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therapeutic targets in the preclinical arena based on tumor
biology characteristics
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Abstract

Introduction: Hepatocellular carcinoma (HCC) is a malignant liver tumor characterized by high
molecular heterogeneity, which has hampered the development of effective targeted therapies
severely. Recent experimental data have unraveled novel promising targets for HCC treatment.

Areas covered: Eligible articles were retrieved from PubMed and Web of Science databases
up to July 2021. This review summarizes the established targeted therapies for advanced

HCC, focusing on the strategies to overcome drug resistance and the search for combinational
treatments. In addition, conventional biomarkers holding the promises for HCC treatments and
novel therapeutic targets from the research field are discussed.

Expert opinion: HCC is a molecularly complex disease, with several and distinct pathways
playing critical roles in different tumor subtypes. Experimental models recapitulating the features
of each tumor subset would be highly beneficial to design novel and more effective therapies
against this disease. Furthermore, a deeper understanding of combinatorial drug synergism and the
role of the tumor microenvironment in HCC will lead to improved therapeutic outcomes.

Keywords
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1. Introduction

Hepatocellular carcinoma (HCC) is the most common primary liver cancer (PLC),
accounting for ~85-90% of cases and the fourth most frequent cause of cancer-related
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deaths worldwide [1]. The common risk factors include hepatitis B virus (HBV) and
hepatitis C virus (HCV) chronic infections, diabetes, obesity, alcoholic fatty liver disease,
and nonalcoholic fatty liver disease (NAFLD). Additionally, aflatoxins, aristolochic acid,
and tobacco are reported as potential pathogenetic cofactors for HCC development [2].

The molecular pathogenesis of HCC differs depending on the genetic aberrations and
etiologies. Mutations in HCC tumors are only ~25% actionable; however, the lack of
dominant “driver” mutations and the presence of thousands of confounding “passenger”
mutations complicate the therapeutic explorations. In addition, the most frequent mutations,
such as TERT promoter (~44%), TP53 (~31%), and CTNNB1 (~27%), remain undruggable
[3, 4]. Moreover, the immune landscape of HCC is mostly unknown. Recently, with

the increasing attention to the metabolic dysfunctions associated HCC, such as NAFLD/
nonalcoholic steatohepatitis (NASH)-associated HCC, the importance of understanding the
tumor microenvironment has triggered a body of new investigations.

Usually, HCC is diagnosed at a late stage, and the curative approaches, such as

surgical resection and liver transplantation, can only be applied to a small portion of
patients. Systemic therapies, including receptor tyrosine kinase inhibitors (RTKIs), immune-
checkpoint inhibitors (ICIs), and monoclonal antibodies, have become crucial approaches to
prolong the survival length of patients with inoperable HCC. In the last decade, substantial
efforts to develop effective targeted treatment have been made. Although many clinical trials
failed to reach their endpoints, some of these molecularly targeted approaches have been
effective in specific HCC subsets. Thus, understanding the biological variations between
responders and non-responders will be helpful to identify HCC patients who could benefit
from a given treatment. This review discusses the approved targeted drugs against HCC and
the medications that have shown translational potential in liver cancer preclinical studies.

2. Study selection

Two reviewers (H.W. and D.F.C) performed searches in PubMed and Web of Science
databases to retrieve studies presenting an association between targeted therapies and HCC.
The last updated search was conducted in July 2021. We conducted literature searches in the
PubMed database with the following keywords: targeted therapy, hepatocellular carcinoma,
HCC, liver, cancer, preclinical, mouse models, biomarkers, metabolism, signaling pathways,
etc. A similar approach was applied to the Web of Science database. Determination on the
inclusion and exclusion of studies was decided based on this review’s objectives, with the
consensus of all the authors.

3. Established target drugs for HCC

HCC onset and progression result from the dysregulation of mechanisms regulating various
cellular aspects, such as proliferation, apoptosis, motility, angiogenesis, and metabolism.
The drugs used currently for HCC treatment interfere with these processes at multiple
levels. In addition, with the increasing knowledge of the HCC tumor immune environment,
immunotherapy either alone or in combination with targeted treatments has been developed.
Overall, the current pharmacological treatments for HCC patients are classified as first-
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line and second-line therapies. Sorafenib, lenvatinib, and the combinational appliance of
bevacizumab and atezolizumab are the first-line systemic treatments for advanced HCC. In
contrast, regorafenib, cabozantinib, and ramucirumab represent the second-line systemic
therapies for this disease. Furthermore, the immune checkpoint inhibitors nivolumab,
pembrolizumab, and the simultaneous administration of nivolumab and ipilimumab are
the drugs of choice for HCC patients who progressed on sorafenib. The pharmacological
features of these drugs are summarized in Table 1, and the current algorithm for advanced
HCC treatment is depicted in Figure 1.

First-Line therapies

3.1.1. Sorafenib—Sorafenib is a multi-receptor tyrosine kinase (RTKSs) inhibitor,
targeting cellular processes such as angiogenesis, cell proliferation, and cell death. It is

the first approved drug to treat advanced HCC patients who are not eligible for liver
transplantation or surgical resection. Sorafenib targets a wide range of kinases, mainly
comprising angiogenic RTKs (vascular endothelial growth factor receptors [VEGFRs] and
platelet-derived growth factor receptor-p [PDGFR]) and cell proliferation drivers (Raf
serine/threonine kinase 1 [RAF1], BRAF, and KIT). To date, no ideal biomarkers have been
identified as therapeutic indicators or prognostic predictors for sorafenib treatment [5].

3.1.2. Lenvatinib—Lenvatinib was approved as a first-line treatment for unresectable
HCC patients following the results from the REFLECT clinical trial (NCT01761266),
where lenvatinib was non-inferior to sorafenib in terms of overall survival (OS) but
showed significant improved secondary endpoints. Lenvatinib is a multi-kinase inhibitor,
targeting the VEGFRs, fibroblast growth factor receptors 1-4 (FGFRs 1-4), RET, KIT, and
PDGFRa75 [6].

3.1.3. Atezolizumab + bevacizumab—Atezolizumab, an immune checkpoint
inhibitor, is a monoclonal antibody specifically targeting programmed death-ligand 1 (PD-
L1) to prevent the interaction with PD-1 and B7-1 receptors. PD-L1 interaction with

PD-1 and B7-1 results in immune response suppression, especially of the T-lymphocyte
compartment. PD-L1 blockade by atezolizumab can remove this inhibitory effect and
thereby stimulate an anti-tumor response [7]. Bevacizumab is a monoclonal antibody that
targets VEGF and inhibits angiogenesis, thus enhancing the efficacy of PD-L1 treatment by
reversing VEGF-mediated immunosuppression and promoting tumor infiltration by T-cells
in the tumors. The IMbravel50 clinical trial (NCT03434379) has shown significantly better
overall survival and progression-free survival outcomes with atezolizumab plus bevacizumab
than with sorafenib in patients with unresectable HCC who had received no previous
systemic treatment [8].

3.2. Second-Line Therapies

Many clinical trials burst out in pursuit of identifying potent drugs for HCC patients who
progress after sorafenib treatment but failed to reach their primary endpoints. These clinical
trials include agents targeting mammalian target of rapamycin (mTOR) (NCT01035229) [9],
VEGF (NCT01140347) [10] and/or FGF (NCT00825955) [11], hepatocyte growth factor
(HGF) and its receptor MET (NCT01755767) [12] signaling pathways. Since 2017, only
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three regimens (regorafenib, cabozantinib, and ramucirumab) have been approved to treat
advanced HCC after progression on sorafenib according to the guidelines. In addition, three
monoclonal antibodies targeting immune checkpoints, namely nivolumab, pembrolizumab,
and ipilimumab (in combination with nivolumab), have been approved by the Food and
Drug Administration (FDA) after first-line treatment with sorafenib.

3.2.1. Regorafenib—Regorafenib is an RTK inhibitor targeting angiogenic VEGFR2
and angiopoietin-1 receptor (also referred to as TIE2). Regorafenib has shown more
effectiveness in inhibiting tyrosine kinases and phosphatases when compared to sorafenib
for the treatment of advanced HCC (NCT01774344) [13]. Regorafenib has recently

been demonstrated to inhibit the phosphorylation of signal transducer and activator of
transcription 3 (STAT3) through SHP1 activation and induce cell apoptosis in HCC [14].
In addition, other preclinical studies indicate that regorafenib is involved in modulating
the tumor immune environment by promoting M1 macrophage polarization [15] and T-cell
infiltration [16].

3.2.2. Cabozantinib—Cabozantinib inhibits various RTKs, including VEGFRs, MET,
and AXL, implicated in the progression of hepatocellular carcinoma and the development
of resistance to sorafenib [17]. Cabozantinib treatment resulted in more prolonged overall
survival and progression-free survival than placebo in previously treated patients with
advanced HCC [18].

3.2.3.  Ramucirumab—Ramucirumab is an anti-VEGFR-2 monoclonal antibody that
impedes the binding of the various VEGFR ligands (VEGF-A, VEGF-C, and VEGF-

D), thus blocking VEGF-driven tumor angiogenesis [19]. The anti-neoplastic activity of
ramucirumab has been shown in phase 11 and 111 trials (REACH-2) in patients with advanced
HCC and high alpha-fetoprotein (AFP) levels (NCT01140347) [10]. This clinical trial
revealed an improved overall survival in patients treated with ramucirumab compared with
placebo. Importantly, ramucirumab was well tolerated and displayed a controllable safety
profile.

3.2.4. Immune checkpoint inhibitors: nivolumab, nivolumab and ipilimumab,
pembrolizumab—Nivolumab and pembrolizumab are human monoclonal antibodies that
bind to the PD-1 receptor and block its interaction with PD-L1 and PD-L2, resulting in
anti-tumor immune response re-induction and decreased tumor growth [20]. Ipilimumab is
a monoclonal antibody targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4),
promoting anti-tumor immune responses via distinct and complementary mechanisms
compared to those induced by the anti-PD1 antibody [21]. Based upon promising phase
Ib/I1 studies [22—25], the three drugs have been approved by the FDA for patients with
advanced HCC after first-line treatment with sorafenib [26].

4. Novel insights into the approved HCC drugs from the bench

With the emerging actionable drugs for advanced HCC, their underlying mechanisms
remain to be delineated more precisely. In addition, the overall response rate of the
HCC systemic agents is still low (~20-30%). Therefore, studies aiming to explain drug
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non-responsiveness or resistance and explore options for combinational treatment to improve
therapeutic efficacy are highly significant. Recent genomic studies have established the
landscape of molecular alterations in HCC. In particular, integrative analysis of the genomic,
transcriptomic, and/or epigenomic profiles revealed that HCC is a heterogeneous disease
composed of several subclasses [27, 28]. Specifically, HCC can be subdivided into two
major subclasses: the proliferative and the non-proliferative subtype [29]. The proliferative
HCC subset is associated with a poor prognosis, chromosomal instability, and activation

of classic oncogenic signaling pathways (such as RAS- mitogen-activated protein kinase
[MAPK] and protein kinase B [AKT]-mTOR). In contrast, the non-proliferative HCC
subclass displays a less aggressive course with slower disease progression and frequent
activation of the Wnt/B-catenin pathway [29]. However, reliable biomarkers able to stratify
these tumors for tailored, targeted therapies are missing.

Prognostic biomarkers for first- and second-line systemic therapies

A wealth of biomarkers associated with response or resistance to targeted therapies have
been described. However, none of them has reached the clinical stage to date. For

instance, Wang et al. demonstrated that peptidase inhibitor 16 (P116) is overexpressed in
HCC tissues, and its inhibition increased the sensitivity of HCC xenografts to sorafenib

by activating p38 MAPK dependent apoptosis. These findings suggest that P116 might

be a prognostic biomarker of sorafenib treatment [30]. Song et a/. showed that the -
galactoside-binding protein family protein, Galectin-3, induced angiogenesis and epithelial-
mesenchymal transition through phosphoinositide 3-kinase (PI3K)/AKT-glycogen synthase
kinase 3p (GSK3p)/p-Catenin signaling cascade by targeting insulin-like growth factor
(IGF) binding protein 3 and VIMENTIN in the HCC tumor microenvironment. Galectin-3
and p-Catenin knockdown had an additive effect on the sensitivity of HCC cells to sorafenib
in a cell line xenograft model [31]. Recently, Myojin ef a/. established a barcoded-oncogene
cDNA library and delivered it into the mouse liver to induce HCC, recapitulating the

tumor diversity of genetic drivers. A genetic screen of this model revealed that HCCs
expressing FGF19were susceptible to lenvatinib treatment. Moreover, serum levels of
glycosyltransferases ST6GAL were found to be positively regulated by tumor FGF19
expression, envisaging ST6GAL as a serum biomarker for predicting the outcome of
lenvatinib therapy. In addition, the screening revealed that sorafenib-responsive tumors
exhibited MET and NRAS activation features [32]. Also, Rodriguez-Hernéndez et a/. found
that well-differentiated HCC cells with wild-type p53 were more sensitive to sorafenib

and regorafenib. In contrast, moderately- to poorly-differentiated HCC cells harboring
mutated p53 and low mitochondrial respiration were more sensitive to lenvatinib and
cabozantinib [33]. Recently, Teufel et a/. identified the expression patterns of plasma
proteins and miRNAs associated with increased HCC patients’ overall survival length
following treatment with regorafenib in the RESORCE trial. Levels of these circulating
biomarkers and the genetic features of tumors might be helpful to identify HCC patients
who most likely would respond to regorafenib administration [34].

4.2. Drugs with synergistic anti-tumor effects to overcome therapy resistance

Drug resistance is the main limitation of the current systemic therapeutic drugs, especially
for first-line drugs (sorafenib and lenvatinib). With the increasing understanding of the
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underlying mechanisms, novel targets have been identified as combinational therapeutic
biomarkers to increase drug sensitivity and overcome drug resistance.

A myriad of mechanisms responsible for resistance to sorafenib by HCC cells have

been identified; here, we summarize those in which the resistance can be therapeutically
overcome. Using genome-wide clustered regularly interspaced short palindromic repeats
(CRISPR)/Cas9 library screening, Wei et al. found that phosphoglycerate dehydrogenase
(PHGDH), the first committed enzyme in the serine synthesis pathway, was a critical driver
of sorafenib resistance. Notably, treatment with the PHGDH inhibitor NCT-503 synergized
with sorafenib to abolish HCC growth /in vivo [35]. Similarly, Tong et al. found that
Annexin A3 (ANXA3) was enriched in sorafenib-resistant HCC cells and patient-derived
xenografts. At the molecular level, ANXAS3 suppressed PKC&/p38 associated apoptosis
and activated autophagy for cell survival, resulting in resistance to sorafenib. Strikingly,
anti-ANXA3 monaoclonal antibody therapy combined with sorafenib/regorafenib impaired
tumor growth /n vivo and significantly increased survival [36]. In addition, Shang et a/.
demonstrated that cabozantinib effectively hampered MET activity without affecting the
AKT/mTOR signaling, thus providing an explanation for the unsatisfactory outcome of
cabozantinib clinical trials. Moreover, combinational treatment of cabozantinib with the pan-
mTOR inhibitor MLNO0128 synergistically inhibited MET-activated HCCs [37]. Recently,
Arechederra et al. showed that activation of the ADAMTSLS5 glycoprotein was tumorigenic
upon MET activation. ADAMTSL5 abrogation triggered the reduction of multiple RTKs,
including MET, EGFR, PDGFRp, FGFR4, and IGF1 receptor 1, resulting in increased
sensitivity to sorafenib, lenvatinib, and regorafenib by HCC cells [38]. Moreover, Xu et

al. identified a circular RNA, circRNA-SORE, whose upregulation was associated with
sorafenib resistance by HCC. Mechanistically, circRNA-SORE binds to the the oncogenic
YBX1 protein and protects it from degradation, leading to resistance to sorafenib. Depletion
of circRNA-SORE increased the anti-tumor effect of sorafenib in murine HCC patient-
derived xenograft (PDX) models [39].

5. Potentially promising drug targets from experimental studies

Several signaling cascades have been proven to play a critical role in HCC initiation and
progression, such as MET/HGFR, FGF19-FGF4, PI3BK/AKT-mTOR, and retinoblastoma
pathways. The most promising candidates and the related drugs are described below and
depicted in Figure 2.

5.1. Oncoprotein MET

The oncoprotein MET is a well-characterized RTK implicated in hepatocarcinogenesis [40].
Elevated expression of MET and its ligand HGF are associated with poor prognosis and
resistance to sorafenib treatment. Several clinical trials are ongoing to test the outcomes

of MET inhibitors (cabozantinib, tivantinib [41], and capmatinib [42]) either alone or in
combination with other targeted molecules or immunotherapy. Recently, the preclinical field
has been focusing on the compensatory mechanisms of MET suppression to put novel
insights into the combinational therapeutic strategies. MET has been reported to interact
with EGFR, extracellular signal-regulated kinases 1/2 (ERK1/2), VEGFR, transforming

Expert Opin Ther Targets. Author manuscript; available in PMC 2022 September 11.
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growth factor a (TGFa), and AKT/mTOR signaling cascades in HCC [43]. Several
approaches have been employed in experimental /7 vivo models to overcome the resistance
to MET inhibition, including the combination of the MET inhibitor PHA665752 with

the EGFR inhibitor gefitinib [44], the use of the dual MET/VEGFR?2 inhibitor NZ001

[45], and the simultaneous administration of SU11274 (a selective MET inhibitor) and an
HGF-neutralizing antibody [46]. These therapeutic approaches have shown favorable anti-
tumor effects, indicating that combining the inhibition of MET with one relevant oncogenic
molecule holds excellent promises for paving the road of novel anti-HCC treatments.

5.2. The FGF19-FGFR4 axis

The FGF family consists of at least 5 RTKs and many cognate ligands that have long been
pursued as targets for anticancer treatments [47]. Concerning HCC, FGF19 is amplified

in ~10% of the patients, is implicated in sorafenib resistance, and represents a potential
predictive marker of response to FGFR kinase inhibitors [48]. Therefore, several inhibitors
targeting the FGF19 receptor, which is FGFR4, have been developed. FGF401, an FGFR4
kinase inhibitor, has remarkable anti-tumor activity in mice bearing HCC tumor xenografts
and patient-derived xenograft models positive for FGF19, FGFR4, and KLB [49]. In
addition, BLU554 [28], H3B6527 [50], and BLU9931 [51] also demonstrated anti-tumor
effect in preclinical studies. Of note, FGF401 (NCT02325739), BLU554 (NCT02508467),
and H3B6527 (NCT02834780) are also undergoing phase I/11 clinical trials in HCC patients.

5.3. The PI3BK/AKT-mTOR cascade

The PI3K/Akt-mTOR signaling pathway is a central regulator of HCC development.

This signaling cascade includes various intracellular kinases, and among them, AKT is a
prominent hub downstream of many RTKSs. Upstream target proteins of AKT are stimuli-
induced RTKs and include PI3K, phosphoinositide-dependent protein kinase (PDK), and
mTOR complex 2 (MTORC2). Activated AKT enables the phosphorylation of downstream
target proteins, including FOXO1, TSC1/2, and mTORC1 [52]. The use of AKT and mTOR
inhibitors in HCC studies has been thoroughly reviewed elsewhere [53, 54]. Although the
applications of AKT and/or mTOR inhibitors showed an efficient tumor growth inhibition
capacity /n vitroand in vivo, the clinical trials so far conducted failed to reach compelling
outcomes (Table 2). Current research efforts are devoted to generating more efficacious
inhibitors targeting the PI3K/AKT-mTOR cascades and identifying biomarkers for patient
selection as well as for combination therapies. The tuberous sclerosis complex (TSC) 1

and TSC2 are known as negative regulators of mTORC1 signaling. TSC1/2 is a GTPase-
activating protein for the small GTPase Rheb, which is an essential activator of mMTORCL1.
According to the TCGA cohort, ~4% of HCCs have TSC1 mutation, and ~5% of HCCs have
TSC2 mutation. An independent study based on HBV-related HCCs documented ~16.8% of
samples displaying TSC1 and/or TSC2 mutations. Of note, TSC2-mutant PDTXs are more
sensitive to the treatment with the mTOR inhibitor rapamycin [55]. The PI3K/AKT/mTOR
cascade is also involved in many metabolic processes in the liver, suggesting the modulation
of the metabolism as an alternative therapeutic strategy against HCC. He et a/. showed that
loss of hepatic fructose-1, 6-bisphosphate aldolase B (Aldob) favors hepatocarcinogenesis
by suppressing the interaction of AKT with its negative regulator protein phosphatase

2A (PP2A). Significantly, treatment with the PP2A activator SMAP inhibited HCC tumor
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growth /n vitro, implying the relevance of AKT inhibition as an anti-neoplastic strategy in
this tumor type [56].

5.4. The retinoblastoma pathway

D-type cyclins and cyclin-dependent kinases 4 and 6 (CDK4 and CDKG®) are critical

in driving the cell cycle’s G1 to S phase transition. They achieve this scope by
phosphorylating and inactivating the retinoblastoma protein (pRb) [57]. In the absence

of stimuli, active (unphosphorylated) pRb sequesters E2F1 and suppresses the latter’s
transcriptional activity. Following stimulation by extracellular signals, the cyclin D-CDK4/6
complex phosphorylates pRb, leading to the activation of the E2F1 transcription factor,
ultimately resulting in G1 to S phase progression and cell proliferation [57]. Recently,
potent CDK4/6 inhibitors have emerged as a new therapeutic tool in many tumor types;

in particular, palbociclib, ribociclib, and abemaciclib have been approved by the FDA to
treat hormone receptor-positive/HER2-negative advanced breast cancer [58]. In human HCC
cell lines, the CDK4/6 inhibitor palbociclib suppressed cell proliferation by inducing cell
cycle arrest. /n vivo, palbociclib, either alone or combined with sorafenib, hindered tumor
growth and increased survival of human HCC xenografts [59]. Furthermore, the combination
of palbociclib with either NF-kB [60] or FGFR4 [50] inhibitors was highly detrimental to
the growth of HCC cells /n vitroand in vivo. Following this encouraging preclinical data,
palbociclib is currently in phase 2 clinical trial for HCC treatment (NCT01356628).

6. Novel therapeutic candidates from the preclinical arena

6.1. Targeting the metabolic pathways

Deregulation of the metabolism has been shown in virtually all cancer types, including HCC
[61]. This observation is not surprising, as the liver is the primary site for many metabolic
processes. HCC is metabolically different from normal liver tissue in many ways, including
glycolysis, the citric acid cycle, oxidative phosphorylation, lipogenesis, lipolysis, amino-acid
synthesis and catabolism, and the pentose-phosphate cascade (Figure 3). In general, these
include increased glycolysis and lactate production, as well as a higher lactate-to-pyruvate
ratio in HCC [62]. Moreover, higher activity of the insulin receptor pathway, such as
PI3K/Akt and increased lipogenesis, fatty acid oxidation and transport were also reported
[63]. Since the metabolic cascades provide the necessary nutrients for tumor cells to grow,
targeting the metabolism in the liver has long been pursued to interrupt hepatocarcinogenesis
(Table 3). The principal scope of targeting the metabolism for the treatment of HCC is

to deprive tumor cells of the necessary nutrients without affecting the essential metabolic
requirements of normal liver cells.

DeWaal et al. investigated glycolysis and glycogen-associated pathways in HCC
development, focusing on the role of hexokinase (HK2), the essential enzyme for glucose
phosphorylation. The authors found that hepatic specific deletion of /K2 inhibited tumor
initiation in murine HCCs induced by diethylnitrosamine (DEN) and HK2 silencing
synergized with sorafenib to inhibit tumor growth of HCC xenografts. Mechanistically,
targeting HK2 inhibited the glucose flux to pyruvate and lactate. Also, HK2 depletion
suppressed glycolysis and induced oxidative phosphorylation in HCC. Furthermore, HK2
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depletion sensitized HCC to the anti-growth effects exerted by metformin [64]. Moreover,
recent studies demonstrated the promising outcomes of targeting fatty acid synthase (FASN),
a multi-enzyme that catalyzes fatty acid biosynthesis, to treat HCC. Indeed, genetic deletion
of FASN in the mouse liver led to the inhibition of AKT- [65] and AKT/MET-driven [66]
hepatocarcinogenesis and strongly delayed HCC development induced by phosphatase and
tensin homolog (PTEN) loss [67], and c-MYC activation [68]. Of note, blocking cholesterol
biosynthesis combined with FASN inhibition completely prevented HCC formation induced
by PTEN deletion, indicating that simultaneous targeting of FASN and cholesterogenesis
might be highly detrimental for the growth of HCC [67]. Moreover, the FASN inhibitor
TVB2640 has been shown to inhibit de novo lipogenesis effectively [69] and is currently
under clinical test for solid tumors (NCT02223247). Preliminary data from our group

also suggest that another de novo lipogenesis inhibitor improved the effectiveness of
cabozantinib in several genetically engineered mouse HCC models. Furthermore, combining
FASN inhibitor with established targeted therapies and conventional chemotherapy has been
envisaged for HCC treatment [70]. Overall, these /n vivo data, together with the evidence

of robust activity of FASN and related de novo lipogenesis in human HCC [63], point to
FASN as a promising target for HCC therapy. Experimental efforts on targeting amino-acid
metabolism and oxidative phosphorylation processes also reached a favorable outcome [71,
72].

6.2. Targeting the epigenome and DNA repair mechanisms

Epigenetic mechanisms modulate chromatin conformation and the accessibility of the
transcriptional machinery to genes, thereby regulating their expression. Epigenetic
deregulation is central to the hallmarks of cancer, leading to eventual carcinogenesis [73].
Histone deacetylation is one of the most critical epigenetic events, regulating various
cellular features, such as differentiation, proliferation, and cell cycle. Histone deacetylases
(HDACS), the prominent mediators of this epigenetic mechanism, are often aberrantly
expressed in various tumors, including HCC [74]. The molecular mechanisms whereby
HDACSs contribute to hepatocarcinogenesis are complex and not completely understood. For
instance, HDACS upregulation contributes to insulin resistance in NAFLD progression and,
in coordination with the HMT KTM6 (EZH2), epigenetically represses Wnt antagonists’
expression enhancing cell proliferation in HCC [75]. Belinostat, a pan-HDAC inhibitor, has
shown experimental efficacy, and it is under phase Il clinical trial as a second-line systemic
treatment for HCC. (NCT00321594). Intriguingly, Llopiz et al. showed that belinostat
combined with immune checkpoint inhibitors (anti-CTLA-4) increased their efficacy in an
experimental model of HCC [76]. Resminostat, an HDAC1/3/6 inhibitor, has been shown
to induce the reversion of stem-like properties of HCC cells and significantly augmented
the cytotoxic effects of sorafenib 7n vitro[77]. These findings provide a rationale for

the ongoing clinical trial of resminostat in combination with sorafenib for HCC therapy
(NCT00943449).

Furthermore, recent evidence indicates modulating different epigenetic regulators, including
DNA methyltransferases and histone methyltransferases, bromodomain-containing proteins,
and histone lysine demethylases, can increase immune recognition of tumor cells and
synergize with immunotherapy [78]. Concerning DNA repair, Wang et al. investigated
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the combinational effects of targeting poly (ADP-ribose) polymerase 1 (PARP1) and DNA-
dependent protein kinase catalytic subunit (DNA-PKcs) in HCC. The authors demonstrated
that two DNA double-strand break repair pathways, namely homologous recombination
and nonhomologous end-joining, are upregulated in an HCC mouse model, induced by
overexpressing the DNA repair factors PARP1 and DNA-PKcs. Combining the PARP1
inhibitor Olaparib with the DNA-PKcs inhibitor (NU7441) suppressed HCC growth in

the mouse model and HCC PDX. Because DNA-PKGcs is strongly activated in human

HCC [79], the results suggest the combined inhibition of both homologous recombination
and nonhomologous end-joining processes is a potential therapy for liver cancer [80].
Amplification of the DNA-PKcs gene in the tumor tissue might be a reliable biomarker

of the effectiveness of therapeutic strategies aimed at inhibiting DNA-PKcs in human HCC
[81].

6.3. YAP/TAZ

Yes-associated protein (YAP) and its paralog, transcriptional coactivator with the PDZ-
binding motif (WWTR1/TAZ), are the two transcriptional coactivators downstream of the
HIPPO tumor suppressor pathway. When HIPPO is off, YAP/TAZ can be activated and
translocated into the nucleus, regulating the expressions of downstream targets. It has
been shown that YAP and TAZ are activated in HCC, and their induction promotes HCC
development via regulating cell proliferation and survival. Studies from our group have
found that conditional deletion of Yapand/or 7azled to HCC regression in mouse models
induced by the overexpression of c-Myc or c-Met/sgAxinl genes (unpublished data). The
results suggest that suppressing YAP and TAZ activity might be an effective approach for
HCC treatment. In addition, the tankyrase inhibitors GOO7LK and XAV-939 have been
previously shown to be able to abolish YAP/TAZ activity in HCC cell lines [82]. However,
recent studies also demonstrated that distinct oncogenic stimuli might differently activate
YAP and TAZ [83]. Therefore, decisions on whether to target YAP or TAZ alone or together
should be made with caution.

6.4. Additional molecules with targeted potentiality

Amplification of two-pore channel 2 (TPC2) occurs in ~6% of HCC samples based on the
TCGA database. Muller et a/. developed simplified analogs of the alkaloid tetrandrine as
potent TPC2 inhibitors by screening a library of synthesized benzyltetrahydroisoquinoline
derivatives. Notably, they found a TPC2 inhibitor with anti-tumor efficacy in mice [84].

Han et al. developed a miR122a-based approach to target telomerase reverse transcriptase
(TERT) through the post-transcriptional enhancement of the ribozyme improved trans-
splicing [85]. In addition, the Ser/Thr kinase polo-like kinase 1 (PLK1) plays a pivotal role
in cell-cycle regulation, and targeting PLK1 with a selective PLK1 kinase inhibitor exhibited
profound anti-tumor efficacy in a xenograft mouse HCC model [86]. The transcription factor
Late SV40 factor (LSF) promotes hepatocarcinogenesis by regulating the major hallmarks
of cancer, including cell invasion, angiogenesis, chemoresistance, and senescence [87]. The
LSF inhibitors, factor quinolinone inhibitor 1 (FQI1) and FQI2, have shown compelling
therapeutic effects on the HCC lesions from A/b/c-Myc transgenic mice [88]. Several
microRNAs, such as miR122 [89], miR21 [90], and miR218 [91], have been identified
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as effective targets for HCC treatment. With the advances in the pharmacological field,
targeting specific microRNAs might also be beneficial for HCC treatment.

6.5. Diagnostic biomarkers as HCC targets

Alpha-fetoprotein (AFP) and Glypican-3 (GPC3) are oncofetal glycoproteins overexpressed
in HCC. The importance of AFP and GFP3 as diagnostic biomarkers for HCC is well
established. From the therapeutic perspective, Hong et al. generated an epitope-optimized,
high immunogenic AFP that disrupted immune tolerance and potently activated CD8

T cells to prevent mouse autochthonous HCC development [92]. Similar approaches

have been evaluated in other mouse HCC models [93], supporting the idea of targeting
AFP as an effective treatment for HCC. The major immune mechanisms of anti-GFP3
antibodies against HCC cells consist of antibody-dependent and complement-dependent
cytotoxicity [94, 95]. Since anti-GFP3 antibodies are associated with the immune response,
the combination of anti-GFP3 and immune checkpoint inhibitors is currently under intense
investigation [96].

7. Conclusion

The preclinical field has unraveled several promising targets for the development of
innovative treatments against HCC. RTK inhibitors and immune checkpoint inhibitors
remain the most attractive options to experimental investigators. In addition, studies

on targeting intracellular kinases, metabolic pathways, and epigenetic and DNA repair
mechanisms add ground for novel HCC targeted therapeutic strategies. Furthermore,
evaluating the anti-neoplastic potency of combinational approaches might be highly helpful
to establish more effective treatments.

8. Expert opinion

With the development and refinement of high-throughput sequencing technologies,

cancer treatment is becoming more and more targeted-orientated and individual-specific.
Experimental investigations have identified numerous molecules that potentially can be
targeted in HCC, including RTKSs, intracellular kinases, metabolic enzymes, and epigenetic
modulators. However, adequate and proper models should be established and used for
reliable therapeutic predictions. Although many HCC mouse models have been generated,
including chemical- or diet-induced models, genetically engineered models, and cell-line
or patient-derived xenograft (PDX) models, none can perfectly recapitulate the HCC
biological features in the patients. In addition, it is still challenging to establish a feasible
HCC model for the study of the tumor immune environment /in vivo. In this regard, it

has been reported that intraperitoneal injection of carbon tetrachloride in combination

with intrasplenic inoculation of oncogenic hepatocytes in the immunocompetent mice

was able to establish a clinically relevant HCC model with features of fibrosis, which
enabled the investigation of immune responses during HCC progression [97]. Moreover,
exogenous hyper-immunogenic antigens such as LucOS [98] or polyinosinic-polycytidylic
acid [99] were applied to enhance immunity in mouse HCCs. However, these models are
either technically laborious or biologically unsuitable [100], adding obstacles to translating
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preclinical studies to the clinical setting. Therefore, investigators have to be cautious in
choosing the models and interpreting the preclinical observations.

With the increasing number of non-viral-related HCCs, especially NAFLD- and NASH-
related HCC, understanding the variations between each tumor subtype is imperative.

For instance, NASH-related HCC are characterized by enrichment in bile and fatty acid
metabolism, oxidative stress, and IFN/NFxB-related inflammation, and a decrease in DNA
damage repair compared to viral/alcohol-HCC [101, 102]. A meta-analysis study of the
current immunotherapy clinical trials demonstrated the lack of response to immunotherapy
in human NASH-HCC [103] compared to viral/alcohol-related HCC. Similarly, in a
preclinical NASH model, the mouse liver exhibited an increasing accumulation of
exhausted, unconventionally activated CD8+PD1+ T cells with disease progression, which
promoted HCC development and resulted in an unfavorable effect of the anti-PD1 treatment.
Therefore, a better understanding of the underlying mechanism of non-viral HCC will be
beneficial for the development of proper pharmacological therapies.

Combinational therapies are becoming promising strategies to improve therapeutic
effectiveness in many tumor types, including HCC. In this regard, combinations of

two drugs targeting different oncogenic pathways or combinations of targeted drugs

with immune checkpoint inhibitors are under evaluation. The VEGF pathway promotes
local immune suppression by inhibiting antigen-presenting cells and effector cells and
activating suppressive elements, including Treg cells, myeloid-derived suppressor cells, and
tumor-associated macrophages, providing the rationale for combining immune checkpoint
inhibitors with anti-angiogenic agents. With the exciting results from the IMBravel50

trial [8], where the anti-PD1 therapy was combined with the anti-VEGF treatment, similar
preclinical studies are encouraged. Therefore, a deeper understanding of the HCC immune
environment in experimental models will provide more effective combinational therapeutic
strategies. In addition, studies on the effectiveness of targeting the tumor stroma cells and
inflammatory signals of the tumor microenvironment also hold promises from the preclinical
arena.

Immune checkpoint inhibitors will inevitably provide robust support for novel anti-HCC
therapies. However, the complexity of etiologies of HCC drives a significant tumor
heterogeneity, leading to the challenge of the widespread appliance of the immune therapies.
In addition, it has been shown by several groups that a subset of HCCs, for instance, with
[B-Catenin activation, is resistant to immunotherapies [104]. Therefore, the selection of drugs
targeting HCCs with immunosuppressive properties remains challenging in the preclinical
scenario. For this purpose, /n silico high-throughput screening of chemical compound
libraries followed by in vitroand in vivotesting might represent a reliable strategy.
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Article Highlights

Hepatocellular carcinoma (HCC) is a frequent liver tumor associated with
high molecular heterogeneity and poor prognosis.

The combination of Atezolizumab and Bevacizumab is currently the first-
line therapy against HCC. However, the benefits are somehow limited and
temporary.

High-throughput technologies have recently expanded our understanding of
the molecular landscape of human liver cancer and unraveled potentially
actionable targets.

Targeted therapies, mainly based on RTK inhibitors and immune checkpoint
inhibitors, have been mainly unsatisfactory due to the lack of specific
predictive biomarkers and the rapid appearance of drug resistance.

Recent experimental data have unraveled some of the resistance mechanisms
to drugs by HCC cells, and approaches to overcome this hurdle have been
developed or are under investigation.

Novel therapeutic strategies from the preclinical arena, such as targeting
intracellular kinases, metabolic pathways, and epigenetic and DNA repair
mechanisms, are opening new viable options for treating this lethal disease.
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Systemic therapy for advanced HCC
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Figure 1.
Algorithm for management of advanced HCC. Atezolizumab plus bevacizumab are offered

as first-line treatment for most patients with advanced HCC, Child-Pugh class A, ECOG

PS 0-1. Sorafenib and lenvatinib may be offered as optional first-line treatment of advanced
HCC patients who present contraindications to atezolizumab and/or bevacizumab. Second-
line therapy is an option for patients whose tumors progress while on first-line therapy and
whose performance status and liver function are sufficient to tolerate it. Cabozantinib and
ramucirumab are also recommended as a third-line therapy option for patients with advanced
HCC. Abbreviations: PS, performance status; AFP, alpha-fetoprotein.
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Figure 2.

Promising drug targets from experimental studies. Multiple signaling pathways are involved
in the hepatocarcinogenesis, among which the HGF/MET, FGF/FGFR, PISK/AKT/mTOR,
and CDK4/6 signaling pathways hold the promises as effective targets for HCC treatment.
Targeted drugs showing efficacious anti-tumor effects from the preclinical studies are shown
and summarized in the figure. Normal arrows: activation; blunted arrows: inhibition.
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Figure 3.
Schematic figures of metabolic alterations in HCC. Glycolysis and pentose phosphate

pathway (PPP) were increased while the urea cycle, TCA cycle, and p-oxidation are
decreased in the liver cancer cells. Fatty acid (FA) synthesis and uptake are gradually
increased until HCC development. Glutamate produced during glutaminolysis serves as the
major substrate to refuel the TCA cycle. Abbreviations: PPP, pentose phosphate pathway;
FA, fatty acid; TCA, tricarboxylic acid cycle.
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Table 1

Summary of approved drugs for HCC systemic treatment

Page 24

Drugs Targets Clinical trialsnumber | Application | Reference
Sorafenib VEGFR1-3, PDGFR, RAF kinase, KIT receptor | NCT00105443 First line [5]
Lenvatinib VEGFR1-3, PDGFR, FGFR1-4, RET NCT01761266 First line [6]
Atezolizumab + Bevacizumab | PDL1 + VEGF NCT03434379 First line [8]
Regorafenib VEGFR1-3, PDGFR, RAF kinase, FGFR1-2 NCT01774344 Second line [13]
Cabozantinib VEGFR1-3, MET, RET NCT01908426 Second line [18]
Ramucirumab VEGFR2 antibody NCT01140347 Second line | [10]
Nivolumab PD-1 antibody NCT01658878 Second line | [25]
Nivolumab + Ipilimumab PD-1 antibody; CTLA-4 antibody NCT01658878 Second line | [23]
Pembrolizumab PD-1 antibody NCT02702401 Second line [24, 105]
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