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Thanks to the advances in sequencing technologies in the last two decades, the set

of available whole-genome sequences has been expanding rapidly. One of the challenges in

phylogenetics is accurate large-scale phylogenetic inference based on whole-genome sequences.

A related challenge is using incomplete genome-wide data in an assembly-free manner for

accurate sample identification with reference to phylogeny. This dissertation proposes new

scalable and accurate algorithms to address these two challenges. First, I present a family of

scalable methods called TreeCluster for breaking a large set of sequences into evolutionary

homogeneous clusters. Second, I present two algorithms for accurate phylogenetic placement of
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genomic sequences on ultra-large single-gene and whole-genome based trees. The first version,

APPLES, scales linearly with the reference size while APPLES-2 scales sub-linearly thanks

to a divide-and-conquer strategy based on the TreeCluster method. Third, I develop a solution

for assembly-free sample phylogenetic placement for a particularly challenging case when the

specimen is a mixture of two cohabiting species or a hybrid of two species. Fourth, I address one

limitation of assembly-free methods—their reliance on simple models of sequence evolution—by

developing a technique to compute evolutionary distances under a complex 4-parameter model

called TK4. Finally, I introduce a divide-and-conquer workflow for incrementally growing and

updating ultra-large phylogenies using many of the ingredients developed in other chapters.

This workflow (uDance) is accurate in simulations and can build a 200,000-genome microbial

tree-of-life based on 388 marker genes.
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Chapter 1

Introduction

Since Charles Darwin drew his first evolutionary tree in Transmutation of Species in

1837, representing the genealogy of related species, organisms, cells, or biological entities in the

form of trees has been integral in evolutionary biology, ecology, and other fields in life sciences.

Despite the early efforts to build evolutionary trees (phylogenies) based on qualitative traits

such as phenotype and fossil records, today, phylogenetic trees are predominantly inferred from

molecular data [88].

Inferring a phylogeny is not solely a hypothesis about the genealogy and how samples

have evolved through time but is also a hierarchical and compact way of organizing and repre-

senting the relationship between the species or samples in a library of molecular data (e.g., DNA).

For example, the library and phylogeny in question can be all SARS-CoV-2 strains sampled in

a country [1]. A phylogeny and clusters defined by phylogenetic relationships of viral strains

can help determine variants of importance or concern. Thanks to the advances in sequencing

technologies in the last two decades, the databases of whole genome sequences such as viral

and microbial genomes have been expanding rapidly. Following the expansion of these genomic

databases and resources, there is a growing need for scalable algorithms that can process the

amassing data. An ingredient often used in scalable algorithms is divide-and-conquer, breaking a

large set of sequences into evolutionarily homogeneous clusters. In addition, clustering a large

set of sequences with shared evolutionary history using a phylogenetic tree is an efficient and
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natural approach to the problem. In Chapter 2, I define a family of optimization problems that,

given a phylogenetic tree, I can compute the minimum number of clusters such that the inferred

clusters adhere to constraints on their heterogeneity. I test these clustering algorithms on several

bioinformatics applications, including viral transmission and clustering Operational Taxonomic

Units (OTUs) in the microbial samples.

Today, some of the largest phylogenies ever built are microbial phylogenies. Since the

last decade, extensive 16S marker sequence databases with hundreds of thousands and even

millions of leaves have been published [48, 190]. Lately, genome-wide microbial reference

trees with ten thousand species and more have become available. These reference resources

are essential for sample identification and microbiome environmental sampling. Phylogenetic

placement is one of the most common techniques for mapping unknown or novel sequences

onto the reference database. Phylogenetic placement is the problem of finding the optimal

position for a new query sequence on an existing reference(backbone) tree. Placement, as

opposed to a de-novo reconstruction of the phylogeny, has two advantages: it is more scalable

and more tolerant to noise or missing data in the query sequence. As the size of available

reference trees used in these analyses continues to grow, there is a growing need for methods that

place genomic sequences on ultra-large trees with high accuracy. In Chapter 3 and Chapter 4,

I introduce the distance-based phylogenetic placement algorithm APPLES and its successor

APPLES-2. In Chapter 3, I emphasized the flexibility of distance-based placement to analyze

both assembled and unassembled environmental samples. On the other hand, in Chapter 4,

I introduce improvements in time complexity and accuracy of distance-based placement and

studied the feasibility and accuracy of whole-genome placement of microbial genomes and

metagenome-assembled genomes (MAG). One of the strong results I present is that I can place

a query genome onto the 10,575-genome microbial tree Zhu et al. (2019) published in under

4 seconds using 381 marker genes sampled globally from the whole microbial genome. It is

feasible to phylogenetically place all assembled microbial genomes uploaded to RefSeq onto the

reference tree of microbes. There are two shortcomings of phylogenetic placement in comparison
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to de-novo phylogenetic reconstruction. First, the phylogenetic placement does not provide the

resolution of relationships between query sequences. Secondly, the query sequences cannot

refine and update the backbone. In Chapter7, I introduced a divide-and-conquer workflow

for incrementally growing and updating ultra-large phylogenies. This workflow, uDance, can

build a 200,000-genome microbial tree-of-life based on 388 marker genes, yielding an order of

magnitude improvement in size over the tree from Zhu et al. (2019).

One emerging application of APPLES is sample identification using genome-skims [26].

A genome-skim is a shotgun sequence of the nuclear DNA with 0.5−2× coverage per specimen.

This coverage is shallow and insufficient for assembly; however, using Skmer [209], it is possible

to estimate the genomic distance between two genome-skims or a genome-skim and a genome.

In Chapter 3, I demonstrate that sample identification of genome skims through distance-based

phylogenetic placement is possible, assuming that the specimen contains genomic material

from a single species. An extension of this problem is to identify the mixed sample from two

species that possibly share the same environment. The same problem arises when a genome-skim

originates from a single allopolyploid hybrid species (e.g., yeast), where the hybrid inherits a

complete set of chromosomes from two ancestor species. Detection of the ancestral species

without requiring assembly poses a challenge. In Chapter 5, I introduce a model that relates

the distances between a mixed sample and reference species to those between constituents and

reference species. In addition, I present an algorithm to find the optimal phylogenetic placement

of the mixture constituents onto a given reference tree using this model.

One of the main aspects of distance-based phylogenetics is the model used in the com-

putation of evolutionary distance. Under the infinite sites assumption, each mutation falls on a

different site in a genome. In other words, there are no reversals where a character mutates to

another character, and during the course of evolution, it reverts to the previous one. When the

infinite sites assumption holds, the evolutionary distance is simply the average nucleotide identity

(ANI) between two genomes [100]. However, often this assumption is false and therefore relaxed

so that the number of observed substitutions is less than the actual number of events. Jukes-Cantor
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model [105] is a single parameter evolutionary model that allows obtaining evolutionary distance

from the ANI. One limitation of assembly-free methods is their reliance on simplified models of

sequence evolution such as Jukes-Cantor. Complex and multi-parametric models of evolution,

such as the general time reversible (GTR) model [232] are the workhorse of alignment-based

phylogenetics. In Chapter 6, I investigate the (im)possibility of computing genomic distances

under complex model models of evolution in the assembly and alignment-free scenarios. In

addition, I introduce a technique to compute evolutionary distances under a 4-parameter model

called TK4, which shows promise in the simulated data sets as an improvement over the classic

JC model.
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Chapter 2

TreeCluster: Clustering Biological Se-
quences using Phylogenetic Trees

Clustering homologous sequences based on their similarity is a problem that appears in

many bioinformatics applications. The fact that sequences cluster is ultimately the result of their

phylogenetic relationships. Despite this observation and the natural ways in which a tree can

define clusters, most applications of sequence clustering do not use a phylogenetic tree and instead

operate on pairwise sequence distances. Due to advances in large-scale phylogenetic inference,

we argue that tree-based clustering is under-utilized. We define a family of optimization problems

that, given an arbitrary tree, return the minimum number of clusters such that all clusters adhere

to constraints on their heterogeneity. We study three specific constraints, limiting (1) the diameter

of each cluster, (2) the sum of its branch lengths, or (3) chains of pairwise distances. These

three problems can be solved in time that increases linearly with the size of the tree, and for

two of the three criteria, the algorithms have been known in the theoretical computer scientist

literature. We implement these algorithms in a tool called TreeCluster, which we test on three

applications: OTU clustering for microbiome data, HIV transmission clustering, and divide-and-

conquer multiple sequence alignment. We show that, by using tree-based distances, TreeCluster

generates more internally consistent clusters than alternatives and improves the effectiveness of

downstream applications. TreeCluster is available at https://github.com/niemasd/TreeCluster.
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2.1 Introduction

Homologous molecular sequences across different species or even within the same

genome can show remarkable similarity due to their shared evolutionary history. These similari-

ties have motivated many applications to first group the elements of a diverse set of sequences into

clusters of set of sequences with high similarity for use in subsequent steps. The precise meaning

of clusters depends on the application. For example, when analyzing 16S microbiome data, the

standard pipeline is to use Operational Taxonomic Units (OTUs), which are essentially clusters of

closely related sequences that do not diverge more than a certain threshold [58, 78, 211]. Another

example is HIV transmission inference, a field in which a dominant approach is to cluster HIV

sequences from different individuals based on their similarity (again using a threshold) and to

use these clusters as proxies to define clusters of disease transmission [110, 196].

Shared evolutionary histories, which is the origin of similarity among homologous

sequences, can be shown using phylogenetic trees. The phylogenetic tree can be inferred from

sequence data, [87, 239] and recently developed methods can infer approximate maximum-

likelihood (ML) phylogenetic trees in sub-quadratic time, enabling them to scale to datasets

of even millions of sequences [188]. Moreover, accurate alignment of datasets with hundreds

of thousands of species (a prerequisite to most phylogenetic reconstruction methods) is now

possible using divide-and-conquer methods [167, 176].

Most existing sequence clustering methods use the pairwise distances among sequences

as input but do not take advantage of phylogenetic trees. For example, the widely-used

UCLUST [58] searches for a clustering that minimizes the Hamming distance of sequences to

the cluster centroid while maximizing the Hamming distance between centroids. Several other

clustering methods have been developed for various contexts, such as gene family circumscrip-

tion [60, 130] and large protein sequence databases [223].

Using phylogenies for clustering has two potential advantages. i) Since phylogenies

explicitly seek to infer the evolutionary history, phylogeny-based clustering has the potential
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A) Ultrametric tree T1 B) Non-ultrametric tree T2

Figure 2.1. When the phylogenetic tree is ultrametric, clustering is trivial. For a threshold
α , cut the tree at α

2 height (A). When the tree is not ultrametric, it is not obvious how to cluster
leaves (B). In both cases, a set of cut edges defines a clustering.

to not only reflect evolutionary distances (i.e., branch lengths) but also relationships (i.e., the

tree topology). Recall also that branch lengths in a phylogeny are model-based “corrections”

of sequence distances in a statistically-rigorous way [175, 239], and therefore, may better

reflect divergence between organisms. ii) When inferred using subquadratic algorithms, the

tree can eliminate the need to compute all pairwise distances, which can improve speed and

scalability. Moreover, a phylogeny often has to be inferred for purposes other than clustering

and thus typically is readily available. However, despite these potentials, to our knowledge, no

systematic method for phylogeny-guided clustering exists. Built for analyzing HIV transmissions,

ClusterPicker [195] clusters sequences based on their distances while using the phylogenetic

tree as a constraint; however, it still uses sequence (not tree) distances and scales cubically with

respect to number of sequences in the worst case.

Given a rooted phylogenetic tree, if the tree is ultrametric (that is, distances of all the

leaves to the root are identical), clustering sequences based on the tree can proceed in an obvious

fashion: the tree can be cut at some distance from the root, thereby partitioning the tree into

clusters (Fig 2.1A). This approach extends in natural ways to unrooted ultrametric trees by first

rooting the tree at the unique midpoint and proceeding as before. However, inferred phylogenetic

trees are rarely ultrametric. Different organisms can evolve with different rates of evolution, and
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even when the rates are identical (leading to an ultrametric true tree), there is no guarantee that

the inferred trees will be ultrametric. Given a non-ultrametric (and perhaps unrooted) tree, the

best way to cluster sequences is not obvious (Fig 2.1B).

One way to approach tree-based clustering is to treat it as an optimization problem. We

can define problems of the following form: “find the minimum number of clusters such that some

criteria constrain each cluster.” Interestingly, at least two forms of such optimization problems

have been addressed as early as the 1970s by the theoretical computer science community, in the

context of proving more challenging theorems. The tree partitioning problem is to cut a tree into

the minimum number of subtrees such that the maximum path length between two nodes in the

same subtree [184] or the sum of all edge weights in each subtree [118] is constrained by a given

threshold. Both problems can be solved exactly using straightforward linear-time algorithms;

however, to our knowledge, these algorithms are mostly ignored by bioinformaticians.

Here, we argue that a fast and efficient tree-based clustering approach can be beneficial

to several questions in bioinformatics. In this paper, we introduce a family of tree partitioning

problems and describe linear-time solutions for three instances of the problem (two of which

correspond to the aforementioned max and sum problems with known algorithms). We then

show that tree-based clustering can result in improved downstream biological analyses in three

different contexts: defining microbial OTUs, HIV transmission clustering, and divide-and-

conquer multiple sequence alignment.

2.2 Materials and methods

2.2.1 Algorithms

Problem definition

Let T = (V,E) be an unrooted binary tree represented by an undirected acyclic graph

with vertices V (each with degree one or three), weighted edges E, and leafset L ⊂ V . We

denote the path length between leaves u and v on T with dT (u,v) or simply d(u,v) when clear
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by context. The weight of an edge (u,v) (i.e., its branch length) is denoted by w(u,v).

A clustering of the leaves of the tree T can be defined by cutting a subset of edges C ⊆ E.

We define a partition {L1,L2 · · · ,LN} of L to be an admissible clustering if it can be obtained

by removing some edge set C from E and assigning leaves of each of the resulting connected

components to a set Li (note: N ≤ |C|+1).

For a given tree T , let fT : 2L →R be a function that maps a subset of the leafset L to a

real number. The purpose of fT (.) is to characterize the diversity of elements at the leaves within

each cluster, and it is often defined as a function of the edge weights in the cluster. For example,

it can be the diameter of a subset: fT (L) = maxu,v∈L dT (u,v). We define a family of problems

that seek to minimize the number of clusters while each cluster has to adhere to constraints

defined using fT (.). More formally:

Definition 1 (Min-cut partitioning problem family). Given a tree T with leafset L and a real

number α , find an admissible partition {L1 . . .LN} of L that satisfies ∀i, fT (Li) ≤ α and has

the minimum cardinality (N) among all such clusterings.

A natural way to limit the diversity within a cluster is to constrain all pairwise distances

among members of the cluster to be less than a given threshold:

Definition 2 (Max-diameter min-cut partitioning problem). The Min-cut partitioning problem

(Definition 1) is called Max-diameter min-cut partitioning problem when fT (L) = max
u,v∈L

d(u,v).

One potential disadvantage of max diameter min-cut partitioning is its susceptibility to

outliers: the largest distance within a cluster may not be always an accurate representation of the

degree of diversity in the cluster. A natural choice that may confine the effect of outliers is the

following:

Definition 3 (Sum-length min-cut partitioning problem). The Min-cut partitioning problem is

called Sum-length min-cut partitioning problem when fT (L) = ∑
(u,v)∈edges(T |L)

w(u,v) where T |L

is the tree T restricted to a subset of leaves L.
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We also study a third problem, which we will motivate later:

Definition 4 (Single-linkage min-cut partitioning problem). The Min-cut partitioning problem is

called Single-linkage min-cut partitioning problem when fT (L) = max
S⊂L
{ min

u∈S,v∈L−S
d(u,v)}.

Next, we will show linear-time algorithms for the Max-diameter, Sum-length, and Single-

linkage min-cut partitioning problems. All three algorithms use variations of the same greedy

algorithm and two of them (max and sum) have already been described in the theoretical computer

science literature. Nevertheless, we reiterate the solutions using consistent terminology and

provide alternative proofs of their correctness.

Linear-time solution for Max-diameter min-cut partitioning

A linear-time solution for the Max-diameter min-cut partitioning problem was first

published by Parley et al. [184] (with all edge weights equal to 1). We present Algorithm 1,

which is similar to the Parley et al. algorithm (but adds branch lengths), and we give an alternative

proof. The algorithm operates on T o, which is an arbitrary rooting of T at node o. We denote the

subtree rooted at an internal node u as U . Let the two children of u be called ul and ur, and let the

tree rooted by them be Ul and Ur. We use wl and wr to denote w(u,ul) and w(u,ur), respectively,

when clear by context.

For a cut set C of the tree, we define B(C,u) to be the length of the path from u to the

most distant connected leaf in U in the clustering defined by C. The algorithm uses a bottom-up

traversal of the tree and for each node u that we visit, we may decide to cut one of its child

edges. Thus, at each stage, a current clustering Cu is defined; we use B(u) a shorthand for

B(Cu,u). When we arrive at node u, one or more new paths form between the two trees Ur and

Ul . Among those paths, the longest one has the length B(ul)+wl +B(ur)+wr. If this value

exceeds the threshold, we break either (u,ur) or (u,ul), depending on which minimizes B(u).

Note that the algorithm always cuts at most one child edge of every node, and thus, B(u) is

always well-defined.
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Algorithm 1: Linear-time solution for Max-diameter min-cut partitioning
Input: A tree T o = (V,E) and a threshold α

1 B(v)← 0 for v ∈V
2 for u ∈ post order traversal of internal nodes of T o do
3 if B(ul)+wl +B(ur)+wr > α then
4 if B(ul)+wl ≤ B(ur)+wr then
5 E← E−{(u,ur)}
6 B(u)← B(ul)+wl
7 else
8 E← E−{(u,ul)}
9 B(u)← B(ur)+wr

10 else
11 B(u)← max(B(ul)+wl,B(ur)+wr)

12 return Leafsets of every connected component in T o

Theorem 1. Let A(u) be the minimum number of clusters under U, each with a diameter less

than α (i.e., A(o) is the objective function). Algorithm 1 computes a clustering with the minimum

A(o) for the rooted tree T o. In addition, among all possible such clusterings, the algorithm picks

argminC B(C,o).

Corollary 1. Let C′ be the cut set obtained by running Algorithm 1 on an arbitrary rooting T o

of tree T . C′ optimally solves the Max-diameter min-cut partitioning problem.

The proof of the theorem and the corollary are both given in Appendix A.

Linear solution for the Sum-length min-cut partitioning problem

A linear-time algorithm that partitions trees into the fewest clusters, each with total node

weights less than or equal to α , has been previously published by Kundu et al. [118]. In order

to solve the Sum-length min-cut partitioning problem, we present an altered version of the

original algorithm that works on edge (instead of node) weights and that focuses on binary trees.

Algorithm 1 with two simple modifications solves the Sum-length min-cut partitioning problem

optimally (see Algorithm A in Appendix A). The first modification is that we define the auxiliary

variable B(C,u) to denote the sum of weights of all descendent edges connected to u at the stage
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it is processed by the algorithm. Secondly, in the bottom-up traversal of internal nodes of T o, for

node u, w.l.o.g, let B(ul)+wl ≥ B(ur)+wr. If the sum of branch lengths in the combined subtree

exceeds α , we break the edge (u,ul). Unlike Algorithm 1, where B(ul)+wl +B(ur)+wr ≤ α ,

here, B(u) is set to B(ul)+wl +B(ur)+wr. The proof for the correctness of the algorithm is

analogous to that of Algorithm 1 and is given in Appendix A.

Single-linkage min-cut partitioning

We now address the Single-linkage min-cut partitioning problem (Definition 4), which

can be considered a relaxation of the Max-diameter min-cut partitioning. To motivate this

problem, first consider the following definition.

Definition 5 (Single-linkage clustering). We call a partition of L to be a Single-linkage clus-

tering when for every a,b ∈L , a and b are in the same cluster if and only if there exists a

chain H = c0,c1, . . . ,cm,cm+1, where a = c0 and b = cm+1, and for every 0≤ i≤ m, we have

d(ci,ci+1)≤ α .

Thus, every pair of nodes is put in the same cluster if (but not only if) their distance is

below the threshold (the rest follows from transitivity). The next result (proved in Appendix A.)

motivates the choice of fT (.) in Definition 4.

Proposition 1. The optimal solution to the Single-linkage min-cut partitioning problem (Defini-

tion 4) is identical to the Single-linkage clustering of Definition 5.

Algorithm 2 shows a linear-time solution to the Single-linkage min-cut partitioning

problem. For each node u, the algorithm first finds the closest leaf in the left and right sub-trees

of u via post-order traversal, and it then finds the closest leaf outside the sub-tree rooted at u

via pre-order traversal. Then, on a post-order traversal, it cuts each child edge iff the minimum

distance of leaves under it to leaves under its sibling and to any leaf outside the node both exceed

the threshold. The following theorem states the correctness of the algorithm (proof is given in

Appendix A).
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Algorithm 2: SINGLE-LINKAGE Single-linkage min-cut partitioning
1 minBelow[u]← minAbove[u]← ∞ for v←V
2 for u ∈ post order traversal of T o do
3 if u in L then
4 minBelow[u]← 0;
5 else
6 minBelow[u]← min

(
minBelow[ul]+wl,minBelow[ur]+wr

)
;

7 for u ∈ pre order traversal of T o do
8 if u ̸= o then
9 minAbove[u]← min

(
minBelow[s]+w(v,s),minAbove[v]+w(v,v)

)
;

10 for u ∈ post order traversal of internal nodes of T o do
11 if minBelow[ul]+wl +minBelow[ur]+wr > α and

minBelow[ul]+wl +minAbove[u]> α then
12 E← E \ (u,ul)

13 if minBelow[ul]+wl +minBelow[ur]+wr > α and
minBelow[ur]+wr +minAbove[u]> α then

14 E← E \ (u,ur)

15 if minBelow[ul]+wl +minAbove[u]> α and
minBelow[ur]+wr +minAbove[u]> α then

16 E← E \ (v,u)

17 return Leafsets of every connected component in T o

Theorem 2. The partitioning computed by Algorithm 2 optimally the solves Single-linkage

min-cut partitioning problem (Definition 5).

Clade constraint for rooted trees

So far, we have focused on unrooted trees. This choice is partially driven by the fact

that phylogenetic reconstruction tools predominantly use time-reversible models of sequence

evolution (e.g. GTR [232]) and therefore output an unrooted tree. Nevertheless, researchers

have developed various methods for rooting trees [64, 109], including accurate and linear-time

methods such as MV rooting [146]. When a rooted tree is available, each “monophyletic clade,”

i.e., group of entities that includes all descendants of their common ancestor, is a biologically

meaningful unit. Thus, we may want to constrain each cluster to be a clade. These “clade”

constraints make clustering easier: our algorithms can be easily altered to ascertain that each
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cluster is also a clade. Specifically, in Algorithm 1, when we have B(ul)+wl +B(ur)+wr > α ,

we simply need to cut both (u,ul) and (u,ur) (instead of cutting only the longer one). This small

modification allows the Max-diameter, Sum-length, and Single-linkage min-cut partitioning

problems to be solved in linear time while imposing the clade constraint.

Centroid (representative) sequence

Many sequencing clustering methods produce a representative sequence per cluster, often

one that is used internally by the algorithm. Our clustering approach is representative-free.

However, if a representative is needed for downstream applications, several choices are available.

For example, one can in linear-time find the midpoint or balance point of a cluster [146] (i.e.,

the node that minimizes variance of root to tip distances); then, the leaf closest to the midpoint

or balance point can be used as the representative. Another alternative is to use the consensus

sequence among all sequences belonging to a cluster (i.e., choosing the most frequent letter for

each site). Constructing and using a consensus sequence may be preferable to using one of the

given sequences as the centroid[261]. A third alternative that we explore in our results is to use

ancestral sequence reconstruction. For each subtree defined by a cluster, we first root it at its

balance point. Then, we perform maximum likelihood ancestral state reconstruction (ASR) and

use the reconstructed root sequence as the centroid.

2.2.2 TreeCluster software

We implemented linear-time algorithms for min-cut partitioning problem subject to

Max-diameter, Sum-branch, Single-linkage, and other clustering criteria, with and without clade

constraints in a freely-available open source tool called TreeCluster. TreeCluster takes a newick

tree and a threshold value as input and returns clusters in a formatted text file. TreeCluster uses

treeswift[169] package for fast tree operations.
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2.2.3 Three applications of TreeCluster

While sequence clustering has many applications, in this paper, we highlight three specific

areas as examples.

Application 1: OTU clustering

Biological Problem.

For microbiome analyses using 16S sequences generated from whole communities, the

standard pipeline uses operational taxonomic units (OTUs). Sequences with similarity at or above

a certain threshold (e.g. 97%) are grouped into OTUs, which are the most fine-grained level at

which organisms are distinguished. All sequences assigned to the same OTU are treated as one

organism in downstream analyses, such as taxonomic profiling, taxonomic identification, sample

differentiation, or machine learning. The use of a similarity threshold instead of a biological

concept of species is to avoid the notoriously difficult problem of defining species for microbial

organisms [37, 212]. Futher, the use of clusters of similar sequences as OTUs can provide a level

of robustness with respect to sequencing errors.

Most applications of OTUs are closed-reference: a reference database of known or-

ganisms is selected, and OTUs are defined for reference sequences using methods such as

UCLUST[58] and Dotur[211]. These methods cluster sequences based on a chosen threshold of

similarity, often picking a centroid sequence to represent an OTU. Reads from a 16S sample are

then compared to the OTUs, and the closest OTU is found for each read (judging distance by

sequence similarity). Once all reads are processed for all samples, an OTU table can be built

such that rows represent samples, columns represent OTUs, and each cell gives the frequency of

an OTU in a sample. This table is then used in downstream analyses. Several large reference

databases exist for these OTU-based analyses [48, 147, 190]. One of these databases, popularized

through pipelines such as Qiita [77], is Greengenes [48].

Regardless of the downstream application of an OTU table, one would prefer the OTUs

to be maximally coherent (i.e., internally consistent) so they represent organisms as faithfully
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as possible. We will focus our experiments on the closed-reference OTU picking methods and

the Greengenes as the reference library. However, note that open-reference OTU picking and

sub-operational-taxonomic-unit (sOTU) methods [5, 33, 59] also exist and involve a similar need

for sequence clustering.

Existing methods.

Despite the availability of hierarchical clustering tools for OTU clustering [32, 211],

non-hierarchical clustering methods [58, 131] are more widely used, perhaps due to their lower

computational demand. Two prominent methods are UCLUST [58] and CD-HIT [131], which

share the same algorithmic strategy: for a given threshold α , UCLUST determines a set of

representative sequences dynamically by assigning query sequences into representative sequences

(centroids) such that, ideally, the distance between each query and its assigned centroid is less

than α while distances between centroids is more than α . UCLUST is a heuristic algorithm,

and the processing order of the queries may affect the resulting clustering. CD-HIT differs from

UCLUST primarily in its strategy for computing distances.

Formulation as min-cut partitioning.

We define OTUs by solving the Min-diameter, Sum-Length, or Single-linkage min-cut

partitioning problems using a chosen threshold α and an inferred ML phylogeny. Each cluster in

the resulting partition is designated as an OTU.

Experiments.

We evaluate the quality of tree-based OTU clustering by comparing it to UCLUST as

used by Greengenes [48]. We run TreeCluster on the phylogenetic tree of 203,452 sequences

in the Greengenes v13.5 database in three modes: max, sum, and single-linkage. We use the

following 20 thresholds: [0.005,0.05] with a step size of 0.005, and (0.05,0.15] with a step size

of 0.01. For single-linkage, we only go up to 0.1 because, above this threshold, the number of

clusters becomes much smaller than other methods.
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From the same Greengenes database, we extract OTU clusters for all available sequence

identity thresholds up to 0.15 (i.e., 0.03, 0.06, 0.09, 0.12, and 0.15). We measure the quality of a

clustering {L1, . . . ,LN} by its weighted average of average pairwise distance per cluster (which

we call cluster diversity for shorthand), given by the following formula:

µ({L1, . . . ,LN}) =

N
∑

k=1
|Lk|

∑
i, j∈Lk

d(i, j)

|Lk|2

N
∑

k=1
|Lk|

=
1
n

N

∑
k=1

∑
i, j∈Lk

d(i, j)
|Lk|

(2.1)

where n denotes the number of sequences clustered. We compute distance d(i, j) between two

elements using two methods: tree distance, which is the path length on the inferred phylogenetic

tree, and sequence-based Hamming distance. Hamming distances are computed pairwise from

the multiple sequence alignment of all 203,452 sequences in the Greengenes database and

ignore any site that includes a gap in the pairwise alignment. Clearly, cluster diversity alone is

insufficient to judge results (singletons have zero diversity). Instead, we compare methods at the

same level of clustering with respect to their diversity. Thus, as we change the threshold α , we

compare methods for choices of the threshold where they result in (roughly) equal numbers of

clusters. Given the same number of clusters, a method with lower cluster diversity is considered

preferable.

We measure the quality of a representative sequence set using two metrics. For a

clustering {L1, . . . ,LN}, let {L1, . . . ,LN′} denote all non-singleton clusters. The first metric is

the average of average distance to the centroid per cluster, formally defined as:

ν(g,{L1, . . . ,LN′}) =
1
N′

N′

∑
k=1

∑
i∈Lk

d(i,g(Lk))

|Lk|
(2.2)

where g is a function that maps a cluster to a (representative) sequence. The second metric is the
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average of maximum distance to the representative per cluster, formally defined as:

ξ (g,{L1, . . . ,LN′}) =
1
N′

N′

∑
k=1

max
i∈Lk

d(i,g(Lk)) (2.3)

We define these metrics on the set of non-singleton clusters because a trivial clustering which

assigns many singletons will trivially have a very low value for ν and ξ (near zero).

Greengenes database is distributed with precomputed representative sequence sets. For

centroid selection for TreeCluster, we consider two methods g: consensus and ASR. We perform

ASR using TreeTime [206] under GTR model. We use RAxML 8 [220] to infer GTR model

parameters from the Greengenes multiple sequence alignment of representative sequences at 15

percent threshold. We compute distance d(i, j) between two elements using Hamming distance.

Application 2: HIV transmission cluster analyses

Biological Problem.

HIV evolves rapidly, so phylogenetic relationships between sequences contain infor-

mation about the history of transmission [127]. The ability to perform phylogenetic analyses

of HIV sequences is critical for epidemiologists who design and evaluate HIV control strate-

gies [2, 93, 95, 124, 158]. The results of these analyses can provide information about the

genetic linkage [62] and transmission histories [94], as well as mixing across subpopulations

[23]. A recent advancement in computational molecular epidemiology is the use of transmission

clustering to predict at-risk individuals and epidemic growth: infer transmission clusters from

pairwise sequence distances, monitor the growth of clusters over time, and prioritize clusters

with the highest growth rates [241]. In this monitoring framework, two natural questions come

about: What is the optimal way to infer transmission clusters from molecular data, and how can

transmission cluster inference be performed more efficiently?
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Existing methods.

We focus on two popular tools that perform such clustering. Cluster Picker [196] is given

a distance threshold, a phylogenetic tree, and sequences. It clusters individuals such that each

cluster defines the leaves of a clade in the tree, the maximum pairwise sequence-based distance

in each cluster is below the threshold, and the number of clusters is minimized. HIV-TRACE

is a tool that, given a distance threshold and sequences, clusters individuals such that, for each

pair of individuals u and v, if the Tamura-Nei 93 (TN93) distance [228] between u and v is

below the threshold, u and v are placed in the same cluster [110]. Both methods scale worse than

linearly with the number of sequences (quadratically and cubically, respectively, for HIV-TRACE

and Cluster Picker), and for large datasets, they can take hours, or even days, to run (however,

HIV-TRACE enjoys trivial parallelism and is fast in practice).

Formulation as min-cut partitioning.

Transmission clustering is similar to our problem formulation in that it involves cutting

edges such that the resulting clusters (as defined by the leafsets resulting from the cuts) must

adhere to certain constraints. Both Cluster Picker and HIV-TRACE utilize pairwise distances

computed from sequences, but when reformulated to utilize tree-based distances from an inferred

phylogeny, Cluster Picker becomes analogous to our Max-diameter min-cut partitioning (with an

added constraint that clusters must define clades in the phylogeny), and HIV-TRACE becomes

analogous to the Single-linkage min-cut partitioning.

Experiments.

To evaluate the effectiveness of HIV transmission clustering, we first simulate HIV

epidemic data using FAVITES [170]. For the simulation parameters, we use the parameters

described in Moshiri et. al. [170] to model the San Diego HIV epidemic between 2005 and

2014. However, we deviate from the original parameter set in one key way: originally, all HIV

patients were sequenced at the end time of the epidemic, yielding an ultrametric tree in the unit

of time, but to better capture reality, we instead sequence each patient the first time they receive
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Antiretroviral Treatment (ART). In our simulations, we vary two parameters: the expected time

to begin ART as well as the expected degree of the social contact network, which underlies the

transmission network. Higher ART rates and lower degrees both result in a slower epidemic and

change patterns of phylogenetic branch length [170]. The complete FAVITES parameter set can

be found in the supplementary materials (List A in Appendix A). We infer phylogenies from

simulated sequences under the GTR+Γ model using FastTree-II[188], and we use the MinVar

algorithm to root the trees using FastRoot [144].

We use HIV-TRACE [110] as well as multiple clustering modes of TreeCluster to infer

transmission clusters. We were unable to use Cluster Picker [196] due to its excessive running

time. For HIV-TRACE, we use a clustering threshold of 1.5% as suggested by its authors [241].

Because HIV-TRACE estimates pairwise sequences distances under the TN93 model, [228]

which tend to be underestimates of phylogenetic distance estimated under the GTR model, we use

a clustering threshold of 3% for Single-Linkage TreeCluster. The default Cluster Picker threshold

for Max-diameter clustering is 4.5% [196], so we use this as our clustering threshold for Max-

Diameter TreeCluster (both with and without the Clade constraint). For Sum-length TreeCluster

(with and without the Clade constraint), we simply double the Max-diameter threshold and use

9%. In addition to using these default thresholds, we also test a wide range of thresholds for each

transmission clustering method for robustness.

We measure cluster growth from year 8 to year 9 of the simulation and select the 1,000

highest-priority individuals, where individuals are prioritized in descending order of respective

cluster growth. To measure the risk of a given individual u, we count the number of HIV

transmission events u→ v between years 9 and 10. To measure the effectiveness of a given

clustering, we average the risk of the selected top 1,000 individuals. Higher numbers imply the

ability to prevent more transmissions by targeting a fixed number of individuals (1,000) and are

thus desirable. As a control, we also show the mean number of transmissions per population,

which is what a random selection of 1,000 individuals would give in expectation (we call this

“expected” risk).
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Application 3: Divide-and-conquer multiple sequence alignment

Algorithmic idea.

Tree-based clustering has also been used for multiple sequence alignment (MSA) using

divide-and-conquer. To solve the MSA problem using divide-and-conquer, the tree structure

can be used to divide sequences into smaller subsets (i.e., clusters), which can each be aligned

separately and then merged. The phylogeny and the MSA can be inferred simultaneously by

iterating between tree and MSA inference, and this technique has been used in algorithms such

as SATe [138, 139] and PASTA [166]. Divide-and-conquer has been proven to be particularly

useful for MSA of very large datasets [138, 167, 176]. We note that not all MSA tools use divide-

and-conquer and that we only study the usage of min-cut partitioning in divide-and-conquer

methods. We examine the effectiveness of min-cut partitioning in PASTA [166], a scalable

software which infers both MSAs and trees for ultra-large datasets (tested for up to 1,000,000

sequences).

PASTA first builds a quick-and-dirty estimate of the phylogeny that is used as a guidance

to cluster the sequences. In its “divide” phase, PASTA clusters the input sequences into subsets

so that each subset contains less diverse sequences than the full set. Then, an accurate (but

often computationally demanding) method is run on the subsets to infer the MSA and/or the

tree. Finally, the results on the subsets are merged using various techniques. The accuracy of the

output depends not only on the accuracy of the base method used on the subsets and the merging

method, but also on the effectiveness of the method used to divide the tree into subsets [139].

PASTA computes an initial alignment using HMMs implemented in HMMER [57] and

an initial tree using FastTree-II [188]; then, it performs several iterations (3 by default) of the

divide-and-conquer strategy described before using MAFFT [107] for aligning subsets and using

a combination of OPAL [244] and a technique using transitivity for merging subalignments. A

tree is generated using FastTree-II at the end of each iteration, which is then used as the guide

tree for the next iteration. The method has shown great accuracy on simulated and real data,

especially in terms of tree accuracy, where it comes very close to the accuracy obtained using
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the true alignment, leaving little room for improvement. However, in terms of the alignment

accuracy, it has substantial room for improvement on the most challenging datasets.

The clustering used in PASTA is based on the centroid-edge decomposition. Given

the guide tree (available from the previous iteration), the decomposition is defined recursively:

divide the tree into two halves, such that the two parts have equal size (or are as close in size as

possible). Then, recurse on each subtree until there are no more than a given number of leaves

(200 by default) in each subset.

Formulation as min-cut partitioning.

The centroid edge decomposition involves cutting edges and includes a constraint de-

fined on the subsets. However, it is defined procedurally and does not optimize any natural

objective function. The min-cut partitioning can produce a decomposition similar to the centroid

decomposition in its constraints but different in outcome. We set all edge weights of the guide

tree to 1 and solve the Sum-length min-cut partitioning problem with threshold α = 2m−2; the

result is a partition such that no cluster has more than m leaves and the number of subsets is

minimized. Thus, this “max-size min-cut partitioning” is identical to centroid decomposition in

its constraints but guarantees to find the minimum number of clusters.

Experiments.

To evaluate how our new decomposition impacts PASTA, we run PASTA version 1.8.3

on two datasets, and for each, we compare the accuracy of the two decomposition strategies:

centroid and max-size min-cut partitioning. Other parameters (including maximum subset size)

are all kept fixed for both decomposition strategies. We used two datasets both from the original

PASTA paper: 10 replicates of a simulated RNAsim dataset with 10,000 leaves and a set of 19

real HomFam datasets with 10,099 to 93,681 protein sequences. The RNASim is based on a very

complex model of RNA evolution. Here, the true alignment, known in simulations, is used as

the reference. For HomFam, since the true alignment is not known, following previous papers,

we rely on a very small number of seed sequences with a hand-curated reliable alignment as
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reference [167, 217]. In both cases, we measure alignment error using two standard metrics

computed using FastSP [162]: SPFN (the percentage of homologies in the reference alignment

not recovered in the estimated alignment) and SPFP (the percentage of homologies in the

estimated alignment not present in the reference).
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2.3 Results

2.3.1 Results for Application 1: OTU clustering

A

B

Figure 2.2. Comparing Greengenes and TreeCluster. (A) Cluster diversity (Eq. 2.1) for
Greengenes and TreeCluster versus the number of OTUs. Cluster diversity is measured both with
respect to hamming distance and tree-based distance. The threshold α is shown for all data points
corresponding to Greengenes and for some points of TreeCluster. See Fig. 2.7 for comparison to
other TreeCluster modes. (B) Average-average (ν) and average-maximum (ξ ) distance to the
centroid for Greengenes and TreeCluster versus the number of clusters. TreeCluster centroids
are computed using ancestral state reconstruction or using consensus.

On the Greengenes dataset, as we change the threshold between 0.005 and 0.15, we

get between 181,574 and 10,112 clusters (note that singletons are also counted). The cluster

diversity has a non-linear relationship with the number of clusters: it drops more quickly with
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higher thresholds where fewer clusters are formed (Fig 2.2A and Fig. 2.7). Comparing the

three objective functions that can be used in TreeCluster, we observe that Max-diameter and

Sum-length have similar trends of cluster diversity scores, whereas Single-linkage min-cut

partitioning has substantially higher diversity compared to the other two methods (Fig. 2.7).

This pattern is observed regardless of whether tree distances or sequence distances are used, but

differences are larger for tree distances. Finally, note that, even though tree distances are, as

expected, larger than sequence distances (Fig. 2.8), the cluster diversity is lower when computed

using tree distances, showing that clusters are tight in the phylogenetic space.

Compared to the default Greengenes OTUs, which are defined using UCLUST, Max-

diameter min-cut partitioning defines tighter clusters for tree-based scores (Fig 2.2A). When

distances between sequences are measured in tree distance, the cluster diversity score for

Greengenes OTUs is substantially lower for all thresholds, and the gap is larger for higher

thresholds. For example, the cluster diversity of Greengenes OTUs is three times higher than

TreeCluster OTUs for α = 0.15. When distances between sequences are measured in Hamming

distance, Greengenes and TreeCluster perform similarly for low threshold values (e.g. α =

0.03 for Greengenes, which is similar to α = 0.02 for TreeCluster in terms of the number of

clusters). However, when the number of OTUs is reduced, remarkably, TreeCluster outperforms

Greengenes OTUs by up to 1.4-fold (e.g. α = 0.15). This is despite the fact that UCLUST is

working based on sequence distances and TreeCluster is not.

Size of the largest cluster in Greengenes is larger compared to TreeCluster (Table 2.1).

For example, for α = 0.09, both methods have similar number of clusters (22,090 and 23,631

for Greengenes and TreeCluster, respectively) but the size of largest cluster in Greengenes is

three times that of TreeCluster (1,659 versus 540). On the other hand, for the same threshold

value, the number of singleton clusters comprises 48% of all clusters for Greengenes whereas

only 27% of the clusters are singletons for TreeCluster. Thus, GreenGenes has more clusters that

are very small or very large, compared to TreeCluster.

Computed using either consensus or ASR method, representative sequences in TreeClus-
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Table 2.1. Number of singleton clusters (σ ), total number of clusters (Σ), and maximum cluster
size (max) for TreeCluster and GreenGenes for various thresholds. In the Greengenes database,
OTU definitions for thresholds α = 0.015 and α = 0.045 are not available.

TreeCluster-Max-Diameter GreenGenes-UCLUST
α σ Σ max σ Σ max
0.015 86387 123456 47 (n.a) (n.a) (n.a)
0.03 42510 77263 96 70415 99322 527
0.045 24795 54068 171 (n.a) (n.a) (n.a)
0.06 15257 39809 305 26485 46256 894
0.09 6396 23631 540 10560 22090 1659
0.12 3003 15052 808 4153 10544 2131
0.15 1525 10112 1209 1735 5088 3765

ter are closer to other sequences of the cluster than Greengenes (Fig 2.2B). Using ASR repre-

sentative sequences performs slightly worse than consensus centroids according to the ν score

(e.g. ν = 0.062 and ν = 0.057, respectively when α = 0.15). When evaluated using ξ score,

ASR representative sequences perform slightly better than consensus in all threshold levels (e.g.

ξ = 0.03 and ξ = 0.04 respectively when α = 0.005) and the gap again widens as the number

of clusters increases. Both types of centroids computed using TreeCluster perform better than

Greengenes representative sequences according to both metrics, and the gap increases as the

threshold α increases (e.g. up to 1.7-fold when α = 0.15 for ν).

2.3.2 Results for Application 2: HIV dynamics

Comparing various TreeCluster modes, regardless of the parameters that we vary, Sum-

length TreeCluster consistently outperforms the other clustering methods, and the inclusion of

the Clade constraint has little impact on effectiveness (Fig 2.3). Compared to a random selection

of individuals, the risk of selected individuals can be substantially higher; for example, with

expected time to begin ART set to 1 year, the expected risk is 0.55 transmissions, whereas the

average risk of the top 1,000 individuals from Sum-length clusters is 0.85. In all the conditions,

a close second to TreeCluster Sum-length is TreeCluster Max-diameter. Other methods, however,

are substantially less effective than these two modes of TreeCluster.
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Figure 2.3. Effectiveness of transmission clustering. Effectiveness is measured as the average
number of individuals infected by the selected 1,000 individuals. The horizontal axis depicts
the expected time to begin ART (A), the expected degree (i.e., number of sexual contacts) for
individuals in the contact network (B), and the number of clusters using various thresholds (C).

When varying expected time to begin ART and expected degree, Single-linkage TreeClus-

ter and HIV-TRACE consistently perform lower than the other approaches, with Single-linkage

TreeCluster typically performing around the theoretical expectation of a random selection and

HIV-TRACE performing slightly better (Fig 2.3a-b). Moreover, these patterns are not simply

due to the chosen thresholds: even when the threshold is changed to control the number of

clusters, Single-linkage TreeCluster and HIV-TRACE consistently perform worse than expected

by random selection (Fig 2.3c). The effectiveness of Sum-length and Max-diameter TreeCluster

are maximized when they create 2,000–5,000 and 2,000–3,000 clusters, respectively.

2.3.3 Results for Application 3: improving PASTA

First, we notice a substantial improvement of PASTA 1.8.3 comparing to the original

version published in 2015 [166], especially for RNASim where alignment accuracy improved

by about 3%. This was due to major updates of the PASTA software and the dependent tools.

When we replace centroid decomposition with Max-size min-cut partitioning in PASTA, the

alignment error reduces substantially for the RNASim dataset, but less so on the HomFam dataset

(Fig 2.4). On the RNAsim data, mean SPFN drops from 0.12 to 0.10, which corresponds to a

17% reduction in error. These drops are consistent across replicates and are substantial given the

fact that the only change in PASTA was to replace its decomposition step with our new clustering
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a) RNASim b) HomFam
Centroid    Mincut Centroid    Mincut Centroid    Mincut Centroid    Mincut

Figure 2.4. Alignment error for PASTA using the centroid and the mincut decompositions.
We show Sum of Pairs False Negative (SPFN) and Sum of Pairs False Psotive (SPFP) computed
using FastSP [162] over two datasetes: the simulated RNASim dataset (10 replicates) and the
biological HomFam dataset (19 largest families; all 20 largest, except “rhv” omitted due to the
warning on the Pfam website). We show boxplots in addition to mean (red dot) and standard
error (red error bars).

algorithm, keeping the rest of the complex pipeline unchanged. In particular, the method to align

subsets, to merge alignments, and to infer trees, were all kept fixed. On the HomFam dataset,

too, errors decreased, but the reductions were not substantial (Fig 2.4b). Based on these results,

we have now changed PASTA to use Max-size min-cut partitioning by default.

2.4 Discussion

Several theoretical and practical issues should be further discussed.

Mean-diameter min-cut partitioning

Some of the existing methods, such as Cluster Picker [196], can define their constraints

based on mean pairwise distance between nodes. Similar to those, we can define a variation of

the min-cut partitioning problem in which fT (L) = 1
(|L|2 )

∑
i, j∈L

d(i, j). Unfortunately, this “Mean-

diameter” min-cut partitioning problem can only be solved in linear time using our greedy

algorithm if we also have clade constraints (Algorithm B in Appendix A). As demonstrated
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by the counterexample given in Fig. 2.9, the greedy algorithm fails if we do not have clade

constraints. More generally, the use of mean as function fT (·) creates additional complexity,

and whether it can be solved in linear time remains unclear. Whether mean diameter is in fact a

reasonable criterion is not clear. For example, it is possible that the mean diameter of a cluster is

below the threshold while the mean diameter of subclusters embedded in that cluster are not;

such scenarios may not make sense for downstream applications.

Set of optimal solutions.

It is possible that multiple distinct partitions with equal number of clusters are all optimal

solutions to any of our min-cut partitioning problems. Moreover, as the example given in Fig 2.5

shows, the number of optimal solutions can be exponential with respect to number of leaves

in a binary phylogenetic tree. This observation renders listing all optimal solutions potentially

impractical as there may be too many of them. However, finding a way to summarize all optimal

partitions remains interesting and can have practical utility. We do not currently have such a

summarization approach. However, as shown in Lemma A of Appendix A, although the optimal

solution space is potentially exponentially large, one can easily determine the set of all edges

that could appear in any of the optimal solutions. Thus, we could find absolutely unbreakable

edges that will not be cut in any optimal clustering of the data.

Choice of criterion.

Among the three methods that we discussed, we observed that Max-diameter and Sum-

diameter are consistently better than the Single-linkage. This observation makes intuitive sense.

Single-linkage can increase the diversity within a cluster simply due to the transitive nature of

its criterion. Thus, a very heterogeneous dataset may still be collapsed into one cluster, simply

due to transitivity. Our desire to solve the Single-linkage problem was driven by the fact that a

similar concept is used in HIV-TRACE, arguably the most widely used HIV clustering method.

However, we did not detect any advantage in this type of clustering compared to Max-diameter

or Sum-length; thus, our recommendation is to use these two criteria instead. Between the
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Figure 2.5. An example showing that number of minimal clusterings under a diameter
threshold can be exponential of number of leaves. When the threshold is 3.5, each unit has
to be split into two clusters, and there are thus three equally-optimal ways of splitting. The
minimum number of clusters is therefore 2n. The total number of distinct optimal solutions is 3n,
whereas there are 3n leaves.

two, Max-diameter has the advantage that its α threshold is easier to interpret. Finally, ASR-

based selection of representative sequences outperformed consensus sequences, but we note that

computing consensus sequences is much easier and faster.
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Figure 2.6. Execution times of Cluster Picker, HIV-TRACE, and TreeCluster in log-scale.
Execution times (in seconds) are shown for each tool for various values of n sequences, with
10 replicates for each n. The full dataset was obtained by downloading all HIV-1 subtype B
pol sequences (HXB2 coordinates 2,253 to 3,549) from the Los Alamos National Laboratory
(LANL) database. All programs were run on a CentOS 5.8 machine with an Intel Xeon X7560
2.27 GHz CPU.

We focused on comparing the effectiveness of TreeCluster to other methods, but we

note that its running time also compares favorably to other clustering methods (once the tree

is inferred). For example, on a real HIV dataset, we ran HIV-TRACE, Cluster Picker, and

TreeCluster for subsets of the data ranging from 100 to 5,000 sequences (Fig 2.6). On the largest

set with 5,000 leaves, the running time of TreeCluster did not exceed 2 seconds. In contrast,

the sequence-based HIV-Trace required close to a minute (which is still quite fast), but Cluster

Picker needed more than an hour. Even on the Greengenes dataset with more than 200,000 leaves,

TreeCluster performed clustering in only 30 seconds. The high speed of TreeCluster makes it

possible to quickly scan through a set of α thresholds to study its impact on the outcomes of
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downstream applications.

We note that these numbers do not include the time spent for inferring the tree, which

should also be considered if the tree is not already available (note that in many applications a

tree is inferred for other purposes and is readily available). For example, based on previous

studies, MSA and tree inference on datasets with 10,000 sequences can take close to an hour

using PASTA and 12 CPUs. Around a third of this time is spent on tree inference (e.g., see

Fig 4 of [167]) and the rest is spent on the estimating alignment, which is also needed by most

alternative clustering methods.

2.5 Conclusion

We introduced TreeCluster, a method that can cluster sequences at the tips of a phy-

logenetic tree using several optimization objective functions. We showed that our linear-time

algorithms can be used in several downstream applications, including OTU clustering, HIV

transmission clustering, and divide-and-conquer alignment. Using the tree to build the clusters

increases their internal consistency and improves downstream analyses.
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Figure 2.8. Tree distance versus Hamming distance. On 16S data, the relationship between
tree distances and Hamming distances cannot be established using the Jukes-Cantor formula (red
curve).
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Figure 2.9. An example showing that Mean-diameter min-cut partitioning is not conforming
locality when α = 72, so it cannot be solved by a greedy algorithm analogous to Algorithm 1.
When a greedy algorithm is at the stage where it processes u, it makes the decision for cutting
its children edges (u,v) and (u,a) based on the information available at the subtree rooted by u.
When α = 72, (A) T1 and (B) T2 require different cut-sets ({(u,v)} and {(u,a)} respectively)
for the optimal Mean-diameter partitioning despite the fact that the subtree rooted by u remains
unchanged in T1 and T2.
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Chapter 3

APPLES: Scalable Distance-based Phylo-
genetic Placement with or without Align-
ments

Placing a new species on an existing phylogeny has increasing relevance to several

applications. Placement can be used to update phylogenies in a scalable fashion and can help

identify unknown query samples using (meta-)barcoding, skimming, or metagenomic data.

Maximum likelihood (ML) methods of phylogenetic placement exist, but these methods are not

scalable to reference trees with many thousands of leaves, limiting their ability to enjoy benefits

of dense taxon sampling in modern reference libraries. They also rely on assembled sequences for

the reference set and aligned sequences for the query. Thus, ML methods cannot analyze datasets

where the reference consists of unassembled reads, a scenario relevant to emerging applications

of genome-skimming for sample identification. We introduce APPLES, a distance-based method

for phylogenetic placement. Compared to ML, APPLES is an order of magnitude faster and

more memory efficient, and unlike ML, it is able to place on large backbone trees (tested for up

to 200,000 leaves). We show that using dense references improves accuracy substantially so that

APPLES on dense trees is more accurate than ML on sparser trees, where it can run. Finally,

APPLES can accurately identify samples without assembled reference or aligned queries using

kmer-based distances, a scenario that ML cannot handle. APPLES is available publically at
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github.com/balabanmetin/apples.

3.1 Introduction

Phylogenetic placement is the problem of finding the optimal position for a new query

species on an existing backbone (or, reference) tree. Placement, as opposed to a de novo

reconstruction of the full phylogeny, has two advantages. In some applications (discussed

below), placement is all that is needed, and in terms of accuracy, it is as good as, and even better

than [101], de novo reconstruction. Moreover, placement can be more scalable than de novo

reconstruction when dealing with very large trees.

Earlier research on placement was motivated by scalability. For example, placement

is used in greedy algorithms that start with an empty tree and add sequences sequentially

[49, 65]. Each placement requires polynomial (often linear) time with respect to the size of the

backbone, and thus, these greedy algorithms are scalable (often requiring quadratic time). Despite

computational challenges [239], there has been much progress in the de novo reconstruction of

ultra-large trees (e.g., thousands to millions of sequences) using both maximum likelihood (ML)

[173, 187] and the distance-based [123] approaches. However, these large-scale reconstructions

require significant resources. As new sequences continually become available, placement can be

used to update existing trees without repeating previous computations on full dataset.

More recently, placement has found a new application in sample identification: given one

or more query sequences of unknown origins, detect the identity of the (set of) organism(s) that

could have generated that sequence. These identifications can be made easily using sequence

matching tools such as BLAST [4] when the query either exactly matches or is very close to

a sequence in the reference library. However, when the sequence is novel (i.e., has lowered

similarity to known sequences in the reference), this closest match approach is not sufficiently

accurate [111], leading some researchers to adopt a phylogenetic approach [174, 226]. Sam-

ple identification is essential to the study of mixed environmental samples, especially of the
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microbiome, both using 16S profiling [75, 116] and metagenomics [237]. It is also relevant to

barcoding [85] and meta-barcoding [30, 38] and quantification of biodiversity [67]. Driven by

applications to microbiome profiling, placement tools like pplacer [153] and EPA(-ng) [17, 21]

have been developed. Researchers have also developed methods for aligning query sequence

[20, 164] and for downstream steps [152, 221]. These publications have made a strong case

that for sample identification, placement is sufficient (i.e., de novo is not needed). Moreover,

some studies [101] have shown that when dealing with fragmentary reads typically found in

microbiome samples, placement can be more accurate than de novo construction and can lead to

improved associations of microbiome with clinical information.

Existing phylogenetic placement methods have focused on the ML inference of the best

placement – a successful approach, which nevertheless, suffers from two shortcomings. On the

one hand, ML can only be applied when the reference species are assembled into full-length

sequences (e.g., an entire gene) and are aligned; however, in new applications that we will

describe, assembling (and hence aligning) the reference set is not possible. On the other hand,

ML, while somewhat scalable, is still computationally demanding, especially in memory usage,

and cannot place on backbone trees with many thousands of leaves. As the density of reference

substantially impacts the accuracy and resolution of placement, this inability to use ultra-large

trees as backbone also limits accuracy. This limitation has motivated alternative methods using

local sensitive hashing [29] and divide-and-conquer [164].

Assembly-free and alignment-free sample identification using genome-skimming [52]

can also benefit from phylogenetic placement. A genome-skim is a shotgun sample of the

genome sequenced at low coverage (e.g., 1X) – so low that assembling the nuclear genome

is not possible (though, mitochondrial or plastid genomes can often be assembled). Genome-

skimming promises to replace traditional marker-based barcoding of biological samples [39]

but limiting analyses to organelle genome can limit resolution. Moreover, mapping reads to

reference genomes is also possible only for species that have been assembled, which is a small

fraction of the biodiversity on Earth. Sarmashghi et al. [209] have recently shown that using
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shared k-mers, the distance between two unassembled genome-skims with low coverage can

be accurately estimated. This approach, unlike assembling organelle genomes, uses data from

the entire nuclear genome and hence promises to provide a higher resolution (e.g., at species or

sub-species levels) while keeping the low sequencing cost. However, ML and other methods that

require assembled sequences cannot analyze genome-skims, where both the reference and the

query species are unassembled genome-wide bags of reads.

Distance-based approaches to phylogenetics are well-studied, but no existing tool can

perform distance-based placement of a query sequence on a given backbone. The distance-based

approach promises to solve both shortcomings of ML methods. Distance-based methods are

computationally efficient and do not require assemblies. They only need distances (however

computed). Thus, they can take as input assembly-free estimates of genomic distance estimated

from low coverage genome-skims using Skmer [209] or other alternatives [19, 63, 84, 100,

126, 179, 255]. While alignment-based phylogenetics has been traditionally more accurate

than alignment-free methods when both methods are possible, in these new scenarios, only

alignment-free methods are applicable.

Here, we introduce a new method for distance-based phylogenetic placement called

APPLES (Accurate Phylogenetic Placement using LEast Squares). APPLES uses dynamic

programming to find the optimal distance-based placement of a sequence with running time

and memory usage that scale linearly with the size of the backbone tree. We test APPLES in

simulations and on real data, both for alignment-free and aligned scenarios.

3.2 Description

3.2.1 Background and notations

Let an unrooted tree T = (V,E) be a weighted connected acyclic undirected graph with

leaves denoted by L = {1 · · ·n}. We let T ∗ be the rooting of T on a leaf 1 obtained by directing

all edges away from 1. For node u ∈V , let p(u) denote its parent, c(u) denote its set of children,
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sib(u) denote its siblings, and g(u) denote the set of leaves at or below u (i.e., those that have

u on their path to the root), all with respect to T ∗. Also let l(u) denote the length of the edge

(p(u),u).

The tree T defines an n×n matrix where each entry di j(T ) corresponds to the path length

between leaves i and j. We further generalize this definition so that duv(T ∗) indicates the length

of the undirected path between any two nodes of T ∗ (when clear, we simply write duv). Given

some input data, we can compute a matrix of all pairwise sequence distances ∆, where the

entry δi j indicates the dissimilarity between species i and j. When the sequence distance δi j is

computed using (the correct) phylogenetic model, it will be a noisy but statistically consistent

estimate of the tree distance di j(T ) [66]. Given these “phylogenetically corrected” distances (e.g.

3
4 ln(1− 4

3h) is the corrected hamming distance h under the Jukes-Cantor [105] model), we can

define optimization problems to recover the tree that best fits the distances. A natural choice is

minimizing the (weighted) least square difference between tree and sequence distances:

Q∗(T ) =
n

∑
i=1

n

∑
j=1

wi j(δi j−di j(T ))2 . (3.1)

Here, weights (e.g., wi j) are used to reduce the impact of large distances (expected to have

high variance). A general weighting schema can be defined as wi j = δ
−k
i j for a constant value

k ∈ N. Standard choices of k include k = 0 for the ordinary least squares (OLS) method of

Cavalli-Sforza and Edwards [35], k = 1 due to Beyer et al. [22] (BE), and k = 2 due to itch and

Margoliash [68] (FM).

Finding argminT Q∗(T ) is NP-Complete [47]. However, decades of research has pro-

duced heuristics like neighbor-joining [207], alternative formulations like (balanced) minimum

evolution [35, 49], and several effective tools for solving the problem heuristically (e.g., FastME

by Lefort et al. [123], DAMBE by Xia [251], and Ninja by Wheeler [243]).
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Figure 3.1. Any placement of q can be characterized as a tree P(u,x1,x2), shown here. The
backbone tree T ∗ is an arborescence on leaves L = {1 . . .n}, rooted at leaf 1. Query taxon q
is added on the edge between u and p(u), creating a node t. All placements on this edge are
characterized by x1, the length of the pendant branch, and x2, the distance between t and p(u).

3.2.2 Problem Statement

We let P(u,x1,x2) be the tree obtained by adding a query taxon q on an edge (p(u),u),

creating three edges (t,q), (p(u), t), and (t,u), with lengths x1, x2, and l(u)− x2, respectively

(Fig. 3.1). When clear, we simply write P and note that P induces T both in topology and branch

length. We now define the problem.

• Least Squares Phylogenetic Placement (LSPP):

Input: A backbone tree T on L , a query species q, and a vector ∆q∗ with elements δqi

giving sequence distances between q and every species i ∈L ;

Output: The placement tree P that adds q on T and minimizes

Q(P) =
n

∑
i=1

wqi(δqi−dqi(P))2 (3.2)

3.2.3 Linear Time Algorithm

The number of possible placements of q is 2n−3. Therefore, LSPP can be solved by

simply iterating over all the topologies, optimizing the score for that branch, and returning the
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placement with the minimum least square error. A naive algorithm can accomplish this in Θ(n2)

running time by optimizing Eq. 3.2 for each of the 2n−3 branches. However, using dynamic

programming, the optimal solution can be found in linear time.

Theorem 3. The LSPP problem can be solved with Θ(n) running time and memory.

The proof (Appendix B.1) follows easily from three lemmas that we next state. The

algorithm starts with precomputing a fixed-size set of values for each nodes. For any node u and

exponents a∈Z and b∈N+, let S(a,b,u)=∑i∈g(u) δ a
qid

b
ui and for b= 0, let S(a,0,u)= S′(a,u)=

∑i∈g(u) δ a
qi. Note that S′(0,u) = |g(u)|. Similarly, for u∈V \{1}, let R(a,b,u) = ∑i/∈g(u) δ a

qid
b
p(u)i

for b > 0 and let R(a,0,u) = R′(a,u) = ∑i/∈g(u) δ a
qi.

Lemma 1. The set of all S(a,b,u) and R(a,b,u) values can be precomputed in Θ(n) time with

two tree traversals using the dynamic programming given by:

S(a,b,u) =



δ a
qu u ∈L \{1} & b = 0

0 u ∈L \{1} & b ̸= 0

b
∑
j=0

∑
v∈c(u)

l(v) j
(b

j

)
S(a,b− j,v) u /∈L \{1}

(3.3)

R(a,b,u) =



δ a
q1 u = 1′ = c(1) & b = 0

0 u = 1′ = c(1) & b ̸= 0

b
∑
j=0

(
l(p(u)) j

(b
j

)
R(a,b− j, p(u)) + ∑

v∈sib(u)
l(v) j

(b
j

)
S(a,b− j,v)

)
u /∈ {1,1′}

(3.4)

Lemma 2. Equation 3.2 can be rearranged (Appendix Eq. B.2) such that computing Q(P) for a

given P = P(u,x1,x2) requires a constant time computation using S(a,b,u) and R(a,b,u) values

for −k ≤ a≤ 2− k and 0≤ b≤ 2.

Thus, after a linear time precomputation, we can compute the error for any given place-

ment in constant time. It remains to show that for each node, the optimal placement on the

branch above it (e.g., x1 and x2) can be computed in constant time.
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Lemma 3. For a fixed node u ∈V \{1}, if (x̂1, x̂2) = argminx1,x2
Q(P(u,x1,x2)), then

R′(−k,u)+S′(−k,u) R′(−k,u)−S′(−k,u)

R′(−k,u)−S′(−k,u) R′(−k,u)+S′(−k,u)

 ·
x̂1

x̂2

=

R′(1− k,u)+S′(1− k,u)− l(u)S′(−k,u)−R(−k,1,u)−S(−k,1,u)

R′(1− k,u)−S′(1− k,u)+ l(u)S′(−k,u)−R(−k,1,u)+S(−k,1,u)


(3.5)

and hence x̂1, x̂2 can be computed in constant time.

Non-negative branch lengths.

The solution to Equation 3.5 does not necessarily conform to constraints 0 ≤ x1 and

0≤ x2 ≤ l(u). However, the following lemma (proof in Appendix B) allows us to easily impose

the constraints by choosing optimal boundary points when unrestricted solutions fall outside

boundaries.

Lemma 4. With respect to variables x1 and x2, Q(P(u,x1,x2)) is a convex function.

Minimum evolution

An alternative to directly using MLSE (Eq. 3.1) is the minimum evolution (ME) principle

[35, 205]. Our algorithm can also optimize the ME criterion: after computing x1 and x2 by

optimizing MLSE for each node u, we choose the placement with the minimum total branch

length. This is equivalent to using argminu x1, since the value of x2 does not contribute to total

branch length. Other solutions for ME placement exist [49], a topic we return to in the Discussion

section.

Hybrid.

We have observed cases where ME is correct more often than MLSE, but when it is

wrong, unlike MLSE, it has a relatively high error. This observation led us to design a hybrid

approach. After computing x1 and x2 for all branches, we first select the top log2(n) edges with
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minimum Q(P(u,x1,x2)) values (this requires Θ(n log logn) time). Among this set of edges, we

place the query on the edge satisfying the ME criteria.

3.2.4 APPLES Software

We implemented the algorithm described above in a software called APPLES. APPLES

uses Treeswift [169] for phylogenetic operations, and it generates the output in the jplace

format [154]. APPLES can compute distances using vectorized numpy [178] operations but can

also use input distance matrices (e.g. generated using FastME or Skmer). When computing

distances internally, APPLES ignores positions that have a gap in at least one of the two sequences.

By default, APPLES uses the JC69 model to compute phylogenetic distances [105] without Γ

model of rate variation. It computes distances independently for all pairs, and not simultaneously

as suggested by Tamura et al. [229].

By default, APPLES uses FM weighting, the MLSE selection criterion, enforcement of

non-negative branch lengths, and JC69 distances. When not specified otherwise, these default

parameters are used (the default setting is referred to as APPLES∗).

3.3 Benchmark

3.3.1 Datasets

We benchmark accuracy and scalability of APPLES in two settings: sample identification

using assembly-free genome-skims on real biological data and placement using aligned sequences

on simulated data.

Real genome-skim datasets

Columbicola genome-skims.

We use a set of 61 genome-skims by Boyd et al. [27], including 45 known lice species

(some represented multiple times) and 7 undescribed species. We generate lower coverage skims

of 0.1Gb or 0.5Gb by randomly subsampling the reads from the sequence read archives (SRA)
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provided by the original publication (NCBI BioProject PRJNA296666). We use BBTools [31] to

filter subsampled reads for adapters and contaminants and remove duplicated reads. Since this

dataset is not assembled, the coverage of the genome-skims is unknown; Skmer estimates the

coverage to be between 0.2X and 1X for 0.1Gb samples (and 5 times that coverage with 0.5Gb).

Anopheles and Drosophila datasets.

We also use two insect datasets used by Sarmashghi et al. [209]: a dataset of 22 Anopheles

and a dataset of 21 Drosophila genomes (Appendix B), both obtained from InsectBase [256].

For both datasets, genome-skims with 0.1Gb and 0.5Gb sequence were generated from the

assemblies using the short-read simulator tool ART, with the read length l = 100 and default

error profile. Since species have different genome sizes, with 0.1Gb data, our subsampled

genome-skims range in coverage from 0.35X to 1X for Anopheles and from 0.4X to 0.8X for

Drosophila.

More recently, Miller et al. [161] sequenced several Drosophila genomes, including

12 species shared with the InsectBase dataset. Sarmashghi et al. [209] subsampled the SRAs

from this second project to 0.1Gb or 0.5Gb and, after filtering contaminants, obtained artificial

genome-skims. We can use these genome-skims as query and the genome-skims from the

InsectBase dataset as the backbone. Since the reference and query come from two projects,

the query genome-skim can have a non-zero distance to the same species in the reference set,

providing a realistic test of sample identification applications.

Backbone trees.

For all genome-skimming datasets, we inferred the backbone tree using FastME from the

JC69 distance matrix computed from genome-skims using Skmer.

Simulated alignment-based datasets

GTR.

We use a 101-taxon dataset available from Mirarab et al. [163]. Sequences were simulated

under the General Time Reversible (GTR) plus the Γ model of site rate heterogeneity using
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INDELible [69] on gene trees that were simulated using SimPhy [149] under the coalescent

model evolving on species trees generated under the Yule model. Note that the same model is

used for inference under ML placement methods (i.e., no model misspecification). We took all

20 replicates of this dataset with mutation rates between 5×10−8 and 2×10−7, and for each

replicate, we selected five genes at random among many candidates that satisfy the condition

that RF distance between the true tree and the tree inferred from the sequence is at most 20%.

Thus, we have a total of 100 backbone trees. This dataset is the simplest test case where model

violation or mis-alignment is not a concern.

RNASim.

Guo et al. [80] designed a complex model of RNA evolution that does not make usual

i.i.d assumptions of sequence evolution. Instead, it uses models of energy of the secondary

structure to simulate RNA evolution by a mutation-selection population genetics model. This

model is based on an inhomogeneous stochastic process without a global substitution matrix.

The model complexity of RNASim allows us to test both ML and APPLES under a substantially

misspecified model. An RNASim dataset of one million sequences (with E.coli SSU rRNA used

as the root), which consists of a multiple sequence alignment and true phylogeny, is available

from Mirarab et al. [167]. We created several subsets of the full RNASim dataset.

i) Heterogeneous: We first randomly subsampled the full dataset to create 10 datasets of

size 10,000. Then, we chose the largest clade of size at most 250 from each replicate; this gives

us 10 backbone trees of mean size 249.

ii) Varied diameter: To evaluate the impact of the evolutionary diameter (i.e., the highest

distance between any two leaves in the backbone), we also created datasets with low, medium,

and high diameters. We sampled the largest five clades of size at most 250 from each of the 10

replicates used for the heterogeneous dataset. Among these 50 clades, we picked the bottom,

middle, and top five clades in diameter, which had diameter in [0.3,0.4] (mean: 0.36), [0.5,0.52]

(mean: 0.51), and [0.65,1.07] (mean: 0.82), respectively.
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iii) Varied size (RNASim-VS): We randomly subsampled the full dataset to create 5

replicates of datasets of size (n): 500, 1000, 5000, 10000, 50000, and 100000, and 1 replicate

(due to size) of size 200000. For replicates that contain at least 5000 species, we removed sites

that contain gaps in 95% or more of the sequences in the alignment.

iv) Query scalability (RNASim-QS): We first randomly subsampled the full dataset to

create a dataset of size 500. Then for k =1 to 49,152 queries (choosing all k = 3×2i,0≤ i≤ 14)

we created 5 replicates of k query sequences, again randomly subsampling from the full alignment

with one million sequences.

v) Alignment Error (RNASim-AE): Mirarab et al. [167] used PASTA to estimate align-

ments on subsets of the RNASim dataset with up to 200,000 sequences. We use their reported

alignment with 200,000 or 10,000 sequences (taking only replicate 1 in this case).

Backbone Alignment and Tree

Backbone alignments.

We present results both based on true backbone alignments (for all datasets) and PASTA-

estimated alignments (for large datasets). The true alignments are known from the simulations.

To test the accuracy in the presence of alignment error, we use the available PASTA backbone

alignment for RNASim-AE dataset. The alignments have considerable error as measured by

FastSP [162]: 11.5% and 12.7% SPFN, 10.9% and 11.7% SPFP, and only 165 and 848 fully

correctly aligned sites (2.2% and 6.4%), respectively for 10,000 and 200,000 sequences. As

before, here, we remove sites with more than 95% gaps in the estimated alignments.

Backbone trees.

For true alignments, we ran RAxML [220] using GTRGAMMA model for all datasets to

estimate the topology of the backbone tree except for RNASim-AE and RNASim-VS dataset,

where due to the size, we used FastTree-2 [187]. When estimated alignment is used (RNASim-

AE dataset), we used the co-estimated tree output by PASTA, which is itself computed using

FastTree-2. We always re-estimated branch lengths and model parameters on that fixed topology
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using RAxML (switching to GTRCAT for n ≥ 10,000) before running ML methods. For

APPLES, we re-estimated branch lengths using FastTree-2 under the JC69 model to match the

model used for estimating distances.

Alignment of queries.

For analyses with true backbone alignment, we use the true alignment of the queries to

the backbone. In analyses with estimated backbone alignments, we align the query sequences to

the estimated backbone alignment using SEPP [164], which is a divide-and-conquer method that

internally uses HMMER [56, 57], with alignment subset size set to 10% of the full set (default

setting). We use the resulting extended alignment, after masking unaligned sites, to run both

APPLES and EPA-ng, in both cases, placing on the full backbone tree. We also report results

using default SEPP (which runs pplacer internally); however, here, due to limitations of pplacer,

we use the default setting of SEPP, which set the placement subset size to 10% of the full set.

3.3.2 Methods Compared

For aligned data, we compare APPLES to two ML methods: pplacer [153] and EPA-ng

[17]. Matsen et al. found pplacer to be substantially faster than EPA [20] while their accuracy

was similar. EPA-ng improves the scalability of EPA; thus, we compare to EPA-ng in analyses

that concerned scalability (e.g., RNASim-VS). We run pplacer and EPA-ng in their default

mode using GTR+Γ model and use their best hit (ML placement). We also compare with a

simple method referred to as CLOSEST that places the query as the sister to the species with the

minimum distance to it. CLOSEST is meant to emulate the use of BLAST (if it could be used).

For the assembly-free setting, existing phylogenetic placement methods cannot be used, and we

compared only against CLOSEST.

To run APPLES on assembly-free datasets, we first compute genomic distances using

Skmer [209]. We then correct these distances using the JC69 model, without Γ model of rate

variation. For APPLES on alignment-based analyses, we let APPLES compute distances for
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JC69. We also use FastME (see Supplementary methods) to compute distances according to

four more models: JC69+Γ [104], the six-parameter TN93 [228] model, TN93+Γ [238], and the

12-parameter general Markov model [141]. Pairing Gamma with GTR is theoretically possible in

the absence of noise; however, the method can run into problems on real data [238]. Thus, we do

not include a GTR model directly. Instead, we use the log-det approach that can handle the most

general (12-parameter) Markov model [141]; however, log-det cannot account for rate across

sites heterogeneity [238]. In JC69+Γ and TN93+Γ models, we used the α parameter computed

by RAxML [220] run on the backbone alignment and given the backbone tree.

3.3.3 Evaluation Procedure

To evaluate the accuracy, we use a leave-one-out strategy. We remove each leaf i from

the backbone tree T and place it back on this T \ i tree to obtain the placement tree P. On the

RNAsim-VS dataset, due to its large size, we only removed and added back 200 randomly chosen

leaves per replicate. On the RNAsim-AE dataset, we remove 200 queries from the backbone

at the same time (leave-many-out). Finally, for RNAsim-QS, we place k queries in one run,

allowing the methods to benefit from optimizations designed for multiple queries, but note that

queries are not selected from the backbone tree but are instead selected from the full dataset. In

all cases, placement of queries is with respect to the backbone and not other queries.

Delta error.

We measure the accuracy of a placement tree P of a single query q on a backbone tree T

on leafset L with respect to the true tree T ∗ on L ∪{q} using delta error:

∆e(P) = |B(T ∗)\B(P)|− |B(T ∗ ↾L )\B(T )| . (3.6)

where B(.) is the set of bipartitions of a tree and T ∗ ↾L is the true tree restricted to L . Note that

∆e(P)≥ 0 because adding q cannot decrease the number of missing branches in T . We report

delta error averaged over all queries (denoted as ∆e). Backbone tree is estimated from the same
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Table 3.1. Assembly-free placement of genome-skims. We show the percentage of placements
into optimal position (those that do not increase ∆e), average delta error (∆e), and maximum
delta error (emax) for APPLES, assignment to the CLOSEST species, and the placement to the
position in the backbone (DE-NOVO) over the 61 (a), 22 (b), and 21 (c) placements. Results
are shown for genome skims with 0.1Gbp of reads. Delta error is the increase in the missing
branches between the true tree (or the gold standard for biological data) and the backbone tree
after placing each query.

(a) Columbicola (b) Anopheles (c) Drosophila

% ∆e emax % ∆e emax % ∆e emax

APPLES∗ 97 0.03 1 95 0.05 1 71 0.29 1
APPLES-ME 84 0.28 5 95 0.05 1 67 0.42 2

APPLES-HYBRID 87 0.16 2 95 0.05 1 67 0.33 1
CLOSEST 54 1.15 7 91 0.09 1 57 0.62 3
DE-NOVO 98 0.02 1 95 0.05 1 71 0.29 1

data used in distance calculation, whereas true tree is either the ground truth or the gold standard

that approximates the most to the truth. In leave-one-out experiments, placing q to the same

location as the backbone before leaving it out can still have a non-zero delta error because the

backbone tree is not the true tree. We refer to the placement of a leaf into its position in the

backbone tree as the de novo placement. In leave-many-out experiments, we measure delta error

of each query separately (not the delta error of the combination of all queries). On biological

data, where the true tree is unknown, we instead use a published phylogenetic tree as the gold

standard (Fig. 3.6). For Drosophila and Anopheles, we use the tree available from the Open Tree

Of Life [90] and for Columbicola, we use the ML concatenation tree published by Boyd et al..

3.4 Benchmark Results

3.4.1 Assembly-free Placement of Genome-skims

On our three biological genome-skim datasets, APPLES∗ successfully places the queries

on the optimal position in most cases (97%, 95%, and 71% for Columbicola, Anopheles, and

Drosophila, respectively) and is never off from the optimal position by more than one branch.

Other versions of APPLES are less accurate than APPLES∗; e.g., APPLES with ME can have
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up to five wrong branches (Table 3.1). On genome-skims, where assembly and alignment are

not possible, existing placement tools cannot be used, and the only alternative is the CLOSEST

method (emulating BLAST if assembly was possible). CLOSEST finds the optimal placement

only in 54% and 57% of times for Columbicola and Drosophila; moreover, it can be off from the

best placement by up to seven branches for the Columbicola dataset. On the Anopheles dataset,

where the gold standard tree is unresolved (Fig. 3.6), all methods perform similarly.

APPLES∗ is less accurate on the Drosophila dataset than other datasets. However, here,

simply placing each query on its position in the backbone tree would lead to identical results

(Table 3.1). Thus, placements by APPLES∗ are as good as the de novo construction, meaning that

errors of APPLES∗ are entirely due to the differences between our backbone tree and the gold

standard tree. Moreover, these errors are not due to low coverage; increasing the genome-skim

size 5x (to 0.5Gb) does not decrease error (Appendix Table B.4).

On Drosophila dataset, we next tested a more realistic sample identification scenario using

the 12 genome-skims from the separate study (and thus, non-zero distance to the corresponding

species in the backbone tree). As desired, APPLES∗ places all of 12 queries from the second

study as sister to the corresponding species in the reference dataset.

3.4.2 Alignment-based Placement

We first compare the accuracy and scalability of APPLES∗ to ML methods and then

compare various settings of APPLES. For ML, we use pplacer (shown everywhere) and EPA-ng

(shown only when we study scalability and work on large backbones).

Comparison to Maximum Likelihood (ML) without Alignment Error

GTR dataset.

On this dataset, where it faces no model misspecification, pplacer has high accuracy. It

finds the best placement in 84% of cases and is off by one edge in 15% (Fig. 3.2a); its mean delta

error (∆e) is only 0.17 edges. APPLES∗ is also accurate, finding the best placement in 78% of

cases and resulting in the mean ∆e =0.28 edges. Thus, even though pplacer uses ML and faces
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Figure 3.2. Accuracy on simulated data. We show empirical cumulative distribution of the
delta error, defined as the increase in the number of missing branches in the tree compared to the
true tree after placement. We compare pplacer (dotted), CLOSEST match (dashed), and APPLES
with FM weighting and JC69 distances and MLSE (APPLES*), ME, or Hybrid optimization. (a)
GTR dataset. (b) RNASim-Heterogeneous. (c) RNASim-varied diameter, shown in boxes: low,
medium (mid), or high. Distributions are over 10,000 (a), 2450 (b), and 3675 (c) points.

no model misspecification and APPLES∗ uses distances based on a simpler model, the accuracy

of the two methods is within 0.1 edges on average. In contrast, CLOSEST has poor accuracy

and is correct only 50% of the times, with the mean ∆e of 1.0 edge.

Model misspecification.

On the small RNASim data with subsampled clades of ≈ 250 species), both APPLES∗

and pplacer face model misspecification. Here, the accuracy of APPLES∗ is very close to ML

using pplacer. On the heterogeneous subset (Fig. 3.2b and Table 3.2), pplacer and APPLES∗ find

the best placement in 88% and 85% of cases and have a mean delta error of 0.13 and 0.17 edges,

respectively. Both methods are much more accurate than CLOSEST, which has a delta error of

0.87 edges on average.
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Table 3.2. The delta error for APPLES∗, CLOSEST match, and pplacer on the RNASim-varied
diameter dataset (low, medium, or high) and the RNA-heterogeneous dataset. Measurements are
shown over 1250 placements for each diameter size category, corresponding to 5 backbone trees
and 250 placements per replicate.

Low Medium High Heterogeneous

% ∆e emax % ∆e emax % ∆e emax % ∆e emax

APPLES∗ 86 0.15 2 85 0.18 5 84 0.18 3 85 0.17 5
CLOSEST 59 0.88 13 60 0.88 13 60 0.85 14 60 0.87 14

pplacer 88 0.13 2 89 0.11 3 87 0.13 3 88 0.13 3

Table 3.3. Percentage of correct placements (shown as %) and the delta error (∆e) on the
RNASim datasets with various backbone size (n). % and ∆e is over 1000 placements (except
n = 200,000, which is over 200 placements). Running pplacer and EPA-ng was not possible
(n.p) for trees with at least 10,000 leaves and failed in some cases (number of fails shown) for
5,000 leaves.

n = 500 n = 1,000 n = 5,000 n = 10000 n = 100,000 n = 200,000

% ∆e % ∆e % ∆e % ∆e % ∆e % ∆e

APPLES-2 74 0.33 76 0.31 78 0.35 83 0.25 89 0.13 92 0.11
APPLES∗ 75 0.32 71 0.43 77 0.37 79 0.33 84 0.25 87 0.25
CLOSEST 52 1.16 53 1.18 54 1.15 59 0.90 61 0.69 63 0.70

EPA-ng 73 0.33 73 0.31 78 0.24 79 0.22 n.p n.p n.p n.p
pplacer 80 0.23 81 0.20 n.p n.p n.p n.p n.p n.p n.p n.p

Impact of diameter.

When we control the tree diameter, APPLES∗ and pplacer remain very close in accuracy

(Fig. 3.2c). The changes in error are small and not monotonic as the diameters change (Table 3.2).

The accuracies of the two methods at low and high diameters are similar. The two methods are

most divergent in the medium diameter case, where pplacer has its lowest error (∆e = 0.11) and

APPLES∗ has its highest error (∆e = 0.18).

To summarize results on small RNASim dataset with model misspecification, although

APPLES∗ uses a parameter-free model, its accuracy is extremely close to ML using pplacer with

the GTR+Γ model.

Impact of taxon sampling.

The real advantage of APPLES∗ over pplacer becomes clear for placing on larger back-

bone trees (Fig. 3.3 and Table 3.3). For backbone sizes of 500 and 1000, pplacer continues to
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Figure 3.3. Results on RNASim-VS. (a) Placement accuracy with taxon sampling ranging from
500 to 200,000. (b) The empirical cumulative distribution of the delta error, shown for 500≤ n≤
10000 where EPA-ng can run. (c,d) Running time and peak memory usage of placement methods
for a single placement. Lines are fitted in the log-log scale and their slope (indicated on the figure)
empirically estimates the polynomial degree of the asymptotic growth (t = na⇒ log t = a logn).
APPLES lines are fitted to ≥ 5,000 points because the first two values are small and irrelevant to
asymptotic behavior. All calculations are on 8-core, 2.6GHz Intel Xeon CPUs (Sandy Bridge)
with 64GB of memory, with each query placed independently and given 1 CPU core and the
entire memory.
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be slightly more accurate than APPLES∗ (mean ∆e of pplacer is better than APPLES∗ by 0.09

and 0.23 edges, respectively). However, with backbones of 5000 leaves, pplacer fails to run

on 449/1000 cases, producing infinity likelihood (perhaps due to numerical issues) and has 41

times higher error than APPLES∗ on the rest (Fig. 3.7). Since pplacer could not scale to 5,000

leaves, we also test the recent method, EPA-ng [17]. Given the 64GB of memory available on our

machine, EPA-ng is able to run on datasets with up to 10,000 leaves. EPA-ng finds the correct

placement less often than pplacer but is close to APPLES∗ (Fig. 3.3a). However, when it has

error, it tends to have a somewhat lower distance to the correct placement, making its mean error

slightly better than APPLES∗ (Fig. 3.3b and Table 3.3).

For backbone trees with more than 10,000 leaves, pplacer and EPA-ng are not able to

run given computational resources at hand, and CLOSEST is not very accurate (finding the best

placement in only 59% of cases). However, APPLES∗ continues to be accurate for all backbone

sizes. As the backbone size increases, the taxon sampling of the tree is improving (recall that

these trees are all random subsets of the same tree). With denser backbone trees, APPLES∗ has

increased accuracy despite placing on larger trees (Fig. 3.3a, Table 3.3). For example, using a

backbone tree of 200,000 leaves, APPLES∗ is able to find the best placement of query sequences

in 87% of cases, which is better than the accuracy of either APPLES∗ or ML tools on any

backbone size. Thus, an increased taxon sampling helps accuracy, but ML tools are limited in

the size of the tree they can handle given relatively powerful machines (e.g., 64GB of memory).

Running time and memory.

As the backbone size increases, the running times of pplacer and APPLES grow close

to linearly with the size of the backbone tree, n, whereas running time of EPA-ng seems to

grow with n1.3 (Fig. 3.3c). APPLES is on average 13 times faster than pplacer and 7.5 times

faster than EPA-ng on backbone trees with 1000 leaves, and is 41 times faster than EPA-ng with

10,000-taxon backbones.

The memory consumption of all methods increases close to linearly as n increases, but
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Figure 3.4. Scalability with respect to the number of queries. We show wall-clock running
time with respect to increased numbers of queries (k) in one execution given 28 CPU cores and 28
threads on a Intel Xeon E5 CPU with 64 GB of memory. We fit a line to running times in log-log
scale only for k ≥ 6144 because otherwise, the preprocessing time would distort estimates (note:
t = na +b ̸⇒ log t = a logn+ ε except in approximation if b≪ t).

APPLES requires dramatically less memory (Fig. 3.3d). For example, for placing on a backbone

with 10,000 leaves, EPA-ng requires 51GB of memory, whereas APPLES requires only 0.4GB.

APPLES easily scales to a backbone of 200,000 sequences, running in only 1 minute and using

6GB of memory per query (including all precomputations in the dynamic programming). These

numbers also include the time and memory needed to compute the distance between the query

sequence and all the backbone sequences.

We next test the scalability of APPLES∗ and EPA-ng with respect to the number of

queries, k, in one run given 28 CPU cores and 28 threads on RNASim-QS dataset. Both methods

spend time on preprocessing steps that will be amortized over a large number of queries. The

running time of APPLES∗, as expected, increases linearly with k > 200 and grow more slowly

for k < 200 (due to the preprocessing) (Fig. 3.4). The patterns of running time of EPA-ng are

surprising. Increasing k from 1 to 768 decreases the running time instead of increasing it. While

the exact reasons for the reductions are not clear to us, we note that EPA-ng developers have

taken great care to implement various optimizations, especially for utilizing multiple cores. Only

with k > 768 we start to see increasing running times for EPA-ng. With k > 3072, EPA-ng
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seems to grow in running with k0.73; however, we suspect further increasing k would increase

the exponent (asymptotic running time cannot theoretically be less than O(k) as all queries need

to be read). Aside from the fluctuation due to small sample size for small k values, the number

of queries do not seem to affect the accuracy for either method as expected since both methods

treat queries independently (Fig. 3.8).

Comparing parameters of APPLES.

Comparing five models of sequence evolution that can be used with APPLES, we see

similar patterns of accuracy across all models despite their varying complexity, ranging from 0 to

12 parameters (Fig. 3.9). Since the JC69 model is parameter-free and results in similar accuracy to

others, we opted to use it as the default. Next, we ask whether imposing the constraint to disallow

negative branch lengths improves the accuracy. The answer depends on the optimization strategy.

Forcing non-negative lengths marginally increases the accuracy for MLSE but dramatically

reduces the accuracy for ME (Fig. 3.10ab). Thus, we always impose non-negative constraints

on MLSE but never for ME. Likewise, our Hybrid method includes the constraint for the first

MLSE step but not for the following ME step (Fig. 3.10c).

The next parameter to choose is the weighting scheme. Among the three methods

available in APPLES, the best accuracy belongs to the FM scheme closely followed by the BE

(Fig. 3.11). The OLS scheme, which does not penalize long distances, performs substantially

worse than FM and BE. Thus, the most aggressive form of weighting (FM) results in the best

accuracy. Fixing the weighting scheme to FM and comparing the three optimization strategies

(MLSE, ME, and Hybrid), the MLSE approach has the best accuracy (Fig. 3.2), finding the

correct placement 84% of the time (mean error: 0.18), and ME has the lowest accuracy, finding

the best placement in only 67% of cases (mean error: 0.70). The Hybrid approach is between

the two (mean error: 0.34) and fails to outperform MLSE on this dataset. However, when we

restrict the RNASim backbone trees to only 20 leaves, we observe that Hybrid can have the best

accuracy (Fig. 3.12).
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Figure 3.5. Impact of alignment error on placement accuracy. Left and right panels show
placement accuracy and mean delta error of leave-many-out experiments for backbone size of
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3.4.3 Comparison to ML with Alignment Error

We next test the impact of alignment errors. On RNASim-AE dataset with n = 200,000

sequences, we observe 80% placement accuracy using SEPP+APPLES∗ (Fig. 3.5), which is

a statistically significant (p = 0.005 according to McNemar’s test) but relatively modest 7%

reduction compared to placing using the true alignments. On the n= 10,000 backbone, placement

accuracy drops from 83% on the true alignment to 80% using SEPP+APPLES∗, and from 81%

to 78% using SEPP+EPA-ng; neither change is statistically significant (p = 0.14 and p = 0.08,

respectively). Despite the relatively small drops on placement accuracy, the impact of alignment

error on delta error can be more pronounced (Fig. 3.5). The mean delta error goes up from 0.33

to 0.48 for n = 10,000, which is statistically significant (p = 0.018 according to a one-sided

paired t-test). For n = 200,000, the error also increases significantly (p = 0.004) from 0.25 to

0.55 edges.

Recall that SEPP+APPLES∗ eliminates the need for decomposing the backbone tree

into smaller placement subtrees, as default SEPP must do to deal with memory requirements

of pplacer (which it internally uses). Comparison of default SEPP and SEPP+APPLES∗ shows

that incorporating APPLES∗ inside SEPP reduces the mean delta error from 0.65 to 0.48 while

it hurts placement accuracy from 81% to 80%; however, neither change is statistically significant
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(p=0.15, one-sided paired t-test, and p = 0.66, McNemar’s test, respectively). To summarize,

highly accurate placement is possible even with estimated alignments with backbones of size up

to 200,000 using the divide-and-conquer methods PASTA and SEPP for estimating alignments

of the backbone and query, respectively.

3.5 Discussion

We introduced APPLES: a new method for adding query species onto large backbone trees

using both unassembled genome-skims and aligned data. We now provide further observations

on our results and on distance-based placement.

3.5.1 Further observations on the results

The accuracy of APPLES was very close to ML in most settings where we could run

ML; the accuracy advantages of ML were particularly small for the RNASim dataset where both

methods face model misspecification. As expected by the substantial evidence from the literature

[89, 266], improved taxon sampling increased the accuracy of placement. Thus, overall, the best

accuracy on RNASim dataset was obtained by APPLES∗ run on the full reference dataset, further

motivating its use when large backbones are available. Despite many strides made in terms of

scalability by the new method EPA-ng, ML methods still have to restrict their backbone to at

most several thousand species given reasonable amounts of memory (up to 64GB in our case).

We also note that it is possible to follow the APPLES∗ placement with a round of ML placement

on smaller trees, but the small differences in accuracy of ML and APPLES∗ on smaller trees did

not give us compelling reasons to try such hybrid approaches.

APPLES was an order of magnitude or more faster and less memory-hungry than ML

tools (pplacer and EPA-ng) for single query runs. However, for placing large numbers of queries

(e.g., as found in metagenomic datasets) on a relatively small sized backbone (n = 500), EPA-ng

had an advantage since it is specifically designed to tackle scalability of multiple queries.

Advantages in memory consumption and scalability to large backbone trees remain for
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APPLES∗ regardless of the number of queries. The python APPLES code is not optimized nearly

as much as EPA-ng and can also benefit from some of the heuristic techniques used by EPA-ng.

We plan for the future versions of the code to focus on improved scalability as the number of

queries increases.

By incorporating APPLES inside SEPP, we were able to create a method that can do both

alignment and placement on very large backbones with reasonable computational requirements

and high accuracy. We observed relatively small reductions in accuracy as a result of alignment

error, a pattern that we find remarkable given the size of the tree and the amount of error in the

estimated alignment. The default SEPP method deals with large backbone trees by dividing the

backbone tree into “placement” subtrees and choosing which subtree to place on using bit-scores

produced by HMMs trained on subsets of sequences. The original paper had shown that the best

accuracy is obtained with the largest possible backbone subtrees given computational limitations.

APPLES now enables us to eliminate the need for decomposition into placement subsets, and in

doing so, reduces placement error.

In our analyses, we observed no advantage in using models more complex than JC69+Γ

for distance calculation inside APPLES. However, these results may be due to our pairwise

estimation of model parameters (e.g., base compositions). More complex models may perform

better if we instead estimate model parameters on the backbone alignment/tree and reuse the

parameters for queries (or simultaneously among all queries and the reference sequences).

Simultaneous estimation of distances has many advantages over using independent distances for

the de novo case [229, 250]; these results give us hope that using simultaneous distances inside

APPLES can further improve its accuracy.

Branch lengths of our backbone trees were computed using the same distance model

as the one used for computing the distance of the query to backbone species. Using consistent

models for the query and for the backbone branch lengths is essential for obtaining good accuracy

(see Fig. 3.13 for evidence). Thus, in addition to having a large backbone tree at hand, we need

to ensure that branch lengths are computed using the right model. Fortunately, FastTree-2 can
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compute both topologies and branch lengths on large trees in a scalable fashion, without a need

for quadratic time/memory computation of distance matrices [187].

3.5.2 Observations on distance-based placement

Phylogenetic insertion using the ME criterion has been previously studied for the purpose

of creating an algorithm for greedy minimum evolution (GME). Desper and Gascuel [49] have

designed a method that given the tree T can update it to get a tree with n+1 leaves in Θ(n) after

precomputation of a data-structure that gives the average sequence distances between all adjacent

clusters in T . The formulation by Desper and Gascuel has a subtle but consequential difference

from our ME placement. Their algorithm does not compute branch lenghts for inserted sequence

(e.g., x1 and x2). It is able to compute the optimal placement topology without knowing branch

lengths of the backbone tree. Instead, it relies on pairwise distances among backbone sequences

(∆), which are precomputed and saved in the data-structure mentioned before. In the context of

the greedy algorithm for tree inference, in each iteration, the data structure can be updated in

Θ(n), which does not impact the overall running time of the algorithm. However, if we were

to start with a tree of n leaves, computing this structure from scratch would still require Θ(n2).

Thus, computing the placement for a new query would need quadratic time, unless if the Θ(n2)

precomputation is allowed to be amortized over Ω(n) queries. Our formulation, in contrast,

uses branch lengths of the backbone tree (which is assumed fixed) and thus never uses pairwise

distances among the backbone sequences. Thus, using tree distances is what allows us to develop

a linear time algorithm. Finally, we note that in our experimental analyses, we were not able to

test the distance-based algorithm of Desper et al. [49] because it is available only as part of a the

greedy algorithm inside FastME but is not available as a stand-alone feature to place on a given

tree.

We emphasize that our results in assembly-free tests do not advocate for the use of

assembly-free methods when assemblies are available. Moreover, we have no evidence that

assembly-free methods are effective in inferring deep branches of a phylogeny. Instead, our
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results show that assembly-free phylogenetic placement is effective in sample identification

where assembly is not possible due to low coverage. In assembly-free analyses, we used Skmer

to get distances because alternative alignment-free methods of estimating distance generally

either require assemblies [84, 125, 126] or higher coverage than Skmer [19, 179, 255]; however,

combining APPLES with other alignment-free methods can be attempted in future (finding the

best way of computing distances without assemblies was not our focus). Moreover, the Skmer

paper has described a trick that can be used to compute log-det distances from genome-skims.

Future studies should test whether using that trick and using GTR instead of JC69 improves

accuracy.

3.6 Availability

The APPLES software is publicly available in open-source from

github.com/balabanmetin/apples.
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Anopheles arabiensis
Anopheles coluzzii
Anopheles gambiae
Anopheles melas
Anopheles quadriannulatus
Anopheles epiroticus
Anopheles farauti
Anopheles punctulatus
Anopheles dirus
Anopheles nili
Anopheles culicifacies
Anopheles funestus
Anopheles minimus
Anopheles maculatus
Anopheles stephensi
Anopheles albimanus
Anopheles darlingi
Anopheles atroparvus
Anopheles sinensis

Drosophila sechellia
Drosophila simulans
Drosophila melanogaster
Drosophila erecta
Drosophila yakuba
Drosophila eugracilis
Drosophila takahashii
Drosophila suzukii
Drosophila kikkawai
Drosophila ananassae
Drosophila bipectinata
Drosophila persimilis
Drosophila willistoni
Drosophila mojavensis
Drosophila virilis
Drosophila grimshawi

Proechinophthirus fluctus
Anatoecus icterodes
Degeeriella rufa
Craspedonirmus immer
Columbicola fortis
Columbicola triangularis
Columbicola extinctus
Columbicola adamsi ex Patagioenas oenops
Columbicola adamsi ex Patagioenas speciosa
Columbicola macrourae 1
Columbicola macrourae 3
Columbicola macrourae 2
Columbicola macrourae 6
Columbicola taschenbergi
Columbicola exilicornis 3
Columbicola exilicornis 1
Columbicola arnoldi
Columbicola beccarii
Columbicola exilicornis 4
Columbicola rodmani
Columbicola mjoebergi 1
Columbicola mjoebergi 3
Columbicola harbisoni
Columbicola tasmaniensis ex Phaps chalcoptera
Columbicola tasmaniensis ex Phaps elegans
Columbicola mckeani
Columbicola eowilsoni
Columbicola koopae
Columbicola wombeyi
Columbicola masoni 1
Columbicola masoni 1B
Columbicola waltheri
Columbicola gracilicapitis
Columbicola timmermanni
Columbicola altamimiae
Columbicola drowni
Columbicola gymnopeliae
Columbicola passerinae 1
Columbicola passerinae 2
Columbicola veigasimoni
Columbicola wecksteini
Columbicola palmai
Columbicola malenkeae
Columbicola wolffhuegeli
Columbicola claytoni
Columbicola paradoxus
Columbicola tschulyschman
Columbicola fradei
Columbicola smithae
Columbicola clayae
Columbicola elbeli
Columbicola hoogstraali
Columbicola theresae
Colubicola orientalis
Colubicola sp ex Turtur chalcospilos
Columbicola carrikeri
Colubicola sp ex Streptopelia orientalis
Columbicola sp ex Streptopelia semitorquata
Columbicola waiteae
Columbicola guimaraesi 1
Columbicola guimaraesi 3
Columbicola claviformis
Columbicola columbae 1
Columbicola columbae 2
Columbicola bacillus 1
Columbicola bacillus 2

Figure 3.6. The reference biological trees obtained from Open Tree of Life (Drosophila and
Anopheles) and from Boyd et al. (Columbicola).
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Figure 3.10. (a,b) The effect of imposing positivity constraint on error. We show the error
of (a) APPLES-MLSE and (b) APPLES-ME run both with and without enforcement of non-
negative branch lengths on RNASim heterogeneous dataset. Accuracy improves substantially for
MLSE whereas it reduces drastically for ME. (c) The effect of imposing positivity constraint
on accuracy on Hybrid. The HYBRID approach does not benefit from imposing positivity
constraint on its second (ME) stage.
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Figure 3.11. Comparing APPLES versions. For the RNASim dataset (without controlling for
the diameter), we show the delta error (edges) of APPLES run with three options for weighting:
FM (green), BE (red), and OLS (blue), and three options for selection strategy (MLSE, ME, and
Hybrid). For each method, the mean (colored circle) and standard errors (lines; too small to see)
are shown over 2500§ data points, each shown as dots. Some of the methods occasionally have
error above 5 branches, but for better resolution, we cap the y-axis at 5.
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Chapter 4

Fast and Accurate Distance-based Phyloge-
netic Placement using Divide and Conquer

Phylogenetic placement of query samples on an existing phylogeny is increasingly used

in molecular ecology, including sample identification and microbiome environmental sampling.

As the size of available reference trees used in these analyses continues to grow, there is a

growing need for methods that place sequences on ultra-large trees with high accuracy. Distance-

based placement methods have recently emerged as a path to provide such scalability while

allowing flexibility to analyze both assembled and unassembled environmental samples. In

this paper, we introduce a distance-based phylogenetic placement method, APPLES-2, that is

more accurate and scalable than existing distance-based methods and even some of the leading

maximum likelihood methods. This scalability is owed to a divide-and-conquer technique that

limits distance calculation and phylogenetic placement to parts of the tree most relevant to each

query. The increased scalability and accuracy enables us to study the effectiveness of APPLES-2

for placing microbial genomes on a data set of 10,575 microbial species using subsets of 381

marker genes. APPLES-2 has very high accuracy in this setting, placing 97% of query genomes

within three branches of the optimal position in the species tree using 50 marker genes. Our proof

of concept results show that APPLES-2 can quickly place metagenomic scaffolds on ultra-large

backbone trees with high accuracy as long as a scaffold includes tens of marker genes. These
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results pave the path for a more scalable and widespread use of distance-based placement in

various areas of molecular ecology.

4.1 Introduction

Phylogenetic placement of query samples on an existing phylogeny is increasingly used

in diverse downstream applications such as microbiome profiling [8, 43, 101, 151, 152, 174,

233], genome skimming [26], and epidemic tracking [133, 234]. A main attraction of placing

new sequences onto an existing phylogeny is computational expediency: the running time of

phylogenetic placement is a fraction of the time needed for de novo reconstruction and can

grow linearly with the number query samples assuming they are placed independently. To take

advantage of this potential, many methods have been developed using a wide range of algorithmic

techniques [e.g., 10, 17, 29, 103, 135, 153, 164, 191, 221, 261].

A major attraction of phylogenetic placement is that it enables placement of sequences

on very large trees. In applications of placement for microbiome analyses, sequences obtained

from amplicon sequencing or metagenomic samples are placed into a reference phylogeny

composed of known organisms. Depending on the datatype and pipeline, we may decide to place

reads directly [164, 174] or may place marker genes obtained from metagenome-assembled

genomes (MAGs) [8]. Large 16S databases have existed for more than a decade [48, 190] and

genome-wide references trees with ten thousand species and more have been developed recently

[e.g., 182, 263]. Moreover, close to a million microbial genomes are available in the RefSeq

and GenBank databases. Although there is much redundancy among assembled genomes, we

can expect that even larger and more diverse reference trees will be available in the near future.

Development of bigger reference sets has a strong motivation: the density of reference set has

been known to play a crucial role in the accuracy of downstream analyses [156, 172, 185]. Thus,

if downstream methods can handle them, we should ideally use these dense reference data sets.

Despite their promise, two types of challenges emerge when reference data sets increase

71



in size: scalability and accuracy. The issue of scalability is well-understood: placement methods

may not be able to place on ultra-large reference trees with reasonable running time, and equally

important, with reasonable amounts of memory. Moreover, handling ultra large reference trees

can be subject to numerical issues. Less appreciated is the observation that as the data set size

increases, the accuracy of the algorithms may reduce and updated strategies may be needed.

Thus, for placement methods to reach their full potential and take advantage of the available

ultra-large reference trees, both scalability and accuracy of existing methods need to improve.

One recent advance in phylogenetic placement on ultra-large reference trees is the

development of distance-based placement method, implemented in a method called APPLES

[14]. Distance-based placement relies on computing distances between the query and references

and finding the placement most congruent with these distances. In extensive simulation studies,

[14] found APPLES to come very close in accuracy to a leading maximum likelihood method,

pplacer [153], but unlike ML methods, was able to scale to trees with up to 200,000 taxa.

Moreover, APPLES is more useful for studying ecological data because it allows assembly-

free and alignment-free placement of genome skims. Despite the relatively high accuracy and

scalability of APPLES, it has room for improvement. Its memory usage and speed both grow

linearly with the size of the data set, which can start to become slow for references with many

hundreds of thousands of species. A bigger challenge is that computing distances across very

diverse species found in ultra-large trees can lead to low accuracy, an issue that APPLES only

tried to address using weighted distances. A more direct algorithm that accounts for very

diverse sequences in the backbone has the potential to further improve accuracy. Moreover,

APPLES lacked several features that help usability (including handling of amino acids and

building precomputed reference packages). Finally, APPLES has not been tested in the context

of microbiome analyses with large backbone trees where it has the most potential.

In this paper, we introduce APPLES-2, a method that, compared to APPLES, improves

both accuracy and scalability by adding a divide-and-conquer mechanism and several other fea-

tures. We test APPLES-2 on both simulated and empirical data sets representative of microbiome
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analyses. We show that it can place scaffolds from a metagenomic sample onto a large reference

tree of more than 10,000 species both given marker genes found in assembled scaffolds.

4.2 Materials and Methods

4.2.1 APPLES-2 Algorithm

Background

[14] introduced a Least Squares Phylogenetic Placement (LSPP) framework and a method

called APPLES for distance-based placement. In this framework, the input to APPLES is a

reference (a.k.a backbone) phylogenetic tree T with n leaves and a vector of distances δqi

between a query taxon q and every taxon i on T . Although machine-learning based methods

shows substantial promise [103], typically, input distances are obtained by calculating sequence

distances between query and backbone taxa followed by a phylogenetic correction using a

statistically consistent method under a model such as Jukes-Cantor (JC69) [105]. APPLES

introduced a dynamic programming algorithm to find a placement of q that minimizes weighted

least squares error ∑
n
i=1 wqi(δqi−dqi(T ))2 where dqi(T ) represents the path distance from q to

backbone taxon i on T . APPLES, by default, sets wqi = δ
−2
qi following [68] (FM) weighting.

Divide-and-conquer Placement Algorithm

The most consequential change in APPLES-2 is that it adopts a divide-and-conquer

approach to improve both accuracy and scalability using two inter-related techniques. There

is strong evidence in distance-based phylogenetics literature that correction for high variance

occurring in estimation of long distances can result in dramatic improvements in accuracy

[50, 66, 246]. For example, the DCM family of methods that result in fast converging methods

[61, 97, 98] mostly rely on dividing taxa into smaller subsets with lower distances. To take

advantage of this insight, we enable APPLES-2 to use distances that are either smaller than a

threshold d f or among the lowest b distances. Ignoring distances larger than the d f threshold

also gives us an opportunity to avoid computing all n distances so that the running time could
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grow sublinearly with the size of the reference tree. To do so, we divide the backbone tree T into

subsets that are somewhat larger than d f in diameter (maximum pairwise path distance between

any two leaves), choose one representative from each subset, and compute distances of the query

only to these representatives. Then, we compute all distances in the cluster with the least distance

to our query taxon.

More formally, without loss of generality, we assume that for a certain query taxa q,

δq1 ≤ δq2 ≤ δq3 ≤ . . .δqn holds. The first parameter we introduce is d f ∈R≥0 which sets wqi = 0

(i.e. ignore backbone taxon i) when δqi ≥ d f for a query taxon q. In addition, we introduce a

second parameter b ∈ N≥0 which forces to retain the standard weighting (i.e. wqi = δ
−2
qi ) for

backbone taxa 1 ≤ i ≤ b, regardless of δqi. Consequently the new LSPP objective function

becomes ∑
b
i=1 wqi(δqi−dqi(T ))2 +∑

n
i=b+1 1(d f −δqi)wqi(δqi−dqi(T ))2 where 1(x) is the unit

step function: 1(x) = 0 for x < 0 and 1(x) = 1 for x≥ 0. We discuss default values below.

To avoid computing all distances, during preprocessing of the reference set, we cluster

the backbone alignment and tree T using the linear-time TreeCluster algorithm [12] to find the

minimum number of clusters such that the maximum pairwise distance in each cluster is no more

than 1.2×d f . The threshold 1.2 is chosen empirically, and APPLES-2 is robust to this choice

(see Fig. 4.7). Then, we select a representative sequence per partition by computing consensus

sequence among all sequences belonging to the partition. Let P1,P2, . . . ,Pk denote partitions of

leaves of T and C( j) denote centroid sequence of partition Pj. Without loss of generality, we

assume that δqC(1) ≤ δqC(3) ≤ δqC(3) ≤ . . .δqC(k). The distance between q and a backbone taxa

i ∈ Pj is computed only if either δqC( j) ≤ d f or ∑
j−1
i=1 |Pi| < b holds. The time complexity of

distance calculation per query is in the order of O(max(b,m)L) where L is alignment length and

m is number of backbone taxa whose distance to the query is less than or equal to d f .

Since in APPLES-2 a subset of distances are calculated, we have re-designed its dynamic

programming algorithm so that it automatically works on the backbone tree induced to the taxa

for which distances are computed. The updated dynamic programming algorithm scales with the

number of edges in the induced tree, which can be as low as O(max(b,m)) (if the chosen leaves
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are a connected subtree) and as high as O(n) (when chosen leaves span all of a caterpillar tree).

New features in APPLES-2 Software

Protein distances. Several tools [123, 200, 218, 247] offer distance calculation from protein

sequences using analytical [105, 108, 218] and maximum likelihood (ML) [122, 245] models.

In order to provide support for protein alignments, we implement Scoredist algorithm, which has

achieved better accuracy than other analytical models in previous tests [218]. Scoredist computes

pairwise distances according to the BLOSUM62 [86] matrix, normalizes the distances with

respect to expected distance and minimum possible distance, applies a logarithmic correction,

and scales distances using empirically derived coefficients. Like JC69 distances, in APPLES-2,

Scoredist distance calculation is powered by Numpy [82] vectorized operations and is extremely

fast.

BME weighting. APPLES implemented three weighting schemes FM [68], BE [22], and

OLS [35]. [14] demonstrated that FM weighing given by wqi = δ
−2
qi results in the best placement

accuracy among these methods. However, it did not implement balanced minimum evolu-

tion (BME) weighting [51], which has been among the most promising methods. APPLES-2

implements BME which corresponds to setting wqi = 2−(1+pqi) where pqi is the topological

distance between q and a backbone taxa i. Note that BME weights are much more challenging

to incorporate into the dynamic programming because a BME weight is not simply a function

of calculated distances but is rather a function of the placement on the tree. Thus, unlike the

previous weighting schemes, the BME weight changes as we examine different placements.

Overcoming this hurdle required implementing a more complex dynamic programming.

Database features. We allow precomputation of a database (called APPLES database) that

consists of a backbone alignment and tree, including centroid sequences and the leaf clustering,

which can be stored and distributed. The database can be reused for the analysis of different

query data sets. Moreover, when a backbone alignment is provided, APPLES-2 can re-estimate

branch lengths of the input tree using FastTree-2 [188] under the JC69 model to match the model
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used for estimating distances.

4.2.2 Experiments

Data sets

RNASim data set.

We reuse the RNASim-VS simulated RNA data set from [14], which consists of subsets

of a simulated RNASim data set [80], but change the query selection strategy. We begin with

randomly selecting 200 queries with various novelty levels; to control novelty, 10 taxa are

randomly selected from each of 20 bins determined by dividing terminal branch length of the

phylogeny on 200,000 taxa into 20 quantiles. The remaining 199,800 taxa are designated as

backbone. Then, we create data sets with size (n): 100000, 50000, 10000, 5000, 1000, and

500 by successive random subsampling. The procedure is replicated 5 times and query taxa are

identical within a replicate across different size data sets. Each replicate contains a 1596-sites

multiple-sequence alignment of a single gene and the true tree. 200 query are placed on the

backbone independently for each replicate. We also adopted the RNASim-QS data set from [14]

also based on the RNASim data set [80]; this data set comprises five replicates with varying

numbers of queries, ranging from 1 to 49,152 with backbones of size n = 500. In both RNASim

data sets, backbone tree topology and maximum likelihood branch lengths are estimated from

true MSA using FastTree-2 [188] according to GTR+Γ model. In all cases, branch length is

re-estimated using FastTree-2 [188] to be consistent minimum evolution units.

Web of Life (WoL) data set.

[263] built a species tree of 10,575 prokaryotic genomes from 381 marker genes using

ASTRAL [258]. We first determine a set of marker genes according to several selection strategies

which will be discussed later. We remove sites that contain gaps in 95% or more of the sequences

in the protein MSA using TrimAl [34]. The trimming is only to speed up analyses and has no

positive impact on accuracy; in fact, it very slightly decreases accuracy (see Fig. 4.8). Then, we

create three concatenated alignments; the amino acid alignment, a nucleotide alignment with all
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three codon positions (C123), and another with third codon position removed (C12). Unless it is

stated otherwise, we use the C12 nucleotide MSA in our analyses.

We analyze the WoL data set in four ways (Table. 4.1). In WoL-main, three data sets of

size (n) 9000, 3000, and 1000 with 10 replicates are created by successively subsampling the

protein MSA of the selected marker genes at random. From the remaining 1575 species, 1000

are randomly subsampled from the protein MSA of the selected marker genes and designated as

query. For all data set sizes, we use the ASTRAL tree available from the original publication

induced to backbone species as the backbone tree. However, we recompute its branch lengths

using FastTree-2 [188] in the minimum evolution branch length unit. We determine a marker

gene set by controlling for two parameters; the number of genes (k) and a selection strategy.

Two selection strategies are random (among all 381) and best, which means top k marker

genes with the lowest quartet distance [208] to the species tree are selected. In WoL-main, we

choose k = 50 coupled with the best strategy (which results in lowest, median, and highest

quartet-distance to be 0.058,0.125,0.17 respectively). Concatenated MSA using the default

marker gene set contains 71,798 nucleotide sites. In WoL-random (Table 4.1), we create 1000-

species backbone alignments by selecting k ∈ {10,25,50,381} coupled with the best and random

strategies. Additionally, marker gene set selection is replicated five times for the random strategy.

In the previous two data sets, the backbone was inferred with queries included, which were

then removed, because repeating the complex backbone inference pipeline for all analyses was

not doable. However, we did add a smaller analysis that avoids this information leakage. In

WoL-denovo, we reuse a single replicate under data set sizes 1000 and 3000 from WoL-main and

fully reproduce WoL pipeline [263] to obtain de-novo MSA and species tree instead of removing

queries from the full tree. All query genes are then independently aligned to de-novo MSA of

the 50 backbone marker genes using UPP [176].
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Table 4.1. WoL based data sets. In Wol-random data set, only random selection of marker
genes is replicated 5 times. best marker selection strategy indicates choosing the marker genes
whose gene tree has the lowest topological discordance with the species tree. An alignment
or backbone tree is induced when it is taken from a larger data set (e.g. full data set). C12:
nucleotide alignment with first and second codon positions. C123: nucleotide alignment with all
codon positions. AA: amino-acid alignment.

data set name Backbone
Size

Number of
markers

Marker
strategy

Backbone
tree & MSA

Query
alignment

Replicates Character

WoL-main 1000, 3000,
9000

50 best induced induced 10 C12, C123, AA

WoL-random 1000 10, 25, 50,
381

best, ran-
dom

induced induced 5* C12

WoL-denovo 1000, 3000 50 best de-novo UPP 1 C12
WoL-metagenomic 10375 381 all induced UPP 1 C12

Data set of Simulated genome assemblies and scaffolds.

In WoL-metagenomic data set, we utilize a protocol for generating simulated genome

sequencing data which begins with randomly selecting 200 test genomes from the WoL data set

(10 genomes are randomly selected from each of 20 genome bins of equal genome count with

the bins determined by ascending terminal branch length). Next, we run InSilicoSeq [79] v1.5.1

(using NovaSeq settings) to simulate 3 M 150 bp paired-end reads per genome. For assembly,

first we run PEAR [260] v0.9.11 to merged read pairs, then run SPAdes [16] v3.14.1 with a

k-mer size cascade of 21,33,55,77,99 to assemble them into scaffolds. We then run Prodigal [99]

v2.6.3 to identify open reading frames (ORFs) from the scaffolds, and finally run PhyloPhlAn

[215] commit 2c0e61a to identify the same 381 marker genes.

Selected test genomes are removed from the backbone set, which leaves us with 10375

species in the backbone. All the genes were then independently aligned to the backbone marker

genes using UPP [176], and markers from the same assembly or scaffold were concatenated.

We try to place the samples on the backbone using either 1) the assembly (i.e., which can be

fragmented and can include errors, compared with the genome from which it is simulated), or

2) individual scaffolds (small portions of the genome). We only include scaffolds that are ≥ 10

kbp in our analyses. Note that here, instead of testing on microbial communities, we use an

in-silico approach and simply generate reads from individual microbial genomes and assemble
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them separately. We leave it to future work to simulate mixed metagenomic reads and evaluate

accuracy under such scenarios.

Biological TD-metagenomic dataset.

We use the metagenome-assembled genomes (MAGs) from a study by [262], which

identified novel pathogenic profiles from the fecal samples of 22 Traveler’s Diarrhea (TD)

patients and seven healthy traveler (HT) controls. The dataset consists of 320 manually curated

MAGs (bins) and 6653 scaffolds that are 50kb or longer. The 381 marker genes in the dataset are

identified using the same protocol as the WoL study. We use the species tree in WoL study as the

backbone tree and align the sequences from Traveler’s Diarrhea dataset to the WoL dataset using

UPP independently for each marker gene. We then concatenate the 381 marker genes from the

same bins or scaffolds and use them for placement. We also study the case where we filter out

the scaffolds with less than or equal to 10, 20, 30, or 40 marker genes, which reduce the number

to 4522, 1608, 668, and 320 scaffolds, respectively.

Methods compared

For APPLES-2, we explored various options for d f and b in an experiment performed on

the WoL-main data set (Fig. 4.9) . As a result, we set d f = 0.2 and b = 25 by default and keep

these values fixed across all of our other experiments. For RNASim-VS and WoL-main data set,

in addition to APPLES, we compare APPLES-2 to two ML methods, pplacer [153] and EPA-ng

[17]. We run pplacer (v1.1.alpha19-0-g807f6f3) and EPA-ng (v0.3.8) in their default mode using

GTR+Γ model and use their best hit (ML placement). Unlike the procedure used by [14], we

do not perform branch length re-estimation on backbone tree using RAxML-8 [220]. Instead,

we input inferred FastTree-2 tree and model parameters without modification to EPA-NG and

pplacer. We compare to EPA-ng in analyses that concerned scalability (e.g., RNASim-QS).
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Evaluation Criteria

In RNASim analyses, we use the known true tree as the gold standard whereas on the

empirical data, we use the ASTRAL tree on the full set of species as the gold standard with an

exception of WoL-denovo data set in which the ASTRAL tree is computed denovo for each data

set size. In all WoL data sets except WoL-denovo, we measure the accuracy of a placement using

the number of edges between the position on the gold-standard tree and the inferred placement

(i.e., node distance [136]). In the simulated RNAsim data set, because true tree is known and we

place on the estimated tree and not the true tree, we need to slightly update the metric of the error:

We use delta error, which measures the increase in the number of false-negative bipartitions

after placement compared to before placement [164]. We use delta error in WoL-denovo data set

as well, treating the published phylogeny on the full set as the true tree.

4.3 Results

4.3.1 Single-gene Placement

We start with leave-one-out experiments on an existing single-gene simulated RNASim

data set where all methods face model misspecification. Despite the model misspecification,

APPLES-2 is able to find the best placement of query sequences with up to 91% accuracy

(placement on the correct branch) when the backbone size is n = 200,000 (Fig.4.1a, Table

4.2). APPLES-2 has lower mean delta error (-0.08 edges on average) and higher accuracy

(+2.5% on average) compared to APPLES for all cases except for n ≤ 5000, where they are

essentially tied in accuracy but APPLES has slightly higher mean delta error. Across all cases,

pplacer is the most accurate method. In particular, pplacer has 10% better accuracy and 0.13

less mean delta error than APPLES-2 for n = 500. However, the difference in accuracy and

mean error gradually decrease as n increases and diminish to only 2% and 0.04 respectively

for n = 200,000. Compared to the other ML method, EPA-NG, APPLES-2 either matches

(for n≤ 5000) or improves the accuracy (up to 3%) on instances where EPA-NG manages to
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Figure 4.1. Results on RNASim-VS. Placement accuracy (a), running time (b), and peak
memory usage (c) for a single placement with taxon sampling ranging from 500 to 200,000.
(b,c) Lines are fitted in the log–log scale and their slope (indicated on the figure) empirically
estimates the polynomial degree of the asymptotic growth. Lines are fitted to ≥ 10000 points
because the earlier values are small and irrelevant to asymptotic behavior. All calculations are
on 36-core, 2.6GHz Intel Xeon CPUs (Sandy Bridge) with 128GB of memory, with each query
placed independently and given 1 CPU core and the entire memory. Missing results (EPA-NG on
tree size 200,000) indicate that the tool fails to run or complete in 48h. (d) Queries are grouped
into deciles based on their novelty with respect to backbone set of species, defined as the terminal
branch length of the query in the gold-standard tree, induced to backbone and query species.
(e) Mean placement error of APPLES-2 across increasing level of query novelty for all three
backbone sizes.

complete (n≤ 100,000). Thus, APPLES-2 matches or improves the accuracy of one ML method

(EPA-ng) and is slightly below the accuracy of the other (pplacer).

Placement accuracy of APPLES-2 is 17% higher on largest tree than the smallest tree. To

examine the reason, we first observe that the novelty of the test set (defined as terminal branch

length in the true tree) decreases as the backbone size increases (Fig 4.1D). To test the impact of
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Table 4.2. Percentage of correct placements (shown as %) and the average placement error (∆e)
on the RNASim-VS with various backbone size (n). % and ∆e is over 1000 placements (except
n = 200,000, which is over 200 placements). n.p indicates tool failed to run in the case.

n = 500 n = 1,000 n = 5,000 n = 10000 n = 100,000 n = 200,000

% ∆e % ∆e % ∆e % ∆e % ∆e % ∆e

APPLES-2 74 0.31 75 0.33 77 0.34 83 0.24 88 0.14 91 0.11
APPLES 75 0.36 77 0.34 77 0.36 79 0.34 83 0.28 85 0.22

EPA-ng 75 0.29 75 0.28 77 0.24 80 0.21 87 0.14 n.p n.p
pplacer 84 0.18 84 0.18 86 0.14 87 0.14 93 0.07 93 0.07

novelty on error, we measure the mean error for each decile of novelty for all backbone sizes

after larger trees are pruned so that backbone trees are identical to those of the smallest tree. This

pruning ensures that errors are always computed with respect to trees of the same size and are

therefore comparable. Two patterns stand out. First, increasing novelty does increase the error,

especially for smaller backbone sizes (Fig 4.1E). Thus, the error with larger backbone trees is

reduced simply because fewer queries are novel (Fig 4.1D). More interestingly, it appears that at

higher levels of novelty, the error is reduced with larger backbones even after the novelty level is

controlled. Thus, the results show improved accuracy with the increased taxon sampling even

when the novelty of the test set does not change. We note that larger backbone trees include

fewer long branches in the backbone and that processes such as long branch attraction need at

least two close long branches (e.g., one in the backbone and one for the query) to impact results.

Our benchmarking indicates that the running time of APPLES-2 grows empirically as

O(n0.45) (Fig. 4.1b); this sublinear running time growth with the backbone size is consistent

with our theoretical expectations. APPLES-2 is the fastest method on backbones with 5,000 or

more taxa, offering up to 24× speed-up in average compared to APPLES on a 200,000-taxon

tree. EPA-NG is faster than pplacer and APPLES but slower than APPLES-2 (with running time

that grows super-linearly). On the 100,000 taxon data set, EPA-NG and pplacer take 7.3× and

77× longer than APPLES-2 on average respectively. APPLES-2 and APPLES consistently uses

less memory than ML tools (Fig. 4.1c) and are the only tools with sublinear memory complexity

(empirically close to O(n0.8) for APPLES-2). On the largest backbone tree with 200,000 taxa,
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behavior.

APPLES-2 requires only 1.2GB of memory compared to 81GB needed by pplacer. EPA-NG

uses 192× more memory then APPLES-2 on the largest backbone tree with 100,000 taxa where

both tools successfully run.

We also evaluated the impact of the number of queries on the running time (Fig. 4.2),

comparing APPLES, APPLES-2, and EPA-NG, all run in the parallel mode. On 500 taxa

backbone, all three methods finish placement of up to 1,536 queries in less than 4 seconds given

28 CPU cores with no clear trend in running time. EPA-NG is able to place 49152 queries in

10 seconds on average, 5.8 times faster than the second best method APPLES-2, which takes

57 seconds and is 6.5 times faster than APPLES. The comparison of EPA-NG and APPLES-2,

the fastest two of the three methods, on backbone trees with 1000 and 5000 taxa shows that

EPA-NG is 6 and 3.4 faster than APPLES-2 respectively on the largest query set. While both

methods complete in less than 36 seconds, APPLES-2 is faster than EPA-NG when number of

queries is less than or equal to 1536 for 5000 taxa tree. Running times of EPA-NG, which is

designed specifically for very large numbers of query sequences, can surprisingly decrease when

given more queries. For any backbone size, APPLES and APPLES-2 start to have substantial

83



increase in running time after placing 6144 queries or, scaling linearly with respect to the number

of queries; surprisingly, EPA-NG grows at a sublinear rate, likely indicating that it requires

more queries to display its asymptotic behavior. To summarize, while APPLES-2 is faster than

EPA-NG given hundreds of queries, EPA-NG scales better as the number of queries increases.

4.3.2 Multi-gene Web of Life (WoL) data set

We next test the utility of distance-based phylogenetic placement on a real WoL biological

data set [263] with 381 marker genes and 10575 microbial taxa. When we concatenate the best

50 marker genes, APPLES-2 achieves outstanding accuracy, placing query sequences with 75%

accuracy and 0.50 edges of error on average on backbones with 1000 taxa (Fig. 4.3a). A striking

97% of the queries are placed within three or fewer branches away from the optimal branch

(in a tree with a diameter of 58.3 branches on average). Note that here we are using 50/381

marker genes and a much simpler methodology compared to the original study. In comparison,

APPLES achieves 60% accuracy with 1.1 average error on the same data set. As in the single-

gene RNASim dataset, pplacer is the most accurate method with 80% accuracy for n = 1000.

EPA-NG has slightly lower accuracy (-1%) and mean error (-0.06) than APPLES-2. As the

size of the reference increases from 1000 to 3000 and 9000, APPLES-2 and APPLES are only

methods that run successfully due to large memory requirements of ML-based methods (more on

performance below). APPLES-2 is able to maintain high accuracy, placing within three branches

of the optimal placement in 97% and 96% of cases, respectively, for backbones of size 3000

(avg. diameter: 77.2 edges in average) and 9000 (avg. diameter: 105.5 edges). Increasing the

backbone size also amplifies the gap between APPLES and APPLES-2, going from a difference

of 0.57 edges of error on average for n = 1000 to 0.81 and 1.11 for n = 3000 and n = 9000.

APPLES-2 places queries with 0.1 higher error in average for n = 9000 compared to

n = 1000; however, it should be noted that the largest tree has 9 times more branches than

the smallest one. Therefore one branch of error in the smallest tree indicates a larger degree

of misplacement. In order to establish a fair comparison between trees with different number
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Figure 4.3. (a) Empirical cumulative distribution function (CDF) of placement error on back-
bones ranging from 1000 to 9000 taxa (10000 queries each). Vertical lines show mean error.
(b) Placement accuracy versus alignment type. C12: only the first two codon positions are
retained in the alignment; C123: all three positions used. (c) Impact of marker gene selection on
placement accuracy. (d,e) Running time (solid lines and solid points) and memory (dotted lines,
hollow points) performance with respect to backbone tree size (d) and number of marker genes in
the backbone tree (e) in log-log scale. Each run has 32 cores and 56GB memory in a shared node
with 2.25 GHz AMD EPYC 7742 processor with each query placed independently and given 1
CPU core. Missing results indicate that the tool fails to run or complete in 48h. (f,g) Novelty
(defined as in Fig. 4.1) of queries and mean placement error of APPLES-2 for all backbone sizes.
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of backbone species, after placement (i.e. before measuring the error), we prune trees with

n = 3000 and n = 9000 to include only those present in the smallest tree with n = 1000. The

comparisons on pruned trees shows that the placement accuracy for APPLES-2 becomes 90%

and 95% on 3000 and 9000-taxa backbone tree respectively, which are much higher than 75%

with 1000-taxa backbone tree (Fig. 4.3a). These increases in accuracy show that accuracy of

APPLES-2, does, in fact, improve with better taxon sampling.

The reasons behind improved accuracy with improved taxon sampling parallel the sim-

ulated data. Again, we observe reduced novelty in the query set (Fig. 4.3f) as backbone size

increases. Impact of novelty on error is not uniform. When the query is extremely similar to

backbone species, correct placement is difficult. Thus, initially, the error slightly decreases as

novelty increases. However, after reaching a sweet spot, the error increases dramatically as

novelty increases. The better accuracy with larger trees, therefore, is a function of having fewer

very novel queries. Controlling for novelty of query, in the first seven deciles, results show a

negative correlation between the error and backbone size (Fig. 4.3g).

In WoL-main data set, backbone and query alignment and backbone tree is directly

induced from full WoL data set, which may potentially “leak” information about query location

since query sequences were present in the full data set during MSA and tree inference. We test

this scenario on WoL-denovo data set where two MSAs and trees with n = 1000 and n = 3000

are de-novo inferred using the identical methodology described in the original publication [263].

In addition, query sequences are aligned to backbone MSA using UPP [176] to prevent leakage of

information through alignment. We find a slight absolute reduction (−5%) in placement accuracy

of APPLES-2 on 3000-taxa de-novo backbone compared to induced backbone (Fig. 4.10).

However, the percentage of queries placed with no more than three edges error is 98% for both

de-novo and induced backbone trees. The mean delta experiences very slight changes between

de-novo and induced backbone trees.

APPLES-2 is the fastest method in WoL-main data set, managing to place a query in

1.1 second on average on the smallest backbone tree using a single CPU core (Fig. 4.3d). For
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comparison, APPLES, EPA-NG, and pplacer take 1.86, 2.18, and 49.47 seconds per query

respectively on the same data set. APPLES and APPLES-2 achieve the best memory efficiency

by using 250Mb of memory whereas EPA-NG and pplacer use 48.6 and 18.6 GB of memory

on the same instances. As backbone size increase to n = 3000 and n = 9000, APPLES and

APPLES-2 become the only methods that complete the benchmark given a 56GB memory

machine as ML-based methods terminate due to insufficient memory. Our benchmark indicates

that running time and memory use of APPLES-2 grow sublinearly, achieving empirical time and

memory complexity of O(n0.5) and O(n0.6) respectively.

Next, testing the impact of data type used for placement, we observe that removing the

third codon position from nucleotide alignments improves placement accuracy substantially

for both versions of APPLES (Fig. 4.3b). Interestingly, APPLES-2 seems to be more robust

to inclusion of third codon position as the increase in the average error is 0.26 and 2.44 for

APPLES-2 and APPLES, respectively. The third codon position often poses a stronger violation

on stationarity assumption than the first and second codon positions [102, 186] and saturates

faster, especially among very divergent taxa. Recall that APPLES-2 ignores distances among

very divergent sequences, which is consistent with its higher robustness to the third codon

position. Note that the original study [263] that built our gold-standard in these analyses inferred

gene trees using amino acid data. We do not observe a substantial error difference between

using nucleotide (first two codon positions) and amino acid sequences (Fig. 4.3b) for APPLES-2.

Although APPLES-2 has 3% higher accuracy on the former data type, the number of queries

with at most three edges of error is 96% on both data types. We remind the reader that amino

acid distances are computed under the Scoredist algorithm, which is different from the models

used in the original study to infer the reference tree [263].

Next, we test the impact of varying the number of marker genes and the type of genes

used (randomly chosen or the best genes) on WoL-random data set (Fig. 4.3c) . While Using all

the marker genes has the highest accuracy (mean edge error: 0.52; placement accuracy: 73%),

using as few as 50 of best genes (i.e., those with gene trees with the lowest quartet distance
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the species tree) comes very close. With 50 genes, APPLES-2 places 958 out of 1000 queries

(96% rate) within three branches away from the optimal branch; in contrast, using all genes, 972

queries are within three branches (97% rate). Using the best 50 genes results in 0.63 average

delta error, which is 0.11 more than using all genes in the data set. However, reducing the

number of best genes to 25 and 10 increases error to 0.79 and 1.28 edges, respectively. Our

benchmark indicates that runtime and memory use of APPLES-2 empirically grow near linearly

with number of marker genes and number of sites in the backbone alignment (Fig. 4.3e). When

all 50 marker genes used, placement of a query takes 1.5 seconds whereas using all 381 marker

genes, placement takes 10 times longer on the 1000 taxa backbone. Thus, 50 best genes is the

sweet spot in terms of accuracy among levels we test considering computational requirements.

There is a large difference between selecting genes randomly or using best genes (Fig.

4.3c). A random selection of 10 genes results in lower accuracy (within 3 edges from the optimal

branch only 74% of the time) and a high average edge error of 3.29, whereas 10 best genes result

in 1.28 edges of error on average. Going to 25 randomly selected genes provide acceptable

placement accuracy where 87% of queries are placed within 3 edges from the optimal location

(error: 1.8 edges on average); yet, 25 best genes continue to be better (error: 0.79 edges on

average). With 50 genes, the error is 0.80 less when using best genes compared to randomly

selected genes. The mean placement error using random genes decreases as the number of genes

increases, culminating in 0.53 edges when all genes are selected (Fig. 4.11). Note that best

and random strategies are equivalent when all 381 genes in the data set are used. Overall, the

difference between random and best genes is wider when few genes are available and diminishes

as more genes are added.

4.3.3 Placement of assemblies and scaffolds

While our previous analyses showed that APPLES-2 has outstanding accuracy using best

or random subsets of marker genes sampled across microbial genomes, we often do not have

entire genomes. Instead, we have MAGs and scaffolds from which MAGs are generated. We
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Figure 4.4. Results on WoL-metagenomic data set. (a) The relationship between number
of marker genes in a scaffold and the error. Dots show mean, black error bars show standard
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next to its curve. The backbone has the diameter (the largest pairwise distance) of 106 edges.

next test APPLES-2 in a simulation that generated scaffolds and assemblies, similar to MAGs,

by assembling reads simulated from a subset of 200 genomes in the WoL data set.

Our simulated assemblies included 105 to 365 marker genes (Fig. 4.12a). With these

number of markers, APPLES-2 achieves 67% accuracy and places 195 of 200 simulated assem-

blies with error no larger than three edges (Fig. 4.4b). The error is never more than 6 edges. The

placement error has a weak but statistically significant anti-correlation with the number of marker

genes available in the assembly (p = 0.002 according to Pearson’s correlation; ρ =−0.216; see

Fig. 4.13).

Our assembly procedure produces 3318 unique scaffolds of≥ 10kbp (Fig. 4.12b) , among

which 665 has more than fifteen marker genes and 290 has more than 30 marker genes. The

placement error is clearly a function of the number of genes in each scaffold (Fig. 4.4a). Scaffolds

with less than 15 genes have high error on average (8.51 edges), but also have high variance

(with 53% of such scaffolds leading to error up to three edges). Once scaffolds start to have more

than approximately 20 genes, the error becomes consistently low (Fig. 4.4a). The placement
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accuracy for scaffolds that contains 30 to 40 genes is 35%, and 83% can be placed with error no

more than 3 edges (Fig. 4.4b). As the number of genes in the scaffold increases, the accuracy

also increases; on average, placement error for scaffolds with 50 or more genes is only 1.19

edges, 92% are within three edges of the optimal placement, and the maximum error observed is

12 edges.

Both multiple sequence alignment using UPP and the phylogenetic placement step using

APPLES-2 used in the scaffold placement workflow are fast. Running UPP to align all 3318

scaffolds for each gene to the backbone alignment takes 89 seconds in average (lowest 18 and

highest 388 seconds) using 6 CPU cores. APPLES-2 takes 2.77 seconds per query scaffold on

the backbone tree of size of nearly 10000 species using 28 CPU cores.
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4.3.4 Placement of real MAGs and scaffolds onto WoL tree

Next, we study the [262] metagenomic dataset composed of gut microbiomes of 22

patients with Traveller’s Diarrhea (TD) and 7 healthy controls (HT). For each subject, we obtain

six placement profiles by placing MAGs and scaffolds with five marker occupancy thresholds. We

compare two profiles by computing weighted Unifrac distance [142]. We observe a statistically

significant difference between intra-group (HT and HT, TD and TD) and inter-group (TD and

HD) distances with MAGs (p-value 0.01 using standard PERMANOVA test) (Fig. 4.5a). Using

all scaffolds (not including MAGs) intra- and inter-group distances between the samples cannot

be distinguished with statistical significance (p = 0.099). However, F-statistic increases after

filtering out scaffolds with less than or equal to 10 marker genes. Increasing the scaffold filtering

threshold to 40 results in a decrease in the F-statistic (Fig. 4.5a), indicating that a large proportion

of the signal in the data is lost due to over-filtering. Using placement, we can also visualize

MAG- and Scaffold-informed community structures of all samples using a Principal Coordinates

Analysis (PCoA) (Fig. 4.5b). MAG-informed community structures provide better delineation of

communities dominated by Escherichia coli compared to Scaffolds with at least 10 marker genes.

Thus, our results show that placing MAGs using APPLES-2 enables inference about community

structure of metagenomic samples but the utility of scaffolds is less clear.

4.4 Discussion

We presented APPLES-2: an improved distance based phlogenetic placement tool for

inserting new taxa on large phylogenetic trees. Inspired by DCM-like methods [98], our divide-

and-conquer approach improved placement accuracy beyond its predecessor APPLES and made

it comparable to or better than ML-based tool EPA-NG on single gene data sets. Furthermore,

we showed that APPLES-2 is even more scalable than APPLES, reducing running time and

memory consumption, and can achieve high accuracy on diverse multi-gene data sets.

Some of the new features of APPLES-2 increase usability and completeness of the
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tool but have limited impact on accuracy and scalability. For example, we implemented BME

weighting. However, despite the previous literature suggesting BME weighting is preferable to

alternatives [51], we observed that BME is less accurate than the default FM weighting scheme

for all data set sizes (Fig. 4.14); ; difference between FM and BME mean error is 0.85 edges

on average). Based on these results, we continued to use FM as the default weighting method

everywhere but provide BME as a new option to the users. Similarly, using amino acid sequences

did not show any improvements, but we enable it for cases when only amino acid data is available.

Despite declining opportunities, future changes could seek to further improve the accuracy. For

example, at the expense of higher computational cost, one can select centroid sequences for

partitions of the backbone MSA via ancestral state reconstruction instead of consensus — a

technique used by [12] (also see ancestral k-mers [135]).

Previously, [14] reported that ML-based method pplacer failed to place queries on

backbone trees with 5000 taxa or larger in RNASim-VS data set due to a numerical error (infinity

likelihood values). We find that re-estimating backbone branch lengths and model parameters

using RAxML-8 and inputting the RAxML info file to pplacer causes a bug in pplacer. We

overcome this issue by creating a taxtastic package (https://github.com/fhcrc/taxtastic) using

Fasttree-2 tree and info file and using this package as the input. Note that creating taxtastic

package from re-estimated RAxML-8 tree and info file also produces the aforementioned error.

As a result of discovery, we do not perform branch length re-estimation using RAxML-8 in any

of our data sets.

While accuracy is typically high, on a minority of queries results of APPLES-2 are far

from the correct placement. A reasonable question is whether these highly inaccurate instances

can be identified by APPLES-2. While we leave a more elaborate exploration to future work, we

have identified several interesting patterns (Fig. 4.6). First, we observe a correlation between

APPLES-2’s objective function value, the Minimum Least Square Error (MLSE; denoted by

Q), and placement error (Fig. 4.6a). In addition, variance of error dramatically increases as Q

increases. Even for the same level of Q, selecting marker genes strategically instead of randomly

92



reduces the placement error. Therefore, Q itself does not seem sufficient to predict the degree

of placement error. Note that high MLSE (e.g Q≥ 1) does not indicate that APPLES-2 fails to

optimize its objective function — APPLES-2 solves the objective problem exactly (i.e., is not

heuristic). High MLSE can result from sequence data and tree distances being very incompatible.

This incompatibility may be due to several reasons such as lack of signal, model violation, and

horizontal gene transfer (HGT). Despite its reduced mean accuracy, APPLES-2 can still find a

good placement for many queries with Q≥ 1: Approximately 75% of such queries have at most

3 edges error on the backbone consisting of random marker genes. Secondly, when a query is

placed with zero distal and pendant edge length, the placement error is significantly higher than

otherwise (p < 5.5×10−13, two-sample Wilcoxon test). The average error is 11.74 when both

pendant and distal edge length is zero (i.e. when query is placed on an internal node) whereas

it is only 2.04 on average when pendant edge length is larger than zero (Fig. 4.6b). We have

also noticed that erroneous placements with zero pendant edge lengths are more prevalent in

the query sequences with fewer genes. Out of 15 occurrences of this pattern, 13 are found in

test cases with 10 marker genes in the backbone. Thus, users of APPLES-2 should be skeptical

of the placements with zero pendant and distal branch length and/or high MLSE error (which

APPLES-2 outputs). A warning is produced by APPLES-2 when such placement are produced.

In future work, these features can be used to develop a predictive value indicating possible errors

in placement.

Our studies on microbial data showed that APPLES-2 can phylogenetically place and

hence identify genome-wide shotgun data with promising accuracy after they are assembled.

Using both simulated and real data sets, we showed that assembled genomes (MAGs) can be

placed on the species tree with great accuracy. Patterns are more intricate for scaffolds: On

real data, scaffolds with very few (as few as one) or large number of marker genes (40) were

insufficient to portray the community structure of the metagenomic sample. Filtering scaffolds

with fewer than ten marker genes provided the optimal signal-to-noise ratio, despite being inferior

to MAGs. On simulated microbial data, the accuracy tends to be low on small scaffolds with few
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Figure 4.6. Detecting erroneous placements. Results are based on 18879 queries in WoL-
random dataset. (a) The relationship between optimized MLSE objective function (Q) and the
error. Dots show mean, thick error bars show standard error, and light error bars show the central
80% range. (b) Empirical CDF of placement error with distal (d) and/or pendant (p) edge equal
to zero. Queries with zero objective function (i.e. queries that have an exact match to a backbone
species) are omitted.

genes but improve for scaffolds that have moderately large number of marker genes. Besides

their reduced numbers of genes, scaffolds present several challenges that may contribute to their

lower accuracy: (i) In comparison to assemblies, scaffolds in a metagenomic sample are more

prone to assembly errors and chimeras. (ii) Genes located on the same syntenic block have

similar gene trees, which can introduce a bias in the placement. Thus, factors such HGT and

may have a bigger impact on scaffolds. (iii) Even when a scaffold has many genes, it may not

include the best marker genes; i.e., those genes with maximum signal and concordance to the

species tree.

Our results clearly showed that the choice of genes matters. While a random selection

of 25 marker genes were adequate for placing queries in most cases, a targeted gene selection

strategy outperformed random selection (e.g., p = 6.6×10−13 for 25 marker genes, two-sample

Wilcoxon test). The results indicate that certain marker genes serve better at predicting location of

a query species in the backbone tree. This observation leads to two related questions. Given fully
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assembled genomes, should we use all or a subsample of available genes? Our data supports the

idea that using a subset of genes has very similar accuracy to using all available genes. However,

a more fruitful approach may be weighting genes (or even sites within genes) differently to

further improve accuracy. Such a goal seems amenable to machine learning approaches that can

learn optimal weights.

The second question is how to handle scaffolds from metagenomic assemblies, which

include only a handful of genes. There are always more scaffolds with few genes than those

with many genes. Thus, requiring a large number of genes would reduce the number of scaffolds

placed, which has the potential to reduce the accuracy of downstream analyses. Our results

indicate scaffolds with a modest number of genes (e.g., with 30 or more) are enough to place

them phylogenetically. But the vast majority of scaffolds have fewer than 15 marker genes, and

some of these can be placed accurately. We leave it to future work to design a more principled

framework for deciding which scaffolds can be placed accurately and which cannot. We also

leave to the future work to answer a more challenging question: for downstream applications,

is it better to place a few scaffolds that have many genes (or perhaps binned contigs) with high

confidence or is it better to place all or most scaffolds with lower confidence hoping that noise

will be overcome by the large number of placements? Answering these questions requires careful

experimental procedures that are outside the scope of the present study.

While in this paper we focused on applications of APPLES-2 to microbiome data, our

earlier work has demonstrated the utility of distance-based placement for assembly-free and

alignment-free identification of genome skims [14]. While reference sets available for genome

skimming are not currently large enough to challenge APPLES in terms of scalability, the

divide-and-conquer step in APPLES-2 may lead to increase accuracy. Essentially, the divide-

and-conquer mechanism will allow building reference databases that include genome skims from

very diverse set of organisms (e.g., all insects) without reducing accuracy due to high levels of

divergence. We leave the exploration of such applications and the choice of best thresholds for

genome skimming to future work.
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Finally, in this paper, we focused on single query placement and observed that given

multiple marker genes, APPLES-2 can insert a new genome into backbone tree with high

accuracy. These results open up an exciting opportunity. By spending less computational budget

than de novo phylogenetics, successive insertion of genomes can enable expanding the existing

large microbial phylogenies [e.g., 263] to contain hundreds of thousands of sequences. Future

work should explore the best pipelines for achieving this goal.
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Figure 4.7. Clustering the backbone using TreeCluster. a) Exploring the multiplier for
TreeCluster maximum diameter threshold. Results are based on 500 placements on WoL species
tree using APPLES-2. Placement accuracy does not change as this threshold changes and the
average error increases slightly if other values are used. b) Using TreeCluster to divide the
backbone tree into smaller subsets (shown as tcon in the figure) not only improves the running
time but also slightly improves the placement accuracy compared to using APPLES-2 on the full
backbone tree (shown as tcoff in the figure) .
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Figure 4.12. Distribution of the number of marker genes in assemblies and scaffolds. Red
dashed line shows the mean. Left: assemblies. Right: scaffolds. Note that most scaffolds have
relatively few genes.

101



0

2

4

6

100 200 300
Number of marker genes

D
el

ta
 E

rr
or

 (
ed

ge
s)

Figure 4.13. Number of marker genes vs placement error for assemblies. There is a weak but
statistically significant correlation between the number of genes and error for placing assemblies.

1000 3000 9000

1 4 9 16 1 4 9 16 1 4 9 16
0.5

0.6

0.7

0.8

0.9

1.0

Delta Error (edges)

E
m

pi
ric

al
 C

D
F

apples apples2 apples2−bme

Figure 4.14. We compare balanced minimum evolution (BME) weighting to Fitch-Margoliash
(FM), which is the default weighting scheme in APPLES and APPLES-2.

102



Chapter 5

Phylogenetic double placement of mixed
samples

Consider a simple computational problem. The inputs are (i) the set of mixed reads

generated from a sample that combines two organisms and (ii) separate sets of reads for several

reference genomes of known origins. The goal is to find the two organisms that constitute the

mixed sample. When constituents are absent from the reference set, we seek to phylogenetically

position them with respect to the underlying tree of the reference species. This simple yet

fundamental problem (which we call phylogenetic double-placement) has enjoyed surprisingly

little attention in the literature. As genome skimming (low-pass sequencing of genomes at

low coverage, precluding assembly) becomes more prevalent, this problem finds wide-ranging

applications in areas as varied as biodiversity research, food production and provenance, and

evolutionary reconstruction. We introduce a model that relates distances between a mixed sample

and reference species to the distances between constituents and reference species. Our model

is based on Jaccard indices computed between each sample represented as k-mer sets. The

model, built on several assumptions and approximations, allows us to formalize the phylogenetic

double-placement problem as a non-convex optimization problem that decomposes mixture

distances and performs phylogenetic placement simultaneously. Using a variety of techniques,

we are able to solve this optimization problem numerically. We test the resulting method, called
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MISA, on a varied set of simulated and biological datasets. Despite all the assumptions used, the

method performs remarkably well in practice.

5.1 Introduction

Comparing a set of unassembled reads sequenced from a query biological sample against

a reference library of assembled genomes or unassembled reads can reveal much about the

query sample. For example, mapping reads to a closely related assembled genome and variant

calling enables population genetic analyses. For more diverse collections of species, genomic

distances can be estimated, and distances can allow phylogenetic placement [11]. Sample

identification at the population level or higher taxonomic/phylogenetic levels is crucial in

many applications, such as characterizing biodiversity, studying food provenance, and detecting

toxic contamination. When both the reference and the query are unassembled, as is the case

for low-pass sequenced genome skims that do not avail themselves to assembly, we can still

compute genomic distances [63, 179] even when the coverage is low [209, 230]. These scalable

assembly-free methods have the potential to enable large-scale yet cost-effective genome-wide

sample identification because they do not require the genome in the reference library to be

assembled. Several tools for assembly-free genome comparison have pursued this ambition [e.g.,

42, 63, 204, 235, 252, 255]. However, this methodology has to contend with challenges such the

presence of contamination [193] and the potential for mixed samples.

Mixed sample identification is the problem of identifying what species are present in a

mixed biological sample of unknown origin. While the metagenomics literature has grappled

with a similar conceptual challenge, here, we are specifically focusing on Eukaryotic genomes

and mixtures of a small number of species with large genomes (only two in this paper). The

two problems are quite different. Here, unlike metagenomics, our samples are not a mixture of

large numbers of species with small genomes. Instead, we have a mixture of a handful of large

genomes (two in this work). Also, unlike microbes, Eukaryotic genomes do not present certain
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difficulties, such as an unclear definition of species and horizontal gene transfer.

The ability to identify the constituents of a mixed sample has obvious applications in food

provenance where the goal is to detect adulteration. For example, given a herbal food supplement,

can we pinpoint the exact ingredients used, as opposed to those advertised? It also is important

for many analyses of ecology and biodiversity where cells of multiple species are intertwined in

ways that make physical separation difficult or impossible. For example, bee-breads are mixtures

of pollen and fungi; understanding the makeup of these mixes can reveal the pollen composition

(indicative of floral diversity), which been linked to local land used for farming [53]. Finally,

even when biologists aim to obtain pure single-species samples, technical issues can lead to

the sequencing of what is, in reality, a mixed sample. Missing these cases can lead to invalid

downstream analyses and false conclusions.

A related concept is recent hybridization. Hybrid speciation is abundant both in the

wide and in agricultural and industrial use [148]. The genome of a recent hybrid, especially

for alloploids, can be modeled similarly to a mixed sample with two constituents. Such recent

hybrids are both abundant and consequential. For example, recent hybridization in yeast species

has been hypothesized to contribute to the development of lager beer [54], among other food

products.

Little is known about the optimal way to identify the constituents of a mixed sample

in the scenario we described. When the genomes of constituents are available in a reference

library, pipelines based on read mapping can seek to find the signature of the mixture [e.g.,

119]. However, as an exact match to constituents is not always present in the reference set, read

mapping is not a general solution. Alignment-based methods have been developed to place a

single sequence (e.g., a read) on a phylogeny of assembled references [e.g., 18, 153, 164, 221].

More broadly, many methods have been developed for analyzing metagenomic samples [see

157, 159, 213, 254, for benchmarking of these tools]. By treating reads as independent, these

methods can potentially be applied to mixed samples, and are routinely used for analyzing

metagenomic samples. However, they often require assembled references and do not work
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under the assumption that most reads would belong to one or two species. Also, many come

with pre-trained libraries of microbial references. Thus, they are not designed for solving the

Eukaryotic mixture problem.

In this paper, we formulate the mixture analysis without exact matches in the reference

library as the solution to a “deconvolution” optimization combined with a phylogenetic placement

problem. Sample identification for single-species samples without an exact match is possible

through phylogenetic placement [11], a methodology that can handle unassembled genome skims

for both the reference and the query. To extend phylogenetic placement to mixed samples, we

develop a model for decomposing distances between a mixed sample and reference species into

distances of its constituent parts to reference species. We present several theoretical results under

the model, including results showing that a mixed sample has its minimum possible distance to

both of its constituents. Using this model and a non-convex optimization problem, we develop a

method for simultaneous deconvolution and phylogenetic placement of samples. Our method,

called MISA, is the first to try this kind of analysis and shows promising results on extensive

simulation analyses on mixed samples and a real hybridization dataset.

5.2 Approach

5.2.1 Model

Assumptions and definitions

Our model makes several assumptions. (i) Each genome (skim) consists of n unique

k-mers. We represent a genome A with the set SA of its fixed-length k-mers. (ii) For two

constituent genomes A and B, the mixture M includes all k-mers of both genomes: SM = SA∪SB.

(iii) Evolution is modeled using the time-reversible [105] model, where each position mutates

to other positions independently and identically. Evolution occurs along a phylogenetic tree

T with genomes as leaves and branch lengths measured in the unit of the expected number

of substitutions per position. Let dT
i j be the path length between two nodes i and j in T .
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Figure 5.1. (a) Venn diagram showing the intersection of k-mers of mixture M and R. (b)
Distances between Mixture constituents A and B and a third genome R. The distance between
ancestral genome L and extant genome A is (d1 +d3−d2)/2.

Then, according to the 105 model, the probability of observing a change along the branch is

δi j = h(dT
i j) =

3
4(1− e−

4/3dT
i j). We use the h function and its inverse h−1 to translate between

phylogenetic distance and probability of substitution (i.e., expected hamming distance). (iv) We

compare the mixture versus a reference genome, referred to by R. For three genomes A, B, and

R, let L(A,B,R) (shorthanded to L when clear) be the only node with degree three in T when

restricted to these three genomes (Figure 5.1). We define d1 = dT
AR, d2 = dT

BR, and d3 = dT
AB, and

let δi = h(di). Note that by additivity of tree distances, dT
LA = (d1 +d3−d2)/2 (dT

LB and dT
LR can

be written similarly). Also, tree distances (d1,d2,d3) conform to the triangle inequality. (v) We

assume d1 + d2 + d3 < 2, which will enable further approximations. Note that a total branch

length of 2 is very high, corresponding to an expectation of two substitutions per site. Thus, the

assumption is reasonable. (vi) SA∩SB∩SR ⊂ SL. Under the assumption (v), it is exceedingly

unlikely for a k-mer to be present in A,B, and R but not in L (see Figure 5.6).

Recall that the Jaccard index J is a similarity measure between two sets defined as the

ratio of their intersection to their union. 63 used the Jaccard index JAR of sets SA and SR to
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estimate

δ̂AR = 1−
( 2JAR

1+ JAR

) 1
k (5.1)

and 209 later extended this equation to account for low coverage and sequencing error. Their

tool, Skmer, computes the Jaccard index and k-mer frequencies and uses these values to estimate

δ directly from reads, accounting for coverage (as low as 1/8×) and error.
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Figure 5.2. Demonstration of model properties. (a) We show
(
1 − h(d1+d2−d3

2 )
)(

1 −
h(d2+d3−d1

2 )
)(

1− h(d3+d1−d2
2 )

)
divided by = 1− h(d1+d2+d3

2 ) and for a set of d1 and d2 val-
ues (red: no approximation error). We set d3 to its median value according to triangle inequality
(max(d1,d2)) but see Figure 5.7 for other choices. (b) y-axis shows the distance between A and
R relative to distance between M and R, assuming R is more similar to A than B. We show the
bounds of Proposition 2. (c) The fast convergence of δ̂MR = 1− (3−(1−δ3)

k

2 )−
1/k to its upper-

bound for k = 31. (d) The value of δ̂MR shown as contours versus distance of constituents (x: δ1

and y: δ2) with δ3 = max(δ1,δ2) according to our model (Eq. 5.4) is shown in the rightmost plot.
The other three plots compare this model to three simpler models: arithmetic mean, harmonic
mean, and minimum. Note that δ̂MR is close to the minimum value and to a lesser extent to the
harmonic mean, but not to the arithmetic mean.
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Formulation

The Jaccard-based methodology does not easily translate to mixed samples. Let JMR be

the Jaccard index of a mixed sample M and a reference genome R. We can easily compute JMR

but cannot translate it to a distance (akin to Equation 5.1) in an obvious way. A more complex

formulation is needed. Note that (Figure 5.1a)

JMR =
|SA∩SR|+ |SB∩SR|− |SA∩SB∩SR|

|SA∪SB∪SR|
=

|SA∩SR|+ |SB∩SR|− |SA∩SB∩SR|
3n−|SA∩SR|− |SB∩SR|− |SA∩SB|+ |SA∩SB∩SR|

.

(5.2)

A k-mer is shared between A and B only if no mutation occurs in any position on the

k-mer. In expectation, |SA∩SR|= n(1−δ1)
k, |SB∩SR|= n(1−δ2)

k, and |SA∩SB|= n(1−δ3)
k.

Moreover, due to our Assumption (vi), a k-mer is shared between all three genomes A, B, and R

only if that k-mer is present in L. Therefore, in expectation:

|SA∩SB∩SR|= n(1−δLA)
k(1−δLB)

k(1−δLR)
k =

n
(
(1−h(

d1 +d3−d2

2
))(1−h(

d2 +d3−d1

2
))(1−h(

d1 +d2−d3

2
))
)k

(5.3)

We define δ̂MR = 1− (2JMR/(1+ JMR))
1/k (for skims, instead of plugging J into Equation 5.1,

we can use the the more complex coverage-aware equations of [209]). Note that δ̂MR is just a
mathematical construct without a clear biological meaning. By re-writing JMR in terms of d1,
d2, d3, and k, plugging it in this definition, and further simplifications, we derive the following
model.

δ̂MR = 1−
( 2

3− (1−h(d3))k

(
(1−h(d1))

k +(1−h(d2))
k−

(
(1−h(

d1 +d3−d2

2
))(1−h(

d2 +d3−d1

2
))(1−h(

d1 +d2−d3

2
))
)k
) 1

k

Furthermore, under assumption (v), n
(
1− (h(d1+d2+d3

2 ))k) approximates Equation 5.3 well,

falling within 5% of its value in much of the relevant space (Figure 5.2a). Thus, we further

simplify the model to:

δ̂MR = 1−
(

2
(1−h(d1))

k +(1−h(d2))
k− (1−h(d1+d2+d3

2 ))k

3− (1−h(d3))k

) 1
k

(5.4)
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All our subsequent results are based on this model.

As expected, in this model, δ̂MR is a function of d1, d2, and d3. Plotting Equation 5.4

shows (Figure 5.2d) that δ̂MR resembles the harmonic mean of δ1 (i.e., h(d1)) and δ2 much better

than their arithmetic mean; moreover, δ̂MR is quite close to the minimum of δ1 and δ2. This

observation can be further formalized as a bound.

Proposition 2. (Proof in Appendix 1) Let δAR ≤ δBR. For a fixed value z = δ̂MR, the lower-bound

for δAR is 1−
(3

2

) 1
k (1− z) and its upper-bound u is given by 4(1−u)k−2(1−2u)k

3−(1−2u)k = (1− z)k.

Thus, the distance between the reference genome and the closer of constituent samples

bounds the distance to the mix (Figure 5.2b). We utilize this lower bound in our algorithm

(described later).

Reference-guided deconvolution.

Given the Skmer distance δ̂MR, our aim is to estimate the distance between R and

constituents A and B of M; i.e., to estimate d1 and d2 (and less crucially, also d3). Given

these estimates, we can place the mix on two branches of the phylogeny using distance-based

phylogenetic placement [e.g., 11]. The challenge is that d1, d2, and d3 are not observed directly

from the data, and all three impact our single observation δ̂MR. Thus, we have to deconvolute

δ̂MR to constituent parts. However, the problem has infinitely many solutions, including trivial

ones like h(d1) = h(d2) = δ̂MR, d3 = 0.

Our main insight is that although the problem is underdetermined when only one data

point (R) exists, given multiple δ̂MRi values and a phylogenetic tree, we can impose constraints

on the values of these δ̂MRi variables. The simplest example of such implicit constraints is the

triangle inequality (e.g., given δR1R2 = 0.1, two inequalities must hold: 0.1≤ |δAR1−δAR2| and

δAR1 +δAR2 ≤ 0.1). Moreover, the correctly deconvoluted values should be close to additive (i.e.,

should fit a tree). Our approach is to define a set of constraints on deconvoluted distances based

on the model and to seek a combined deconvolution and placement solution that minimizes
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deviations from additivity. We then define an optimization problem to find the optimal value for

all the variables.

5.2.2 Phylogenetic double-placement

We extend the distance-based phylogenetic placement problem of [11] to introduce the

distance-based phylogenetic double-placement problem. Let an unrooted tree T be a weighted

connected acyclic undirected graph with leaves denoted by R = {R1 · · ·Rm}. Placement of a

query sequence can be represented by the placement edge as well as distal and pendant edge

lengths of the added taxon (Figure 5.8). Given the phylogenetic tree T , a mixture M of A and B,

and Jaccard-driven estimates of δ̂MRi , we aim to find the optimal position of A and B on T . We

represent the solution as two placement trees P and Q, each obtained by adding a new leaf (A or

B) to a specific position on a branch in T with a pendant edge length.

Mixture of known species

We start by results concerning cases where the mixture is of two references present

in the reference phylogeny. In this case, luckily, the smallest δ̂MRi values readily identify the

constituents.

Proposition 3. (Proof in Appendix 1) When A ∈ R and B /∈ R, inf
Ri

δ̂MRi = A. Also, δ̂MA =

1−
( 2

3−(1−δ3)k

)1/k

Corollary 2. Without loss of generality, Let inf
{

δ̂MRi|Ri ∈R
}
= R1 and inf

{
δ̂MRi|Ri ∈R \

{R1}
}
= R2. If A ∈R and B ∈R, A,B ∈ {R1,R2} and δ̂MR1 = δ̂MR2 = 1−

( 2
3−(1−δ3)k

) 1
k .

Thus, δ̂MA and δ̂MB values are expected to be identical to a function of k and δ3 (un-

known). Luckily, regardless of δ3, this value has a constant upper-bound with a small value

1− (3/2− 1/2(1− 3/4)k)−
1/k. Moreover, as δ3 increases, δ̂MR quickly approaches this upper bound

(Figure 5.2d). Therefore, when the reference library includes both constituents, one can simply

find the smallest two among all δ̂MRi and the identification problem is solved. Moreover, in this

scenario, δ̂MRi should not exceed a small constant (e.g., 0.013 for k = 31).
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Mixture of unknown species

The most interesting case, which necessitates phylogenetic placement, is when the

mixture is of two species absent from the reference set. For distance-based phylogenetic

placement, we use the Ordinary Least Squares (OLS) criterion [35]. Following the standard

formulation, we seek the solution that minimizes:

n

∑
i=1

(h−1(δAi)−dP
Ai)

2 +
n

∑
i=1

(h−1(δBi)−dQ
Bi)

2 .

If δAi,δBi were known, due to the independence of the two placements in this formulation,

the problem could be considered as two single-species placement problems. However, for a

mixed sample we do not have δAi,δBi. Instead, we consider δAi,δBi as variables and approach

the determination of these variables and placement of mixtures constituents as a simultaneous

solution of the deconvolution problem and the placement problem.

Least Squares Phylogenetic Double-Placement:

Input: A backbone tree T on R and a vector with elements δ̂Mi, each giving the Jaccard-based

distance between M and a species i ∈R;

Output: Vectors xA
∗ ,x

B
∗ , variable x3, and two placement trees P and Q that add A and B on T

respectively, such that:
n

∑
i=1

(xA
i −dP

Ai)
2 +

n

∑
i=1

(xB
i −dQ

Bi)
2 (5.5)

is minimized, subject to:

δ̂Mi = 1−
(

2
(1−h(xA

i ))
k +(1−h(xB

i ))
k− (1−h( xA

i +xB
i +x3

2 ))k

3− (1−h(x3))
k

) 1
k

(5.6)

This problem formulation can be extended to multiple query sequences to define a

phylogenetic multi-placement problem. In this paper, we only focus on the special case of double

placement. We are faced with a non-convex optimization problem with many variables.
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5.2.3 Solving the non-convex optimization problem

For each constituent, the number of possible placement edges is 2n− 3, and for each

placement edge, one distal and one pendant edge length characterize a placement tree (Figure 5.8).

We encode these two lengths as two more variables. To solve the optimization problem, we

iterate over all pairs of edges (in parallel), and for each pair, find 2n+1 distance variables and

four distal and pendant edge length variables that minimize the optimization score. At the end,

we return the placement with the minimum least square error across all
(2n−2

2

)
placements. All

the dT
i j values are precomputed using a simple dynamic programming.

For a fixed pair of edges, our optimization problem has a quadratic objective function

and non-linear constraints. We solve the problem numerically, using the trust region method

of [40], as implemented in the SciPy optimize module [236]. For this numerical optimization

solutions to converge, several difficulties need to be addressed.

Jacobian and Hessian.

Providing the Jacobian and Hessian of the optimization score (Eq. 5.5) and non-linear

constraints (Eq. 5.6) to the numerical solver is crucial in achieving convergence. To be able to

compute derivatives of Equation 5.6 analytically and to help achieve convergence, we had to

adopt two further approximations. Firstly, having h() on the right-hand side (RHS) is a challenge.

To deal with this difficulty, on the left hand side (LHS), we replace δ̂Mi with h−1(δ̂Mi), and on

RHS, we replace all h(xA
i ) terms with h−1(h(xA

i )) = xA
i (ditto for xB

i ). This approximation is akin

to making an infinite sites assumption and is negligible when distances are relatively small (i.e.,

h(x) is close to identity for x close to 0). Secondly, having a variable x3, which represents h(d3),

that is shared between all n constraints makes derivations of Jacobian and Hessian difficult and

complicate the optimization since constraints cannot be handled independently. We therefore

approximate x3 with max
{

dT
uv,d

T
u′v′,d

T
uv′,d

T
u′v

}
where (u,u′) and (v,v′) denote the placement

edges being tested. These approximations make it relatively easy to derive the Jacobian and

Hessian (Appendix 1).
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Inequality constraints.

We further impose lower bounds on values of xA
∗ and xB

∗ according to the upper and lower

bounds obtained in Proposition 2. These constraints dramatically reduce the feasible solution

space and help with faster convergence.

Initialization and termination.

Trust region method requires a valid initial point (i.e. one that satisfies the constraints).

We always initialize pendant and distal edge lengths to 0. Let x̂3 be the constant approximated

value of x3 described previously. For each reference sequence Ri, we initialize one of xA
i and

xB
i to a value x0 and set the other to x0 + x̂3 such that when we plug xA

i and xB
i in Eq. 5.6, the

constraint is satisfied. This is achieved by x0 = 1− (1− h−1(δ̂Mi))((3− (1− x̂3)
k)/2)1/k. To

decide whether xA
i or xB

i are set to x0, we compare dT
iA and dT

iB and choose the smaller.

We use the default termination conditions for the trust region algorithm but limit the

maximum number of iterations to 5000. In our preliminary tests, we observed that, in most cases,

low residual errors and convergence are obtained in much fewer iterations (e.g., see Figure 5.9).

MISA

We implement our algorithm in a tool called MISA (MIxed Sample Analysis tool). The

input to MISA is the vector δ̂MRi of distances between the query sample and target species (e.g.,

computed using Skmer or Mash), the value of k, and the backbone tree. It uses the [105] model

to correct phylogenetic distances, uses Treeswift [169] for tree operations, and generates the

output in the jplace format [154].

Automatic choice of k.

MISA can suggest a k for a given backbone dataset. To do so, it computes the LSE of the

backbone tree with regards to the reference genomes for a set of k values (here, all odd values of

21≤ k ≤ 31) and picks the k that leads to the the minimum LSE error.
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5.3 Experimental Setup

5.3.1 Datasets

Drosophila dataset (Simulated mixture).

We use a set of 14 Drosophila assemblies published by [161] (Table C.1) to evaluate the

accuracy of our approach in an ideal setting where the mixed sample consists of the concatenation

of the assemblies. We test 20 simulated mixtures of randomly chosen species in three scenarios

where none, one, or both of the constituents are present in the reference library.

Columbicola (Lice) dataset (Simulated mixture).

In order to evaluate the accuracy of our method on real genome skimming data, we

use a set of 61 genome-skims by Boyd et al. [27] (PRJNA296666), including 45 known Lice

species (some represented multiple times) and seven undescribed species. We use randomly

subsampled genome-skims of 4Gb. We use BBTools [31] to filter subsampled reads for adapters

and contaminants and remove duplicated reads. Then, we create five replicates each containing

20 organisms sampled from the full dataset at random. For each replicate, we simulate five

mixtures with A and B chosen uniformly at random. We simulate mixtures by simply combining

preprocessed genome-skims of the two constituents. The exact coverage of the genome-skims is

unknown but is estimated to range between 4X and 15X by Skmer.

Yeast dataset (Real Hybridization).

In addition to simulated mixtures, we create a dataset of real hybrid yeast species. We

select representative genomes for eight non-hybrid Saccharomyces species with assemblies

available on NCBI. We also create a second extended dataset where we include seven more

species from Genera Naumovozyma, Nakaseomyces, and Candida (see Table S2 for accession

numbers). We curate four assembled and two unassembled strains of hybrid yeast species,

some of which were previously analyzed by [119]. Unassembled hybrid strains muri [117] and

YMD3265 are subsampled from NCBI SRA to 100Mb and filtered for contaminants in the same
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fashion as the previous dataset. We do not include strains such as Saccharomyces bayanus that

are conjectured to be hybrid of three species [134]. For each hybrid species, the hypothesized

ancestors are known from the literature [117, 119, 120] and NCBI Taxonomy annotation, and

we use these postulated ancestors as the ground truth.

5.3.2 Distance calculation and backbone trees

On all datasets, we compute reference-to-reference and reference-to-query sequence

distances using Skmer. To select k, we use the automatic procedure described earlier (i.e., the k

with the minimum LSE on the backbone). This procedure chooses k = 21 for the two assembly-

based datasets (Drosophila and yeast) and k = 31 for the skim-based dataset (Columbicola)

(Table 5.1). The backbone tree topologies are set to those of previously published phylogenies

for Yeast [216, 225], Drosophila [161], and Columbicola [27]. For all datasets, the backbone tree

branch lengths are re-estimated (Figure 5.10) by running FastME2.0 [123] on sequence distances

according to the [105] model. This branch re-estimation method can produce negative branch

lengths. In the case of the yeast dataset, the tree includes one branch with a negative length. In

the Lice data, four branches have negative estimated length. In three out of our 25 total replicates

in the Lice dataset, the placement distal edge length is negative. These likely reflect errors (like

contamination) in the data, and our approach does not model negative length. To remedy this,

we set length of negative branches on backbone tree to zero. In addition, one species (called 931

here) contributes disproportionately to the LSE error of the backbone tree compared to other

species (Figure 5.11). While this species is suspect (e.g., may be contaminated), we keep it in

the analyses.

To create test cases with the query constituents missing from the reference set, we simply

remove the constituents from the full backbone tree, but we do not recompute the backbone or

its branch lengths.
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Table 5.1. Impact of k on the error of the backbone trees. Error is measured using the
unweighted least square error (LSE) and [68] weighted least square error (FME). In FME,
each squared error term is weighted by the inverse of observed distance squared, reducing the
contribution of longer distances. Error for the backbone tree including all 61 species in the
dataset is shown for Columbicola. Error for extended backbone tree is shown for yeast.

(a) Columbicola (b) Drosophila (c) Yeast

LSE FME LSE FME LSE FME

k=21 0.053 4.768 0.0003 0.014 0.0094 0.106
k=23 0.0385 6.4778 0.0005 0.0158 0.0094 0.1133
k=25 0.0275 4.4182 0.0005 0.0193 0.0097 0.1254
k=27 0.0208 3.1422 0.0006 0.0235 0.01 0.1385
k=29 0.0167 2.272 0.0007 0.0278 0.01 0.1508
k=31 0.013 1.5779 0.0008 0.0348 0.0102 0.1641

5.3.3 Evaluation

Evaluation metric.

We quantify the error in each placement by counting the number of branches between

the placement found by each method and the correct placement. We report the error for the

two placements separately. We simply define the placement with the lower error to be the

primary placement and the other placement to be the secondary placement. Note that the

primary/secondary distinction is not made by the tool and is solely used to facilitate the analysis

of error in an interpretable way. When constituents are in the reference tree, we also compute the

tree distance between the constituent and the placement tree; ideally, this distance should be zero

for simulated mixes.

Methods compared.

No existing method can solve the mixture problem as defined here (input: reads from a

mixed sample, a tree, and reads from each leaf of the tree; output: two placements on the tree).

Thus, we are forced to compare MISA to two control methods.

The simplest alternative method is TOP2: compute the distance of the mixed sample to

all reference species and place the query as sister to the species with smallest two distances. By

Corollary 2, this method should work well when the constituents are in the reference. Note that
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Figure 5.3. Placement error for each method when constituents of simulated mixtures are both
present, one present and one absent, or both absent in the reference set. Distributions are over 20
replicates for Drosophila (a), and 25 replicates for Columbicola/Lice (b) datasets. We show the
number of branches between each placement and the correct placement (i.e., 0 means perfect
accuracy). Because there are two placements, we show the error for both placements, designating
the one with lower error as primary and the second one as secondary.

we do not use Corollary 2 in the design of the MISA method. The second alternative to MISA

is to pretend the mix is a single-species sample and to perform phylogenetic placement using

APPLES [11]; in this scenario, we set both placements to be equal. By definition, APPLES is

not trying to get both placements correct; however, we can hope it can place at least one of the

two constituents correctly.

5.4 Results

5.4.1 Simulated mixture datasets

Constituents sampled in the reference set

When both constituents are in the reference library, the MISA method perfectly identifies

both constituent species both for the assembly-based Drosophila data and assembly-free Lice

data (Figure 5.3). In agreement with Corollary 2, TOP2 detects the correct placement in 89 out

of 90 placements across the two datasets. In one case on the Columbicola dataset, the secondary

placement of TOP2 is wrong by six edges. APPLES is able to correctly place one of the two

constituents everywhere except one case (out of 20) for Drosophila and five cases (out of 25) for

Lice. APPLES, by design, fails to identify the second species unless the constituents happen to

form a cherry.
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MISA also produces branch lengths that can be examined. When mixed species are in

the library, ideally, the total branch length between output placements and constituents should be

zero. For both datasets, the distance between the MISA placement and the correct placement is

in all but one case below 0.013 for both primary and secondary placements and is 0.018 in the

remaining case (Figure 5.4a).

Examining δ̂MR values on the Drosophila dataset, as predicted by the theory, δ̂MA and

δ̂MB are close to the theoretical bound 0.019 for k = 21 (always between 0.015 and 0.025; see

Figure 5.4b). On the Lice dataset, both δ̂MA and δ̂MB are close to 0.013 (theoretical bound

for k = 31) in all but three cases. In one case, the mixture has close to zero distance to both

constituents, one of which is 931; as mentioned before, this species contribute abnormally high

levels to the error of the backbone phylogeny (Figure 5.11) and should be treated as suspect.

The other outlier is a species, which we call 932, where the distance to mixture is 0.03. This

species has the longest terminal branch length in the tree (Figure 5.10). Interestingly, despite

not agreeing with the numerical predictions of the model, the 932 species is placed correctly by

MISA, while it is not placed correctly using TOP2 (the only case where TOP2 has an error).

Constituents fully or partially missing in the reference set

When one of the constituents is in the reference library, TOP2 finds that species with

perfect accuracy (Figure 5.3). However, it cannot accurately find the second constituent; the

median error is two edges for both Lice and Drosophila datasets, and it can be as high as eight

edges for the Lice dataset. Thus, TOP2 is only partially successful. APPLES similarly performs

well for one of the constituents but cannot find the second species. MISA, in contrast, has

high accuracy in this scenario. Its primary placements are always correct in both datasets. The

secondary placements are correct in 19 of 20 cases in Drosophila dataset. In one replicate, the

secondary placement is off by one edge. On Lice dataset, its secondary placements have a median

error of zero edges. The error is two edges or less in all but three cases (Fig. 5.3b). One of these

outlier cases is the only example in the Lice dataset where the two constituents happen to form a
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Figure 5.4. (a) For each placement found by MISA, we show the tree distance between the
placement and the correct constituent (which, here, is present in the reference set) on Columbicola,
Drosophila, and yeast (Saccharomyces) datasets. For yeast, we show results both for small and
extended backbone tree. (b) Observed distances between mixtures to constituents (e.g., δ̂MA and
δ̂MB) in Drosophila and Lice datasets. Horizontal red line indicates the value predicted by our
model (with k=31 and k=21 respectively). The outlier are labelled.

cherry (i.e., are sister taxa). Thus, they must be both placed on the same branch, but MISA only

places one of them on the correct branch. Nevertheless, for partially complete reference sets,

MISA greatly outperforms the alternatives.

When both constituents are missing from the set, TOP2 remains surprisingly accurate

in finding one of the two species (Figure 5.3); its primary placements are correct in all cases

except for one replicates of the Drosophila and three replicate of the Lice datasets. However, for

the second placement, TOP2 has high error levels (median: two edges for Drosophila and three

edges for Lice). APPLES has higher error than TOP2.

MISA has much better accuracy than the alternatives. It remains fully accurate on the

primary placement and has a median error of zero for the secondary placement on both datasets.

On Drosophila data, MISA finds the correct secondary placement in 75% of cases, and its error

does not exceed three branches in any replicate. On more challenging Lice dataset, it is within

three edges for the secondary placement in all but four outlier cases where its second placement

is five or six branches away from the correct placement. One of the outlier cases is again the
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Figure 5.5. Results on the Yeast (Saccharomyces) hybrid dataset. (a) The phylogeny of 14 “pure”
species and the origins for each of the six hybrid species and strains as postulated in the literature
(solid lines). The dotted lines show the placement of yHQL555 when the ancestors are removed
from the database. All other species are correctly placed by MISA when given this extended
backbone tree. (b) Placement error for each Yeast hybrid species when hybrid ancestors are both
present, one present and one absent, or both absent in the reference set. The error is shown for
both a backbone phylogeny of 8 Saccharomyces species and an extended phylogeny of 14 yeast
species sampling various genera. Errors are shown separately for the two placements (circle: the
placement with a lower error; triangle: the placement with a higher error).

cherry, and another outlier is a replicate where the true placement is on a zero-length branch. A

third outlier is a replicate where species 932, which was the outlier in terms of distance to the

mixture (Figure 5.4b), is one of the two constituents.

5.4.2 Fungal Hybridization

In the fungal dataset, overall, MISA has the best ability to identify the ancestral species

(Figure 5.5). When both ancestors are present in the database, MISA is able to identify both

ancestors correctly in all six cases with the small backbone and all but one ancestor with the

larger backbone. The exception is yHQL555, which is a mix of two sister species (i.e., a cherry).

MISA puts the hybrid at relatively low phylogenetic distances (0.018 or lower in all but three

cases) to both constituent (Figure 5.4a). However, distances are generally larger than Drosophila

and Lice datasets, which were true mixes. These larger distances on the hybrid yeast data may

indicate some amount of evolution after the hybridization event. With ancestors present, TOP2

has perfect accuracy. APPLES is rarely correct and often finds both ancestors incorrectly.
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The advantage of MISA compared to TOP2 becomes clear when one of the ancestors

are missing. When one ancestor is present, TOP2 finds it correctly in every case. However,

except for VIN7, it finds the second ancestor incorrectly, and it can be up to four branches off. In

contrast, MISA finds both placements correctly in all cases. Similar patterns are observed when

both ancestors are absent. TOP2 finds one of the two placements correctly everywhere except

for yHQL555 (with the large backbone) but fails to find the correct placement for the second

ancestor for VIN7 and yHQL555. Here, MISA has similar performance but manages to find both

ancestors correctly for VIN7 and one of the ancestors for yHQL555.

5.5 Discussion

We introduced MISA, a method for inserting a mixed sample onto two positions in a

reference phylogeny. MISA is a traditional distance-based phylogenetic method with a novel

twist: it seeks to decompose the measured distances between the mix and reference species

into their constituent parts. To enable this “deconvolution”, we introduced a simplified model

that, despite its various assumptions and approximations, is useful in making sense of mixture

distance (Eq. 5.4). Our results showed that not only MISA has high accuracy in identifying

constituents of a mixed sample, it can also identify ancestors of a recently hybridized species.

Moreover, MISA can accomplish this difficult task using the simplest possible form of input –

sets of unassembled reads both for the mixed query sample and the reference set.

Our model also allowed us to prove an interesting result: a mixed sample is expected to

have a lower measured distance to its constituents than to any other reference. More surprisingly,

this minimum distance is expected to be lower than a small constant value. Thus, in addition

to MISA, we were able to describe a simple method called TOP2 that simply picks the two

smallest distances as constituents. Our theoretical and empirical results showed that this fast

and simple method works well when the constituents are part of the reference set but can have

reduced accuracy in other scenarios. Therefore, the power of MISA, driven from its reliance on
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phylogenetic placement, is needed when we suspect a mixture may include novel or unsampled

species.

Our model predicts that δ̂MRi is close to the minimum of δ̂MA and δ̂MB (Figure 5.2d)

for k=31. The gap between our model and this minimum value, however small, is crucial for

the successful deconvolution of distances (with the minimum model, both constituent distances

cannot be recovered). Importantly, this gap vanishes as k goes to infinity and becomes larger for

smaller k. Our experiments show that a reasonable way to choose k is to examine the additivity

of distances obtained from different values. On Drosophila and Yeast data, increasing k from

21 to 31 results in an increase in error in double-placement (Figure 5.12) as well as the lack of

additivity as measured by the LSE error (Table 5.1). We therefore choose k that yields the most

additive distances for the backbone tree.

MISA was relatively fast on our datasets. On the largest dataset (Lice) with 20 backbone

species, the average execution time of an analysis on a mixture was approximately 30 seconds

using 36 cores Intel(R) Xeon(R) Gold 6240 CPU 2.60GHz with 384GB of DDR4. Solving the

optimization problem for a pair of branches took ≈1 second on average, and MISA runs in an

embarrassingly parallel fashion across all branch pairs. To be able to extend this approach to

much larger backbone trees, we will need to design heuristic methods that avoid examining all

pairs of placement branches.

5.5.1 Relevant literature

Our approach to mixture analysis is quite different from the literature. Methods developed

for metagenomics focus on matching reads to marker genes [e.g., 137, 214, 226] or reference

genomes [e.g., 248], placing reads on a phylogenetic tree [e.g., 18, 174], and finding signatures

of composition [e.g., 28, 203]. Here, we take a distance-based approach and seek to decompose

observed distances into their individual parts. A somewhat similar philosophy was used by

112, 113, who used spectral methods to factorize a matrix of k-mer frequencies into an abundance

vector and observed k-mer frequency matrices. This approach is different from ours because it i)
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assumes constituents are in the library, ii) operates on k-mer frequencies (for small k) rather than

k-mer presence or absence (for large k), and iii) formulates the problem as matrix factorization.

While these metagenomics methods are not presently available in forms that avail themselves

to application in our setting (placement of Eukaryote mixtures), future work should explore

whether they can be adapted to our setting.

Another relevant literature is phylogenetic network reconstruction in the face of hy-

bridization [see 171]. The problem addressed in network phylogeny is more challenging than our

problem because networks could have hybridization at ancestral nodes. In our case, hybridization

(or mixture) happens only between leaves of the tree, and little or no evolution occurs after

hybridization (as time passes, the hybrid eventually ceases to resemble the combination of its

constituents). Because of their more ambitious goal, explicit network methods do not operate

on distances and are not based on alignment-free methods. Instead, they operate on aligned

homologous loci and seek to find a network that best explains the distribution of observed gene

trees. In contract, some of the popular implicit network methods, such as SplitsTree [96], use

distances. However, these methods do not seek to find the correct placement under any model;

they simply provide means of visualizing discordance (i.e., lack of additivity) among observed

distances. Because the problem we address is simpler than explicit network reconstruction, we

can approach it using assembly-free distance-based methods. At the same time, unlike implicit

methods, we use a model that generates interpretable output (as opposed to simple visualizations

of discordance). Finally, we note that our model, as presently constructed, can handle alloploidy

but not homoploidy (where the hybrid is not the combination of both ancestors).

5.5.2 Shortcomings and future work

While generally accurate, MISA had a clear loss of accuracy under a special case. When

the constituents of the hybrid form a cherry (e.g., are sister species), both placements should

be on the same branch. The only incorrect identification by MISA on the real fungal dataset

(yHQL555) was a cherry, and some of the four outlier cases with high error on the Lice dataset
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were cherries. While the current formulation of MISA as two separate placements precludes

finding a cherry as the output, one can still hope that it puts the two placements on the same

branch. However, MISA is often able to place one but not both of the constituents on the correct

branch. This limitation is not a fundamental shortcoming of our model or methodology and can

be ameliorated in the future by allowing cherries as the solution to the optimization problem.

Achieving this improvement requires a second round of cherry placements on the phylogeny and

a change in the approximations used for x3.

Incorrect placements of MISA can be due to either an imperfect distance deconvolution

or inaccurate of distance-based placement using ordinary least squares. In other words, even if

distances are deconvoluted perfectly, we can still observe erroneous placements. In fact, on both

simulated datasets, where we know the true deconvolution, we observe this pattern (Figure 5.13).

In particular, on the Drosophila dataset, distance deconvolution seems to contribute very little to

the final error.

On the optimization side, we can enforce more constraints such as triangle inequality,

but these extra constraints may challenge convergence. Also, we did not fully explore optimizer

settings (e.g., the number of iterations and multiple initial points), leaving such exploration to

future work. Finally, some of the approximations (for example, the use of h−1 for the derivation

of Jacobian or the approximation of x3) could perhaps be improved in the future.

The optimization formulation can also be further improved. Here, we enforce the

model (Eq. 5.4) as hard constraints and optimize the OLS error between phylogenetic distances

and sequence distances. Thus, MISA tries to find the double-placement that is closest to

additivity while enforcing expectations under our model. However, our model involves stochastic

uncertainty (which we ignored; see below), and thus, the constraints may be too rigid. Future

work can explore alternative formulations where the model of δ̂MRi is treated as uncertain. For

example, we can incorporate the difference between LHS and RHS of Eq. 5.6 as part of the

optimization score; such a formulation would require a principled way to combine this penalty

with the penalty for deviations from additivity (i.e., the current objective function). Furthermore,
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we assigned equal weight to every term in Eq. 5.5. Previous results on distance-based placement

of single-species samples show that employing a weighting scheme [e.g. 68] improves accuracy

by downscaling the error contribution of long distances. At the cost of increasing the complexity

of the objective function, using FM weighting may improve the accuracy of MISA.

Our model leaves several questions unanswered. We do not know whether under our

model constituent distances are unique given observed distances to a set of references (we know

they are not for one or two references). Moreover, in deriving the model, we freely replaced

random quantities with their expectations without care for careful statistical modelling. These

derivations, therefore, have another level of approximation built into them. Our mode also

assumes a limit on the evolutionary divergence among reference and query species. We have no

reason to believe that MISA has high accuracy on mixtures of highly divergent species (e.g., from

different phyla). Nevertheless, we find it remarkable that despite all the simplifying assumptions

and approximation, the method still works with high accuracy on data that violate many of

those assumptions. Note that our simulated datasets were far from fully complying with our

assumptions. For example, the genomic contribution of the constituents to the mixture varies

from 40-60% in Drosophila, 36-62% Lice dataset (Figure 5.14).

Our analyses of hybrid yeast dataset only focused on mixes of two species. There are

known cases of mixes of three species, such as S. bayanus, which is hybrid of S. uvarum, S.

cerevisiae, and S. eubayanus [134]. Applied on S. bayanus, MISA identifies one of the ancestors,

S. uvarum and places the second ancestor on the root of the (extended) backbone tree. Performing

a second deconvolution of the uncertain placement may help identify the remaining two ancestors.

In general, how this model can be extended to mixtures of three or more species remains a topic

of future research.
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Figure 5.7. We approximate f (d1,d2,d3) =
(
1 − h(d1+d2−d3

2 )
)(

1 − h(d2+d3−d1
2 )

)(
1 −

h(d3+d1−d2
2 )

)
with f̃ (d1,d2,d3) =

(
1− h(d1+d2+d3

2 )
)
. We show the ratio of the two functions

for a set of d1 and d2 values (thus, 1 shown in red means a perfect approximation). Top: from
left to right, we set d3 to its minimum, median, and maximum possible values according to the
triangle inequality, which are respectively, |d1−d2|, max(d1,d2), and d1 +d2. Bottom: We set
d3 = max{d1,d2}. Note that in real applications, di values are in most cases less than 0.3.
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Figure 5.10. The reference biological trees obtained from [161] (Drosophila), [216] (Yeast)
and Boyd et al. [27] (Columbicola).
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Figure 5.11. Contribution of each species in Columbicola dataset to the total LSE. Recall that
LSE error is sum of squared differences between corrected sequence and phylogenetic distances
for every pair of leaves in the backbone tree. Here, we show the percentage of the total LSE that
is contributed by terms that include each species.
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Figure 5.12. Impact of kmer size to accuracy of double-placement on Drosophila (a) and Yeast
(extended) (b) datasets.
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Figure 5.13. Placement error when constituents of simulated mixtures are both present, one
present and one absent, or both absent in the reference set. Baseline shows ordinary least squares
APPLES placement of primary and secondary constituent prior to artificial mixing (i.e., with
correct deconvlution of distances). Distributions are over 20 replicates for Drosophila (a), and 22
replicates for Columbicola/Lice (b) datasets. We show the number of branches between each
placement and the correct placement (i.e., 0 means perfect accuracy).

Columbicola

Drosophila

0.3 0.4 0.5 0.6 0.7

Genomic contribution of first constituent

Figure 5.14. Genomic contribution of the first constituent in the entire mixture. When each
constituent contributes equally, the contribution value becomes 0.5, indicated with the vertical
line.

133



Chapter 6

Genome-wide alignment-free phylogenetic
distance estimation under a no strand-bias
model

Motivation: While alignment has been the dominant approach for determining homology

prior to phylogenetic inference, alignment-free methods can simplify the analysis, especially

when analyzing genome-wide data. Furthermore, alignment-free methods present the only

option for emerging forms of data, such as genome skims, which do not permit assembly.

Despite the appeal, alignment-free methods have not been competitive with alignment-based

methods in terms of accuracy. One limitation of alignment-free methods is their reliance on

simplified models of sequence evolution such as Jukes-Cantor. If we can estimate frequencies of

base substitutions in an alignment-free setting, we can compute pairwise distances under more

complex models. However, since the strand of DNA sequences is unknown for many forms of

genome-wide data, which arguably present the best use case for alignment-free methods, the

most complex models that one can use are the so-called no strand-bias models.

Results: We show how to calculate distances under a four-parameter no strand-bias model called

TK4 without relying on alignments or assemblies. The main idea is to replace letters in the input

sequences and recompute Jaccard indices between k-mer sets. However, on larger genomes, we

also need to compute the number of k-mer mismatches after replacement due to random chance
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as opposed to homology. We show in simulation that alignment-free distances can be highly

accurate when genomes evolve under the assumed models and study accuracy on assembled and

unassembled biological data.

Availability: Our software is available open-source at https://github.com/nishatbristy007/NSB

6.1 Introduction

The dominant methodology used in phylogenetic inference is assembling and aligning

sequences and using the alignments as input to phylogenetic inference. However, a large body

of work also exists on alignment-free [25, 46, 84, 91, 106, 126, 249] and even assembly-free

methods for inferring phylogenies [3, 63, 135, 209, 255]. While, for the most part, the alignment-

free methods have not been as accurate as alignment-based methods [25, 91], they do provide

several benefits and also enjoy emerging applications. The most obvious advantage is that

inferring alignments is difficult, and forgoing them would simplify the tree inference. The

challenges are further exacerbated when working with genome-wide data where long sequences

and large-scale events such as rearrangements make alignment even more challenging [264].

There is, therefore, a hope that by skipping the alignment step, we can eliminate the errors [264]

that are known to occur in the alignment step and impact phylogenetic accuracy [132, 143, 177].

In particular, at the whole-genome level, homology detection and alignment are both difficult

and error-prone [55, 128, 219]. Therefore, it seems possible (though by no means certain) that

alignment-free methods could provide a better trade-off between accuracy, running time, and

complexity of analyses, especially for analyzing genomes [72].

The main advantage of alignment-free methods may come from situations where align-

ment is not possible. In particular, genome skimming has recently emerged as a promising

method of acquiring genome-wide data inexpensively [26] by generating short reads from across

the genome at low coverage (e.g., 1X). While such data cannot be assembled, mapping them

against a reference genome, when available [242], or analyzing them in an assembly-free fashion,
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when references are not available, are now possible [10, 13, 121, 209, 230]. Multiple sequence

alignment is not an option given reads with low coverage, leaving us with alignment-free methods

as the only possibility. Among assembly-free methods, many use k-mers to compute distances

between all pairs of species and then use distance-based methods to infer the phylogeny or to

classify and/or cluster them. A long history [198, 199, 255] of methods using k-mer counts

(with small k) exist. Some recent k-mer-based methods that work with both assembled and un-

assembled data and model low coverage instead use presence/absence with large k [63, 209, 230].

We refer the reader to a recent benchmarking analysis for a complete survey [265].

Despite their practical benefits in terms of simplicity and scalability, alignment-free

methods have limitations of their own. One of these limitations is the reduced complexity

of sequence evolution models employed. Most alignment-free methods rely on the simplest

possible model of sequence evolution, Jukes-Cantor (JC) [105], which assumes equiprobable

bases and base substitutions. Criscuolo [41] recently showed how to compute alignment-free

distances under a slightly more complex Felsenstein [65] (F81) model where the base frequencies

can be different. In contrast, alignment-based methods use more complex models, such as the

general time-reversible (GTR) [231] model paired with models of rate variation across sites

and further partitioning data to allow changing model parameters. The reliance on models like

JC and F81 is not an oversight by the research community. In the absence of alignments, it is

more challenging to design methods for more complex sequence evolution models that need to

estimate parameters related to relative rates of substitutions among bases. The difficulties are

exacerbated by the fact that sequences can come from either of the two strands for unassembled

and unaligned data, making it difficult to calculate some parameters of complex models and

impossible to compute others [257]. Despite that, Sarmashghi et al. [209] proposed a trick that

they conjectured could be used in conjunction with the well-known LogDet technique [222] to

compute distances under the GTR model from unassembled reads. The claim that distances

under more complex time-reversible models like GTR can be computed from unassembled data

has never been carefully examined.
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In this paper, we argue that when input data is unassembled, where reads can be of either

strand (mixed-strand data), no strand-bias models are the most complex time-reversible models

one can employ. We go on to describe an algorithm that can estimate all the parameters needed

to compute distances for a time-reversible no strand-bias model called TK4 [227]. Our proposed

algorithm, in summary, replaces the nucleotide characters in input sequences in four different

ways (e.g., C→ G), and computes the Jaccard index between these letter-substituted sequences.

However, we observed that a fundamental assumption of many k-mer-based methods, including

Skmer, that matching k-mers can only appear by homology for a large enough k, can easily be

violated after letter substitutions, especially for genomes with unbalanced base frequencies, since

the number of characters in the base genomes decreases from four to three. Luckily, the expected

number of random matches between two k-mers from two random genomes can be derived

[202], and we go one step further and compute the expected (containment) Jaccard between

two unrelated genomes (Lemma 5). Using these calculations, we can correct for the effect

of non-homologous k-mer matches. Using analytical calculations and simulations, we show

that using this technique to compute distances under the TK4 model can improve the accuracy

of estimated distances compared to JC, especially when the distances are high and deviations

from the assumptions of the JC model are sufficiently high. We then use real biological data to

demonstrate that using the TK4 model improves the concordance of phylogenetic trees inferred

from alignment-free methods and those inferred from alignment-based methods, indicating

improved accuracy. We end by discussing the limitations of the method.

6.2 Approach

6.2.1 Background information

Evolutionary model.

Suppose that we have two homologous DNA sequences G and H on character alphabet

Σ = {A,C,G,T} taken from two species F1 and F2 that share a common ancestor. For a given

base i ∈ Σ, let ī denote its complementary base (e.g., Ā = T ). We assume that each homologous
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c.

Figure 6.1. (a) Sueoka’s no strand-bias model of evolution with 6 rate parameters. TK5
model (b) is a special case of the 6-parameter model with the constraint rAT = rGC. TK4 is the
time-reversible version of TK5 model with the condition ω = β

α+β
= ε

ε+δ
where ω is the total

equilibrium frequency of bases A and T . (c) Nucleotide base pairs in homologous sites and their
observed relative frequencies.

site in G and H is evolved independently and according to a stationary continuous-time Markov-

chain process on state set Σ that is defined by a 4×4 instantaneous rate matrix R = (ri j). Letting

π =

[
πA πC πG πT

]
denote the stationary base frequencies in G and H , (thus, πR = 0) the

most general time-reversible stationary model, GTR [231], adds local balance constraints (i.e.,

∀i, j : πiri j = π jr ji), which lead to nine free parameters. Another constraint is added by requiring

the time to be in the unit of one expected mutation, leaving us with eight free parameters. The

transition matrix P = eRt governs probabilities of base substitutions after time t.

Our goal is to estimate the time of divergence t between the two given genomes. Such

estimates, if statistically unbiased, would converge to additivity and can be used with any

distance-based phylogenetic inference method. In the last 50 years, numerous models with

reduced complexity (i.e., fewer parameters) compared to the general Markov model have been

proposed [83, 105, 222, 228], and some of these models have analytical equations for distance

calculations [83, 228]. For example, let genomic distance d be the probability of observing

a change in a homologous position. Under the simplest model, JC, the maximum likelihood

estimator is

t̂ =−3
4

ln
(

1− 4
3

d
)

(6.1)
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No strand-bias models.

A restriction of GTR, relevant to the study of Next-gen sequencing (NGS) reads, is

the model proposed by Sueoka [224]. Chargaff [36] had earlier noted that in double-stranded

DNA, the frequency of A should equal T, and that of G should equal C (parity rule 1). Thus,

an i→ j substitution occurring on the forward DNA strand must have an identical rate to an

i→ j substitution occurring on the reverse strand, which is the basis of Sueoka’s no strand-bias

model (Fig. 6.1). Since an i→ j entails an ī→ j̄ substitution on its opposite strand, the model

constrains ri j = rī j̄ and therefore reduces the number of independent parameters in the model

to six. Surprisingly, the parity of A with T and C with G has been extensively documented on

single-strand DNA as well (parity rule 2) [168]. The reason behind parity on a single strand

has been debated from the start [71, 74] and continue to be debated [73, 160], with the two (not

mutually exclusive) hypotheses based on a) Sueoka’s model of mutational bias in the replication

of polymerase in neutrally evolving genomes [140, 224], and b) Forsdyke’s structural model that

invokes selective pressure. Regardless of the cause of parity rule 2, a no strand-bias model can

be appropriate even for single-strand data, as Sueoka intended the model to be used.

In this paper, we deal with conditions where the no strand-bias model is the best we

can do due to parity rule 1. Assume that G is not a single stranded sequence but a set of n

homologous sequences G1,G2, · · · ,Gn (similarly for H ) where each sequence Gi or Hi comes

from an arbitrary strand. Inputs made of k-mers, reads, or (unaligned) contigs can be viewed

this way. With this data, ri j is unidentifiable from rī j̄. The main limitation of the no strand-bias

model is that it does not allow analytical calculation of distances [257].

TK4.

Predating Suoeka’s paper by 14 years, Takahata and Kimura introduced a 5-parameter

non-time reversible model called TK5 [227] (Fig. 6.1b) that imposes on the general 6-parameter

model the constraint rAT = rTA = rGC = rCG = γ and assumes that πA = πT = ω/2 and πC =

πG = (1−ω)/2. By imposing ω = β

α+β
= ε

ε+δ
, Takahata and Kimura introduce a time-reversible
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Figure 6.2. JC under-estimates TK4. The colors show relative bias of JC defined as t̂−t
t

with t̂ computed using equation (6.1) where d is set to the expected hamming distance under
TK4, which can be computed as d = 1−π.diag(eRt). Each subplot corresponds to a choice of
α,δ ,γ , changing α across rows and γ across columns, fixing δ = 1. The x-axis changes the true
evolutionary distance t, and the y-axis changes the base frequency parameter ω . Note that the JC
model corresponds to α = δ = γ = 4ω = 1.

version of TK5 model with 4 parameters, called TK4 [227], and derive an analytical formula for

distance estimation under TK4. This equation uses 16 combinations of bases possible at each site,

as summarized in Figure 6.1c. Let fi j for i, j ∈ Σ denote the relative frequency of sites where the

first and second genome has character i and j, respectively. We define P= fAG+ fGA+ fTC+ fCT ,

Q = fAC+ fCA+ fT G+ fGT , R = fAT + fTA, S = fCG+ fGC, S1 = fAA+ fT T , and S2 = fCC+ fGG.
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Note that P+Q1+Q2+R+S1+S2 = 1. An unbiased estimated phylogenetic distance t̂ between

G and H is given in terms of relative frequencies as follows:

t̂ =−1
4

ln

[{
(S1−Q1)(S2−Q2)− (P−R

2 )2

ω(1−ω)

}

·
{

1− P+R
2ω(1−ω)

}8ω(1−ω)−1
] (6.2)

where ω can also be written as:

ω = S1 +Q1 +
1
2
(P+R) (6.3)

We note that the Takahata and Kimura [227] article has a mistake and has the term (S1 +Q1) in

(6.2) instead of (S1−Q1). Substituting the values of X−(T ) and Y−(T ), as defined in Eqn. 2 of

the original paper, to Eqn. 18 in the original paper results in (S1−Q1) instead of (S1 +Q1).

Comparing (6.1) and (6.2), it is not immediately obvious if the differences are conse-

quential. By plotting the relative difference between (6.1) given the expected hamming distance

under TK4 and the true time t, we can see that when parameters diverge from JC in biologically

plausible ways, the often-used equation (6.1) can underestimate the true distance by more than

25% (Fig. 6.2). For example, with an AT-rich genome with ω = 0.75, setting α = 4 but keeping

all other parameters equal to JC leads to 8% and 16% bias for true distances t = 0.25 and 0.5,

respectively. As expected, bias is reduced when TK4 parameters are all close to 1 (i.e., JC

assumption). Overall, it seems that high levels of bias correspond to cases where some of the

relative rates diverge from others while base frequencies also diverge substantially from 25%

(both of which are biologically plausible).

Assembly-free distance estimation.

Although it is trivial to compute observed frequencies of substitutions between two

aligned sequences, such calculations are challenging in the absence of alignment, for instance,

141



when inputs are sets of unassembled reads. In the assembly-free setting, most methods assume

the simple JC model, which only requires genomic distance. Luckily, various alignment-free

methods can estimate d [100, 179, 209, 255]. Many of these algorithms [179, 209] break down

the genome skims into k-mers.

We assume that a genome X is a finite i.i.d. stochastic process X1X2 · · ·XL where each

random variable (site) Xm is drawn from categorical distribution with probability distribution

P[Xm = A] = P[Xm = T ] = πA = πT = ω/2 and P[Xm =C] = P[Xm = G] = πC = πG = (1−ω)/2.

A k-mer at position m is XmXm+1 · · ·Xm+k−1 and denoted with xm in short. We make the standard

simplifying assumption of k-mer independence (xm is independent from all k− 1 k-mers on

each side). We denote the set of all k-mers in X with s(X ). When k is sufficiently large with

respect to L and ω , we can assume that |s(X )| ≈ L. A second genome Y is originated from

X through a substitution process described earlier. The probability of a match between two

homologous k-mers is (1− d)k. Therefore, the expected total number of homologous k-mer

matches between s(X ) and s(Y ) is approximately S = L · (1−d)k [63, 179, 209]. Denoting by

C = S/L the containment Jaccard index, note that

d̂ = 1−C
1
k . (6.4)

The Jaccard index J, defined as the intersection divided by the union of two sets, is easy

to compute using techniques such as min-hash [179]. Thus, instead of C, most methods have

relied on J, which is intimately connected to C because J = S
2L−S and thus, C = S

L = 2J
1+J Finally,

following the TK4 notations, d̂ = P+Q1 +Q2 +R holds.

6.2.2 Containment Jaccard correction

In addition to homologous ones, k-mers in non-homologous positions in the two genomes

can also match, albeit with lower probability. Distance estimation using Jaccard index requires

computing the number of shared k-mers through homology. The number of non-homologous
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k-mer matches contributing to |s(X )∩ s(Y )| is negligible in most settings when k is large

enough for the size of the alphabet; e.g., k = 31 with |Σ|= 4, leading to 431 ≈ 4×1018 possible

k-mers. However, as we will see, our algorithm for estimating TK4 distances requires reducing

the alphabet set to three letters, and based on the value of ω , may lead to biased probabilities.

Under such conditions, the non-homologous k-mer matches cannot be ignored.

Röhling et al. [202] have derived an expression for the expected number of k-mers xm and

yn, n ̸= m that match between the two genomes by chance (i.e., not through homology). However,

to compute the contribution of non-homologous k-mer matches to |s(X )∩ s(Y )|, not only we

need to know the expected number of k-mers matching by chance, we also need to account for

a k-mer xm matching multiple k-mers in the other genome. Consequently, we propose a more

precise estimate for the cardinality of intersection between two random genomes.

Lemma 5. The expected value of C̃ = |s(X )∩s(Z )|
L , containment Jaccard for k-mers between two

genomes X and Z generated by two i.i.d processes with stationary distribution πA = πT = ω/2

and πC = πG = 1−ω

2 , is:

E[C̃] =
2k

L

k

∑
a=0

(
1−
(

1−
(ω

2
)a(1−ω

2
)k−a

)L
)2(k

a

)
(6.5)

Proof. For 0≤ a≤ k, let r ∈ Σk be a k-mer with a A’s and T’s.

P(xm = r) = P(zm = r) =
(w

2

)a
(

1−w
2

)k−a

.

Thus, due to independence assumption of xm from its overlapping neighbors, the probability of r
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being in set s(X ) is the following

P(r ∈ s(X )) = 1−P(r /∈ s(X )) = 1−
L

∏
m=1

P(r ̸= xm)

= 1− (1−P(r = xm))
L

= 1−

(
1−
(w

2

)a
(

1−w
2

)k−a
)L

Results follows by noting that there are 2k(k
a

)
many selections for each r and P(r ∈ s(X )) =

P(r ∈ s(Z )).

By stationarity of the substitution process, Y has the same base frequencies as X . Thus,

|s(X )∩ s(Z )| can be used to estimate the non-homologous portion of |s(X )∩ s(Y )|. In other

words, |s(X )∩ s(Y )|− |s(X )∩ s(Z )| is the number of homologous k-mers. Combining (6.4)

and (6.5), d can be estimated from the containment Jaccard C of X and Y :

d̂ = 1− (C−E[C̃])
1
k (6.6)

On unassembled data, we account for lack of coverage and sequencing errors when computing d̂

using the approach described by Sarmashghi et al. [209] as detailed in D.1.

6.2.3 Calculation of TK4 terms via replacement

Given the possibility of high error with the JC model (Fig. 6.2), we would like to

develop alignment-free methods of computing distances according to the TK4 model using (6.2).

Therefore, our goal is to estimate the terms P, Q1, Q2, R, S1, S2, and ω . Consider the replacement

technique where every occurrence of a character i ∈ Σ in X and Y is replaced with character

j ∈ Σ, i ̸= j. Let di j be the genomic distance between two genomes after such replacement. The

reduction in genomic distance after i to j substitution is exactly fi j + f ji. Using the Eqn. (6.6),

di j can be estimated from empirical containment Jaccard Ci j and expected number of background
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k-mer matches E[C̃i j]. Using this replacement scheme, the P, Q1, Q2 and R terms in (6.2) are

estimated as follows:
P = 2d̂− d̂AG− d̂CT Q1 = d̂− d̂AT

R = 2d̂− d̂AC− d̂GT Q2 = d̂− d̂CG

(6.7)

As base frequencies ω = (πA +πT )/2 can be trivially computed from X and Y , we can compute

the remaining terms S1 and S2 using (6.3):

S1 = ω−Q1−
P+R

2
S2 = 1−ω−Q2−

P+R
2

(6.8)

As mentioned previously, estimating di j requires computation of E[C̃i j]. Calculation of

this term depends on the type of replacement. Lemma 5 can be easily updated to account for

replacements. For instance,

E[C̃AT ] =
1
L

k

∑
a=0

1−

(
1−ω

a
(

1−ω

2

)k−a
)L
2(

k
a

)
2k−a

E[C̃CG] =
1
L

k

∑
a=0

(
1−
(

1−
(

ω

2

)a
(1−ω)k−a

)L
)2(k

a

)
2a

E[C̃AC] = E[C̃AG] =

1
L

k

∑
a=0

k−a

∑
b=0

(
1−
(

1−
(1

2
)a(ω

2
)b(1−ω

2
)k−a−b

)L
)2(k

a

)(
k−1

a

)
(6.9)

Since letter replacements, especially A to T for ω > 0.5 and G to C for ω < 0.5, can lead to a

very high expected number of shared k-mers by chance, the use of these equations to correct

for their effect is essential. For example, with a pair genomes of length 108 and ω = 0.6, the

expected number of background matches between 2-way genomes after A-to-T replacement

is 289,000, which is 5× larger than the number of homologous k-mer matches when t = 0.5.

Figure 6.7 shows the accuracy of equations (6.9) and their improvement over simply using the

expected number of k-mer matches, as derived by Röhling et al. [202].
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6.2.4 Handling mixed-strand conditions

We now consider the case in which each k-mer in X and Y may come from the forward

or reverse DNA strand arbitrarily. In practice, chromosomes or contigs in an assembly or reads

in a sequencing run may come arbitrarily from either forward or reverse strands. For simpler

exposition, assume each genome consists of a single contig from an unknown strand (no such

assumption needed by method). Let X ′ be another finite i.i.d. stochastic process X ′1X ′2X ′3 . . .X
′
L

such that is X ′i = Xi with some unknown but fixed probability px > 0 and X ′i = X̄L−i with

probability 1− px where X̄i is reverse complement (RC) of Xi. Y ′ is defined similarly. Genomic

distance between X and Y can still be computed using (6.4) by using canonical k-mers, a

concept utilized by several tools [150, 179]. We utilize the same concept and construct a 2-way

genome Ż = Z′1Z′2Z′3 . . .Z
′
LZ̄′LZ̄′L−1Z̄′L−2 . . . Z̄

′
1 with Z ∈ {X ,Y } by adding the RC of each

genome to itself. By design, both forward and reverse copies of each k-mer in Z are present

in Ż . If xm = ym, either (ẋm = ẏm)∧ (ẋ2L−m = ẏ2L−m) or (ẋm = ẏ2L−m)∧ (ẋ2L−m = ẏm). Either

way, the number of homologous k-mer matches and genome length both double compared to the

case where all sequences are of the same strand, leaving containment Jaccard due to homologous

k-mers unchanged; thus, Eqn. (6.6) is applicable to 2-way genomes as long as E[C̃] is computed

with 2L.

Similarly to the replacement technique shown previously, we introduce i to j replacements

on a 2-way genome. For each homologous site (Xm,Ym) in the base genomes X and Y , we

have two pairs of homologous sites in Ẋ and Ẏ . Although there are 4 alternative choices for

assignment of forward and reverse strand to {Ẋm,Ẏm, Ẋ2L−m,Ẏ2L−m}, without loss of generality,

let (Ẋm,Ẏm) = (Xm,Ym) and (Ẋ2L−m,Ẏ2L−m) = (X̄m,Ȳm). After replacing every occurrence of
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i ∈ Σ with j ∈ Σ in Ẋ and Ẏ ,

P(Ẋm = Ẏm) = 1−
(
d−P(Xm = i,Ym = j)

−P(Xm = j,Ym = i)
)

P(Ẋ2L−m = Ẏ2L−m) = 1−
(
d−P(Xm = ī,Ym = j̄)

−P(Xm = j̄,Ym = ī)
)

The reduction in genomic distance between Ẋ and Ẏ after the replacement, d̂ − d̂i j, is

fi j + f ji in the forward strand (i.e. (Ẋ1,Ẏ1) . . .(ẊL,ẎL)) and fī j̄ + f j̄ī in the reverse strand (i.e.

(ẊL+1,ẎL+1) . . .(Ẋ2L,Ẏ2L) ). The overall reduction is the average of the reduction in the forward

and reverse strands, which is 1
2( fi j + f ji + fī j̄ + f j̄ī). As a result, d̂AG = d̂CT and d̂AC = d̂GT . The

P, Q1, Q2 and R terms in (6.2) are estimated from 2-way genome using:

P = 2d̂−2d̂AG Q1 = d̂− d̂AT

R = 2d̂−2d̂AC Q2 = d̂− d̂CG

Thus, we need to compute only five distance values from the data, d̂, d̂AC, d̂AG, d̂AT , and d̂CG in

addition to an estimation of ω .

Although four TK4 terms P, Q1, Q2, and R can be determined independently given

the estimate d̂, they must satisfy the constraint P+Q1 +Q2 +R = d̂. Thus, d̂ = 2d̂− 2d̂AG +

d̂− d̂AT + d̂− d̂CG + 2d̂− 2d̂AC. Since all five estimated values d̂, d̂AC, d̂AG, d̂AT , and d̂CG are

empirical, it cannot be ensured that this equation will be satisfied. In other words, the system

of equations has one excess observation. Among the five, the distance with no replacements

d̂ is always the largest, i.e. has the lowest containment Jaccard index. For large distances, the

containment Jaccard can be zero, which prohibits computing any evolutionary distance (JC or

TK4) from the data. In order to increase the distance upper-bound of T K4 model, we opt to

reduce the number of free variables in the system by computing d̂ from d̂i j, not directly from
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data. More precisely,

d̂ = 2d̂−2d̂AG + d̂− d̂AT + d̂− d̂CG +2d̂−2d̂AC

= (2d̂AG +2d̂AC + d̂AT + d̂CG)/5
(6.10)

This equation can be used to compute JC model distances using (6.1). We also use it to calculate

P, Q1, Q1, and R as a linear combination of four d̂i j distances calculated using (6.6) after

replacement:

P = (−6d̂AG +4d̂AC +2d̂AT +2d̂CG)/5

R = (4d̂AG−6d̂AC +2d̂AT +2d̂CG)/5

Q1 = (2d̂AG +2d̂AC−4d̂AT + d̂CG)/5

Q2 = (2d̂AG +2d̂AC + d̂AT −4d̂CG)/5

(6.11)

6.2.5 NSB: TK4 distance estimation using k-mers

Algorithm 6.1 combines results in the previous sections into a three-step process (Fig. 6.6)

for estimating phylogenetic distances under the TK4 model. We implemented the algorithm

using Python in a method called the NSB (No Strand-Bias) distance estimator. In its first step,

NSB adds the reverse complement of all input sequences. It then builds separate k-mer libraries

for each of the inputs using a left/right encoding scheme where nucleotide bases A, C, G and T

are represented as 2-bit numbers, thus requiring 64-bit integer for k <= 32. NSB then builds base

substituted encoded k-mer libraries from the initial encoded library by replacing the encoded bits

of base i with the encoded bits of base j, for (i, j) ∈ {(A,C),(A,G),(A,T ),(C,G)}. Thanks to a

Left/Right encoding scheme, a replacement operation on an array of k-mers can be computed

rapidly using fast and vectorized bitwise operations such as XOR, AND, and Shift (e.g., see

A to C function in Algorithm 6.1). Finally, NSB computes the Jaccard indices for 4 pairs of

base-substituted encoded libraries by computing the cardinality of the intersection succeeded by

containment Jaccard correction. In practice, input genomes are almost never the same size and
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never follow the same base frequencies. When computing E[C̃i j] using Lemma 5, P(r ∈ s(X ))

and P(r ∈ s(Y )) are computed using L and ω of the respective genome for a given k-mer r. In

the final stage, we estimate the phylogenetic distance of each pair of genomes using Equation

(6.2). Various components in this equation are calculated using the equations (6.8)–(6.11). L

and ω are set to the average of the two input genomes. When input data is unassembled (reads),

we run Skmer prior to NSB to obtain L, coverage, and sequencing error rate. Computing the

cardinality of the intersection between two encodings of size N takes O(N log(N)) time and

O(N) memory. Therefore, time and memory complexity of Algorithm 6.1 are O(n2N log(N))

and O(N) since no more than two encodings are loaded into the memory simultaneously.

6.3 Validation Results

We validate NSB in simulations and on real data. and compare it to three methods on

assembled data. NSB-JC is JC distance computed using (6.10) and (6.1) with our tool. We

also test using Jellyfish (2.3.0) and Skmer (3.1.0) to estimate containment Jaccard index and

subsequently JC distance using (6.1) and (6.6). Jellyfish computes Jaccard exactly and Skmer

approximates it using 105 sketches. On genome skims, we compare NSB-TK4 to Skmer.

6.3.1 Simulation study

Simulating genome sequences under the TK4 model

We use our own procedure to simulate pairs of genomes evolved under the TK4 model

with controlled levels of distance and model parameters (https://github.com/balabanmetin/tk4-

evol-sim). First, we either use a real genome as the ancestral genome or simulate one by drawing

each site randomly from π with user-defined ω . We simulate two separate genomes from the

ancestral genome by introducing substitutions at random positions. The frequency of each

substitution type is determined by the TK4 model transition probability matrix P and half of

the targeted distance t/2, producing two genomes with the evolutionary distance t. We create

two simulated datasets. The first dataset uses a randomly generated 100Mbp base genome with
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Table 6.1. NSB: TK4 Distance estimation. Notations: We denote the set of all reference
sequences by S. NSB first runs PREPROCESS procedure, which itself uses ADD RC to add
the RC of genomes. It then calculates pairwise distances of the sequences according to the
PAIRWISE-DIST procedure. BG INTERSECT computes expected number of background
matches after replacement the using equation (6.9).

1: PREPROCESS(S)
2: for G ∈ S do
3: E←ENCODE(ADD RC(G))
4: for (i, j) ∈ {(A,C),(A,G),(A,T ),(C,G)}

do
5: Ei j← /0
6: for e ∈ E do
7: Ei j← Ei j ∪{ i TO j(e) }
8: end for
9: end for

10: Save {EAC,EAG,EAT ,ECG} to disk
11: end for

12: ENCODE(G2way)
13: E← /0
14: for k-mer a ∈ G2way do
15: e← 2k bit zeros
16: for letter li ∈ a do
17: ei← 1 if li ∈ {C,G}
18: ei+k← 1 if li ∈ {A,G}
19: end for
20: E← E ∪{e}
21: end for
22: return E

23: A TO C(e) # an example of i TO j function
24: mask← 2k−1
25: e1← first k bits of e

26: e2← last k bits of e
27: e3← e2 & (e1⊕mask)
28: e1← e1⊕ e3
29: e2← e2⊕ e3
30: return 2k bits ((e1 << k)+ e2)

31: PAIRWISE-DIST(G1,G2)
32: for (i, j) ∈ {(A,C),(A,G),(A,T ),(C,G)} do
33: (Ei j,1,Ei j,2)← Read (G1,G2) from disk
34: Di j← G DIST(Ei j,1,Ei j,2,L1,L2,ω1,ω2)
35: end for
36: return CLC-TK4-DIST(DAC,DAG,DAT ,DCG)

37: CLC-TK4-DIST(DAC,DAG,DAT ,DCG)
38: D← (2DAG +2DAC +DAT +DCG)/5
39: P← D−DAG

40: Q1← D−DAT

41: Q2← D−DCG

42: R← D−DAC

43: ω ← (ω1 +ω2)/2

44: S1← ω− (P+R)/2−Q1
45: S2← 1−ω− (P+R)/2−Q2
46: return TK4 distance using Equation (6.2)

47: G DIST(Ei j,1,Ei j,2,L1,L2,ω1,ω2)
48: I← |Ei j,1∩Ei j,2|
49: Ic← BG INTERSECT(i, j,L1,L2,ω1,ω2)
50: C← 2(I− Ic)/(L1 +L2) # Containment Jaccard
51: return 1− (C)

1
k

ω = 0.6. The second dataset uses a real assembled genome of Saccharomyces arboricola (11

Mbp) as the base sequence. The base frequencies of the available S. arboricola genome are

πA ≈ πT ≈ 0.307 and πC ≈ πG ≈ 0.193, which follow the assumptions of TK4 with ω = 0.614.

We set the parameters of the TK4 model according to Fig. 6.1, exploring eight values of α , δ ,

and γ . Recall that δ/α = ε/β and ω = β

β+α
= ε

ε+δ
, leaving us with only three free parameters for a

fixed w. We generated eight model conditions with different TK4 parameters (Table D.1) chosen
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to include cases with both minimal and substantial deviations from the JC model based on the

earlier calculations (Fig. 6.2). For each model condition, we simulated genome sequences with

true distances t ∈ {0.01,0.05,0.1,0.2,0.3,0.4,0.5}, each with 10 replicates, covering a range of

both short and long distances.

Results on simulations under the TK4 model

Random base genomes.

When input genomes are generated in the i.i.d. fashion assumed by both evolutionary

models, across all model conditions and regardless of the true phylogenetic distances t, the

distances estimated by NSB-TK4 are highly accurate (Fig. 6.3). In contrast, JC distances are

accurate when the true distance t is low but are under-estimated when t increases. In the most

challenging case, t = 0.5, NSB-TK4 deviates only 0.3% from the true value on average compared

to 7.8% for Jellyfish-JC. The error of Jellyfish-JC is as high as 18% when γ = 32, which causes

extreme deviations from JC. The best performance of JC is when all parameters except ω follow

JC. As models become successively more deviant from JC assumptions, the accuracy of JC

diminishes.

Finally, comparing the two ways of obtaining JC distances, for t ≤ 0.3, the approximate

Skmer distances are slightly more accurate than Jellyfish. However, when t > 0.3, Skmer

distances become less accurate. When true distance t ≥ 0.4, Skmer fails to estimate distances

in some cases (most cases for t = 0.5) because the true Jaccard index becomes too small (e.g.,

< 10−5) to compute reliably with sketches of size 105.

Yeast-base simulations.

The TK4-based calculations show improvements over JC computed using NSB or Skmer

across some model conditions except for δ = γ = 1 that resembles JC (Fig. 6.3). However, the

comparison to JC computed exactly (using JellyFish) is more complex. When deviations from

JC are relatively low, JellyFish-JC can be as accurate or even more accurate than NSB-TK4. It is

only with higher levels of deviation from JC that improvements of NSB-TK4 over JC are clear.
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Figure 6.3. Comparing the accuracy of distances estimated by different approaches on random
and Yeast-based simulated genomes. Genome sequences were simulated by randomly substitut-
ing the genome skims of Saccharomyces arboricola (11 Mbp) and a random 100 Mbp sequence
with eight different sets of TK4 parameters and with seven controlled true distances. Here, ω is
fixed, and since these rates do not have a scale, α = 1 in all cases. We show the average true
distance divided by estimated distances (y-axis) with standard errors (over replicates, requiring
at least two) against the true distances. Annotated numbers show the number of replicates out of
10 where Skmer or JellyFish return infinity. See Fig. 6.9 for linear scale.

Regardless of simulation parameters, phylogenetic distances t ≤ 0.1 are estimated with high

accuracy under both TK4 and JC models. However, the JC model starts to underestimate the

distance as we increase the distance t, and the underestimations are substantial when t ≥ 0.3.

Moreover, the JC error is not linear or even monotonically increasing with respect to t, meaning

that the distance matrices obtained from the JC model may not be additive. When t is increased

to 0.5, TK4-based distances tend to have reasonable accuracy with a few exceptions (e.g., for

γ = 8). In some cases, TK4 distances have more than 10% error with increased t and in three

conditions are consistently less accurate than JC. Comparing the results to random base genomes,

the reduced accuracy of TK4 on these conditions has to be due to violations of the model in the

base genome, a point that we will return to in the discussion section.

Finally, We explore the impact of the choice of k-mer size in accuracy of tested methods.
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We select the simulated yeast genomes with a fixed model-condition δ = 1 and γ = 4 and

test k ∈ {21,23,25,27,29,31} over ten replicates. We do not explore k > 31 because Jellyfish

and NSB do not support it. There is no single k value that performs universally better than

others (Fig. 6.8); the choice depends on the distance and the method. For k = 21, NSB-TK4

overestimates or underestimates the true distance when d ≤ 0.1 or 0.1 < d ≤ 0.4 respectively.

On the other hand, for d values larger than 0.4, NSB-TK4 does not return a valid distance due

to overestimation of number of background matches. As k increases, distance estimation using

NSB-TK4 becomes more accurate, reaching peak accuracy in k = 31 setting. More generally,

NSB-TK4 and NSB-JC are more sensitive to the selection of k than Jellyfish and Skmer. For

example, when d = 0.4, the estimation error difference between the most and the least accurate

estimates are 13.7% (k = 31 and k = 23), 12.5% (k = 31 and k = 23), 6.3% (k = 27 and k = 31),

and 1.2% (k = 31 and k = 21) for NSB-TK4, NSB-JC, Skmer-JC, and Jellyfish-JC respectively.

Given the totally of results, we recommend setting k = 31 for NSB-TK4.

Simulation of genomes and phylogenies under the GTR model

In order to compare the performance of TK4 and JC models under the presence of

model misspesification, we simulate an 8-taxa dataset with genomes that are evolved under

the GTR [232], which can substantially violate assumptions of both JC and TK4 models. Of

the 120 fully-balanced and caterpillar tree topologies simulated by Rachtman et al. 194 using

Simphy [149], we first proceed with taking the first 20 for each category. In these 8-taxa trees,

branch lengths are randomly selected from the log-uniform distribution ranging between 0.00001

and 0.12. Next, we simulate 10Mbp genome sequences using INDELible [70] with following

model parameters. Base frequences of the GTR model follow {πA = ω/2,πC = (1−ω)/2,πG =

(1−ω)/2,πT =ω/2}where ω is a random variable from Beta(30,21) distribution. Other entries

of the GTR matrices are drawn from Dirichlet distribution with parameters (50,7,12,12,14,50)

corresponding to C↔ T , A↔ T , G↔ T , A↔ C, G↔ C, G↔ A. Each method produces

an 8× 8 distance matrix, which is then given to FastME 2.0 [123] to estimate the phylogeny.
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Since we have a tree, we compare the methods by measuring Robinson and Foulds 201 (RF)

distance between the true tree and the inferred tree. Beyond topological accuracy, we quantify

the divergence of the TK4 and JC distances from the additivity using the Fitch and Margoliash 68

(FME) weighted least squares error Since FME metric weights distances by t̂−2, it is insensitive

to the unit and scale of branch lengths. When measuring the FM metric, we use the combination

of true tree topology and estimated distances, which ensures measurements across different

methods are based on the same (true) tree.
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Figure 6.4. Deviation from additivity measured for TK4 and JC models of evolution on the
dataset of 40 8-taxa phylogenies simulated under GTR model. The dataset consists of 20 balanced
and 20 caterpillar tree topologies. Whiskers in the boxplot demonstrate the range between the
first and third quartiles. Point shape represents the RF distance between the constraint-free tree
inferred by the method and the true tree. Y-axis is in log-scale.
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Results on phylogenies evolved under the GTR model

Topological accuracy remains high despite model misspecification. NSB-TK4, NSB-JC,

and JellyFish-JC infers the correct topology in all 40 cases whereas Skmer-JC is erroneous in

6/40 trees tested. The mean FME error of NSB-TK4 (4e-05) is an order of magnitude lower than

those of NSB-JC and Jellyfish-JC (5e-04), which have near identical levels of error (Fig. 6.4).

Therefore, in simulations, TK4 model produces distances that are closer to additivity than JC

when model misspesification is present. However, Skmer-JC has 27 times higher error than

the other two JC-based methods, indicating that the sketching process affects accurate distance

estimation in a higher degree than model misspesification. Finally, we observe that regardless of

the method used, the 20 replicates with balanced topologies tend to have lower deviations from

additivity than those based on unbalanced topologies.

6.3.2 Evaluation on biological bacterial data

Dataset.

We created a dataset consisting of 10 clades of microbial species subsampled from the

Web of Life (WoL) [263] ASTRAL tree of 10575 Bacteria and Archaea taxa. We started with

finding all the clades with 30 to 50 leaves and with 0.2 to 0.7 diameter (the largest pairwise tree

distance between any pair). We then selected the top 25 clades with the highest local posterior

probabilities and for each clade, computed an all-pairwise distance matrix using Skmer (sketch

size 10 million), inferred a phylogenetic tree using FastME 2.0, and computed the RF distance

between the WoL ASTRAL reference tree and the inferred tree. We then selected nine clades

with the lowest RF distance, and these clades had 32 to 46 species and RF distance between 0.16

and 0.42. As none of the nine selected clades had any missing data in their distance matrix, we

also curated a challenging subtree with 86 taxa from the Erysipelotrichaceae family from the

WoL reference tree that contained 114 missing data entries in its distance matrix (RF distance:

0.43) computed using Skmer.
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(a) (b)

Figure 6.5. (a) Comparison of different methods to the ASTRAL tree on 10 subsets of the
bacterial dataset. We show the number of branches in the reference tree that are correctly
estimated or are incorrectly estimated and have low (less than 0.95) or high support in the
reference tree. (b) TK4 model parameters inferred using NSB-TK4 for each set. Deviations from
y = 1 indicate violation of the JC model. Q = Q1 +Q2.

Results on Bacterial Dataset

On the 10 bacterial data sets, while methods are generally competitive (Fig. 6.5a), overall,

NSB-TK4 is better than others as it produces the best result in 8 datasets out of 10. The total

number of missing branches for NSB is 120 (out of 403) (Table D.2), which is lower than

Jellyfish, with 133 missing branches. Results are similar when focusing on highly supported

branches: NSB-TK4 misses 95 out of 374 branches with at least 0.95 support while Jellyfish

misses 109. Among the three methods that compute JC distances, NSB-JC is the most accurate,

matching or improving on Jellyfish and Skmer in seven out of 10 cases, and with eight and four

fewer wrong branches, respectively. On the most challenging case (Set 10), the distance matrix

produced by NSB-TK4 contains 20 fewer missing entries (infinity) than both Jellyfish-JC and

Skmer-JC. As a result of its replacement technique, NSB can compute distances where other

tools cannot. To perform a tree inference on distance matrices with missing data, we impute the

missing distances using a machine-learning-based algorithm [24]. Here, NSB-TK4 distances

produce the tree with the fewest differences to the reference phylogeny compared to JC-based

tools.
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Jellyfish-JC had between 7% and 57% (mean: 22%) higher FM error than NSB-TK4

across datasets (Table. D.3). NSB-TK4 distances are not only more additive but also on average

13% and 32% larger than those of Jellyfish and Skmer, which may under-estimate the distances.

TK4 model parameters inferred by NSB-TK4 demonstrate that JC model assumptions

are significantly violated in the real data (Fig. 6.5b). For instance, 2ω , assumed to be 1 in the JC

model, is as low as 0.65 on average across all pairs in a set. In addition, transversion to transition

ratios R/P and (Q1 +Q2)/P are less than 1 in almost every case, in clear violation of the JC

model; thus, NSB captures the long understood [253] divergence of transversion and transition

rates.

6.3.3 Evaluation on biological Yeast dataset

We also study the yeast dataset used by Balaban and Mirarab 10, consisting of eight

genomes (Table C.2) with sizes in the 10.9 – 12.4Mbp range and number of scaffolds in varying

between 16 and 2808. We use ART v2.5.8 [92] to create in-silico genome skims of 150bp reads

with Illumina HiSeq 2500 error profile. We test for 1, 2, 4, and 8× sequencing coverage levels.

We use the yeast phylogeny published by Shen et al. [216] as the reference and compare it to

alignment-free trees inferred under TK4 and JC models using FastME 2.0.

When analyzing Yeast assemblies, NSB-TK4 and Jellyfish-JC produce a phylogenetic

tree that is identical to the reference phylogeny (Fig. 6.10). However, Skmer-JC distances

produce a tree with one branch mismatch. Although the trees inferred using NSB-TK4 and

Jellyfish-JC distances are topologically identical, their branch lengths differ: NSB-TK4 trees

have 16% increased tree height (Fig. 6.11), indicating that JC model likely under-estimates

distances. In terms of additivity, Jellyfish-JC distances have an FME of 0.0034, which is 70%

higher than that of NSB-TK4 (Table D.5).

When analyzing the genome skims, the tree inferred by NSB-TK4 and Jellyfish-JC is

identical to the reference phylogeny regardless of the sequencing coverage (Fig. 6.10). Similar

to assemblies, NSB-TK4 and Jellyfish-JC are able to recover the reference phylogeny on Sac-
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charomyces genome skims for all levels of coverage (Table D.5). While Skmer-JC can match

the reference phylogeny on the genome skim of 2× coverage, the Skmer tree has one branch

mismatch in other coverage levels. On yeast genome skims, NSB-TK4 consistently achieves

the lowest FM error among the three methods tested. Furthermore, even on the shallowest

genome skim data (1×) tested, the NSB tree achieves a lower FM error than JC based method

on assembled data. In contrast to NSB and Jellyfish, Skmer-JC trees have higher FM error

with increasing coverage. Nevertheless, at 8× coverage where most k-mers in the genomes are

covered by at least one read, all three methods seem to approximate their level of an error on the

assembled data.

6.4 Discussion

We introduced a method for computing phylogenetic distances on alignment-free data

based on the time-reversible, no strand-bias, four-parameter evolutionary model, TK4. Through

theoretical and empirical analyses, we explored the model conditions where the more general

model TK4 offers more accurate distances than the Jukes-Cantor model, which is the simpler

yet most widely used model. As expected, the improvements are most pronounced for larger

distances and more substantial deviations from the JC model assumptions.

Despite overall improvements, in the simulations based on the yeast genome, we observed

conditions where the TK4 model was less accurate than the JC model it contains. Deviations

from the TK4 model can explain this surprising result. Even if used as the base genome for

subsequent simulations, the real genomes can violate the assumptions of our algorithm in several

ways. i) Presence of non-randomly generated repeats (e.g., recent gene duplications) causes

overestimating the Jaccard index. The probability of a k-mer being present in both input genomes

is higher when it repeats multiple times across the genome. Our calculations only correct for

these repeats when they occur randomly but not by homology. ii) Systematic variations of ω

across the genomes, violating i.i.d. assumptions, can create loci with increased numbers of
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homologous and non-homologous matches after replacement. iii) Presence of k-mer motifs can

invalidate assumptions of Lemma 5. While some of these issues also violate JC assumptions,

NSB-TK4 may be less robust to these violations than JellyFish-JC due to the more complex

equations or the more complex estimation procedure (e.g., letter replacement) used by NSB.

More broadly, while the TK4 model is more complex than JC, relevant processes are

also missed by TK4. An important aspect of molecular evolution we did not model is the rate

heterogeneity among sites. Leading alignment-based phylogenetic estimation tools model the

heterogeneity using a discrete or continuous gamma distribution. JC model can be extended to

support Gamma-distributed rates [104] if the parameters of the Gamma model are known. With

GTR-based simulations, we showed that TK4 is robust to model misspecification. One question

is whether TK4 distances are accurate in data simulated under GTR+Γ model of evolution.

Furthermore, it may be possible to incorporate a measure of rate variation in the TK4 formula

(6.2) as well. We leave these questions to future work.

NSB is based on computing the containment Jaccard index between k-mer sets of the

input genomes and their perturbations. This approach, previously utilized by tools such as

Mash [179] and Skmer [209] for computing JC distances, has the potential to be applied to

both assembled genomes and NGS reads in an assembly-free fashion, as we demonstrated.

Interestingly, our results showed high levels of accuracy with very low coverage (e.g., 1X) in

computing distances, as demonstrated by the low FME values obtained on the yeast dataset.

Thus, beyond phylogenetic inference, other applications such as species identification using

genome skims can benefit from NSB.

The use of k-mers is not the only option for distance calculations. For example, tools

like pyANI [189] and Co-phylog [255] estimate the distance between two genomic sequences by

efficiently finding local alignments. It is possible to infer substitution probabilities from these

local alignments and calculate evolutionary distance according to the TK4 model. While such

approaches will not be fully alignment-free, future work should compare these methods to our

proposed approach. However, even if accurate, such methods cannot be incorporated into the
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analyses of low-coverage short-read NGS data mentioned above when assembly is not possible.

In the scenario where assembly and alignment are available, NSB can be compared

to the standard alignment-based methods for distance and phylogeny estimation. A careful

comparison would require far more complex simulation pipelines—as our existing simulations

do not handle indels and rearrangements. As stated earlier, alignment-free methods have the

potential for improving accuracy when rearrangements make it hard to create reliable alignments;

phylogenomic analyses often remove large chunks of the genome and focus on parts that are

easier to align. If alignment-free methods can incorporate more complex models than currently

possible, perhaps they can surpass alignment-based methods by using all of the data. We believe

reaching that goal will require further increases in the model complexity of alignment-free

methods.

Due to the exact computation of k-mer counts, NSB and JellyFish can both have substan-

tial running times. Running time for NSB scales linearly with the input genome size (Fig. 6.12).

On two random genomes of length 100Mbp, NSB completes within 11 minutes where 7 minutes

is spent preprocessing the samples and computing the encodings and less than 4 minutes for

computing all 4 Jaccard values and the pairwise TK4 distance. Running time for Jellyfish is

about a quarter of NSB since it requires computation of a single Jaccard value. Jaccard indices

can be estimated accurately without looking at all k-mers using the MinHash sketching technique

[179] that dramatically improves the running time, disk space, and memory usage. For instance,

for the fixed sketch size, Skmer completes under 15 seconds on the same two random genomes

of length 100Mbp (Fig. 6.12). However, we saw that for large distances where Jaccard is small,

MinHash sketching fails. This limitation may be alleviated with newer methods such as Dashing

[9]. Nevertheless, for smaller distances where it is accurate, we could incorporate sketching

into NSB. In preliminary tests, we saw that while the main Jaccard index is often computed

accurately using sketching, the replaced Jaccard indices can have consequential error levels.

This reduced accuracy is likely because hash functions used in existing tools assume four letters

and need to be updated for genomes with replaced letters. It may even be possible to compute
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all four Jaccard indices without actually replacing letters by defining hash functions that do

not distinguish letters. Finally, NSB may be able to use compressed k-mer sets [197] to reduce

its storage requirements while keeping the same accuracy. We leave the exploration of these

avenues to further work.

6.5 Availability.

Software is available at https://github.com/nishatbristy007/NSB. Data are available at

https://github.com/balabanmetin/yeast-genomes and https://github.com/balabanmetin/bac10.
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Figure 6.6. Schematic diagram of our proposed pipeline. We start with adding RC of
sequences followed by decomposing them into fixed-length k-mers. Next, the bases in k-
mers are encoded as bitmasks and thus an encoded k-mer library is constructed. For each
(i, j) ∈ {(A,C),(A,G),(A,T ),(C,G)}, we replace the encoded bits of base i with the encoded
bits of j, producing 4 base-substituted encoded libraries. Finally, using these encoded libraries,
Jaccard indices and distances are estimated under the assumptions of the TK4 model and using
the equations derived and presented in Sec. 6.2.
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Figure 6.7. Estimating number of non-homologous (by random chance) matches between two
genomes after replacements. Two input genomes are created according to an i.i.d. process with
base frequencies π =

[
πA = 0.3 πC = 0.2 πG = 0.2 πT = 0.3

]
. Replacements are performed

after 2-way genomes are constructed.
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Figure 6.8. The effect of parameter k on accuracy in simulated yeast genomes. Genomes are
simulated using TK4 model with parameters α = 1, δ = 1, and γ = 4. Skmer does not return
valid distances in d ≥ 0.6 and k≥ 25 setting. NSB-TK4 does not return valid distances in d ≥ 0.5
and k = 21 setting. Error bars show confidence interval of the estimate over 10 replicates.
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Figure 6.9. Comparing the accuracy of distances estimated by different approaches on random
and Yeast-based simulated genomes. Genome sequences were simulated by randomly substitut-
ing the genome skims of Saccharomyces arboricola (11 Mbp) and a random 100 Mbp sequence
with eight different sets of TK4 parameters and with seven controlled true distances. Here, ω is
fixed, and since these rates do not have a scale, α = 1 in all cases. We show the average true
distance divided by estimated distances (y-axis) with standard errors (over replicates, requiring
at least two) against the true distances. Annotated numbers show the number of replicates out of
10 where Skmer or JellyFish return infinity.
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Figure 6.10. Analysis of the yeast genome assemblies and skims using distances estimated under
JC and TK4 models. The branch in the estimated tree which is not found in the reference tree is
shown in red.

165



Figure 6.11. Comparison of pairwise distances estimated using TK4 and JC models on 8 real
Yeast genomes. TK4 distances are always slightly higher than JC.
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Chapter 7

Growing phylogenomic trees at the ultra-
large scale using divide and conquer

7.1 Introduction

Today, the number of Bacteria and Archaea species in the RefSeq database have already

exceeded 60 thousand [81]. In addition, RefSeq contains more than a million prokaryotic whole

genome sequences in the database. Cataloging the constantly growing number of microbial

species is a challenging task. Reference phylogenies are increasingly used in microbiome

profiling [76] and to answer the question: what is in my sample? Several databases based on

single marker genes such as 16S [48, 190] consist of millions of sequences. On the other hand,

when the number of genomes in the database is approximately equal, whole-genome based such

as The Web of Life [263] and GTDB [183] reflect the evolutionary history of microbes more

accurately because they are based on hundreds of marker genes. The tradeoff between the two

paradigms is a large number of genes on one side and the number of taxa on the other. The

main reason that the number of genomes in Web of life cannot match the number of sequences

in the 16S database is the computational cost: it took 100000 CPU hours to infer this tree of

life. Furthermore, ASTRAL, the coalescent-based species tree inference method employed by

Zhu et al. [263] fails to scale on datasets with more than 16,000 genomes (according to our
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benchmarks).

Several techniques can improve the scalability of phylogenomic inference. Divide-and-

conquer schemes have been utilized to improve the efficiency and accuracy of phylogenetic

inference (see the review [240]) in the past. Lately, phylogenetic placement has emerged as

a scalable alternative to de-novo phylogenetic reconstruction. Balaban et al. [15] introduced

improvements in time complexity and accuracy of distance-based phylogenetic placement and

studied the feasibility and accuracy of whole-genome placement of microbial genomes and

metagenome-assembled genomes (MAG). One of the strong results the authors presented was

that using 381 marker genes sampled globally from the whole microbial genome, one can place

a query genome onto the Web of Life phylogeny in under 16 seconds. It is therefore feasible to

phylogenetically place all assembled microbial genomes uploaded to RefSeq onto the reference

tree of microbes. There are two shortcomings of phylogenetic placement in comparison to de-

novo phylogenetic reconstruction. First, the relationship between query sequences is unresolved.

Secondly, the query sequences cannot refine and update the backbone. In this paper, we introduce

a divide-and-conquer workflow for incrementally growing and updating ultra-large phylogenies.

This workflow, called uDance, can build a 200,000-genome microbial tree of life from 388 marker

genes, resulting in one order of magnitude improvement over the tree from the Web of Life in

terms of the number of genomes. Using simulations, we show that uDance can infer de-novo and

incremental whole-genome phylogenies with 10,000 taxa more efficiently and accurately than the

alternative methods. uDance is publicly available on https://github.com/balabanmetin/uDance.

7.2 Results

7.2.1 uDance overview

We developed uDance, a highly distributed computation framework for incrementally

growing and updating existing phylogenies using whole-genome data. uDance employs a divide-

and-conquer strategy that enables processing different parts of the tree independently (Fig 7.1)
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and leverages the independence to achieve phylogenomic reconstruction at ultra-large scale (e.g.,

tends to hundreds of thousands of genomes) in reasonable time. uDance requires a backbone

(reference) tree and a set of multiple sequence alignments (MSAs) of backbone sequences and

new (query) sequences that do not appear in the backbone (Fig. 7.1a). If a backbone tree is not

available, uDance can compute a set of backbone species with high diversity and reconstruct a

backbone tree using whole-genome data (see Materials and Methods for details). uDance outputs

a tree with branch lengths on the full set including backbone and query sequences. When yet

newer sequences become available, the output phylogeny in the previous iteration can be used as

the input in the next iteration to incrementally grow the phylogenetic tree.

We designed uDance to handle hundreds of aligned regions (called genes hereafter for

brevity though these do not need to be functional genes) from input genomes. uDance first inserts

the query sequences on the backbone tree independently and then refines the tree locally for each

region with new sequences, allowing updates to the backbone based on the new information

provided by the query sequences. It can alternatively fully preserve the backbone tree topology

in the output (See Materials and Methods section), which may the desired when query data is

noisy in comparison to the backbone. A main feature of uDance is its various quality control

checks; at the end, it may decide that a (typically) small set of backbone and query sequences

cannot be confidently in the output phylogeny.

The first step in uDance framework is phylogenetic placement of query sequences onto

the backbone tree (Fig. 7.1b) based on the entire data set of gene MSAs. We accomplish

this step using massively scalable APPLES-2 algorithm [15]. uDance then decomposes the

resulting placement tree into multiple partitions (subtrees) using a novel clustering algorithm

that we developed partially based on the TreeCluster [12] algoirthm. For every two adjacent

partitions, the algorithm selects one or two representative sequences (See Materials and Methods

for details) from each partition and adds them to the other one as outgroup sequences. The next

step in the workflow is the inference of a maximum likelihood (ML) gene tree (i.e., RAxML-

NG [115]) per gene on the set of backbone, query, and outgroup sequences in every partition.
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The workflow proceeds with inferring a species tree per partition by summarizing all the gene

trees in the partition using ASTRAL [165], constrained [192] to be compatible with a constraint

tree designed for that partition: this constraint is built based on the backbone topology of all

outgroup species and allows uDance to successfully stitch back the species trees into a single tree

at the end (see Materials and Methods for details). During the stitching step, any backbone or

query sequence that are positioned on and unexpected branches (e.g., within outgroup sequences)

are removed from the final tree. The most time consuming steps of the workflow, gene tree and

species tree inferences, can be performed in fully distributed fashion over multiple machines such

as a high performance computing (HPC) cluster. Thus, uDance offers efficient phylogenomic

reconstruction of large collection genomes.

7.2.2 Accuracy of uDance in Simulations

Table 7.1. Properties of simulated dataset.

Condition k ILS HGT+ILS GTEE EGTD
mc1-full

mc-1
500
100 0.03 0.35 0.33 0.50

mc2-full
mc-2

500
100 0.03 0.37 0.44 0.58

mc3-100
mc3-200
mc3-300
mc3-400
mc3-500

100 0.03

0.27
0.32
0.37
0.41
0.54

0.43
0.44
0.43
0.43
0.48

0.52
0.55
0.57
0.60
0.71

Note: k, number of genes; ILS and ILS+HGT, average normalized RF distance between true genes trees and the true
species tree due to ILS only (no HGT) and ILS with HGT, respectively; GTEE and EGTD, average normalized RF
distance between gene trees estimated with FastTree-2 and the corresponding true gene trees and true species tree,
respectively.

In order to validate accuracy and performance of our workflow, we simulated a dataset

inspired by a published dataset [263] of 10,575 microbial genomes and ASTRAL their species

tree used to study the evolutionary history across bacteria and archaea. We simulated a 10,000-

leaves species tree using the Birth-death model and generated 500 gene trees with various degrees
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Figure 7.2. Results on simulation data set. (ab) Quartet distance between inferred and true
species tree in 100 (a) and 500-gene (b) model conditions. The number above x-axis indicates
the number replicates in which each method successfully returned a tree in 2 days given 125GB
of memory. Whiskers indicate the first and third quartile range. (cd) RF distance between
estimated and true gene trees for all partition-gene pairs in all model conditions. (e) The timeline
of CPU usage on replicate 7 in mc2-full data set. Maximum number of cores made available
for uDance is 672. (f) Cumulative CPU time (bars) and peak memory (dots and the horizontal
bar) used by each method in the only three replicates where concatenation method completed on
mc2-full (500 gene) data set and FT2+ASTRAL method completed on mc-2 (100 genes) data set.
FT2+ASTRAL failed at ASTRAL step in mc2-full data set in all replicates. Note that we report
total CPU time used by all cores across all nodes, and not the wall-clock time. Experiments are
performed in machines with Intel(R) Xeon(R) 14-cores E5-2670 2.60GHz CPU and 125 GB
RAM. For uDance, running time calculations include the time spent on backbone estimation.
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of discordance with the species tree. The main contributor of the discordance in our simulations

is horizontal gene transfer (HGT), whereas incomplete lineage sorting (ILS) contributed a

small amount to the total discordance (Table 7.1). Next, we evolved DNA sequences on the

simulated gene trees. We derived a total of nine model conditions by adjusting various model

parameters (see Materials and Methods and Table 7.1). We performed full de-novo phylogenetic

reconstruction using uDance where it first reconstructed a 1000-species backbone (that it chose)

and then updated the backbone with the remaining 9000 species. We compared uDance to

two alternative de-novo whole-genome inference approaches which can manage to run on our

large-scale data set: (1) gene tree inference with FastTree-2 [188] followed by species tree

inference using ASTRAL [258] (FT2+ASTRAL in short); (2) concatenation approach (concat)

where we combine all input MSAs into a single MSA (supermatrix) and infer the species tree

using FastTree-2. Note that more advanced ML methods such as RAxML-NG could not be run

on the 10,000-taxon gene trees (of which we have 10,000 across this data set).

On simulated data, uDance can accurately infer the species tree in most conditions

(Fig. 7.2a). As expected, increased gene tree discordance (mc1 to mc2 and mc3-100 to mc3-500)

results in higher species tree error. However, uDance remains mostly accurate in five out of seven

model conditions with only 100 gene trees, achieving mean quartet distances (QD) between true

and estimated species trees that are less than two percent. On the mc3-400 condition with high

(but below 50%) true discordance, uDance still has reasonable accuracy (0.044 QD) whereas

in the mc-500 condition, where estimated gene trees are on average 71% different from the

species tree, the error blows up to 34%. In all model conditions, uDance attains lower mean

species tree estimation error than the other two methods, although in the easiest condition, mc1,

FT2+ASTRAL comes close. uDance and concat successfully complete in all ten replicates in

all seven model conditions with 100 genes but FT2+ASTRAL fails to return a tree within the

limit of 48 hours computation time and 125 GB memory for all or some replicates in all model

conditions except mc1. When measured using the normalized Robinson-Foulds (nRF) metric

that is more sensitive to rogue taxa, uDance still remains to be the most accurate method in all
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model conditions except mc3-500 where the HGT levels are the highest (Fig. 7.5). When we

increase the number of gens to 500, uDance achieves average species tree estimation error less

than 0.1% in both model conditions whereas the concatenation error is approximately an order

of magnitude higher than uDance on the nine out of 20 replicates it completes. FT2+ASTRAL

did not successfully analyze 500-gene datasets with the allotted time and memory due to the

high computational demand of ASTRAL. The better accuracy of uDance is partially because

its divide-and-conquer approach that allows computing ML gene trees using RAxML-NG have

better accuracy (Fig. 7.2cd). On mc1 and mc2 data sets, uDance has 0.3 and 0.4 nRF distance to

the true gene tree on average, and its gene trees are consistently more accurate than FastTree-2

ran on the full gene MSAs in all model conditions, both in 100 and 500 gene scenarios.

The distributed computing framework allows uDance to take advantage of HPC clusters

and accelerate phylogenomics significantly. For example, uDance can infer a de-novo whole-

genome phylogeny on one replicate of mc2-full dataset, which contains 10,000 sequences

and 500 genes, in 14 wall-clock hours using 4 million CPU-seconds on a 48-node HPC with

672 cores in total (Fig. 7.2ef). Approximately 40% of the wall-clock time is spent on the

inference of the backbone tree, which would be saved when a backbone tree is available from a

previous round. uDance uses less than 1M CPU-seconds for de-novo inference on mc-2 dataset,

whereas FT2+ASTRAL uses 5 times more CPU time than uDance despite being less accurate

(Fig. 7.2f). For uDance, more than 90% of the CPU time is used for distributed RAxML-NG gene

tree inference jobs, whereas for FT2+ASTRAL, the single-node multi-core ASTRAL-MP job

consumes more than 99% of total compute. While concatenation uses the least CPU time, since

FastTree-2 task is bound to a single-node and poorly parallelized, it takes more wall-clock time

than uDance (Fig. 7.2e). Meanwhile, in terms of peak memory usage, uDance is the most scalable

method among the three methods tested thanks to the divide-and-conquer strategy. On 100-gene

dataset, uDance and concat uses approximately 10GB of memory whereas FT2+ASTRAL uses

80GB in average. However, on 500-gene dataset, uDance uses 30GB memory while concat uses

twice as much.
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Table 7.2. Exploring uDance parameter configuration.

Condition Configuration nRF ∆nRF QD ∆QD

Default setting Estimated,1000,500 0.061 0 0.012 0

Varying Backbone Size
Estimated,250,500 0.073 0.012 0.018 0.006
Estimated,500,500 0.064 0.003 0.013 0.001
Estimated,2000,500 0.059 -0.002 0.01 -0.002

Varying Partition Size
Estimated,1000,100 0.064 0.003 0.012 0
Estimated,1000,250 0.062 0.001 0.012 0
Estimated,1000,1000 0.061 0.0005 0.013 0.001

Varying Backbone Tree True,1000,500 0.057 -0.004 0.0002 -0.012

These results makes the case for the utility of divide-and-conquer approach; by diving

the full data set into manageable size partitions, it is possible to achieve better accuracy and

scalability simultaneously. To assess the robustness of uDance to choices of the configuration

parameters, we measures the impact of varying partition and backbone size parameters on the

accuracy in mc2 model condition. We found that uDance is very robust to selection of partition

size (Fig. 7.2). However, we saw that dramatically decreasing backbone size from (the default)

1000 down to 250 slightly increased QD between estimated and true species tree by 0.006. To

further quantify the impact the backbone tree accuracy, we used the true species tree on the

same set of backbone species and extended it with the remaining 9000 query species. Using the

error-free backbone tree dramatically decreased the mean QD from 0.012 to 2×10−4, signifying

the importance of accurate backbone trees.

7.2.3 Phylogenomic Reconstruction of 200,000 Microbial Genomes.

We obtained 656,700 Bacterial and Archaeal genomes assemblies from NCBI. After

several postprocessing steps such as duplicate and contamination removal (see Materials and

Methods), we curated an approximately 280,792-strain data set with MSAs for the 381 genes

used in the Web of Life (WoL) tree [263] and seven additional core ribosomal genes. Next, using
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Figure 7.3. New trees of microbial life. (a) Taxon sampling increase in the 16k and 200k tree
with respect to the 10k (Web of Life) tree. (b) 16k tree built by updating the 10k tree with
uDance. (c) 200k tree built by updating the 16k tree with uDance. (d) Consistency of the large
phyla and super-phyla in NCBI taxonomy database with various microbial phylogenies.
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an automated procedure (see Supplementary Material), we selected 6,056 genomes from key

groups with low taxon sampling in the WoL tree. We updated the WoL tree with the selected

sequences using uDance and obtained a tree with 15,953 genomes (called the 16k hereafter). We

ran a consecutive iteration of uDance with 280,792 remaining query genomes and reconstructed a

tree with 199,330 genomes (called the 200k here after). The number of phyla, classes, and orders

covered by the 200k tree are 140, 360, and 1060, when decorated with GTDB [181] taxonomy,

which is 72%, 107%, and 172% higher than the WoL tree (also called the 10k tree) respectively.

The number of Bacteria and Archaea taxa defined by NCBI increased 18 and 6-fold in the 200k

in comparison to the 10k tree (Fig. 7.3a). In addition, the taxon sampling for the DPANN group,

which was underrepresented in the sampling of the 10k tree, increased by 50-fold.

Both phylogenetic trees built by uDance demonstrated clear separation between Archaea

and Bacteria domains (Fig. 7.3bc) and recapitulated some findings of Zhu et al. [263].First,

Candidate Phyla Radiation (CPR, also Patescibacteria in GTDB taxonomy) forms a monophyletic

group at the base of Bacteria. The length of the branch that separates Archaea and Bacteria

(A-B branch) is still short (0.14, 0.27, and 0.18 in the 10k 16k, and 200k tree respectively, in

substitution unit computed by ASTRAL).

We observed some topological changes close to the base of Bacteria as we grow the

tree. Dictyglomota, Thermotogota, Caldisericota, Coprothermobacterota, and Synergistota

groups with Fusobacteria in the 200k tree. Consequently, the clade defined by Cyanobacteria

& Margulisbacteria, Chloroflexota, Actinobacterioda, Deinoccoccota, and Firmicutes is the

most basal among non-CPR Bacteria. In the 200k tree, Bipolaricaulota is paraphyletic: 13

genomes from the phylum Bipolaricaulota, which is sister to Synergistota in the 10k (Fig. 7.6)

tree, is located near Chloroflexota, whereas 15 genomes from Bipolaricaulota is located close

to Synergistota. While Firmicutes is monophyletic in the 10k and 16k trees, it cannot be called

monophyletic in the 200k tree unless the total of 19 genomes from phyla DTU030, DUMJ01,

and UBP7 are re-assigned to Firmicutes. Like Firmicutes, reassignment of a total of 17 genomes

from CSSED10-310 and RBG-13-66-14 could make Proteobacteria, the largest phyla in the
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200k tree with more than 75,000 genomes, monophyletic. Desulfobacterota is monophyletic in

the 10k tree and paraphyletic in the 16k (7 clades), 200k tree (5 clades), and the GTDB tree (7

clades). The topological changes between the backbone and the output trees occur at branches

with various depth (Fig. 7.4c). The shallowest (the most basal) seven branches in the 16k tree

can also be found in the backbone tree. However, nearly 10% of the conflicting branches have

a depth between 0.35 and 1 while only slightly more than 1% of all branches in the 16k tree

are in this group. Most conflicting branches between the 10k and 16k tree are short. 94% and

69% of disagreeing and agreeing branches are shorter than 0.09 respectively (Fig. 7.4d). Similar

conclusions can be made when the agreeing and disagreeing branches between the 16k and 200k

tree are compared (Fig. 7.7).

The uDance trees shows high consistency for several taxonomic super-phylum groups

defined by NCBI taxonomy, including Terrabacteria, FCB, TACK, Microgenomates, and Par-

cubacteria (Fig. 7.3d). While the 16k tree shows high consistency for Archaeal groups DPANN

and Asgard, their consistency is reduced in the 200k tree. Euryarchaeota group is strongly para-

phyletic in the 10k (ASTRAL and concatenation), uDance, and GTDB trees. The consistency of

super-phylum groups Euryarchaeota, sulfur-oxidizing symbionts, Nitrosplinae/Tectomicrobia,

Nitrospirae, and Aquificate monotonically increases with every uDance iteration. On the other

hand, PVC group becomes more consistent with every iteration. Therefore, the consistency

of various groups in the microbial tree can change after increasing taxon sampling. Next, we

investigated the topological similarity between the four phylogenies when they are induced to

the members of the largest phyla and super-phyla defined by NCBI (Fig. 7.4e). While generally

all phylogenies are largely compatible with each other, the 200k tree was highly similar to the

16k tree. For 24 of the 28 taxonomic groups, the quartet distance between the two tree was less

than 2%. DPANN, Asgard, Saccharibacteria, and Synergistetes, are the top four groups in terms

of the discordance between the 10k and 200k tree. Finally, we observed similar levels of the

topological dissimilarity between the GTDB and the other three ASTRAL based trees (Fig. 7.8).

This dichotomy be the consequence of several differences between two methodologies such as
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species tree inference strategy (concatenation vs coalescent) or the selection marker gene set.
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Figure 7.4. (a) Quartet score between the 16k species tree and gene trees categorized by the
gene function. (b) Cumulative running time. ECDF of (c) depth (root-to-tip distance) (d) the
branch length of agreeing and disagreeing branches between the backbone (the 10k) and the
output (the 16k) phylogeny. (e) Quartet distance between the 200k tree and other trees on NCBI
defined phyla and super-phyla.

HGT events are pervasive in microbial genomes; however, some genes may more suscep-

tible to HGT than the others. For the 16k uDance tree, we measured the similarity between gene

trees and the species tree for the ten largest functional categories of genes [7]. DNA and RNA

binding genes, which are involved in the core machinery of genetic information processing, are

the ones with the highest similarity to the inferred species tree in average, with 82 and 80 percent

quartet similarity (one minus quartet distance) (Fig. 7.4a). On the other hand, phylogenies of

genes involved in peripheral functions such as transmembrane transport are, in average, less
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topologically to the uDance tree. These findings are in line with the WoL study [263].

7.3 Discussions

We presented uDance: a divide-and-conquer workflow for incrementally growing and

updating ultra-large whole-genome phylogenies. We showed that this workflow is more accurate

than de-novo species tree reconstruction via concatenation and coalescent-based phylogenomic

approach using ASTRAL. We also demonstrated that uDance uses less memory than both

alternatives and uses less compute than de-novo ASTRAL-based inference. Since it is massively

distributed, uDance enables faster inference than concatenation method. uDance is applicable in

real biological data sets: We built a 200,000-genome microbial tree-of-life based on 388 marker

genes.

Despite the its scalability and accuracy, the divide and conquer strategy we introduced

in this paper has several limitations. We recommend the user to limit the partition to 6,000 as

ASTRAL becomes too slow for larger trees. As a consequence, uDance requires the number of

partitions to be large when the backbone tree is large. Since uDance fixed the relative positions

(the hierarchy) of partitions, the scope of topological updates can be restrained to the edges

that are farther from the root. We leave it to future work to reevaluate the the hierarchy of the

partitions after partition updates.

Inserting a small set of genomes on a ultra-large backbone tree can be inefficient if

APPLES-2 places the genomes uniformly in all partitions of the backbone tree, requiring

recomputation in each partition. There is two solutions to this problem. First solution does not

require any algorithmic novelty; the user can stall updates on each partition until the number

of new genomes reach a significant amount. In uDance, gene tree search is unconstrained. The

second solution is to constrain RAxML-NG search with the gene trees from the previous iteration,

which can accelerate the gene tree inference in the expense of decrease to find a large likelihood

tree. This feature can be added to uDance and is left to future work.
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7.4 Materials and Methods

7.4.1 Workflow of uDance

Each step of the pipeline (Fig. 7.1) is described below in detail. Note that most steps

include quality control and filtering steps. To create a better flow, we have collected most of

these steps under Quality control.

Placement

When a backbone tree is available, the sequences in the input MSAs that are not present

in the set of backbone sequences are assumed to be query sequences. uDance concatenates

all input MSAs, removes duplicate query sequences, and places them on the backbone tree

using the scalable phylogenetic placement tool APPLES-2 [15]. APPLES-2 uses Jukes-Cantor

model [105] for DNA and Scoredist [218] for amino acid (AA) characters in the input sequences.

Since APPLES-2 places each query independently, the relationship between the queries is not

resolved in the resulting placement tree.

Decomposition

uDance refines the placement tree using a divide-and-conquer approach. In this approach,

the placement tree is divided into several independent partitions which are processed indepen-

dently and in parallel. Our decomposition algorithm is parameterized by a (soft) minimum

threshold α of diversity (measured in phylogenetic total branch length in substitution units)

and a (soft) limit S on the size of each cluster. All other constant values mentioned below are

adjustable by the user.

We denote the placement tree with a rooted binary tree T = (V,E) represented by an

undirected acyclic graph with vertices V (each with degree one or three, except the root), edges

E with a length and weight, and leaf set L ⊂V . We denote the path length between nodes u and

v on T with d(u,v). We define p(u) to be the parent node of u. The branch length of an edge

e = (u,v) is denoted by be. We define P(e) to be he set of query sequences placed on an edge.
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The weight we of the edge e is |P(e)| if e is an internal node and |P(e)|+1 if the edge is terminal

(leaf). A clustering of the edges of the tree T can be defined by coloring edges with the condition

that the set of edges with the same color are always a connected (unrooted) subtree.

We use C(e) to denote the color of and edge e. For the sake brevity, we write C(u) as

a shorthand for C((u, p(u))). For a color set C = {C(e)|e ∈ E} of the tree, we define B(u) to

be the length of the path from u to the most distant connected descendant node in v such that

C(v) =C(u). We use Q(u) to denote the total number of query placements and leaves that are

descendant of u and share the same coloring. The algorithm (Algorithm 3) uses a bottom-up

traversal of the tree and for each node u that we visit, we may decide whether the node is a

junction of neighboring colors. The node is a junction if Q(l)+wl +Q(r)+wr +wu exceeds

the desired partition size limit S but we make two exceptions to this rule: (1) either bu, bl , or

br is shorter than 10−5; or (2) declaring the node as a junction creates a partition with diameter

(maximum pairwise distance between any nodes in the partition) less than the threshold α . Each

set of edges with the same color defines a partition that consists of leaves incident to the member

edges and all placements on them.

Due to the exceptions described above, a partition may have more sequences than the

soft limit S. If the number of all sequences in the query exceeds terminal partition size τ (6000

by default), we remove near duplicate query sequences using a iterative graph thresholding

algorithm. We create an m×m adjacency matrix G for such large partitions where m is the

number of query sequences in the partition. We define the weight of edge G(x,y) in this graph to

be the fraction of genes in the input dataset for which the gene sequences of x and y are identical.

Starting from β = 0.99, we create a second matrix G′ such that G′(x,y) = 1 if G(x,y) ≥ β ,

otherwise zero. Then, we compute the number of connected components in G′. We gradually

decrease β until the number of connected components in G′ is less than τ . Finally, we choose the

sequence with the highest gene occupancy from each connected component and filter out other

query sequences from the workflow. We report a mapping from each selected sequence to the

removed members of its connected component. This mapping can be used to add the removed
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duplicates back as a polytomy at the end.

Selecting outgroups

Let L (i) and E (i) denote the set of backbone sequences (leaves) and edges in the

partition defined by color i. Partitions computed by Algorithm 3 consist of disjoint edge and

leaf sets. However, two or three partitions may be adjacent to each other at a “junction” node.

We define a scheme to make partitions overlap by adding to each partition some leaves from

other partitions, which we call outgroup sequences. More formally, let v be a node and let three

edges adjacent to v be denoted with (ui,v), i ∈ {1,2,3} such that (ui,v) ∈ E (ci). v is a junction

node if c1 ̸= c2 or c1 ̸= c3 or both. In this case, we first reroot T at node u1. We first consider

case where c1 ̸= c2 is true. We denote left and right child of u2 with l and r respectively. For

j ∈ {l,r}, we select one leaf x that is a descendant of j and minimizes d(x, j) (Fig. 7.13). Note

that C(x) may be different than c2 when there is another partition below u2. We additionally

select the descendant leaf of u2 with maximum gene occupancy if it is not identical to one of the

two selected leafs earlier. We expand the list of selected outgroup sequences with the closest and

the most occupant descendants of u3 if c1 ̸= c3. This selection strategy adds two to six outgroup

sequences to c1 due to the junction node v. We repeat this procedure for all colors adjacent to v.

We traverse internal nodes of T and apply this procedure to all junction nodes.

Let O(i) be the set of outgroup sequences designated to be added to color i. We call the

tree T induced to Li∪Oi incremental-cons tree for partition i. Furthermore, we call the tree T

induced to Oi the updates-cons tree for partition i. These trees are used to contstrain ASTRAL

tree search. After refinement of backbone and query sequences in each partition, the resulting

trees can be stitched together by recreating each junction node in the coloring of T .

Partition tree refinement

uDance infers a species tree on the set of all backbone and query sequences for each

partition using ASTRAL-constrained. First, uDance performs unconstrained ML gene tree
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Algorithm 3: Placement-weighted clustering
Input: A tree T o = (V,E), a threshold α ,
and partition size limit S

1 current color← 0
2 C(e)←−1 for e ∈ E
3 B(v)← 0 for v ∈V
4 Q(v)← 0 for v ∈V
5 for u ∈ post order traversal of internal nodes of T o do
6 l,r← left and right child of u
7 if Q(l)+wl +Q(r)+wr +wu ≤ S or
8 B(l)+bl +B(r)+br < α or
9 bl ≤ 10−5 and wl > 0 or

10 br ≤ 10−5 and wr > 0 or
11 bu ≤ 10−5 and wu > 0 then
12 Q(u)← Q(l)+wl +Q(r)+wr
13 B(u)← max(B(l)+bl,B(r)+br)

14 else if Q(l)+wl +Q(r)+wr ≤ S then
15 paint(l,current color); paint(r,current color)
16 current color += 1; B(u)← 0
17 else if min(Q(l)+wl,Q(r)+wr)+wu > S then
18 paint(l,current color); paint(r,current color+1)
19 current color += 2; B(u)← 0
20 else if Q(l)+wl ≥ Q(r)+wr then
21 paint(l,current color); current color += 1
22 B(u)← B(r)+br

23 else
24 paint(r,current color); current color += 1
25 B(u)← B(l)+bl

26 return Clusters of edges defined by their assigned color
27 Function paint(u,color):
28 for v ∈ descendants of u do
29 if u ̸= v and C(v) =−1 then
30 C(v)← color

31 return
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inference with the user-specified tool (RAxML-NG by default, RAxML-8, or IQTree-2) and

phylogenetic model. User also has the option to specify number of starting trees and make model

selection automatic using ModelTest-NG [45]. Regardless of the inference tool used, uDance

computes the branch supports with IQTree’s ultrafast bootstrap approximation (aBayes) [6].

The final stage in the phylogenomic inference workflow is constrained species tree

inference using ASTRAL-constrained. The inference is performed twice using two separate

constraint trees, incremental-cons and updates-cons. The incremental-cons includes the set of the

backbone and out-group species in the partition and enforces the outputted ASTRAL phylogeny

to fully match the input phylogeny when queries are ignored. The update-cons only includes the

outgroup species, allowing both query and backbone species to freely move during the search.

uDance has three modes for refinement tree selection. The first option selects ASTRAL runs with

incremental-cons for all partitions, resulting in a uDance tree that fully matches the backbone

tree topology, again, when inserted query sequences are ignored. The second option selects

ASTRAL runs with updates-cons for all partitions. The third option is maximum-qs approach:

uDance picks the ASTRAL tree with higher quartet score among the two ASTRAL runs for each

partition. The maximum-qs is the default method we will use throughout. We estimate branch

lengths of the species tree in substitution unit using a new algorithm that we developed and made

available as part of ASTRAL (v5.17.2).

Stitching

We use A(c) to denote the output ASTRAL tree for partition c. We start the stitching

procedure with a bottom up traversal of the internal nodes of the backbone tree. When we

come across a junction node v, for every pair of edges i, j ∈ {(v,u1),(v,u2),(v,u3)} such that

C(i) ̸= C( j), we perform the following operation. Let c1 and c2 denote the colors C(i) and

C( j). In A(c1), we first find a leaf x ∈ O(c2). That leaf exists since there are outgroups in

partition c2 corresponding to the adjacency of c1 and c2. We root A(c1) at x and find the MRCA

of the outgroups representing c2. We iterate the ancestor nodes of the MRCA until we find a
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node y whose sibling tree contains a leaf from L (c1)∪O(c1) (a non-query sequence). The

node y corresponds to the junction node v and therefore all descendants of y are removed from

A(c1), including any backbone and query sequences since they are located outside the partition

boundary and group with outgroup sequences. We repeat this procedure for c2 as well and stitch

two partitions at the node y found in both partitions. Finally, we repeat the stitching process for

all junction nodes v until all partitions are stitched.

Quality control

Sequence quality.

Prior to phylogenetic placement stage, uDance filters out extremely gappy sites (sites

with at least 95% gaps by default) in the input MSAs using TrimAl [34] on order to save time

and memory. Furthermore, uDance use TAPER [259] to mask small errors that occur in the

MSAs. At gene tree inference stage, uDance computes an induced MSA and remove all-gappy

sites or each partition gene pair. If this MSA has fewer than 100 sites, the gene is discarded in

that partition due to strong evidence that gene tree estimation from short fragmentary sequences

is problematic [210]. In addition, any sequences (fragments) with fewer than 75 base-pairs in

each partition for each gene are filtered out from the induced MSA. To detect further errors in the

MSA, uDance infers a quick ML gene tree for each gene using FastTree-2 and perform outlier

sequence detection and removal with TreeShrink [145] using its default parameters.

Backbone quality.

Errors in the input backbone topology can negatively affect the phylogenetic placement

step. uDance performs two kinds of backbone filtering before the placement stage. First, a

misplaced sequence in the backbone can attract queries of its kind to the wrong location (and

thus wrong partition). uDance uses APPLES-2 to remove and phylogenetically place back every

sequence in the backbone and measure the topological distance between the original and new

location. uDance removes the sequences when the difference is larger than log2 n−1 from the

backbone where n is the number of backbone sequences (call these suspect sequences). We chose
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this equation because in a balanced tree, this equation gives the height of the tree in number

of branches and a decent choice for a cutoff for species that relocated to a distant location in

the tree. uDance then re-estimates branch lengths of the backbone tree with suspect sequences

pruned; next, uDance inserts back suspect sequences using APPLES-2 and keeps those that no

longer place no more than log2 n−1 edges farther than the original position. Note that this can

happen because after removing all suspect sequences, backbone tree branch lengths can change

and such changes can be consequential. Second, uDance uses TreeCluster [12] to cluster the

backbone tree with max clustering strategy and threshold 0.7. In each cluster, one-dimensional

k-means clustering detects the outlier sequences in terms of gene occupancy and removes them

from the backbone. The rationale is that sequence with low occupancy with respect to the nearby

sequences is suspected to be misplaced.

Gene tree quality.

At species tree inference stage, uDance computes the median branch support for all the

input gene trees and clusters them based on the median branch support using one dimensional

k-means clustering with k = 2. If the cluster with the smaller centroid has less than 20% of all

the genes present in the partition and the difference between centroids of the two clusters is larger

than 0.1, all genes in the cluster with the smaller centroid is discarded. uDance proceeds with

contracting low support branches using the user-specified threshold. We use 0.33 and 0.66 for

simulated and biological dataset respectively (note that aBayes branch supports range between

0.33 and 1).

Backbone inference

In addition to the ability to operate with a user-provided backbone tree, uDance can

also infer a de-novo backbone when none is available. uDance uses a new procedure named

Mainlines to select a subset of n sequences in the backbone tree with high diversity. Mainlines

begins with creating a concatenation MSA by selecting ⌈ l
k⌉ least gappy sites from each k gene
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MSA. Here, l is the number of sites in the concatenation alignment (5000 by default) and can be

specified by the user. Next, FastTree-2 infers a phylogenetic tree using GTR+G or LG+G model

depending on whether input sequences are nucleotide or AA. Mainlines uses this tree solely

for subsampling n backbone species from the entire data set. The selection is carried out by

exploring the range of plausible threshold values for TreeCluster (max option) via binary search.

The search stop when either a threshold that results in exactly n clusters is found or the threshold

difference between two consecutive iterations is below 0.0001. After Mainlines determines the

set of backbone sequences, uDance executes the phylogenomic inference pipeline, which infers

ML gene trees (default using RAxML-NG) and an ASTRAL species tree. The only difference

between the pipeline used during the backbone inference stage is that the ASTRAL search has

no tree constraints.

Distributed Implementation

We implement uDance using the scalable bioinformatics workflow engine

Snakemake [114]. uDance is flexible and largely configurable. uDance is supported in multiple

operating systems (Linux, macOS), easy to install, and thanks to Snakemake, easily deployable in

HPC platforms in a distributed fashion. uDance is publicly available on

https://github.com/balabanmetin/uDance.

7.4.2 Simulations

We perform a set of simulations using SimPhy [149], starting from a default model

condition (named mc-2-full) and deriving other eight model conditions by adjusting simulation

parameters. We simulate 10 replicates per model condition. Simulation parameters are chosen

with reference to Web of Life microbial data set.

Default model condition.

We simulate a 10,000 taxa species tree under Birth-death process with fixed speciation

and extinction rate of 5× 10−7 and 4.16× 10−7 respectively. The number of generations in
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the tree is fixed to 109. Each replicate has 500 gene trees and ILS and HGT constitutes the

two sources of gene tree discordance. Gene trees have 0.03 mean nRF distance to the species

tree due to ILS prior to introduction of HGT events. We set the rate of HGT events so that the

average discordance across all replicates is 0.38. We note that the amount of discordance due to

HGT is much higher than ILS because we wanted to remain similar to our microbial reference

dataset, WoL. The probability of a horizontal gene transfer event between two taxa is inversely

proportional to their distance in the species tree. For each gene, we use INDELIBLE [69] to

simulate multiple sequence alignments under GTR+G model. In each replicate, we draw two

gene sequence length hyperparameters λ and ν from Uniform(5.5, 6.5) and Uniform(0.1, 0.2)

respectively. The length of each gene sequence within a replicate is drawn from Lognormal(λ ,

ν). This parametric process results in lengths ranging between 169 and 869, and averages 406

base pairs.

We randomly delete a single consequent chunk of characters in each sequence through

the following process in which the deleted range is more probable to be on tips of the sequence

than the center. The ratio of the deletion length to the total length is drawn from Beta(ρ , 1-ρ)

where ρ is a hyperparameter drawn from Uniform(0.2,0.6). The location of the center of the

deleted range is drawn from Beta(0.4,0.4) distribution where the 0 and 1 represents the leftmost

and rightmost eligible center location respectively. Finally, we realign modified sequences using

UPP [176].

Gene tree estimation error, measured by nRF between true gene and tree estimated with

FastTree-2 under GTR+G model, depends on SimPhy sequence mutation rate besides the gene

sequence length and alignment gappiness parameters. We adjust the mutation rate so that the

average error is approximately 0.45. In particular, the overall mutation rate is 4× 10−8 per

generation and there are rate multipliers per gene, per species, and per gene/species, which

ensure deviations from ultrametricity. With average error set to 0.45 and true discordance around

0.38, the discordance from the estimated gene trees to the true species is around 0.58, which is

similar to the levels of discordance observed on the WoL dataset.
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Derived model conditions:

We create another model condition named mc-1-full from the previous one by (1) making

two adjustments: (1) changing the distribution from which λ is drawn to Uniform(6, 7) and

(2) decreasing the HGT rate so that gene tree discordance is 0.35. We generate mc-1 and mc-2

by selecting only the first 100 out of the 500 genes from mc-1-full and mc-2-full respectively.

Finally, we derive five additional model conditions mc-3-100, mc-3-200, mc-3-300, mc-3-400,

and mc-3-500 by selecting the gene trees in ranges 1-100, 101-200, 201-300, 301-400, and

401-500 after all genes in mc-2-full dataset are sorted low-to-high according to the nRF between

their estimated gene tree and true species tree.

7.4.3 Biological Data

Web of Life 2

Data preparation.

A total of 656,574 reference bacterial and archaeal genomes were retrieved from the

NCBI genome database on May 14, 2020. This included genomes from both RefSeq and

GenBank [81], with the former prioritized if the same genome is found in both sources. Two sets

of marker genes were independently inferred from the genomes. First, 400 global marker genes

were inferred using PhyloPhlAn [215] v1 (commit 2c0e61a), with default parameters, on the

amino acid sequences of the open reading frames (ORFs) predicted by Prodigal [99] v2.6.3, with

default parameters. Of which, the 381 genes previously validated [99] were selected. Second, 37

core marker genes were inferred PhyloSift [44] v1.0.1 from the genome sequences, with default

parameters. For the 11 of 37 these core marker genes that were present in both the core and

global marker set, we selected the ones in the global set. Amino acid and nucleotide sequences

of the marker genes were extracted using previously developed scripts. We removed any genome

with fewer than 66 marker genes. We retained only seven of 26 new core genes as we removed

any gene with fewer than median sequence length 150 AAs among the curated genomes. The

new curated set is a superset of all sequences in the WoL reference data set. For each 381 marker
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gene, we aligned the query AA sequences onto the corresponding MSA from the WoL data set

using UPP [176], masking alignment insertion sites. Since the WoL dataset did not include the 7

core ribosomal genes, we computed the backbone MSAs for those genes ourselves using UPP.

We excluded marker gene p0127 from the analysis as UPP failed to finish in 48 hours. 1412

genomes with GUNC [180] clade seperation score ≥ 0.50 and contamination portion ≥ 0.25

are suspected to be contaminated or chimeric and removed from the data set (Fig. 7.14). After

removing duplicate sequences that share identical AA sequences, the number of unique genomes

in the data set reduced to 296,745.

Reconstruction of the 16k tree.

Using an automated procedure (see Supplementary Material), we selected 6,056 species

for insertion on the WoL phylogeny. These sequences were chosen in a way that sought to

increase taxon sampling of key groups with low sampling (see Fig. 7.3a). We performed two

rounds of uDance (v1.1.0) to update the WoL tree with the selected sequences. We instructed

uDance to use to the entire global marker gene set at phylogenetic placement stage. We ran

uDance with partition size parameter 1,000, which resulted in 20 partitions. For gene tree

estimation inside uDance, we opted to use RAxML-NG [115] with LG+G [122] model and three

starting trees. Finally, in this uDance run, we set the low support branch contraction in threshold

to 0.9 and minimum gene occupancy threshold to 30. 241 genomes were unplaceable in the

output tree after the first run. The number of unplaceable sequences was less than 25 in all

partitions except one partition where 187 genomes, mostly classified as members of Myxoccocota

and Bdellovibrionota phyla, were dropped out. We ran a second round of uDance with partition

size parameter 2,000 and re-inserted 172 of these 187 unplaceable sequences in the second round.

We refer to the resulting tree tree with 15,956 genomes as the 16k tree.

Reconstruction of the 200k tree.

We performed one round of uDance (v1.6.0) where we updated the 16k tree with the

remaining 280,792 query sequences in the data set. We did not add the queries that were
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unplaceable in the 16k run to the query set in this run. In order to speed up phylogenetic

placement, we sorted the marker genes based on the quartet distance between their gene tree

and the species tree in the WoL dataset and selected the top 68 marker genes. In an earlier

study [15], we found that phylogenetic placement on the WoL dataset using 50 marker genes is

nearly as accurate as using the full set. However, the cutoff number 68 was determined based

on a trade off between the number of Archaea-rich genes and the total number of genes in

the selection (Figs. 7.11 and 7.12). Unlike the 16k run, we used the 68 selected marker genes

during the phylogenetic placement stage in uDance. We set partition size to 2,500, which created

78 partitions. After near-duplicate removal in some large subsets, the total number of query

and backbone sequences in all partitions combined equaled to 201,316; thus, roughly 80,000

genomes that were nearly (but not fully) identical to many other genomes were dropped. We

opted to use RAxML-NG with LG+G model and two starting trees inside uDance. Finally, in this

uDance run, we set the low support branch contraction in threshold to 0.66 and minimum gene

occupancy threshold to 30. The resulting tree, which we call the 200k tree, contains 199,330

sequences. 1,986 sequences were either unplaceable or were removed in one of the quality

control steps in the workflow.

Taxonomy decoration.

In this analysis, we used NCBI (retrieved on 2020-07-01) and GTDB (release 207) taxon-

omy databases. Taxonomy decoration and consistency analysis is performed using tax2tree [155].

To compute consistency of a tree with NCBI database, we first decorate the tree using NCBI

taxonomy and then the decorated taxonomy with the source NCBI taxonomy. When decorating

using NCBI database, we only performed assignment at phylum and super-phylum rank (also

called clade. Examples are PVC, Parcubacteria, and DPANN). We removed any suffixes(such as

A, B) of the names of paraphyletic ranks before the decoration with GTDB database.
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Visualization.

The trees in this study are visualized with iTOLv5 [129]. Unique colors were assigned to

selected phyla and classes and according to the taxonomic decoration using GTDB database. To

display the 16k trees in a page, we collapsed the clades that represent a single phyla and with

fewer than 400 leaves or that represent a single class. We matched the phyla and class level

visualisation in the 200k tree to 16k tree. After collapsing, we grouped a clade of phyla or classes

if each one had fewer than 20 and 40 members for the 16k and 200k tree respectively. We added

numerical suffixes to the names of the paraphyletic ranks. We dropped names for remaining

clades that were assigned alpha-numeric temporary names (e.g., UBA3054) in GTDB.

7.4.4 Methods Compared

We compare uDance with the following methods on the simulated HGT dataset.

The first method is the coalescent based two-step phylogenomic approach where the first

step is gene tree inference and the second step is species tree inference using ASTRAL-MP.

We perform gene tree inference with FastTree-2 using GTR+G model of evolution. Systematic

exploration of phylogenomic approach using alternative gene tree inference tools such as IQTree-

2 and RAxML-NG is not feasible on the HGT data set due to computational cost of these

tools.

The second approach is the concatenation-based species tree inference where we create a

concatenation MSA (also called supermatrix) and perform phylogenetic inference with FastTree-

2 using GTR+G model. Once again, FastTree-2 is the only tool that can handle the large inputs

in our dataset.
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Figure 7.5. Species tree estimation error measured using nRF on simulated data with 100 genes.
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Figure 7.6. The 10K ASTRAL tree decorated with GTDB taxonomy.
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sequences, the novelty score is less than one. Novelty score is defined as two times the terminal
branch length of the query when placed on the true location on the backbone tree.
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Figure 7.12. How we determine APPLES-2 marker gene set. We adopt ”best” marker gene
strategy described in APPLES-2. In order to improve placement speed, we only use a subset of
marker genes. We picked a local maxima of average Archaea occupancy at 68th marker gene,
which also ensures that in average Archaea sequences have at least 20 marker genes. The set of
Archaea used in computation of these two statistics are taken from WoL tree.
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u2

1) The Closest one 
from left child of u2

2) The Closest one 
from right child of u2

3) The most 
occupant 
descendant of u2

Figure 7.13. Outgroup taxa selection strategy. Two to three taxa are chosen from the partition c2
(blue) to be added to the partition c1 (orange).
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Figure 7.14. Two dot plots comparing (1) contamination ratio-vs-CSS and (2) contamination
ratio-vs-GUNC database identity for the species in the 16K tree that are ”chimeric” (CSS ¿0.45).
We colored each point based on whether the sequence passed QC in GTDB or not. Triangle
points are the published WoL tree, and round points are the new 6K taxa we added in the 16K
tree. In these figures, We annotated 17 taxa in the 16K tree that might be reducing the accuracy
of uDance and APPLES-2 in large clusters (subtrees) that include some of the densely sampled
species such as Salmonella, E. coli, TB, etc. The pattern is clear that these contaminated genomes
can be characterized by a large contamination ratio, near 100% CSS, and high database identity.
We do not remove high CSS taxa if their contamination percentage is low, since uDance performs
whole-genome-based placement, and it’s tolerant to low levels of contamination. Removing taxa
satisfying both CSS >= 0.5 and Contamination ratio >= 0.25 removes 195 taxa from the 16K
tree. 171 of them (87%) fail QC in GTDB. Of 195, 37 taxa are also present in WoL tree. 29 of
these 37 don’t pass GTDB QC.

Figure 7.15. WoL heights distribution. This distribution is similar to lognormal. Height is
defined as median root to tip distance after minvar rooting.
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Appendix A

Supplementary materials for “TreeCluster:
Clustering Biological Sequences using
Phylogenetic Trees”

A.1 Proofs and supplementary algorithms

A.1.1 Proofs for the Max-diameter min-cut partitioning problem

Proof for Theorem 1. We use induction. The base case for the induction is the simple rooted

tree with root u and two leaves ul and ur. If wl +wr > α the algorithm cuts the longer branch

whereas if wl +wr ≤ α no branch is cut. In both cases, the theorem holds.

The inductive hypothesis is that for a node u, the algorithm has computed A(ul), A(ur),

B(ul), and B(ur) optimally. We need to prove that a solution other than the one computed by

our algorithm i) cannot have a lower number of clusters, call it A′(u), and ii) when A′(u) = A(u),

cannot have a lower distance to the farthest connected leaf, call it B′(u).

When B(ul)+wl +B(ur)+wr ≤ α , we have A(u) = A(ul)+A(ur)− 1, which is the

minimum possible by inductive hypothesis and the fact that the number of clusters cannot go

down by more than one on node u. Also, B(u) is optimal by construction.

When B(ul)+wl +B(ur)+wr > α , without loss of generality, assume that B(ul)+wl ≥

B(ur)+wr and thus, the algorithm cuts the (u,ul) branch, getting A(u) = A(ul)+A(ur) and

B(u) = B(ur)+wr. Note that A′(u)< A(u) is only possible if A′(ul) = A(ul) and A′(ur) = A(ur)
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and we do not cut any branch at u in the alternative clustering. However, this scenario is not

possible because

B′(ul)+wl +B′(ur)+wr ≥ B(ul)+wl +B(ur)+wr > α

where the first inequality follows from the inductive hypothesis and the final inequality shows

that we will have to cut a branch in any alternative setting. Finally, we need to show that an

alternative solution with A′(u) = A(u) but B′(u)< B(u) is not possible. The inequality requires

that either B′(ul) < B(ul) or B′(ur) < B(ur). First, consider the B′(ul) < B(ul) case, which is

possible only if A′(ul) = A(ul)+1. Note that A′(u) = A(u) requires A′(ur) = A(ur) (and thus

B′(ur) = B(ur)) and that B′(ul)+wl +B(ur)+wr < α , which is possible. Under this condition,

we find:

B′(u) = max(B′(ul)+wl,B(ur)+wr)≥ B(ur)+wr = B(u) (A.1)

If instead B′(ur)< B(ur), similar conditions can be written, resulting in

B′(u) = max(B(ul)+wl,B′(ur)+wr)≥ B(ul)+wl ≥ B(ur)+wr = B(u) (A.2)

Thus, A(u) and B(u) are optimal when B(ul)+wl +B(ur)+wr > α .

Proof for Corollary 1. Let or and ol denote the right and the left child of the root of T o. Every

edge in T can be mapped to T o except the edge (or,ol), from which we define a mapping to

(o,or) (w.l.o.g). Using this mapping, the optimal clustering (i.e., optimal cut-set) on T can be

translated to an alternative Max-diameter min-cut partitioning on T o. However, by Theorem 1,

A(o) is optimal and cannot be improved by any alternative partitioning. Since any admissible

clustering on T o is also admissible on T , Algorithm 1 minimizes the number of clusters.
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A.1.2 Linear-time solution for the Sum-length min-cut partitioning
problem

Algorithm 4: Linear-time solution for Sum-length min-cut partitioning
Input: A tree T o = (V,E) and a threshold α

1 B(u)← 0 for v ∈V
2 for u ∈ post order traversal of internal nodes of T o do
3 if B(ul)+wl +B(ur)+wr > α then
4 if B(ul)+wl ≤ B(ur)+wr then
5 E← E−{(u,ur)}
6 B(u)← B(ul)+wl

7 else
8 E← E−{(u,ul)}
9 B(u)← B(ur)+wr

10 else
11 B(u)← B(ul)+wl +B(ur)+wr

12 return Leafsets of every connected component in T o

We now show that Algorithm 4 is correct. Let A(u) be the minimum number of clusters

under U all with a diameter less than α; i.e., A(o) is the objective function.

Theorem 4. Algorithm 1 computes a clustering with minimum A(o) for rooted tree T o. In

addition, among all possible such clusterings, the algorithm picks the solution with minimum

B(o).

Proof. The proof uses induction. The base case for the induction is the simple rooted tree with

root u and two leaves ul and ur. If wl +wr > α , the algorithm cuts the longer branch, whereas if

wl +wr ≤ α , no branch is cut. In both cases, the theorem holds.

The inductive hypothesis is that, for a node u, the algorithm has computed A(ul), A(ur),

B(ul), and B(ur) optimally. We need to prove that a solution other than the one computed by

our algorithm i) cannot have a lower number of clusters, call it A′(u), and ii) when A′(u) = A(u),

cannot have a lower distance to the farthest connected leaf, call it B′(u).

When B(ul)+wl +B(ur)+wr ≤ α , we have A(u) = A(ul)+A(ur)− 1, which is the
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minimum possible by the inductive hypothesis along with the fact that the number of clusters

cannot decrease by more than one on node u. Also, B(u) is optimal by construction.

When B(ul)+wl +B(ur)+wr > α , without loss of generality, assume that B(ul)+wl ≥

B(ur)+wr, and thus, the algorithm cuts the (u,ul) branch, resulting in A(u) = A(ul)+A(ur) and

B(u) = B(ur)+wr. Note that A′(u)< A(u) is only possible if A′(ul) = A(ul) and A′(ur) = A(ur)

and we do not cut any branch at u in the alternative clustering. However, this scenario is not

possible because

B′(ul)+wl +B′(ur)+wr ≥ B(ul)+wl +B(ur)+wr > α

where the first inequality follows from the inductive hypothesis and the final inequality shows

that we will have to cut a branch in any alternative setting. Finally, we need to show that an

alternative solution with A′(u) = A(u) but B′(u)< B(u) is not possible. The inequality requires

that either B′(ul) < B(ul) or B′(ur) < B(ur). First, consider the B′(ul) < B(ul) case, which is

possible only if A′(ul) = A(ul)+1. Note that A′(u) = A(u) requires A′(ur) = A(ur) (and thus

B′(ur) = B(ur)) and that B′(ul)+wl +B(ur)+wr < α , which is possible. Under this condition,

we find

B′(u) = B′(ul)+wl +B(ur)+wr ≥ B(ur)+wr = B(u) (A.3)

If, instead, B′(ur)< B(ur), similar conditions can be written, resulting in

B′(u) = B(ul)+wl +B′(ur)+wr ≥ B(ul)+wl ≥ B(ur)+wr = B(u) (A.4)

Thus, A(u) and B(u) are optimal when B(ul)+wl +B(ur)+wr > α .

Corollary 3. Let C′ be the cut-set obtained by running Algorithm 1 on any arbitrary rooting T o

of unrooted tree T . C′ optimally solves the Max-diameter min-cut partitioning problem.
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Proof. Let or and ol denote the right and the left child of the root of T o. Every edge in T can

be mapped to T o except the edge (or,ol), from which we define a mapping to (o,or) (w.l.o.g).

Using this mapping, the optimal clustering (i.e., the optimal cut-set) on T can be translated to an

alternative Max-diameter min-cut partitioning on T o. However, by Theorem 1, A(o) is optimal

and cannot be improved by any alternative partitioning. Since any admissible clustering on T o is

also admissible on T , Algorithm 1 minimizes q.

A.1.3 Proofs for the Single-linkage min-cut partitioning problem

Proof of Proposition 1. (⇐) If d(a,b)≤ α but a and b are in distinct clusters La, Lb respectively,

N can be reduced by one by simply merging La and Lb. fT (La ∪ Lb) ≤ α is satisfied if for

any split of La ∪ Lb, there exists a pair of leaves that are from distinct splits and are within

α threshold. For any pair of non-empty sets S and S′ that satisfy S ⊂ La and S′ ⊂ Lb, we

have min
j∈S∪S′,k∈(La∪Lb)−(S∪S′)

d( j,k) ≤ min
j∈S,k∈La−S

d( j,k) ≤ α and min
j∈S∪(Lb−S′),k∈S′∪(La−S)

d( j,k) ≤

min
j∈S,k∈La−S

d( j,k)≤ α . On the other hand, min
j∈La,k∈Lb−S

d( j,k)≤ d(a,b)≤ α . This concludes that

for L = La∪Lb, fT (L)≤ α is satisfied. La and Lb can still be merged if the chain H described

above exists. It is trivial to show that there is a link ⟨ci,ci+1⟩ in H such that ci ∈ La and ci+1 /∈ La.

Using the argument above, we can iterate over H and keep merging clusters (and decrease N)

every time we see such a link until we finally merge La with Lb.

(⇒) We describe a procedure to compute the chain H . If a and b in the same cluster

L, min
k∈L−{a}

d(a,k) ≤ max
S⊂L
{ min

j∈S,k∈L−S
d( j,k)} ≤ α holds, implying that there is a leaf c1 in set

L−{a} such that d(a,c1) ≤ α . If c1 = b, theorem follows. If c1 ̸= b, we union a and c1,

call the union set La, and add the link a→ c1 to H ′. Iteratively, we find the pair ⟨ j,k⟩ that

yields to min
j∈La,k∈L−La

d( j,k), add the link j→ k to H ′, and add k to La until we finally add b

to La. The elements forming the path between a, and b in H ′, which can be computed using

depth-first-search, constitute a valid chain H .
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Figure A.1. A sketch showing the setup for constructing the chain H .

Proof for Theorem 2. Let a ↭ b be the path between leaves a and b on T . Fixing a and b, for

each node j, we use the term support of j, denoted by s( j), to refer to the unique node on all the

three paths a ↭ b, a ↭ j, and b ↭ j. We refer to a group of leaves that share a mutual support

with respect to a and b as a bubble (e.g. triangles in Fig A.1). Among all bubbles branching out

of a ↭ b, let the one with the closest support to a be A′. We name the leaf closest to a on A′ as

a′ (Fig A.1).

We start with the observation that if d(a,b)≤ α holds, the algorithm will never cut any

edge on a ↭ b. For every internal node u on a ↭ b, let v and w be the adjacent nodes on

a ↭ u and u ↭ b, respectively. Also, let pa be the closest leaf to u whose support s(pa) is on

a ↭ u, and let pb be the closest leaf to u whose support s(pb) is on u ↭ b. Now, note that

d(pa,u)+d(u, pb)≤ d(a,u)+d(u,b)≤ α holds, so regardless of the rooting, (v,u) and (u,w)

are never cut by Algorithm 2.

If a chain H exists, due to the previous observation, there are no cuts on ci ↭ ci+1 for

every 0≤ i≤ m. Consequently, a and b are connected through a path and are thus in the same

cluster.

Assume Algorithm 2 places a and b on the same cluster, i.e., it does not cut any edge on

a ↭ b. We present a procedure to generate a chain H as described in Definition 5. But we first

need some definitions. We define p0 = a and pm′ = b. For 1≤ i≤ m′, let pi denote the closest

leaf to pi−1 whose support s(pi) is on pi−1 ↭ b and s(pi) ̸= s(pi−1); i.e., pi is in the bubble to

the right of the bubble of pi−1. Conversely, for 1 ≤ i ≤ m′, let πi denote the closest leaf to pi
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whose support is on a ↭ s(pi−1); i.e., is in a bubble to the left of pi. Also define π1 = a. We

can also show that every πi ∈ {p0 . . . pi−1}. If a πi is not equal to one of {p0 . . . pi−1}, then, s(πi)

has to be on s(p j−1)↭ s(p j) for some j. However, we would have d(p j−1,πi)≤ d(p j−1, p j),

which contradicts the definition of pi.

Now we construct the chain. The fact that Algorithm 2 retains (a,s(a′)) indicates that

min(d(a,a′),d(a, p1)) = d(a, p1)≤ α ; therefore, we add a→ p1 to an auxiliary graph H ′. Now,

consider Algorithm 2 when it processes the node s(pi−1) for 1 < i. The fact that the first edge on

path s(pi−1)↭ s(pi) (shown in red in Fig A.1) is not cut indicates that either d(πi−1, pi)≤ α

or d(pi−1, pi)≤ α . Depending on which is true, we add a link from πi−1→ pi or pi−1→ pi to

H ′. We repeat this process for all i until we reach i = m′, where we add an edge to pm′ = b.

Noting that πi ∈ {p0 . . . pi−1}, the H ′ graph becomes a directed tree, rooted at a with a directed

path to the leaf b. This directed path constitutes the valid chain H .
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A.1.4 Mean-diameter clustering with clade constraint

Algorithm 5: AVERAGE DIAMETER CLADE Average diameter clade min-cut

partitioning

1 for u ∈ post order traversal of T o do

2 totPairDist[u]← 0; totLea f Dist[u]← 0;

3 if u in L then

4 numLeaves[u]← 1; avgPairDist[u]← 0;

5 else

6 numLeaves[u]← numLeaves[ul]+numLeaves[ur];

7 totPairDist[u]← totPairDist[ul]+ totPairDist[ur]+ totLea f Dist[ul]×

numLeaves[ur]+ totLea f Dist[ur]×numLeaves[ul];

8 totLea f Dist[u]← totLea f Dist[ul]+wl×numLeaves[ul]+

totLea f Dist[ur]+wr×numLeaves[ur];

avgPairDist[u]← totPairDist[u]/
(numLeaves[u]

2

)
;

9 toExplore← queue containing the root of T o;

10 while toExplore ̸= /0 do

11 curr← toExplore.dequeue();

12 if u not in L and avgPairDist[u]> α then

13 E← E \ (u,ul); E← E \ (u,ur);

14 toExplore.enqueue(ul); toExplore.enqueue(ur);

15 return Leafsets of every connected component in T o

All optimal solutions

Lemma 6. Let {e1,e2, · · · ,em} be the set of edges in an unrooted tree T . Consider the following

algorithm: root T at e j and run Algorithm 1, and let S j denote the set of edges cut by the

algorithm in this run. Any optimal clustering for T has to draw its cut-set from Σ = ∪m
j=1S j.
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Proof. The proof is by contradiction. Assume there is an optimal cut-set S ′ that contains an

edge ei such that ei /∈ Σ. Consider the rooting of T at ei. Denote the root of this tree as v, the

immediate left and right branches of v as el and er, and the left and right child nodes of v as vl

and vr. Note that the concatenation of el and er corresponds to ei in T ; thus, el /∈S j and er /∈S j.

When ei is removed from T , two new trees form, called Tl (the one containing the node vl) and

Tr (the one containing the node vr). If p cuts in S ′ are in Tr, and if q cuts in S ′ are in Tl , then

|S ′|= p+q+1. The number of cuts in S ′ and S j are equal, and el and er are not cut, which

implies that either the tree rooted by vl or vr has an alternative clustering with one less cut. By

the design of Algorithm 1, if this was the case, the algorithm would have chosen the alternative

cut.

A.2 Commands and parameters

Ancestral state reconstruction using TreeTime.

Each cluster tree is first rooted at its balance point using MinVar rooting version (commit

8c1581a):

$ py thon F a s t R o o t . py − i u n r o o t e d t r e e . nwk −m MV

−o r o o t e d t r e e . nwk

Before performing maximum likelihood ancestral state reconstruction, we inferred GTR

parameters from the input tree using RAxML v8.2.12:

$ raxmlHPC−PTHREADS − f e − t . . / i n p u t t r e e . nwk −s a l n . f a

−m GTRGAMMA −n t r e −T 4

We manually hardcoded those parameters into built-in TN93 parameters matrix in tree-

time software (v0.5.5) and reconstructed ancestral states of rooted tree using this command:

$ t r e e t i m e a n c e s t r a l −− t r e e r o o t e d t r e e . nwk −− a l n a l n . f a

−− o u t d i r o u t d i r −− g t r TN93
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Listing A.1. Default FAVITES Parameters

{

” C o n t a c t N e t w o r k G e n e r a t o r ” : ” Communit ies ” ,

” c n g e n e r a t o r s ” : [{

” C o n t a c t N e t w o r k G e n e r a t o r ” : ” B a r a b a s i A l b e r t ” ,

” num cn nodes ” : 5000 ,

” num edges f rom new ” : 5

} ] * 2 0 ,

” c n p a c r o s s ” : 1 / ( 2 * 1 9 * 5 0 0 0 ) ,

” NodeEvo lu t ion ” : ” V i r u s T r e e S i m u l a t o r ” ,

” v t s g r o w t h R a t e ” : 2 . 8 5 1 9 0 4 ,

” v t s m a x a t t e m p t s ” : 100 ,

” v t s m o d e l ” : ” l o g i s t i c ” ,

” v t s n 0 ” : 1 ,

” v t s t 5 0 ” : −2 ,

” NumBranchSample ” : ” S i n g l e ” ,

” NumTimeSample ” : ” Once ” ,

” S e e d S e l e c t i o n ” : ”Random ” ,

” num seeds ” : 15000 ,

” SeedSequence ” : ” VirusNonHomYuleHeightGTRGamma ” ,

” s e e d h e i g h t ” : 25 ,

” s e e d s p e c i a t i o n r a t e f u n c ” : ” exp ( − t **2)+1” ,

” v i r a l s e q u e n c e t y p e ” : ”HIV1−B−DNA−POL−LITTLE ” ,

” s e q g e n f r e q a ” : 0 . 3 9 2 ,

” s e q g e n f r e q c ” : 0 . 1 6 5 ,

” s e q g e n f r e q g ” : 0 . 2 1 2 ,
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” s e q g e n f r e q t ” : 0 . 2 3 2 ,

” s e q g e n a t o c ” : 1 . 7 6 5 7 0 7 ,

” s e q g e n a t o g ” : 9 . 5 8 7 6 4 9 ,

” s e q g e n a t o t ” : 0 . 6 9 1 9 1 5 ,

” s e q g e n c t o g ” : 0 . 8 6 3 3 4 8 ,

” s e q g e n c t o t ” : 10 .282617 ,

” s e q g e n g t o t ” : 1 . 0 ,

” seqgen gamma shape ” : 0 . 4 0 5 1 2 9 ,

” s e q g e n n u m g a m m a r a t e c a t e g o r i e s ” : ” ” ,

” S e q u e n c e E v o l u t i o n ” : ”GTRGammaSeqGen ” ,

” Sequenc ing ” : ” P e r f e c t ” ,

” SourceSample ” : ”Random ” ,

” TimeSample ” : ” Gran ichF i r s tART ” ,

” Transmiss ionTimeSample ” : ”HIVARTGranichGEMF ” ,

” e n d t i m e ” : 10 ,

” h i v f r e q n s ” : 0 ,

” h i v f r e q i 3 ” : 0 ,

” h i v f r e q i 4 ” : 0 ,

” h i v f r e q a 3 ” : 0 ,

” h i v f r e q a 4 ” : 0 ,

” h i v f r e q d ” : 0 ,

” h i v f r e q s ” : 100000 −15000 ,

” h i v f r e q i 1 ” : 50 ,

” h i v f r e q i 2 ” : 5094 ,

” h i v f r e q a 1 ” : 9 ,

” h i v f r e q a 2 ” : 15000 −50 −5094 −9 ,
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” h i v a 1 t o a 2 ” : 4 .333333333333333 ,

” h i v a 1 t o d ” : 0 ,

” h i v a 1 t o i 1 ” : 0 . 4 8 ,

” h i v a 2 t o a 3 ” : 0 ,

” h i v a 2 t o d ” : 0 ,

” h i v a 2 t o i 2 ” : 0 . 4 8 ,

” h i v a 3 t o a 4 ” : 0 ,

” h i v a 3 t o d ” : 0 ,

” h i v a 3 t o i 3 ” : 0 ,

” h i v a 4 t o d ” : 0 ,

” h i v a 4 t o i 4 ” : 0 ,

” h i v i 1 t o a 1 ” : 1 . 0 ,

” h i v i 1 t o d ” : 0 ,

” h i v i 1 t o i 2 ” : 8 .666666666666666 ,

” h i v i 2 t o a 2 ” : 1 . 0 ,

” h i v i 2 t o d ” : 0 ,

” h i v i 2 t o i 3 ” : 0 ,

” h i v i 3 t o a 3 ” : 0 ,

” h i v i 3 t o d ” : 0 ,

” h i v i 3 t o i 4 ” : 0 ,

” h i v i 4 t o a 4 ” : 0 ,

” h i v i 4 t o d ” : 0 ,

” h i v n s t o d ” : 0 ,

” h i v n s t o s ” : 999999 ,

” h i v s t o d ” : 0 ,

” h i v s t o i 1 b y a 1 ” : 0 . 0 0 5 6 2 5 ,
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” h i v s t o i 1 b y a 2 ” : 0 ,

” h i v s t o i 1 b y a 3 ” : 0 ,

” h i v s t o i 1 b y a 4 ” : 0 ,

” h i v s t o i 1 b y i 1 ” : 0 . 1 1 2 5 ,

” h i v s t o i 1 b y i 2 ” : 0 . 0 2 2 5 ,

” h i v s t o i 1 b y i 3 ” : 0 ,

” h i v s t o i 1 b y i 4 ” : 0 ,

” h i v s t o i 1 s e e d ” : 0 ,

” T r e e U n i t ” : ” Trunca tedNormal ” ,

” t r e e r a t e l o c ” : 0 . 0 0 0 8 ,

” t r e e r a t e m a x ” : f l o a t ( ’ i n f ’ ) ,

” t r e e r a t e m i n ” : 0 ,

” t r e e r a t e s c a l e ” : 0 . 0 0 0 5 ,

” Con tac tNe twork ” : ” NetworkX ” ,

” D r i v e r ” : ” D e f a u l t ” ,

” E n d C r i t e r i a ” : ”GEMF” ,

” Logging ” : ” F i l e ” ,

” N o d e A v a i l a b i l i t y ” : ” P e r f e c t ” ,

” Transmiss ionNodeSample ” : ”GEMF” ,

” TreeNode ” : ” Simple ” ,

” g e m f p a t h ” : ”GEMF” ,

” hmmemit path ” : ”hmmemit ” ,

” j a v a p a t h ” : ” j a v a ” ,

” o u t d i r ” : ” FAVITES output ” ,

” s e q g e n p a t h ” : ” seq −gen ” ,

}
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Appendix B

Supplementary materials for “APPLES:
Scalable Distance-based Phylogenetic
Placement with or without Alignments”

B.1 Proofs and derivations

Recall the following notations.

• For any node u and exponents a ∈ Z and b ∈ N+, let

– S(a,b,u) = ∑i∈g(u) δ a
qid

b
ui

– R(a,b,u) = ∑i/∈g(u) δ a
qid

b
p(u)i defined for u ∈V \{1}

• For b = 0, let S(a,0,u) = ∑i∈g(u) δ a
qi and let S′(a,u) be a shorthand for S(a,0,u). Similarly,

let R(a,0,u) = R′(a,u) = ∑i/∈g(u) δ a
qi.
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B.1.1 Proof of Lemma 1

Proof. Recall the dynamic programming recursions of Equations 3.3 and 3.4:

S(a,b,u) =
b

∑
j=0

∑
v∈c(u)

l(v) j
(

b
j

)
S(a,b− j,v), for u /∈L \{1}

R(a,b,u) =
b

∑
j=0

(
l(p(u)) j

(
b
j

)
R(a,b− j, p(u))

+ ∑
v∈sib(u)

l(v) j
(

b
j

)
S(a,b− j,v)

)
for u /∈ {1,1′}

Since u is not a leaf, for each leaf i ∈ g(u), there exists a v ∈ c(u) such that the directed

path from u to i passes through v. Therefore every leaf i can be grouped under its corresponding

v.

S(a,b,u) = ∑
i∈g(u)

δ
a
qid

b
ui = ∑

v∈c(u)
∑

i∈g(v)
δ

a
qi
(
l(v)+dvi

)b
=

b

∑
j=0

∑
v∈c(u)

∑
i∈g(v)

δ
a
qid

b− j
vi l(v) j

(
b
j

)

=
b

∑
j=0

∑
v∈c(u)

l(v) j
(

b
j

)
S(a,b− j,v)

Similarly, given the condition u ̸= 1, for each leaf i /∈ g(u), either (1) there exists v∈ sib(u)

such that the directed path from p(u) to i passes through v, or (2) undirected path between i and

p(u) passes through p(p(u)).

R(a,b,u) = ∑
i/∈g(u)

δ
a
qid

b
p(u)i = ∑

v∈sib(u)
∑

i∈g(v)
δ

a
qi
(
l(v)+dvi

)b
+ ∑

i/∈g(p(u))
δ

a
qi
(
l(p(u))+dp(p(u))i

)b

=
b

∑
j=0

∑
v∈sib(u)

∑
i∈g(v)

δ
a
qid

b− j
vi l(v) j

(
b
j

)
+

b

∑
j=0

∑
i/∈g(p(u))

δ
a
qid

b− j
p(p(u))il(p(u)) j

(
b
j

)

=
b

∑
j=0

∑
v∈sib(u)

l(v) j
(

b
j

)
S(a,b− j,v)+

b

∑
j=0

l(p(u)) j
(

b
j

)
R(a,b− j, p(u))

Boundary conditions follow from definitions. For u /∈L \{1}, since dii = 0, we have
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S(a,b,u) = 0 and it’s trivial to see S′(a,u) = δ a
qu. For R(, ,) recursions, the boundary case

happens at the unique child of the root, which we denote as 1′. Based on the definition, since the

only i /∈ g(1′) is 1, and db
p(1′)1 = 0, we trivially have R(a,b,1′) = 0. For b = 0, R′(a,1′) = δ a

q1.

A post-order traversal on T ∗ can compute S(a,b,u), and a subsequent pre-order traversal

can compute R(a,b,u), both in constant time and using constant memory per node. Recall that

a and b are both no more than k, which is a constant. Thus, time and memory complexity of

this dynamic programming is Θ(bn), which translates to Θ(n) in least squares setting, where

b≤ 2.

B.1.2 Proof of Lemma 2.

Recall wqi = δ
−k
qi and that Equation 2:

Q(P) =
n

∑
i=1

wqi(δqi−dqi(P))2 =
n

∑
i=1

δ
−k
qi (δqi−dqi(P))2

Proof. Equation 3.2 can be re-written as:

Q(P) = ∑
i∈g(u)

δ
−k
qi
(
δqi−dui(P)− x1 + x2− l(u)

)2
+ ∑

i/∈g(u)
δ
−k
qi
(
δqi−dp(u)i(P)− x1− x2

)2

(B.1)

By simple rearrangement of the terms, we can rewrite Equation B.1 as follows.

Q(P(u,x1,x2)) = R′(2− k,u)+S′(2− k,u)+R(−k,2,u)+S(−k,2,u)

+2
(
x1 + x2

)(
R(−k,1,u)−R′(1− k,u)

)
+2
(
x1 + l(u)− x2

)(
S(−k,1,u)−S′(1− k,u)

)
+
(
x1 + x2

)2R(−k,1,u)+
(
x1 + l(u)− x2

)2S(−k,1,u)

−2R(1− k,1,u)−2S(1− k,1,u)

(B.2)

Note that computing Q(P(u,x1,x2)) requires only S(, ,u) and R(, ,u) values and l(u). Thus,

computing Q(P) requires only computing S(a,b,u) and R(a,b,u) values for −k ≤ a≤ 2− k and
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0≤ b≤ 2.

Proof of Lemma 3.

Recall definitions

S(a,b,u) = ∑
i∈g(u)

δ
a
qid

b
ui (for b > 0) and S′(a,u) = S(a,0,u) = ∑

i∈g(u)
δ

a
qi

R(a,b,u) = ∑
i/∈g(u)

δ
a
qid

b
p(u)i (for b > 0) and R′(a,u) = R(a,0,u) = ∑

i/∈g(u)
δ

a
qi

and recall Eq. B.1:

Q(P) = ∑
i∈g(u)

δ
−k
qi
(
δqi−dui(P)− x1 + x2− l(u)

)2
+ ∑

i/∈g(u)
δ
−k
qi
(
δqi−dp(u)i(P)− x1− x2

)2
.

Proof. We take the derivative of Eq. B.1 with respect to x1 and set it equal to zero:

∂Q(P)
∂x1

=−2 ∑
i∈g(u)

δ
−k
qi
(
δqi−dui(P)− x1 + x2− l(u)

)
−2 ∑

i/∈g(u)
δ
−k
qi
(
δqi−dp(u)i(P)− x1− x2

)
= 0

=⇒
(

∑
i∈g(u)

δ
−k
qi + ∑

i/∈g(u)
δ
−k
qi

)
x1 +

(
− ∑

i∈g(u)
δ
−k
qi + ∑

i/∈g(u)
δ
−k
qi

)
x2

− ∑
i∈g(u)

δ
1−k
qi − ∑

i/∈g(u)
δ

1−k
qi

+ ∑
i∈g(u)

δ
−k
qi dui(P)+ ∑

i/∈g(u)
δ
−k
qi dp(u)i(P)+ l(u) ∑

i∈g(u)
δ
−k
qi = 0

=⇒
(
S′(−k,u)+R′(−k,u)

)
x1 +

(
−S′(−k,u)+R′(−k,u)

)
x2 =

S′(1− k,u)+R′(1− k,u)−S(−k,1,u)−R(−k,1,u)− l(u)S′(−k,u)
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Similarly,

∂Q(P)
∂x2

= 2 ∑
i∈g(u)

δ
−k
qi
(
δqi−dui(P)− x1 + x2− l(u)

)
−2 ∑

i/∈g(u)
δ
−k
qi
(
δqi−dp(u)i(P)− x1− x2

)
= 0

=⇒
(
− ∑

i∈g(u)
δ
−k
qi + ∑

i/∈g(u)
δ
−k
qi

)
x1 +

(
∑

i∈g(u)
δ
−k
qi + ∑

i/∈g(u)
δ
−k
qi

)
x2

+ ∑
i∈g(u)

δ
1−k
qi − ∑

i/∈g(u)
δ

1−k
qi − ∑

i∈g(u)
δ
−k
qi dui(P)

+ ∑
i/∈g(u)

δ
−k
qi dp(u)i(P)− l(u) ∑

i∈g(u)
δ
−k
qi = 0

=⇒
(
−S′(−k,u)+R′(−k,u)

)
x1 +

(
+S′(−k,u)+R′(−k,u)

)
x2 =

−S′(1− k,u)+R′(1− k,u)+S(−k,1,u)−R(−k,1,u)+ l(u)S′(−k,u)

These two linear equations have a unique solution for the pair x1,x2 if and only if the following

matrix has the full rank:

H =

R′(−k,u)+S′(−k,u) R′(−k,u)−S′(−k,u)

R′(−k,u)−S′(−k,u) R′(−k,u)+S′(−k,u)

 ·
Determinant of H is det(H) = 4R′(−k,u)S′(−k,u). Assuming that δqi > 0 for all i ∈L ,

both R′(−k,u) > 0 and S′(−k,u) > 0 hold. Therefore, H has the full rank. However, δqi = 0

for q ̸= i can be encountered on real data, especially for low divergence times, low evolutionary

rates, or short sequences. In this case, APPLES is designed to place q on the pendant edge of i

with x1 = 0 and x2 = l(i). In case there are multiple leaves i that satisfy δqi = 0 for q ̸= i, we

pick one of them arbitrarily.
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B.1.3 Proof of Theorem 3

Proof. First, using two traversals of the tree, we compute all the S(a,b,u) and R(a,b,u) values

by Lemma 1. To find the optimal placement edge, we first optimize Q(P(u,x1,x2)) for all

u ∈V \{1}. By Lemma 3, this task requires only constant time after the precompuations. Then,

for each node, we compute Q(P(u,x1,x2)) in constant time for the optimal u,x1,x2 by Lemma 2.

Thus, each node is processed in linear time and the whole optimization requires linear time. Note

that the system of equations (shown in Lemma 3) will not have a solution iff δqi ≤ 0 for some i;

if there is δqi = 0, we make q sister to i, breaking ties arbitrarily.

Proof of Lemma 4

Proof. Eigenvalues of the Hessian matrix of Q(P(u,x1,x2)) are 2R′(−k,u) and 2S′(−k,u), which

are both non-negative since δqi ≥ 0 for i ∈L . Thus, the Hessian matrix is positive semidefinite

and therefore P(u,x1,x2) is a convex function of x1 and x2.

B.2 Supplementary Tables

Table B.1. GenBank accession numbers and URLs for the dataset of 22 Anopheles genomes

Species GenBank assembly accession URL

Anopheles albimanus GCA 000349125.1 http://www.insect-genome.com/data/genome download/Anopheles albimanus/Anopheles albimanus genomic.fasta.gz
Anopheles arabiensis GCA 000349185.1 http://www.insect-genome.com/data/genome download/Anopheles arabiensis/Anopheles arabiensis genomic.fasta.gz
Anopheles atroparvus GCA 000473505.1 http://www.insect-genome.com/data/genome download/Anopheles atroparvus/Anopheles atroparvus genomic.fasta.gz
Anopheles christyi GCA 000349165.1 http://www.insect-genome.com/data/genome download/Anopheles christyi/Anopheles christyi genomic.fasta.gz
Anopheles coluzzii - http://www.insect-genome.com/data/genome download/Anopheles coluzzii/Anopheles coluzzii genomic.fasta.gz
Anopheles culicifacies GCA 000473375.1 http://www.insect-genome.com/data/genome download/Anopheles culicifacies/Anopheles culicifacies genomic.fasta.gz
Anopheles darlingi GCA 000211455.3 http://www.insect-genome.com/data/genome download/Anopheles darlingi/Anopheles darlingi genomic.fasta.gz
Anopheles dirus GCA 000349145.1 http://www.insect-genome.com/data/genome download/Anopheles dirus/Anopheles dirus genomic.fasta.gz
Anopheles epiroticus GCA 000349105.1 http://www.insect-genome.com/data/genome download/Anopheles epiroticus/Anopheles epiroticus genomic.fasta.gz
Anopheles farauti GCA 000956265.1 http://www.insect-genome.com/data/genome download/Anopheles farauti/Anopheles farauti genomic.fasta.gz
Anopheles funestus GCA 000349085.1 http://www.insect-genome.com/data/genome download/Anopheles funestus/Anopheles funestus genomic.fasta.gz
Anopheles gambiae GCA 000150785.1 http://www.insect-genome.com/data/genome download/Anopheles gambiae/Anopheles gambiae genomic.fasta.gz
Anopheles koliensis GCA 000956275.1 http://www.insect-genome.com/data/genome download/Anopheles koliensis/Anopheles koliensis genomic.fasta.gz
Anopheles maculatus GCA 000473185.1 http://www.insect-genome.com/data/genome download/Anopheles maculatus/Anopheles maculatus genomic.fasta.gz
Anopheles melas GCA 000473525.2 http://www.insect-genome.com/data/genome download/Anopheles melas/Anopheles melas genomic.fasta.gz
Anopheles merus GCA 000473845.2 http://www.insect-genome.com/data/genome download/Anopheles merus/Anopheles merus genomic.fasta.gz
Anopheles minimus GCA 000349025.1 http://www.insect-genome.com/data/genome download/Anopheles minimus/Anopheles minimus genomic.fasta.gz
Anopheles nili GCA 000439205.1 http://www.insect-genome.com/data/genome download/Anopheles nili/Anopheles nili genomic.fasta.gz
Anopheles punctulatus GCA 000956255.1 http://www.insect-genome.com/data/genome download/Anopheles punctulatus/Anopheles punctulatus genomic.fasta.gz
Anopheles quadriannulatus GCA 000349065.1 http://www.insect-genome.com/data/genome download/Anopheles quadriannulatus/Anopheles quadriannulatus genomic.

fasta.gz
Anopheles sinensis GCA 000441895.2 http://www.insect-genome.com/data/genome download/Anopheles sinensis/Anopheles sinensis genomic.fasta.gz
Anopheles stephensis GCA 000300775.2 http://www.insect-genome.com/data/genome download/Anopheles stephensi/Anopheles stephensi genomic.fasta.gz
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http://www.insect-genome.com/data/genome_download/Anopheles_arabiensis/Anopheles_arabiensis_genomic.fasta.gz
http://www.insect-genome.com/data/genome_download/Anopheles_atroparvus/Anopheles_atroparvus_genomic.fasta.gz
http://www.insect-genome.com/data/genome_download/Anopheles_christyi/Anopheles_christyi_genomic.fasta.gz
http://www.insect-genome.com/data/genome_download/Anopheles_coluzzii/Anopheles_coluzzii_genomic.fasta.gz
http://www.insect-genome.com/data/genome_download/Anopheles_culicifacies/Anopheles_culicifacies_genomic.fasta.gz
http://www.insect-genome.com/data/genome_download/Anopheles_darlingi/Anopheles_darlingi_genomic.fasta.gz
http://www.insect-genome.com/data/genome_download/Anopheles_dirus/Anopheles_dirus_genomic.fasta.gz
http://www.insect-genome.com/data/genome_download/Anopheles_epiroticus/Anopheles_epiroticus_genomic.fasta.gz
http://www.insect-genome.com/data/genome_download/Anopheles_farauti/Anopheles_farauti_genomic.fasta.gz 
http://www.insect-genome.com/data/genome_download/Anopheles_funestus/Anopheles_funestus_genomic.fasta.gz
http://www.insect-genome.com/data/genome_download/Anopheles_gambiae/Anopheles_gambiae_genomic.fasta.gz
http://www.insect-genome.com/data/genome_download/Anopheles_koliensis/Anopheles_koliensis_genomic.fasta.gz 
http://www.insect-genome.com/data/genome_download/Anopheles_maculatus/Anopheles_maculatus_genomic.fasta.gz 
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Table B.2. GenBank accession numbers and URLs for the dataset of 21 Drosophila genomes

Species GenBank assembly accession URL

Drosophila ananassae GCA 000005115.1 http://www.insect-genome.com/data/genome download/Drosophila ananassae/Drosophila ananassae genomic.fasta.gz
Drosophila biarmipes GCA 000233415.2 http://www.insect-genome.com/data/genome download/Drosophila biarmipes/Drosophila biarmipes genomic.fasta.gz
Drosophila bipectinata GCA 000236285.2 http://www.insect-genome.com/data/genome download/Drosophila bipectinata/Drosophila bipectinata genomic.fasta.gz
Drosophila elegans GCA 000224195.2 http://www.insect-genome.com/data/genome download/Drosophila elegans/Drosophila elegans genomic.fasta.gz
Drosophila erecta GCA 000005135.1 http://www.insect-genome.com/data/genome download/Drosophila erecta/Drosophila erecta genomic.fasta.gz
Drosophila eugracilis GCA 000236325.2 http://www.insect-genome.com/data/genome download/Drosophila eugracilis/Drosophila eugracilis genomic.fasta.gz
Drosophila ficusphila GCA 000220665.2 http://www.insect-genome.com/data/genome download/Drosophila ficusphila/Drosophila ficusphila genomic.fasta.gz
Drosophila grimshawi GCA 000005155.1 http://www.insect-genome.com/data/genome download/Drosophila grimshawi/Drosophila grimshawi genomic.fasta.gz
Drosophila kikkawai GCA 000224215.2 http://www.insect-genome.com/data/genome download/Drosophila kikkawai/Drosophila kikkawai genomic.fasta.gz
Drosophila melanogaster GCA 000778455.1 http://www.insect-genome.com/data/genome download/Drosophila melanogaster/Drosophila melanogaster genomic.fasta.

gz
Drosophila miranda GCA 000269505.2 http://www.insect-genome.com/data/genome download/Drosophila miranda/Drosophila miranda genomic.fasta.gz
Drosophila mojavensis GCA 000005175.1 http://www.insect-genome.com/data/genome download/Drosophila mojavensis/Drosophila mojavensis genomic.fasta.gz
Drosophila persimilis GCA 000005195.1 http://www.insect-genome.com/data/genome download/Drosophila persimilis/Drosophila persimilis genomic.fasta.gz
Drosophila rhopaloa GCA 000236305.2 http://www.insect-genome.com/data/genome download/Drosophila rhopaloa/Drosophila rhopaloa genomic.fasta.gz
Drosophila sechellia GCA 000005215.1 http://www.insect-genome.com/data/genome download/Drosophila sechellia/Drosophila sechellia genomic.fasta.gz
Drosophila simulans GCA 000259055.1 http://www.insect-genome.com/data/genome download/Drosophila simulans/Drosophila simulans genomic.fasta.gz
Drosophila suzukii GCA 000472105.1 http://www.insect-genome.com/data/genome download/Drosophila suzukii/Drosophila suzukii genomic.fasta.gz
Drosophila takahashii GCA 000224235.2 http://www.insect-genome.com/data/genome download/Drosophila takahashii/Drosophila takahashii genomic.fasta.gz
Drosophila virilis GCA 000005245.1 http://www.insect-genome.com/data/genome download/Drosophila virilis/Drosophila virilis genomic.fasta.gz
Drosophila willistoni GCA 000005925.1 http://www.insect-genome.com/data/genome download/Drosophila willistoni/Drosophila willistoni genomic.fasta.gz
Drosophila yakuba GCA 000005975.1 http://www.insect-genome.com/data/genome download/Drosophila yakuba/Drosophila yakuba genomic.fasta.gz

Table B.3. GenBank accession numbers of microbial species used in contamination removal.

Species GenBank assembly accession

Pasteurella langaaensis GCA 003096995.1
Providencia stuartii GCA 001558855.2
Serratia marcescens GCA 000783915.2
Shigella flexneri GCA 000006925.2
Commensalibacter intestini GCA 002153535.1
Acetobacter malorum GCA 002153605.1
Acetobacter pomorum GCA 002456135.1
Lactobacillus plantarum GCA 000203855.3
Lactobacillus brevis GCA 003184305.1
Enterococcus faecalis GCA 002208945.2
Vagococcus teuberi GCA 001870205.1
Wolbachia GCA 000022285.1
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Table B.4. Assembly-free placement of genome-skims. We show the percentage of correct
placements (those that do not increase ∆e), average delta error (∆e), and maximum delta error
(emax) for APPLES, assignment to the CLOSEST species, and the placement to the position in
the backbone (DE-NOVO) over the 61 (a), 22 (b), and 21 (c) placements. Results are shown for
skims with 0.1 and 0.5Gbp of reads. Delta error is the increase in the number missing branches
between the reference tree and the backbone tree after placing each query.

0.1G 0.5G

% ∆e emax % ∆e emax

(a) Columbicola

APPLES∗ 97 0.03 1 92 0.08 1
APPLES-ME 84 0.28 5 87 0.21 5

APPLES-HYBRID 87 0.16 2 87 0.16 2
CLOSEST 54 1.15 7 58 0.91 8
DE-NOVO 98 0.02 1 92 0.08 1

(b) Anopheles

APPLES∗ 95 0.05 1 95 0.05 1
APPLES-ME 95 0.05 1 95 0.05 1

APPLES-HYBRID 95 0.05 1 95 0.05 1
CLOSEST 91 0.09 1 95 0.05 1
DE-NOVO 95 0.05 1 95 0.05 1

(c) Drosophila

APPLES∗ 71 0.29 1 71 0.33 2
APPLES-ME 67 0.42 2 67 0.48 2

APPLES-HYBRID 67 0.33 1 67 0.38 2
CLOSEST 57 0.62 3 57 0.57 2
DE-NOVO 71 0.29 1 71 0.33 2
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B.3 Commands

B.3.1 Sampling Clades

For sampling clades of size at most 250 from a tree ”tree.nwk”, we used the TreeCluster

package, available at https://github.com/niemasd/TreeCluster.

# ! / b i n / bash

py thon T r e e C l u s t e r / T r e e C l u s t e r . py − i 250 −o c l u s t e r s . t x t

− t t r e e . nwk −m c o u n t m a x c l a d e

B.3.2 Computing Distance Matrices

APPLES version 1.2.0 can compute JC69 distances between nucleotide sequences.

Version 1.1.0 internally uses FastME* (based on FastME version 2.1.6.1) which is available at

https://github.com/balabanmetin/FastME-personal-copy. We computed distance matrices based

on other models (e.g. TN93+Γ) using following FastME command:

# ! / b i n / bash

f a s t m e −c −dT −−gamma=${gamma} − i a l n d n a . phy −O d i s t . mat −T 1

where ${gamma} is Γ the rate variable.

B.3.3 Backbone tree estimation

When multiple sequence alignment is available, we used the following RAxML command

to compute backbone tree for all datasets except RNAsim-VS dataset. We used RAxML version

7.2.6

# ! / b i n / bash

raxmlHPC−PTHREADS −m GTRGAMMA −p 88 −n REF −s a l n d n a . phy −T 6

For RNAsim-VS dataset, we used FastTreeMP version 2.1.10 for estimating backbone

topology. We run FastTreeMP with the following command:
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# ! / b i n / bash

FastTreeMP − n o s u p p o r t − g t r −gamma − n t − l o g t r e e . l o g

< a l n d n a . f a > t r e e . nwk

For alignment free datasets such as Drosophila dataset, we computed backbone tree

using FastME* (based on FastME version 2.1.6.1) which is available at https://github.com/

balabanmetin/FastME-personal-copy. FastME* is run with the following command:

# ! / b i n / bash

f a s t m e − i d i s t . mat −o t r e e . nwk −T 1

Note that we performed Jukes-Cantor correction on the distance matrix ”dist.mat” before

running FastME*.

B.3.4 Backbone tree branch length re-estimation

When multiple sequence alignment is available, we used FastME* to recompute backbone

tree branch lengths for all datasets except RNAsim-VS dataset. We run FastME* with the

following command:

# ! / b i n / bash

f a s t m e −dJ − i a l n d n a . phy −u RAxML result . REF −o t r e e m e . nwk

For RNAsim-VS dataset, we used RAxML version 7.2.6 for re-estimating ML based

branch lengths and used that tree for performing placements using pplacer. RAxML is run with

the following command:

# ! / b i n / bash

raxmlHPC−PTHREADS − f e − t t r e e . nwk −m GTRGAMMA −s a l n d n a . phy

−n REF −p 1984 −T 8

On the other hand, we used RAxML version 8.2.12 to compute backbone tree (branch

lengths update only) and ML model parameters required for EPA-ng:
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# ! / b i n / bash

raxmlHPC−PTHREADS − f e − t t r e e . nwk −m GTRGAMMA −s a l n d n a . f a

−n REF8 −p 1984 −T 8

For all large alignments with 10,000 or more sequences in RNASim-VS, RAxML version

8.2.12 fail to run due to estimated gamma rate being either too small or too large. In those cases,

we ran the following command to use GTRCAT model instead:

# ! / b i n / bash

raxmlHPC−PTHREADS − f e − t t r e e . nwk −m GTRCAT −s a l n d n a . f a

−n REF8 −p 1984 −T 8

For the same dataset, we used FastTree again for re-estimating Minimum Evolution based

branch lengths and used that tree for performing placements using APPLES. FastTree is run with

the following command:

# ! / b i n / bash

FastTreeMP − n o s u p p o r t − n t −nome −noml − l o g t r e e . l o g

− i n t r e e t r e e . nwk < a l n d n a . f a > t r e e m e . nwk

B.3.5 Performing placement

We performed phylogenetic placement of a query using pplacer version 1.1.alpha19-0-

g807f6f3 with the following command:

# ! / b i n / bash

p p l a c e r −m GTR −s RAxML info . REF − t backbone . nwk

−o query . j p l a c e a l n d n a . f a − j 1

We performed EPA-ng placements using version 0.3.5 with the following command:

# ! / b i n / bash

epa −ng −− r e f −msa a l n d n a . f a −− t r e e backbone . nwk
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−− query que ry . f a −− o u t d i r . −−model RAxML info . REF8 −− redo −T 1

Except in our RNASim-VS, RNASim-QS and estimated alignments analyses, we used

APPLES version 1.1.0 (can be found at https://github.com/balabanmetin/apples/releases) for

placement. When alignment is not present, we performed the placement running the following

command:

# ! / b i n / bash

py thon ˜ / a p p l e s / l e a s t s q u a r e s p l a c e m e n t . py − t backbone . t r e e

−d d i s t . mat −a FM −s MLSE −p > a p p l e s . nwk

When alignment is present, we used the following command instead:

# ! / b i n / bash

py thon ˜ / a p p l e s / l e a s t s q u a r e s p l a c e m e n t . py − t backbone . nwk

−a a l n d n a . phy −a FM −s MLSE −p > a p p l e s . nwk

For RNASim-VS, RNASim-QS and estimated alignments analyses, we used APPLES

version 1.2.0 and ran with the following command:

# ! / b i n / bash

py thon ˜ / a p p l e s / r u n a p p l e s . py − t backbone . nwk −s a l n d n a . f a

−q query . f a −T $numcores −o a p p l e s . j p l a c e

where $numcores depends on the number of cores designated for the analysis.

B.3.6 Working with estimated backbone and query-to backbone
alignments

We created a version of SEPP within which APPLES integrated. This version is available

at https://github.com/balabanmetin/sepp. We performed placement on RNAsim-AE dataset with

10,000 sequences using SEPP+APPLES with the following commmand:

# ! / b i n / bash
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py thon ˜ / sepp / r u n s e p p . py − t e s t i m a t e d b a c k b o n e . nwk

−a e s t i m a t e d a l n . f a − r RAxML info . REF − f que ry . f a − p l a p p l e s

−x 28 −A 1000 −o a p p l e s

On the same dataset, we ran SEPP in default mode using the following commmand:

# ! / b i n / bash

py thon ˜ / sepp / r u n s e p p . py − t e s t i m a t e d b a c k b o n e . nwk

−a e s t i m a t e d a l n . f a − r RAxML info . REF8 − f que ry . f a − p l p p l a c e r

−x 28 −A 1000 −P 1000 −o p p l a c e r
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Appendix C

Supplementary materials for “Phyloge-
netic double placement of mixed samples”

C.1 Additional Methods

C.1.1 Proofs

Proof of Proposition 2. Recall that L is the Least Common ancestor of A, B, R. The lowest value

of δAR is achieved when δLR = y and δLA = δLB = 0. On the other hand, the highest value of

δAR is achieved when δLR = 0 and δLA = δLB = y. The results are obtained by plugging in the

values.

Proof of Proposition 3. If R = A, d1 = 0 and d2 = d3 must be true. Plugging in these values in

SIMP-JAC formula, we get

δ̂MA = 1−
( 2

3− (1−d3)k

) 1
k .

Let R j be a genome in R which is different than A and B. Let f be a function such that

f (k) = (1−δAR j)
k +(1−δBR j)

k− (1− (δAR j +δBR j +δAB)/2)k.; .

δ̂MR j < δ̂MA holds only if 1 < f (k). Consequently,

f (k)≤ (1−δAR j)
k +(1−δBR j)

k− (1−δAR j −δBR j)
k
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due to triangle inequality. For k = 2,

(1−δAR j)
2 +(1−δBR j)

2− (1−δAR j −δBR j)
2 = 1−2δAR jδBR j

While k increases, f (k) is a monotonically non-increasing function, since its derivative with

respect to k is non-positive. Therefore f (k)< 1 unless either δAR j = 0 or δBR j = 0 is true.

C.1.2 Derivatives

Derivatives of objective functions.

Let T ∗ be the rooting of T at leaf 1 (Figure 5.8). For node u ∈ V , let p(u) denote its

parent, l(u) its length, and g(u) denote the set of leaves at or below u (i.e., those that have u

on their path to the root), all with respect to T ∗. Also, let x1 and x2 denote pendant and distal

edge lengths of placement tree P and x3 and x4 denote those of placement tree Q. Eq. 5.5 can be

re-written as:

F(xA
∗ ,x

B
∗ ,x1,x2,x3,x4) = ∑

i∈g(u)

(
xA

i −dP
ui− x1 + x2− l(u)

)2
+ ∑

i/∈g(u)

(
xA

i −dP
p(u)i− x1− x2

)2
+

∑
i∈g(v)

(
xB

i −dQ
vi− x3 + x4− l(v)

)2
+ ∑

i/∈g(v)

(
xB

i −dQ
p(v)i− x3− x4

)2

(C.1)

For fixed placement edges of u and v, xA
∗ ,x

B
∗ ,x1,x2,x3 and x4 are variables, and the rest are

constants. Therefore Jacobian matrix of function F is J =

[
∂F
∂xA
∗

∂F
∂xB
∗

∂F
∂x1

∂F
∂x2

∂F
∂x3

∂F
∂x4

]
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with following partial derivatives;

∂F
∂xA

i
=


2
(
xA

i −dP
ui− x1 + x2− l(u)

)
i ∈ g(u)

2
(
xA

i −dP
p(u)i− x1− x2

)
i /∈ g(u)

∂F
∂xB

i
=


2
(
xB

i −dQ
vi− x3 + x4− l(u)

)
i ∈ g(v)

2
(
xB

i −dQ
p(v)i− x3− x4

)
i /∈ g(v)

∂F
∂x1

= ∑
i∈g(u)

−2
(
xA

i −dP
ui− x1 + x2− l(u)

)
+ ∑

i/∈g(u)
−2
(
xA

i −dP
p(u)i− x1− x2

)
∂F
∂x2

= ∑
i∈g(u)

2
(
xA

i −dP
ui− x1 + x2− l(u)

)
+ ∑

i/∈g(u)
−2
(
xA

i −dP
p(u)i− x1− x2

)
∂F
∂x3

= ∑
i∈g(v)

−2
(
xB

i −dQ
vi− x3 + x4− l(v)

)
+ ∑

i/∈g(v)
−2
(
xB

i −dQ
p(v)i− x3− x4

)
∂F
∂x4

= ∑
i∈g(v)

2
(
xB

i −dQ
vi− x3 + x4− l(v)

)
+ ∑

i/∈g(v)
−2
(
xB

i −dQ
p(v)i− x3− x4

)

(C.2)

Hessian of function F is sparse (2n+4)× (2n+4) matrix, with only following non-zero

entries:

∂ 2F
∂ 2x1

=
∂ 2F
∂ 2x2

=
∂ 2F
∂ 2x3

=
∂ 2F
∂ 2x4

= 2∗n

∂ 2F
∂x1∂x2

=−2∗ |g(u)|+2∗ (n−|g(u)|)

∂ 2F
∂x3∂x4

=−2∗ |g(v)|+2∗ (n−|g(v)|)

∂ 2F
∂xA

i ∂x1
=


2 i ∈ g(u)

−2 i /∈ g(u)

∂ 2F
∂xB

i ∂x3
=


2 i ∈ g(v)

−2 i /∈ g(v)

∂ 2F
∂xA

i ∂x2
=

∂ 2F
∂xB

i ∂x4
=−2

(C.3)
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Derivatives of non-linear constraints:

In Eq. 4, we replace δ̂Mi with h−1(δ̂Mi) on the LHS, and on RHS, we replace all h(xA
i )

terms with h−1(h(xA
i )) = xA

i (ditto for xB
i ) We substitute x3 with its estimation denoted with d̂3.

Subsequently, equation is rearranged in the following form;

G(xA
i ,x

B
i )= 2(1−xA

i )
k+2(1−xB

i )
k−2(1− xA

i + xB
i + d̂3

2
)k)−(1−h−1(δ̂Mi))

k(3− (1− d̂3)
k)= 0 (C.4)

Here i denotes the index of the backbone leaf. Therefore there is one constraint corre-

sponding to one species in the backbone tree. In function G, xA
i are (hidden) variables and other

terms are constants. Note that no two constraints share a variable. Therefore we can safely write

one Jacobian J and Hessian H of function G per constraint. The Jacobian has the following form

J =

[
∂G
∂xA

i

∂G
∂xB

i

]
with following partial derivatives;

∂G
∂xA

i
=−2k(1− xA

i )
k−1 + k(1− xA

i + xB
i + d̂3

2
)k−1

∂G
∂xB

i
=−2k(1− xB

i )
k−1 + k(1− xA

i + xB
i + d̂3

2
)k−1

(C.5)

The Hessian matrix H =

 ∂ 2G
∂ 2xA

i

∂ 2G
∂xA

i ∂xB
i

∂ 2G
∂xA

i ∂xB
i

∂ 2G
∂ 2xB

i

 has the following entries

∂ 2G
∂ 2xA

i
=2k(k−1)(1− xA

i )
k−2− k(k−1)

2
(1− xA

i + xB
i + d̂3

2
)k−2

∂ 2G
∂ 2xB

i
=2k(k−1)(1− xB

i )
k−1− k(k−1)

2
(1− xA

i + xB
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Table C.1. List of SRRs and URLs for Drosophila species used in real data experiment.

Species Run URL
Drosophila bipectinata SRR6425989 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425989

Drosophila erecta SRR6425990 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425990
Drosophila ananassae SRR6425991 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425991
Drosophila biarmipes SRR6425992 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425992
Drosophila mauritiana SRR6425993 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425993
Drosophila eugracilis SRR6425995 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425995

Drosophila mojavensis SRR6425997 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425997
Drosophila persimilis SRR6425998 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425998
Drosophila simulans SRR6425999 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425999

Drosophila virilis SRR6426000 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6426000
Drosophila pseudoobscura SRR6426001 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6426001

Drosophila sechellia SRR6426002 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6426002
Drosophila willistoni SRR6426003 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6426003
Drosophila yakuba SRR6426004 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6426004

Table C.2. GenBank accession numbers of yeast species/strains.

Species/Strains GenBank accession

Candida bracarensis GCA 001077315.1
Candida castellii GCA 001046935.1
Candida glabrata GCF 000002545.3
Candida nivariensis GCA 001046915.1
Nakaseomyces bacillisporus GCA 001046975.1
Nakaseomyces delphensis GCA 001039675.1
Naumovozyma castellii GCF 000237345.1
Saccharomyces arboricola GCF 000292725.1
Saccharomyces bayanus GCA 000167035.1
Saccharomyces boulardii GCA 001413975.1
Saccharomyces cerevisiae GCF 000146045.2
Saccharomyces eubayanus GCF 001298625.1
Saccharomyces jurei GCA 900290405.1
Saccharomyces kudriavzevii GCA 900682665.1
Saccharomyces mikatae GCA 000167055.1
Saccharomyces paradoxus GCA 002079145.1
Saccharomyces pastorianus GCA 001515485.2
Saccharomyces uvarum GCA 002242645.1
VIN7 GCA 000326105.1
yHAB38 GCA 009666655.1
yHQL555 GCA 009666385.1
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Appendix D

Supplementary materials for “Genome-
wide alignment-free phylogenetic distance
estimation under a no strand-bias model”

D.1 Supplementary Methods

Sarmashghi et al. [209] showed that genomic distance d̂ can be estimated on genome

skim data as follows:

d̂ = 1−
((ζ1L1 +ζ2L2)C

η1η2(L1 +L2)

) 1
k (D.1)

where ζi and ηi are functions of sequencing error rate, coverage, read length, and k (detailed

definition of these variables are given in the original paper). We add the correction for background

matches to this equation:

d̂ = 1−
((ζ1L1 +ζ2L2)(C−E[C̃])

η1η2(L1 +L2)

) 1
k (D.2)

We use this equation for not just d̂ but also d̂AC,d̂AG,d̂AT , and d̂CG values.

D.2 Supplementary Tables
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Table D.1. Different model conditions (MC), used for simulating genome sequences
.

MC 1 2 3 4 5 6 7 8 9

α 1 1 1 1 1 1 1/4 1 1
δ 1 1/4 1 1 1/4 1 1/4 1/4 1
γ 16 4 4 32 8 8 1 1 1

Table D.2. Comparison of different methods to the ASTRAL tree on 10 sets of bacterial dataset.
Best results are shown in bold.

# taxa (branches)
Number of branch mismatches with ASTRAL

NSB-TK4 NSB-JC Jellyfish-JC Skmer-JC
Set 1 34(31) 9 11 15 13
Set 2 43(40) 11 11 10 10
Set 3 32(29) 5 5 8 8
Set 4 38(35) 7 7 8 8
Set 5 43(40) 11 12 12 12
Set 6 46(40) 14 14 14 14
Set 7 34(31) 5 5 6 6
Set 8 41(38) 16 16 14 15
Set 9 39(36) 7 7 7 7

Set 10 86(83) 35 37 39 36
Sum 433 (403) 120 125 133 129

Table D.3. Distance error (deviation from additivity) for NSB-TK4 and Jellyfish-JC on bacterial
dataset.

# taxa (branches) TotalFM (NSB-TK4) totalFM (Jellyfish-JC) TotalOLS (NSB-TK4) TotalOLS (Jellyfish-JC)
Set 1 34(31) 0.8209 1.29 0.032 0.0436
Set 2 43(40) 0.8032 0.8686 0.0114 0.0121
Set 3 32(29) 0.2758 0.3534 0.0132 0.0139
Set 4 38(35) 1.7227 1.926 0.1134 0.094
Set 5 43(40) 2.3761 2.5785 0.1688 0.1367
Set 6 46(40) 2.7291 2.9287 0.2003 0.1633
Set 7 34(31) 0.6379 0.8103 0.0309 0.0323
Set 8 41(38) 1.8973 2.0946 0.1186 0.0893
Set 9 39(36) 0.9773 1.2537 0.0478 0.0494

Set 10 86(83) 42.0776 55.9276 3.4154 4.0831
Sum 433 (403) 54.3179 70.0314 4.1518 4.7177
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Table D.4. GenBank accession numbers of yeast species/strains.

Species/Strains GenBank accession

Saccharomyces arboricola GCF 000292725.1
Saccharomyces cerevisiae GCF 000146045.2
Saccharomyces eubayanus GCF 001298625.1
Saccharomyces jurei GCA 900290405.1
Saccharomyces kudriavzevii GCA 900682665.1
Saccharomyces mikatae GCA 000167055.1
Saccharomyces paradoxus GCA 002079145.1
Saccharomyces uvarum GCA 002242645.1

Table D.5. Topological and distance error for NSB-TK4, Jellyfish-JC, and Skmer-JC on yeast
dataset.

Coverage
RF

(NSB-TK4)
(Jellyfish-JC)

RF (Skmer-JC)
TotalFM

(NSB-TK4)
TotalFM

(Jellyfish-JC) TotalFM (Skmer-JC)

Genome skim 1× 0 1 0.0028 0.0050 0.0063
Genome skim 2× 0 0 0.0024 0.0039 0.0072
Genome skim 4× 0 1 0.0023 0.0039 0.0083
Genome skim 8× 0 1 0.0019 0.0034 0.0084

Assembly n.a. 0 1 0.0020 0.0034 0.0082
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ment. Pacific Symposium On Biocomputing, pages 247–58, 12 2012. ISSN 17935091.
doi: 10.1142/9789814366496{\ }0024. URL http://www.ncbi.nlm.nih.gov/pubmed/
22174280http://www.worldscientific.com/doi/abs/10.1142/9789814366496 0024.

254

https://doi.org/10.1186/s13059-017-1299-7
https://doi.org/10.1186/s13059-019-1646-y
https://doi.org/10.1186/s13059-019-1646-y
http://link.springer.com/10.1007/s00239-020-09974-w
http://www.ncbi.nlm.nih.gov/pubmed/30087105 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6169393 http://g3journal.org/lookup/doi/10.1534/g3.118.200160
http://www.ncbi.nlm.nih.gov/pubmed/30087105 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6169393 http://g3journal.org/lookup/doi/10.1534/g3.118.200160
http://www.ncbi.nlm.nih.gov/pubmed/30087105 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6169393 http://g3journal.org/lookup/doi/10.1534/g3.118.200160
http://www.ncbi.nlm.nih.gov/pubmed/21984754
http://bioinformatics.oxfordjournals.org/cgi/content/long/31/12/i44 http://bioinformatics.oxfordjournals.org/lookup/doi/10.1093/bioinformatics/btv234
http://bioinformatics.oxfordjournals.org/cgi/content/long/31/12/i44 http://bioinformatics.oxfordjournals.org/lookup/doi/10.1093/bioinformatics/btv234
http://www.ncbi.nlm.nih.gov/pubmed/22174280 http://www.worldscientific.com/doi/abs/10.1142/9789814366496_0024
http://www.ncbi.nlm.nih.gov/pubmed/22174280 http://www.worldscientific.com/doi/abs/10.1142/9789814366496_0024


[165] S. Mirarab, R. Reaz, M. S. Bayzid, T. Zimmermann, M. S. Swenson, and T. Warnow.
ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics, 30
(17):i541–i548, 9 2014. ISSN 1367-4803. doi: 10.1093/bioinformatics/btu462.
URL http://bioinformatics.oxfordjournals.org/cgi/content/long/30/17/i541http:
//bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btu462https:
//academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btu462.

[166] S. Mirarab, N. Nguyen, S. Guo, L.-S. Wang, J. Kim, and T. Warnow. Pasta: ultra-
large multiple sequence alignment for nucleotide and amino-acid sequences. Journal of
Computational Biology, 22(5):377–386, 2015.

[167] S. Mirarab, N. Nguyen, S. Guo, L.-S. Wang, J. Kim, and T. Warnow. PASTA: Ultra-Large
Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences. Journal of
Computational Biology, 22(05):377–386, 5 2015. ISSN 1066-5277. doi: 10.1089/cmb.
2014.0156. URL http://online.liebertpub.com/doi/abs/10.1089/cmb.2014.0156.

[168] D. Mitchell and R. Bridge. A test of Chargaff’s second rule. Biochemical and Biophysical
Research Communications, 340(1):90–94, 2 2006. ISSN 0006291X. doi: 10.1016/j.bbrc.
2005.11.160. URL https://linkinghub.elsevier.com/retrieve/pii/S0006291X05027130.

[169] N. Moshiri. Treeswift: a massively scalable python tree package. bioRxiv, 2018. doi:
10.1101/325522. URL https://www.biorxiv.org/content/early/2018/08/09/325522.

[170] N. Moshiri, M. Ragonnet-Cronin, J. O. Wertheim, and S. Mirarab. FAVITES: simulta-
neous simulation of transmission networks, phylogenetic trees and sequences. Bioin-
formatics, 35(11):bty921, 11 2018. ISSN 1367-4803. doi: 10.1093/bioinformatics/
bty921. URL https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/
bioinformatics/bty921/5161084.

[171] L. Nakhleh. Computational approaches to species phylogeny inference and gene tree
reconciliation. Trends in Ecology and Evolution, 28(12):719–728, 12 2013. ISSN 1872-
8383. doi: 10.1016/j.tree.2013.09.004. URL http://www.sciencedirect.com/science/
article/pii/S0169534713002139.

[172] S. Nayfach, Z. J. Shi, R. Seshadri, K. S. Pollard, and N. C. Kyrpides. New insights
from uncultivated genomes of the global human gut microbiome. Nature, 568(7753):
505–510, 4 2019. ISSN 14764687. doi: 10.1038/s41586-019-1058-x. URL http:
//dx.doi.org/10.1038/s41586-019-1058-x.

[173] L. T. Nguyen, H. A. Schmidt, A. Von Haeseler, and B. Q. Minh. IQ-TREE: A fast and
effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular
Biology and Evolution, 32(1), 2015. ISSN 15371719. doi: 10.1093/molbev/msu300.

[174] N. N.-p. Nguyen, S. Mirarab, B. B. Liu, M. Pop, and T. Warnow. TIPP: Taxonomic

255

http://bioinformatics.oxfordjournals.org/cgi/content/long/30/17/i541 http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btu462 https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btu462
http://bioinformatics.oxfordjournals.org/cgi/content/long/30/17/i541 http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btu462 https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btu462
http://bioinformatics.oxfordjournals.org/cgi/content/long/30/17/i541 http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btu462 https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btu462
http://online.liebertpub.com/doi/abs/10.1089/cmb.2014.0156
https://linkinghub.elsevier.com/retrieve/pii/S0006291X05027130
https://www.biorxiv.org/content/early/2018/08/09/325522
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/bty921/5161084
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/bty921/5161084
http://www.sciencedirect.com/science/article/pii/S0169534713002139
http://www.sciencedirect.com/science/article/pii/S0169534713002139
http://dx.doi.org/10.1038/s41586-019-1058-x
http://dx.doi.org/10.1038/s41586-019-1058-x


Identification and Phylogenetic Profiling. Bioinformatics, 30(24):3548–3555, 12 2014.
ISSN 1367-4803. doi: 10.1093/bioinformatics/btu721. URL http://bioinformatics.
oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btu721.

[175] N.-P. Nguyen, T. Warnow, M. Pop, and B. White. A perspective on 16S rRNA operational
taxonomic unit clustering using sequence similarity. npj Biofilms and Microbiomes, 2:
16004, 2016. ISSN 2055-5008.

[176] N.-P. N.-p. D. Nguyen, S. Mirarab, K. Kumar, and T. Warnow. Ultra-large alignments
using phylogeny-aware profiles. Genome Biology, 16(1):124, 12 2015. ISSN 1465-6906.
doi: 10.1186/s13059-015-0688-z. URL http://genomebiology.com/2015/16/1/124.

[177] T. H. Ogdenw and M. S. Rosenberg. Multiple sequence alignment accuracy and phy-
logenetic inference. Systematic biology, 55(2):314–328, 2006. ISSN 1063-5157. doi:
10.1080/10635150500541730.

[178] T. E. Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[179] B. D. Ondov, T. J. Treangen, P. Melsted, A. B. Mallonee, N. H. Bergman, S. Koren,
and A. M. Phillippy. Mash: fast genome and metagenome distance estimation using
MinHash. Genome Biology, 17(1):132, 12 2016. ISSN 1474-760X. doi: 10.1186/
s13059-016-0997-x. URL http://download.springer.com/static/pdf/329/art%253A10.
1186%252Fs13059-016-0997-x.pdf?originUrl=http%3A%2F%2Fgenomebiology.
biomedcentral.com%2Farticle%2F10.1186%2Fs13059-016-0997-x&token2=exp=
1490224184∼acl=%2Fstatic%2Fpdf%2F329%2Fart%25253A10.1186%25252F.

[180] A. Orakov, A. Fullam, L. P. Coelho, S. Khedkar, D. Szklarczyk, D. R. Mende, T. S.
Schmidt, and P. Bork. GUNC: detection of chimerism and contamination in prokaryotic
genomes. Genome Biology, 2021. ISSN 1474760X. doi: 10.1186/s13059-021-02393-0.

[181] D. H. Parks, M. Chuvochina, D. W. Waite, C. Rinke, A. Skarshewski, P. A. Chaumeil,
and P. Hugenholtz. A standardized bacterial taxonomy based on genome phylogeny
substantially revises the tree of life. Nature Biotechnology, 2018. ISSN 15461696. doi:
10.1038/nbt.4229.

[182] D. H. Parks, M. Chuvochina, P.-A. Chaumeil, C. Rinke, A. J. Mussig, and P. Hugenholtz.
A complete domain-to-species taxonomy for Bacteria and Archaea. Nature Biotechnology,
38(9):1079–1086, 9 2020. ISSN 1087-0156. doi: 10.1038/s41587-020-0501-8. URL
http://www.nature.com/articles/s41587-020-0501-8.

[183] D. H. Parks, M. Chuvochina, P. A. Chaumeil, C. Rinke, A. J. Mussig, and P. Hugenholtz.
A complete domain-to-species taxonomy for Bacteria and Archaea. Nature Biotechnology,
2020. ISSN 15461696. doi: 10.1038/s41587-020-0501-8. URL http://dx.doi.org/10.1038/
s41587-020-0501-8.

256

http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btu721
http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btu721
http://genomebiology.com/2015/16/1/124
http://download.springer.com/static/pdf/329/art%253A10.1186%252Fs13059-016-0997-x.pdf?originUrl=http%3A%2F%2Fgenomebiology.biomedcentral.com%2Farticle%2F10.1186%2Fs13059-016-0997-x&token2=exp=1490224184~acl=%2Fstatic%2Fpdf%2F329%2Fart%25253A10.1186%25252F
http://download.springer.com/static/pdf/329/art%253A10.1186%252Fs13059-016-0997-x.pdf?originUrl=http%3A%2F%2Fgenomebiology.biomedcentral.com%2Farticle%2F10.1186%2Fs13059-016-0997-x&token2=exp=1490224184~acl=%2Fstatic%2Fpdf%2F329%2Fart%25253A10.1186%25252F
http://download.springer.com/static/pdf/329/art%253A10.1186%252Fs13059-016-0997-x.pdf?originUrl=http%3A%2F%2Fgenomebiology.biomedcentral.com%2Farticle%2F10.1186%2Fs13059-016-0997-x&token2=exp=1490224184~acl=%2Fstatic%2Fpdf%2F329%2Fart%25253A10.1186%25252F
http://download.springer.com/static/pdf/329/art%253A10.1186%252Fs13059-016-0997-x.pdf?originUrl=http%3A%2F%2Fgenomebiology.biomedcentral.com%2Farticle%2F10.1186%2Fs13059-016-0997-x&token2=exp=1490224184~acl=%2Fstatic%2Fpdf%2F329%2Fart%25253A10.1186%25252F
http://www.nature.com/articles/s41587-020-0501-8
http://dx.doi.org/10.1038/s41587-020-0501-8
http://dx.doi.org/10.1038/s41587-020-0501-8


[184] A. Parley, S. Hedetniemi, and A. Proskurowski. Partitioning trees: Matching, domination,
and maximum diameter. International Journal of Computer & Information Sciences,
10(1):55–61, feb 1981. ISSN 0091-7036. doi: 10.1007/BF00978378. URL http://link.
springer.com/10.1007/BF00978378.

[185] E. Pasolli, F. Asnicar, S. Manara, M. Zolfo, N. Karcher, F. Armanini, F. Beghini, P. Manghi,
A. Tett, P. Ghensi, M. C. Collado, B. L. Rice, C. DuLong, X. C. Morgan, C. D. Golden,
C. Quince, C. Huttenhower, and N. Segata. Extensive Unexplored Human Microbiome
Diversity Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geog-
raphy, and Lifestyle. Cell, 176(3):649–662, 1 2019. ISSN 10974172. doi: 10.1016/j.cell.
2019.01.001. URL https://linkinghub.elsevier.com/retrieve/pii/S0092867419300017.

[186] M. J. Phillips, F. Delsuc, and D. Penny. Genome-scale phylogeny and the detection
of systematic biases. Molecular Biology and Evolution, 2004. ISSN 07374038. doi:
10.1093/molbev/msh137.

[187] M. N. Price, P. S. Dehal, and A. P. Arkin. FastTree-2 – Approximately Maximum-
Likelihood Trees for Large Alignments. PLoS ONE, 5(3):e9490, 3 2010. ISSN 1932-
6203. doi: 10.1371/journal.pone.0009490. URL http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=2835736&tool=pmcentrez&rendertype=abstract.

[188] M. N. Price, P. S. Dehal, and A. P. Arkin. FastTree 2 - Approximately maximum-
likelihood trees for large alignments. PLoS ONE, 5(3), 2010. ISSN 19326203. doi:
10.1371/journal.pone.0009490.

[189] L. Pritchard, R. H. Glover, S. Humphris, J. G. Elphinstone, and I. K. Toth. Genomics and
taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens.
Analytical Methods, 8(1):12–24, 2016. ISSN 1759-9660. doi: 10.1039/C5AY02550H.
URL http://xlink.rsc.org/?DOI=C5AY02550H.

[190] C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, and F. O.
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[223] M. Steinegger and J. Söding. MMseqs2 enables sensitive protein sequence searching for
the analysis of massive data sets. Nature Biotechnology, page 104034, oct 2017. ISSN
1087-0156. doi: 10.1038/nbt.3988. URL http://www.nature.com/doifinder/10.1038/nbt.
3988.

[224] N. Sueoka. Intrastrand parity rules of DNA base composition and usage biases of
synonymous codons. Journal of Molecular Evolution, 40(3):318–325, 1995. ISSN
14321432. doi: 10.1007/BF00163236.
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