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One of the most compelling problems in physics today is understanding the nature of dark

energy, a mysterious component driving the current accelerated cosmic expansion. The

Dark Energy Spectroscopic Instrument (DESI) and the Rubin Observatory Legacy Survey

of Space and Time (LSST) are Stage-IV Department of Energy (DOE) projects aimed at

better understanding the nature of dark energy and its influence on the evolution of the

universe. While DESI is a spectroscopic survey, and LSST provides multi-band photometry,

their observations are complementary and can be combined to improve measurements of

cosmological parameters.

One area of synergy lies in estimating the redshifts of extragalactic sources. The overlap

between the DESI and LSST footprints is approximately 4,000 square degrees. While DESI

will have a lower density of galaxies per square degree, having spectra for these targets will

help to improve constraints on measured redshift distributions. The first part of the thesis

will focus on developing and testing a state-of-the-art photometric redshift estimation algo-

rithm on simulated LSST data. The algorithm employs a hierarchical Bayesian framework

to simultaneously incorporate photometric, spectroscopic, and clustering information to con-

strain redshift probability distributions of populations of galaxies, as well as provide redshift

xx



estimates of their individual members. Once data from LSST arrives, this method can be

tested and refined through training on real LSST targets whose counterparts lie within the

DESI footprint. This will ultimately improve redshift estimates for other targets in LSST

by providing spectroscopic prior information, and will be especially useful in the context of

tomographic weak gravitational lensing, which derives a significant amount of uncertainty

from imprecise redshift estimates.

Another crucial step in limiting weak lensing systematics involves understanding and miti-

gating image artifacts in the camera. This is important for identifying blended objects, as

well as pinpointing biases in shear measurements. The third chapter of the thesis focuses

on studying the systematics of the LSST instrument response by investigating anomalies in

calibration sequences and developing testing software to analyze irregularities in bias frames.

Making reliable, quantitative measurements that can be compared to requirements at the

1% level is necessary to avoid systematic biases in weak lensing shape measurements, which

are often of the same order as the sensor distortions.

The second half of the thesis is devoted to developing software pipelines in preparation for

the DESI survey. The fourth chapter discusses using a Gaussian mixture model (GMM)

to characterize galaxy magnitudes and colors from DESI targeting data for the purpose of

generating mock spectra. Results from the GMM are compared to density estimates for

these features using extreme deconvolution, which simultaneously models the data and the

noise to provide error-deconvolved distribution functions.

One of the final stages in the processing of mock spectra involves accounting for the noise

contributions due to the atmosphere and the spectrograph response. The last chapter is

devoted to reconfiguring a DESI software package that simulates this response to produce

synthetic spectra for Lyα studies in the Extended Baryon Oscillation Survey (eBOSS). The

original configuration is then used to validate the DESI sky model by comparing real sky

brightnesses with simulated brightnesses generated under similar observing conditions.

xxi



Chapter 1

Introduction

1.1 A history of dark energy

Since its publication in 1915, Albert Einstein’s theory of general relativity has been consis-

tently proven to be the correct description of gravity on large scales (e.g., Dyson et al. 1920;

Abbott et al. 2016; Kramer et al. 2021). The nature of a key feature in his theory, however,

is still under debate. At the time he formulated his field equations, Einstein assumed that

space was neither expanding nor contracting. To accommodate a static universe, Einstein

introduced a cosmological constant, Λ, to his field equations to balance the attractive force

of gravity induced by matter:

Gµν + Λgµν = −8πG

c4
T µν . (1.1)

Not only was this static formulation unstable, but motivation for a cosmological constant

waned after Edwin Hubble’s 1929 discovery that the universe was in fact expanding (see Fig.

1.1). The cosmological constant was generally abandoned until the 1990’s, when Riess et al.
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Figure 1.1: A figure from Hubble’s original paper showing the radial velocities of extragalactic
nebulae as a function of distance. The dark circles and solid line represent the solution to the
velocity-distance relation using individual nebulae, while the circles and dashed line combine
the nebulae into groups. The units of the Y-axis should be in km/s. Figure is from Hubble
(1929).

(1998) and Perlmutter et al. (1999) independently observed that the measured luminosity

distances of Type Ia supernovae were larger compared to models assuming a universe solely

composed of matter and radiation (see Fig. 1.2). This discovery not only proved that cosmic

expansion was accelerating, but it provided the first direct evidence of dark energy as a new

component responsible for driving this acceleration. It also established a new benchmark

model for cosmology, called ΛCDM, describing a universe born in a hot big bang, and

composed of dark energy in the form of a cosmological constant, cold dark matter (CDM),

and baryonic matter – governed by the laws of general relativity.

Although we still lack a compelling theoretical explanation for dark energy, there is a growing

amount of observational evidence supporting the benchmark model. Measurements from a

multitude of probes, including temperature anisotropies in the cosmic microwave background

2



Figure 1.2: Hubble diagram showing the velocity-distance relation for Type Ia supernovae
(SNe Ia). The top panel shows the observed magnitudes of SNe Ia samples as a function
of redshift, along with three different cosmologies. Distance measurements were obtained
by fitting SNe light curves using the Multi-Color Light Curve Shape method (MLCS). The
bottom panel shows the residuals between the data and each model cosmology. The best fit
to the data is a model with 24% matter and 76% dark energy today. Figure is from Riess
et al. (1998).
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(Hinshaw et al. 2013; Aghanim et al. 2020), the baryon acoustic scale in the clustering of

galaxies and opacity fluctuations in the spectra of high-redshift quasars (Zhao et al. 2021;

du Mas des Bourboux et al. 2020), and the deflection of light from background galaxies

due to the gravitational pull of foreground mass concentrations (Asgari et al. 2021; Amon

et al. 2022), are so far in excellent agreement with ΛCDM. The latest results from the

Planck Collaboration1 reveal the current rate of cosmic expansion to be 68km s−1Mpc−1,

and a universe made up of ΩΛ = 68.9% dark energy, ΩDM = 26.1% dark matter, and

Ωb = 4.9% baryonic matter (Aghanim et al. 2020). Next-generation dark energy surveys,

such as the Dark Energy Spectroscopic Instrument (DESI2; DESI Collaboration (2016)), the

Nancy Grace Roman Space Telescope3 (Spergel et al. 2015), Euclid4 (Laureijs et al. 2011),

and the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST5; Ivezić et al.

(2019)), will constrain cosmological parameters to sub-percent precision in order to better

understand the dynamical behavior of dark energy and its influence on the formation of

large-scale structure. These experiments will not only provide stringent tests of ΛCDM, but

they will allow cosmologists to discriminate between alternative theories of dark energy such

as quintessence, which posit dark energy as a scalar field ϕ with a slowly varying energy

density, as well as theories that abandon dark energy altogether, instead suggesting that

general relativity requires modification.

1.2 Measuring cosmic expansion

Insight into the nature and cause of accelerated expansion rests on accurate measurements of

a number of cosmological parameters. In this section we will discuss some of the fundamental

1https://www.cosmos.esa.int/web/planck
2https://www.desi.lbl.gov
3https://roman.gsfc.nasa.gov
4sci.esa.int/euclid/
5http://www.lsst.org/lsst
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parameters used to study cosmic dynamics and expansion. For a more in-depth treatment,

the reader is encouraged to refer to Dodelson (2003), Ryden (2003), and Peacock (1999).

To discuss gravity’s effect on distances in an expanding universe, we first need a way of

quantifying expansion. We introduce a function called the scale factor a(t) to relate phys-

ical separations to their separation due to expansion at time t since the Big Bang. The

scale factor is a dimensionless, non-negative number with a present-day value defined to be

a(t0) = 1, where t0 is today. It can be expressed in terms of the cosmological redshift, z, of

electromagnetic radiation emitted at time temit:

a(temit) = (1 + z)−1 . (1.2)

To quantify the rate of change of the scale factor, we introduce the Hubble rate, H(t):

H(t) ≡ ȧ(t)

a(t)
. (1.3)

The value of the Hubble rate today is the Hubble constant, H0, and is commonly parame-

terized in terms of the constant h:

H0 ≡ h (100km s−1Mpc−1) . (1.4)

While physical distances are modified by a(t), the comoving distance, DM , is referenced to

today, t = t0, and factors out this expansion. It is related to the Hubble rate, H(t), via:

DM(z) =
c

H0

∫ z

0

dz′
H0

H(z′)
. (1.5)
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Other distance measures (for a flat universe) include the luminosity DL(z) and angular

diameter DA(z) distances:

DL(z) = DM(z)(1 + z) (1.6)

DA(z) = DM(z)/(1 + z) . (1.7)

The rate of cosmic expansion is inextricably tied to its composition. The relative densities of

matter, radiation, and dark energy factor into this rate, and these densities scale differently

as expansion speeds up or slows down. The Friedmann equation describes the evolution of

the scale factor in terms of the density parameter for each component:

H2(z)

H2
0

= Ωm(1 + z)3 + Ωr(1 + z)4 + Ωk(1 + z)2 + Ωϕ
uϕ(z)

uϕ(z = 0)
, (1.8)

where the density parameters for matter Ωm (baryonic Ωb and dark ΩDM), radiation Ωr,

curvature Ωk, and a generic form of dark energy Ωϕ, are defined as the ratio of the present-

day energy density ux to the critical density ρcrit ≡ 3c2H2
0

8πG
:

Ωx ≡ ux

ρcrit
. (1.9)

If dark energy were associated with a cosmological constant Λ, the last term in Eq. 1.8

would not scale with expansion, such that Ωϕ
uϕ(z)

uϕ(z=0)
→ ΩΛ. In a flat universe, the sum of

the densities of each component is equal to the critical density. A departure from flatness is

described in terms of the curvature term Ωk:
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Ωk ≡ 1− Ωm − Ωr − Ωϕ . (1.10)

A universe with Ωk = 0 indicates a spatially flat universe, whereas Ωk < 0 and Ωk > 0

indicate closed and open universes, respectively.

The evolution of the dark energy density with the scale factor is expressed in terms of the

equation of state parameter w:

uϕ(z)

uϕ(z = 0)
= (1 + z)3(1+w) , (1.11)

where w is defined as the ratio of a component’s pressure to its energy density w ≡ pc2/u.

For a cosmological constant, w = −1, while w = 0 and w = +1
3
for non-relativistic matter

and radiation, respectively. The scaling of a dynamical dark energy field with expansion is

slightly more complicated:

uϕ(z)

uϕ(z = 0)
= exp

[ ∫ z

0

[1 + w(z′)]
dz′

1 + z′

]
. (1.12)

The equation-of-state for dark energy is commonly parameterized as:

w(a) = w0 + wa(1 + a) , (1.13)

where wa captures the linear evolution of w(a) with scale factor a. In models that favor dark

energy as a cosmological constant, wa = 0. Constraints on the dark energy equation of state

from a diverse range of probes are shown in Fig. 1.3.
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Figure 1.3: Constraints on the dark energy equation of state w(a) = w0+wa(1+a) from both
individual and combined probes. Individual probes constrain degenerate combinations of
cosmological parameters and are sensitive to different systematics. A combination of probes,
therefore, allows for calibrating systematics so that degeneracies can be broken, resulting in
tighter constraints on parameters. The ellipses show contours for weak lensing (WL), baryon
acoustic oscillations (BAO), clusters, supernovae (SN), WL+BAO, and a combination of all
probes. Figure is from Ivezić et al. (2019).

1.3 Using large-scale structure to study dark energy

1.3.1 Seeds of cosmic structure

A key assumption underpinning any cosmological study of the universe is the cosmological

principle, which states that the universe is homogeneous and isotropic on scales larger than

100Mpc. At its core, it means that there is no special observer or location in the universe,

so that any sample of the sky can be assumed to be obey the same physical laws.
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There is good evidence that the universe is isotropic on large scales from measurements

of the cosmic microwave background (CMB), where variations in the 2.75K background

are δT/T ≲ O(10−4) on angular scales between 1′ to 180◦ (Kolb & Turner 1990). These

temperature variations trace the distribution of matter at the time of decoupling, when

matter was free of the radiation pressure induced by photons, and density perturbations

began to grow via the Jeans instability. The density perturbations in the CMB vary as:

δρ

ρ
= α× (

δT

T
) ≲ O(10−3 − 10−2) , (1.14)

where α is O(10− 102). The history of the universe is the playing out between the forces of

expansion and gravity, the latter of which is necessary for the formation of structure. While

the relic photons constituting the CMB did not participate in the gravitational collapse of

matter, they provide a fossil record of the primordial imhomogeneities at decoupling. These

inhomogeneities are associated with small, Gaussian fluctuations in the matter density field

that resulted in the galaxies, clusters, voids and filaments we see today.

1.3.2 The matter power spectrum

To discuss the matter density field of the universe, we introduce the density contrast:

δ(x, t) ≡ δρm(x, t)− ρ̄m(t)

ρ̄m(t)
, (1.15)

where ρ̄m(t) is the mean matter density at time t, and x is the comoving spatial coordinate.

Density fluctuations grow with time according to a given cosmological model, obeying the

following differential equation:

6https://virgo.dur.ac.uk
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Figure 1.4: The growth of structure as a function of scale factor. The left panel shows the
linear growth function D(a) for ΛCDM (blue) and Einstein-de Sitter (EdS; black) universes,
where the latter is a model for a flat, matter-only universe. In the ΛCDM model, there is
less dark energy in the past to suppress structure growth, so the growth function is larger
for values of the scale factor where the universe was matter-dominated. The right panel
shows numerical N-body simulations of matter density fluctuations by the Virgo consortium6

(Jenkins et al. 1998). Again, we see that dark energy-dominance at late times suppresses
structure growth, resulting in less “lumpiness” on large scales. Figure is from Huterer et al.
(2015).

δ̈(x, t) + 2Hδ̇(x, t)− 4πGρmδ(x, t) = 0 , (1.16)

where G is the gravitational constant, and δ̇ → dδ
dt
. In the linear regime (where |δ| ≪ 1 and

at large spatial scales k), the amplitude of fluctuations is normalized with respect to the

linear growth function D(t):

δ(x, t) = δ(x, ti)×
D(t)

D(ti)
, (1.17)

where ti is an arbitrary time, usually taken to be the present t0. The evolution of the growth

function as a function of scale factor D(a) is shown in Fig. 1.4. D(t) is indicative of the

growth of primeval matter perturbations, whereby initially over-dense regions continue to
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attract more matter over time, becoming increasingly more over-dense. The matter power

spectrum P (k) is used to characterize the clustering of matter on different scales k:

⟨δ̃(k)δ̃(k′)⟩ = (2π)3P (k)δ3D(k− k′) , (1.18)

where δ3D is the three-dimensional Dirac delta function, and the average is taken over |k| = k.

The Fourier transform of the density contrast δ̃(k), and its inverse δ(r), are given by:

δ̃(k) =

∫
d3r e−k·rδ(r) , δ(r) = (2π)−3

∫
d3k ek·rδ̃(r) . (1.19)

The power spectrum is expressed in terms of wavenumber k, which corresponds to the

different Fourier modes of the density perturbations. Isotropy guarantees that P (k) = P (k),

since k = |k|. Because the power spectrum has units of volume, it is often expressed in terms

of the dimensionless quantity:

∆2(k) ≡ k3

2π2
P (k) =

dσ2

dlnk
. (1.20)

The last equality describes the contribution of the over-density to the variance σ2 ≡ ⟨δ2⟩ per

logarithmic interval in k. The density field is typically convolved with a window function

WR(r). The variance of the density field over the window WR(r) is:

σ2
R(a) =

∫ ∞

0

dk

k
∆2(k)W̃ 2

R(k) . (1.21)

Eq. 1.21 describes the rms mass fluctuation with respect to the average density field averaged

over a spherical volume of radius R, assuming the fluctuations are linear. An important
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Figure 1.5: The top panel shows the 3D linear matter power spectrum as a function of spatial
scale. Data points from Planck CMB data populate the largest scales (small k), SDSS galaxy
clustering data are shown on intermediate scales, and SDSS Lyα clustering and DES cosmic
shear data are on the smallest scales (large k). The solid black line represents the Planck
2018 best-fit ΛCDM model, and the dotted line shows theoretical predictions of non-linear
effects on small scales. The bottom panel shows deviations of the data from the Planck
best-fit ΛCDM 3D matter power spectrum. Figure is from Chabanier et al. (2019).

parameter used to measure clustering is S8, which is given in terms of the amplitude of

fluctuations within a radius of 8Mpc, σ8, and the matter density parameter:

S8 ≡ σ8(Ωm/0.3)
0.5 . (1.22)

The two-point correlation function is the 3D Fourier transform of the power spectrum, and

is a useful method of characterizing fluctuations in configuration space:
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ξ(r) ≡ ⟨δ(x)δ(x+ r)⟩ =
∫ ∞

0

dk

k
∆2(k)

sin(kr)

kr
. (1.23)

A plot of linear matter power spectrum measurements using clustering, shear, and CMB

data, along with a ΛCDM best-fit model, is shown in Figure 1.5.

1.4 Observational probes of large-scale structure

Dark energy manifests itself through its impact on the distance-redshift relation (see Fig.

1.1) (or equivalently, the expansion rate), and via the rate at which matter clusters with

time, which involves a balance between the gravitational attraction of matter over-densities

and cosmic expansion. The study of structure formation examines the clustering of galaxies

to quantify the rate of growth of structures from the early universe to the present. Accurate

measurements of the clustering at different spatial scales and as a function of redshift can

therefore provide stringent constraints on different cosmological models.

Maps such as the one shown in Fig. 1.6 reveal that the distribution of matter in the universe

is not random. Rather, the cosmic web consists of entangled filaments and sheets interrupted

by large voids. The seeds of this large-scale structure are density perturbations in the early

universe that have evolved over time through a tug-of-war between radiation, matter, and

dark energy. Probing this structure by measuring the amount of clustering at different scales

and at different points in time can therefore constrain theories of gravity, the expansion

history of the universe, and the growth of cosmic structure over time.

Accelerated expansion suppresses the clustering of matter due to gravity, and hence leaves an

imprint on the expansion rate H(z), distances DA(z), the matter power spectrum P (k), and

the “lumpiness” of the universe, S8. We will first discuss a standard method for constraining

7https://www.sdss.org
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Figure 1.6: A 3D map showing galaxy clustering up to z = 0.16 using SDSS7 data, with
Earth at the center. Galaxies are colored based on the ages of their stars, with redder, more
strongly clustered galaxies containing older stellar populations. The dark wedges were not
mapped due to obscuration caused by dust in the Milky Way in these directions. Credit: M.
Blanton and the Sloan Digital Sky Survey.
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the latter two parameters via a combined analysis of clustering and shape distortions of

galaxies called 3x2-point tomography. Next, we will cover a spectroscopic probe involving

baryon acoustic oscillations that provides constraints on H(z) and DA(z).

1.4.1 3x2-point tomography

The 3x2-point probe combines measurements from two different observational probes (clus-

tering and cosmic shear) via three different 2-point correlation functions (galaxy-galaxy,

galaxy-shear, and shear-shear). These measurements can be analyzed tomographically (as a

function of cosmological redshift) to constrain the growth of structure over cosmic time. We

covered clustering measurements from correlations between the density contrast at different

spatial coordinates in Section 1.3.2. Before introducing the three observables for the 3x2-

point probe, we will briefly discuss the theory of weak gravitational lensing – the mechanism

behind cosmic shear. For more detailed coverage of this topic, the reader is encouraged

to refer to Bartelmann & Schneider (2001), Weinberg et al. (2013), Mandelbaum (2018),

Kilbinger (2015), and LSST Science Collaboration and LSST Project (2009).

Weak gravitational lensing

With the rise in the statistical power of photometric surveys, tomographic weak lensing has

become one of the most promising cosmological probes of accelerated expansion. Gravita-

tional lensing refers to distortions in the intrinsic shapes of galaxies due to the gravitational

pull of intervening matter. When these distortions cause small perturbations in the position,

size, brightness, and shape of galaxies (rather than multiple images or arcs), they fall into

the category of weak lensing. When the shapes of neighboring galaxies are correlated due

to the fact that their light passes through the same nearby structures, it is referred to as
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cosmic shear. The amplitude of this correlation and its dependence on angular scales can be

used to infer a map of the underlying distribution of matter.

For a single lensed source galaxy, the mapping from lensed (xl, yl) to unlensed (xu, yu) coor-

dinates is given via the following linear transformation:

xu

yu

 =

1− γ1 − κ −γ2

−γ2 1 + γ1 − κ


xl

yl

 . (1.24)

The complex shear γ = γ1 + iγ2 describes the stretching of the galaxy image, and is rep-

resented as a two-dimensional spinor. The convergence κ describes the change in size and

surface brightness of the galaxy due to lensing. Because we lack precise information about

the unlensed galaxies’ sizes and shapes, the transformation in Eq. 1.24 can be recast in terms

of the reduced shear gi = γi/(1−κ), which combines the shear and convergence components:

xu

yu

 = (1− κ)

1− g1 −g2

−g2 1 + g1


xl

yl

 . (1.25)

The lensing shear induces a change in the intrinsic galaxy ellipticities, ε, resulting in the

observed ellipticity ε′:

ε′ =
ε+ g

1 + g∗ε
. (1.26)

The ellipticity is also expressed as a complex spinor ε = ε1 + iε2, with components ε1 and

ε2 corresponding to changes in the intrinsic galaxy shape along and 45◦ to the x̂-direction,

respectively.
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A key assumption in weak lensing studies is that intrinsic galaxy ellipticities are randomly

oriented on the sky, and therefore uniformly distributed in angle. The reduced shear can

then be expressed as a first-order approximation of the average of the observed ellipticities:

⟨ε′⟩ = g . (1.27)

Recent cosmic shear studies from Stage-III surveys include results from the Dark Energy

Survey8 (DES; Amon et al. (2022)), the Hyper Suprime-Cam Subaru Strategic Program9

(HSC; Hamana et al. (2020)), and the Kilo-Degree Survey10 (KiDS; Asgari et al. (2021)).

The increase in available data from Stage-IV experiments will enable averaging the lensing

signal over large ensembles of galaxies, resulting in a significant reduction in statistical

errors. Systematic errors, therefore, will become the dominant source of error for weak

lensing studies. One of the main sources of systematics will be shape noise due to the shear

signal being small compared to intrinsic galaxy ellipticities. Extracting these ellipticities

requires an accurate characterization of both the atmospheric and telescope point spread

function (PSF)11. Moreover, because shape noise dominates over pixel noise in LSST sources

with a detection significance above a 5σ point-source depth, galaxies used for weak lensing

studies are typically small and faint. Atmospheric turbulence, as well as anomalies and

distortions in the instrument-camera system can also contribute to weak lensing systematics

(see Chapter 3). Survey requirements and details of the systematic error budget for LSST

will be further discussed in Section 1.5.1.

8https://www.darkenergysurvey.org
9https://hsc.mtk.nao.ac.jp/ssp/

10https://kids.strw.leidenuniv.nl
11The PSF is the 2D flux representation of a point source on the focal plane. Contributions to the PSF

come from atmospheric turbulence (or seeing) as well as the instrument, which includes the telescope optics,
deviations from a flat focal plane, and sensor anomalies. Together these effects manipulate point sources
such that they are rendered as anisotropic blobs on the detector.
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3x2-point observables

The three different correlation functions for the 3x2-point probe measure the degree of clus-

tering as a function of the angular separation between galaxies η on the sky, ⟨δηδη⟩, the

correlated distortions in the shapes of lensed galaxies, ⟨γγ⟩, and the cross-correlation be-

tween galaxy positions and shapes, ⟨δηγ⟩. The latter function quantifies the degree to which

foreground galaxies in one part of the sky give rise to distortions in the ellipticities of back-

ground galaxies in another region.

Although galaxy clustering is a tracer of the density field, it is a biased tracer, as galaxies

tend to form only in peaks with a high enough density contrast. Therefore, the galaxy density

contrast is equal to the matter contrast, modified by a linear bias term, b, δη = b δm. Galaxy

bias changes the amplitudes of ξ(r) or P (k), but not their shapes. The target observable for

clustering is the correlation function Cij
δηδη

(l), given in terms of the angular multipole l12:

Cij
δηδη

(l) =

∫
dχ

qiδη(
l+1/2

χ
χ, χ) qjδη(

l+1/2
χ

χ, χ)

χ2
PNL

( l + 1/2

χ
, z(χ)

)
. (1.28)

The superscripts i, j indicate distinct galaxies, the non-linear (NL) matter power spectrum

PNL is given in Eq. 1.18, and χ is the comoving distance. The weights qiδη(k, χ) are given in

terms of the bias bi of the clustering sample:

qiδη(k, χ) = bi
ni
η(z(χ))

n̄i
η

dz

dχ
, (1.29)

where the average surface density of galaxies per bin is:

12The angular multipole l corresponds to an angular scale δθ = l/DA(z), where DA(z) is the angular-
diameter distance to the last scattering surface.
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n̄i
η/γ =

∫
dz ni

η/γ(z) . (1.30)

A lensing sample containing galaxy redshift and ellipticity measurements is used to measure

the shear-shear correlation function:

Cij
γγ(l) =

∫
dχ

qiγ(χ) q
j
γ(χ)

χ2
PNL

( l + 1/2

χ
, z(χ)

)
. (1.31)

Unlike galaxy clustering, there is no galaxy bias in cosmic shear, and the weights qiγ(χ) are:

qiγ(χ) =
3H2

0Ωm

2c2
χ

a(χ)

∫ χh

χ

dχ′n
i
γ(z(χ

′))dz/dχ′

n̄i
γ

χ′ − χ

χ′ , (1.32)

where the average surface density of galaxies per bin is given in Eq. 1.30. Finally, the

observable for galaxy-galaxy lensing is given by:

Cij
δηγ

(l) =

∫
dχ

qiδη(
l+1/2

χ
χ, χ) qjγ(χ)

χ2
PNL

( l + 1/2

χ
, z(χ)

)
. (1.33)

Here, the weights are a combination of the clustering and lensing weights, qiδη(k, χ) and

qiγ(χ), and contain a bias factor which depends on the redshift distribution of the lensing

and clustering samples.

1.4.2 BAO in the Lyα forest of high-redshift quasars

The early universe was a hot, dense plasma comprised of photons, baryons, electrons, neu-

trinos, and dark matter. The baryons and photons were initially coupled together, as seen

in the first panel of Fig. 1.7. If we consider a single perturbation in the plasma, whose
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Figure 1.7: Snapshots showing the evolution of perturbations in the primordial plasma for
different species of dark matter, baryonic gas, photons, and neutrinos. The redshift and time
after the Big Bang are given in each pane. An initially point-like overdensity at the origin
is gradually pushed out due to radiation pressure from the photons until the universe has
expanded enough for photons to decouple from the plasma. Without the outward radiation
pressure, protons and electrons recombine and are gradually drawn back in by the gravita-
tional pull of the central dark matter over-density. The photon density profile is flat at late
times, representing the homogeneity of the CMB. Figure is from Eisenstein et al. (2007).
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density is uniform except for an excess of dark matter at the center, the baryon-photon

fluid is pushed out due to the radiation pressure of the photons. This expansion, exceeding

half the speed of light (around 170,000km/s), continues for about 100,000 years, until the

universe has expanded just enough for photons to travel without scattering off of other parti-

cles. Once the photons decouple and begin to free-stream through the universe, the baryons,

no longer under the influence of outward pressure from the photons, remain fixed in place

(see the third pane of Fig. 1.7). A shell of baryonic matter is left behind at a radius of

∼ 100Mpc, while the photons become more and more smoothly distributed. Eventually, the

gravitational pull of the dark matter starts to draw the baryons back toward the center of

the perturbation until they reach equilibrium densities (see the last pane of Fig. 1.7), leaving

a peak at the center with an echo in a shell at rd = 150Mpc. This comoving scale is a feature

of these primordial density perturbations, called baryon acoustic oscillations (BAO), and is

imprinted in the distribution of large-scale structure at late times. The BAO method uses

rd to directly constrain the comoving distance DM(z)/rd and the Hubble distance Dc(z)/rd

at different redshifts. In doing so, it provides a path to studying expansion via the Hubble

parameter, as well as the geometry of the universe via DM .

1.4.3 The Lyα forest

The first BAO measurements were made by Eisenstein et al. (2005) and Cole et al. (2005)

using the auto-correlation of galaxy positions and the galaxy power spectrum, respectively,

at z ≤ 1. Because the number density of galaxies necessary for high precision measurements

is lacking at z ≥ 2, discrete galaxies are insufficent tracers of the BAO scale in this redshift

regime. Measurements of the BAO scale at these redshifts have instead been performed by

studying the absorption of neutral hydrogen in the Lyα region of the spectra of high-redshift

quasars.
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Figure 1.8: A high signal-to-noise quasar at z = 3.058, with the best-fit models for
F̄ (λ)Cq(λRF ) in the Lyα and Lyβ regions shown as solid blue and orange lines, respec-
tively. The unabsorbed continuum model for each is shown as a dotted line. Figure is from
du Mas des Bourboux et al. (2020).

The Lyα line is a spectral line of hydrogen corresponding to the transition from the n = 2

orbital to the ground state n = 1. This transition occurs in the spectrum of a background

source each time its light interacts with clouds of hydrogen gas along the line of sight,

producing a succession of transition lines called the Lyα forest (see Fig. 1.8). Because the rest

wavelength of this transition is 1215.67Å (in the UV part of the electromagnetic spectrum),

it can only be observed if it has been sufficiently redshifted into the optical wavelength

range. High-redshift quasars fulfill both the number density and redshift requirements to be

continuous tracers of this absorption feature, and opacity fluctuations in their spectra are

therefore a highly sensitive probe of density fluctuations in the intergalactic medium.

1.4.4 BAO formalism

Rather than extracting the BAO scale from the correlated positions of galaxies, the Lyα

probe measures correlations between the transmitted flux along the line-of-sight of high-
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redshift quasars. The flux-transmission field of quasar q is defined in terms of the ratio of

the observed flux, fq(λ), to the mean expected flux, F̄ (λ)Cq(λ):

δq(λ) =
fq(λ)

F̄ (λ)Cq(λ)
− 1 . (1.34)

The mean expected flux is a product of the unabsorbed quasar continuum, Cq(λ), and the

mean transmission, F̄ (λ), at a given wavelength. The separation between two tracers is

given by the vector r = (r||, r⊥), which indicates separations along and perpendicular to the

light of sight. Once we measure ∆θ and ∆z, we can assume a cosmology H(z) to determine

this separation:

r|| =
[
Dc(zi)−Dc(zj)

]
cos

(∆θ

2

)
(1.35)

r⊥ =
[
DM(zi) +DM(zj)

]
sin

(∆θ

2

)
, (1.36)

where Dc = c/H(z) and DM = (1 + z)DA are the comoving distance and the comoving

angular diameter distance, respectively. The Lyα×Lyα correlation function is computed for

pairs of points at fixed separation (∆θ,∆z):

ξ(∆θ,∆z) = ⟨δq(θ1, z1)δq(θ2, z2)⟩ (1.37)

∝ 1

N

∑
all pairs

δq(θ1, z1)× δq(θ2, z2) , (1.38)

where all pairs satisfy |θ1 − θ2| < ∆θ and |z1 − z2| < ∆z. The expected comoving scale of

the acoustic peak is rBAO ∼ 100h−1Mpc. Therefore, the different correlations are typically
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computed for separations up to twice the BAO scale (±200h−1Mpc along and across the

line-of-sight), within bins of a given width (typically 4h−1Mpc wide in both directions). For

two spectral pixels in the flux-transmission field, i and j, and their associated weights wi

and wj, which account for the statistical power of each pixel, the correlation function is:

ξA =

∑
(i,j)∈A

wiwjδiδj∑
(i,j)∈A

wiwj

. (1.39)

Results of the Lyα×Lyα auto-correlation function for the complete extended Baryon Oscil-

lation Spectroscopic Survey (eBOSS13; du Mas des Bourboux et al. (2020)) are shown in Fig.

1.9. Each of the four panels show the correlation function for different angular separations

along the line of sight. This separation is parameterized by µ = r||/r, or the cosine of the

angle formed by the median line-of-sight of both tracers and the vector r.

1.5 Stage-IV dark energy experiments

The distinguishing feature of Stage-IV surveys is the unprecedented quantity and quality of

data they will produce compared to Stage-III. Specifically, Stage-IV surveys are expected to

improve upon a quantitative measure of the sensitivity of a cosmological probe, defined by

the Dark Energy Task Force (DETF), called the figure-of-merit (FoM), by at least a factor

of 10 over Stage-II surveys. This section covers the main features of LSST and DESI, along

with a discussion of their respective survey requirements and figures-of-merit.

13https://www.sdss.org/surveys/eboss/
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Figure 1.9: The Lyα auto-correlation function for different ranges of |µ| = |r|||/r, multiplied
by r2 to render the y-axis dimensionless and accentuate the BAO peak. In each of the
four panels there is a noticeable bump in the correlation function at the expected scale of
r = 100h−1 Mpc. The best-fit model is given in red, with the dashed red lines showing the
best-fit model interpolated beyond the fitted range. Figure is from du Mas des Bourboux
et al. (2020)

1.5.1 The Legacy Survey of Space and Time

LSST is a 10-year optical survey that will map the southern sky from the Cerro Pachón ridge

in Chile. It will focus on addressing four key areas of science: probing dark matter and dark

energy, taking an inventory of the solar system, studying the transient sky, and mapping

the Milky Way (Željko Ivezić, and the LSST Science Collaboration 2018). The Dark Energy

Science Collaboration14 (DESC; LSST Dark Energy Science Collaboration (2012)) is a com-

munity of scientists dedicated to designing and implementing the infrastructure needed to

conduct dark energy research with LSST data products. This includes developing software

for data reduction, simulations to both verify science pipelines and test cosmological models,

and computational resources for data storage and processing. The DESC will probe the

growth of structure via tomographic galaxy clustering, cosmic shear, and clusters, and pro-

14https://lsstdesc.org/index.html
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Figure 1.10: The number of visits in the r-band, normalized by 184, for the baseline survey
over the LSST footprint. Note that regions corresponding to the Galactic plane (arc on the
right) and the northern Ecliptic region (upper left), and the South Celestial Pole (bottom)
show fewer visits. Deep drilling fields have a higher number of visits and are shown as small
circles. Figure is from Ivezić et al. (2019).

vide constraints on the expansion rate using Type Ia supernovae, strong lensing, and baryon

acoustic oscillations (The LSST Dark Energy Science Collaboration 2021). The diversity of

these probes can be leveraged to break degeneracies, as well as to test and compare different

cosmological models, specifically ΛCDM, against theories of modified gravity.

LSST system design

LSST has adopted a straightforward survey strategy to maximize the return on its science

goals. The baseline survey, which accounts for 90% of observing time, involves wide, deep,

and fast scans of the sky, known as “universal cadence.” The remaining 10% of survey

time will be dedicated to other programs. One such program, the Deep Drilling Field, will

devote an hour of observing time to image a single field to substantially greater depth for
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Figure 1.11: The figure on the left shows the theoretical transmission efficiency of the six
LSST filters. In practice, the throughput is diminished due to absorption by the atmosphere,
loss due to telescope optics, and the quantum efficiency of the sensors, as seen on the figure
on the right. Figure is from LSST Science Collaboration and LSST Project (2009).

Solar System, Galactic, and extragalactic studies. The exceptionally wide field-of-view of

LSST’s dedicated Simony Survey Telescope means that each field covers 9.6 deg2 on the sky,

approximately 40 times the area of the full moon, where a visit consists of a pair of back-

to-back 15-second exposures. The distribution of visits in the r-band for the baseline main

survey is shown in Fig. 1.10. Because uniform coverage and depth of the sky is necessary

for cosmological parameter estimation, LSST will visit each field up to 800 times to reach

sufficient depth in six different passbands (ugrizy) (see Fig. 1.11). This translates to imaging

every field in its 18,000 deg2 footprint every few nights. Imaging over such a broad range

of filters, and to such high depth is critical for accurate photometric redshifts, as well as for

achieving the high signal-to-noise and control of systematic uncertainties necessary for weak

lensing measurements. Upon completion, LSST will have imaged roughly 20 billion galaxies,

17 billion Milky Way stars, and 6 million Solar System objects.

LSST’s survey strategy is made possible by its optical and telescope design. The telescope

consists of an 8.4-meter primary mirror (M1) with a 5.1-meter inner clear aperture, a 3.4-

meter convex secondary mirror with an 1.8-meter inner opening (M2), and a 5-meter tertiary

mirror (M3), along with three refractive lenses (L1, L2, L3). A filter wheel rotates between
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Figure 1.12: Y1 (left) and Y10 (right) forecasts for dark energy constraints from individual
probes, as well as the joint forecast including Stage-III priors. The contours represent 68%
confidence intervals for all cases, and the quanitities ∆w0 and ∆wa represent the difference
between w0 and wa from their fiducial values of -1 and 0, respectively. Figure is from The
LSST Dark Energy Science Collaboration (2021).

each of the six different filters. A 3.2 Gigapixel camera enables a two-second readout of the

entire focal plane. Details of the LSST camera are deferred to Chapter 3.

LSST science requirements

The LSST Science Requirements Document (Željko Ivezić, and the LSST Science Collabo-

ration 2018) outlines specifications for achieving the DETF FoM for Stage-IV dark energy

experiments. Given a model for the dark energy equation of state (Eq. 1.13), the FoM

is defined as
√
|F |, where F is the Fisher matrix for (w0, wa), marginalized over all other

parameters (both cosmological and nuisance parameters). The Fisher matrix forecasts the

best possible performance of a given model experiment in constraining the parameters of the

model. In the case of constraining the dark energy equation of state, it provides (Gaussian)

uncertainties on σ(w0) and σ(wa) in terms of the contours enclosing the 1-2σ confidence level
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Analysis Priors Y1 FoM (ceiling) Y10 FoM (ceiling) Target
LSS Stage-III (not w0, wa) 10 (13) 10 (14) 1.5
LSS None 6.7 (8.4) 6.6 (9.1) 1.5

WL+LSS Stage-III (not w0, wa) 31 (37) 66 (87) 40
WL+LSS None 22 (27) 49 (68) 40

All Stage-III 142 (156) 505 (711) 500
All None 108 (135) 461 (666) -

Table 1.1: Figures-of-merit for Y1 and Y10 analyses of clustering and weak lensing, as well
as for a combination of all probes (Željko Ivezić, and the LSST Science Collaboration 2018).

in the w0-wa plane. Fisher forecasts for the dark energy equation of state for LSST Year 1

(Y1) and Year 10 (Y10) analyses are shown in Figure 1.12.

LSST system requirements include a single visit depth of r ∼ 24.515 for a 5σ point source,

which is necessary to image faint objects, as well as variable transient sources. The co-added

survey depth should reach r ∼ 27.5 in order to average over systematics in PSF estimation

for weak lensing science. The depth requirement is also tied to stringent constraints on

image quality, which should be atmosphere-limited, with a median seeing of 0.7 arcsec in the

r-band. In addition, the combined number of visits of any field in all filters should be on

the order of 1,000. The distribution of visits per filter should enable accurate photometric

redshifts, and the distribution of visits on the sky should cover LSST’s footprint to obtain the

required number density of galaxies for weak lensing studies. Photometry must be measured

to 5 millimag precision to maintain zeropoint stability across the sky of 10 millimag, and to

keep band-to-band calibration errors smaller than 5 millimag. Finally, transmission through

each of the six filters should only be limited by atmospheric absorption and silicon detection

efficiency, with no large gaps in coverage. An overview of LSST camera requirements is

detailed in Chapter 3.

In addition to the baseline survey requirements, the DESC Science Requirements Document

(The LSST Dark Energy Science Collaboration 2021) details its own set of high-level objec-

tives specific to each observational probe, as well as for combined probes. The requirements

15The r passband is shown in Figure 1.11.

29



for the joint-probe combined 1σ statistical and systematic uncertainties on the equation-

of-state parameters (w0, wa), consistent with the goals outlined by the DETF for Stage-IV

experiments, are σ(w0) = 0.02 and σ(wa) = 0.14 (after marginalization over all other param-

eters). For the full LSST Year 10 (Y10) analysis, DESC dark energy probes will achieve a

combined FoM exceeding 500 when including both statistical and systematic uncertainties,

using Stage-III priors. For each individual probe, the improvements in the FoM should be

at least twice the corresponding Stage-III probe (see Table 1.1).

Due to the unprecedented amount of high-quality data from LSST, statistical uncertain-

ties will be sub-dominant compared to quantifiable measurement offsets due to observa-

tional or astrophysical issues. In other words, cosmological parameter measurements will be

systematics-limited. Some of the self-calibrated systematic uncertainties for galaxy clustering

include instrinsic alignments, mass function uncertainty, baryonic effects, and cluster large-

scale bias. A dominant systematic for all probes concerns photometric redshift estimates (see

Chapter 2). Clustering requirements therefore include limits on the systematic uncertainty

in the mean redshift of each tomographic bin so that it does not exceed 0.003(1 + z), and

keeping the systematic uncertainty in the photometric redshift scatter, σz, from exceeding

0.03(1 + z).

These requirements are more strict for the combined clustering and cosmic shear measure-

ments, where systematics arise due to (non-linear) galaxy bias, magnification, intrinsic align-

ments (Krause & Eifler 2017), baryonic effects, and blending (Sanchez et al. 2021). For the

3x2-point probe, the uncertainties in the mean redshift and photometric redshift scatter

should not exceed 0.001(1 + z) and 0.003(1 + z), respectively. Moreover, systematic un-

certainty in the redshift-dependent shear calibration should not exceed 0.003. Since shape

measurements are significantly influenced by improper characterization of the PSF, the sys-

tematic uncertainty in the PSF model size should not exceed 0.1%. All probes of structure

growth will need to optimize tomographic binning schemes to reduce redshift-dependent
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effects, and to eliminate redshift-related systematic biases. Attempts to find an optimal

binning strategy within the DESC are ongoing, with preliminary results detailed in Zuntz

et al. (2021).

1.5.2 Dark Energy Spectroscopic Instrument

DESI is a 5-year dark energy project that will measure the expansion rate with unprecedented

precision using the BAO technique up to redshifts of z ∼ 3.7, before the transition to a dark-

energy dominated universe. Sited at the 4-meter Mayall Telescope at Kitt Peak National

Observatory, the DESI instrument will use its 5,000 robotically-controlled fibers and 10

triple-arm spectrographs to obtain spectra of 35 million galaxies and quasars over a 14,000

deg2 area on the sky. The fibers are equally divided onto 10 petals on the focal plane. Light

from each of the 500 fibers on a single petal is transmitted to a slit head in its designated

spectrograph via ∼50 m cables, where it is split into three separate channels by a pair of

dichroics to produce a continuuous spectrum for each object from 360-980 nm (Jelinsky et al.

2018).

In addition to measuring the cosmic distance scale using BAO, DESI will construct a 3D

map of the large-scale structure in the universe to study the growth of structure through

redshift-space distortions (RSD). It will primarily target three different classes of objects

in distinct redshift regimes, namely luminous red galaxies (LRGs) between 0.4 < z < 1,

emission-line galaxies (ELGs) covering 0.6 < z < 1.6, and Lyα quasars (QSOs) at z > 2

(Levi et al. 2019). DESI will also conduct a flux-limited survey of bright galaxies to r ∼ 19.5,

with a median redshift of z ∼ 0.2 (see Table 1.2). Further discussion of these classes and

how they are targeted is deferred to Section 4.1.2.
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Object Type Redshift Range N/deg2 # of successful objects

9k 14k
LRGs 0.4 – 1.0 300 2.7× 106 4.2× 106

ELGs 0.6 – 1.6 1280 11.5× 106 17.9× 106

Tracer QSOs < 2.1 120 1.1× 106 1.7× 106

Lyα QSOs > 2.1 50 0.45× 106 0.7× 106

Table 1.2: Survey parameters for the minimum-requirement 9,000 deg2 and the baseline
14,000 deg2 surveys (DESI-doc-318).

DESI science requirements

Survey requirements are carefully detailed in the DESI Science Requirements Document

(SRD; DESI-doc-318). Over the course of the survey, DESI will cover at least 9000 deg2,

with a baseline survey area of 14,000 deg2. For LRGs, ELGs, and tracer QSO targets, the

BAO cosmic distance scale will be measured to 0.28% precision aggregated over the redshift

range 0.0 < z < 1.14 and to 0.39% precision in the redshift range 1.1 < z < 1.9. For the

baseline survey, the precision to which this scale is measured for these redshift ranges will

be 0.22% and 0.31%, respectively. At higher redshifts, Lyα quasars will measure the Hubble

parameter at 1.9 < z < 3.7 from the BAO method to 1.05% precision for the minimum

survey, and 0.84% for the baseline survey. Finally, systematic errors from the instrument and

observational methods should not exceed 0.16% for measurements of the angular diameter

distance DA(z) and 0.26% for H(z) using galaxies at z < 1.5. FoM requirements are given

in Table 1.3

The DESI SRD also details requirements for each target class. Those pertaining specifically

to Lyα QSOs will be listed here. The average density of quasars at z > 2.1 and r < 23.5

used for Lyα or QSO clustering shall be at least 50 per deg2. Lyα QSOs used as tracers

in cross-correlations should have a redshift accuracy of σz = 0.0025(1 + z), with redshift

catastrophic failures below 2%. Moreover, the signal-to-noise per Ångstrom in the observer

frame (360-570nm) of the Lyα forest must be greater than 1.
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Technique BOSS DESI

9k 14k
Galaxy + Lyα BAO 37 114 143

+ DESI galaxy broad-band power to k = 0.1hMpc−1 229 303
+ DESI galaxy broad-band power to k = 0.2hMpc−1 525 687

Table 1.3: Figures-of-merit for the mininum-requirements 9,000 deg2 and baseline 14,000
deg2 surveys (DESI-doc-318).

1.6 Motivation for this thesis

Recent advances in survey design and instrumentation, along with a concomitant increase

in the quality and amount of astrophysical data, will enable sub-percent precision on mea-

surements of cosmological parameters, particularly those constrained by weak lensing and

BAO. With DESI having launched in 2021, and LSST set to begin formal operations in

2022, there is significant potential to explore synergy between these two surveys. Failure to

properly understand and mitigate systematics will ultimately limit the sensitivity for all dark

energy probes. Fully exploiting the investment in both DESI and LSST therefore requires a

detailed characterization of the systematics arising from redshift-estimation algorithms, as

well as from the instrument and camera system. As more data becomes available, we can

leverage DESI spectra to test and refine LSST’s photometric redshift capabilities.

The following chapters aim to develop the infrastructure necessary to maximize the amount

of information extracted from these two experiments by investigating the performance of a

state-of-the art photometric redshift estimation algorithm on simulated LSST data, improv-

ing the systematic understanding of the LSST camera and sensors, and developing realistic

simulations in DESI. This will enable more accurate measurements of cosmological param-

eters related to dark energy and ultimately allow us to better characterize the role of dark

energy on cosmic expansion and structure growth.
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Chapter 2

Redshift inference using a hierarchical

Bayesian model

2.1 Introduction

The advent of Stage-IV dark energy surveys will bring forth an unprecedented amount of

data, totalling tens of billions galaxies over vast cosmic volumes. Nearly all of the dark

energy probes for DESI and LSST will rely on accurate redshift estimates of these galaxies

to measure observables – such as the growth rate of matter density perturbations, the ex-

pansion rate, and baryon acoustic oscillations – as a function of cosmic time. The increase in

available data will substantially reduce statistical uncertainties for all probes, most notably

for tomographic weak lensing, which has the potential to be the most powerful individual

technique among all Stage-IV surveys. One of the major limitations to studying cosmic

expansion via tomographic cosmic shear measurements, however, other than instrumental

effects on shape measurements, are systematic uncertainties due to redshift errors. Failure to

accurately characterize redshift distributions can ultimately lead to biases in the estimation

34



of comsological parameters (Huterer et al. 2006). This is an issue of particular importance

for photometric surveys like LSST, which will reach higher depths and rely on broad spectral

features to estimate distances to galaxies.

2.2 Photometric redshift estimation

Precision redshifts can be measured via spectroscopy by fitting observed spectral features

in high-resolution spectra to their rest frame values. Despite their robustness, spectroscopic

redshifts are expensive in both time and resources. Not only does spectroscopy require longer

exposure times, but there are also a limited number of targets that can be observed during

each exposure. Moreover, the dearth of observed targets in deep spectroscopic surveys results

in high incompleteness at faint magnitudes. Altogether, the pace at which galaxy images

are obtained greatly surpasses the rate at which we can process galaxy spectra, making it

infeasible to spectroscopically observe the vast majority of extragalactic objects in next-

generation dark energy surveys. Stage-IV experiments must therefore rely on imaging to

access this third spatial dimension by measuring photometric fluxes in multiple bands.

Photometric redshifts (photo-z’s) use broadband flux information from galaxies that have

been observed through a set of optical filters. This essentially provides a low-resolution spec-

trum of each object, albeit with a higher signal-to-noise ratio due to both deeper observations,

and the wide wavelength coverage of each passband when combining fluxes (Newman et al.

2015). Broadly speaking, there are three classes of photo-z algorithms. Template-fitting

methods (Hyperz (Bolzonella et al. 2000); BPZ (Benitez 2000); LePhare (Arnouts & Ilbert

2011); EAZY (Brammer et al. 2008)) utilize a library of empirical or synthetic galaxy spectral

templates to minimize the χ2 between their derived fluxes and observed photometric fluxes

as a function of redshift. Machine learning methods (ANNz (Collister & Lahav 2004); ArborZ

(Gerdes et al. 2010); TPZ (Carrasco Kind & Brunner 2013); SkyNet (Bonnett 2015)) involve
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training a flexible model to directly learn the flux-redshift relation using measured and “true”

fluxes. Clustering redshifts constrain redshift distributions using projected two-point galaxy

clustering statistics to compare the spatial separation of galaxies in the survey to a tracer

population with secure redshifts (Newman (2008); Matthews & Newman (2010); Ménard

et al. (2014); THE-WIZZ (Morrison et al. 2017)).

Although these approaches have been successful in different contexts, each one comes with

its own set of potential drawbacks. Spectroscopic surveys are usually incomplete at high

redshifts and faint magnitudes, which happen to be the regions we are most interested in

probing. The “true” fluxes used in photometric inferences can be biased, and a lack of tracer

populations in certain redshift regimes can hinder clustering estimates (Schmidt et al. 2020).

A hybrid approach, one that incorporates attributes of all three methods, can potentially

bypass some of these issues by compensating for the limitations of using each technique used

on its own.

This chapter investigates the application of a composite redshift inference method developed

by Sanchez & Bernstein [SB18] (Sánchez & Bernstein 2018) on data simulated for the purpose

of the DESC Data Challenge 2 (DC2) (Abolfathi et al. 2021). Generation of the feature

likelihood in SB18 is then compared to a method using normalizing flows developed by

David Kirkby (David Kirkby 2020).

2.3 Hierarchical Bayesian redshifts

In their paper, SB18 use a hierarchical Bayesian framework to simultaneously infer redshift

distributions for populations of galaxies, as well as provide redshift estimates for their in-

dividual constituents. They perform a proof-of-principle by testing their method on a toy

model, and then apply it to a simulated data set in a subsequent paper (Alarcon et al. 2020).
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We will first focus on outlining their process by reproducing the results of their toy model in

Section 2.5. This will provide a foundation for applying the method to simulated data from

the cosmoDC2 catalog (Korytov et al. 2019) in Section 2.6. Finally, we will compare the

discrimination of galaxy types in generating the feature likelihood with a method involving

normalizing flows in Section 2.9.

2.3.1 Hierarchical models

Bayesian statistics is an interpretation of probability based on Bayes’ theorem, which is a

natural consequence of the law of conditional probabilities. Bayes’ theorem is expressed in

terms of events A and B as:

p(A|B) =
p(B|A) p(A)

p(B)
. (2.1)

The terms p(A|B), p(B|A), p(A), and p(B) are commonly referred to as the posterior, the

likelihood, the prior, and the evidence, respectively. In the context of cosmological inference,

A is typically a parameter to be estimated, and B is observable data from one or more surveys.

The utility of this framework is that it allows us to update our degree of belief in an outcome

by accommodating new data or information in a straightforward manner. Thus, a Bayesian

approach, unlike frequentist statistics, can assign a degree of belief to a single event because

the model parameters and hypotheses, rather than being fixed, are expressed as probabilities.

Eq. 2.1, as it stands, is not amenable to more multiplexed problems involving interdependent

variables. For this purpose, we can extend this equation in a hierarchical fashion to express

more complex parameter dependencies. For example, in the case where A follows a dis-
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Figure 2.1: An example of a directed acyclic graph for the posterior in Eq. 2.2, where ob-
served quantities are shaded, variable quantities are circles, and fixed quantities are squares.
The larger box represents repetition over an index.

tribution parameterized by a hyperparameter C, the joint posterior p(A,C|B) is expressed

as:

p(A,C|B) ∝ p(B|A,C) p(A|C) p(C) . (2.2)

This factorization of probabilities is often represented in the form of a directed acyclic graph,

as in Fig. 2.1. Additional information in the form of hyperparameters are expressed in terms

of cascading dependencies of variable and fixed quantities. This hierarchical framework will

be used in the next section to combine information from multiple galaxy populations in order

to simultaneously infer redshift distributions of a sample of photometric galaxies, as well as

provide estimates for individual redshifts in that sample.

2.4 Redshifts with colors and clustering

2.4.1 Galaxy populations

SB18 incorporate clustering, photometric and spectroscopic information in their hierarchical

Bayesian model (HBM). The photometric sample (the observed galaxies whose redshift dis-

tributions we are trying to constrain) comes from survey photometry of single galaxies in the
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Figure 2.2: The variation of galaxies (circles) with similar genotypes, or rest-frame properties,
with redshift. The two different genotypes are shown in yellow and blue, with phenotypes
labeled as t ∈ {t1...tn}.

form of fluxes Fi and positions θi, with a known selection function s. The underlying density

field of a well-characterized tracer population allows for the estimate of fluctuations in the

density of sources for positions and redshifts spanning the survey to further constrain redshift

distributions. This is similar to the method of clustering redshifts, which measures the angu-

lar cross-correlation between galaxies in two samples that occupy the same sky coverage, but

that do not necessarily have similar galaxy properties (Newman 2008). The main require-

ment for galaxies from the tracer population is that they have well-established redshifts,

either from spectroscopy, or from deep, multi-band photometry. Finally, a spectroscopic

sample, which can also come from either spectroscopic observations or from deep photom-

etry, provide galaxies with known redshifts to be used as an informative prior. Critically,

the spectroscopic population should span the range of types of galaxies in the photometric

sample. The characterization of these types is described in the following section.
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2.4.2 Characterizing the color-redshift relation using phenotypes

As described in Section 2.2, photometric redshift methods exploit the relationship between

observed features of galaxies with secure redshifts to make redshift estimates for galaxies ob-

tained via imaging. This is done explicitly in template-fitting methods by fitting each galaxy

to templates with different redshift-reddening combinations, and, implicitly, via machine

learning methods by discovering the mapping between individual types, or combinations of

observed features, and redshift (Leistedt et al. 2016).

In biology, an animal’s phenotype is defined as the set of external characteristics that result

from the interaction of its genotype, or genetic code, with its environment. Similarly, if

a galaxy’s inherent rest-frame features constitute its genotype, then its phenotype would

be its observed appearance. Fig. 2.2 gives an example of how the evolution of galaxies of

the same genotype can vary with respect to redshift. Although the galaxies shown in the

figure come from two distinct genotypes, their observed appearances clearly span a range of

phenotypes. Moreover, galaxies of the same phenotype can live at different redshifts. Most

notably, there are galaxies from each genotype which, after being redshifted, fall into the

same phenotype category, as in cell t5. These galaxies could easily be mistaken as being

redshifted by the same amount, despite their distinct rest-frame properties. Additional

information, such as angular correlations between galaxy positions in the form of clustering,

as well as spectroscopic information, are helpful in breaking these degeneracies.

Defining the color-redshift relation in terms of a set of discrete phenotypes can help to identify

subtle differences between sets of features in order to better constrain redshift distributions.

Specifically, because galaxies of the same type are assumed to have the same selection func-

tion p(s|t, θ), and the same probability p(F, s|t, θ) of being selected and measured to have

observed features F , this essentially decouples the issue of measurement-noise from the color-

redshift relation. When applying the SB18 method to data from cosmoDC2, galaxies will
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be assigned phenotypes using a self-organizing map (Kohonen 1982). This technique will be

discussed in further detail in Section 2.6.2.

Table 2.1: A list of the notation used in this method, following the notation in SB18.

F set of galaxy features
t galaxy phenotype
z galaxy redshift
θ galaxy angular position in the sky

F, t, z, θ set of properties for all galaxies in the sample
s galaxy selection outcome

δz(θ) density fluctuation at redshift z and angular position θ
δ {δz(θ)} for all redshifts and positions
πδ hyperparameters of the density fluctuation field
btz linear galaxy bias for redshift z and type t
b {btz} for all redshifts and types
fzt joint redshift-type probability p(z, t)
f {fzt} for all types and redshifts
Lit probability of measuring galaxy i with Fi given ti
n mean density per unit solid angle

n(z) mean density per unit solid angle per z
Nzt number of sources assigned to redshift z and type t
N {Nzt} for all redshifts and types
Nt number of types
Nz number of redshifts
Mzt number of sources in the prior at redshift z and type t
M {Mzt} for all redshifts and types
A effective survey area
∆z difference between the sample means and the true n(z) mean

2.4.3 Redshift inference formalism

Observations of galaxies consist of a noisy set of individual galaxy features Fi identified

by their phenotype ti, redshift zi, and angular position on the sky θi, where positions are

viewed as being drawn from some latent density field δz that varies as a function of redshift

z. The spatial distribution of galaxies, or galaxy bias btz, varies linearly with respect to

the fluctuations δz. Furthermore, the probability of a galaxy being selected is expressed in

terms of a selection function p(s|t, θ). The vector quantities F , t, z, and θ denote the full

set of properties of all selected galaxies. Both redshifts and phenotypes are represented as
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indices identifying bins of the corresponding continuous quantities. A (z, t) pair for a galaxy

therefore determines its position in a discrete 2D redshift-phenotype space. The number of

sources assigned to redshift z and phenotype t is given by Nzt. The notation used in the

remainder of the chapter is summarized in Table 2.1.

The HBM rests on the fundamental assumption that galaxies are drawn from a Cox process

(Cox 1955), also known as a doubly stochastic Poisson process. Unlike a Poisson process,

which assumes a fixed parameter λ, a Cox process generalizes this so that the number of

events in disjoint intervals are not necessarily stochastically independent (Grandell 1976).

This is relevant to the case of how we will sample galaxies since the rate or concentration of

galaxies depends on fluctuations in the density field.

Let us assume for now that the mean density per unit solid angle of galaxies in the sky is n,

and that all galaxies have identical feature vectors such that F is constant. Moreover, our

galaxy sample has an intrinsic redshift distribution where fz = p(z) with
∑

z fz = 1, and

linear bias bz with respect to the underlying density fluctuation δz. The density field from

which these galaxies are sampled from is:

ρ(z, θ|n,f, b, δ) = nfz [1 + bzδz(θ)] p(s|θ) . (2.3)

The first term on the right gives the number of galaxies that are expected to be found at red-

shift z, while the last two terms describe how the expected detection rate varies spatially due

to both density fluctuations and observing conditions. The expected number of detections,

expressed as the integral of Eq. 2.3 over all angular positions, is the variable parameter in

our Cox process. In accordance with standard Poisson sampling, the likelihood of drawing

a set of galaxies at redshifts z and positions θ becomes:
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p(z, θ|n,f, b, δ) = exp
{
−
∫

d2θ
∑
z

ρ(z, θ)
} N∏

t=1

ρ(zi, θi)

= exp
{
− n

∫
d2θ p(s|θ)

∑
z

fz [1 + bzδz(θ)]
}

×
N∏
i=1

p(s|θi) × n fzi [1 + bziδzi(θi)] .

(2.4)

The discrete sum over redshifts is due to the fact that each galaxy’s redshift is transformed

to an integer corresponding to a specific finite-width redshift bin. There are also a finite set

of phenotypes indexed by integer t, which identify the type bin a galaxy belongs to. Eq. 2.3

can be generalized to include discrete phenotypes:

p(z, θ, t|n,f, b, δ) = nftz [1 + btzδz(θ)] p(s|t, θ) . (2.5)

The joint type and redshift probability fzt = p(z, t) is given by:

fzt ≡ p(z, t) = p(z|t)p(t) = f t
zft , (2.6)

where ft = p(t) is subject to the constraint
∑

t ft = 1. We can also define a feature-selection

likelihood of a galaxy i with phenotype t and angular position θ:

Lit ≡ p(Fi, s|ti, θi) . (2.7)

Note that this likelihood is independent of redshift, since galaxies with identical phenotypes

could live at distinct redshifts (see Fig. 2.2). The quality of observations and selection
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Figure 2.3: A directed acyclic graph for the hierarchical Bayesian model. The observed
quantities (individual positions θi and fluxes Fi) are shaded. Squares indicate model param-
eters, while circles correspond to stochastic quantities.

algorithms are assumed to be known a priori for both the toy model and the application to

the cosmoDC2 catalog. Eq. 2.4 can now be recast to include types and features:

p(F, θ, t, z|n,f, b, δ) = exp

[
− n

∑
t

ftA
t(f t, bt, δ)

]

×
∏
i

Litnftizi [1 + btzi iδzi(θi)] ,

(2.8)

where At is defined as the effective survey area for each phenotype:

At(f, b, δ) ≡
∑
z

∫
d2θ p(s|t, θ)f t

z [1 + btzδz(θ) ]

=

∫
d2θ p(s|t, θ)

[
1 +

∑
z

f t
zb

t
zδz(θ)

]

≈
∫

d2θ p(s|t, θ) .

(2.9)
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The approximation in the last line assumes that the density of fluctuations over the survey

area is small, making {At} known constants of the survey. For the remainder of the studies in

this chapter, At is assumed to be independent of type and therefore constant for all galaxies.

This will simplify the joint posterior distribution for redshifts and types.

2.4.4 Sampling from the posterior

The goal of the HBM is to estimate individual redshifts and types, as well as the joint

redshift-type probabilites fzt, which are key to determining the shape of the underlying

redshfit distribution:

n(z) = n
∑
t

fzt . (2.10)

We can invoke Bayes’ theorem to sample these individual and joint probabilities from the

following posterior distribution, expressed in terms of the likelihood function in Eq. 2.8:

p(f, z, b, t|F, θ, πδ) ∝
∫

dn dδ

p(F, θ, t, z|n,f, b, δ) p(δ|πδ) p(n) p(f) p(b) .

(2.11)

Fig. 2.3 shows the directed acyclic graph for this distribution. The hyperparameters πδ

describe the stochastic density fluctuations. Rather than sampling from p(θ|πδ), we will

replace δz(θ) with some deterministic estimator δ̂z(θ). This gives a single realization of the

density field of the tracer population, transforming p(δ|πδ) into a Dirac delta function where

δz = δ̂z. In reality, the density fields remain stochastic even after specification of the tracer

population but, since we are using simulated data, we already have prior knowledge of the
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true density fields. After marginalizing over the overall density n, and assuming a logarithmic

Jeffreys prior on p(n), the full, joint posterior distribution for redshifts and types becomes:

p(f, z, t, b|F, θ) ∝ p(f)
∏
i

Litiftizi

[
1 + btizi δ̂zi(θi)

]
. (2.12)

Sampling every variable in Eq. 2.12 at once is computationally intractable. However, the

fact that individual components of the posterior can be sampled separately means that Eq.

2.12 is amenable to Gibbs sampling. Because the posterior has been simplified by assuming

that the effective survey area for source detection is independent of type (A(f) is constant),

and that the tracer and target populations have the same density fluctuations (the biases

btz = 1), the Gibbs sampling can be performed in two steps. The first step involves sampling

from the joint redshift-type probability distribution, conditioned on the observables F , θ,

prior information p(f), and counts Nzt of the number of sources belonging to a distinct

redshift and type bin from the previous iteration of the sampler:

p(f |z, t, F, θ) ∝ p(f)
∏
z,t

fNzt
zt . (2.13)

The individual types and redshifts for each galaxy are sampled in the second step, conditioned

on the joint type-redshift probabilities f from Eq. 2.13:

p(zi, ti|f , Fi, θi) ∝ Litiftizi

(
1 + δ̂izi

)
. (2.14)

The z, t pairs for each galaxy comprise the next realization of counts Nzt in the next iteration

of the sampler. This process is performed until the type and redshift distributions have

converged (the condition for convergence will be described in detail in Section 2.5.2).
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2.4.5 Incorporating the prior

The prior p(f) is a fixed quantity – the probabilities of each redshift-type combination in

the spectroscopic sample are only computed once and then used in subsequent iterations

of the sampler. Therefore, after the first iteration, the conditional posterior in Eq. 2.13

only depends on the number of counts Nzt from the second step of the Gibbs sampler. This

dependency can be expressed in a straightforward way using Bayes’ theorem:

p(f |N ) ∝ p(N |f) p(f) . (2.15)

The likelihood p(N |f) is a single realization of probabilities for a discrete set of classifications

(in this case, unique combinations of discrete type and redshift bins), and therefore follows

a categorical distribution (Wikipedia contributors 2021). Since the Dirichlet distribution is

the conjugate prior to the categorical distribution, we can choose the prior to be Dirichlet

distributed (which appropriately satisfies 0 ≤ fzt ≤ 1 and
∑

zt fzt = 1), so that the posterior

will also follow a Dirichlet distribution. This is commonly done in Bayesian statistics, and

has the advantage of easily allowing the incorporation of new counts in each cycle. The

Dirichlet distribution has the following probability density function:

f(x1, ..., xK ;α1, ...αK) =
1

B(α)

K∏
i=1

xαi−1
i , (2.16)

where K is the number of parameters, B(α) is the beta function, αi are concentration

parameters whose domain spans the positive reals, and xi fulfill the standard normalization

requirement for probabilities 0 ≤ xi ≤ 1 and
∑

i xi = 1. In our model, the {xi} are the joint

redshift-type probabilities fzt, the number of parameters are the number of unique type-

redshift bins, and the concentration parameters are the number of counts in each (z, t) bin.
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Since we are using an informative prior where we include information from a representative

spectroscopic sample, the posterior in Eq. 2.15 is Dirichlet-distributed on the number of

counts in the prior sample M = {Mzt} and the counts from the last iteration N = {Nzt},

with the concentration offset parameter αoffset = 1:

p(f |N ) ∝
Nzt∏
z,t

f
(Nzt+Mzt+αoffset−1)
zt

∼ Dir(N + M) .

(2.17)

2.5 Demonstration on a toy model

The formalism outlined in Section 2.4.3 is applied to a toy model as a proof of concept. The

following two sections detail how these simplified data were generated and show the redshift

and type estimates of the HBM. A metric is introduced to study redshift estimation errors,

and the effect of clustering on the performance of the method is also investigated.

2.5.1 Generating the toy data

Redshifts and types in the toy model are constrained to lie in the range z, t ∈ [0, 1] in 50

equally spaced bins, such that Nz = Nt = 50. The density fluctuation field δz in each

of these redshift bins is generated from a deterministic density estimator using a Gaussian

Random Field (GRF) with a resolution of 1024 x 1024 pixels. The posterior will therefore not

include variance due to shot noise in the tracer population. Each redshift bin has a density

fluctuation field δz(θ) that is independent of any other bin such that ⟨δzi(θ)δzj(θ)⟩ = 0 for

zi ̸= zj. Moreover, it’s assumed that the biases btz = 1 so that targets and tracers have the

same fluctuations. Perfect selection is also assumed (p(s) = 1). The field in each bin is
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drawn from a power spectrum P (k) ∼ k−3, where k is the scale in Fourier space, with an

rms = 2.5, and clipped to only include non-negative values.

The overdensity field is defined in terms of the value of the field at each position and redshift

ρ(θ, z):

δ(θ, z) =
ρ(θ, z)

ρ̄(z)
− 1 . (2.18)

Individual galaxy types are drawn from the following distribution:

p(t) ∝ ta exp−(t/t0)
2 , (2.19)

with a = 1.5 and t0 = 0.3. Redshifts are assigned piecewise as a function of type:

p(z|t) =



if t = 0


0.8 z = t

0.2 z = t+ 0.02

if t = 1


0.8 z = t

0.2 z = t− 0.02

else


0.6 z = t

0.2 z = t± 0.02

(2.20)
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Figure 2.4: Distributions of the true redshifts, phenotypes, and fluxes of the 1× 105 galaxies
used in the toy model.

Each galaxy is also assigned a single feature, or flux, based on its type. This flux value is

randomly selected from a 1D Gaussian with variance σ2
F = 0.02 to simulate flux measurement

errors:

p(F |t) = LFt = N (t− F, σ2
F ) (2.21)

Lastly, line-of-sight positions are assigned by randomly sampling from the overdensity field

in Eq. 2.18:

p(θ|z) ∝ (1 + δ(θ, z)) . (2.22)

Distributions of the redshifts, types, and features of 1× 105 simulated galaxies are shown in

Fig. 2.4, and the resulting density field in all 50 redshift bins is shown in Fig. 2.5, where the
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Figure 2.5: Angular density fluctuation field in each of the 50 redshift slices in the toy
model (top), and a histogram of the value of the density field in the green circle in each slice
(bottom).

clustering is in red, and a random subset of 5% of the data in each slice is shown in black.

The histogram below shows the value of the field ρ(θ, z) in the center pixel of each 1024 x

1024 pixel redshift slice, indicated by the green circle.

The toy data set consists of two distinct subsets of the 1× 105 galaxies simulated above: an

Nphot = 8× 104 photometric sample and an Nspec = 1× 103 spectroscopic sample.

2.5.2 Convergence of the Gibbs chains

The Gibbs sampler was run for four different posterior conditions, including running on just

the prior, on the prior and the feature likelihood, the prior, feature likelihood, and clustering
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Table 2.2: Gelman & Rubin convergence results for each of the four different posteriors in
the toy model.

Posterior condition Description of posterior condition R - 1
prior Prior only 0.0003
noz Prior + Feature likelihood 0.0117

halfz Prior + Feature likelihood + δ(z ≤ 0.5) 0.0146
fullz Prior + Feature likelihood + δ(All z) 0.0128

up to z ≤ 0.5, and on the full posterior including clustering up to z ≤ 1.2 (see Table 2.2).

Four different walkers were run for each condition, initialized by different seeds, where each

walker ran 2500 cycles of the Gibbs sampler. This resulted in a total of 1× 104 samples per

chain.

A simple metric was derived to assess the performance of the model for each sampling scheme.

This involved computing the difference between the estimated redshift in each sample j and

the mean of the true redshift distribution of the photometric population:

∆zj = ⟨zest,j⟩ − ⟨ztrue⟩ . (2.23)

Convergence of the chains was determined using the Gelman & Rubin convergence metric

(Gelman & Rubin 1992):

R =

√
V̂ /W , (2.24)

where the variance estimate is:

V̂ =
n− 1

n
W +

1

n
B . (2.25)
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W and B/n are the average of the within-sample variances and the variance between the

sample means, respectively, and n is the number of samples in each chain. SB18 requires

that the Gelman & Rubin metric R − 1 < 0.03 for the chain to have converged. Table 2.2

shows that this was satisfied for all four posterior conditions.

2.5.3 Results of the toy model

The following results are for the full posterior (fullz). A histogram of inferred redshifts for

four different galaxies over all 1 × 104 samples is shown in Fig. 2.6. The true redshift in

each histogram is shown as the dotted black line. In each case, the true redshift is closely

aligned with the peak of the redshift distribution. The mean redshifts of all galaxies in each

iteration of the sampler were also computed and are shown in Fig. 2.7, along with the true

population mean. These results also show good agreement overall between true and sampled

means.

Next, redshift and type distributions were examined separately for each posterior condition.

Fig. 2.8 shows estimates of redshift and type in each bin, along with a histogram of the true

distributions from the photometric sample. It is clear how the incorporation of additional

information such as spectroscopic redshifts and clustering help constrain the posterior dis-

tribution, particularly for redshift estimates, resulting in tighter distributions. In the third

panel of Fig. 2.8, we can see the impact of only including clustering information at redshifts

below z < 0.5. Both redshift and type distributions for lower redshifts are more tightly

constrained compared to galaxies above z > 0.5, which reduce to the photometry-only case

in the second panel.

Next, the ∆z metric from Eq. 2.23 was computed for each posterior condition. A histogram

of ∆z values for all four chains is shown in the left panel of Fig. 2.9. The median and

standard deviation of all samples for each posterior type are given in Table 2.3.
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Figure 2.6: Histograms of estimated redshifts for four galaxies in the photometric sample.
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Figure 2.7: Estimated population mean redshifts for samples with the full posterior.

Table 2.3: Median and standard deviation of ∆z for each fiducial posterior.

Posterior condition Median (∆z) Standard Deviation (∆z)
prior 0.00653 0.00639
noz -0.00091 0.00045

halfz -0.00139 0.00024
fullz -0.00006 0.00018

The offsets in noz and halfz were the results of systematic biases in each chain. These biases

were confirmed to be due to the prior being slightly non-representative of the full sample due

to statistical fluctuations. The right panel of Fig. 2.9 shows the same metric, but instead of

using a prior of 1× 103 galaxies, the chains are run with a prior sample of 2× 104 galaxies.

Restricting the clustering portion of the likelihood to z < 0.5 shows a slight improvement in

the metric for low-redshift galaxies, where it effectively traces the full posterior histogram,

as expected. Fig. 2.11 demonstrates this for a single galaxy. However, using the halfz

55



Figure 2.8: Results of Gibbs sampling from four different posterior conditions (see Table
2.2) shown as violin plots. Estimates for redshifts and types are shown in red and blue,
respectively. Including clustering information significantly reduces the scatter in each bin,
and reduces to only using photometric and prior information in the case of no clustering.
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Figure 2.9: The ∆z metric for all four chains for the case of using (a) 1× 103 spectroscopic
galaxies and (b) 2 × 104 spectroscopic galaxies for the prior. Using a larger spectroscopic
sample reduces the systematic biases in noz and halfz.

posterior to make redshift estimates for high-redshift galaxies degrades the accuracy to be

comparable to using the feature-only posterior, as seen in Fig. 2.12.

2.6 Redshifts using simulated data from DC2

SB18 discuss the application of their method to simulated data in their subsequent paper

[A19] (Alarcon et al. 2020). This section follows the approach outlined in A19 to estimate

redshifts on realistic simulations provided by the cosmoDC2 catalog1, which is a synthetic

version of a small subset of the LSST survey generated as part of DC2. A self-organizing

map (SOM) is used to build the feature likelihood by treating cells in the map as distinct

phenotypes. Finally, we will compare the constraining power of using of a SOM to classify

galaxy phenotypes to a method based on using normalizing flows (Papamakarios et al. 2021).

1The full catalog can be accessed here: https://github.com/LSSTDESC/cosmodc2
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Figure 2.10: Redshift and type distributions for the four posterior conditions for a (a) low-z
and a (b) high-z galaxy. The halfz and fullz in (a) are identical, consistent with the
fact that high-z clustering information should have no effect on galaxies at redshifts below
z < 0.5. The halfz estimates reduce to the noz case for the high-z galaxy in (b), as clustering
information below z < 0.5 is not expected to have an impact for this redshift regime.

50 < RA < 60.5
−44.5 < DEC < −36.5

i-band < 25
0.2 ≤ z ≤ 1.2

Table 2.4: cosmoDC2 catalog cuts.

2.6.1 The cosmoDC2 catalog

The cosmoDC2 catalog is based on a trillion-particle cosmological N-body simulation span-

ning a 440 deg2 area on the sky up to redshift z ≤ 3, with a limiting r-band magnitude depth

of 28 (LSST Dark Energy Science Collaboration 2021). The simulations are based on semi-

analytic models parameterized by underlying baryonic processes that model the evolution of

galaxies within individual dark matter halos.

We use a version of this catalog created by Sam Schmidt for our photometric redshift studies,

which is based on the extragalactic mock catalog cosmoDC2 v1.1.4 image. This catalog
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Figure 2.11: Redshift and type estimates for a low redshift galaxy, where there is only a
small difference between using the halfz and fullz posteriors.

Figure 2.12: Redshift and type estimates for a high redshift galaxy, where estimates from
the fullz posterior come closest to the true redshift.

contains observed magnitudes with predicted 10-year errors added to the fluxes according

to the model presented in Ivezić et al. (2019). We apply magnitude and RA/DEC cuts to

extract an 8× 8 deg2 patch in the South Galactic cap, with a limiting magnitude matching

that of the LSST gold sample (i < 25) (LSST Science Collaboration and LSST Project

2009). The RA range is slightly wider than the DEC range to account for the cos(DEC)

correction when measuring the distance between two points on a sphere.2 Redshifts have

been restricted to lie between 0.2 ≤ z ≤ 1.2. A summary of the cuts applied to this catalog

2The RA range is multiplied by the cosine of the mean declination for the cut considered: 10.5◦ ×
cos(40.5◦) = 8◦.
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is given in Table 2.4. Details on the specific galaxy samples used in this study, and how they

were prepared, will be discussed in Section 2.7.

2.6.2 Defining phenotypes using self-organizing maps

One of the primary differences between the application of the hierarchical model to toy data

in SB18 and to realistic simulations in A19 is the use of a self-organizing map (SOM) to

define galaxy phenotypes. We will first describe the formalism behind this machine learning

technique and then discuss its application to data from cosmoDC2 in the following section.

A SOM, also called a Kohonen map (Kohonen 1982), is an unsupervised machine learning

method used to map high-dimensional data onto a low-dimensional (typically 2D) grid. It

does this by mapping the input features to its cells through a competitive learning process,

whereby cells rival each other to most closely resemble each input. One useful property of

SOMs is that they preserve the topological properties of the data, so that neighboring cells

have similar features. This makes it easier to visualize correlations that exist in the data,

as well as identify gaps or anomalies in the feature space. For example, SOMs have been

used to characterize the mapping between color and redshift in order to assess spectroscopic

coverage in large surveys by locating parts of the grid that are under-populated (Masters

et al. 2015). The SOM algorithm outlined below follows that of Buchs et al. (2019), where

it was used for a similar purpose of estimating redshifts via phenotypes.

The SOM algorithm

Suppose that the training sample consists of n galaxies, where each galaxy is characterized

by m features consisting of magnitudes or colors, but excluding redshift. The input feature

vector associated with each galaxy is given by x ∈ Rm. The C cells in the SOM are arranged
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on a p x q grid, and periodic boundaries are enforced so that cells along the edges of the

map are considered neighbors of cells on the opposite edge. Each cell is associated with a

weight vector wk ∈ Rm, where k = 1, ..., C, occupying the same feature space as the training

data. The weight vectors are initialized randomly through a Gaussian sampling of the input

features. Galaxies in the training sample are randomly shuffled, and then introduced to the

SOM one at a time through an iterative process. A single training cycle is completed after

every galaxy has been processed once. The maximum number of training cycles is tmax.

At each iteration, the Euclidean distance between the input vector and the weight vectors

of all the cells is calculated :

d(x,wk) =

√√√√ C∑
k=1

(x−wk)2 . (2.26)

This is used to determine the best matching unit (BMU), cb, or the cell whose weight vector

is closest to the input vector in feature space:

cb = argmin
k

d(x,wk) . (2.27)

Next, cell weights are adjusted to more closely resemble the input vector. Rather than

update the weights of all cells on the grid after the introduction of each galaxy, only the

weight vectors of the cells whose physical location on the map is within a certain distance

of the BMU are modified to more closely resemble the features of the input galaxy. This is

what helps to preserve the topological structure of the input space. The update function is

also a function of the time step t in the training:

wk(t+ 1) = wk(t) + η(t)Hb,k(t) [x(t)−wk(t)] . (2.28)
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The learning rate η(t) is a monotonically decreasing function of the time step that determines

the responsiveness of the map to new inputs, and becomes less sensitive as the number of

iterations increases:

η(t) = η
t/tmax

0 . (2.29)

The constant η0 ∈ [0, 1], and for our study we use η0 = 0.5. The weight vectors that are

selected to be updated lie within a neighborhood of the BMU. This area is determined by

the neighborhood function Hb,k(t), which is a Gaussian kernel centered on the BMU that

also decreases over time:

Hb,k(t) = exp[−D2
b,k/σ

2(t)] . (2.30)

The width of the kernel is given by:

σ(t) = σ1−t/tmax
s . (2.31)

The initial value of the kernel σs is chosen to be equal to the mean of the physical separations

between each cell and every other cell on the map. The distance between the BMU, cb, and

cell ck is just the Euclidean distance:

D2
b,k =

p∑
i

q∑
j

(cbi,j − cki,j)
2 . (2.32)
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As the training progresses and new galaxies are introduced to the map, the width of the

neighborhood function shrinks so that, toward the end of each training cycle, it only includes

the BMU and its closest neighbors.

The loss function and convergence

Termination of the training process is based on the value of a loss function, which is a

measure of the “cost” of each successive cycle. The loss is defined as the sum of the smallest

feature-space distances over all iterations in a given cycle. In other words, it is the sum of

the distances in Eq. 2.26 between the input vectors and their associated BMUs in each cycle:

L =
tmax∑
t=1

d(xt,wcb) . (2.33)

Training is said to have converged when the loss function has plateaued, such that additional

training cycles no longer result in a significant decrease in the loss. At this point, the map

has sufficiently defined phenotypic cells as combinations of galaxy features and can be used

to classify new data. This mapping of new galaxies to cells is done by finding the BMU

of each galaxy (using Eq. 2.27), which is the cell that minimizes the Euclidean distance

between a given galaxy’s features and the weights of all the cells.

2.6.3 Refining phenotypes using two SOMs

The toy model made use of three separate galaxy populations: a spectroscopic sample with

accurate redshifts for the prior distribution, a tracer population containing galaxy clustering

information, and a photometric sample of observed galaxies whose redshifts we were trying
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to determine. As we move away from the toy model and develop a more sophisticated way of

identifying galaxy phenotypes, we will need to introduce two additional galaxy populations.

The feature likelihood in Eq. 2.7 expresses the probability of observing galaxy i to have

features Fi given that it belongs to phenotype ti. We can construct a single SOM using the

features in our photometric sample, but this will introduce photometric scatter into the map

due to measured errors in the observed features. Instead, we will train two SOMs: one on

the observed photometry, or the wide sample, and another on more accurate, multi-band

photometry that is complete to faint magnitudes, hereafter referred to as the deep sample.

The deep sample is assumed to be representative of the wide data, such that any galaxy

observed in the wide data would be observed if its location were in the deep field. An

overlap sample, defined as galaxies for which both wide and deep observations are available,

will be used to generate a mapping from the wide SOM to the deep SOM. This essentially

discretizes the likelihood function by expressing it in terms of discrete cells rather than

continuous feature values.

2.6.4 Constructing the feature likelihood

The assumption that every observed galaxy in the wide sample would be observed in the

deep sample if it were located within the deep footprint means that every wide galaxy can

be mapped to a location in the deep feature space with some likelihood. This mapping is

performed by training one SOM on the wide sample and another SOM on the deep sample,

and finding a mapping from one to the other. Since the weight vectors of the wide cells

will be subject to photometric noise, mapping the wide cells to a second, higher-resolution

SOM trained on noiseless features will refine the classification of galaxy phenotypes, not

only because there is lower variance in the cell assignments, but because discretizing galaxy

features over a finer grid allows us to better resolve distinct type categories.
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The feature likelihood in Eq. 2.7 can be redefined in terms of wide and deep SOM cells, ĉ

and c such that

Lit ≡ p(Fi, s|ti, θi) = p(ĉi, s|ci, θi) . (2.34)

In other words, given a galaxy’s assignment in the deep SOM, ci, we can determine the

likelihood of it having the observed features in its wide-cell assignment, ĉi. Per Bayes’

theorem, the likelihood in SOM parlance becomes:

p(ĉ, s|c) ∝ p(c|ĉ, s) p(ĉ|s) . (2.35)

The quantity p(c|ĉ, s) is called the transfer function, and is the fractional occupation of a

deep cell given a wide cell after all galaxies in the overlap sample have been mapped to both

SOMs. The transfer function can be recast using the law of conditional probabilities:

p(c|ĉ, s) = p(c, ĉ|s)
p(ĉ|s) . (2.36)

The numerator is the probability of a galaxy in the overlap sample belonging to the cell

combination (c, ĉ), based on its BMU assignment in each SOM:

p(c, ĉ|s) = 1

ns

∑
i∈s

δc,ciδĉ,ĉi , (2.37)

where ns is the number of galaxies that were selected as part of the overlap sample, and δ is

the Kronecker delta function. The probability of a galaxy belonging to wide cell ĉ is given

by:
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Figure 2.13: Redshift distribution of the 1× 106 galaxies in the main sample.

p(ĉ|s) = 1

ns

∑
i∈s

δĉ,ĉi . (2.38)

The transfer function then becomes the number of galaxies with unique combinations of

(c, ĉ), divided by the number of galaxies in each wide cell ĉ:

p(c|ĉ, s) =
∑

i∈s δc,ciδĉ,ĉi∑
i∈s δĉ,ĉi

. (2.39)

2.7 Generating wide and deep samples

Since the catalog includes both true and observed magnitudes for every galaxy, we will

consider the ideal case where we use the same 1 × 106 galaxies that have been randomly

sampled from the truncated cosmoDC2 catalog (i.e. with the selection cuts in Table 2.4
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Figure 2.14: A two-dimensional histogram of angular bins for all 1×106 main sample galaxies.

applied) as the main sample. In this case, the overlap sample, wide, and deep samples are

all from the main sample and consist of an identical set of galaxies. The analysis in this

chapter was performed using the SOMVIZ package (Abolfathi 2022), which enables training

and classification methods to generate self-organizing maps, as well as additional methods

to calculate various metrics and produce visualizations of the maps.

The normalized redshift distribution of the main sample is shown in Figure 2.13. Galaxy

redshifts were translated into indices belonging to bins of finite width. Discrete redshift

indices are represented as 100 bins equally spaced in comoving distance between 0.2 ≤ z ≤

1.2. The distribution of redshifts with this binning scheme is shown in Figure 2.13.

For the clustering portion of the likelihood function, we use the true density field of the

wide sample, rather than a separate tracer sample. Therefore, our density fluctuation field

estimators δ̂z are the true fluctuations δz, and galaxy bias is implicitly accounted for. Angular

positions (ϕ, θ) are defined based on the tangent plane to the (RA,DEC) coordinates by
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Figure 2.15: A two-dimensinoal histogram of ϕ and z bins for all galaxies in the main sample.

subtracting the mean RA/DEC of the entire galaxy sample from each galaxy coordinate.

These adjusted coordinates are then binned into a 2D histogram consisting of an 80 × 80

grid of (θ, ϕ) bins (see Fig. 2.14). A histogram showing the density of galaxies in the main

sample in (ϕ, z) is shown in Figure 2.15.

The features in the deep sample consisted of four colors (u-i, g-i, r-i, z-i), whereas the

wide sample features contained one magnitude and three colors (i, g-i, r-i, z-i). The deep

features were obtained using true magnitudes, and the wide features consisted of magnitudes

with simulated 10-year errors. Each wide color was normalized to lie within the range [0, 1],

while the wide i−band magnitude was normalized to span the range [0, 0.1], such that wide

colors were given 10x more weight than the magnitude. Pairplots of the feature distributions

used to train the SOM for the deep and wide sample are shown in Figures 2.16 and 2.17,

respectively.
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Figure 2.16: A pairplot of the deep features for the first 4× 103 galaxies in the main sample,
equally divided into six redshift percentile bins. The features consist of the four colors: u-i,
g-i, r-i, and z-i.
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Figure 2.17: A pairplot of the wide features for the first 4× 103 galaxies in the main sample,
equally divided into six redshift percentile bins. The features consist of three normalized
colors and one magnitude: i, g-i, r-i, and z-i.

70



2.8 Results of the Gibbs sampler on cosmoDC2

Both deep and wide SOMs were trained on a 14x14 grid for 100 iterations, in batches, where

each batch consisted of a 1% randomly-sampled subset of each sample. The loss function

for each is shown in Figure 2.18. The number of galaxies per cell in each trained SOM,

obtained by mapping every galaxy in the main sample to its best-matching deep and wide

cell, is shown in Figure 2.19. A plot of the predicted redshifts versus true redshifts for both

deep and wide SOMs is shown in Figure 2.20. The mean redshift and standard deviation

of the redshifts per cell are shown in Fig. 2.21 for both deep and wide SOMs, along with

histograms of each. While the range of redshifts for both wide and deep SOMs overlap for

the most part, the standard deviation is much better constrained by the deep SOM.

Figure 2.18: The loss function from training the deep (left) and wide (right) SOMs.

Next, the transfer function (Eq. 2.39) is calculated by finding the best-matching cell in

the deep SOM for every wide SOM cell. A 1000-step Gibbs sampler was then run for four

different cases: (1) prior-only, (2) feature likelihood and prior, (3) the same case as (2),

but incorporating the clustering part of the likelihood function up to z < 0.5, and (4) the

same case as (2) with the full clustering likelihood up to z < 1.2. Each of the four panes

has a figure on the left showing a histogram of the sampled galaxies in blue, along with the

likelihood and true redshift, and the sampled redshifts as a function of step number on the
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Figure 2.19: The number of galaxy counts per deep (left) and wide (right) SOM cell.

Figure 2.20: The predicted redshifts obtained by mapping each galaxy in the main sample
to its best-match deep (left) and wide (right) SOM cell, plotted against their true redshifts.
The error bars correspond to the standard deviation of the redshift distribution of each best-
matching cell.
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Figure 2.21: The mean of the per-cell redshift distribution for the deep (top left) and wide
(top middle) SOMs, along with the histogram of the mean redshift for cells in each SOM (top
right). Similar plots are shown in the bottom row for the standard deviation of the per-cell
redshift distribution. The histogram on the bottom right clearly shows the deep SOM to be
more robust.

right. The results for a single galaxy in the main sample are shown in Fig. 2.23. Including

only the prior does very little to constrain the redshift. The histogram of sampled galaxies

in pane (b) is slightly more peaked near the true redshift when adding the feature likelihood,

but the redshift is still poorly constrained. In pane (c), adding the clustering portion of

the likelihood decreases the probability of sampling a galaxy at lower redshifts. Since the

sampled galaxy’s true redshift is greater than z = 0.5, the constraining power of including

the full clustering likelihood can be easily seen in pane (d), where the histogram is more

sharply peaked near the true redshift.

Each of the cases above was run for four separate chains, each consisting of a 1000 cycles of

the Gibbs sampler. The four chains were combined and the Gelman & Rubin metric (Eq.

2.24) was used to determine their convergence, with the results shown in Table 2.5.
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Figure 2.22: The transfer function, used to estimate the likelihood function, captures the
probability of each wide cell being mapped to each deep cell.

The ∆z metric from Eq. 2.23 was used to determine the overall performance of the model.

The result for the full posterior is shown in Fig. 2.24, with a distribution mean of around

∆z ≈ 0.02.

2.9 Discretizing types and redshifts with zotbin

This section compares the performance of binning galaxies as a function of type and redshift

via a self-organizing map with that of a method developed by David Kirkby that uses a

generative model called a normalizing flow.
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(a) Prior only. (b) Prior + Feature likelihood.

(c) Prior + Feature likelihood + δ(z ≤ 0.5). (d) Prior + Feature likelihood + δ(All z).

Figure 2.23: Results of running a 1000-step Gibbs sampler for galaxy 35 for different com-
binations of (a) prior, (b) feature likelihood, (c) clustering up to z ≤ 0.5, and (d) clustering
up to z ≤ 1.2.

Posterior condition Description of posterior condition R - 1
prior Prior only -0.0001
noz Prior + Feature likelihood -0.0002

halfz Prior + Feature likelihood + δ(z ≤ 0.5) 0.0002
fullz Prior + Feature likelihood + δ(All z) 0.0004

Table 2.5: Gelman & Rubin convergence results for the four different cases shown in Fig.
2.23.

2.9.1 Normalizing flows

While a SOM can be used to organize galaxies into discrete phenotypes, its performance

depends on how well the features are separated to begin with. Figures 2.16-2.17 show a

pairplots of the feature distributions used to train the SOM for the deep and wide sample,

respectively. It is clear that the data occupy narrow regions of the feature space and show

strong correlations. If we could somehow spread out these distributions so that they are

nearly uniform and uncorrelated, we could more easily differentiate between individual fea-

tures, leading to better resolved galaxy phenotypes. This transformation from the native,
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Figure 2.24: The ∆z metric used to assess the performance of the hierarchical Bayesian
model for the case of incorporating the full posterior.

m-dimensional feature distribution to a simpler, base distribution of the same dimensions is

accomplished through the learning of a normalizing flow.

A normalizing flow is a type of generative modeling technique similar to that generative

adversarial networks (GANs) Goodfellow et al. (2014) or variational auto-encoders (VAEs)

Kingma & Welling (2014), wherein the goal is to characterize an unknown probability distri-

bution given samples drawn from that distribution Kobyzev et al. (2020). However, unlike

GANs and VAEs, normalizing flows allow for the exact and efficient evaluation of the prob-

ability distribution through a chain of parameterized invertible and differentiable functions.

More specifically, they provide a mechanism to construct probability distributions by trans-

forming a simpler, base distribution into a more complex distribution through a series of
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diffeomorphisms. The complex distribution can then be sampled from by first sampling

from the base distribution and then applying the transformations. The following section

outlines the basic steps of this process.

Flow basics

LetY ∈ RD be a random variable drawn from a complex, irregular distribution pY : RD → R,

and let the random variable Z ∈ RD belong to a simple, base distribution pZ : RD → R. We

can express Y in terms of a forward mapping from the base distribution, represented by a

differentiable and invertible function g(Z) = Y. The transformation g can be thought of as

reshaping a small neighborhood around z to mold pZ(z) into pY(y). If the inverse mapping

is given by the function f(Y) = Z, where f is also differentiable and invertible, then the

probability distribution of the random variable Y can be expressed as the product of the

inverse-transformed sample, and the associated change in volume given by the determinant

of the Jacobian matrix Jf for that transformation:

pY(y) = pZ(z) |detJg(z)|−1 (2.40)

= pZ(f(y)) |detJf (y)| . (2.41)

Because the transformations g and f are differentiable and invertible, they are also compos-

able. In other words, if g represents the series of transformations g = gN ◦ gN−1 ◦ ... ◦ g1,

then f = g−1 is given by f = f1 ◦ ... ◦ fN−1 ◦ fN. Moreover, following Eq. 2.41, the probability

density of the base distribution can be expressed as:

pZ(z) = pY(g(z)) |detJf (g(z))|−1 . (2.42)
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Figure 2.25: A flow in the generative direction, going from a uniform distribution to a
Gaussian distribution.

The transformation from the simple, base distribution pZ(z) to the more complex density

pY(y) is called a pushforward of the density pZ(z) in the generative direction. The inverse

transformation, which molds the complex, irregular distribution into the base distribution,

is in the normalizing direction. The latter mapping is what we will use to transform the

cosmoDC2 data from a sparse feature space exhibiting complex correlations into a space

where the galaxy features are more uniformly distributed.

A simple, one-dimensional demonstration of this is shown in Fig. 2.25 using a uniform

distribution U(0, 1) as the base distribution pZ(z), and an empirically derived distribution

sampled from N (6, 1) as the complex distribution pY(y). We can transform in the normal-

izing direction, from pY(y) to pZ(z), so that the cumulative distribution function of pY(y)

matches that of a uniform distribution U(0, 1) (see Fig. 2.26).

2.9.2 Calculating flows with zotbin

The zotbin3. package contains a set of algorithms used for the implementation of the

ZotBin method, a binning scheme developed for the DESC 3x2pt Tomography Challenge

Zuntz et al. (2021). ZotBin consists of a pre-processing stage, a grouping stage, and a stage

3https://github.com/dkirkby/zotbin
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Figure 2.26: A flow in the normalizing direction. The cumulative distribution functions
(CDF) for a uniform distribution and for a Gaussian distribution are shown on the left and
middle, respectively. The transformed Gaussian CDF on the right resembles the original
uniform CDF (left).

that optimizes redshift bin edges for tomographic weak lensing. Methods related to the first

two stages were used to assign phenotypes to galaxies.

Bins in zotbin are initially defined as a rectangular grid in feature space, where each feature

axis contains an equal number of samples (show plot). The pre-processing stage involves

using a normalizing flow to transform the n-dimensional feature space into a new, simpler

space with the same dimensions. This is done by first mapping the original probability

density into a multivariate unit Gaussian, and then into a uniform distribution through a

second transformation by applying the error function. This simpler distribution exhibits a

nearly uncorrelated distribution on the unit hypercube [0, 1]n.

The grouping stage is performed by dividing the unit hypercube into a regular lattice of

O(10k) cells. These cells are then merged into 100(?) groups in an iterative fashion. Cells

are merged based on their “similarity”, expressed as the product of their independent redshift

and feature similarities. The feature similarity vector for a single cell i is defined in terms of

the grid separations dri between itself and every other cell in the multidimensional feature

space:

fi = exp−(dri/σ)
2

. (2.43)
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The hyperparameter σ determines the relative importance of the feature and redshift simi-

larities when grouping cells. Redshift similarity is defined as the cosine of the angle between

the redshift histograms of each cell. Grouping is performed iteratively by combining pairs

of groups with the maximum similarity until a specified number of groups is reached. When

two groups are merged, their redshift histograms are added, and their feature similarities

are updated with the other remaining groups. The final groups represent the distinct galaxy

phenotypes that will be compared with the results of the SOM in Section 2.8.

2.9.3 Grouping galaxies: SOMVIZ versus zotbin

A possible alternative to using a self-organizing map to build the feature likelihood is to

implement the grouping scheme in zotbin. Whereas a SOM is ultimately two-dimensional,

zotbin uses a non-linear transformation to transform from a highly complex, n-dimensional

space to a new n-dimensional space where the data are uncorrelated. Figure 2.27 shows the

four features in the deep sample before a normalizing flow has been applied, while Figure

2.28 shows the new feature space after this preprocessing with a flow.

The redshift-type histograms for the wide and deep SOMs are shown in Figures 2.29-2.30.

The effect of using true versus measured fluxes is easily visible, as the deep histogram is

clearly better at constraining the redshift-type relation over the wide histogram. Figure 2.31

shows a similar ridge plot using the grouping method in zotbin. Although the distribution

is not as narrowly peaked as the histogram in Fig. 2.29, its performance over a SOM in

estimating the feature likelihood still needs to be investigated.
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2.10 Conclusion

A Hierarchical Bayesian model is able to successfully incorporate photometric, spectroscopic,

and clustering information to constrain redshifts, as well as provide estimates of their errors.

After demonstrating the success of this method on a toy model, the method was applied

to simulated data from cosmoDC2, where results showed the added benefit of including

clustering information on constraining the posterior. A self-organizing map was used to

generate the feature likelihood, which gave probabilities of a galaxy having a particular

redshift given its assignment to a discrete phenotype. This method of binning galaxies by

redshift and phenotype was compared to a grouping method using the zotbin package.

Future work would involve investigating the performance of each of these to find an optimal

tomographic binning scheme for maximizing the figure-of-merit for the 3x2pt probe.
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Figure 2.27: A pairplot showing the deep feature space (with axes similar to Fig. 2.16)
before applying a normalizing flow.
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Figure 2.28: A pairplot showing the feature space after applying a normalizing flow. It’s clear
how the feature space is more uniform, especially from the histograms along the diagonal.
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Figure 2.29: A ridge plot showing a histogram of the true redshifts of galaxies in the deep
sample (x-axis) against their deep cell assignment, or phenotype (y-axis). The histogram is
normalized by the maximum number of galaxies in each redshift bin.

Figure 2.30: A ridge plot showing a histogram of the true redshifts of galaxies in the wide
sample (x-axis) against their wide cell phenotype (y-axis). The histogram is normalized by
the maximum number of galaxies in each redshift bin.
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Figure 2.31: A ridge plot produced by the zotbin grouping method, with the same binning
scheme on the x-axis (100 redshift bins equally spaced in comoving distance), and 100 phe-
notype cells on the y-axis.
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Chapter 3

Sensor effects in LSST

3.1 Introduction

Addressing the science goals for LSST requires accurate measurements of cosmological pa-

rameters, which is partly limited by the systematics of the instrument response. The work

in this chapter improves upon our understanding of the LSST Camera and sensors by inves-

tigating anomalous signatures in bias images taken during the Integration and Verification

Testing phase of Camera assembly. In addition to looking at real Camera data, we will also

discuss work related to simulating the sensors. The latter half of the chapter will describe

the effects of varying the sky model across the focal plane in the imSim software package

(Dark Energy Science Collaboration 2020).

3.2 LSST Camera design and system requirements

Measuring 1.65 meters high and 3 meters long, the LSST Camera is the largest digital camera

ever constructed. Its focal ratio of f/1.2 and focal length of 10.31 meters yields a 3.5 degree
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Figure 3.1: An exploded view of the LSST Camera. Figure is from Roodman et al. (2018).

field of view, allowing for a wide-fast-deep survey strategy that will cover a large portion

of the sky with high cadence (Ivezić et al. 2019). The exploded view in Fig. 3.1 shows the

components of the Camera structure, including the lens assembly, shutter, the Camera body,

and the cryostat, which houses the focal plane (see Fig. 3.2).

The Camera design is guided by the LSST Camera system and Focal Plane requirements, and

adherence to a strict delivery schedule. To this end, a modular design was adopted to enable

assembly and testing of individual components in parallel in a test-as-you-build fashion, as

well as to allow for the ability to quickly isolate any issues or defects without disturbing

the rest of the focal plane. In keeping with this approach, the LSST focal plane consists

of 189 CCDs arranged on 21 autonomous cameras called Raft Tower Modules (RTMs) (see

Fig. 3.4). An RTM, along with its associated mechanical, thermal and electronic support

components, consists of a square matrix of nine CCDs. In addition to the 21 science rafts,

there are four additional corner rafts made up of wavefront sensing and guiding arrays used
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Figure 3.2: The LSST focal plane (left), containing all 21 science rafts and four corner rafts
containing guide sensors and a split wavefront sensor for focusing, and a corner raft and full
science raft tower (right).

Table 3.1: A subset of LSST Focal Plane requirements from Roodman et al. (2018).

Title Requirement Test
QE > 41%, 78%, 83%, 82%, 75%, 21% (u,g,r,i,z,y) Cam. Calib. wide-beam

CCD Diffusion σ < 5µm 55Fe
Read Noise < 9e− Bias images
Linearity < 3% Flat-fields

for focusing and telescope guiding. Fig. 3.3 shows how the focal plane is subdivided into

rafts, CCDs, and individual amplifiers.

A subset of the LSST Camera system requirements are shown in Table 3.1. The fully as-

sembled Camera must satisfy these conditions in order to achieve the precision and accuracy

needed for Stage-IV requirements. The survey’s speed requirements include reaching the 5σ

limiting magnitudes given in Table 3.2 in each of the six filter bands in each patch of the sur-

vey footprint, which will be imaged every three nights. It is therefore essential to minimize

the amount of downtime between exposures by enabling a rapid readout of the focal plane.

Thus, the entire 3.2 Gigapixel focal plane will be read out in two seconds. This is enabled

by a CCD pixel architecture consisting of 4k x 4k 10µm square pixels and 16 independent

amplifier segments, allowing for a pixel digitization rate of 0.5 MHz.
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Figure 3.3: The LSST focal plane and blown-up image of an individual CCD with all 16
amplifier segments. Figure is from LSST Science Collaboration and LSST Project (2009).

Table 3.2: LSST survey depth requirements from Roodman et al. (2018).

Band 5σ depth per visit 5σ depth over 10 year survey
u 23.9 26.1
g 25.0 27.4
r 24.7 27.5
i 24.0 26.8
z 23.3 26.1
y 22.1 24.9

3.2.1 Camera workflow

The LSST Camera was assembled in the IR2 high bay in a clean room at the Stanford Linear

Accelerator Center (SLAC). Although Camera assembly took place at SLAC, initial testing

of the CCDs and raft assembly began at Brookhaven National Laboratory (BNL). Once the

rafts were completed, they were shipped to SLAC where the results of a similar suite of tests

were compared to those obtained at BNL for consistency. The bias studies in Section 3.3

took place at SLAC, prior to the delivery of the Camera to the telescope site on the Cerro

Pachón ridge in north-central Chile.

Verification of Camera components was performed on a number of testing benches located in

the SLAC Camera Clean Room. I specifically analyzed data from an optical testing bench
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Figure 3.4: An individual science raft tower in the camera clean room. Figure is from
Roodman et al. (2018).

called Test Stand 8 (TS8), which was used to perform acceptance tests on individual rafts.

TS8 used a 300 Watt Xe arc lamp, a monochromator, a 6-position filter wheel, an off-axis

parabolic feed optic, a 300 millimeter integrating sphere and a 1 meter baffled dark box to

produce dark images, flat fields, 55Fe X-ray sources, and multi-spot images to study noise,

linearity, gain, cross-talk, dead pixels, as well as other unexpected instrument signatures

(Bond et al. 2018). These electro-optical performance tests were run using a software package

developed at SLAC called eotest (LSST Project 2019), which is a set of acquisition and

analysis scripts used to test the electro-optical performance of the RTMs. I used the eotest

package to study bias and offset corrections, as well as to characterize irregularities in the

LSST sensors. Because they were produced by two different vendors, Imaging Technology

Laboratory (ITL) and Teledyne e2v (e2v), the CCDs have their own unique signatures due to
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differences in the manufacturing process. A careful study of sensor effects therefore involved

evaluating data from TS8 at the raft, CCD, amplifier and vendor level.

3.3 Bias and offset studies

Bias frames are the first set of image sequences taken during pre-processing of Camera

data. They are used to calibrate verification sequences related to a subset of the System-

Level Verification Tests as laid out in the LSST Camera Verification Plan (LCA-283-F).

Tests related to gain stability, linearity and dynamic range, cross-talk, noise, image quality,

and diffusion requirements were performed at TS8. The verification sequences used for these

studies included flat-fields (exposures of a uniformly illuminated focal plane) to measure gain

and to study noise, 55Fe X-ray sources to measure gain, dark images (non-zero exposures

taken with the shutter closed) to study bad pixels and fixed-pattern noise due to the thermal

properties of the sensors, and bias images (zero-second exposures taken with the shutter

closed) to study the noise contribution of the sensor electronics. Because there is no charge

integration in bias frames, these images do not contain any signal due to thermally excited

or photo-electrons.

3.3.1 Offset correction

The pre-processing steps that involve bias images are bias and offset corrections. At the

end of an exposure, the photo-electrons generated in the bulk silicon go through a capacitor,

where their combined charge is registered as a voltage. Since this analog voltage cannot be

measured to perfect accuracy, there is some degree of uncertainty when it is translated into

digital counts via the analog-to-digital converter. If the signal in a pixel were smaller than

the readout noise it could result in that pixel having negative counts. To avoid this, a bias
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voltage must be applied to the capacitor to ensure that pixels with few or no photo-electrons

still register non-negative counts. A bias image should, therefore, look flat overall, with an

average count per pixel roughly equal to the offset level.

As a result, every CCD image contains a bulk offset level due to this bias voltage that must

be subtracted prior to any scientific analysis (see Figure 3.5). This offset can be thought

of as a “zero-point”, and typically contains around 20,000 counts for LSST sensors. One

can measure the offset in an image from the serial overscan region of a single channel in the

CCD. The overscan region does not refer to a physical location on the sensor. Rather, this

region contains “virtual” pixels that are the result of continuing the readout process after

data from the last physical pixel in the serial register has been recorded. The overscan should

theoretically not contain any signal from an external source. However, it does contain an

artificially-induced offset signal, which guarantees that the signal processed by the analog-

to-digital converter (ADC) is always positive.

I analyzed the overscan regions of bias images from TS8 to investigate the performance of

various methods of offset correction at the raft, sensor and amplifier level. I then integrated

two different offset-correction methods into the oetest software package. At the start of my

project, the EOTest package had two ways to calculate the offset level. One was to measure

the offset as the mean of all the pixels in the serial overscan region, and the other was to

fit a low-order polynomial function to the mean number of counts per row in the overscan

region. I compared these two methods to three other offset-correction methods: calculating

the offset as simply the mean-per-row in the overscan, as a linear fit, and as a cubic spline fit

to the mean-per-row in the overscan region. The cubic spline fit is computed using a weighted

least-square spline fit, where the weights are given as 1/(rms×√
nx), where rms ≈ 10 and

nx = 50 is the number of columns per row in the overscan. These comparisons can be seen

in Figs. 3.6-3.7 for two different e2v CCDS on RTM 012 and RTM 005, respectively.
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Figure 3.5: The process of performing bias and offset corrections for an e2v sensor on RTM
005 using the row-by-row mean method. A bias image is taken, then an overscan model image
is generated from the mean-per-row in the serial overscan region. This overscan model is
subtracted from the original bias image. Finally, the bias level is subtracted out by taking
the difference between the image minus the overscan model and the median image of a stack
of offset-corrected bias images. Under each image is a slice across an arbitrary row.
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Figure 3.6: The performance of different offset models as fits to the mean-per-row in the
serial overscan region of all 16 amplifiers on an e2v sensor on RTM 012.
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Figure 3.7: The performance of different offset models as fits to the mean-per-row in the
serial overscan region of all 16 amplifiers on an e2v sensor on RTM 005. Comparing this to
Fig. 3.6, it is clear that the shape of the mean-per-row curve varies across sensors even if
they are from the same vendor.
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Figure 3.8: The performance of a cubic spline fit to the mean-per-row on all amplifiers on
an ITL sensor on RTM 004. The fit is more sensitive to certain parameters in the spline fit,
such as the smoothing factor, as seen in the first amplifier.
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Figure 3.9: The performance of a Gaussian process fit to the mean-per-row on eight amplifiers
on an e2v sensor.

Figure 3.10: The performance of a Gaussian process fit to the mean-per-row on eight ampli-
fiers on an ITL sensor.

While the row-by-row correction did the best at characterizing variations in the offset level,

it introduced correlated noise of around 10/
√
50 1.4 counts per pixel. The cubic spline fit

generally did well at fitting the shape of the mean-per-row without adding a significant

amount of extra noise. However, its performance varied depending on the sensor vendor as

it tended to perform better on e2v sensors, as well as on the specific parameters of the spline

fit. Results of the cubic spline fit for an ITL CCD on RTM 004 is shown in Figure 3.8. In

some cases, a cubic spline would tend to overfit the data for certain amplifiers, as in the top-

and bottom-left panes of Fig. 3.8 but when the smoothing factor was increased it would

come at the cost of losing peaks or dips in the mean-per-row, particularly in the first 50 or
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so rows. Modeling the offset as a Gaussian process showed an improvement, but at the cost

of higher complexity, as well as not being able to properly quantify the introduction of noise

(see Figs. 3.9-3.10).

I modified the eotest package to allow the option to apply a mean-per-row or cubic spline

offset correction in addition to the existing mean and polynomial fit functions. After carefully

studying these methods and applying them to images from TS8, it was decided that the best

way to proceed in terms of the current testing software would be to use the mean-per-

row method because, even though it introduces slightly more noise, it is significantly more

accurate in the lower rows and would suffice for general performance testing. This became

the default offset-correction method for all electro-optical performance tasks in eotest.

3.3.2 Bias level

Once the offset level is subtracted and the image is trimmed to remove the overscan region,

the next step is to remove the bias level. The bias level corresponds to the pixel-to-pixel

variations in the read noise in an image. This structure varies from amplifier to amplifier, as

well as across a single amplifier on a CCD. To correct for the bias, a “super bias” is generated

for each amplifier by stacking many bias frames that have been offset-corrected and trimmed.

This super bias is then used to de-bias other exposures. I added the functionality in eotest

to be able to stack a set of images according to a statistic (for example, median-stacking or

taking a clipped mean of the stacked images), as well as a method to create a super bias file,

which generates a FITS file containing a super bias for each amplifier for a given raft, sensor

and run number (see Figure 3.11).

Next, I performed a study of how well the super bias corrected for the bias level. This

initially required a visual confirmation of each bias image that would be included in the

super bias as a function of raft, sensor, and run number. Referring to an offset-corrected
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Figure 3.11: The output generated by the “super bias file” method added to the eotest

package. Each super bias corresponds to an amplifier on sensor S00 on RTM 004. Rows
are shown on the y-axis and columns are on the x-axis, with the number of counts per pixel
shown in the color bar to the right of each image.

and de-biased image will as a corrected image from this point forward, all bias images taken

during each acquisition mode, which included flat fields, superflats, dark images, quantum

efficiency, and an Fe55 source, were verified by plotting serial and parallel projections of

each corrected image. This amounted to the number of counts as a function row and column

in every corrected bias frame (see Fig. 3.12). The mean and standard deviation over all

corrected bias frames were also plotted as a function of row and column. The mean over all

corrected bias images is expected to be zero and the standard deviation is expected to be

approximately constant. Bias structure would therefore appear as the mean deviating from

zero or the standard deviation varying as a function of row or column.

Most of the corrected bias images were consistent with no structure, however there was some

peculiar behavior in the standard deviation as a function of row where I observed random

oscillations that varied slowly in time (bottom left panel of Fig. 3.12). This is something I

did not have a chance to investigate thoroughly, but one potential cause to be investigated

is banding, which has been observed in some ITL sensors as a row-wise effect where one can

see bands going across the image that vary in bias level. Projecting the bias in this way

also revealed an effect called persistence (see Fig. 3.13). Several of the corrected bias frames
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Figure 3.12: Projections of corrected bias images across the rows and columns for 18 bias
images taken during the flat pair acquisition are shown in the top row. The bottom row
shows the mean and standard deviation over all 18 images, where the oscillation in the mean
is clearly seen.

taken during the flat-field acquisition registered counts as high as 80 ADUs. A flat-field is

an image taken when the sensors are uniformly illuminated. Since flat-field sequences at

TS8 involve taking flats at increasingly longer exposure times, they register more light the

longer they are exposed. Bias images are taken after every two or three flats in this sequence.

Plotting the timestamp of each flat and bias image showed the outlier bias image as the final

bias frame taken during this acquisition, as seen in Fig. 3.14. Looking at a projection plot

of the flat taken just before this bias image showed the flat to have saturated the sensors. It

turned out that the excessively high mean value in the outlier bias image was due to charge

that had persisted from the previous flat image due to insufficient clearing of the CCD. In

this case, more time was needed between parallel pixel transfers during readout.

Once all bias images that showed anomalous behavior were removed, I created a super bias

for all amplifiers on a specific sensor from 50 bias images. To study the performance of these
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Figure 3.13: A bias frame taken during the flat pair acquisition that has persisting charge
from a saturated flat taken immediately before it. This is seen here as an increased value in
the mean over all rows for each column in the image.

super biases, I conducted a ‘ratio test’ using images taken from the superflat acquisition.

Superflats were taken in two modes, with low superflats taken to have around 1000 counts,

and high superflats having around 50,000 counts.

The ratio I used to study the super biases was defined as the sum over all corrected low

superflats divided by the sum over all corrected high superflats:

R =

∑
images LSFLAT − superbias∑
images HSFLAT − superbias

(3.1)

Because this is essentially a ratio of images, it is immune to any effects like bad pixels

or quantum efficiency, which would be divided out. I made a series of two-dimensional

histograms of this ratio against the super bias for a number of ITL and e2v rafts. Since

the same super bias image is being subtracted from the numerator and the denominator, we

would expect the mean of the ratio to be around 1000/50,000 = 0.02 counts, with a standard

deviation of around 0.008. It is also expected that the histogram of the super bias image
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Figure 3.14: An example of persisting charge in bias frames taken on a single amplifier on
two different sensors: sensor 00, amplifier 1 on RTM 012 (top), and sensor 00, amplifier 1
on RTM 004 (bottom). The mean counts in the imaging (blue) and overscan (red) regions
are plotted on the y-axis against the Modified Julian Date (MJD) on the x-axis.

would have the highest density around zero counts, since the super bias is offset-corrected

and should only contain pixel to pixel variations in the noise level.

The results showed a surprising amount of structure in the super biases, particularly in the

ITL sensors (see Figs. 3.15-3.17). For example, there were “clumps” of points in the super

bias that were concentrated in circular lobes at various intervals along the super bias axis.

There were also large concentrations of points in the super bias that had values that deviated

significantly from zero. On the ratio axis, there were also separate clumps of points, most of

which were still centered around 0.02, but some of which had slightly lower or higher mean

values. After mapping these questionable pixels onto their physical location on the sensor,

most either corresponded to bad columns or to the first few columns of an amplifier. This

behavior clearly indicates that something is not correct in the way the super bias is being

subtracted, and that there may be pixels that should be masked but are being excluded by
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Figure 3.15: Two-dimensional histograms of the number of counts in each pixel in the ratio
image plotted against the number of counts in each pixel in the super bias for all amplifiers
on sensor 00 on RTM 014.
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Figure 3.16: Two-dimensional histograms of the number of counts in each pixel in the ratio
image plotted against the number of counts in each pixel in the super bias for all amplifiers
on sensor 20 on RTM 014.
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Figure 3.17: Two-dimensional histograms of the number of counts in each pixel in the ratio
image plotted against the number of counts in each pixel in the super bias for all amplifiers
on sensor 01 on RTM 010.
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the current masking selection process in the eotest code. The e2v sensors were in general

more well-behaved, except for a vertical gap around a super bias value of zero, where pixels

in the super bias were not being plotted. Since these super bias images were masked, the

gaps do not seem to be due to improper masking. One possible course of investigation is to

see whether stacking the super bias using a clipped mean rather than the median would fix

this issue.

Lastly, I studied another issue known as bias trending, which was observed by plotting the

mean of the imaging section of all bias images in a run over time. Theoretically, a bias image

should only contain the offset level, the bias level and the read noise, the last two of which

are sub-dominant. This should make the mean stable around 20,000 counts. However this

was not the case and there were significant fluctuations in the mean. My work showed that

doing a proper bias and offset correction resolved this instability.

3.4 Modeling sky brightness in ImSim

3.4.1 ImSim image simulator

The success of cosmological surveys depends in large part on the generation of realistic

simulations. Synthetic images are used to test software infrastructure such as data processing

and analysis pipelines in preparation for the survey, allowing for the study of systematic

effects as well as performance testing. Since there is only one observable universe and

cosmological parameters cannot be repeatedly measured under exactly identical conditions,

we also need simulated data to test different models of the universe once on-sky data is

available.
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Figure 3.18: Mapping anomalous pixels in the ratio test to their physical location on amplifier
6 of sensor 12 on RTM 011. The magenta regions of the amplifier on the top right correspond
to two separate cuts: values of the superbias between 15 and 25, and superbias counts above
35. The bottom two plots show projections of the mean over the rows and columns.
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Figure 3.19: Mapping anomalous pixels in the ratio test to their physical location on amplifier
6 of sensor 12 on RTM 011. The magenta regions of the amplifier isolate regions of the
ratio plot on the top left with superbias counts less than -10. The bottom two plots show
projections of the mean over the rows and columns.

108



Figure 3.20: The difference between the mean of all pixels in sequential bias images taken
during each acquisition mode for sensor 00, amplifier 1 on RTM 005 (top) and sensor 00,
amplifier 1 on RTM 012 (bottom). The mean value of a bias image should not change
significantly from exposure to exposure, however there is still some instability. Doing a
proper bias and offset correction corrects for this trending, as seen in the right column.

imSim is a software package developed to fill the need for high-fidelity simulations of Rubin

exposures. It is built on top of the GalSim software library to render astrophysical sources as

well as the night sky. It also uses telescope and hardware specifications from LSST software

libraries describing the telescope PSF and the Rubin focal plane such as CCD geometry and

electronics readout. imSim takes this information as input, as well as descriptions of source

positions, spectral energy distributions, magnitudes, cosmological shears and morphologies

to produce raw pixel-level data resembling actual data from the Rubin telescope.

Each visit on the sky uses a catalog of sources provided by the CatSim package (Connolly

et al. 2010, 2014) and observing conditions given by the OpSim database1. The observing

metadata, such as sky brightness and atmospheric seeing, is used by imSim to calculate the

sky background level.

1https://github.com/lsst/sims_featureScheduler
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The initial configuration in imSim was to calculate the sky level at the center of the focal

plane and then use this value for every pixel in the image. This was reasonable as a first-pass,

however there was a need to investigate whether this approximation was sufficient enough

for capturing variations in the sky level across the focal plane. I studied whether there was a

significant enough level of sky variation to warrant a more detailed approach by comparing

the existing implementation to a model where the sky level would vary per chip as opposed

to maintaining a constant value over every sensor.

To study variations in sky counts per chip I modified the LSST skymodel module, based on

the model2 used by the European Southern Observatory3, to give a different sky background

for each individual chip. This involved creating a new function that returned the name and

pixel coordinates of the centers of each chip. I added a new chipName parameter to the

existing sky noise model and converted each pixel coordinate on a chip to its sky coordinates

in (ra, dec). Finally, the on-sky chip center positions were passed to the skymodel module to

estimate the number of photons incident on the chip for a 30 second exposure (corresponding

to two back-to-back 15 second exposures for LSST). Finally, I implemented this new sky

model into the ImSim package.

The results in the r-band are shown in Fig. 3.21 for relatively good observing conditions

where there is very little contamination from the moon. Each point in the plot represents

an individual sensor on the LSST focal plane. The color corresponds to the mean sky level

per chip in electrons per exposure. Because sky noise is Poisson distributed, the scale for

variations across the focal plane is given by the square root of the number of counts at its

center. This scale was used to compare the implementation of a per chip sky model versus

a model that uses a single sky level for the entire focal plane.

2https://github.com/lsst/sims_skybrightness
3https://www.eso.org/public/
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Figure 3.21: Sky level in electrons per 30-second exposure for a single ship with little moon
contamination. The observing parameters are obsHistID (a unique observation identifier for
this chip), moonPhase (the phase of the moon at the time of the observation, with 0=new,
100=full), dist2Moon (the angular distance to the moon in radians), and moonAlt (the moon
altitude in radians).

(a) Dark (b) Bright (c) Bright

Figure 3.22: The sky level for three different observing conditions.
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Figure 3.23: The sky model when varying the sky level per-pixel for two separate observations
on the same chip, showing per-pixel variation to be sub-dominant.

In this case, the per chip variation is around 175 sky counts, which is significant compared

to the spread around the number of counts at the focal plane center, which is approximately
√
2600 = 50. This is based on the uncertainty on the mean number of counts in a single

exposure, given by
√
N , where N is the number of counts at the center of the focal plane.

Fig. 3.22 shows three more examples in both bright and dark conditions. Once again, in all

three cases it is clear that the range in sky counts across the focal plane per chip is dominant

over the scale for variations based on the number of counts at the center.

A natural follow-up was to investigate whether it was necessary to add the sky level per-

pixel as opposed to per chip. Fig. 3.23 shows the per-pixel sky counts in the r-band for

two different observations. It’s clear that the per-pixel variation is sub-dominant and that

accounting for the sky level based on the center of each pixel is sufficient.

3.5 Conclusion

The work I completed during my award period primarily focused on analyzing bias images,

which are zero second exposures taken with the shutter closed. One would think these are
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fairly well understood images, however my work showed that they still possess a great deal

of structure. My work highlighted this structure and explored various ways of characterizing

it so that it can be corrected for when performing image calibrations. I also did extensive

studies on the structure of super biases, which are used to correct for variations in the noise

level in CCD images. I wrote a module that can be run on a single sensor to show how bias

subtraction performs for each amplifier on the CCD. This task can be used on data from

any raft to identify problematic amplifiers, sensors or rafts.

The work I conducted for my offset-correction studies was eventually integrated into the

camera testing software as part of the suite of electro-optical verification tests that are run

on test stand data. This work could also be useful for developers in LSST Data Management,

who are writing the software pipeline that will be used to process LSST data. I also wrote a

module for the ratio test to be included in the eotest package that will be run to generate

sensor-level ratio plots in order to test bias subtraction performance.

imSim is a software package used to simulate realistic images of galaxies that captured by

LSST. In order to make these synthetic images as faithful as possible, it is necessary to not

only model the photometric output of observed galaxies, but also contamination due to the

sky. The initial configuration of imSim modeled the sky brightness level to be the same value

across the focal plane. I changed the functionality of imSim to make the sky level vary per

chip. I verified that making the sky level vary per-pixel was unnecessary, as the spread of

the sky level per pixel was significantly less than the spread around the number of counts at

the center of the focal plane.
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Chapter 4

Magnitude and color distributions of

DESI targets for generating mocks

4.1 Introduction

DESI will extract spectra from over 35 million astrophysical sources to measure the expansion

rate over the past 11 billion years. Prior to obtaining spectra, it will need to assign objects

to each of its 5,000 optical fibers by pre-selecting targets from three photometric surveys,

collectively referred to as the DESI Legacy Imaging Surveys1 (Dey et al. 2019). These

wide-field surveys provide photometry that is both uniform and spatially dense, ultimately

pushing to depths around two magnitudes deeper than the Sloan Digital Sky Survey2 (SDSS).

Compared to SDSS, the Legacy Surveys detected over 15 times the number of z > 0.5

galaxies and over 200 times more z > 1.0 galaxies by reaching a 5σ depth of z ≈ 22.8 AB

mag. The utility of these surveys goes beyond target selection for DESI, as they can be used

in tandem with overlapping spectroscopic data in a variety of contexts such as photometric

1https://www.legacysurvey.org
2https://www.sdss.org
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redshift estimation through the use of spectroscopic priors, or to study dark matter halos by

cross-correlating spectroscopic and imaging maps.

4.1.1 DESI Legacy Imaging Surveys

The Legacy Surveys completely overlap with DESI’s approximately 14,000 deg2 footprint,

which is divided into separate 9,900 deg2 and 4,000 deg2 patches in each of the Northern

and Southern Galactic Caps, respectively (Fig. 4.1). The Dark Energy Camera (DECam;

Flaugher et al. (2015)), which is installed on the 4-meter Blanco telescope at the Cerro

Tololo Inter-American Observatory in Chile, imaged the entire SGC footprint and part of

the NGC in the (grz) bands as part of the Dark Energy Camera Legacy Survey3 (DECaLS).

The majority of DESI’s northern footprint was imaged at Kitt Peak National Observatory.

Photometry in the g- and r-bands was taken by the Prime90 instrument on the Bok Telescope

as part of the Beijing-Arizona Sky Survey4 (BASS; Zou et al. (2019)), and additional z-band

photometry was provided by the Mayall z-band Legacy Survey5 (MzLS) using the Mosaic-3

camera installed on the Mayall Telescope. These optical data were combined with mid-

infrared photometry from the Wide-field Infrared Survey Explorer6 (WISE) satellite to help

differentiate between targets and to characterize galaxy morphologies. See Table 4.1 for

more info about survey coverage and depths.

4.1.2 Target classes

DESI will observe luminous red galaxies (LRG), emission line galaxies (ELG), quasars (QSO)

and bright galaxies (BGS) to study cosmic expansion and the growth rate of structure

3https://www.legacysurvey.org/decamls/
4https://www.legacysurvey.org/bass/
5https://www.legacysurvey.org/mzls/
6https://www.nasa.gov/wise

115

https://www.legacysurvey.org/decamls/
https://www.legacysurvey.org/bass/
https://www.legacysurvey.org/mzls/
https://www.nasa.gov/wise


Figure 4.1: The footprint of each Legacy Survey as of Data Release 9 (DR9), color-coded by
the extinction-corrected depth. The Galactic plane is shown as the solid black line. Figure
is from https://www.legacysurvey.org/status.

Table 4.1: DESI Legacy Surveys: Areas and Depths from Dey et al. (2019).

Survey Name Telescope/Instrument Galaxy Depth (mag) Area (deg2) Location

DECaLS Blanco/DECam
g r z

23.72 23.27 22.22
9000 NGC(δ ≤ +32◦)+SGC

BASS Bok/90Prime
g r

23.48 22.87
5000 NGC(δ ≥ +32◦)

MzLS Mayall/Mosaic-3 z
22.29

5000 NGC(δ ≤ +32◦)
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through the imprints of baryonic acoustic oscillations (BAO; see Section 1.4.2) and redshift-

space distortions (RSD; see Section 1.5.2). Fainter, higher-redshift targets such as LRGs,

ELGs, and QSOs will be observed during a Dark Time Program, when there is little light

contamination from the moon. Low redshift BGS targets will fall under the Bright Time

Program, where they will be able to achieve DESI’s signal-to-noise requirements despite

significant moon illumination.

During its Bright Galaxy Survey, DESI will obtain spectra of 10 million low redshift galaxies

below z < 0.4 to study BAO and RSD via galaxy clustering. At slightly higher redshifts,

between 0.3 < z < 1.0, it will target at least 8 million LRGs. These galaxies are characterized

by a strong 4000Å break, a signature of the absorption of high-energy radiation by metals

in cooler stellar atmospheres that have ceased star formation. ELGs will comprise at least

half of all DESI targets. These bluer, star-forming galaxies will probe the 0.6 < z < 1.6

universe and will reveal identifiable emission lines such as the OII doublet. Finally, DESI

will target QSOs in an even higher redshift regime. QSOs that lie between 0.9 < z < 2.1 will

be used as direct tracers of dark matter, and beyond z > 2.1, Lyα quasars will study large

scale structure through the absorption of neutral hydrogen in the intergalactic medium (see

Table 1.2 for target densities and redshift ranges).

Objects from these target classes were selected from the imaging surveys based on their spe-

cific photometric properties. After reduction with the legacypipe pipeline7, the desitarget8

package was used to choose targets from the processed images based on a set of unique magni-

tude and color cuts that captured distinguishing features of each class. The baseline fiducial

cuts for each class in the Dark Time Program are shown in Tables 4.2-4.5. The resulting

target catalogs were released progressively as a series of data releases. The studies in this

chapter were performed on imaging from Data Release 59 (DR5).

7https://github.com/legacysurvey/legacypipe
8https://github.com/desihub/desitarget
9https://www.legacysurvey.org/dr5
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Table 4.2: LRG selection cuts in the Northern DESI footprint.

Selection North
Non-stellar cut (z −W1) > 0.8× (r − z)− 0.6
Faint limit zfiber < 21.61
Low-z cut (g −W1 > 2.97) OR (r −W1 > 1.8)

Double sliding cuts ((r −W1 > (W1− 17.13)× 1.83) AND (r −W1 > (W1− 16.31)) OR (r −W1 > 3.4)

Table 4.3: LRG selection cuts in the Southern DESI footprint.

Selection South
Non-stellar cut (z −W1) > 0.8× (r − z)− 0.6
Faint limit zfiber < 21.6
Low-z cut (g −W1 > 2.9) OR (r −W1 > 1.8)

Double sliding cuts ((r −W1 > (W1− 17.14)× 1.8) AND (r −W1 > (W1− 16.33) OR (r −W1 > 3.3)

Table 4.4: ELG selection cuts for both the Northern and Southern footprints.

Selection All
Bright cut g > 20.0
Faint cut gfiber < 24.1
Blue cut rz > 0.15

Star/low-z cut gr < 0.1 + 0.5× rz
OII cut (fiducial) gr < −1.20× rz + 1.3

OII cut (low-priority) gr > −1.20× rz + 1.3 AND gr < −1.20× rz + 1.6

Table 4.5: QSO selection cuts for the entire DESI footprint.

Cuts
17.5 < r < 22.7

grz > 17.0
(g − r) < 1.3

−0.4 < (r − z) < 1.1
W1−W2 > −0.3 AND W1−W2 > −0.4
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4.2 Generating inputs for mocks

Aside from target selection, another use for these imaging catalogs is to generate realis-

tic synthetic spectra, or mocks. DESI used the desisim10 software to simulate DESI-

like spectra for a variety of purposes, including identifying and accounting for systemat-

ics, testing science pipelines, as well as survey strategy and design. desisim uses a func-

tion called select mock targets to randomly assign fluxes and colors to galaxies based on

representative distributions of those features. I generated flux and color distributions for

select mock targets using mixtures of Gaussians to characterize galaxies from each target

class that passed selection cuts. These models were stored as .fits files in desitarget and

sampled from using desisim.

4.2.1 Gaussian mixture models

A mixture model is a form of density estimation that can be used to create generative models

of multi-dimensional data. This is done by assuming that the data come from a mixture

of multivariate Gaussian components whose parameters are optimized using an expectation-

maximization (EM) algorithm. The model is then used to assign probabilities to new data

based on whether they belong to a given component, and to generate new synthetic data.

4.2.2 Model selection

Gaussian mixture models (GMM) are useful in characterizing sub-populations within a data

set in order to generate new random data that resembles the input data. Properties of

the data set are learned through training a number of models with a varying number of

components in an unsupervised way. The optimal number of components in the model

10https://github.com/desihub/desisim
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Table 4.6: Number of sources for each morphological type in DR5.

Type Number of sources
PSF 371,088,269
REX 222,184,611
DEV 22,036,854
EXP 61,380,049
COMP 3,066,121

balances model complexity (the number of degrees of freedom or components in the model)

and model performance (a maximum-likelihood estimate of the data given the model). The

model parameters for a GMM are the means and covariances of the Gaussian components,

which are also included in the model optimization process. A common model selection

method is the Bayesian Information Criterion (BIC), which is expressed analytically as

BIC = k lnn− 2 ln L̂, (4.1)

where k is the number of model parameters, n is the sample size, and ln L̂ is the maximum

log-likelihood of the model. Once the BIC is evaluated for a set of models, the model with the

lowest BIC is selected as the most optimal. Flux and color distributions were generated using

a Gaussian mixture model with the optimal number of components given by the minimum

BIC.

4.2.3 Magnitude and color distributions in DR5

Rather than model sizes, shapes, colors and magnitudes simultaneously, colors and magni-

tudes were modeled separately for each morphological type. This is a reasonable way to

factorize the model and is motivated by the observation that different morphological com-

ponents often correspond to different galaxy sub-populations. Morphological classifications

were assigned according to each target’s surface brightness profile, as inferred by the Trac-

120



Figure 4.2: Morphological type fraction for each class in the DR5 sample.
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tor11 fitting algorithm. The morphological types used in DR5 are point sources (PSF),

round exponential galaxies with a variable radius (REX), de Vaucouleurs profiles (DEV),

exponential profiles (EXP), and composite profiles (COMP), which are a combination of

deVaucouleurs and exponential profiles. Table 4.6 shows the distribution of types in DR5 in

the absence of selection cuts, and the plots in Fig. 4.2 show the fraction of targets belonging

to each morphological classification in ten bins equally spaced in magnitude.

The features used to build the GMMs were based on the magnitudes and colors used for

selection cuts in each class. GMMs were first trained on the photometry, and then the

model parameters and weights were used to generate synthetic distributions of the data with

the same features. The data were split into a training set used to train the model, and a

validation set used to assess the performance of the model on data that were not used for

training.

Plots of the optimal number of Gaussian components determined by the BIC are shown in

Figure 4.3 and Figure 4.8. Figures 4.4-4.9 show the 2-dimensional histograms for training

and validation sets are shown in Figures 4.3 for LRGs with deVaucoulours profiles and QSOs.

The sampled data from the trained model are overlaid in green. This process was extended in

a similar fashion for the remaining combinations of classes and morphologies. The contours

in the histograms show the 1-, 2-, and 3-σ contours containing 39.3%, 86.5%, 98.9% of the

data, respectively.

4.2.4 Extreme deconvolution

The GMM implementation in Section 4.2.3 performs a density estimate of the underlying

color-magnitude distribution, but it does not properly deal with noise. Extreme deconvolu-

tion Gaussian mixture modeling (XDGMM) incorporates a noise model to simultaneously

11http://thetractor.org
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Figure 4.3: Bayesian Information Criterion for each LRG morphological type, with the
optimal number of components corresponding to the lowest value of the BIC.

(a) Training (b) Validation

Figure 4.4: Corner plot showing 1-, 2-, and 3-σ contours of the training and validation
data in black, along with sampled galaxies from the GMM in green, for LRGs with REX
morphological profiles.
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(a) Training (b) Validation

Figure 4.5: Corner plot showing 1-, 2-, and 3-σ contours of the training and validation data
in black, along with sampled galaxies from the GMM in green, for LRGs with DEV shape
profiles.

(a) Training (b) Validation

Figure 4.6: Corner plot showing 1-, 2-, and 3-σ contours of the training and validation data
in black, along with sampled galaxies from the GMM in green, for LRGs with EXP profiles.
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(a) Training (b) Validation

Figure 4.7: Corner plot showing 1-, 2-, and 3-σ contours of the training and validation data
in black, along with sampled galaxies from the GMM in green, for LRGs with COMP profiles.

Figure 4.8: Bayesian Information Criterion for QSOs.
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(a) Training (b) Validation

Figure 4.9: Corner plot showing 1-, 2-, and 3-σ contours of the training and validation data
in black, along with sampled galaxies from the GMM in green, for QSOs.

model the data and the noise . This is done by convolving the underlying distribution with a

covariance matrix containing the variance of each Gaussian in the mixture model, resulting

in an error-deconvolved estimate of the underlying distribution function. The reader may

refer to Bovy et al. (2011), Ivezić et al. (2014), and Holoien et al. (2017) for additional

background on this technique.

I investigated the impact of using extreme deconvolution in reconstructing the underlying flux

distribution for each target class. The results for LRGs with exponential and de Vaucouleurs

profiles, and for QSOs are shown as dotted red lines in the histograms in Figures 4.10-4.11.

XDGMM was performed using the astroML12 package (Vanderplas et al. 2012). Components

in each mixture model were assumed to be uncorrelated, and therefore a diagonal covariance

matrix was used for each application. The blue histograms represent the error-deconvolved

distribution, with Gaussian noise added back in. This was done by drawing errors for each

data point from a Gaussian with zero mean and variance equal to its true error. This should

most closely match the true distribution, shown in green. Finally, the histogram representing

density estimates from a GMM, without extreme deconvolution, is shown in orange.

12https://www.astroml.org
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Figure 4.10: The distribution of true z-band fluxes for two LRG morphological types, with
the true fluxes in (green), compared to those sampled from a straightforward GMM (orange),
from an XDGMM (dotted red), and from an XDGMM with the errors added back in (blue).

Figure 4.11: The distribution of true z-band fluxes for QSOs, with the true fluxes in (green),
compared to those sampled from a straightforward GMM (orange), from an XDGMM
(dashed red), and from an XDGMM with the errors added back in (blue).
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The results did not show any significant advantage to using extreme deconvolution to model

these flux distributions. For LRGs, the GMM seemed to perform slightly better closer to

the peaks of the true distribution, while the XD results more tightly traced the data away

from the peaks. For QSOs, the difference was negligible. Given these results, it was decided

that a straightforward GMM was sufficient to use over the XDGMM technique.

4.3 Conclusion

DESI target selection involves pre-selecting a list of galaxies and quasars to observe from

imaging over its 14,000 deg2 footprint. Photometry from the Legacy Surveys was not only

used for targeting, but as input for generating mock spectra for DESI simulations. A Gaus-

sian mixture model was used to characterize color and magnitude distributions as a function

of target class so that they could be sampled from for simulations. Extreme deconvolution

was used to de-convolve the noise from the data, however there was added benefit of doing

so over a straightforward mixture model.
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Chapter 5

Simulating eBOSS spectra with

specsim

5.1 Introduction

One of the primary requirements for DESI is to be able to generate mocks in order to compare

and validate our models with the data we observe (see Chapter 4). This not only includes

creating faithful representations of source spectra, but accurately modeling the degrading

effects of the sky, atmosphere, telescope, and instrument on these spectra. This section

is concerned with modifying an existing software package intended to simulate the DESI

instrument to instead produce realistic eBOSS spectra. The existence of having real eBOSS

data on-hand provided a useful way of validating the results of specsim and debugging any

potential issues.
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5.2 The specsim software package

specsim1 (Kirkby et al. 2020) is a software package developed by David Kirkby to simulate

the response of a multi-fiber spectrograph. Although it was originally created to generate

realistic synthetic spectra for the DESI instrument, it can be reconfigured to simulate any

fiber-fed spectrograph, provided that the accompanying instrument parameter specifications

and data are provided.

A single simulation consists of three components: a source spectrum, a model of the sky and

atmosphere, and a model of the instrument. A schema of where each component comes into

play is shown in Fig. 5.1, which shows the journey of photons as they are emitted from a

galaxy to the moment they are read out by the detector.

5.2.1 Astrophysical source

Spectra of astrophysical sources are simulated individually, beginning with a spectral energy

distribution (SED) in its rest frame, s(λ), and its morphological profile. Configuration

parameters for a source profile include the bulge/disk fraction and shape parameters such

as the half-light radius, position angle, and the ratio of the semi-minor to semi-major axis.

The source profile is assumed to be independent of its SED, and will come into play later on

in Section 5.3.3 to account for fiberloss when modeling the effects of the instrument.

5.2.2 Sky model

Given a source, the next component of the specsim pipeline is the sky model, which incor-

porates the effects of the atmosphere. The three elements that make up the sky model are

1https://specsim.readthedocs.io/
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Figure 5.1: Schematic showing the main components of specsim. Light originating from
a source above the atmosphere is modeled as it travels through the atmosphere, telescope
optics, spectrograph, and is finally registered by the CCDs. Figure is from Kirkby et al.
(2020).
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Table 5.1: specsim main simulation parameters.

Parameter Component Description
∆t Instrument Exposure time
X Atmosphere Observing airmass
λi Configuration Fine wavelength grid
s(λ) Source Source SED
b(λ) Atmosphere Sky surface brightness
e(λ) Atmosphere Atmospheric extinction
A Instrument Primary unobscured area
a Instrument Fiber entrance area

fS(λ) Source & Instrument Fiberloss fraction
Ti(λ) Camera Transmission throughput
di(λ) Camera CCD row width
σi(λ) Camera CCD resolution
nip Camera CCD trace width
Idk,i Camera Sensor dark current
Gi Camera CCD gain
σro,i Camera Readout noise

a sky emission spectrum, the atmospheric point spread function, or PSF, and atmospheric

extinction.

The sky model used for both DESI and eBOSS configurations is virtually identical. The sky

emission surface brightness b(λ) for the DESI configuration contains data for three different

types of sky spectra corresponding to dark, bright and grey conditions, whereas the eBOSS

sky emmission spectrum is just the DESI dark sky extrapolated to cover the wider wavelength

range of the eBOSS spectrograph.

The atmospheric PSF results in the blurring of an image of a source as its photons en-

counter varying indices of refraction when traveling through different layers of the Earth’s

atmosphere. Differences in temperature, pressure, density and molecular composition in each

layer, as well as turbulence in the air, cause photons to slightly deflect from their original

paths, resulting in a “smeared” image. Seeing is defined as the full width at half maximum

(FWHM) of a radial profile of a point source, typically a star, from its peak value.
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The effects of atmospheric seeing in specsim can be applied in one of three ways. The fastest

mode assumes a fixed 1.1” seeing for each source type (LRG, ELG, QSO, etc.), and does not

account for any additional information about surface brightness profiles. A slower, but more

flexible mode uses GalSim2 (Rowe et al. 2015), a software package that simulates high-fidelity

images of astrophysical sources, to convolve the source profile with the atmospheric PSF.

GalSim requires additional information in the specsim configuration file such as FWHMref

and λref , which are used to estimate the PSF as a function of wavelength in the following

way:

FWHM(λ) = FWHMref

( λ

λref

)−0.2

. (5.1)

The reference values used in the configuration file are FWHMref = 1.1 arcsec and λref =

6355Å. Since GalSim uses a Moffat profile to model the PSF, a fixed value for the β parameter

(with a typical value of 3.5), which determines the shape of the PSF, must also be specified.

The Moffat distribution is predominantly used for modeling PSFs as it is more successful at

capturing tails compared to a Gaussian or Lorentzian distribution.

The final component in the sky model is atmospheric extinction, which could be caused by

Rayleigh scattering of air molecules or particulate matter such as aerosols, or by telluric

absorption due to the Earth’s atmosphere. This is provided in the configuration file as a list

of tabulated values for the extinction coefficient e(λ) at zenith as a function of wavelength.

The amount of extinction at other airmasses is determined by multiplying the extinction

coefficient by the airmass at that particular pointing.

Together, the three components of the sky model are combined to model the attenuation

of the source spectrum and the sky brightness in terms of the extinction factor e(λ) and

2https://github.com/GalSim-developers/GalSim
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the airmass X due to the effects of the atmosphere. The spectral flux density f(λ) at the

entrance of the telescope then becomes:

f(λ) = 10−e(λ)X/2.5[s(λ) + ab(λ)]. (5.2)

specsim allows the option to include a scattered moonlight component as part of the sky

brightness spectrum, which is determined for each observation by a solar SED3, the moon

phase, the moon zenith angle and the separation angle between the telescope pointing and

the moon. Verification of the specsim sky model used will be discussed further in Section

5.4.

5.2.3 Telescope and instrument

Telescope

Once the light from a source has completed its passage through the atmosphere, it finally

begins the final leg of its journey when it enters the telescope and is registered by the detector.

Photons that are incident on the telescope are impacted by the total collecting area of the

primary mirror, A, used to normalize both the source flux and the sky brightness. Unlike

the source spectrum, the sky level is proportional to the size of the fiber, and therefore must

also be normalized by the fiber face area a. The telescope has an optical PSF which is due

to the diffraction of light by the telescope aperture and potential aberrations in the lens or

mirror. In a diffraction-limited system, the telescope will have reached its theoretical limit

and the only contribution to the optical PSF will be due to the finite size of the aperture.

This PSF is convolved with the atmospheric PSF and the source profile to determine the

3https://www.nrel.gov/grid/solar-resource/spectra.html
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fiberloss fS(λ), or the fraction of photons incident on the fiber face that make it through

the fiber (see Section 5.2.3). The flux density of the source is transformed to give the flux

in units of erg/Å up to the point just before the photons enter the camera:

F (λ) = 10−e(λ)X/2.5
[
s(λ) + ab(λ)

]
fS(λ)A∆t, (5.3)

where ∆t is the length of a single exposure. The last step after combining the impacts of

the atmosphere and telescope is to simulate the effects of the camera.

Instrument

The specsim package is able to simulate the response of a spectrograph and one or more

cameras. This involves characterizing the effects of the instrument once photons have exited

the fiber, as shown in the green portion of Fig. 5.1, beginning with the dispersion di(λ),

indexed by camera i, as incoming light is separated into its constituent wavelengths by

the spectrograph. This is also referred to as the row width, and gives the conversion from

wavelength in Angstroms to size in pixels.

Once the light has been dispersed to produce a spectrum, it reaches one or more detectors, or

charge-coupled devices (CCDs) (see Chapter 3), where it is registered as a function of fiber

number along the vertical direction, and wavelength or pixel number along the horizontal

axis. If one were to plot a distribution of where photons from a single source landed on the

detector, as a function of wavelength, the CCD resolution σi(λ) would correspond to the

Gaussian sigma of the best-fit Gaussian to that distribution. Values for the trace width,

which gives the thickness of the spectrum along the fiber axis, must also be provided in the

configuration file. Additional values for the amount of dark current, read noise, gain and
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throughput for each camera must also be specified. Further details regarding each of these

parameters will be given in the following section.

The calculations used to determine the camera response are performed on a simulation grid

λj (indexed by bin j) whose resolution is smaller than the wavelength extent of a single

camera pixel by at least a factor of five. If a photon with wavelength λj < λ < λj+1 enters

a fiber and lands in a bin of width ∆λj, where

∆λj ≡ λj+1 − λj , (5.4)

then the energy Ej associated with this photon in ergs can be derived from the Planck

equation:

Ej =
hc

∆λj

, (5.5)

where h is Planck’s constant and c is the speed of light. This can be used to convert from

the flux density in Eq. 5.3 at the center of each bin to the number of photons entering the

fiber Nγ
j :

Nγ
j =

∆λj

hcλ̄j

F (λ̄j). (5.6)

The bin centers are given by:

λ̄j ≡
λj+1 + λj

2
. (5.7)
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Each camera’s throughput Ti(λ) is defined as the probability that a photon incident on a

fiber is converted into a photo-electron and registered by the CCD readout. The resolution

effects in the wavelength direction σi are given by a convolution matrix Rjk, taking us from

the simulation grid indexed by j to a detection grid indexed by k. Adding the effects of

camera throughput and summing over the simulation pixels gives the number of detected

electrons for camera i as a function of pixels in the detection grid:

N e
ik =

∑
j

RjkN
γ
j Ti(λj) . (5.8)

Next, the dispersion function di(λ̄k) is determined as a function of Angstroms in the detection

grid in order to re-bin the number of detected counts from the detection wavelength grid to

continuous pixel coordinates N e
ip.

Folding in sensor effects such as the camera gain Gi and dark current Idk,i gives the signal

in terms of the number of detected electrons:

Ndet
ip = GiN

e
ip + Idk,inip∆t , (5.9)

where nip is the trace width in pixels for wavelength pixel p. The variance of the resulting

signal is given by:

V det
ip = Ndet

ip + σ2
ro,inip , (5.10)

where σro,i is the readout noise in pixels. The read noise is assumed to be uncorrelated

between pixels.
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5.3 Simulating the eBOSS instrument response

The specsim package was developed with the flexibility to simulate the response of any

multi-fiber spectrograph, given that the accompanying configuration data is provided. There

were several motivations for reconfiguring specsim to simulate the eBOSS instrument and

cameras. Firstly, an eBOSS configuration would serve a critical purpose by allowing for the

validation of specsim itself, since eBOSS data already exists. From a software engineering

perspective, it would confirm the extent to which the package is in fact generalizeable.

Although the package should in theory be able to extend to other instruments, this had

never actually been done before – specsim had only been set up to produce synthetic DESI

spectra, and it was unclear how difficult it would be to accommodate two spectrographic

arms for eBOSS instead of three for DESI, or to use different wavelength binnings, among

other things. Another useful application, and the primary motivation for this undertaking,

was to generate realistic simulations of eBOSS spectra for the eBOSS Lyα working group.

5.3.1 Generation of mocks for Lyα studies

Baryon acoustic oscillations (BAO; see Section 1.4.2) originating from the pre-recombination

universe are a cosmological “standard ruler” whose imprints are seen as peaks in the matter

correlation function at the sound horizon. Measurements of the BAO scale can be measured

from the clustering of galaxies for redshifts below z < 2, but there are simply not enough

tracers at redshifts above this limit for high-precision clustering measurements. The alterna-

tive is to use opacity fluctuations due to the absorption of neutral hydrogen in the Lyα forest

of background quasars. The final eBOSS data release, Data Release 16, includes all quasars

observed by both BOSS and eBOSS, including 210,005 quasars above z > 1.10 (du Mas des

Bourboux et al. 2020).
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The eBOSS Lyα working group rely on faithful representations of quasar spectra to validate

analysis pipelines and study potential sources of systematic effects (Farr et al. 2020). Mock

quasar spectra specifically generated with the eBOSS configuration of specsim were used to

estimate the detection efficiency of Damped Lyα systems using a convolutional neural net-

work, ultimately revealing the purity of the quasar sample used for BAO studies (Chabanier

et al. 2022).

The production of mocks begins with the generation of a Gaussian random field on a box of

length 10 h−1Gpc. The peaks of this physical density field are then populated with tracer

quasars via Poisson sampling, based on an input bias and number density. Next, skewers for

each quasar are generated by interpolating the density field along the line-of-sight, and then

processed to convert from fluctuations in the density field to a transmitted flux fraction for

each Lyα spectrum (du Mas des Bourboux et al. 2020). These processed skewers are the

source inputs to specsim, as shown in the red portion of Fig. 5.1.

5.3.2 Instrument parameters

A new configuration file was produced for the eBOSS instrument and named sdss.config.

Values for the fixed telescope parameters were added, which included the size of the primary

mirror, the obscuration diameter (the size of the gap in the primary mirror where light

reflected off of the secondary mirror passes through), the size of the fibers, and the field

radius (the radius of the plate). The read noise, dark current and gain for each camera,

which contribute to added noise in the camera, were also specified. Values for both the DESI

and eBOSS telescope and camera parameters as they appear in their respective configuration

files are shown in Tables 5.2-5.4.
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Table 5.2: Telescope parameters for DESI and eBOSS.

Telescope Parameters DESI eBOSS
Field of view (sq. deg.) 8.0 3.0
Collecting area (sq. deg.) 11.4

Primary mirror diameter (m) 3.797 2.5
Obscuration diameter (m) 1.8 0.625

Fiber diameter (µm) 107.0 120.0
Field radius (mm) 414.0 325.0
Number of fibers 5000 1000

Table 5.3: DESI camera parameters.

Camera parameters b r z
Read noise (e−/pixel2) 3.0 2.9 2.9

Dark current (e−/hour/pixel2) 3.0 2.0 2.0
Gain (e−/ADU) 1.0 1.0 1.0

5.3.3 Camera

Camera data was derived separately for the red and blue cameras using data from real eBOSS

spectra. The bossdata4 software package (Kirkby 2015) was used to download data from the

Sloan Digital Sky Survey (SDSS) Sky Server, and was part of version v5 9 0 of Data Release

13, the first data release of the fourth phase of SDSS (SDSS-IV). Data was pulled from 20

random plates, each observed on a different day, for all four cameras (two blue cameras, b1

and b2, and two red cameras, r1 and r2).

Wavelength binning

The first task was to generate a canonical wavelength grid for each camera. Unlike the two

other wavelength grids used in specsim (the wavelength solution for the source spectrum,

controlled by the user, and a finely binned simulation grid with a resolution of 0.1Å is used to

perform calculations for the instrument response), this canonical grid is the final wavelength

binning of the simulated output. It is also the common grid over which the rest of the

4https://bossdata.readthedocs.io/
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Table 5.4: eBOSS camera parameters.

Camera parameters b r
Read noise (e−/pixel2) 2.0 2.75

Dark current (e−/hour/pixel2) 2.1 4.25
Gain (e−/ADU) 1.02 1.66

Table 5.5: eBOSS PLATE and MJD data for the 20 plates used in the specsim reconfigu-
ration.

PLATE MJD
7027 56448
6963 56724
7301 56746
6759 56416
6002 56104
6178 56213
6626 56330
6882 56541
7389 56769
7453 56749
7517 56772
6472 56362
6660 56370
6877 56544
6970 56444
6122 56246
7456 56727
7377 56741
7454 56751
7564 56804

camera data in this section was interpolated over to be used in the configuration file. This

canonical grid was derived by combining the wavelength data for the two cameras in each

channel separately (b1 with b2, and r1 with r2), and generating a linear grid with equal 1Å

binning with endpoints determined by the minimum and maximum wavelength values of all

combined fibers on all plates. The wavelength solutions for all fibers on each camera are

shown in Fig. 5.2, and the final result, shown in Fig. 5.3, displays the output grids for each

camera for both eBOSS and DESI configurations. Since the eBOSS pipeline stores spectra
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Figure 5.2: Wavelength solutions for all 500 fibers on each camera over 20 plates.

in units of log10(Å), the final output employed a similar logarithmic wavelength sampling.

This is discussed further in Section 5.3.4.

Spectral resolution

The wavelength solution, dispersion and FWHM resolution for each fiber were accessed from

spCFrame5 files. These files contain flux-calibrated spectra for a single camera of a single

exposure. The dispersion was determined by taking the gradient of the wavelength solution

with respect to pixel number. This is often referred to as the “row width”, and is shown

in the top panel of Fig. 5.4 in units of Angstrom/pixel, alongside the analogous result for

DESI. Obtaining the resolution along the wavelength axis required first converting the values

for the Gaussian sigma along the wavelength axis from units of 10−4 log10(Å) to Angstroms,

and then converting from a standard deviation to a FWHM by the standard conversion:

FWHM = σ
√
8 ln 2 (5.11)

5https://data.sdss.org/datamodel/files/BOSS_SPECTRO_REDUX/RUN2D/PLATE4/spFrame.html
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Figure 5.3: Canonical wavelength grids used by specsim for DESI (dashed curves) and
eBOSS (solid curves).

Spatial resolution data was obtained from spFlat6 files as the first-order corrected profile

width for each fiber bundle. The Gaussian sigma for this profile, given in units of pixels,

came in the form of a trace solution, or table of coefficients as a function of x−position on

the CCD, that were then fed to a fitting function. This gave the spatial width as a function

of wavelength.

Data for the dispersion, FWHM resolution, and spatial resolution were combined in the

same fashion. After combining the data for each blue or red camera, these quantities were

interpolated separately for all fibers over the canonical grid, and the median over all fibers

and all plates was taken. The final results, along with DESI values for comparison, are shown

in Figs. 5.4-5.6.

6https://data.sdss.org/datamodel/files/BOSS_SPECTRO_REDUX/RUN2D/PLATE4/spFlat.html
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Figure 5.4: Dispersion solutions for the eBOSS (top) and DESI (bottom) configurations.

Throughput

Throughput data was initially generated for eBOSS quasars by working backwards from flux-

calibrated SEDs to detected electrons. The SEDs were derived from all spectrophotometric

standard stars on the plates listed in Table 5.5. Standard stars were used because, like

quasars, their profiles are PSF-like. Since they are brighter, they also have a higher signal-

to-noise ratio.

Figures 5.7-5.8 show the process of going from the final, calibrated flux, to the product of

fiberloss and throughput for a single standard star. This product is the ratio of detected

electrons on the CCD to photons entering the telescope. The top four panels trace the

process of obtaining the number of photons incident on the primary mirror using data from

spFrame files, which contain non-calibrated spectra for a single exposure of an individual

camera. The next three panels show how to obtain the number of detected electrons using

data from spCFrame files, while the last panel shows the ratio of the two quantities.
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Figure 5.5: FWHM resolution for the eBOSS (top) and DESI (bottom) configurations.

We begin with a flux density in the upper left panel, which has been interpolated over the

nominal wavelength grid. We then convert from a density to the number photons above the

atmosphere by multiplying by the area of the primary mirror, the exposure time, and dividing

by the energy of each photon at the midpoints of the canonical wavelength bins. Next we

must remove the extinction correction, shown in the third panel after being interpolated over

the nominal grid. This is done by multiplying the photons entering the atmosphere by the

extinction to give the number of photons entering the telescope.

To derive the number of electrons detected by the camera, we start with the flux in flat-

fielded electrons and remove the flat-fielding correction by multiplying by the superflat and

the fiberflat (see the third row of Figs. 5.7-5.8). This result is divided by the number of

photons entering the telescope to yield the product of the fiberloss and the throughput, as

expressed in the last panel.
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Figure 5.6: Spatial resolution for the eBOSS (top) and DESI (bottom) configurations.

This quantity was derived for all standard stars on plate 7027, the result of which is shown

in Fig. 5.9. The vertical streaks in the red camera are most likely due to a failure in the sky

subtraction, since sky emission lines show up predominantly at redder wavelengths. Next,

the median of the 20 standard stars on this plate was taken, and smoothing was applied

by downsampling by a factor of 100. The product of the fiberloss and throughput after

smoothing is shown in Figures 5.10-5.11 for the blue and red cameras.

The final eBOSS quasar throughput data was obtained by dividing out a constant value for

the fiberloss. Fig. 5.12 shows fiberloss values as a function of wavelength for 500 simulated

DESI quasars, with the median over all fibers shown as the black solid line and the tabulated

quasar fiberloss values shown as the dashed red line. The range of fiber colors correspond

to their respective distance from the center of the focal plane. It was decided that a fiber

acceptance value of 0.55 would be sufficient to use, as this seemed to be about the average

across all wavelengths.
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Figure 5.7: Flow chart showing the stages involved in converting from the calibrated flux
of a standard star corresponding to PLATE 7027, MJD 56448, and FIBER 97 to detected
electrons for the blue camera.
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Figure 5.8: Flow chart showing the stages involved in converting from the calibrated flux of a
standard star corresponding to PLATE 7027, MJD 56448, and fiber 97 to detected electrons
for the red camera.
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Figure 5.9: Results for the product of fiberloss and throughput for all spectrophotometric
standards on PLATE 7027 and MJD 56448 for the blue (left) and red (right) cameras.

It was later found that data for the expected throughput of the eBOSS spectrograph, based

on the engineering design, were available from the eBOSS collaboration (Smee et al. 2013),

depicted as the black line in Fig. 5.13. Fresnel losses at the fiber faces, focal ratio degredation,

and “slit” losses for 1” FWHM seeing conditions modeled with a double Gaussian PSF are not

shown in this curve and had to be accounted for. These effects degraded the final throughput

curve by an additional 15%, 4%, and 17%, respectively. A comparison of the throughput

derived from standards stars on four different plates versus the expected throughput data

provided by the eBOSS collaboration is shown in Fig. 5.14. The shapes of the dotted and

solid curves are generally consistent, although there is a vertical offset in all four cases that

is likely the result of different normalizations in the flux-calibration procedure. The Smee

et al. (2013) throughput data was ultimately used for the specsim eBOSS configuration.

Fiber acceptance fraction

The fiber acceptance fraction, or fiberloss, is the fraction of light incident on the fiber that

makes it through the fiber face. It is ultimately determined by the source profile, as a smaller

fraction of the total light from extended sources is likely to pass through the fiber than the

fraction of total light from sources with star-like profiles, such as quasars.
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Figure 5.10: Results of downsampling the product of fiberloss and throughput in the blue
camera by a factor of 100 using the median (left) and mean (right) for all standards on
PLATE 7027 and MJD 56448 (left panel of Fig. 5.9).

There are three different methods to account for fiberloss in specsim. The table method

uses a pre-computed table of fiberloss fractions based on the source type. The galsimmethod

uses information about the transverse profile of the source on the sky to calculate fiberloss

fractions via GalSim. Finally, specsim can interpolate fiber acceptance values pre-computed

with GalSim with the fastsim method. This assumes a fixed axis ratio of 0.7, a fixed Moffat

PSF model with β = 3.5 for the atmosphere, and a fixed fiber diameter of 107µm.

The tablemethod for the eBOSS configuration required fiberloss values for each source type.

This was done by adjusting the DESI fiberloss data to cover the range of the simulation grid

by the beginning or end of each fiberloss array with the value at the smallest or largest

wavelength, respectively. The final values for three different source types are shown in Fig.

5.15, which shows both DESI and eBOSS fiber acceptance fractions.

Additional configuration data

There were a few more inputs that needed to be specified for eBOSS, namely the extinction,

the sky brightness, and a model quasar source spectrum. These data were generated in
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Figure 5.11: A smoothed version of the combination of the product of fiberloss and through-
put in the red camera for all standards on PLATE 7027 and MJD 56448 (right panel of Fig.
5.9). The results of downsampling by a factor of 100 using the median and mean are shown
in the left and right panels, respectively. The spike in the red camera, noticeable particularly
in the mean of the downsampled curve, is introduced after dividing out the extinction.

a similar fashion to the fiberloss in that they were derived from the existing DESI values,

however, there was an additional option to extend the array to cover the range over which

to interpolate the data over the simulation grid. Rather than simply padding the ends of

the array with a constant value, both ends of the extinction and the source spectrum were

fit to a low-order polynomial to give more continuous coverage and better match the trends

at low and high wavelengths, as seen in Fig. 5.16. The sky brightness was flat at each end of

the spectrum, and so a constant value was used for padding. The DESI configuration allows

the user to choose from one of three observing conditions (dark, bright, and grey, based on

a combination of moon altitude and phase). The sky spectrum for eBOSS was based on the

DESI dark sky spectrum, since quasars are typically observed during dark conditions where

there is little scattered moonlight.

The left panel of Fig. 5.17 shows the final eBOSS instrument configuration data, where the

blue and green curves correspond to the blue and red camera, respectively. A similar result

is shown for the three channels in the default DESI configuration on the right panel.
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Figure 5.12: Simulated quasar fiberlosses using the desimodel parameters with the galsim
package. Each curve shows an individual fiber, color-coded according to its focal plane
radius.

5.3.4 Verification of the eBOSS configuration

Simulated spectra produced in both DESI and eBOSS configurations were compared as an

initial test of whether this new mode of specsim was working properly. The same model

source spectrum of a 22.4 magnitude quasar at z= 1.5 was used in both cases shown in Fig.

5.19. Unlike the default linear output wavelength grid for DESI, these spectra are plotted

in the native binning scheme for eBOSS, which is logarithmic.

The eBOSS Lyα working group requested that specsim be able to accommodate this binning

scheme for the eBOSS configuration, and comparisons between the two modes are given in

terms of the same logarithmic binning for consistency. The package was modified to do a flux-

conserving downsampling of the simulation grid. In effect, the flux density was multiplied

by the bin width to convert to counts, and re-binned to the desired eBOSS resolution, which

is linear in log(λ). Finally, the re-binned counts were multiplied by the new bin widths

to recover the flux density. The simulated SEDs in Fig. 5.20 are the perfectly calibrated

observed flux densities of the source spectrum for DESI and for eBOSS.
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Figure 5.13: Expected overall system throughput for the SDSS spectrographs (black), along
with all wavelength-dependent contributors to the throughput (labeled by color on the right-
hand side). Figure is from Smee et al. (2013).

A proper study of the instrumental noise was also done by studying the inverse variance due

to dark noise, read noise, and random noise in the camera. The simulated camera inverse

variance for DESI and eBOSS setups is shown in Fig. 5.18. To evaluate the success of

the eBOSS configuration in modeling the instrumental noise, a (noiseless) model eBOSS

stellar spectrum used for calibration was compared with the observed flux. An example

of one particular stellar model and sky background, both obtained from eBOSS spec files,

that were used as inputs to the configuration file is given in Fig. 5.21. Fig. 5.22 shows the

simulated flux density in blue, along with the observed flux density in orange for each camera.

The mean flux for both simulated and observed spectra are fairly consistent, however there

is slightly more scatter for the simulated output.

Comparing the inverse variance of the simulated and observed stellar spectrum in Fig. 5.23,

we see again that the shape of the curves generally agree, however specsim tends to over-

estimate the noise by around 25% in each camera. This study was done using other stellar

spectra, shown in Fig. 5.24, and the trend persisted. The difference between the simulated
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Figure 5.14: A comparison of throughput solutions derived by working backwards from
standard star spectra via the procedure described above, to the expected throughput from
Smee et al. (2013).

inverse variance and that obtained from the data was fairly consistent across both cameras

for a given stellar spectrum, however the size of that difference varied from spectrum to

spectrum. The likely cause of the difference between the specsim output and the data is

that the eBOSS pipeline fit to a stellar spectrum model is artificially reducing the inverse

variance in the data, and so the specsim are probably more accurate.

5.4 Verifying the specsim sky model

A second way of validating specsim was to go beyond comparing the real flux densities with

synthetic eBOSS spectra to investigate the success of the lunar and sky model in capturing

variations in sky brightness levels. This was done by comparing measured sky brightnesses
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Figure 5.15: DESI fiberloss data (dashed curve), adjusted to cover the wavelength range of
the eBOSS spectrograph (solid curve).

from the DECam Legacy Survey (DECaLS) with predicted sky levels using specsim. This

study focused on cases where conditions were non-photometric (i.e. there was significant

light contamination from the moon).

5.4.1 DECaLS sky data

The data used in this section came from Data Release 3 (DR3) of the DECam Legacy Survey,

a photometric percursor survey to DESI (see Section 4.1.1). A plot of the unique observations

in this dataset is shown in Fig. 5.26, where pointings are binned and colored according their

separation angle, or opening angle between the observation and the moon in degrees.
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Figure 5.16: Additional wavelength-adjusted data for eBOSS atmospheric extinction (left),
sky brightness (middle) and a model quasar source spectrum (right).

Figure 5.17: The final specsim instrument configurations for eBOSS (left) and DESI (right).
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Figure 5.18: A comparison of the DESI and eBOSS inverse variances, color-coded by camera.

Figure 5.19: Final DESI (left) and eBOSS (right) model QSO spectra.

The effect of scattered moonlight for a single pointing can be better visualized on a polar plot.

Fig. 5.27, generated using the specsim package, shows the amount of scattered moonlight

in the V-band for two different positions of the moon. The result is based on a model

developed by Krisciunas & Schaefer (1991) that predicts scattered moonlight as a function

of the moon phase, the zenith angles of the moon and the telescope pointing, the separation

angle between the moon and each pointing, and the local, V-band extinction coefficient. The

position of each pointing was converted from equatorial coordinates into altitude-azimuth

coordinates and plotted with respect to the moon zenith and azimuth angles. Moon zenith

angles are shown as concentric circles of equal radius, and the azimuth angle increases from
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Figure 5.20: A comparison of a simulated quasar spectrum using the DESI (left) and eBOSS
(right) specsim configurations.

Figure 5.21: A stellar source spectrum and sky background spectrum used to study the
simulated eBOSS inverse variances.

0◦ to 360◦ in a clockwise fashion. The phase of the moon, given by ϕ, is close to full in

both instances, where 0 and 1 correspond to full and new moons, respectively. The V-

band extinction coefficient is shown as kV . What is clear from the plots, but perhaps not

intuitively, is that there is a non-negligible amount of moon contamination along the edge

of the horizon for all azimuth angles, even when the moon is far from the zenith and below

the horizon, as seen in (b). This is the result of a geometrical effect due to the curvature of

the Earth.
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Figure 5.22: Simulated and true fluxes for a stellar source spectrum for the eBOSS blue
(left) and red (right) spectrographs.

Figure 5.23: Simulated and true inverse variances for a stellar source spectrum for the eBOSS
blue (left) and red (right) spectrographs.

5.4.2 Simulating the sky with specsim

Because I specifically focused on investigating sky levels under bright conditions, I chose to

select observations taken when the moon was above the horizon. To this effect, a subset of

the data was selected cuts on moon altitude, transparency and sun altitude (see Table 5.6).

Sky brightnesses were generated in specsim for each unique DECaLS observation using

metadata such as the airmass, moon phase, moon altitude, moon position, and pointing.

They were then passed through a set of DECam filters using the speclite7 package (Kirkby

7https://speclite.readthedocs.io/
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Figure 5.24: Simulated and true inverse variances of a range of stellar source inputs for the
eBOSS specsim configuration. From left-to-right and top-to-bottom, they correspond to
FIBERS 334, 395, 41, 694, 890, and 970 on PLATE 4055 observed on MJD 55359.

et al. 2021) to give the sky brightness in nanomaggies / sq arcsec. A maggie is a linear unit

of flux density defined as:

1maggie = 10−0.4mAB , (5.12)

where mAB is the AB apparent magnitude. Finally, the output was converted into magni-

tudes using the standard conversion from flux in nanomaggies f to magnitude m:

m = 22.5− 2.5 log10(f × 109). (5.13)
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Figure 5.25: Contribution of different atmospheric components in specsim.

The simulated sky brightness for each photometric band is shown against empirical data from

DECaLs in Fig. 5.28. There was considerable horizontal scatter across all filters, and so an

additional cut was made on transparency in order to attempt to reduce it. Transparency,

defined as the flux from a source relative to the expected flux under nominal conditions, is

affected by elements in the atmosphere that absorb or scatter light, such as aerosols, water

vapor, and clouds. Because the relationship between transparency and scattered moonlight

is fairly complicated, a tight cut was made in order to isolate targets with high transparency.

Fig. 5.29 shows the results after a transparency cut of 0.75 < transparency < 1.3.

This eliminated some of the streaks in the figures, however there were still observations

where the measured brightness varied for the same value of predicted sky brightness. Upon

closer inspection, some of these observations occurred on the same day, such as those in

labeled in orange in Fig. 5.30. These pointings all occurred on 4 April, 2013, at times close

to astronomical twilight. Because this scatter correlated with sun altitude, a third cut was

made to only include observations where the sun altitude < −15◦. This mostly eliminated

the scatter in the g- and r-bands, with the remaining z-band scatter mostly due to the

presence of OH lines and other gases along redder wavelengths, which is expected.
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Figure 5.26: Moon separation angles for unique observations of sources in DR3.

Table 5.6: Cuts on DECaLS data for bright conditions.

moon altitude > 15◦

0.9 < transparency < 1.3
sun altitude < −15◦

Addressing the g-band offset

The model is successful in predicting sky and moon contamination in the r- and z-bands,

although there is a systematic offset in the g-band where the specsim model seems to under-

estimate the sky brightness. One possibility is that atmospheric extinction has been applied

twice: the DECam filter responses already include a reference atmosphere with airmass 1.3,

and specsim already applies atmospheric extinction to the spectra before they are convolved

with the filters. The study was repeated using a set of DECam filters without atmospheric

extinction. The results, shown in Fig. 5.32, show no significant change in predicted sky

brightness. One of the primary contributors to the sky level during non-photometric nights

is reflected light from the moon. The reflectivity of the moon, or moon albedo, has been

found to decrease with wavelength, and is particularly low at near-UV wavelengths (Carver
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Figure 5.27: The amount of scattered moonlight for two different positions of the moon as
a function of altitude and azimuth.

Figure 5.28: Predicted versus empirical sky brightness in three different bands after only
imposing a cut on moon altitude.

et al. 1974). It may be possible that specsim is underestimating the moon albedo, leading

to fainter sky levels.

Sky brightness residuals

Finally, histograms of the empirical versus predicted residuals were made and are shown

in Fig. 5.33, along with the mean of the residuals for each passband. Overall, specsim

accurately captures the measured variations in sky brightness levels in the r- and z-bands,

where the offset in the z-band is expected due to the presence of sky emission lines in the
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Figure 5.29: Predicted versus empirical sky brightness in three different bands after applying
both moon altitude and transparency cuts.

Figure 5.30: Predicted versus measured sky brightness in the g-band (left), showing the
anomalous streak of observations taken during astronomical twilight in orange. The times-
tamps of these observations (right) show the peak at twilight.

near-infrared. The g-band offset is not as well understood, however further studies into moon

albedo models could account for fainter predicted sky levels at shorter wavelengths.

5.5 Conclusion

The specsim software package was originally developed to simulate the response of the DESI

telescope and instrument. I reconfigured this package to run in a separate mode where it

would simulate eBOSS spectra for the eBOSS Lyα working group. This involved changing

telescope and instrument parameters in the configuration file to their nominal eBOSS values,
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Figure 5.31: Predicted versus empirical sky brightness in three different bands after applying
moon altitude, transparency, and sun altitude cuts.

Figure 5.32: Predicted versus empirical sky brightness in three different bands after apply-
ing moon altitude, transparency, and sun altitude cuts, but without including atmospheric
extinction.

as well as generating data for the eBOSS camera such as the wavelength binning, spectral

resolution, throughput, and the fiber acceptance fraction.

A verification of specsim was performed by comparing the inverse variances of a model

stellar spectrum with a real eBOSS stellar source. Another validation used the DESI config-

uration of specsim to compare sky brightness levels simulated via specsim with those from

photometry from DECaLS, showing general agreement, other than an offset in the g-band.
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Figure 5.33: Sky brightness residuals (predicted - model) in all three photometric bands.

166



Bibliography

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016, Phys. Rev. Lett., 116, 061102

Abolfathi, B. 2022, SOMVIZ, https://github.com/belaa/SOMVIZ

Abolfathi, B., Alonso, D., Armstrong, R., et al. 2021, The Astrophysical Journal Supplement
Series, 253, 31

Aghanim, N., Akrami, Y., Ashdown, M., et al. 2020, Astronomy & Astrophysics, 641, A6

Alarcon, A., Sánchez, C., Bernstein, G. M., & Gaztañaga, E. 2020, Monthly Notices of the
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