirical

analysis and hypothesis test are discussed in later sections.

The question is attractive from many perspectives. Firstly, China’s stock market

is an important investment channel for Chinese investors due to China’s capital constraint.

Huge irrational goodwill impairments hurt investors not only through declining stock prices

directly but also through negative impact on future expectations indirectly. The wealth of

investors shrank dramatically over the announcement period. So the question proposed in

the paper is worth investigating from an investor’s point of view. Secondly, this is not the

first time such a phenomenon happens in China’s stock market. Listed Firms on A board

cyclically reported a huge loss in intangible assets at the end of each accounting year. They

did not report negative announcements together historically. The magnitude of loss was

also not as large as this time in the year 2019. So the question itself is representative and

worth studying.

Finally, China’s stock market is a large growing and developing market, and it
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does not have complete and detailed regulations about the provision of the intangible asset.

Studying this question is also important to improve the market’s legal system and provide

a fair environment for all investors. Therefore I studied the question in the paper. I

used panel regression and a difference in difference model to empirically test the difference

between target and non-target firms in pre-announcement and post-announcement periods.

I found the firms who reported a huge irrational goodwill impairment experienced a more

significant decline before announcement day. Their rebound in abnormal return is, on

average, more powerful after announcement day. There is a significant negative jump on

announcement day for these target firms, while other firms’ jump is not significant. All

the findings are presented and discussed in empirical sections. The rest of the paper is

organized as follows. I list the existing relevant literature in section 1.2 and introduce the

dataset in section 3.3. Section 1.4 shows the empirical finding. I discuss and conduct the

hypothesis test in Section 1.5 and 1.6. Corresponding robustness check is shown in section

2.6. Finally, I draw conclusions in section 3.5 and list all the references in section 1.9.

1.2 Literature Review

The paper’s central question is to study the effect of goodwill write-off, and there

is no existing literature studied the event of clustering goodwill impairment in China yet.

Therefore I review all the relevant literature about goodwill write-offs. I find that there

is a lot of literature that studied the effect of goodwill impairment on the whole financial

market and a firm’s own performance. Most of them conclude that goodwill write-offs have

a negative influence on the stock price. I list the most relevant literature as follows.

First, many research studied goodwill account from an agency theory perspective.

They investigated the implementation of goodwill write-offs under certain political regu-

lations. Ramanna & Watts (2012) studied the usage of unverifiable estimates in goodwill

impairment and found that empirically goodwill impairment could not be explained or pre-

dicted by agency theory. They used a sample of collected firms to test the methodology and

the motivation of using Statement of Financial Accounting Standards No.142(SFAS 142),

which requires managers to use the current fair value of goodwill to determine an appropri-
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ate level and frequency of goodwill write-offs. Ideally, the manager would apply goodwill

write-offs to convey their private information and expectation of a firm’s performance in the

future. The flexibility of managers would end up with manipulation of reports according

to agency theory. However, the hypothesis is not verified in their paper, so they concluded

that managers prefer to avoid timely goodwill write-offs due to their own benefit or the

SFAS 142. However, this paper failed to explain the implementation of the SFAS 142 and

did not take the 2008-2009 financial crisis into consideration. The paper’s finding is in line

with Henning & Stock(2004), which found that US managers prefer to delay their goodwill

write-offs while UK managers prefer to conduct timely goodwill write-offs.

Second, some other literature focused on the motivation and functions of goodwill

write-offs. Elliott & Shaw (1988) emphasized that goodwill write-off functions more like

a tool for the manipulation of balance account. The authors used 240 firms with huge

write-offs. They studied their balance account to test the relation between write-offs and

accounting indicators like earning-to-assets, share returns, change in analyst’s forecast, etc.

It turns out that all these indicators are affected by write-offs in the sample period. It is

especially true when the economy experienced a bear market. However, the paper failed to

show the plausibility of the timing and size of write-offs selected in their sample. Francis,

Hanna & Vincent(1996) studied the decisive factors of write-offs and the corresponding

wealth effect. The level of impaired assets and incentives for accounting management are the

two most important factors determining the level and timing of write-offs. Empirical tests

showed that both factors exist in samples, but their importance may vary across different

accounts. Incentives factor affect the goodwill write-off significantly while it almost does

not influence inventory write-offs. The paper also tested the market response to different

types of write-offs. On average, write-offs lead to a negative market response in terms of

return, and the direction of reactions is different across various types of write-offs.

Last, a branch of literature studied the relationship between goodwill write-offs and

their effect on the market’s performance. Li, Shroff, Venkataraman & Zhang(2011)studied

the market response to goodwill impairment write-offs and examined the losses’ key in-

formation. It turned out that goodwill impairment is carrying new information of a firm,

and goodwill impairment announcement does affect investor’s expectation. Empirically,
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investors would adjust their expectations downward after impairment loss. Also, the nega-

tive impact is robust, and goodwill impairment affects the firm’s future performance. The

effects are different across various policy regimes: pre-SFAS-142 period, transition period,

and post-SFAS-142 period. The paper also showed that the historical overpayment factor

could predict goodwill impairment. Actually, Bens, Heltzer & Segal(2007) and Liberatore &

Mazzi(2010) found similar results under this topic. Besides, Hirschey & Richardson(2003)

quantified the loss in stock prices. They focused on market response to goodwill write-offs

announcements. They found that the effect of write-offs in goodwill account on stock price

ranges from -2.94% to -3.52%, but the effect could be around -11.02% one year after write-

off announcements, which implies that investors need a long time to respond to write-off

signals fully. They under-react in the short post-announcement period.

All the literature provided helpful insight about goodwill impairment, but they

only focused on developed financial markets. Studying the goodwill impairment in the s-

tock market in a developing country like China would be a good extension for the research.

Besides, there is no literature particularly studied the event of clustering goodwill impair-

ment in China yet. Therefore, the paper provides a different perspective on China’s stock

market development, which offers a deeper interpretation of the market. I introduce the

data sources in section 3.3 and all the empirical findings are discussed in later sections.

1.3 Data

1.3.1 Data Source

In China’s stock market, stocks of listed firms on A board are traded in two stock

exchanges: Shanghai Stock Exchanges(SSE) and Shenzhen Stock Exchange(SZSE). There

are overall around 3000 stocks listed on A board. To study the difference among all the firms,

a desirable dataset should include all the daily stock transactions’ historical data. Therefore

I obtain the historical transaction data from the website of Wang Yi Finance. The website

is available at ”https://money.163.com/”. The biggest advantage of this database is that it

includes historical transaction data of stock trading for all the existing stocks and includes

the content of historical announcements from these firms. The key variables are ”stock
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ID”, ”date”, ”last price”, ”highest price”, ”lowest price”, ”change in price”, ”open price”,

”trading volume”, ”market value” etc. Moreover, the firms’ historical announcements’

information is obtained and tested; the variable ”date of announcement” is summarized

accordingly.

Actually, the dataset helps analyze the motion of stock prices in the pre-announcement

period and post-announcement period. As introduced in the section 2.1, I define ”target

firm” as a firm whose announced profit loss is greater than 1 billion RMB, and ”non-target

firm” as a firm whose announced profit loss is less than the bar. A total of 95 firms meet

the requirement, so the number of target firms is supposed to be 95, but not all of them

made announcements in Jan 2019. Considering the paper’s goal is to investigate the event

of clustering announcements in the month, I focus on the firms who made announcements

about goodwill impairment and loss in Jan 2019. After filtering the dataset, there are 76

target firms kept at last. Besides, since the news of clustering goodwill impairment was

in January 2019, I choose the sample period from October 8th, 2018 to April 4th, 2019,

to have enough observations to investigate the motion of stock prices before and after an-

nouncement days. All the empirical analysis and discussion are based on the stock prices

and announcement dates from the database.

1.3.2 Stock Returns

The goal of the paper is to study the different performances of the target and the

non-target firms. Daily stock return is a direct and normative metric of it. The stock return

is defined in equation 2.4, where Pt is the stock price on day t and Pt−1 is the stock price

on day t−1. These metrics play a role of a signal telling us the market value and the firm’s

potential profitability, and it is crucial to test whether stock returns of target firms really

changed after the announcement day of goodwill impairment. Specifically, to compare the

stock returns before and after announcement day T , a good proxy variable is needed to show

the average daily stock return level before announcement day. Actually, many variables are

good candidates for it. The most straight forward one is the stock return right before

announcement day. Namely, the stock return on T −1. This is a direct measurement of the

strength of the announcement effect on stock return. I show the densities of return on T
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and T − 1 together in the figure 1.1.

rt =
Pt − Pt−1

Pt−1
(1.1)

The figure shows that the range of stock returns is approximately from -0.15 to

0.05. The red line represents the density of stock returns of the target firms on announce-

ment day T , and the blue line represents the density of the returns one day ago. Actually,

more statistics of them could provide a better insight of the densities, the mean of the

returns on the day T is -0.067 and the corresponding standard deviation is 0.039, while the

mean of the returns on the day T − 1 is -0.026 and the corresponding standard deviation

is 0.034. A clear leftward shift is observed in the figure, which indicates that the target

firms experienced a negative shock in terms of a stock return due to the announcement

of their goodwill impairment. The peak of the density curve shifts leftward from around

-0.02 to -0.1. The shift distance is even greater than the standard deviations of the returns.

To test the statistical significance of the difference between these two densities, I conduct

Kolmogorov-Smirnov Test and Stochastic Dominance Test to compare them. The results

are shown in the table 1.1, all the P-values are recorded in parenthesis. The D-statistic in

the K-S test is 0.547, and the corresponding P-value is 0.000, which supports the rejection

of the null hypothesis. Namely, the distributions of the stock returns on T and T − 1 are

different statistically. However, the Somers’ D statistic in the Stochastic Dominance Test is

1.12 with a P-value of 0.263. It is not statistically significant at a 5% significance level. This

finding suggests that the stock returns on the day T − 1 do not have first-order stochastic

dominance over the stock returns on the day T .

According to the finding in the table 1.1, the distributions in the figure 1.1 are

different statistically, but they do not have a relationship of first-order stochastic dominance.

It means that the difference between the two distributions is not as large as first-order

stochastic dominance. Actually, the result is in line with prior expectations because most

of the target firms experienced declining stock prices. Therefore, it is not surprising to see

a big shift in stock returns on announcement day.

Nevertheless, the conjecture above has not excluded the effect of the benchmark
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Table 1.1: Stochastic Dominance Test and Kolmogorov-Smirnov Test

Kolmogorov-Smirnov Test Stochastic Dominance Test

Variable D-stat Somers’ D stat

Stock Return
0.547 1.12

(0.000) (0.263)

Abnormal Return
0.579 2.07

(0.000) (0.038)

The table shows the Stochastic Dominance Test and Kolmogorov-Smirnov

Test on the stock returns and abnormal returns. K-S statistics are all signif-

icant at a 5% significance level. This suggests that the distributions of both

returns on the day T and T −1 are different. Also, the Stochastic Dominance

Test shows that stock returns on the day T − 1 do not have the first-order

stochastic dominance over the stock returns on the day T , but the abnor-

mal returns on the day T have the first-order stochastic dominance over the

abnormal returns on the day T − 1.

market yet. In fact, the huge shift in the target firms’ return may be due to the bad market

performance. That is, the leftward shift of daily return on announcement day T might

come from the effect of the bear market, and the benchmark drives all the individual stock

returns. Therefore, it is important to rule out the market effect and obtain each firm’s pure

stock return. Specifically, I compute residual daily stock return by using equation 1.2 and

equation 1.3 from Danielle & Ryan(2013). I estimate the residual daily stock return yit by

running a standard CAPM regression in the equation 1.2. Here Rit is the stock return of

firm i on day t, Mt is the market benchmark return on day t, αi and βi are the corresponding

α and β factor of firm i. Based on the CAPM model in the equation, empirical estimate

for the residual daily stock return is shown in the equation 1.3 where yit is the residual

stock return of firm i on day t, α̂i and β̂i are the estimates for the α and β factor of firm

i. Therefore for each firm i on the day t, we could get a residual return, and I name it as

”abnormal stock return.”
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After replacing the raw stock returns from equation 2.4 by the abnormal stock

returns from equation 1.3, I obtain a new density plot in figure 1.2. The figure indicates that

the pattern we found in figure 1.1 still holds in abnormal return. I highlight the density of

abnormal stock return on announcement day T in red. The distribution of abnormal return

shifts leftward significantly and has a ”wider” spread from T−1 to T . It ranges from around

-0.15 to 0.1, and most of the target firms have negative abnormal returns on announcement

day T . The mean of the abnormal returns on the day T is -0.064, and the corresponding

standard deviation is 0.044, the mean of the abnormal returns on the day T − 1 is -0.021,

and the standard deviation is 0.034. All these statistics are very close to the ones in figure

1.1. The results of the K-S test and stochastic dominance test for abnormal returns are

also shown in the table 1.1. The K-S test supports the conclusion that the distributions of

abnormal returns on the day T and T − 1 are statistically different. Moreover, the Somers’

D statistic is also significant at a 5% significance level, which means that the abnormal

returns on the day T has first-order stochastic dominance over the abnormal returns on the

day T − 1. Therefore it tells us that the finding in Figure 1.1 is robust after ruling out

the market effect on stock returns. It also indirectly suggests that the market environment

does not drive the abnormal returns of these target firms, rather, their bad performance on

daily stock returns are mainly driven by the announcements they claimed.

Rit = αi + βiMt + εit (1.2)

yit = Rit − E(Rit|Mt) = Rit − α̂i − β̂iMt (1.3)

1.3.3 Summary of Returns

The last section’s finding clearly shows that the abnormal return of the target firms

declined dramatically on announcement day. However, static comparison in abnormal stock

returns is not sufficient. It is crucial to test the pattern dynamically. Actually, exploring

the time-series features of these target firms’ abnormal returns would provide more insights

into the decline in abnormal returns. Therefore I plot the time series graph for all the target
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Figure 1.1: Stock Returns of Target Firms on the Day T and T − 1

This figure shows the difference in the distributions of daily stock returns on announcement

day T and on the last day before announcement day T − 1. It corresponds to the realized daily

stock return computed from the target firms. The mean of stock returns on T is -0.067, and

the corresponding standard deviation is 0.039. The mean of stock returns on T − 1 is -0.026,

and the corresponding standard deviation is 0.034. The significant leftward shift of the density

from T −1 to T indicates that the target firms experienced sharp drops in terms of stock return

after their announcements were disclosed.

Figure 1.2: Abnormal Returns of Target Firms on the Day T and T − 1

This figure shows the difference in the distributions of abnormal stock return on announcement

day T and on the last day before announcement day T − 1. It corresponds to the realized

abnormal stock returns computed from equation 1.3. The mean of the abnormal returns on the

day T is -0.064, and the standard deviation is 0.044, the mean of the abnormal returns on the

day T −1 is -0.021, and the standard deviation is 0.034. All these statistics are very close to the

ones in figure 1.1, and the pattern is robust after ruling out the market effect on stock returns.
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firms, and the plot of the first 3 representative firms are shown as an example in figure 1.3.

It turns out that all these target firms experienced a similar pattern in the last week before

their own announcement days. For example, The abnormal return of firm 2 in the figure

1.3 was around positive 0.04 one week before its announcement day, the day is labeled as

-7 in the figure, but it began to decline to a negative return and ended up with around

-0.08 on announcement day T , the day is labeled as 0 in the figure. In fact, all the target

firms experienced a similar pattern even though they have various announcement dates.

This finding is shown in figure 1.4 where the control group and treatment group’s abnormal

returns are plotted separately. It clearly shows the difference in abnormal returns between

the two groups. The target firm group experienced a deeper decline than the non-target

firm group before announcement day. The abnormal return of the non-target firm group

ranges from -0.01 to 0, while the abnormal return of the target firm group ranges from

-0.06 to 0.01. This finding suggests that the target firms are different from non-target firms

in abnormal return before announcement day, but they share some similarities within the

target firm group.

The similarity in figure 1.4 could be explained in different ways. On the one hand,

these target firms might be very similar essentially and naturally, so that they automatically

behave similarly before announcement day. On the other hand, these target firms are

different naturally, but some exogenous reasons like informed trading make them behave

similarly before announcement day. No matter which hypothesis is true, it is necessary to

test the heterogeneity of the target firms. Therefore I plot the distribution of abnormal

returns of the target firms in figure 1.5. This figure is designed to show the heterogeneity

of the target firms from a cross-sectional perspective. The abnormal returns of each firm

are shown with its 95% confidence interval. The confidence interval is computed using the

abnormal stock returns of a firm in the whole sample period, namely, from October 8th,

2018 to April 4th, 2019. The figure shows that most of the firms have negative abnormal

returns, and there is a certain level of difference in the lengths of these confidence intervals.

Specifically, some firms like No.15, No.53, and No.62 distribute widely in abnormal returns

distribution while other firms do not. Even though they have a difference in distribution,

these target firms share two common features: First, most of them have negative abnormal
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Figure 1.3: Abnormal Returns of the Firm No.1, No.2 and No.3

The figure shows the dynamic motion of abnormal return for the first 3 target firms in their

last week before announcement day. The dashed lines are the fitted smoother line from local

polynomial regression fitting. The corresponding mean and variance of the lines are estimated

nonparametrically. The figure shows that these 3 firms’ abnormal returns declined from positive

values to around -0.05 on announcement day. This pattern is robust over different target firms.

returns. Second, most of the target firms have their abnormal returns lie in the interval

(-0.05,0.02). According to the finding so far, there is not enough evidence to draw any

conclusion on the firms’ heterogeneity from a cross-sectional point of view. Thus further

empirical regression and hypothesis tests are discussed in the following sections.

1.4 Empirical Finding

According to the last section’s finding, a target firm experienced a gradual decline

in abnormal stock return one week before announcement day and an extremely large drop

on announcement day. This pattern holds for almost all the target firms. To further

study the dynamic procedure of abnormal stock return for the target firms and quantify

each trading day’s time effect before announcement day, the most direct method is to run
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Figure 1.4: Heterogeneity Across Time for the Target and the Non-target Firms

The figure shows the dynamic motion of abnormal returns of all the target firms in the last week

before their announcement days. The pattern found in the figure is the same as that in figure

1.3. The figure depicts the general pattern of abnormal returns of the target firms: Started with

positive or zero abnormal return from one week before announcement day, and then gradually

declined to around -0.06 on announcement day. Further, the non-target firm group’s abnormal

return ranges from -0.01 to 0, while the target firm group’s abnormal return ranges from -0.06

to 0.01.

a panel regression. Considering the question of interest of the paper is to investigate the

target firms who claimed irrational announcement in Jan 2019 rather than a potential group

of firms from the population, a fixed-effect model is more suitable for the topic, and the

specification of the fixed effect model is shown in equation 1.4.

There are overall 7 periods in the panel dataset. I define a list of time dummy

variables. They are D−1, D−2,..., D−7. These variables are defined to identify the time

effect of each day before announcement day. Specifically, D−1 is defined as D−1 = 1 if

t = T − 1 otherwise D−1 = 0. The rest 6 variables D−2,..., D−7 are defined similarly.

Moreover, firm’s individual fixed effect is captured by γi and dependent variable yit is the

abnormal return the firm i on day t. The coefficients of the time dummies jointly show

14



Figure 1.5: Heterogeneity Across the Target Firms

The figure shows the heterogeneity in abnormal returns across the target firms, 95% confidence

intervals are plotted for each firm. Most of the firms have negative abnormal returns. Some

firms, like No.15, No. 53 and No. 62, have a wider distribution of abnormal return. The

majority of the target firms have their abnormal returns lie in the interval (-0.05,0.02).

the dynamic time effect on the target firms’ abnormal return. In this model, I choose the

abnormal return on announcement day T as the base. Therefore a positive βj of variable

D−j suggests that the abnormal return on the day T − j is greater than the abnormal

return on announcement day T . Similarly, a negative βj suggests the abnormal return on

the day T is greater than that on the day T − j. In addition, the relative levels of these βs

could depict the motion of abnormal return of a target firm before its announcement day.

Actually, the fixed-effect model’s advantage is its potential to describe a nonlinear trend’s

features in a certain period. Quantified estimates from the model would provide better

insights into the trend in abnormal returns.

The regression result is shown in the table 1.2 below. The estimates for different

firms are recorded in two different columns. The P-value of each estimate in the t-test is

listed in the corresponding parenthesis. The table shows that the β coefficients range from

0.04 to 0.06, and all the dummy variables are significant at a 5% significance level. Since the

abnormal return on announcement day, T is the base. These positive βs tell us that all the

abnormal returns before announcement day are greater than that on announcement day.

15



For example, The estimate of slope coefficient β1 is 0.0482 for target firms, which implies

that the daily abnormal return on the day T − 1 is 4.82% greater than the daily abnormal

return on announcement day T . Another interesting finding is that estimates of β7 and

β6 are greater than other estimates of βs. This reflects that the earlier the date is, the

higher the abnormal return it is. This downward sloping curve of abnormal return supports

the pattern summarized in the last section. The first column in the table 1.2 verifies that

the target firms’ abnormal returns have already been declining gradually one week before

announcement day.

yit = β0 +
7∑
j=1

βjD−j + γi + εit (1.4)

As a comparison, the empirical regression result of the same fixed effect model by

using all the 712 firms is shown in the second column of the table 1.2. Here the 712 firms

include both target and non-target firms who made announcements in Jan 2019. Actually, a

very similar pattern of coefficient estimates is observed there. All the estimates are positive,

the estimates of β7 and the β6 are greater than other estimates, and the estimates are all

significant at a 5% significance level.

Nevertheless, there is one big difference between the results in these two columns

of the table, namely, the coefficients in the second column are much smaller than that in

the first column. This difference means that most of the firms which announced in Jan

2019 experienced a very slight or even no drop in abnormal return in the last week before

announcement day, and the trend of the abnormal returns of all the firms is not as clear as

that of target firms. Actually, there is no downward sloping trend for all the firms according

to the second column of the table 1.2. Specifically, the estimates of β7, β6 and β1 are all

greater than that of β2 and β4. This finding exactly reflects that the motion of the abnormal

return of the target firms is different from that of non-target firms. However, running the

fixed effect model alone for the pooled dataset is not sufficient to draw a final conclusion.

Separate empirical regressions and hypothesis tests on both the target and the non-target

firms are discussed in section 1.5 and 1.6.
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Table 1.2: Fixed Effect Model

Variable Target Firms All Firms

b/p b/p

D−1 0.0482 0.0090

(0.0000) (0.0000)

D−2 0.0407 0.0050

(0.0000) (0.0000)

D−3 0.0422 0.0099

(0.0000) (0.0000)

D−4 0.0403 0.0073

(0.0000) (0.0000)

D−5 0.0563 0.0122

(0.0000) (0.0000)

D−6 0.0600 0.0164

(0.0000) (0.0000)

D−7 0.0605 0.0147

(0.0000) (0.0000)

The table shows the regression result of the

fixed-effect model in equation 1.4 over differ-

ent samples. The positive β estimates verify

that the abnormal returns before announce-

ment day are larger than that on announce-

ment day. The target firms experienced a de-

clining abnormal return in the last week before

announcement day, but the pattern is not ob-

served in the sample’s regression with all 712

firms.

1.5 Discontinuity Tests

According to the finding in section 1.4, the target firms experienced a larger decline

in abnormal return than the decline estimated using the whole sample, but pooling the

target firms with non-target firms together is not sufficient. It is necessary to test the

abnormal returns of the target and non-target firms separately. In fact, the magnitude
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and direction of the discontinuity on announcement day are good metrics to compare the

difference between these two groups of firms. Following this idea, three empirical tests on

the discontinuity of the abnormal returns around announcement day are conducted in this

section. From this section, I define the target firms as the treatment group and define the

non-target firms as the control group. Therefore there are 76 firms in the treatment group

and 636 firms in the control group. In addition, the benchmark regressions introduced in

the section use the sample from T−30 to T+10, where T represents the announcement day.

Specifically, I use each firm’s abnormal returns from 30 days before its announcement day

to 10 days after its announcement day. This is because the dataset only includes trading

days in China’s stock market, so 10 days after announcement day actually means two

trading weeks, and 30 days before announcement day guarantees that I have the historical

abnormal returns of each firm for the most recent one month before its announcement day.

More details about the results of choosing different sample sizes are discussed and presented

in the robustness section 1.7.

The empirical tests are organized as follows. I first test the abnormal return trend

in the control group before announcement day and then test whether there is any significant

jump in abnormal return. After that, the same tests are conducted on the treatment group

in section 1.5.2. Finally, the Difference in Difference (DID) model is applied to the two

groups of firms to compare the overall difference between the treatment and control groups.

The corresponding results are discussed in section 1.5.3.

1.5.1 Discontinuity in the Control Group

I first investigate the trend of abnormal returns in the control group before an-

nouncement day and test the discontinuity on that day in the group. The discontinuity tells

us the true effect of the announcement of goodwill impairment on abnormal returns. To

study the discontinuity empirically, I use the fixed-effect model in equation 1.5. Variable

t is a time index variable: t = 0 represents the announcement day, and t is negative in

the pre-announcement period while it is positive in the post-announcement period. For

example, t = −3 represent the day three days before announcement day, t = 5 represent the

day five days after announcement day. The time index variable centralizes the abnormal
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returns of different firms along the time axis so that they could be compared with each other

even though they have different announcement dates. Moreover, variable D is the dummy

variable for announcement day: D = 1 if t ≥ 0 and D = 0 if t < 0. Therefore β1 measures

the difference in abnormal return before and after the announcement day, β3 represents the

adjustment in the time trend after the announcement day, β2 shows the direction of the

time trend in abnormal return before the announcement day. The fixed effect of firm i is

captured by δi. The model’s empirical finding is summarized in the first column of the table

1.3.

The estimate of β1 is -0.0013. It is not significant at the 5% significance level.

This means that there is no significant jump on announcement day in the control group,

which is consistent with the expectation that the discontinuity in the abnormal return of

the non-target firms is not large compared with that of target firms. Moreover, the estimate

of the coefficient of t is -0.00036; it is significantly negative. So there is a slightly downward

sloping time trend in the pre-announcement period after controlling each firm’s individual

fix effect.

Also, the time trend adjustment β3 is estimated to be 0.00093, which is greater

than -0.00036. So the time trend is positive after announcement day, which implies that the

time trend in abnormal return recovered slightly from negative to positive after the shock

on announcement day. The table’s finding supports the conjecture that the non-target firms

did not experience a huge decline when their announcement was disclosed, but they still

have a V-shaped time trend around announcement day. However, the magnitude of the

jump on announcement day is tiny, and it could be considered as a continuous flat line

approximately. More discussions about this are shown in the following sections.

yit = β0 + β1D + β2t+ β3Dt+ δi + εit (1.5)

1.5.2 Discontinuity in the Treatment Group

Similarly, I applied the model in equation 1.5 to the treatment group. The results

are shown in the second column of the table 1.3. It indicates that the estimate for the

coefficient of the dummy variable D is -0.02483, and it is significant at a 5% significance
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level. I still observe a significant negative time trend -0.00109 before announcement day and

a positive time trend 0.01028 - 0.00109 = 0.00919 after announcement day. The magnitude

of the estimates is greater than that in the first column of the table, which proves that the

target firms experienced a more significant decline in abnormal return before announcement

day, but their abnormal returns rebounded more powerful than that of the non-target firms

after the announcement day.

This powerful rebound could be explained and interpreted in different ways. On

the one hand, it could be interpreted as a recovery of a correction in the stock market, a

correction in the market is damaging in the short run, but it corrects the overvalued stock

prices, so it is a good adjustment in the long run. Therefore some investors believe that the

quick and powerful rebound in abnormal return of the target firms shows the efficiency and

the potentials of these target firms. On the other hand, the quick recovery of the treatment

group results from the bottom fishing strategy of investors. Because the sharp decline in the

abnormal return is very unusual, investors believe that it is good timing to buy these stocks

at an extremely low price, and their prices would rebound in the future. As a result, many

investors join the game and push the stock prices up soon. In fact, the abnormal return

could rebound because investors are buying the target firms’ stocks so that the prices of

these firms go up after their announcement was disclosed. Even though the interpretations

on the powerful recovery could be very different, I personally prefer the second conjecture.

Namely, some investors used the bottom fishing strategy in the market so that the stock

prices of the target firms recovered faster than other firms. These target firms experienced

a much larger decline in abnormal return, so it is more profitable for the investors to buy

the stocks of these target firms if they want to use the bottom fishing strategy. In addition,

I have mentioned in the introduction section of the paper that this is not the first time

many listed firms on A board in China’s stock market claimed a huge profit loss in their

announcements. Chinese investors witnessed similar situations already in past years, so they

are confident that the stock prices would rise soon in the future according to their historical

experience, making the investors more aggressive in the stock trading after announcement

day. This conjecture is a possible candidate for the reason for the powerful rebound of the

target firms. This could be a good extension for further research, but it is not in the scope
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of this paper.

In addition, the coefficient estimate -0.02483 of D in the treatment group is much

greater than its counterpart -0.0013 in the control group. A clearer description of the

trends and discontinuities in these two groups is shown in figure 1.6 below. The red line

represents the time trend of abnormal returns in the treatment group, while the black line

represents the time trend in the control group. Most interestingly, the downward jump of

the abnormal return in the control group is not statistically significant, while the jump in

the treatment group is. This finding is strong evidence supporting the difference in the

motions of abnormal return between the control and treatment groups.

1.5.3 Difference in Difference Test

Following the test methodology in the past two subsections, I further investigate

the discontinuity of abnormal return around announcement day using the Difference in

Difference(DID) Model. The model enables me to introduce both group dummy and time

dummy variables and analyze all the firms within a single framework. Actually, running a

DID model makes it easier to compare the difference between these two groups directly. The

specification of the model is shown in equation 1.6. In addition to the time index variable t

and announcement day dummy variable D introduced in the section 1.5.1, a group dummy

variable S is generated in the model. S = 1 if a firm is in the treatment group and S = 0

if a firm is in the control group.

yit = β0 + β1D + β2S + β3t+ β4DS + β5Dt+ β6St+ β7DSt+ αi + εit (1.6)

The empirical result of the DID model is shown in the third column of the table 1.3.

It turns out that the estimate of β4 is -0.02353, which proves that the abnormal return in

the treatment group after announcement day is lower than that in the control group before

announcement day. This finding is consistent with our hypothesis that the target firms

have smaller daily abnormal returns after disclosing negative announcements. In addition,

the estimate of β7 is 0.00935, which indicates that the target firms have a more significant

rebound after the bad news of the announcement came out. Once again, the finding in
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Table 1.3: Fixed Effect Model of Control and Treatment group

Variable Control Treatment DID Test

b/p b/p b/p

Intercept -0.00462 -0.01280 -0.00054

(0.000) (0.000) (0.000)

D -0.00130 -0.02483 -0.00130

(0.060) (0.000) (0.069)

t -0.00036 -0.00109 -0.00037

(0.000) (0.000) (0.000)

Dt 0.00093 0.01028 0.00093

(0.000) (0.000) (0.000)

DS -0.02353

(0.000)

St -0.00073

(0.000)

DSt 0.00935

(0.000)

The table shows the trends of abnormal returns across

different groups and the jumps of the abnormal re-

turns on announcement day. P-values are shown in

parenthesis. The control group and the treatmen-

t group both have a V-shaped time trend curve in

abnormal return around announcement day, but the

magnitude of the decline and the treatment group’s

recovery are all greater than those in the control

group. The downward jump of the abnormal return

on announcement day in the treatment group is sta-

tistically significant, while its counterpart in the con-

trol group is not. The pattern is supported by the

difference in difference test.
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Figure 1.6: Comparison of Control and Treatment Groups

The figure shows the fitted time trend lines of the target and the non-target firms separately

in the pre-announcement and the post-announcement period. The slope of the time trend

in the control group before announcement day was -0.00036, and it rose to 0.00057 after the

announcement was disclosed. As a comparison, The slope of the time trend in the treatment

group before announcement day was -0.00109, and it rose to 0.00919 after announcement day.

The jump on announcement day in the treatment group is statistically significant at a 5%

significant level while the jump in the control group is not. This finding verifies that the target

firms experienced a downward plummet due to their announcements of goodwill impairment.

DID regression tells us the same story as that in the fixed effect regression. Even though

the target and non-target firms have different performances in abnormal return over time,

the results in section 1.5 are not informative to detect informed trading. Therefore a real

hypothesis test on the informed trading is conducted and discussed in section 1.6.

1.6 Hypothesis Test

The difference in abnormal returns between the target and non-target firms could

be attributed to different reasons. On the one hand, a possible reason is informed trad-

ing. People suspect that there are informed trading behaviors before announcement day.

Specifically, the information of profit loss was already known by informed traders before
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announcement day, so the abnormal return dropped gradually before the announcement

news came out. The informed traders sold their stock shares in advance and avoided a

capital loss. As a result, the motion of abnormal return looks like that in figure 1.4. On

the other hand, the difference in abnormal return between the treatment and the control

groups simply comes from the firms’ heterogeneity. It is possible that the target firms are

different from other firms naturally due to their own characteristics like industrial features,

number of listed years, etc. Therefore they have a different motion of abnormal returns

before and after announcement day.

To study the hypothesis empirically, I test the hypothesis in this section by run-

ning the difference in difference regression in the equation 1.6 with various cut-off days.

Specifically, I choose a sequence of days before the announcement day, like 5 days before

the announcement day, 10 days before the announcement day, 15 days before the announce-

ment day, etc. I test the statistical significance of the coefficient β6 in the equation 1.6 for

all the cut-off days. If the coefficients are significant for all these cut-off days, it shows that

the heterogeneity across the firms rather than informed trading plays an important role in

figure 1.6. Otherwise, informed trading may exist in the sample of the target firms. Here

I assume that the information leak, if it exists, does not occur one month earlier than the

announcement day because the informed traders may not be able to predict precisely the

motion of stock price in the future if they sell their shares too early, they certainly could

change their positions in the stock market right before announcement day so that they could

reduce unnecessary uncertainty. So I choose one month as the maximum bar and conduct

the test accordingly.

I list the F-statistics and the corresponding P-value of each cut-off day in the table

1.4. In this table, T represents the announcement day of a firm. Therefore T − 5 represents

the day 5 days before the announcement day; other cut-off days are defined similarly. The

table indicates that all the P-values are less than 0.05, which shows that all the fitted lines’

slopes are different between the treatment group and the control group before these cut-off

days. It supports the second conjecture that the heterogeneity across the target and the

non-target firms is the dominating factor in explaining the jump on announcement day in

the dataset. In addition, I have to concede that the finding of these significant estimates
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for β6 does not mean there is no informed trading at all in the market. Actually, it only

tells us that there is no strong evidence to detect informed trading behaviors according to

the sample.

A more careful looking at the target firms’ abnormal returns is shown in figure

1.7. There are 6 different announcement dates in Jan 2019; Jan 24, Jan 25, Jan 28, Jan 29,

Jan 30, Jan 31. On each announcement day, some target firms claimed irrational goodwill

impairment. I plot the average abnormal returns of these firms for the week before their

announcement day. For example, there are 27 target firms announced on Jan 30, so I

plot the average abnormal returns of these firms from Jan 23 to Jan 30 in red with the

number of firms labeled in the figure. Similarly, the firms’ average abnormal returns on

other announcement days are plotted separately in the figure.

It turns out that the average abnormal returns are closer to each other as the

announcement day is closer to Jan 31. The red line and black line represent the average

abnormal returns of the firms announced on Jan 30 and Jan 31 separately. The numbers of

the firms announced on Jan 30 and 31 are the most. Actually, 27 firms made an announce-

ment on Jan 30, and 47 firms made an announcement on Jan 31, while the numbers of the

firms that made announcements on other days in the figure are all less than 4. The reason

for the clustering announcements could be interpreted in different ways. On the one hand,

Jan 31 is the deadline for the announcement for a listed firm to summarize its performance

in 2018 according to the regulation in China’s stock market. These firms are similar so that

they all want to report their profit loss on the last day. On the other hand, these firms

made announcements at the end of Jan 2019 is due to informed trading. It is possible that

the target firms who made an announcement earlier showed a good example for other firms

and inspired them to make a similar announcement about goodwill impairment. From the

follower’s angle, it is attractive to follow the forerunner because they already have profit

loss in their accounting reports. The real difficulty is how to convince shareholders and the

public naturally. Therefore taking goodwill impairment and following other similar firms

would be a good way to go. They will not face big punishment from the government since

there are too many such firms.

According to figure 1.7, there is no unique pattern for all these 6 announcement
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Table 1.4: Hypothesis Test for Different Cut-off Days

Cut-off Time T T-5 T-10 T-15 T-20 T-25 T-30

F − stat 102.99 11.23 3.9 7.89 19.87 7.17 10.11

P − value 0.0000 0.0008 0.0482 0.0050 0.0000 0.0074 0.0015

The table shows the hypothesis test for different cut-off days, T repre-

sents the announcement day, and T − i represents the day that i days

before the announcement day. All the P-values are less than 0.05, and

they jointly show that all the slopes of fitted lines are different between

the treatment group and the control group before these cut-off days.

The heterogeneity across the target and non-target firms rather than

informed trading is the dominating factor in explaining the jump on

announcement day in the sample.

days. Actually, the motions of average abnormal returns are clearly different. This could be

considered as support to the first conjecture. Namely, the firms share similarities naturally,

so they all have profit loss in 2018, and they decided to make an announcement about

their loss in the last week before the deadline. Besides, there is no line in the figure that

closely follows another line, which suggests that the effect of the situation described in the

second conjecture above, if any, is limited. According to the figure, the firms who made an

announcement earlier did not have a strong effect on the firms who made an announcement

later. In summary, the key point of the conclusion is that these target firms are somehow

different from the rest of the list firms naturally, so they share more similarities within the

treatment group rather than with the non-target firms in the control group. The pattern

found in the figure 1.6 should not be attributed to informed trading alone. Actually, the

tacit understanding across these target firms is a more realistic explanation for the clustering

announcement of goodwill impairment in Jan 2019.

To conclude robustly, I test the difference in the trends of abnormal return between

the treatment group and the control group by running a fixed effect regression of the abnor-

mal return on the time index variable t, the group dummy variable S, and their interaction

term St. The model’s specification is shown in the equation 1.7, and the corresponding
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Table 1.5: Test on Time Trend and Chow Test

Tests Sample Size 30 40 50 60 70 80

Difference in Trend
t-stat -0.0011 -0.0005 -0.0002 -0.0002 -0.0001 -0.0001

P-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Chow Test
F-stat 139.54 65.83 38.04 49.13 33.46 39.83

P-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

The table shows the Time Trend Difference Test and the Chow Test. The t-stat is the t-

statistics of β3 in the equation 1.7. All the estimates of β3 are significant at a 5% significance

level so that all the firms in the treatment group and the firms in the control group have

different slopes of time trend before the announcement day. The finding is robust over

different sample sizes, and it is supported by the Chow Test.

fitting result is recorded in the table 1.5. Here I use the samples with different sample sizes

from 30 to 80. Each sample includes a certain number of observations of abnormal returns

right before the announcement day. For example, sample size 30 means that the sample

has the observations from day T − 30 to day T , where T is the announcement day; other

sample sizes could be interpreted in the same way.

yit = β0 + β1S + β2t+ β3St+ αi + εit (1.7)

It turns out that all the estimates of β3 are significantly different from zero in

standard t-test, which suggests that the firms in the treatment group and the firms in

the control group have different slopes before the announcement day. The negative β3

tells us that the target firms experienced a larger decline in abnormal return before the

announcement day than the non-target firms, so this finding is in line with the results in

previous tables, and it holds over different sample sizes. In addition, The Chow test of

the difference in the slopes between the two groups shows the same conclusion, and the

corresponding results are also recorded in the table. The P-value of all the F-statistics in

the Chow Test is 0 over different sample sizes, verifying the conclusion in the section.
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Figure 1.7: Average Returns of firms clustered on Different Announcement Dates

The average abnormal returns are closer to each other as the announcement day is closer to Jan

31. There is no unique pattern for all these 6 announcement days; the firms share similarities

naturally, so they all have profit loss in 2018, and they decided to announce their loss in the

last week before the deadline.

1.7 Robustness

I conduct a robustness test from three different perspectives. Firstly, I change the

sample size in the benchmark regression and test whether the pattern in benchmark regres-

sion still holds across different sample sizes in section 1.7.1. Secondly, I test whether there

is any difference in the slopes of time trend between the two groups before announcement

day in section 1.7.2. Finally, I investigate the target firms’ industrial distribution to explore

their natural difference in the last section 1.7.3.

1.7.1 Sample Size

According to the methodology of the analysis in section 1.5, I choose the research

period from T − 30 to T , where T is the day a firm made its announcement in Jan 2019.

To make the finding in the benchmark analysis robust, it is necessary to test the finding’s

sensitivity to the changes in sample size. Therefore I examine the robustness of the results
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in section 1.5 by changing the ex-event window’s length and the post-event window’s length.

The summary of the test is shown in the table 1.6.

The table indicates that the pattern found in the benchmark analysis is quite

robust, and the estimate of β6 in the DID model is always statistically significant negative.

Specifically, the estimates of β6 over different sample sizes are shown in the table’s first

row. Here sample size is shown in the form of interval. For example, (-10,+10) represents

the sample of abnormal returns from 10 trading days before the announcement day T

to 10 trading days after the announcement day T . The estimate of β6 in the equation

1.6 rises from -0.0016 to -0.0007 as the length of the sample increases. It suggests that

once more observations are included in the fitting, the difference in the slopes of the time

trend in abnormal return varies across the treatment group and the control group before

the announcement day. The target firms and the non-target firms behave more and more

differently in abnormal return as the announcement day comes; this is a new finding in the

section. Therefore, it is interesting to test whether the difference in the time trends between

the treatment and control groups is statistically significant before the announcement day.

I could even further ask whether the difference itself is changing over time. If the answer

to this question is yes, it would be indirect evidence supporting the conjecture that the

target firms and the non-target firms behave differently even before their announcement

days. Actually, the answer to this question would provide more dynamic insights into the

difference between the two groups.

1.7.2 Difference in Slopes

As discussed at the end of the last section, it is interesting and necessary to test

whether the difference in the slopes of time trend between the treatment group and the

control group before announcement day is constant or not; therefore, I run the model in the

equation 1.6 by using the sample of abnormal returns of each firm before announcement

day. Specifically, I achieve this goal by defining variable D differently, actually I define

a list of days(t1, t2, t3) before the announcement day T , defining D = 0 if t is in the

time interval (t1, t2) and D = 1 if t is in interval(t2, t3). For example, given a time interval

(T −80, T −50, T −20), I define D = 0 if the observations are in the interval (T −80, T −50)
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Table 1.6: Robustness Test for Different Window Sizes

Time Interval (-10,+10) (-20,+10) (-20,+20) (-30,+10) (-30,+20) (-30,+30)

β6 -0.0016 -0.0011 -0.0011 -0.0007 -0.0007 -0.0007

F − stat 22.17 76.41 76.13 102.97 103.97 99.12

P − value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

The table shows the estimates of β6 in the DID model across different samples. The

F-statistics and the corresponding P-values are listed. The estimate of β6 rises from

-0.0016 to -0.0007 as the sample size increases. Once more observations are included

in the fitting, the difference in the slopes of the time trend in abnormal return varies

across the treatment group and the control group before the announcement day.

and D = 1 if the observations are in the interval(T − 50, T − 20). Based on the definition

of D, I could test if there is any change in time trend on the day T − 50 rather than on the

announcement day T . If there is any non-regular shock in the stock market, like either the

abnormal return of the target firms or that of the non-target firms changed, I expect to see

the slope difference between the two groups in the time interval (T − 80, T − 50) should be

different from the slope difference in the time interval (T − 50, T − 20).

Following the idea introduced above, I list the empirical result of the slope differ-

ence test in the table 1.7. It turns out that as t3 goes closer to the announcement day T ,

the slope difference between the treatment group and the control group decreases from the

interval (t1, t2) to (t2, t3), which means that the target firms in the treatment group expe-

rienced an increasingly sharp decline in abnormal return relative to the non-target firms

in the control group as the announcement day comes. The slope difference decreases from

0.00034 to -0.00055 as t3 goes from T − 20 to T − 1. Here I used two 30 days time intervals.

A similar pattern is observed if we use a short time interval of 20 days. Therefore, I conclude

that the target firms behaved similarly to the non-target firms initially before announce-

ment day. Later, they experienced a more significant slump in abnormal return than the

non-target firms as the announcement day comes. The significance of the estimate for β7 in

the equation 1.6 varies over time, but it is interesting to see that the estimate becomes more

and more significant as it is closer to T . Moreover, the abnormal returns of both types of

firms responded in advance to their announcements. This finding is not surprising because
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Table 1.7: Difference in Slopes Test

Sample Length

Length 30 Length 20

Time Interval β7 Time Interval β7

b/p b/p

(T-80,T-50,T-20) 0.00034 (T-60,T-40,T-20) 0.00062

(0.000) (0.000)

(T-75,T-45,T-15) 0.00006 (T-55,T-35,T-15) 0.00010

(0.478) (0.518)

(T-70,T-40,T-10) 0.00008 (T-50,T-30,T-10) -0.00045

(0.331) (0.007)

(T-65,T-35,T-5) -0.00014 (T-45,T-25,T-5) -0.00085

(0.092) (0.000)

(T-63,T-33,T-3) -0.00051 (T-43,T-23,T-3) -0.00108

(0.000) (0.000)

(T-61,T-31,T-1) -0.00055 (T-41,T-21,T-1) -0.00134

(0.000) (0.000)

The table shows the difference in the time trends between the treatment

and control groups before the announcement day. As t3 goes closer to the

announcement day T , the slope difference between the treatment group and

the control group decreases from interval (t1, t2) to (t2, t3). It reflects that

the target firms experienced an increasingly sharp decline in abnormal return

relative to the non-target firms as the announcement day comes.

people do not expect the difference among various firms is always constant. The finding in

the table gives us a bigger picture of the trends of abnormal returns before announcement

day.

1.7.3 Industrial Distribution

If the heterogeneity across the firms in the treatment and the firms in the control

groups plays an important role in determining their difference in abnormal return around

announcement day, summarizing the target firms’ features is a good perspective to under-

stand these firms better. Actually, I summarized the industrial distribution of the target

firms in the table 1.8. The table presents the number of target firms in each industry cate-
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gory and the total number of listed firms within that category. It depicts the target firms’

distribution across different industries. I only list the industrial category whose target firms

number is greater than 1. Some interesting patterns could be found in the table. On the one

hand, the machinery industry and electronic information industry have the highest absolute

number of target firms, but this result is probably due to the large number of listed firms

in these two industries, 211 and 247 respectively, so that their abnormal ratios are not the

highest in the sample actually. On the other hand, few other industries have both the large

absolute number of target firms and the large abnormal ratio, like media entertainment,

non-ferrous metal, integrated industry, shipbuilding, and textile industry. The clustering

distribution of the target firms is a necessary condition of the hypothesis that the natural

difference between the target firms and the non-target firms is the dominating factor, and

it could be considered as indirect support for the hypothesis. Moreover, the abnormal ratio

in the table ranges from 2.29% to 25%, the large scope of the abnormal ratio also supports

the conclusion in section 1.6.

1.8 Conclusion

In this paper, I studied the abnormal drop of the stock returns on announcement

days for China’s listed firms on A board. Firstly, I found that the target firms, the firms

who reported a huge irrational goodwill impairment, experienced a sharper decline before

announcement day. Their rebound in abnormal return is, on average, more powerful after

announcement day. The powerful rebound of the target firms may come from the bottom

fishing strategy of investors. Actually, the target firms experienced a much larger decline

in abnormal return, so it is more profitable for the investors to buy these target firms’

stocks if they want to use the strategy. Besides, the empirical finding suggests that there

is a statistically significant negative jump in abnormal return on announcement day for the

target firms. In contrast, the jump for the non-target firms is not significant.

Secondly, I conducted the hypothesis test in section 1.6 to investigate the possible

reasons for the phenomenon. It turns out that the heterogeneity across the target firms and

the non-target firms plays a more important role than the exogenous reason like informed
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Table 1.8: Distribution of the Target Firms Across Different Industries

Industrial Category Target firms Total listed firms Abnormal Ratio

Transportation 2 87 2.29%

Media Entertainment 5 40 12.50%

Agriculture 2 64 3.13%

Power Equipment 2 65 3.08%

Real Estate 3 123 2.44%

Non-ferrous Metal 5 72 6.94%

Machinery Industry 10 211 4.74%

Vechicle Manufacturer 5 103 4.85%

Biological Pharmacy 4 155 2.58%

Electrical Appliance 4 58 6.89%

Electronic Information 14 247 5.67%

Electronic Equipment 8 152 5.26%

Textile Industry 3 42 7.14%

Integrated Industry 3 33 9.09%

Shipbuilding Industry 2 8 25.00%

Finance Industry 2 51 3.92 %

The table shows the distribution of target firms across different industries.

Count of the target firms, the total count of the listed firms on A board,

and the abnormal ratio are listed in the table. Some industries have both

the larger number of target firms and the larger abnormal ratio, like ship-

building, media entertainment, integrated industries, etc.

trading. The difference between the target firms and the non-target firms exists not only

on announcement day but also on other cut-off days before it. So There is not enough

evidence found in the aggregate level data to identify the existence of informed trading in

the market.

Finally, I tested the distribution of the target firms over different industrial cate-

gories. Some industries have a larger number of target firms and a larger abnormal ratio,

like the shipbuilding industry, media entertainment, integrated industries, etc., which sup-

ports the finding in section 1.5 and 1.6. The key conclusion of the paper is that these target

firms are somehow different from the rest of the list firms naturally, so they share more

similarities within the treatment group rather than with the non-target firms in the control
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group, and the empirical difference in these two groups of firms should not be attributed

to informed trading alone. More empirical research on the existence of informed trading in

China’s stock market correction would be a great extension of the paper.
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Chapter 2

Predicted Return of Recurrent

Neural Network: Evidence from

China’s Stock Market

2.1 Introduction

Machine learning and Artificial Intelligence have been increasingly popular in re-

cent years due to the capacity to solve intelligence tasks. Neural Network, as the key

technology of deep learning, is often applied to various industrial applications like facial

recognition, automobile, fraud detection, etc. The emergent technology has also been stud-

ied and used in financial applications like the development of quantitative trading strategy,

prediction of equity returns. This paper focuses on two different neural network models:

the Multilayer Perceptron(MLP) model and the Recurrent Neural Network(RNN) model.

These models are compared with the standard ARIMA model in the forecast of stock return.

The paper focuses on empirical analysis, and it mainly answers two big questions

of interest. First, what are the prediction performances of these three models empirically

when they are used to predict China’s stock returns, how are the models compared with each

other? Second, what are the corresponding trading performances if these models are adopted

in realistic quantitative trading? I choose ARIMA, MLP, and RNN models in the paper
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because they are designed gradually closer to real time-series data. Actually, the order of

the ARIMA, MLP, and RNN model exactly shows the improvement in model architecture.

Specifically, the ARIMA model only allows a linear relationship between the historical

stock price and today’s stock price. MLP model introduced a nonlinear relationship, neural

network structure, into the analysis. It allows a more complex structure. It is more realistic

because stock price does not always necessarily follow a linear relationship across different

periods. Still, the MLP model does not have a memory characteristic; that is, the state

of network architecture at period t only depends on the input in this period. It is not

associated with the state of the neural network in past periods. The RNN model overcomes

this shortage. RNN model assumes that the state of the neural network model at period t

not only depends on the input in the period but also depends on the state of the network in

past periods. It is a combination of input at period t and all the past history; the memory

feature makes it closer to real time-series data.

The empirical analysis of the two big questions of interest could indirectly show

the improvement from assuming realistic model architecture. Namely, what is the net gain

of switching a linear predictive model like ARIMA to a standard neural network model like

the MLP model if we only use historical data as input? Further, it is also interesting to

know the net gain of switching a standard neural network model like the MLP model to a

RNN model focusing on sequential data.

The above questions are not the central questions to answer in the paper, but

empirical analysis of the two questions could provide us with insights. On the one hand, if

the MLP and RNN models’ predictive performances are similar to that of the ARIMA model,

it is a signal telling us that both models fail to provide a better prediction. It implies that

the improvement in model architecture is not sufficient to have a significant improvement

in prediction. On the other hand, if there is a large difference between the predictions from

neural network models and that from the ARIMA model, it is strong evidence for the success

of the improvement in model architecture. This is because I only use historical information

of stock price in the predictions of the models, and the difference in inputs has already been

controlled in the analysis. Actually, the input variables’ restrictions are associated with the

weak form of the efficient market hypothesis, namely, whether investors could obtain excess
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profit in realistic stock trading if they only use publicly available historical information.

The answer should be ”no,” according to the week form of the efficient market hypothesis;

actually, it is the case in China’s stock market.

In summary, two key points distinguish the paper from existing literature. Firstly,

I use autoregressive terms of different stock indexes as inputs to predict stock returns.

Secondly, I use a standard quantitative trading strategy to backtest the predictions from

these models. It turns out that the RNN model provides the best trading performance for

the Industrial Index and the Composite Index. MLP model works extremely well for the

Business Index and the Property Index. ARIMA model predicts the SSE Composite Index

and the Shanghai A-share Index better than other models. I also find the trading strategy

using predictions from MLP and RNN models provide a higher return than benchmark stock

indexes in the long bear market from 2017 to 2020, which offers investors more options for

their portfolio management. I also compare MLP and RNN models with the ARIMA model

in terms of their mean squared error and forecast accuracy across various stock indexes in

China. There is no unique dominating model in prediction.

The rest of the paper is organized as follows, I list the existing literature in section

2.2 and introduce the dataset in section 2.3. Section 2.4 presents the neural network frames

and section 2.5 shows the empirical finding of ARIMA, MLP and RNN models. I also

discuss and conduct a robustness test in section 2.6. Finally I draw conclusions in section

2.7.

2.2 Literature Review

Neural Network, as one of the most powerful nonlinear dynamic systems, has been

frequently studied in various research. A lot of literature investigated the topic from different

aspects of the finance application. Lisboa et al.(2000) reviewed and summarized the business

applications of the neural network, their performance, and potential in E-commerce, retail

finance, bankrupt prediction, payment card fraud detection, money laundering detection,

etc. Dunis & Williams(2002) further discussed whether neural network models’ performance

is significantly better than traditional forecast models in predicting the EUR/USD exchange
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rate. They found that the neural network model outperforms the ARMA model in terms of

different trading metrics like annualized return, Sharpe ratio, etc., but the neural network

model has its own shortage. On the one hand, it is hard to interpret the result given that

the neural network is a nonlinear layer structure model. On the other hand, its predictive

potential heavily depends on the control variables fed into the model. This is also related

to the efficient capital market hypothesis studied in Fama(1970), historical information

test, publicly available information test, and all the information test would lead us to the

conclusion of weak form, semi-strong form, and the strong form of the efficient capital

market respectively.

In addition, a lot of literature focused on the recurrent neural network(RNN) model

because of its natural advantage in forecasting time series data. Kamijo & Tanigawa(1990),

Tenti(1996), Tino(2001) all studied the performance of recurrent neural network model in

forecasting returns of the foreign exchange rate of Deutsche Mark and volatility of DAX.

RNN model has been verified to have remarkable forecast potential in the literature. But

the findings are not claiming the RNN model always to be the first choice among all neural

network models. Actually, Dunis et al.(2006) found that the Multilayer Perceptron(MLP)

model performed better than the RNN model in the trading of futures spreads. Dunis et

al.(2010) further investigated the difference between MLP, RNN, HONN, and Psi Sigma

Models in predicting EUR/USD exchange rate from 1999 to 2006 by only using autore-

gressive and moving average terms of the raw return sequence, and found that MLP model

outperformed other models in terms of Sharpe ratio and annualized return while RNN mod-

el performed a little better than traditional ARIMA model. I followed the methodology in

the literature and used it to test MLP and RNN models’ performance in China’s stock

market.

Since the paper’s motivation is to forecast returns of China’s stock indexes by using

different models, I searched the literature focusing on China’s stock market and neural

network model specifically. Actually, many papers studied this topic. Cao et al.(2005)

compared the forecast power of the Fama French factor model with that of the artificial

neural network model in the study of China’s stock market. They found that neural network

models outperformed the traditional linear model. Dai et al.(2012) combined nonlinear
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independent component analysis with a neural network model to predict Asian stock market

indexes. They found that their proposed methodology outperformed other methods in the

analysis of the Shanghai B-share closing index. All these findings are informative and

suggesting that neural network models like RNN and MLP models have the potential to

offer better predictions in financial markets. Still, the conclusion needs to be tested and

studied systematically for a developing country like China. Therefore, I compared ARIMA,

MLP, and RNN models for the 10 most important stock indexes in the Shanghai Stock

Exchange and the other 7 most representative stock indexes in the Shenzhen Stock Exchange

by only using historical stock price as input. I systematically compare the mean squared

error, predictive accuracy, annualized return of strategy using predictions from these models

across the stock indexes. Empirical findings and discussions are shown and discussed in the

following sections.

2.3 Data Source

To investigate the prediction capacity of neural network models on Chinese Stock

indexes, I used stock indexes data from Shanghai Stock Exchange(SSE) and Shenzhen Stock

Exchange(SZSE) through Tushare finance database(Tushare.org). ”tushare” is a Python

package provides API to all the historical trading data of stock indexes in China. This

paper chose the 10 most representative stock indexes from the Shanghai Stock Exchange

in benchmark analysis. They are ”SSE Composite Index”, ”Shanghai A-Share Index”,

”Shanghai B-share Index”, ”Industrial Index”, ”Business Index”, ”Property Index”,”Public

Index”, ”Composite Index”, ”Shanghai Stock Exchange 180” and ”Shanghai Fund Index”.

There are a few reasons to choose these indexes in benchmark analysis. On the

one hand, these stock indexes represent the most important aspects of China’s economy,

they are important indicators carrying referenceable signals for investors, and they show

the sentiment of investors in different industries. On the other hand, they are the stock

indexes created after ”China’s Stock Share Reform” in 2005, one of China’s deepest financial

market structural reforms. The feature makes these stock indexes be standardized and more

consistent with financial market standards in developed countries. In addition, compared
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Figure 2.1: SSE Composite Index

The figure shows the SSE Composite Index’s close price from April 18, 2005, to April 30, 2020.

High volatility is observed. The largest declines are in 2008 and 2015, respectively. Even though

the testing dataset from 2017 to 2020 is not that volatile as the training dataset, it is still a

bear market in the period.

with many Chinese Stock indexes created after 2010, these stock indexes have longer trading

history, which means that their data could be traced to 2005. This is another advantage

of the dataset. Specifically, the dataset is from April 18, 2005, to April 30, 2020. There

are overall 3658 observations in it. Each observation represents a trading day. This dataset

only includes trading days, so all holidays and weekends are not included here. I chose the

first 12 years as the training dataset and the last 3 years as the testing dataset. Precisely,

the training dataset is from April 18, 2005, to March 22, 2017, the testing dataset is from

March 23, 2017, to April 30, 2020. Therefore there are 2900 observations in the training

dataset and 758 observations in the testing dataset.

In addition, the dataset includes four different metrics of the stock price; they are

”High,” ”Low,” ”Open,” and ”Close,” respectively. I used the close price of stock indexes

as a benchmark because it includes the information about the strength of both long and

short sides within a trading day. Therefore it is more informative for us to learn and predict

market returns than other stock prices. The historical close price of the SSE Composite

Index is shown in Figure 2.1 below.

In Figure 2.1, I observe the high volatility of the SSE Composite Index. The

largest declines are in 2008 and 2015, respectively. Even though the testing dataset from
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2017 to 2020 is not that volatile as the training dataset, it is clear that the market is

a bear market in the period. Also, as introduced in section 2.1, one contribution of the

paper is to investigate the forecast capacity of different models by using historical price

information only. That is, I want to test whether the precise prediction of stock returns

could be provided by using public available data if we apply neural network models in the

analysis. Intuitively, the answer should be ”No” due to the random walk feature of stock

prices, but this may not hold in China’s Stock market. On the one hand, literature like Dai

et al.(2012) has already shown that neural network models, combined with other nonlinear

independent component analyses, could be applied to the Asian stock market. These models

have the potential to outperform traditional time series models in prediction, but they did

not provide a general answer for most of China’s stock indexes. On the other hand, Dunis

et al.(2010) showed that autoregressive and moving average terms of the historical stock

price, once applied with neural network models, are informative enough to make a profit in

real trading. In this paper, I combine the ideas of the literature. I do not only test the real

forecast capacity of both MLP and RNN models in the stock market but also investigate

the profitability of the predictions from the models in backtests for the most important and

representative stock indexes in China. Forecast comparison and trading performance are

discussed in section 2.5.

2.4 Forecast Model

2.4.1 ARIMA Model

As one of the most traditional time series forecast model, the ARIMA model is

used as the benchmark model in the analysis in this section. Specifically, the specification

of model ARIMA(p,d,q) I used is shown in equation 2.1 below, where p is the maximum

number of autoregressive terms, d is the difference order, and q is the maximum number of

moving average terms. yt = St−St−1

St−1
is the return of stock index on day t and it is proofed

to be stationary after the ADF test. yt−p and εt−q are autoregressive and moving average

terms, φ s and θ s are the coefficients of them separately.
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yt = φ0 + φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt − θ1εt−1 − θ2εt−2 − ...− θqεt−q (2.1)

2.4.2 Multilayer Perceptron Model

Multilayer Perceptron (MLP) model is one of the most popular architectures in

the neural network literature. It generates the neural network architecture to forecast the

target variable by using a list of explanatory variables. Usually, it has three different types

of layers: an input layer, multiple hidden layers, and an output layer. The structure of

MLP is shown in Figure 2.2 below. The input layer includes all the explanatory variables;

each explanatory variable is represented by a neuron on the input layer. So its dimension

is equal to the dimension of the list of explanatory variables k; further, the hidden layer

also includes a different number of neurons on it, and one MLP model could have multiple

hidden layers. In the figure, there are n neurons on the hidden layer. The output layer is

the final forecast output of the MLP model. Since my target is to forecast the daily stock

return, my output layer has one neuron, representing the final forecast ỹt.

All the neurons are connected by the lines in the figure either directly or indirectly

with other neurons, each line represents a weight parameter w and bias parameter b, the

value of neuron on hidden layer could be computed as nonlinear activation function of

a weighted average of neuron values on its last layer. Usually, the nonlinear activation

function is the sigmoid function, and the final ỹt is a linear function of neurons in hidden

layers. The architecture is summarized by the equation 2.2.

ỹt =

n∑
i=1

γiSi,t + θi

Si,t = f(
k∑
j=1

wjiXj,t + bji)

f(u) =
1

1 + e−u

(2.2)

Here wji and bji are the weight and bias parameter between neuron Xj,t and neuron

Si,t, γi and θi are the weight and bias parameter between neuron Si,t and final output ỹt,

i = 1, 2, ..., n. The target function to minimize is shown in the equation 2.3 where T is
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Figure 2.2: Multilayer Perceptron

The figure shows the architecture of the Multilayer Perceptron(MLP) model. It includes an

input layer, a hidden layer, and an output layer. The input layer has k input neurons, the

hidden layer has n neurons, and the output layer includes the model’s output.

the sample size. Optimal weight and bias parameters could be estimated through different

methods; the one I use here is the most commonly used one, the backward propagation

algorithm following Dunis et al.(2010). The advantage of the MLP model compared with

the ARIMA model is that it is a nonlinear forecast model able to capture a more complicated

relationship between input and output variables. Its accuracy increases once more neurons

and hidden layers are added into the model, and it naturally expanded the linear model’s

forecast boundary. It is a good supplement to the ARIMA model.

min
1

T

T∑
t=1

(yt − ỹt)2 (2.3)

2.4.3 Recurrent Neural Network

The recurrent Neural Network (RNN) model is a special MLP model designed to

deal with the sequential dataset because the MLP model does not treat neurons on hidden
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layers sequentially. Specifically, the MLP model assumes that all the neurons on the hidden

layer are independent of the neurons’ past states. That is, the MLP model does not take

the autocorrelation feature of sequential data into consideration, and all the weights and

biases estimated in the MLP model are based on this assumption. This feature of the

MLP model naturally does not hold in time series data. Therefore the RNN model was

designed to overcome this problem. I showed the RNN model’s architecture in figure 2.3

below. The past states of neurons S1,t−1, ..., Sn,t−1 are all introduced into the fitting in

the optimization process. The target of RNN is still minimizing the sum of squared error

function shown in the equation 2.3. Theoretically, RNN has an advantage in dealing with

sequential data compared with the MLP model due to its memory feature. Particularly,

I use Long Short Term Memory(LSTM) method in the fitting of RNN to overcome the

gradient vanishing problem, following Dunis et al.(2010). I compare ARIMA, MLP, and

RNN models’ performances on forecasting the return of various stock indexes; the result

and corresponding discussion are shown in the following sections.

2.5 Empirical Results

2.5.1 Data

As introduced in previous sections, I used stock index data from the Shanghai

Stock Exchange(SSE) and the Shenzhen Stock Exchange(SZSE) through Tushare finance

database(Tushare.org). I chose the 10 most representative stock indexes from SSE as a

benchmark. They are ”Shanghai Composite Index,” ”Shanghai A-Share Index,” ”Shanghai

B-share Index,” ”Industrial Index,” ”Business Index,” ”Property Index,” ”Public Index,”

”Composite Index,” ”Shanghai Stock Exchange 180” and ”Shanghai Fund Index.” Since the

paper’s motivation is to investigate the forecast capacity of different models by only using

historical close price, the input variables are all generated by close price. They are the daily

stock returns in the most recent trading days and their volatility, which are defined as in

equation 2.4 and 2.5
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rt =
Pt − Pt−1

Pt−1
(2.4)

vt =

√√√√ 5∑
i=1

(rt−i − r̄)2

5
(2.5)

where r̄ =
∑5

i=1 rt−i

5

Here we use the SSE Composite Index as an example. The Close price and return

sequences of SSE Composite Index are shown in Figure 2.1 and Figure 2.4. The SSE

Composite Index’s raw close price is neither stationary nor normally distributed, but the

return sequence rt is stationary and normally distributed. Therefore the target variable

is the stock return rt. All the input variables in benchmark models are rt−1, rt−2, rt−3,

rt−4, rt−5 and vt. I use maximum lag 5 for daily stock returns and 5-day volatility as input

because one week usually has 5 trading days. I treat 5 trading days as a standard period to

forecast returns. Here the underlying assumption is that the stock return on the day t+ 1

is only affected by the past 5 stock returns and their volatility within one week. This is

assumed in the benchmark model. Robustness checks for longer lag terms are discussed in

later sections. With these input variables, I predict daily stock returns of the stock indexes

from SSE by using ARIMA, MLP, and RNN models and compare their performance in the

next section.

2.5.2 Forecast

To make the MLP and RNN models comparable in terms of forecast capacity, I set

the same neural network architecture for them. Namely, MLP and RNN models both have

1 input layer with 6 input variables, 1 hidden layer with 20 neurons, and 1 output layer

with 1 neuron. The neuron on the output layer is the predicted return of a stock index. I

set this architecture as a benchmark, following the framework of Dunis et al.(2010), where

all the neural networks have only 1 hidden layer and the same amount of neurons on it

to make models comparable to each other. Also, I chose 20 in the benchmark analysis.

Actually, the 20 is not the unique possible choice, it could be any positive number greater

than the numbers of input variables in general, and usually, the more neurons there are
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on the hidden layer, the better the fitting would be. To avoid overfitting, the number of

neurons on this hidden layer could not be too large, and the empirical result is robust for

different neuron numbers. Therefore 20 is a good benchmark as the beginning.

I used Adam optimizer from Kingma & Ba(2014) in optimization due to its effi-

ciency in computation and a high degree of feasibility. According to Kingma & Ba(2014),

the learning rate is set to be the default optimal value of 0.001. As discussed in section 3.3,

I focus on the forecast capacity of the models and profitability in realistic trading in the

most recent 3 years, from 2017 to 2020. This sample has 758 trading days. I use a training

dataset with 2900 observations. It is a rolling window in forecast methodology. Specifically,

the sample from April 18, 2005, to March 22, 2017, is used to fit and predict the return of a

stock index on March 23, 2017. This is the first training sample, and I could get a predicted

stock return on March 23, 2017. Then the sample from April 19, 2005, to March 23, 2017,

is used to predict the stock return on March 24, 2017. The training window keeps rolling

until the last day of the dataset, April 30, 2020. Therefore, I would get 758 predicted stock

returns for each stock index. These predicted stock returns could be referenced as signals

for realistic stock trading. Figure 2.6 shows the comparison of the predictions from MLP,

RNN, and ARIMA models.

It turns out that the realized return of the SSE Composite Index from 2017 to 2020

ranges from -5% to 5% in most of the times except for some outliers. MLP model provides

predictions ranges from -0.5% to 0.5%, RNN model gives predictions fluctuates between

-1% and 1%, and ARIMA model provides predictions ranges from -0.4% to 0.4%. All the

predictions have less volatility than realized returns. This makes perfect sense because

of the characteristics of forecasting. Realized returns usually have larger volatility than

predicted returns. In addition, all these models captured the clustering feature in realized

stock return, but all these 3 models failed to give good predictions in outliers. For example,

there was a sharp drop in daily stock return in Feb 2020. The smallest daily stock return

was around -8%. This is a totally unexpected shock due to the COVID-19 pandemic. It is

impossible to predict such outliers by only using historical price data.

Nevertheless, we observe something interesting in the predictions from these mod-

els, MLP model failed to predict the sharp negative return, but according to it past learning
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experience, the model knows that it is very abnormal to have such a return. Therefore it

predicts that there would be a sharp rebound the next day. This is the intuition why we

see a big jump in predictions from the MLP model the next day. As for the RNN model,

we could see that it predicts a big positive return on the day right after the ”bad news”

day, but it quickly predicts a large negative return around -3% on the day after that day.

This exactly reflects the difference between MLP and RNN models. As we introduced in

section 2.4, MLP does not take the autocorrelation feature of sequential data into consid-

eration while the RNN model used information of past states in fitting optimization, so

past deep negative return would have a stronger effect on the prediction than MLP model.

Compared with MLP and RNN models, the ARIMA model has smoother predictions. Here

I used ARIMA(5,0,5) model to make the input variables comparable with that in MLP and

RNN models. To quantify the predictions’ performance. Mean Squared Error(MSE) and

accuracy of predictions are shown in the table 2.1.

It indicates that the ARIMA model provides the minimum MSE in forecasting

daily stock return compared with MLP and RNN models. Let’s take the SSE Composite

Index as an example, MSE of the MLP model is 1.29×10−4, which is smaller than that of the

RNN model 1.4×10−4, but they are all greater than that of the ARIMA model 1.27×10−4.

This pattern in MSE from MLP to ARIMA model is robust for almost all the 10 stock

indexes. The finding in the table shows that even though the MLP and RNN models have

very small MSE and they are all very close to the MSE from the ARIMA model, they still

failed to provide a better forecast for stock return as compared with the ARIMA model for

the listed stock indexes. To make our evaluation robust, I also compute the accuracy of the

predictions from these models. Here the accuracy is defined as the number of correct sign

predictions divided by the total number of predictions. This magnitude free metric depicts

the performance of these models from another angle. The variance of realized stock returns

is listed too. The results are shown in the right panel of Table 2.1.

According to the results shown in Table 2.1, the predictive accuracy of the MLP

model is 48.42% for The SSE Composite Index, the predictive accuracy of the RNN model is

49.34%, and the predictive accuracy of the ARIMA model is the highest 49.47%. Actually,

the RNN model provides the highest forecast accuracy for most of the stock indexes(4 out of
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Table 2.1: Mean Squared Error and Accuracy Comparison

Mean Squared Error(10−4) Accuracy(%) Variance(10−4)

Stock Index MLP RNN ARIMA MLP RNN ARIMA

SSE Composite 1.29 1.4 1.27 48.42 49.34 49.47 1.25

Shanghai A-share 1.31 1.33 1.28 48.88 47.29 48.28 1.25

Shanghai B-share 1.23 1.25 1.14 51.66 51.92 46.49 1.13

Industrial 1.51 1.51 1.43 49.08 48.81 49.86 1.41

Business 2.21 2.32 2.13 52.37 48.02 48.54 2.11

Property 2.36 2.37 2.35 51.98 50.92 46.70 2.31

Public 1.49 1.51 1.41 48.74 48.88 46.56 1.4

Composite 1.33 1.41 1.32 47.89 52.24 50.52 1.3

Shanghai 180 1.44 1.47 1.41 50.26 49.21 50.65 1.39

Fund 0.52 0.52 0.51 50.53 51.32 48.94 0.5

The table shows the Mean Squared Error(MSE), the accuracy of the predictions from

different models. ARIMA model provides the minimum MSE in forecasting daily stock

return as compared with MLP and RNN models. This pattern in MSE from MLP to

ARIMA model is robust for almost all the 10 stock indexes. Actually, the RNN model

provides the highest forecast accuracy for most of the stock indexes(4 out of 10), and the

MLP model and ARIMA model both provide the highest predictive accuracy for 3 stock

indexes. The empirical finding suggests that MLP and RNN models are not significantly

better than the ARIMA model in forecasting the returns of China’s stock indexes if we

only use historical information of stock prices.

10), and the MLP model and ARIMA model both provide the highest predictive accuracy

for 3 stock indexes. The empirical finding suggests that MLP and RNN models are not

significantly better than traditional time series models like ARIMA in forecasting the stock

returns in China’s stock indexes if we only use historical information of stock prices.

Actually, I also compute the 95% confidence interval of the accuracy to further

test whether the accuracy from these models are significantly different from 0.5, I use
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SE =

√
0.5(1−0.5)

n to approximate the standard error of a binomial distribution, where

n = 758, the corresponding confidence interval is (0.5 − 2SE, 0.5 + 2SE). The accuracies

are not statistically different from 0.5 if they are within the confidence interval. It turns out

that the confidence interval is approximately (0.4637, 0.5363), which means that all these

accuracies are not statistically different from the probability of tossing a fair coin 0.5.

This finding is interesting because it implies only adding the autocorrelation struc-

ture in the estimation in the neural network, from the MLP model to the RNN model, is

not enough to provide a significant improvement in prediction. Even though, RNN model

still shows its potential in the predictive accuracy of stock motion. Besides, it is interesting

to see that almost all the predictive accuracies are around 50% in the sample. This is not

surprising because all the input variables are from historical stock prices. Stock indexes are

usually affected by different factors like fundamentals, unexpected announcements, public

sentiment, etc. It is intuitive to see all the accuracies in table 2.1 are around 50%. I also

show the ”False Positive Rate(FPR),” ”True Positive Rate(TPR),” and ”Precision” of the

models in table 2.2. Almost all the metrics are around 0.5 for these three models, which

supports the finding that these models’ predictive accuracies are not statistically different

from 0.5.

So far, I have shown that we could not predict future stock return precisely by only

using historical data of stock indexes; it is actually close to the probability of tossing a fair

coin. This is the paper’s first conclusion, but it is still possible for us to use the predictions

from MLP and RNN models constructively. I would use the predictions in the section to

proceed with real trade in the stock market and compare the trading performances of the

predictions from these models. Further discussion is shown in the next section.

2.5.3 Trading Performance

In the last section, ARIMA, MLP, and RNN models provide similar performance

in predictive accuracy and mean squared error. In order to verify the value of the pre-

dictions, I backtest the performance of these predictions in realistic trading by using the

most straightforward strategy. Specifically, if the prediction of tomorrow’s stock return is
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Table 2.2: FPR, TPR, Precision of the models

MLP
Stock Index FPR TPR Precision

SSE Composite 0.518 0.486 0.508
Shanghai A-share 0.568 0.540 0.511
Shanghai B-share 0.453 0.485 0.511
Industrial 0.501 0.484 0.517
Business 0.405 0.449 0.514
Property 0.572 0.620 0.499
Public 0.469 0.441 0.470
Composite 0.564 0.521 0.484
Shanghai 180 0.539 0.543 0.510
Fund 0.495 0.505 0.528

RNN
FPR TPR Precision

SSE Composite 0.416 0.411 0.521
Shanghai A-share 0.504 0.452 0.496
Shanghai B-share 0.369 0.405 0.517
Industrial 0.429 0.414 0.517
Business 0.307 0.257 0.444
Property 0.489 0.507 0.488
Public 0.449 0.422 0.470
Composite 0.516 0.560 0.525
Shanghai 180 0.515 0.499 0.500
Fund 0.558 0.578 0.531

ARIMA
FPR TPR Precision

SSE Composite 0.585 0.567 0.516
Shanghai A-share 0.584 0.549 0.509
Shanghai B-share 0.613 0.603 0.506
Industrial 0.564 0.556 0.524
Business 0.562 0.541 0.478
Property 0.660 0.606 0.458
Public 0.538 0.574 0.500
Composite 0.583 0.596 0.510
Shanghai 180 0.601 0.615 0.514
Fund 0.782 0.768 0.516

The table shows the FPR, TPR, and Precision

of the three models. Almost all the metrics are

around 0.5 for these three models, which sup-

ports the finding that these models’ predictive

accuracies are not statistically different from

0.5.
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positive, I use my capital to buy the stock index when the market opens tomorrow(9:30

am), then I sell all my stock shares when the market closes tomorrow(3:00 pm) and get

cash back. If the prediction of tomorrow’s stock return is negative, I will not trade. This

is a trading strategy that directly measures the performance of predictions of stock return.

Here a few points worth mentioning. (1) China’s stock market opens at 9:30 am and closes

at 3:00 pm on every single trading day, and there is one and half hour lunch break at noon

from 11:30 am to 1:00 pm. Since the strategy only focuses on the open and close prices of

stock indexes, this break at noon could be ignored in the analysis. (2) China’s stock market

is a t+1, rather than a t+0 market, which means that if I buy a stock today, I could not

sell it within the same trading day. Thus, the strategy I introduced above is not feasible

in a realistic market. Still, the simulated return, after taking realistic transaction cost into

consideration, could be calculated by using JoinQuant API, which makes the backtest of

the strategy feasible in the paper. (3) The standard transaction cost in Shanghai Stock Ex-

change has been set in the strategy’s simulation. The open and close commission per trade

is 0.03%, and close tax is 0.1%, while the minimum commission per trade is 5 RMB. All

these transaction costs are considered and included in the simulation for all stock indexes.

Based on the methodology, table 2.3 shows the trading performance of the standard

strategy on each Chinese stock index by using predicted stock returns from different models.

Cumulative return, annualized return, alpha, and premium values are used as metrics to

compare the strategy’s performance. Cumulative return is the cumulative return of the

strategy in realistic trading in the testing period from March 23, 2017, to April 30, 2020.

It is a three years sample with 758 observations. Annualized returns are also computed by

using the same sample, alpha is the alpha factor of the strategy from CAPM regression, and

premium means the difference between the cumulative return and the return of benchmark

stock index adjusted by stock weights in a stock index. For example, In the MLP panel of

table 2.3, the SSE Composite Index has a cumulative return of 4.32%, but the premium

is 18.37%, this is because the Shanghai Composite Index, the benchmark index, declined

by 11.87% from 2017 to 2020. The premium here has adjusted the stock weights, so it

is not simply the difference between 4.32% and benchmark return -11.87%. As a result,

the premium variable directly tells us how far the strategy surpasses the benchmark index.

51



For example, the strategy’s premium by using RNN predictions is 23.80%, which is greater

than that from MLP model 18.37% but lower than that from ARIMA 30.83%. It implies

that in the 3 years bear market, even though the market index has declined by 11.87%,

applying the strategy with predictions from the RNN model provides a cumulative return

of 9.11%, and its annualized return is 2.92%. Actually, all the three models supply positive

cumulative returns, meaning that they all surpass the performance of the benchmark, the

SSE Composite index.

In addition, table 2.3 also includes other stock indexes on the Shanghai Stock

Exchange. In fact, it indicates that the RNN model provides the best trading performance

for Industrial Index and Composite Index. MLP model works extremely well for Business

Index and Property Index. As for the ARIMA model, it predicts the SSE Composite Index

and the Shanghai A-share Index successfully. The empirical finding is informative, and its

insight could be interpreted in different ways.

Firstly, it tells us which model should be used in predicting returns for different

stock indexes. For example, if we trade the SSE Composite Index, the ARIMA model is

the best in its annualized return and premium. If we trade Industrial Index, the RNN

model would better then. So we could fully use the information in the table to optimize

returns. Secondly, there is no unique model always superior to others. This finding indirectly

supports the conclusions in past literature, that is, MLP and RNN models perform better

than the ARIMA model in predicting stock returns under certain situations. This is not

a general conclusion holds for all the cases. The results in table 2.1 and table 2.3 exactly

showed this. Actually, all the above finding is an empirical analysis focusing on the 3 years-

long bear market from 2017 to 2020, the differences in trading performance between models

might change over different periods, and it also could be insignificant, so the key point

here is that there is no single correct answer found in this analysis rather than the specific

differences in trading performance from different models.

Finally, we see that most of the premiums and annualized returns are positive in

table 2.3, which means that the application of RNN, MLP, and ARIMA models all provide us

better returns than benchmark stock indexes. This finding is counterintuitive to the result

in the table 2.1, because most of the accuracies are around 0.5 or less, but the strategy
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returns overpassed the return of benchmark index at last. This could be interpreted from

different perspectives. First, the strategy in the analysis is an aggressive one, use up all the

available capital to buy one stock index when the market opens if I predict it would rise

today, and clear my position to get the cash back when the market closes, so it plays a role

of maximum possible return I could make from realistic trading. Therefore it is natural

to be larger than the return from the benchmark index. Second, the strategy used in the

analysis only buys stock index if predicting a rise and does not trade if predicting a fall.

Therefore it could avoid loss even though it mispredicts future stock index. For example, if

tomorrow’s stock will rise, but I predict it would fall, I would not trade in this case, so this

wrong prediction does not lead to a real loss to me. Third, the final loss or profit heavily

depends on the magnitude of price changes. Specifically, if there is a big jump in stock

returns, as long as I correctly predict its direction this time, it could potentially cover the

loss from many wrong predictions before. Such randomness makes it possible for strategy

return to be higher than the benchmark return.

In addition, I present the trading statistics of the standard strategy in table 2.4.

The table shows the trading statistics of the standard strategy, including ”Sharpe Ratio,”

”Profit Trade %,” and ”Profit/Loss Ratio.” Here ”Profit Trade %” is defined as the total

number of profit trades divided by the total number of trades. ”Profit/Loss Ratio” is

defined as the total profit divided by the total loss. It turns out that most of the Sharpe

ratios are negative, most of the profit trade percentages are greater than 0.5, and almost

all the profit/loss ratios are greater than 1. This finding indicates that the predictions from

these models could predict the right direction of the stock movement in around 50% of

trades. The profit is usually greater than the loss. This implies that the predictions, on

average, provide large profits in large trades and small losses in small trades. Specifically,

the predictions from the MLP model provide good trading statistics when they are used

for trading the business index and the property index, while the predictions from the RNN

model work well in the trading of the industrial index and the composite index. The finding

is in line with that in table 2.3.

I also conduct a one-way ANOVA test to check the trading performance of these

models formally. The results are shown in the table 2.5. It turns out that variable ”Annual-
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ized return” and ”Alpha” from table 2.3 passed Bartlett’s equal variance test, the P-values

of their Chi2 statistics are all greater than 0.05. In addition, the F-statistics in the ANO-

VA test is not significant at 5% significance level, which means that there is no significant

difference in annualized return or alpha between these models. This finding supports our

previous observation that MLP or RNN models failed to provide a better forecast accuracy

or lower MSE than the ARIMA model.

Besides, I extend the analysis to strategy evaluation. Actually, the standard strat-

egy I introduced in the section is very aggressive. It would use 100% the available cash if

it believes that stock price would rise in the future, but this percentage could be changed

to different values. Actually, I generate three different strategies by adjusting the percent-

age parameter. Strategy 1 is the standard trading strategy using 100% available cash in

daily trading. Strategy 2 is a standard strategy using 80% available cash in daily trading.

Strategy 3 is a standard strategy using 50% available cash in daily trading. So strategy 3

is the most conservative one out of these three strategies. I evaluate and compare these

strategies based on predictions from the MLP, RNN, and ARIMA models. Here I use the

”SSE composite Index” as a benchmark index to show the strategies’ performance. The

result is shown in table 2.6.

The table indicates that a more aggressive strategy leads to a higher return, no

matter which model is used in the prediction, but this also leads to a higher maximum

drawdown. Conservative strategy usually provides a higher profit/loss ratio, which is also

in line with our expectations. Also, the ARIMA model performs better than the other two

models in terms of the trading statistics. Given the predictions from the models, the above

analysis could be extended to compare different trading strategies.

In fact, the key finding of the empirical analysis is not a comparison across models.

The most interesting finding is that most of the premiums are higher than 0. Recall that

the sample period from 2017 to 2020 is a very long bear market. Almost all the stock

indexes in table 2.3 declined sharply in this period. Under this circumstance, it isn’t easy

to get positive returns if we trade these stock indexes. The empirical finding in this section

provides an insight into the potential of these neural network models. This experience could

be generalized to ETF fund stocks in real trading, which would make the simulated returns
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come true in a realistic market. This finding is one of the key findings in the paper.

2.6 Robustness

As discussed in the last section, I conduct a robustness test from two different

aspects. On the one hand, I increase the number of control variables in the benchmark

model. Specifically, I introduce more lags of the stock price in the prediction of future

stock returns. This is because I assumed that the stock return is associated with its past

returns in the most recent 5 days, which may not always hold in a realistic stock market.

Therefore adding longer historical information could provide us a deeper understanding of

the benchmark result. On the other hand, all the stock indexes in benchmark analysis come

from SSE, which may bias the finding in section 2.5. To make the finding robust, I also

proceed with the analysis for 7 stock indexes from SZSE. More details are discussed below.

2.6.1 Forecast Evaluation For More Inputs

Table 2.7 shows the mean squared error and accuracy of MLP and RNN models

across different lag terms. There are four lag terms included in the table, and the maximum

lag is 30 trading days, which is already longer than 1 month since every month generally

has 22 trading days. The underlying consideration is that stock return usually is affected

by the most recent history. It does not have a memory longer than 1 month. The table

offers a better insight into MLP and RNN models. It turns out that the MSE and predictive

accuracy from the MLP model is not improved if we add more lag stock returns as input,

but the result of the RNN model is different. Both MSE and accuracy are improved with

more inputs. Specifically, MSE drops from 1.4 × 10−4 to 1.25 × 10−4, and its predictive

accuracy rises from 49.34% to 53.03%. This is not surprising because the RNN model

introduced the autocorrelation of states across different layers; therefore, more historical

information is informative and helpful for predicting future stock return. Nevertheless, all

the accuracies of the RNN model are still around 50%, and the pattern we found in the

benchmark model has been verified again in the table. Only using historical information of

stock price is not sufficient for return prediction. Namely, according to the evidence from
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Table 2.3: Trading Performance of the ARIMA, MLP, and RNN models

MLP
Stock Index Cum. Return Ann. Return Alpha Premium

SSE Composite 4.32% 1.41% -0.003 18.37%
Shanghai A-share -7.17% -2.43% -0.038 5.23%
Shanghai B-share -21.21% -7.56% -0.051 27.92%
Industrial 1.57% 0.51% -0.012 14.29%
Business 41.78% 12.20% 0.126 119.19%
Property 30.81% 9.26% 0.068 35.99%
Public -6.02% -2.03% -0.022 42.14%
Composite -0.07% -0.02% -0.024 2.99%
Shanghai 180 12.00% 3.81% -0.001 0.42%
Fund 3.90% 1.27% -0.025 -3.50%

RNN
Cum. Return Ann. Return Alpha Premium

SSE Composite 9.11% 2.92% 0.005 23.80%
Shanghai A-share -1.20% -0.40% -0.02 12.01%
Shanghai B-share -10.26% -3.51% -0.022 45.68%
Industrial 18.84% 5.86% 0.038 33.72%
Business -9.79% -3.34% -0.044 39.46%
Property 12.35% 3.91% 0.012 16.80%
Public 0.87% 0.29% -0.001 52.56%
Composite 24.97% 7.63% 0.053 28.81%
Shanghai 180 -2.72% -0.91% -0.048 -12.78%
Fund -6.32% -2.13% -0.057 -12.99%

ARIMA
Cum. Return Ann. Return Alpha Premium

SSE Composite 15.31% 4.81% 0.033 30.83%
Shanghai A-share 12.32% 3.91% 0.023 27.33%
Shanghai B-share -17.28% -6.06% -0.049 34.30%
Industrial 11.22% 3.57% 0.021 25.15%
Business 13.97% 4.41% 0.062 76.19%
Property -13.23% -4.57% -0.07 -9.78%
Public 4.11% 1.34% 0.015 57.47%
Composite 15.29% 4.80% 0.027 18.83%
Shanghai 180 19.50% 6.05% 0.021 7.15%
Fund -14.66% -5.10% -0.085 -20.74%

The table shows a standard strategy’s trading performance on each stock

index using the predicted stock returns from MLP, RNN, and ARIMA

models. These models all provide better returns than benchmark stock

indexes. This finding offers investors an insight into the potential of these

neural network models.
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Table 2.4: Trading Statistics of the MLP, RNN and ARIMA models

MLP
Stock Index Sharpe Ratio Profit Trade % Profit/Loss Ratio

SSE Composite -0.30 0.57 1.25
Shanghai A-share -0.69 0.56 1.14
Shanghai B-share -1.23 0.53 0.97
Industrial -0.37 0.55 1.20
Business 0.76 0.57 1.56
Property 0.45 0.52 1.35
Public -0.78 0.50 1.10
Composite -0.44 0.52 1.20
Shanghai 180 -0.03 0.54 1.33
Fund -0.76 0.54 1.51

RNN
Sharpe Ratio Profit Trade % Profit/Loss Ratio

SSE Composite -0.15 0.57 1.37
Shanghai A-share -0.49 0.55 1.20
Shanghai B-share -0.83 0.54 1.07
Industrial 0.21 0.56 1.41
Business -0.89 0.51 1.01
Property -0.01 0.52 1.26
Public -0.48 0.49 1.19
Composite 0.37 0.56 1.42
Shanghai 180 -0.62 0.55 1.17
Fund -1.36 0.54 1.20

ARIMA
Sharpe Ratio Profit Trade % Profit/Loss Ratio

SSE Composite 0.09 0.56 1.36
Shanghai A-share -0.01 0.56 1.34
Shanghai B-share -1.18 0.52 1.01
Industrial -0.04 0.55 1.28
Business 0.03 0.52 1.25
Property -0.79 0.48 1.04
Public -0.31 0.53 1.23
Composite 0.08 0.53 1.31
Shanghai 180 0.26 0.56 1.38
Fund -1.69 0.52 1.09

The table shows a standard strategy’s trading statistics on each stock index

using the predicted stock returns from MLP, RNN, and ARIMA models.

Most of the Sharpe Ratios are negative, and almost all the profit/loss

ratios are greater than 1.
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Table 2.5: One-way Anova Test

One-way Anova Bartlett’s Test

variable F − stat/p Chi2− stat/p

Ann. Return 0.04 1.28

(0.96) (0.53)

Alpha 0.13 1.32

(0.88) (0.52)

The table shows the One-way ANOVA test of the annual-

ized return and alpha from ARIMA, MLP, and RNN model-

s. It turns out that Bartlett’s equal variance test is passed,

and there is no significant difference in annualized return

or alpha across these models.

China’s stock market, there is no space for excess profit for investors focusing on technical

analysis.

2.6.2 Forecast Evaluation For SZSE Data

In this section, I used 7 different representative stock indexes from the Shenzhen

Stock Exchange(SZSE) to test the sensitivity of the finding in section 2.5 to stock indexes.

The dataset comes from the Tushare finance database too. The seven stock indexes from

SZSE are: ”CSI 300 Stock Index”, ”SZSE Component Index”, ”SZSE Component Total

Return Index”, ”SZSC Index”, ”Shenzhen A-share Index”, ”Shenzhen B-share Index” and

”GZ 300 Index”. To make the analysis comparable, the sample period is still from April 18,

2005, to April 30, 2020. All the models have the same architecture as the ones in benchmark

analysis.

The result is shown in table 2.8, it indicates that the pattern found in section 3.4 is

not sensitive to the sample collected from SZSE. Specifically, the mean squared error of the

ARIMA model is better but close to that of MLP and RNN models. Also, the RNN model

performs better in terms of predictive accuracy for the CSI 300 Stock Index and SZSE

Component Index. However, its accuracy is still not significantly different from 50%, the

probability of tossing a fair coin. Further, there is no unique dominating model in predicting
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Table 2.6: Comparison Between Different Strategies

MLP

Strategy Sharpe Ratio Ann. Ret. Alpha Premium P/L Ratio Max Drawdown

Strategy 1 -0.297 1.41% -0.003 18.37% 1.253 8.08%

Strategy 2 -0.401 1.44% -0.009 18.51% 1.273 5.56%

Strategy 3 -1.054 0.79% -0.024 16.21% 1.287 2.87%

RNN

Sharpe Ratio Ann. Ret. Alpha Premium P/L Ratio Max Drawdown

Strategy 1 -0.150 2.92% 0.005 23.80% 1.373 10.12%

Strategy 2 -0.446 1.63% -0.012 19.18% 1.337 7.97%

Strategy 3 -1.221 1.05% -0.024 17.13% 1.395 3.18%

ARIMA

Sharpe Ratio Ann. Ret. Alpha Premium P/L Ratio Max Drawdown

Strategy 1 0.087 4.81% 0.033 30.83% 1.361 12.99%

Strategy 2 -0.009 3.93% 0.018 27.54% 1.372 9.56%

Strategy 3 -0.565 2.15% -0.010 21.01% 1.415 4.67%

The table shows a comparison between three standard trading strategies. The trading results

are computed by using the ”SSE Composite Index.” Strategy 1: using 100% available cash

in daily trading, strategy 2: using 80% available cash in daily trading, strategy 3: using 50%

available cash in daily trading. The table indicates that a more aggressive strategy will lead

to a higher return, no matter which model is used in the prediction. Also, the ARIMA model

provides the highest return out of the three models.

returns for the stock indexes listed in the table. In summary, the pattern in benchmark

analysis still holds for the stock indexes from SZSE. This verified that improvement in the

model’s architecture is insufficient to offer a better prediction for future stock returns if we

only use historical price information.

2.7 Conclusion

In this paper, I studied the MLP and RNN models and compared them with

the traditional ARIMA model according to their performances in predicting daily stock

returns. I used autoregressive terms of stock return as inputs in the empirical analysis
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Table 2.7: Forecast of MLP and RNN Model With More

Inputs

Input Variable Lags

Model Metrics 5 10 20 30

MLP
MSE(10−4) 1.29 1.36 1.49 1.46

Accuracy(%) 48.42 49.34 47.49 49.87

RNN
MSE(10−4) 1.4 1.34 1.31 1.25

Accuracy(%) 49.34 50.66 51.45 53.03

The table shows the mean squared error and accuracy of

MLP and RNN models across different lag terms. The

MSE and predictive accuracy from the MLP model are

not improved if we add more lag stock returns as input,

but the RNN model’s result is different. Both MSE and

accuracy are improved with more inputs.

to study the value-added of switching linear model(ARIMA) to nonlinear neural network

model(MLP, RNN). The empirical finding indicates that MLP and RNN models are not

as good as the ARIMA model in terms of mean squared error, and all three models have

predictive accuracy of around 50%. This means that only switching from linear model to

neural network model(ARIMA to MLP) or further adding realistic autocorrelated structure

within neural network model(MLP to RNN) are not sufficient for us to predict future stock

return precisely. This is also verified in robustness tests. In fact, this finding is consistent

with the weak form efficiency of the efficient market hypothesis. Using historical information

alone could not provide a better stock trading return, but the empirical result is informative

from different perspectives.

Firstly, it tells us which model should be used in predicting returns for different

stock indexes. ARIMA model works well in predicting the SSE Composite Index, while the

RNN model is better than MLP and ARIMA if we trade Industrial Index. This information

is helpful from the investor’s point of view. Secondly, I verify there is no unique winner
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Table 2.8: Forecast Evaluation For SZSE Data

Mean Squared Error(10-4) Accuracy(%)

Stock Index MLP RNN ARIMA MLP RNN ARIMA

CSI 300 Stock 1.64 1.66 1.55 47.89 51.32 51.05

SZSE Component 2.23 2.2 1.24 48.15 50.53 50.13

SZSE Comp. Tot. Ret. 2.23 2.24 2.1 49.07 48.15 49.60

SZSC 2.26 2.17 2.05 50.66 50.66 50.65

Shenzhen A-share 2.21 2.17 2.06 52.37 51.06 50.26

Shenzhen B-share 1.14 1.14 1.09 49.60 50.92 51.32

GZ 300 1.63 1.67 1.57 45.25 51.32 48.28

The table shows the MSE and accuracy of the predictions from these models by

using the SZSE data. The pattern found in SSE data still holds in the SZSE data.

RNN model performs better in terms of predictive accuracy for the CSI 300 Stock

Index and SZSE Component Index. However, its accuracy is still not significantly

different from 50%. There is no unique dominating model in the prediction for

the stock indexes listed.

among these three models according to the paper’s empirical finding, which is in line with

literature like Dunis& Williams(2002). Finally, almost all the strategy returns are greater

than the return of benchmark stock indexes, which provides investors a better choice of

trading stock indexes and make positive returns even in the long bear market period.
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Figure 2.3: Recurrent Neural Network

The figure shows the architecture of the Recurrent Neural Network(RNN) model. It includes an

input layer, a hidden layer, and an output layer. The model includes the past states of neurons

as input in the fitting so that it has a memory feature, which is designed to deal with time-series

data.
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Figure 2.4: Daily return of the SSE Composite Index

The figure shows the sequence of daily returns of the SSE Composite Index. The sequence is

stationary in the sample period and has a feature of clustering volatility.

Figure 2.5: Histogram of Close Price & Return

The figure shows the histogram of close price and returns of the SSE Composite Index. The

return variable has a normal distribution compared with the close price. Therefore we use

return rather than close price as an input variable in the analysis.
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Figure 2.6: The Predictions for SSE Composite Index

The figure shows the difference between the predictions from ARIMA, MLP, and RNN models

and compares them with the realized stock return in the test period. All the predictions have

less volatility than realized returns. These models captured the clustering feature in realized

stock return, but all these 3 models failed to give good predictions in outliers.
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Chapter 3

Distribution of Contracts over

Strikes in Options Market

3.1 Introduction

Options are attractive to investors due to their high leverage, special risk exposure,

and low transaction costs. They have the highest leverage among all financial assets because

the money invested is a premium of potential price movements instead of prices of the

underlying assets. They enable investors to limit losses and bet on volatility changes instead

of price fluctuations. The richness in the variety of underlying assets and the availability of

a good range of strike prices around the spot price sharply reduces the transaction costs.

Both investors and researchers have noticed these unique and desirable charac-

teristics in options, so we see high trading volumes and active participants in the options

market, and plenty of research from academia. Most of the literature on options focused

on their pricing, like Merton (1973) and the relationship between the options market and

the underlying stock market like Jones (2003). Few of them looked at trading volume, open

interest, or the aggregate trading pattern of investors as questions of interest. At the same

time, almost no literature empirically studied the choice of options from the investors’ point

of view. Previous literature generally investigated how to allocate capital across different

assets in one’s portfolio. They could not answer what specific options to purchase and hold
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when there are hundreds of them at tens of different strike prices in the market. We thus

attempt to fill in the gap in the literature. This paper is trying to depict the behavioral

patterns of the investors in real options trading. Specifically, our goal is to capture the

features of the contracts that are traded and held most frequently.

We observe that slightly-out-of-the-money options are the most popular in terms

of having the highest daily trading volume and open interest shares in our dataset of S&P

500 options trading. We use trading volume and open interest as weights and calculate the

weighted average strike prices of put and call options so that we know the position of the

distribution of trading volume and open interest over strike. The weighted average strike

prices closely follow the underlying index. Options are also slightly out of the money on

the aggregate level. The weighted average call strike is almost always above the underlying

index. In contrast, the weighted average put strike is almost always below the underlying

index.

We start our empirical study by first looking at how the weighted average strike

prices co-move with the underlying S&P 500 index. We use a structural vector auto-

regression (SVAR) model to study the short-run association between option strikes and

the underlying index. We assume the same-day impact between the two is unidirectional,

where the underlying index affects the option strikes but not vice versa. By looking at the

coefficient estimates and the impulse response functions, we find that option strikes move

slowly in the same direction as the underlying index. The initial reactions are small and

become larger as time passes. Option trading behavior is more sensitive to broad-market

shocks than option writing and settling.

We then estimate a vector error-correction model (VECM) to test the relationship

between the underlying index and the weighted average strike in the long run. We find

evidence for cointegration and an almost one-to-one mapping between the changes in both

variables.

We continue to ask whether the position of the weighted average strike relative to

the underlying index is related to the implied volatility of the latter. We regress the relative

position of the weighted average strike on VIX. We calculate the standard deviation of the

daily distribution of open interest and trading volume and regress them on VIX. We find
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that when the implied volatility is higher, option strikes move further from the underlying

index both on the aggregate level and on the contract level.

After that, we try to rationalize the preference for slightly-out-of-the-money op-

tions. We do that by simulating the return series of three trading strategies, naked option,

full hedge, and delta hedge, with options at different strikes. We find that the return series

of the two hedging strategies is closer to what we observe in the data. The naked option

strategy provides insight into how gambling motivation can also be the reason for choosing

out-of-the-money options.

Lastly, we investigate gambling motivation and look for options that are lottery-

like assets. We find that out-of-the-money options have low premiums, high return volatility,

and skewness, so they make perfect speculation tools.

The remainder of the paper is organized as follows. We first review the existing

literature on option trading in section 3.2. We then introduce the dataset of S&P 500 option

transactions and the stylized facts in section 3.3. Our empirical work are in section 3.4,

with section 3.4.1 talking about the SVAR model, section 3.4.2 on the VECM, section 3.4.3

on the relative position and implied volatility, section 3.4.4 on the simulation of the three

strategies, and 3.4.5 on the gambling motivation. Section 3.5 concludes the paper.

3.2 Literature Review

As one of the most active financial derivatives markets, the options market has

always been an important subject for researchers to study. Trading volume as an important

indicator in the market is the focus of many scholars. Actually, numerous papers studied

trading volumes from different angles.

One branch of literature studied the effect of the trading volume of options on

the underlying stock market. Anthony (1988) studied the relation between stock trading

volume and call option trading volume empirically and found that options volume Granger

causes trading in underlying stock with a one-day lag and options volume is a good proxy

for the rate of information arrival, but the paper failed to rule out the possibility of tech-

nical hedging, investors could trade options and underlying stock sequentially for hedging
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motivation. The flaw inspired us that importance of the hedgers could never be neglected

in studying trading volume in the options market. Jennings and Starks (1986) studied the

options market’s effect from a price adjustment point of view. They investigated the ef-

fect of options trading on the underlying stock price adjustment to the release of earnings

announcements for both firms with or without listed options. They found that non-option

firms need a much longer time to adjust the stock price after claiming announcements. The

paper provides us more insights into channels offered by the options market and highlighted

the relation between stock price adjustment and option trading volumes, which strengthens

the importance of dynamic motion of stock price and options trading in both the short run

and the long run, actually, the application of SVAR and the VECM methods in our paper

is exactly following this idea.

In addition, some other literature focused on the prediction power of information

in the options market. Bernile et al. (2017) constructed an index called volume-weighted

strike-spot price ratio (VWKS) to predict equity returns. They found the VWKS index

has a better performance than existing return predictors. The good performance of VWKS

in backtesting inspired us, and we referenced their method of constructing VWKS in our

empirical analysis of option trading volumes. Nevertheless, there is hardly any literature

using trading volume in the options market directly as a question of interest until Roll et

al. (2010). They first studied the relative trading volume, the ratio between option volume

and stock volume, and explored the determinants of the relative trading volume empirically.

Their finding indicates that their panel regression model could explain almost half of the

variation in options trading volume, which offers us many insights into the determinants of

options trading volume.

Moreover, another branch of literature explored the essence and motivation of

options trading. They are interested in investigating the speculation in options trading,

particularly, a lot of literature showed that gambling trading is one of the most popular

motivations for option trading behaviors. Bauer et al. (2009) found that most investors

experienced larger losses in their option investment than the losses they experienced in

equity investment. The authors verified that it is due to the bad timing of options trading

for investors. The paper also ruled out hedging as a key motivation for the trading behaviors
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in the options market. Rather, it claims that gambling motivation is the dominant one in

explaining the market. This paper broadens our horizons in options trading and introduced

gambling motivation into our vision. We empirically test the gambling motivation in the

last section of the paper following this literature. Meanwhile, some other literature further

investigated the relationship between gambling preference and option trading behaviors.

Byun and Kim (2016) studied the topic and found that options with higher lottery potential

are overpriced and have lower returns. Blau et al.(2016) found that the ratio of call option

volume over total options volume strongly associates with investors’ preference for stocks

with lottery potentials. They also claimed that such preference has a significant effect on

the volatility of the underlying asset. Kumar (2009) even listed 3 key features to select

lottery-like assets: low asset price, high volatility, and high skewness of return. Our paper

referenced this literature and used their selection methods in our empirical work.

Even though all the above papers provide us many thorough insights about trading

behaviors in the options market, none of them answered the question we mentioned above

that what kind of options contracts are preferred and traded frequently by investors, and

how investors would choose their most profitable strike prices in options market when there

are hundreds of contracts available to them. Therefore we use this paper to fill in the gap

and answer the question empirically.

3.3 Data and Stylized Facts

3.3.1 Data Description

The goal is to study the distribution of trading volumes in options markets. The

desired dataset should contain contract-level data, where we can see daily fluctuations in

prices and trading volumes of options with different strike prices and maturities. To see

such fluctuations, we want the market to be very active. That is to say; we want sufficient

participants in the market and high daily trading volumes. At the same time, we want to

study the behavior of a representative investor in a broad market rather than in a market of

some specific security or commodity. Thus this paper uses S&P 500 options data from the

Commodity Research Bureau (CRB), which satisfies all our needs mentioned above. The
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CRB collects the data from the Chicago Board Options Exchange (CBOE). In this dataset,

we have more than 20 years of daily data of S&P 500 options, from January 2, 1990, to June

6, 2012. The dataset includes the open price, close price, last bid, last ask of all S&P 500

options with different strike prices and maturities. Daily trading volume and open interest

are also available for both put and call contracts in the dataset. The entire CRB dataset

contains a wide variety of classes of options, such as SPX, SPXW, LEAPS, XSP, etc. 12

To make our analysis more representative and make our models easier to build, we follow

Metaxoglou and Smith (2011), only use standardized contracts and drop classes SXZ, SPB,

LSW, LSX, LSY, LSZ, XSC, XSB, XSK, XSL, XSO, and XSP.

The strike price of an option is the price fixed by the contract at which the option

can be exercised. A holder of a call option can buy the underlying asset from the opponent

at the strike price. A holder of a put option can sell the underlying asset to the opponent

at the strike price, both before the contract expires on the maturity date.

Options are categorized into three groups using the strike price, in the money, at

the money, and out of the money. In-the-money options are those that have positive payoffs

if exercised immediately. Call options with strikes lower than the current underlying asset

price and put options with strikes higher than the current underlying asset price are in

the money. The immediate payoff from exercising an in-the-money option is called the

intrinsic value of the option. Out-of-the-money options, on the other hand, are those that

have negative payoffs if exercised immediately, and as a result, they will not be exercised

immediately. Call options with strikes higher than the current underlying asset price and

put options with strikes lower than the current underlying asset price are out of the money.

An out-of-the-money option has 0 intrinsic value. The remaining options are at the money.

They are options with strikes equal or very close to the current underlying asset price.

When an investor buys an option, he is said to be in a long position of that

option, and the seller of this option, called the writer, is said to be in a short position. An

1SPX is the flagship contract of CBOE’s suite of S&P 500 index products. SPXW are the contracts with
weekly expiration dates. LEAPS is short for Long-term Equity AnticiPation Securities, and LEAPS options
have expiration dates up to three years into the future. XSP contracts are 1/10 the size of the standard
SPX contract.

2For more details, see http://www.cboe.com/products/stock-index-options-spx-rut-msci-ftse/s-p-500-
index-options.
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investor’s long positions and short positions of the same option cancel out each other, and

those positions are said to be closed. Positions are also closed when options are exercised.

American options can be exercised before the maturity date, and European options can only

be exercised on the maturity date. All options in our dataset are European. The positions

that are not closed in one of the two ways described above are said to be outstanding or

open. Open interest is the total number of outstanding options at the end of a trading day

in our dataset. Volume is the total number of contracts traded on a trading day. Last price

is, as the name suggests, the price at which the last option is traded on a trading day. The

bid price is the highest price in the order book at which someone is willing to buy an option,

and the ask price is the lowest price in the order book at which someone is willing to sell an

option. Last bid and last ask are, again as their names suggest, the last bid price and the

last ask price in the order book on a trading day that cannot find a counterpart to lead to

a trade. Therefore typically on any trading day, the last bid is lower than or equal to the

last price, and the last ask is higher than or equal to the last price. Return is the realized

return of a contract, calculated by the payoff divided by the last price minus 1. If an option

is exercised, its payoff is the absolute difference between its strike price and the underlying

index on the maturity day. If an option is not exercised, its payoff is 0, and thus its return

is -1.

In our dataset, each observation identifies a call or put option on a trading day,

which matures on a specific future date with a specific strike. More than half of the ob-

servations are considered inactive options in that they have 0 trading volume or a 0 last

price on that day. After dropping those inactive options, the total number of observations

is 413390 for call options and 614402 for put options. The summary statistics of the dataset

are given in table 3.1. It should be noticed that our dataset contains only European options,

so we are narrowing down our question of interest to the distribution of trading volumes

in European options markets, and later in this paper, our theoretical model is based on

European option assumptions.

The mean and median underlying S&P 500 index are 1041.37 and 1116.21 for

call options and 1051.76 and 1125.07 for put options. The fact that the S&P 500 index

has different means and standard deviations for the two types is due to the nature of this

72



Table 3.1: Summary statistics of S&P 500 options

Count Mean Median S.D. Min Max

Call Option

S&P 500 431679 1041.374 1116.21 304.6558 295.46 1565.15

Strike Price 431679 1068.598 1145 333.963 100 3000

Open Interest 431679 13781.6 5893 23323.6 0 295814

Volume 431679 1098.768 110 3269.651 1 158635

Last Price 431679 41.23456 17 74.72939 .01 1294.4

Last Bid 431679 40.62989 16.38 74.67551 0 1286.4

Last Ask 431679 42.13959 17.9 75.2224 0 1290.2

Return 431679 -.0461376 -1 18.79643 -1 7021.8

Put Option

S&P 500 635336 1051.763 1125.07 309.9013 295.46 1565.15

Strike Price 635336 957.177 1005 313.3035 50 3000

Open Interest 635336 17047.02 6989 27729.94 0 370769

Volume 635336 1259.152 125 3772.888 1 200777

Last Price 635336 28.73371 10 64.61985 .01 7617

Last Bid 635336 28.00411 9.25 63.66305 0 1890.6

Last Ask 635336 29.34724 10.25 64.28291 0 1894.5

Return 635336 -.4963176 -1 5.674132 -1 2746.467

The table shows the summary statistics of S&P 500 European options.

contract-level dataset. The mean is not the true historical daily average of the index but

the average of the underlying index of all historical contracts for both put and call options.

The fact that both mean and median S&P 500 are higher for put options is suggesting that

investors might prefer trading call options, the right to buy, when the underlying index is

lower, and they might prefer trading put options, the right to sell, when the underlying

index is higher. The mean and median open interest of the put options are 17047.02 and

6989, which are much larger than those of the call options of 13781.60 and 5893. The mean

and median daily trading volumes of the put options are 1259.15 and 125, which are also

larger than those of the call options of 1098.77 and 110. From comparing the mean and

median open interest and trading volume, we can see that investors clearly prefer trading

put options. This preference is likely because most investors in the options market are using

options as risk management and hedging tools for their long positions in the equity market.

Table 3.2 exhibits the structure and a part of the trading data on September 18,

2006, which contains put and call options of 6 strikes (from 1300 to 1335) that mature in 33
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Table 3.2: Snapshot of the dataset on Sept. 18, 2006

Expiration Date Strike Price Open Interest Volume Last Price S&P 500

Call

21-Oct-06 1300 85408 7647 34.6 1321.18

21-Oct-06 1305 4940 9 32 1321.18

21-Oct-06 1310 10693 51 27 1321.18

21-Oct-06 1315 12607 116 23 1321.18

21-Oct-06 1320 9639 2562 19.5 1321.18

21-Oct-06 1325 60017 15327 17 1321.18

21-Oct-06 1330 12425 5473 13.5 1321.18

21-Oct-06 1335 20526 1887 11.2 1321.18

Put

21-Oct-06 1300 84742 15301 8 1321.18

21-Oct-06 1305 15169 1276 8.7 1321.18

21-Oct-06 1310 20897 8939 10 1321.18

21-Oct-06 1315 7277 701 11.6 1321.18

21-Oct-06 1320 9461 1015 13.2 1321.18

21-Oct-06 1325 10028 13744 15.1 1321.18

21-Oct-06 1330 2704 70 16.4 1321.18

21-Oct-06 1335 1533 19 20.4 1321.18

The table shows the snapshot of the dataset on Sept. 18, 2006.

days (on October 21, 2006). The underlying S&P 500 index was 1321.18. The put option

prices increased with the strike, from 11.2 to 34.6 dollars per contract. Put options are

rights to sell the underlying index at the strikes. The higher the strike is, the more value

this right has to the holder. Similarly, the call option prices decreased with the strike, from

8 to 20.4 dollars per contract. The highest trading volume of put options was 15301, which

appeared at the strike of 1300, and that of the call options was 15327, which appeared at

the strike of 1325. Both types of options saw their highest trading volumes at strikes that

were slightly out of the money. At the same time, the second-highest trading volume of put

options was 13744 at the strike of 1325, where we saw the highest trading volume of call
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options. The second-highest trading volume of call options was 7647 at the strike of 1300,

where we saw the highest trading volume of put options. We observe investors preferring

strikes of one type of option (call or put) where the opposite type is the most active. This

is probably because option market participants use strategies such as a straddle to place

volatility bets of the underlying asset.3

We use trading volume rather than open interest in our analysis because trading

volume is a more sensitive and direct measure of investors’ trading behavior in different

contracts. A lot of literature, such as Roll et al. (2010) and Chan et al. (2002), have shown

that trading volume does contain useful information in explaining behaviors in financial

markets. Trading volume and open interest are highly correlated. We would check our

results using open interest data in future analysis.

3.3.2 Stylized Facts

We observe the following stylized facts in the S&P 500 index option dataset.

1. We find that the average strike price weighted by open interest is always closely

following the underlying S&P 500 index. This pattern holds for both call and put

options. The average strike prices for call and put options are calculated respectively

using equation 3.1.

µK,t =

∑nt
i=1Kitoitit∑nt
i=1 oitit

(3.1)

µK,t is the average strike price of all call or put options traded on the day t. Kit is

the strike price of contract i traded on day t. A contract is uniquely identified by its

strike price and maturity. The corresponding open interest for that contract is oitit.

nt is the total number of different call or put options traded on the day t. In addition,

we also computed the average strike price weighted by trading volume and plotted

their trends for both put and call options in figure 3.1.

2. The average put strike price is almost always lower than the underlying S&P 500

index, while the average call strike price is almost always higher. Investors in the

3A straddle is simultaneously buying a put option and a call option with the same strike and maturing
on the same date. A straddle is profitable when there are big swings in the underlying asset price, regardless
of the direction of the swings, so it is a volatility bet.
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options market on the aggregate level prefer contracts out of the money for both put

and call options. The implication is that investors probably use options as hedging

tools. When investors hold short positions in the underlying index, they want to insure

themselves from unexpected price increases and have the right to buy the underlying

index at a lower strike price. Similarly, when investors hold long positions in the

underlying index, they want to hedge against unexpected price drops and have the

right to sell the underlying index at a higher strike price. This hedging incentive is

consistent with our observation in table 3.1 that investors prefer put options over call

options because they use options to hedge their long positions in the equity market. In

addition, this finding not only holds for average strike price weighted by open interest,

but also holds for average strike price weighted by trading volume. It turns out that

using trading volume as weight provides us a more volatile time series plot because

trading volume is more volatile than open interest. This is because open interest

represents the subjective willingness of opening new positions, while trading volume

represents both opening and closing positions. Investors could trade passively if they

want to close their existing positions. Therefore, open interest would be a smoother

and preciser metric for our target. We used open interest rather than trading volume

as our benchmark through the analysis in the paper.

3. Slightly-out-of-the-money options are traded and held the most. We plot the time

series of trading volume shares and open interest according to their moneyness on

each trading day. Moneyness describes the relative position of the underlying index

(S0) against the option strike (K), and here we measure moneyness with the ratio

S0/K. For call options, we define that one option is in the near-out-of-the-money

(NOTM) group if it satisfies 0.8 ≤ S0/Kcall < 1, and it is in the middle-out-of-the-

money (MOTM) group if it satisfies 0.6 ≤ S0/Kcall < 0.8. We define one option is

in the near-in-the-money (NITM) group if it satisfies 1 < S0/Kcall ≤ 1.2, and it is

in middle-in-the-money (MITM) group if it satisfies 1.2 < S0/Kcall ≤ 1.4. Similarly,

we define those groups for put options. We can easily see from figure 3.2 that on any

trading day, the shares of these 4 moneyness groups sum up to almost 1, meaning that
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Figure 3.1: Option average strikes and the underlying S&P 500 index

(a) Call, weighted by trading volume (b) Call, weighted by open interest

(c) Put, weighted by trading volume (d) Put, weighted by open interest

The figure shows the relative positions of the option average strikes and the underlying S&P 500

index. The average put strike price is almost always lower than the underlying S&P 500 index,

while the average call strike price is almost always higher. Investors in the options market on

the aggregate level prefer contracts out of the money for both put and call options.

there are few active contracts that are deep in or out of the money. Deep-in-the-money

and deep-out-of-the-money groups are defined by S0/K being less than 0.6 or greater

than 1.4, and they are not shown in the plot. The NOTM group almost always has

the highest share by a significant margin no matter what metrics we use. Very few

investors choose to trade options that are far out of or in the money, making those

shares almost zero. The shares of daily open interest among four moneyness groups

are closer to each other than the shares of daily trading volumes, and the pattern
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is robust in both call and put options. That is, investors prefer to hold and trade

slightly-out-of-the-money options, both puts and calls.

Figure 3.2: Shares of options trading volume by moneyness group

(a) Call options trading volume shares (b) Call options open interest shares

(c) Put options trading volume shares (d) Put options open interest shares

The figure shows the shares of options trading volume by moneyness group from 1990 to 2012.

The NOTM group almost always has the highest share by a significant margin, no matter what

metrics are used. The shares of daily open interest among four moneyness groups are closer to

each other than the shares of daily trading volumes, and the pattern is robust in both call and

put options.

We thus want to study the investors’ preference for slightly-out-of-the-money op-

tions empirically, and we hope to provide some realistic guidance for investors in choosing

options. In section 3.4, we first look into how the distribution of option open interest moves

with the underlying index using a structural vector auto-regression (SVAR) model and a
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vector error-correction model (VECM). Then we study the relationship between the implied

volatility of the underlying index and the relative position of the weighted average strike.

After that, we simulate the return series of three strategies to show that slightly-out-of-

money options are the most favorable ones to investors. Lastly, we provide evidence for

using gambling motivation as a candidate explanation for the preference for slightly-out-of-

the-money options.

3.4 Empirical Results

3.4.1 Structural Vector Auto-regression (SVAR) Model

We start with further investigating the pattern we see in figure 3.1, and want

to study how the distribution of option open interest, particularly the options’ weighted

average strike price is associated with the underlying index. We estimate a VAR model

based on daily data for yt = (lnSt, µlnK,t)
′. lnSt is the natural log of the underlying S&P

500 index at time t. µlnK,t is the open-interest-weighted average log strike price defined as

µlnK,t =

∑nt
i=1 lnKitoitit∑nt

i=1 oitit
. (3.2)

Both variables are in logs so that numbers in the entire time horizon have the same scale.

We estimate the model

A0yt = α+

L∑
i=1

Aiyt−i + εt, (3.3)

to study the short-run relationship between the two variables of interest. We restrict our-

selves only to use put options that mature in one month or less because firstly, we are

looking at the short-run impacts of exogenous shocks. Secondly, this restriction enables us

to have data on every trading day without overlapping, which means that contracts on the

same trading day must mature on the same day too. L is the maximum lag in the VAR

model. The structure or the short-run constraint imposed on the model is

A0 =

 1 0

−a21 1

 ,Ωε =

ω1 0

0 ω2

 .
Essentially we are assuming that the same-day impact between the underlying index and

the average log strike price is unidirectional. Movements in the underlying index affect
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investors’ choices of put option strike prices but not vice versa. Therefore shocks can be

orthogonally decomposed into two parts, one broad-market shock, and one option-specific

shock. The broad-market shock may include fluctuations in the general economy and the

introduction of new policies. On the other hand, option-specific shocks can be changes

in investors’ risk appetites and expectations on market volatility. Broad-market shocks

have instantaneous effects on both the S&P 500 index and investors’ choices of put options

strikes, while there is at least a one-day lag in the response of the underlying index to

option-specific shocks. Algebraically, the reduced-form errors et can be written as

et =

 elnSt
t

e
µlnK,t

t

 =

 1 0

−a21 1


−1  εbroad−markett

εoption−specifict

 =

 1 0

a21 1


 εbroad−markett

εoption−specifict

 . (3.4)

Our primary interest is in a21, how broad-market shocks can impact the choices of

strike prices. We first set L to 30 and estimate equation 3.3, and then we pick the optimal

lag as the smallest optimal lag from AIC and SBIC and re-estimate the model. Table 3.3

shows the result in the first row, where the average log strike price µlnK,t is weighted by

open interest and the endogenous variables are lnSt and µlnK,t. A broad-market shock

causing a 1% increase in the underlying index causes a 0.040% increase in the average log

strike. The two endogenous variables move in the same direction, but the aggregate position

in put options held by the market is quite insensitive to broad-market shocks. Contracts are

traded but not easily written or settled. Positions are opened and closed on the individual

level but not much on the market level.

This finding is confirmed by the rest of the table 3.3. The levels are non-stationary

so we take the first difference of them, replace the right-hand side with y = (∆ lnSt,∆µlnK,t)
′,

and re-estimate equation 3.3. The second row in table 3.3 shows very similar results to the

first row. The third and fourth rows show results when we use trading volume instead of

open interest as weight in equation 3.2 to calculate the average log strike. If, instead of

looking at what contracts the market holds, we look at what contracts the market trades,

a21 becomes 10 times as large. A broad-market shock causing a 1% increase in the underly-

ing index causes a 0.408% increase in the average log strike. Trading behavior is much more

reactive to broad-market shocks than writing and settling contracts. Table 3.3 echos with

80



figure 3.1 where we see the trading-volume-weighted average strike in the left panel follows

the S&P 500 index closer than the open-interest-weighted average strike in the right panel.

Table 3.3: Impact of broad-market shocks on put option average log strike price

Weight Endogenous variables L a21 s.e. 95% CI

Open interest Level 2 0.040 0.015 (0.011, 0.070)

Open interest First difference 2 0.044 0.015 (0.014, 0.074)

Trading volume Level 23 0.408 0.024 (0.362, 0.454)

Trading volume First difference 21 0.418 0.024 (0.371, 0.464)

The table shows the impact of broad-market shocks on put option average log

strike price, average log strike price µlnK,t is weighted by open interest and trading

volume separately. A broad-market shock causing a 1% increase in the underly-

ing index causes a 0.040% increase in the average log strike for the strike price

weighted by open interest. The two endogenous variables move in the same di-

rection, but the aggregate position in put options held by the market is quite

insensitive to broad-market shocks. Contracts are traded but not easily written

or settled. Positions are opened and closed on the individual level but not much

on the market level.

Figure 3.3 exhibits the impulse response functions corresponding to the models in

table 3.3. The top two plots use open-interest-weighted average log strike, while the bottom

two use trading-volume-weighted average log strike. The left two plots are the level models,

while the right two are the first-difference models. Each of the plots is in the same order

as A−1
0 . We confirm our findings above with the plots and further notice that the impulse

responses in the left panel have long terms. Moreover, we see in the left two plots that the

response of the average log strike on the impulse of the underlying index (in the bottom

left) increases with time. Investors in the options market adjust their positions slowly and

gradually with the underlying index, and the market adjusts its aggregate position slower.

We provide similar but weaker evidence using call options data in table 3.4 and

figure 3.4 below.
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Table 3.4: Impact of broad-market shocks on call option average log strike price

Weight Endogenous variables L a21 s.e. 95% CI

Open interest Level 3 0.010 0.016 (-0.021, 0.040)

Open interest First difference 2 0.009 0.016 (-0.023, 0.040)

Trading volume Level 5 0.349 0.022 (0.306, 0.392)

Trading volume First difference 18 0.354 0.022 (0.310, 0.398)

The table shows the impact of broad-market shocks on call option average log strike

price. Similar but weaker evidence has been found in the case of call options.

3.4.2 Cointegration and Vector Error-Correction Model (VECM)

We have seen the short-run association between the S&P 500 index and the average

strike price in section 3.4.1. It is necessary for us to continue to test the relationship between

those two variables in the long run. Given the non-stationarity shown in the plots in section

3.3.2, the cointegration test and the corresponding VECM are the best and most straight

forward approaches to serve the purpose. Therefore we organize the section into three

parts. First, we use the Johansen Test to test the existence and order of the cointegration

relationship between µlnK,t and lnSt. Then we use the VECM to test the strength of this

relationship empirically. Last, we use the ARIMA model to interpret and further discuss

the results.

In this section, we still use the S&P 500 index put options that mature within one

month. The µlnK,t and lnSt are both I(1) processes. The results of the Augmented Dickey-

Fuller (ADF) test are shown in table 3.5. The statistics and 5% critical values of the ADF

test and corresponding p-values are recorded for each variable. We include a time trend in

all the ADF tests. The p-values of µlnK,t and lnSt are 0.80 and 0.98 respectively, so these

two variables are both non-stationary, but their first differentiation terms ∆ lnSt,∆µlnK,t

are stationary. Then we test the existence of the cointegration relationship between these

two variables. We use the Johansen test to check the hypothesis, and the results are shown

in table 3.5. The maximum lag is 2, according to the BIC lag selection method. It turns

out that when the rank is 0, both trace statistic and max statistic are greater than the 5%
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critical values, which indicates that we should reject the null hypothesis that there is no

cointegration relationship. When the rank is 1, the corresponding statistics are both 2.63

and less than 5% critical value of 3.76. We could not reject the null hypothesis that there

is one cointegration relationship. Therefore the Johansen test suggests the existence of one

cointegration equation.

Table 3.5: Augmented Dickey-Fuller Test and Johansen

Test

ADF test

Variable Z-stat 5% c.v. P-value

µlnK,t -1.56 -3.41 0.80

lnSt -0.63 -3.41 0.98

∆µlnK,t -67.79 -2.86 0.00

∆ lnSt -58.85 -2.86 0.00

Johansen Test

Rank trace-stat 5% c.v. max-stat 5% c.v.

0 638.38 15.41 635.75 14.07

1 2.63 3.76 2.63 3.76

The table shows the results of the ADF test and the

Johansen Test for the S&P 500 index put options that

mature within one month. The µlnK,t and lnSt are

both I(1) processes, their first differentiation terms

∆ lnSt,∆µlnK,t are stationary. In addition, the Jo-

hansen test suggests the existence of one cointegration

equation.

Next, we use the VECM method to find the strength of the relationship. Given

the findings in our stylized facts and ADF tests, we use the VECM specified in the equation

3.5

∆yt = α(β′yt−1 + µ) + Σp−1
i=1 Γi∆yt−i + γ + εt, (3.5)
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where yt = (µlnK,t, lnSt)
′. α is a 2× r adjustment coefficient matrix, and β is a 2× r vector

of the parameters in the cointegrating equation. Here r is the number of independent

cointegrating vectors, and p = 2 is the lag number for the underlying VAR model selected

from the BIC method. Γi’s are 2× 2 matrices of coefficients. εt is a 2× 1 vector of errors.

We cannot estimate (α, β) without further assumptions. Therefore we assume that there

is a linear trend in the original time series of µlnK,t and lnSt and there is not a trend

but a constant intercept in the cointegration equation. αµ is a 2× r matrix that captures

the linear trend in yt, and γ is a 2 × 1 vector that captures the constant intercept in the

cointegration equation. γ is orthogonal to αµ so that the parameters are all identifiable

in the specification of VECM. The cointegration equation estimated from the VECM is

µlnK,t − 0.9732 lnSt − 0.1355 = 0. A 1% increase in the underlying index is associated

with an around 1% increase in the weighted average strike. Such mapping strengthens our

empirical test results and successfully captures the feature of the plots in section 3.3.2. So

far, we have shown that µlnK,t moves closely with lnSt in both the short run and the long

run.

3.4.3 Relative Position of Average Strike

There is one question left unanswered in sections 3.4.1 and 3.4.2. Now that we

know how the overall distribution of option contracts held and traded by the market moves

with the underlying index, we are interested in further depicting the position of the average

strike relative to the underlying index and asking whether this relative position is connected

with the volatility of the underlying index. Does the highest open interest contract tend

to be some percent away from the index, or does it tend to be some standard deviations

away from the index? In other words, if volatility in the underlying index doubles, does the

weighted average strike also move further from the index?

We continue to use options that mature in one month or less. The daily open-

interest-weighted average strike is defined by equation 3.1 and the relative position can be

defined as

P 1
t =

µK,t
St
− 1. (3.6)
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Alternatively, the daily open-interest-weighted average log strike is defined by equation 3.2

and the relative position can be defined as

P 2
t = µlnK,t − lnSt. (3.7)

As we are going to show below, these two definitions give very similar results. Table 3.6

summarizes the two relative positions for put and call options and figure 3.5 shows the

distributions. Depending on the definition, the put option weighted average strike is 8 to

9% below the underlying index, with a standard deviation of 5 to 6% and a median of 7 to

8% below the underlying index. The call option weighted average strike is around 1% above

the underlying index, with a standard deviation of around 5% and a median of around 1%

above the underlying index. We confirm the stylized fact that the aggregate positions are

slightly out of the money. Put options are deeper out of the money on the aggregate level

than call options. In other words, put option weighted average strike is further from the

underlying index. This is consistent with the right panel in figure 3.1.

Table 3.6: Summary Statistics of Relative Positions

Count Mean S.D. Skewness Kurtosis Median

Put

P 1 5326 -7.84% 5.18% 0.064 5.165 -7.50%

P 2 5326 -9.08% 6.12% -0.740 4.960 -8.32%

Call

P 1 5324 1.58% 5.25% 1.856 12.501 0.96%

P 2 5324 1.04% 4.90% 1.036 9.889 0.67%

The table shows the summary statistics of relative positions for both

put and call options. The put option weighted average strike is 8 to

9% below the underlying index, with a standard deviation of 5 to 6%

and a median of 7 to 8% below the underlying index. The call option

weighted average strike is around 1% above the underlying index, with

a standard deviation of around 5% and a median of around 1% above

the underlying index. Put options are deeper out of the money on the

aggregate level than call options.
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All relative positions are very concentrated around the mean. For put options, P 1

falls within one standard deviation from the mean 73.75% of the time, and P 2 falls within

one standard deviation from the mean 74.54% of the time. For call options, the numbers

are 79.32% and 76.99%, respectively.

Then we try to answer whether the weighted average strike moves further away

from the index as volatility increases by running a simple linear regression of the relative

position on VIX, the implied volatility measure of the S&P 500 index. The prior is that

the relative position of the weighted average strike will be deeper on days when the implied

volatility is higher, whether in or out of the money. Both relative positions and the VIX

are stationary according to the Dicky-Fuller test. Table 3.7 presents the results and agrees

with our prior. The coefficient on VIX always has the same sign as the relative positions,

whether for puts or calls, in or out of the money. Table 3.7 also shows that besides the

mean and the median, another important difference between the distributions of relative

positions of puts and calls is that there are more days on which the weighted average strike

is in the money for calls than for puts.

Table 3.7: Regressions of Relative Position on VIX by Option Type and Moneyness

Put Call

OTM ITM ITM OTM

P 1 P 2 P 1 P 2 P 1 P 2 P 1 P 2

b/t b/t b/t b/t b/t b/t b/t b/t

VIX -0.087*** -0.126*** 0.215*** 0.158*** -0.053*** -0.040*** 0.364*** 0.305***

(-9.828) (-11.743) (12.675) (9.519) (-5.095) (-3.786) (56.968) (54.692)

R2 0.019 0.026 0.419 0.354 0.012 0.006 0.501 0.496

N 5101 5159 225 167 2087 2285 3237 3039

The table presents the regression results of running relative position on VIX by

option type and moneyness group. The coefficient on VIX always has the same sign

as the relative positions, whether for puts or calls, in or out of the money. Besides

the mean and the median, another important difference between the distributions

of relative positions of puts and calls is that there are more days on which the

weighted average strike is in the money for calls than for puts.
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We can imagine ourselves looking at all the daily distributions of open interest over

strike during the sample period. Table 3.7 tells us that when the distribution is centered

around some point on the left of the underlying index, higher implied volatility in the index

tends to move the distribution further to the left, and vice versa. We then continue to

ask, apart from the effect of implied volatility on the mean, whether implied volatility can

also affect the standard deviation of the distribution. In other words, we now know that

volatility makes the relative position of the weighted average strike more spread out on the

aggregate level. We wonder if volatility does the same for the daily distributions on the

contract level.

We define the standard deviations of the daily distributions of open interest, σK,t

and σlnK,t, in equations 3.8 and 3.9, corresponding to our definitions of µK,t and µlnK,t in

equations 3.1 and 3.2,

σK,t =

√∑nt
i=1(Kit − µK,t)2oitit∑nt

i=1 oitit
, (3.8)

and

σlnK,t =

√∑nt
i=1(ln(Kit)− µlnK,t)2oitit∑nt

i=1 oitit
. (3.9)

Then we run a simple linear regression of the standard deviation on VIX. We are expecting

that on days when the implied volatility is higher, the distribution of open interest has

a higher standard deviation and is thus more spread out, which means options in deeper

positions are more likely to be held by the market. Both standard deviations are stationary

according to the Dicky-Fuller test. Table 3.8 presents the results. We see that, indeed, VIX

has positive and significant effects on the standard deviations of the daily open interest

distributions. Implied volatility not only shifts the distribution’s position but also changes

its shape.

3.4.4 Preference for Slightly-out-of-the-money Options with Simulations

In section 3.4.3, we have seen how the relative position of the weighted average

strike moves with the implied volatility. We now proceed to show why investors prefer

slightly-out-of-the-money options using simulations. We simulate the daily return series of

three trading strategies, naked option, full hedge, and delta hedge, with historical data. The
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Table 3.8: Regressions of Standard Deviation of Daily Open

Interest Distribution on VIX by Option Type

Put Call

σK,t σlnK,t σK,t σlnK,t

b/t b/t b/t b/t

VIX 378.320*** 0.429*** 314.827*** 0.253***

(40.684) (46.587) (36.859) (34.645)

R2 0.237 0.290 0.203 0.184

N 5326 5326 5324 5324

The table presents the regression result of running stan-

dard deviation of daily open interest distribution on VIX

by option types. VIX has positive and significant effect-

s on the standard deviations of the daily open interest

distributions. Implied volatility not only shifts the dis-

tribution’s position but also changes its shape.

naked option strategy means buying one option each day and selling it the next day. The

full hedge strategy means buying/selling one share of the underlying index and buying one

put/call option at the same time each day, and selling the portfolio the next day. The delta

hedge strategy means buying one share of the underlying index and buying − 1
∆ put/call

options at the same time each day and selling the portfolio the next day. ∆ is the option

price sensitivity to the underlying index, calculated from the Black-Scholes model. ∆ is

negative for put options and positive for call options, so buying − 1
∆ put options means

a long position in put options and buying − 1
∆ call options means a short position in call

options.

We choose an option at the strike closest to X% moneyness in each of the three

strategies. Here X% is the relative position of the strike defined as a percentage of the

underlying index,

X =
K

S
∗ 100. (3.10)
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Put options are out of the money when X < 100, and call options are out of the money

when X > 100. We compute the daily return series of the three strategies for different X

values ranging from 92 to 108. We summarize the simulation results in table 3.9.
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Table 3.9: Simulation Results of Three Trading Strategies

Naked Option

Put Call

X Mean S.D. VaR Median Mean S.D. VaR Median

92 -0.693 48.963 -50.000 -8.000 -0.427 15.894 -21.371 -0.376

94 -1.055 44.025 -50.000 -7.708 -0.374 16.738 -23.084 -0.447

96 -1.531 39.650 -47.761 -7.063 -0.314 19.029 -26.586 -0.532

98 -1.135 35.763 -44.270 -5.438 -0.541 20.684 -32.326 -0.826

100 -0.973 29.130 -40.406 -4.138 -0.003 26.813 -38.920 -1.442

102 -1.312 24.183 -36.252 -3.499 1.396 43.152 -49.223 -2.632

104 -0.948 20.960 -31.964 -2.396 2.726 52.947 -53.000 -4.954

106 -0.705 18.522 -29.177 -1.620 2.924 56.562 -53.846 -4.153

108 -0.602 17.240 -26.136 -1.298 3.792 59.947 -53.846 0.000

Full Hedge

92 0.005 1.010 -1.556 0.018 0.036 0.872 -1.229 0.035

94 0.006 0.922 -1.430 0.014 0.055 0.810 -1.107 0.041

96 0.010 0.841 -1.281 0.005 0.050 0.772 -1.017 0.045

98 0.003 0.754 -1.104 -0.007 0.035 0.732 -1.013 0.058

100 0.003 0.636 -0.899 -0.014 0.035 0.733 -1.083 0.082

102 -0.017 0.622 -0.871 -0.008 0.030 0.843 -1.302 0.089

104 -0.014 0.616 -0.921 -0.015 0.032 0.968 -1.514 0.084

106 -0.002 0.651 -0.962 -0.009 0.036 1.048 -1.625 0.080

108 0.010 0.737 -1.041 -0.004 0.041 1.117 -1.722 0.081

Delta Hedge

92 -0.249 2.708 -3.245 -0.292 0.053 0.915 -1.210 0.036

94 -0.101 1.161 -1.597 -0.168 0.072 0.836 -1.072 0.038

96 -0.052 0.761 -0.963 -0.106 0.074 0.804 -0.953 0.041

98 -0.031 0.592 -0.727 -0.063 0.058 0.697 -0.864 0.043

100 -0.024 0.502 -0.593 -0.041 0.047 0.532 -0.608 0.055

102 -0.050 0.633 -0.844 -0.045 0.036 0.603 -0.816 0.080

104 -0.041 0.681 -1.002 -0.046 0.039 0.721 -1.049 0.099

106 -0.024 0.700 -1.053 -0.032 0.050 0.831 -1.289 0.123

108 -0.007 0.804 -1.135 -0.026 0.050 0.908 -1.456 0.113

The table shows the simulation results of the naked option, full hedge and delta

hedge trading strategies.

Table 3.9 shows the summary statistics of the daily return series of the three
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trading strategies. All numbers are percentages. We look at the mean, standard deviation,

value at risk (VaR) as the 5th percentile and the median of the return series. Ideally, the

investor looks for a mean as high as possible, a standard deviation as low as possible, a VaR

as high as possible, and a median as high as possible.

Almost immediately, an investor who has some risk aversion prefers hedging over

taking naked option positions. The standard deviations of the naked option strategy are 10

to 50 times higher than those of the hedging strategies, and the VaR’s 20 to 50 times lower.

However, the “Naked Option - Call” panel is worth further attention. The mean return of

buying naked call options increases with X and reaches a stunning 3.792% when we choose

the deepest out of the money options from our list, X = 108. At the same time, the median

return of the same strategy decreases with X and can be as low as -4.153% when X = 106.

When X = 108, the call options are very deeply out of the money so that their premiums

are quite insensitive to daily underlying index changes and have a small trading volume on

many of the trading days. The mode and the median return of such options are thus 0%.

When we exclude such 0’s from the return series, the median becomes -13.42%. Therefore

we know the positive mean returns of the out-of-the-money call options are driven by large

positive outliers. The return distributions of those options are likely to be highly skewed.

Because of this unique feature, investors may want to use options as their speculation tools,

or lottery. We further discuss this in section 3.4.5.

Now we focus on the lower two panels of table 3.9 and compare among different

X’s. The “Full Hedge - Put” panel sees the highest mean and median returns in the

out-of-the-money options. Although when X = 108 the mean return is also 0.010%, the

median return is negative, making the in-the-money options less attractive. The standard

deviations are the lowest when X is near 100, and so are the VaR’s. Thus, if an investor is

looking for some positive return and wants to avoid too much risk, it is probably the most

reasonable to choose a put option strike near 96-98% of the underlying index. Namely, a

slightly-out-of-the-money put option.

Similarly, in the “Full Hedge - Call” panel, we see the highest median return when

X = 102. The risk measures, standard deviation, and VaR are the lowest when X is near

100. Again an investor doing some risk and return trade-off probably prefers a call option
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strike near 100-102% of the underlying index, thus a slightly-out-of-the-money call option.

We see the same patterns in the “Delta Hedge” panel. It is reasonable to believe that a

risk-averse investor will choose a put option strike near 98-100% of the underlying index

and a call option strike near 100-102% of the underlying index.

Comparing what we observe in table 3.9 to table 3.6 and figure 3.5, we see that the

full hedge strategy and the delta hedge strategy are closer to the behavior of the market, and

our simulation results are very consistent with the data. A real investor in the market may

choose some strategy between full hedge and delta hedge and multiple options at different

strikes simultaneously.

3.4.5 Gambling Motivation for Trading

.

So far, we have studied the investors’ preference for slightly-out-of-the-money op-

tions and the stylized fact that the average strike price always closely follows the underlying

index. In section 3.4.4, we find that the hedging motivation can explain such behavioral

patterns, and at the same time, we find a hint on the skewness of the option return and the

possibility that investors use options as speculation tools and the gambling motivation can

also lead to the choice of slightly-out-of-the-money options. As introduced in the literature

review, gambling motivation can be a good candidate motivation for options trading since

some investors trade options for leverage and risk exposure provided by options, and they

consider options as lotteries and gamble with options. The gambling motivation does not

contradict with our hedging motivation. They could coexist in realistic options trading.

Actually, we also find empirical evidence about the gambling motivation in our analysis, it

provides us a different angle on understanding options trading, and it also indirectly proves

the conclusion about gambling trading in the options market from past literature. All these

findings could be included in the framework of our analysis and let us see a bigger picture

of realistic option trading behaviors.

According to Kumar (2009), there are three key features for an asset to be defined

as a lottery-like asset: low asset price, high return volatility, and high return skewness. If we

consider options, we know that out-of-the-money options have low premiums because of their
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zero intrinsic value. If we measure moneyness with the index-strike ratio S/K, call premiums

increase monotonically with moneyness and put premiums decrease monotonically with

moneyness. Now we want to see what options have high return volatility and high return

skewness. We look at monthly put options that mature in exactly one month from January

1990 to June 2012, so on any given day, the only difference between the contracts is their

strike prices, thus moneynesses. The put options are divided into five groups using the index-

strike ratio of S/K as the criterion. A put option is deeply out of the money (DOTM) if

S/K ≥ 1.2, out of the money (OTM) if 1.01 ≤ S/K < 1.2, at the money (ATM) if

0.99 ≤ S/K < 1.01, in the money (ITM) if 0.8 ≤ S/K < 0.99, and finally deeply in the

money (DITM) if S/K < 0.8. Trading-volume-weighted average returns are calculated

for each of the five groups, followed by 2-year or 24-month historical return variance and

skewness, which are plotted in figure 3.6.

Figure 3.6 only shows plots for three of the five groups, excluding the DOTM and

DITM groups, because both groups have incomplete data. On most of the days during our

sample period, there are neither DOTM nor DITM put options traded, and even if there

are any, the trading volumes are very low and account for very low shares of put options

traded on that day, as shown in figure 3.2.

In the top panel of figure 3.6, we can observe that when put options generally have

low return volatility, all three groups have similar return volatility. During such periods of

history, any group can have the highest return volatility. Based on the plot, it seems that

the ATM group has the highest return volatility most often. However, during periods when

put options have high return volatility, which is right at or after the underlying index’s

periodical bottom according to figure 3.1, the OTM group, without doubt, has the highest

return volatility that can easily be several times of the return volatility of the other two

groups. The ITM group almost always has the lowest return volatility.

In the bottom panel of figure 3.6 patterns are even clearer. The three groups’

Return skewness move closely, with the OTM group line almost always being the highest

and the ITM group line almost always being the lowest.

From the discussion above, we see that OTM options have low premiums, high

return volatility due to the low premiums and the resulting high leverages, and high return
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skewness due to the low probabilities of being executed. Therefore, OTM options best fit

the three features of a lottery-like asset and can best serve speculators’ gambling purpose.

3.5 Conclusion

In this paper, we start by identifying a very robust stylized fact in the options

market that slightly-out-of-the-money options are the most popular in trading volume and

open interest. The open-interest- and trading-volume- weighted average strikes closely

follow the underlying index, being slightly below the index for calls and slightly above

the index for puts. We try to give rationality to this fact and provide instructive insights to

investors for their choices of strike prices. This topic has been rarely covered in the options

literature.

We investigate the association between the weighted average strike price and the

underlying index using SVAR and the VECM with the CBOE dataset. Our empirical work

reveals the mechanism through which the weighted average strike price co-moves with the

index. The choice of option strike moves slowly in the same direction as the underlying

index. The effect of a broad-market shock on the trading-volume-weighted average strike

is 10 times as large as that on the open-interest-weighted average price. From the impulse

response functions, we see that the responses of weighted average strikes are small initially

and grow with time. There is evidence for cointegration in the long run, and a 1% change

in the underlying index is associated with an increase close to 1% in the weighted average

strike.

We try to answer whether the weighted average strike tends to be some fixed

percent away from the underlying index or some standard deviations away. Our results show

that when the implied volatility is higher, option strikes move further from the underlying

index whether in or out of the money, for put or call option, on the aggregate level or the

contract level.

We use simulations with historical data to guide the choice of strikes. We find that

hedging strategies are more consistent with the patterns in our data where investors, taking

both risk and return into consideration, most likely prefer slightly-out-of-the-money options.
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On the other hand, the naked option strategy leads us to think of gambling motivation as a

parallel explanation for such preferences. Therefore, we investigate the gambling motivation

and find that out-of-the-money options have low premiums, high return volatility, and

skewness, so they satisfy the definitions of lottery-like assets and best fit the need for

speculation tools. Both the hedging motivation and gambling motivation can justify the

choice of options that are slightly out of the money.
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Figure 3.3: Impulse response functions of put option average log strike and log of the under-

lying index
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(b) Open-interest-weighted average log strike,

first difference
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(c) Trading-volume-weighted average log strike,
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(d) Trading-volume-weighted average log strike,

first difference

The figure shows the IRF plots of put option average log strike and log of the underlying index.

The impulse responses in the left panel have long terms. The response of the average log strike

on the impulse of the underlying index (in the bottom left) increases with time. Investors in

the options market adjust their positions slowly and gradually with the underlying index, and

the market adjusts its aggregate position slower.
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Figure 3.4: Impulse response functions of call option average log strike and log of the under-

lying index
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(b) Open-interest-weighted average strike, first

difference

0

.005

.01

.015

.02

0

.005

.01

.015

.02

0 2 4 6 8 0 2 4 6 8

irf1, lsp, lsp

irf1, lsp, mlk

irf1, mlk, lsp

irf1, mlk, mlk

95% CI orthogonalized irf

step

Graphs by irfname, impulse variable, and response variable

(c) Trading-volume-weighted average strike,

level
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(d) Trading-volume-weighted average strike,

first difference

The figure shows the IRF plots of call option average log strike and log of the underlying index.

The pattern here is similar to that in put options.
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Figure 3.5: Distribution of Relative Positions
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The figure shows the distributions of relative positions of the price for both put and call options.
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Figure 3.6: Put options historical return variance and skewness by moneyness group
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(b) Skewness
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The figure shows the put option’s historical return variance and skewness by moneyness group.

OTM options have low premiums, high return volatility due to the low premiums and the

resulting high leverages, and high return skewness due to the low probabilities of being executed.

Therefore, OTM options best fit the three features of a lottery-like asset and can best serve

speculators’ gambling purpose.
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