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We present a new plasma-based method of guiding an electromagnetic pulse. The scheme consists
of an inhomogeneous magnetic field and a uniform density plasma, in contrast to existing schemes
that rely on transverse plasma density gradients but need not be magnetized. The refractive index
of a magnetized plasma depends on the strength and direction of the magnetic field as well as the
plasma density. A guiding channel is formed by using field inhomogeneity to generate the desired
transverse profile of the index of refraction. The concept is analyzed with an envelope equation and,
for the specific example of a wiggler magnetic field, with a two-dimension particle-in-cell simulation.
A simplified model of this scheme as producing a magnetic wall in analogy to metallic waveguides
is presented, for which corresponding approximate relations for the guided mode axial wavelength
and radius are derived as functions of the plasma and magnetic field parameter. These are seen
to be in good agreement with particle-in-cell simulation results. Since the desired inhomogeneity
of the refractive index can be made easily when the electromagnetic wave frequency is close to the
cyclotron frequency, this guiding scheme is most readily applied in the microwave regime.

PACS numbers: 52.25.Xz; 52.35.Hr; 52.38.Hb

Keywords: Wave guiding; Magnetized plasma; Particle-in-cell simulation

It is important in many applications, such as laser-
driven plasma-based accelerators [1, 2], to propagate in-
tense electromagnetic pulses over distances much larger
than the diffraction length. The propagation distance in
vacuum is characterized by the Rayleigh length ZR =
πr2

s/λ, where rs and λ are the wave spot size and wave-
length, respectively. The high-intensity pulses are guided
using a plasma channel, where the plasma density is low
at the pulse propagation axis and increases in the radial
direction. Such a density structure produces an index of
refraction decreasing with radial position [3–6]. The den-
sity gradient is obtained either with a capillary discharge
or with careful timing with a gas jet that is thermally ex-
panding in the radial direction. These plasma structures
handle intense fluxes, their optical properties readily var-
ied by changing the delay between, for example, the ap-
plication of a heating pulse to the center of the plasma
and time at which the high intensity pulse enters the
channel. In contrast, high power microwaves are guided
by metallic structures. We propose here a plasma-based
guide for microwaves that requires only a gradient in the
external magnetic field and a homogenous plasma den-
sity. The advantage is that the magnetic field is readily
varied and known to high precision. Thus, the character-
istics of the guiding are easily modified by adjusting the
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field.
Then the basic idea is varying the refractive index

by an external non-uniform magnetic field in a uniform
plasma. The refractive index of a magnetized plasma
is a function of the magnetic field for a given frequency
and polarization of the EM wave. Consider a right-hand-
circular polarized wave (R-wave), whose refractive index
in a uniformly magnetized plasma is

η =

√

1 −
ω2

p

ω2

ω

ω − Ω
, (1)

where ωp =
√

e2n0/ε0m is the plasma frequency, −e is
the electron charge, m is the electron mass, n0 the plasma
density, ε0 the permitivity of free space, ω the electrmag-
netic wave frequency, and Ω = eB/mγ the cyclotron fre-
quency, B is the magnetic field strength and γ = E/mc2

the relavistic factor, where E is the electron energy.
A simple illustration of the idea is given by assuming

an axial field with a radial variation. As the magnetic
field increases radially, the refractive index decreases, and
becomes zero at the cutoff. This behavior yields the re-
quired negative radial gradient of the refractive index.
Because the maximum value of the laboratory magnetic
fields is of order a few Tesla, the magnetic guiding is most
efficient in the microwave regime. Hence, all the simula-
tions presented in this paper specified frequencies in the
microwave range.

To easily realize a transversely increasing magnetic

field in the laboratory, it should satisfy ∇× ~B = 0, i.e.,
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it should be an external field, rather than one induced
by a current inside the plasma. That can be achieved
by a set of alternating magnets, which is the same as a
normal magnetic wiggler except that the polarization of
magnets in each pair is anti-parallel, producing an oscil-
lating longitudinal field on axis. In the slab geometry,
the alternating field can be represented by

Bz = B0 + Bw sin(kwz) cosh(kwy),

By = −Bw cos(kwz) sinh(kwy), Bx = 0, (2)

where B0 is a constant axial magnetic field, Bw the wig-
gler amplitude, and kw the wiggler wavenumber (kw =
2π/λw). In the cylindrical geometry, cosh(kwy) and
sinh(kwy) would be replaced by the modified Bessel func-
tions I0(kwy) and I1(kwy). The two dimensional particle-
in-cell (PIC) code XOOPIC [7] is used to study the guid-
ing properties of such a system, as shown in Fig. 1. The
frequency of the EM wave and the plasma frequency are
ω = 1.88 × 1011 s−1 and ωp = 0.2 ω, respectively; the
wiggler parameters are Bw = 0.1 T, B0 = 0.5 T, and the
wiggler wavelength λw = 0.1 m. The wave was launched
at the left boundary with the focal point 0.1 m away
from the launching position. The propagation distance
of the wave is about 1 m. An initially Gaussian trans-
verse profile exp(−y2/y2

s) is used with the spot size ys

at the focus was set at 0.02 m. The two-dimensional im-
ages of the unguided (Bw = 0) and guided (Bw = 0.1 T)
cases are denoted as (a) and (b) in Fig. 1. The inten-
sity of the guided wave is preserved over many diffrac-
tion lengths in the guided case, while the unguided pulse
rapidly diffracts. The guiding by the wiggler field is more
evident in Fig. 1 (c), where the peak intensity of the wave
at the propagation axis is plotted. The intensity of the
unguided wave monotonically decreases by the diffrac-
tion, while the guided wave intensity oscillates. We in-
terpret the oscillation as indicating a mismatch between
the focal properties of the channel and the initial spot
size.

To find a better matched case, the channel size in
the slab geometry is estimated starting from the two-
dimensional envelope equation:

∂Ê

∂z
=

i

2k

∂2Ê

∂y2
−

ik

2
(1 − η2)Ê, (3)

where Ê is the complex slowly varying amplitude of elec-
tric field, and η the refractive index. The first term in the
right-hand-side is the diffraction term. The wave profile
can be characterized by

Ê = Ê0R(z) exp [iδ(z)] exp

[

−
y2

ys(z)2
[1 + iα(z)]

]

, (4)

where α, R, and δ are real-valued function of z, and ys

the spot size of the wave. Inserting Eq. (4) into Eq. (3)
and taking the real and imaginary parts yields

R′

R
+

2y2

y2
s

y′

s

ys

=
α

ky2
s

(

1 −
4y2

y2
s

)

(5)
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FIG. 1: Wave intensity profiles for (a) unguided and (b) pe-
riodically guided cases. (c) Peak intensity of the wave at the
propagation axis, comparing unguided (triangles) and guided
(circles) geometries.

and

δ′ + α
2y2

y2
s

y′

s

ys

−
y2

y2
s

α′

= −
1

ky2
s

+
2y2

ky2
s

(1 − α2) −
k

2
(1 − η2), (6)

where the prime represents the derivative in terms of
z. In the region where the channel is narrowest, i.e.,
sin(kwz) ≃ 1, the cyclotron frequency Ω for the wiggler
field Eq. (2) is defined by

Ω ≃ Ω0 + Ωw coshkwy, (7)

where Ω0 = eB0/m and Ωw = eBw/m, respectively.
Then the R-wave dispersion Eq. (1) can be expanded
up to the second order in y as

1 − η2
≃

ω2
p

ω2

[

1 +
Ωs

ω
+

Ω2
s

ω2
+

Ωw

2ω

(

1 +
2Ωs

ω

)

k2
wy2

]

,

(8)
where Ωs ≡ Ω0 + Ωw. The y2 terms in Eq. (5) yield
α = −y′

sys/2. Substituting this expression and Eq. (8)
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into Eq. (6) and isolating the y2 terms of the result yields
the equation of the spot size ys:

ys

∂2ys

∂z2
−

4

k2y2
s

+
k2

wω2
pΩw

2ω3

(

1 +
2Ωs

ω

)

y2
s = 0. (9)

Since the channel size is a function of the pulse position z,
there is no global equilibrium of the spot size. Instead the
local equilibrium of ys can be calculated at the narrowest
region of the channel as

y2
seq

=
2

kkw

ω

ωp

√

2mω

eBw

(

1 +
2Ωs

ω

)

−1

. (10)

For the parameters used in Fig. 1, yseq = 0.0284 m, for
which the FWHM (full-width-half-maximum) of the wave
intensity is 0.0334 m. In Fig. 2, the FWHM of the EM
wave was measured from the same simulation as in Fig. 1.
The spatially averaged FWHM is 0.032, which is very
close to the theoretical value.

We describe approximate relations for the radius of
the magneto-plasma channel and the guided mode axial
wavelength. From Eq. (1), the stop-band of the R-wave
is calculated as ω(1 − ω2

p/ω2) < Ω < w, where the lower
limit is the cutoff and the upper limit the resonance. The
behavior of the refractive index near those two points is
approximated as follows. The gradient of the refractive
index is, from Eq. (1),

dη

dΩ
= −

ω2
p

2ηω(ω − Ω)2
. (11)

It is seen from Eq. (11) that the gradient of η is very
large at the cutoff (η = 0) and the resonance (ω = Ω),
which implies that η changes very rapidly near those two
points. Hence, for a smoothly varying spot over the chan-
nel, the refractive index near the cutoff can be approx-
imated by a step function. The second approximation
is that the R-mode wave field is completely zero in the
stop-band. These two assumptions make the cutoff line
look similar to the metallic wall of the waveguide, i.e., a
magnetic wall. The derivation of the dispersion relation
for this situation is almost the same as in the conven-
tional waveguide except the boundary conditions. The
longitudinal field in the magnetic channel does not have
a definite boundary condition, since the electric field os-
cillating parallel to the magnetic field is not influenced
by the magnetic field. On the other hand, the trans-
verse field should be zero at the boundary, since the
stop-band prohibits the propagation of the transversely
oscillating field. If we apply this idea to the wiggler-
plasma system, then the waveguide structure looks like
curved walls repeating periodically. In this paper, for
the convenience in analysis, we consider the case where
the magnetic wall is straight along the wave propagation
direction and varying transversely only. The typical pro-
cedure to find the dispersion in the metallic waveguide
is to determine first the longitudinal field and the trans-
verse fields are derived from it. In the magnetic wall
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FIG. 2: Evolution of the pulse FWHM. The data marked by
triangles are for the same guided simulation parameters as
used in Fig. 1. The initial spot size was r0 = 2.0 cm.

system, the procedure is reversed, since the boundary
condition is different. The transverse field (R-wave) is
found first with the zero-field boundary condition at the
magnetic wall (the cutoff), and the longitudinal field is
derived from it. We consider the system which is homo-
geneous in z-direction and bounded by the magnetic wall
in y-direction. The wave propagates in z-direction. The

electric field has the form ~E = ~E0(y)exp(ikz−iωt), where
~E0(y) = [Ex(y), Ey(y), Ez(y)]. From the wave equation,
Ex satisfies

∂2Ex/∂y2 + γ2Ex = 0, γ2 = ǫ̃ω2/c2
− k2, (12)

where ǫ̃ is the relative dielectric constant of the plasma
defined by ǫ̃ ≡ ǫ/ǫ0 = 1−ω2

p/ω2. The solution of Eq. (12)
is a superposition of various sinusoidal modes with the
boundary condition Ex = Ex = 0 at the cutoff positions
y = 0 and y = L. These boundary conditions are satisfied
only when γ = nπ/L with n an integer. Hence, the
dispersion relation takes the following form:

λ = 2π/

√

(

1 −
ω2

p

ω2

)

ω2

c2
− π2/L2 . (13)

Here L, the distance between the two cutoff’s in the
magneto-plasma channel, is a function of the axial and
wiggler magnetic field. In the region where the channel
is narrowest (sin kwz = 1),

L =
2

kw

arccosh

[

Bc − B0

Bw

]

, (14)

where Bc is the magnetic field at the cutoff, derived from
the condition of η = 0 in Eq. (1). Equation (13) with L
given by Eq. (14) was compared to the simulation results
in Fig. 3. We plotted the wavelength of the EM wave as
a function of the axial magnetic field B0 for a given wave
frequency. The simulation results agree reasonably well
with the theory.
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FIG. 3: The wavelength (λ) as a function of the axial magnetic
field B0. The wave parameters are λ = 0.01 m, rs = 2λ and
ωp = 0.2 ω. The theory curve is from Eq. (13).
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FIG. 4: Guiding of an intense electromagnetic wave with a
normalized vector potential a = 0.3 and an initial spot r0 =
3.5 cm. In this case, a smaller axial field (B0 = 0.2 T) was
used. Wiggler field and all other parameters are the same as
in Fig. 1.

The magnetic guiding scheme is well-suited to the
transmission of very high power microwaves, since the
plasma-wiggler system is not subject to the vacuum
breakdown as in the conventional waveguide. The nor-
malized amplitude of the wave in Fig. 1 is a = 0.001 cor-
responding to I = 2.7 × 108 W/m2 or E = 0.32 MV/m,
which is mild enough to be guided also in a metallic
waveguide. We have checked that similar guiding can
be obtained even for relativistic wave intensities. Fig. 4
presents the FWHM of the EM wave for a = 0.3, with the
initial spot r0 = 3.5cm. A smaller axial field B0 = 0.2 T
was used. All the other parameters are the same as those
used in Fig. 1. In this case the wave is being guided by
the magnetic channel. The field strength for a = 0.3 is
about 100 MV/m, which is almost the vacuum break-

down limit. The high power microwave transfer suggests
the possibility of the system being used as a compact
accelerator.

Another application of the magneto-plasma channel is
the tunable waveguide. The magnetic channel width,
which can be roughly defined as the distance between
the transverse position where the wave is at cutoff, is
very robust to plasma density fluctuation because, in
the regime where ω ∼ Ω0 ≫ ωp, the cutoff of the R-

mode (0.5 Ω[1 +
√

1 + 4ω2
p/Ω2

0]) depends only weakly on

the plasma frequency. This robustness endows the sys-
tem with good controllability: the focusing, guiding, and
bending of the EM beam are adjusted by varying the
external wiggler field strength.

In summary, we proposed and studied a new con-
cept for wave guiding in a magnetized plasma. A non-
uniform magnetic field transversely increasing from the
wave propagation axis creates a refractive index with
a negative transverse (radial) gradient, as required for
guiding. A specific example of the idea, using a wig-
gler magnetic field, was simulated with two-dimensional
particle-in-cell simulations. A simple model in which the
stop-band of the R-wave is regarded as a magnetic wall
which guides the wave leads to an approximate relation
between the wavelength and the channel radius. The
relation showed good agreement with two-dimensional
simulations. The simulations showed that the magnetic
channel is effective even for the guiding of a relativistic
wave. For a more formal analysis of the guiding in the
magneto-plasma channel, an analysis based on ray trac-
ing methods will be performed.
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