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Assessment of global hydro‑social 
indicators in water resources 
management
Omid Bozorg‑Haddad1*, Sahar Baghban1 & Hugo A. Loáiciga2

Water is a vital element that plays a central role in human life. This study assesses the status of 
indicators based on water resources availability relying on hydro-social analysis. The assessment 
involves countries exhibiting decreasing trends in per capita renewable water during 2005–2017. 
Africa, America, Asia, Europe, and Oceania encompass respectively 48, 35, 43, 20, and 5 countries with 
distinct climatic conditions. Four hydro-social indicators associated with rural society, urban society, 
technology and communication, and knowledge were estimated with soft-computing methods [i.e., 
artificial neural networks, adaptive neuro-fuzzy inference system, and gene expression programming 
(GEP)] for the world’s continents. The GEP model’s performance was the best among the computing 
methods in estimating hydro-social indicators for all the world’s continents based on statistical criteria 
[correlation coefficient (R), root mean square error (RMSE), and mean absolute error]. The values of 
RMSE for GEP models for the ratio of rural to urban population (PRUP), population density, number 
of internet users and education index parameters equaled (0.084, 0.029, 0.178, 0.135), (0.197, 0.056, 
0.152, 0.163), (0.151, 0.036, 0.123, 0.210), (0.182, 0.039, 0.148, 0.204) and (0.141, 0.030, 0.226, 
0.082) for Africa, America, Asia, Europe and Oceania, respectively. Scalable equations for hydro-
social indicators are developed with applicability at variable spatial and temporal scales worldwide. 
This paper’s results show the patterns of association between social parameters and water resources 
vary across continents. This study’s findings contribute to improving water-resources planning and 
management considering hydro-social indicators.

Water resources shortages are caused by climatic variability and change, population growth, and mismanage-
ment posing challenges to meeting the water requirements in many countries1,2. Water resources management 
involves hydraulic and hydrologic issues and must consider social and economic conditions. Early hydro-social 
research of water systems relied heavily on geographic assessments and introduced methods for understand-
ing the feedbacks between water and human systems3. Hydro-social studies are based on recognizing the close 
interactions between human systems and water, the social and cultural meanings of water, and how they relate 
to water systems and water management options4. The hydro-social cycle, focusing on the feedback systems 
between human and water interactions, recognizes the human impact on the hydrological cycle as part of the 
dialectical development of water systems and social systems5.

There are several definitions of water scarcity and different interpretations of its meaning. At the basic level 
water scarcity is governed by its quantity and distribution and by natural and human factors2. Human populations 
are affected by water stresses and per capita shortages of renewable water. Water scarcity is generally considered 
as a global challenge for humanity6. Human actions have caused a diverse set of water sustainability challenges 
that must be addressed by new approaches to water management7. Research has shown that water scarcity is 
the result of physical water scarcity and the result of complex interactions between water resources and social 
phenomena6. In addition to the social and economic crises of water, it has been emphasized that the water 
problem is not simply about scarcity but a crisis of water management. Today’s goal in managing water systems 
is to define new interdisciplinary solutions. Hydro-social science studies the interactions between human fac-
tors, water flows, hydraulic technologies, biophysical elements, socio-economic structures, and cultural-political 
institutions in the management of water systems8. This science evaluates water resource systems considering 
human influences such as withdrawals, impoundments, and other human-induced changes in hydrological 
systems9. This means that water shortages and the existence of adverse trends in hydrological systems also affect 
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human interests, and, ultimately, social wellbeing10. Therefore, modeling and predicting these relationships is 
useful for understanding the hydro-social interactions for more efficient management of water resources and 
improved societal assessments.

Hydro-social indicators are useful measures of the relative magnitude of phenomena11, and they support deci-
sion making in water resources management. These indicators are evaluated to assess the effectiveness of current 
policies and future management activities and investment decisions based on factors such as the definition or 
perception of water among stakeholders, the primary mechanisms of water perception by stakeholder groups 
(e.g., social, historical, economic, political, spiritual, etc.), the feedbacks between water and society that create a 
"water community", and the consequences of hydro-social interactions between stakeholders and their Water12,13. 
Understanding hydro-social relationships raises awareness about best practices for water use14.

The importance and indivisible relationship between social parameters and comprehensive water resources 
management is nowadays well understood. Understanding the feedbacks between social parameters and per 
capita renewable water and its modeling yields predictions about countries’ future social evolution. Soft com-
puting methods and artificial-intelligence-based methods such as Artificial Neural Network (ANN), adaptive 
neuro-fuzzy inference system (ANFIS), gene expression programming (GEP), Multivariate Adaptive Regression 
Splines (MARS), the M5 Tree model, Support Vector Machines (SVM), Random Forests (RF), and Multi Linear 
Regression (MLR) methods have been successfully employed in water quality and quantity modeling. These 
data-based prediction methods have been used to predict various phenomena in different fields, including water 
resources management.

Hydro-social science evaluates the relationship between water science and social science and discovers math-
ematical functions that predict phenomena in these two sciences. Hydro-social research stems mainly from the 
convergence of political ecology and technology studies3. Ross et al.3 argued that most studies on water resources 
systems in the context of hydro-social issues are related to irrigation, water scarcity, dams, groundwater, desalina-
tion, glaciers, sanitation, and mining. Carey et al.15 introduced social sciences in the hydrological modeling of 
glacial basins. They studied glacier melting caused by climate change in the Santa River Basin, Peru, employing 
five variables: political agendas and economic development, governance (laws and institutions), technology and 
engineering, land and resource use, societal responses. The latter authors presented a hydrological modeling 
tool in hydro-social science to understand the impact of climate change on glacier shrinkage that affects the 
human population. Chen et al.16, applied ordinary least squares (OLS) and geographic weight regression (GWR) 
models to identify the effect of land use and population density indices on surface water quality in wet and dry 
seasons in the Wen-Rui Tong River basin in eastern China. Their results revealed that the impact of these indica-
tors varies with the spatial and seasonal scales. Suburban and rural areas were identified with urban land as the 
primary influencing factor concerning pollutants during the wet season, while agricultural land was identified 
as a more prevalent influencing factor during the dry season. Ženko et al.6 investigated the effect of water short-
age on water users’ mental health based on gender and age group in Iran’s Urmia Lake basin, and determined 
that water scarcity adversely affect the economy, social relations, and people’s health. At the same time, all these 
factors threaten the mental health of water users. The latter authors evaluated hydro-social factors and showed 
that water problems lead to biophysical, financial, and social changes that impact the health of water users due to 
chronic psychological stress, social isolation, intra-community conflicts, despair, hopelessness, depression, and 
anxiety. Shrestha et al.17 analyzed competition and conflict over water scarcity in the Kathmandu Valley, Nepal, 
and showed human distress due water insecurity and the inability to integrate political, social, and economic 
factors to allow access to water services and institutions. Devkota et al.18 applied hydrological analysis and flood 
modeling in the West Rapti River basin by a community survey of 240 households based on public perceptions. 
They examined flood adaptation strategies that had already occurred or are likely to occur in the future and 
applied a hybrid hydro-social approach to demonstrate the importance of flood plans to raise local flood aware-
ness. Weigleb et al.19 evaluated the path from MDG to SDG to achieve the Sixth Sustainable Development Goal 
(SDG 6). The key factors in this respect are the management of problem sources and not their effects, increas-
ing integration of issues and sectors, inclusion of environmental goals, more flexible management approaches, 
participation and collaborative decision-making, more attention to managing human behavior through "soft 
measures", open and shared information systems, and incorporation of learning cycles. They considered the 
"hydro-social cycle" a concept to connect society and the vital water element. Bui et al.20 assessed groundwater 
resources’ social sustainability in Hanoi, Vietnam, concerning three main groundwater characteristics (quantity, 
quality, and management). The sustainability indices, quantity, quality, and management of groundwater were 
estimated good, poor, and acceptable with the values 0.68, 0.27, and 0.52, respectively, which resulted in Hanoi 
being rated at an acceptable level with the value of 0.49 for the social sustainability assessment. Pande et al.21, 
exploiting the theory of metabolism, explored the relationship between birth rate and local water consumption 
by considering the virtual water content, virtual water trade, and agricultural production at the 7-continent scale. 
They investigated whether the average rate of human metabolism controls or is controlled by per capita water 
consumption, and reported that continents with relatively low birth rates, including North America, Europe, 
and Oceania, feature relatively high per capita water consumption, while developing regions exhibit an opposite 
pattern of association. Diaz et al.22 implemented the Driver-Pressure-State-Impact-Response (DPSIR) to explore 
the association between river ecosystems and the social system of the Biobío Basin in Chile. 65 indicators whose 
data spans over a period of 35 years were selected for assessing the DPSIR in the study area. The trend analysis 
results indicate a significant reduction in biodiversity, the deterioration of regulatory services and non-material 
goods for human well-being, while cultural services, direct and indirect pressures, and institutional responses 
increased. Forouzani et al.2 applied the Q method (a social sciences technique useful for discerning views, 
opinions, beliefs, attitudes) to identify farmers’ and agricultural experts’ understanding of agricultural water 
poverty and its causes in Marvdasht city, Iran. They surveyed the traits of agricultural water poverty with the 
Q method to identify four distinct types of farmers (management-adherents, adaptive-adherents, fatalists, and 
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support seekers), and three types of agricultural specialists (farmer blamer pessimists, technocratic realists, and 
optimists). Li et al.23 examined the impact of various socio-economic activities on Lake Tai’s water quality in 
China and demonstrated that severe ecological pressures from repeated and intense socio-economic activities 
can lead to the decline of the ecological functions of lakes and threaten aquatic organisms’ health. Their results 
indicate a significant association between the average annual concentration of total nitrogen (TN), total phospho-
rous (TP), chemical oxygen demand (COD), biological oxygen demand (BOD), population, per gross domestic 
product (GDP), and sewage discharge. Several other studies have reported social-science and soft computing 
applications to water resources investigations7,24–27. On the other hand, the soft-computing methods literature 
is too vast to be reviewed in this paper; therefore, only a small set of references is herein highlighted that have 
applied soft computing methods.

Various researchers have examined the inclusion of social indicators in assessing water resources to under-
stand how and which of the social parameters have the most significant impact on the water system; however, 
few have uncovered the patterns of association that govern hydro-social indicators quantitatively on a broad 
scale. It is essential to consider the rationality of the statistical association between social parameters and water 
resource parameters, and the level of interaction between these factors deserves further research.

This paper develops functions of worldwide application for water-resources factors within the context of 
hydro-social science. With respect to the current state-of-the-art in hydro-social science the innovations of 
this work are: (1) application of soft-computing methods (i.e., Artificial Neural Network, adaptive neuro-fuzzy 
inference system, and gene expression programming) for linking hydro-social science and water science; (2) 
estimation of several social variables (rural society, society, technology and communication, and knowledge) in 
function of the water resources of the continents, and estimation of water resources in terms of social variables; 
(3) mathematical functions for social parameters are shown to be scalable in space and time.

Methodology
Selected indicators.  The renewable water per capita (RWPC) is chosen as the overall indicator of water 
resource status. The indicators corresponding to rural society, urban society, technology and communication, 
and knowledge are the ratio of rural to urban population (PRUP), population density (PD), number of internet 
users (IU), and education index (EI), respectively; each of them is defined below.

•	 Renewable water per capita (RWPC): Renewable water is the amount of water that a basin can replenish dur-
ing the annual water cycle. Per capita renewable water is the available volume of renewable water per person 
every year measured in millions of cubic meters per person.

•	 The ratio of rural to urban population (PRUP): This index compares the number of people living in rural areas 
to the number of people living in urban areas (a rural population division into the urban population). The 
ratio of rural to urban population (PRUP) is herein proposed as a potential indicator of the water resources’ 
status.

•	 Population density (PD): Population density measures the number of inhabitants per unit area. The unit of 
this parameter is persons per square kilometer. Several authors have applied population density as an indica-
tor of the status of water resources28–40.

•	 Internet users (IU): The number of people who have access to the Internet and use it for their daily work. This 
indicator is effective in mass information related to water use. The unit of this parameter is the percentage of 
the internet-using population with respect to the total population. The term "Water Internet" is reminiscent 
of water use and internet connectivity. The Water Internet is a source of water supply information for involved 
organizations and citizens in general22,34,39.

•	 Education index (EI): The educational level is a leading determinant of a person’s knowledge about the use 
of water resources. The Education index (EI) is calculated as the average years of schooling received by a 
population of individuals34.

Figure  1 displays the phases of this paper’s methodology. This work proposes the social indica-
tors PRUP, PD, IU, and EI to quantify the RWPC in Africa, America, Asia, Europe, and Oceania with soft com-
puting methods (ANN, ANFIS-SC, and GEP). This paper analysis evaluated two types of functional patterns of 
associations: (1) per capita data on water resources were applied as input and values of social parameters were 
quantified as output; (2) social parameters were applied as input and per capita water resources parameter were 
quantified as output. The components of this paper’s methodology are shown in Fig. 2.

The per capita renewable water data and social indicators were normalized for each country with Eq. (1). 
Normalized values range between 0 and 1.

where XN, Xi, Xmin, and Xmax denote the normalized value, the real value, minimal value, and the maximal 
value, respectively. Normalization operations are performed before the modeling process so that the algorithm 
fairly examines the various dimensions of the databased on the same standardized range. This work implements 
a normalization process with Eq. (1) for training and testing41,42.

This study selected countries for analysis that exhibit a decreasing trend of per capita renewable water in the 
13-year study period (2005–2017). The studied countries’ names classified by continent are listed in Table 1. 
Africa, America, Asia, Europe, and Oceania include 48, 35, 43, 20, and 5 countries across numerous climate 
conditions, respectively. This study randomly chose 70% of each continent’s countries for model training and 

(1)XN =
(Xi − Xmin)

(Xmax − Xmin)
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30% for model testing. This work relied on data extracted from the Knoema database (https://​knoema.​com). 
The statistical characteristics such as average, standard deviation, and coefficient of variation of the hydro-social 
indicators are listed in Table 2. The coefficients of variation of per capita renewable water equaled 0.663, 0.654, 
0.683, 0.329, and 0.640 for Africa, America, Asia, Europe, and Oceania, respectively. Europe has the smallest coef-
ficient of variation of PRUP, PD, IU, and EI indicators. The effect of the Köppen climatic classification was herein 
considered to examine the patterns of association between hydro-social indicators. Figure 3 displays the Köppen 
climate classification of the world. The Köppen climate classification scheme43 divides the climates into five main 
groups (A, B, C, D, and E); each group can be further classified by precipitation and temperature conditions.

Soft‑computing models.  Soft computing methods are effective in detecting new and valuable informa-
tion from large datasets with the purpose of discovery, classification, and forecasting44. The well-known ANNs, 
ANFIS, and GEP are described in the next section.

ANNs.  Artificial neural networks (ANNs) are computing systems inspired by biological neural networks. The 
initial aim of neural networks was to solve complex problems mimicking the human mind. Over time ANNs’ 
focus shifted to emulating specific mental abilities. An ANN is based on a set of connected units or nodes, called 
artificial neurons (similar to biological neurons in the animal brain). Any synapse between neurons can transmit 
a signal from one neuron to another. The receiving neuron can process the signals. In conventional ANN the 
synapse signal is a real number, and a nonlinear function of its inputs calculates each neuron’s output. Neurons 

Evaluate 
hydro-social 

indicators
Selected 

case study

Selected 
input and 

output 
parameters

Selected 
soft 

computing 
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Evaluated 
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Extraction of 
mathematical 
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Figure 1.   The phases of this work’s methodology.

Figure 2.   The components of this paper’s methodology.
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and synapses apply weights that are adjusted as learning progresses. This weight increases or decreases the signal 
strength that it sends to the synapse. Neurons are commonly organized in layers. The signals travel from the first 
layer (input) to the last layer (output), and they may travel multiple times45–47. Three fundamental characteristics 
of ANNs for determining an optimal solution are: (1) the applied algorithm, (2) the activation functions, and (3) 
the neurons, as follows:

1.	 The applied algorithm and layer characteristics: The Levenberg–Marquardt (LM) algorithm with three-layer 
has been selected for use in this study due to its faster convergence in training networks. The error propaga-
tion algorithm changes the network weights and bias values so that the activation function decreases more 
rapidly.

2.	 Activation Functions: Selecting the activation function has a significant effect on the accuracy of the network 
output. There are three main activation functions for neural network modeling: the Logsig, Tansig, and Pure-
lin functions. Several activation functions are used to develop the network to achieve the best combination 
of activation functions in a network with one to three hidden layers. The log-sig, tan-sig, and pure-line func-
tions were applied in the hidden and output layers. Using one or a combination of these activation functions 
(between layers) may lead to an optimal model with the highest correlation value and the smallest error.

Table 1.   Countries included in this study in the training and testing periods.

s Continent Countries

1 Africa
Train

Algeria, Angola, Benin, Botswana, Burkina Faso, Burundi, Cabo Verde, Cameroon, Central African Republic, 
Chad, Comoros, Congo, Côte d’Ivoire, Djibouti, Equatorial Guinea, Eswatini, Ethiopia, Gabon, Gambia, Ghana, 
Guinea, Guinea Bissau, Kenya, Lesotho, Liberia, Libya, Madagascar, Malawi, Mali, Mauritania, Mauritius, 
Mozambique, Namibia, Niger

Test Nigeria, Rwanda, Sao Tome and Principe, Senegal, Sierra Leone, South Africa, Sudan, Togo, Tunisia, Uganda, 
United Republic of Tanzania, Zambia, Zimbabwe, Morocco

2 America
Train

United States of America, Mexico, Canada, Cuba, Guatemala, Haiti, Honduras, Dominican Republic, El Salvador, 
Costa Rica, Nicaragua, Panama, Jamaica, Trinidad and Tobago, Bahamas, Belize, Barbados, Saint Lucia, Saint 
Vincent and the Grenadines, Grenada, Antigua and Barbuda, Dominica, Argentina, Bolivia, Brazil

Test Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Saint Kitts and Nevis, Suriname, Uruguay, Venezuela

3 Asia
Train

Afghanistan, Azerbaijan, Bahrain, Bangladesh, Brunei Darussalam, Cambodia, China, Cyprus, Egypt, India, 
Indonesia, Iran, Iraq, Israel, Jordan, Kazakhstan, Kyrgyzstan, Lao People’s Democratic Republic, Lebanon, 
Malaysia, Maldives, Mongolia, Myanmar, Nepal, Oman, Pakistan, Papua New Guinea, Philippines, Qatar, Rus-
sian Federation

Test Saudi Arabia, Singapore, Sri Lanka, Tajikistan, Thailand, Timor-Leste, Turkey, Turkmenistan, United Arab Emir-
ates, Uzbekistan, Viet Nam, Yemen, Palestine

4 Europe
Train Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Iceland, Ireland, Italy, Luxembourg, 

Malta, Netherlands, Norway

Test Slovakia, Slovenia, Spain, Sweden, Switzerland, United Kingdom

5 Oceania
Train Australia, Fiji, New Zealand

Test Solomon Islands, Vanuatu

Table 2.   The statistical characteristics of hydro-social indicators.

Continents Characteristics

Indicators

PRUP (P1) PD (P2) IU (P3) EI (P4) RWPC

Africa

Mean 0.512 0.478 0.393 0.582 0.473

S 0.328 0.317 0.351 0.343 0.314

CV 0.640 0.663 0.894 0.589 0.663

America

Mean 0.525 0.498 0.499 0.550 0.484

S 0.335 0.318 0.335 0.342 0.317

CV 0.638 0.638 0.671 0.621 0.654

Asia

Mean 0.504 0.486 0.462 0.559 0.474

S 0.338 0.328 0.352 0.351 0.324

CV 0.670 0.675 0.762 0.628 0.683

Europe

Mean 0.496 0.525 0.621 0.564 0.475

S 0.329 0.330 0.310 0.345 0.329

CV 0.329 0.330 0.310 0.345 0.329

Oceania

Mean 0.467 0.472 0.482 0.579 0.492

S 0.312 0.323 0.337 0.337 0.315

CV 0.668 0.684 0.700 0.582 0.640
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3.	 The neuron number determination: Determining the number of hidden layers to create a network with the 
least error in predicting the desired outputs is essential. Trial-and-error is the best way to determine the 
optimal number of neurons in the hidden layer of ANN models48–50. The number of neurons in the lattice 
layer has a significant effect on the neural network’s function. Using a small number of neurons prevents 
the neural network from learning most of the patterns accurately. On the other hand, the presence of a large 
number of neurons leads to the preservation of patterns and thus prevents the neural network from learning 
to recognize their basic features.

The authors wrote the ANN program code in MATLAB.

ANFIS.  A neural-fuzzy inference system is an artificial neural network based on the Takagi–Sugeno fuzzy 
system51, which is in accordance with the set of fuzzy rules if–then that learns to identify nonlinear fitting func-
tions. ANFIS is a universal estimator52, which is herein applied. If–Then fuzzy rules are required to specify func-
tions between the fuzzy variables of a fuzzy system. Equations (2) and (3) give a typical rule set with two fuzzy 
If–Then rules in a first order Sugeno system:

where A1 (LOW), A2 (LOW), and B1 (HIGH), B2 (MEDIUM) denote the membership functions (MFs) for 
inputs x and y, respectively, the importance of the clusters’ number of ANFIS-SC is determining the efficient 
radius amount based on the trial- and-error method. The radius varies from 0.20 to 0.6042.

The ANFIS method with Subtractive Clustering (ANFIS-SC) is herein applied. Subtractive Clustering (SC) is 
an extension of the mountain clustering method proposed by Yager and Filev53, in which the data are clustered 
by evaluating the potential of data in the specification space54. Linear least squares (LLS) are applied to deter-
mine the MF’s output, following previous works42,50,55 These authors wrote the code for ANFIS-SC in MATLAB.

GEP.  Gene expression programming is a method of mathematical modeling based on evolutionary compu-
tation and inspired by natural evolution. This method was introduced by Ferreira56 in 1999 and advanced in 
2001. The GEP algorithm integrates the dominant view of the two predecessor inheritance algorithms to resolve 
their weaknesses. GEP features a chromosome genotype similar to a genetic algorithm (Genetic Algorithm), 
and the phenotype of a chromosome has a tree structure with length and size variable similar to the genetic 
programming algorithm56. Design and implementation steps of GEP are: (1) Defining the fitness function; (2) 
Defining the terminals and functions; (3) Determining the structure of chromosomes (number of generations, 
number, and length of genes); (4) Determining the Linking Function of Genes; (5) Specifying the operators, 
and executing the algorithm56. The fundamental characteristic of GEP for determining the optimal model or 

(2)Rule 1 : If x = A1 and y = B1, then f1 = p1x+ q1y+ r1

(3)Rule 2 : If x = A2 and y = B2, then f1 = p2x+ q2y+ r2

Figure 3.   The Köppen climate classification of the world. (Zone A: tropical or equatorial zone; Zone B: arid or 
dry zone; Zone C: warm/mild temperate zone; Zone D: continental zone; Zone E: polar zone)59.
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fitting functions are the mutation rate (MR), the inversion rate (IR), the IS transposition rate (ISTR), and the RIS 
transposition rate (RISTR), one-point recombination rate (OPRR), two-point recombination rate (TPRR), gene 
recombination rate (GRR), and gene transposition rate (GTR) whose values are listed in Table 3. The penalizing 
tool with parsimony pressure was applied in this study, which. implements several mathematical functions to 
predict the hydro-social indicators (+,−, ∗, /, ln x, ex , x2, x3,

√
x, 3
√
x, sin x, cos x, arctan(x)).

This study first employs the terminal set for the renewable water per capita indicator with output sets contain-
ing PRUP, PD, IU, and EI, and then employs the terminal sets for the cited social indicator with output renewable 
water per capita indicator. This study employs the soft-computing software GeneXpro Tools 4.0.

Evaluating model performance.  The goodness-of-fit correlation coefficient (R), root mean squared 
error (RMSE), and mean absolute error (MAE) were applied to evaluate the model’s performance. The R, RMSE, 
and MAE are respectively defined as follows:

where hydrosocioo and hydrosocioe denote the average observed and estimated hydro-social indicators’ values 
respectively, hydrosocioio and hydrosocioie denote the observed and estimated hydro-social indicators’ values 
respectively, and N denotes the number of data.

The correlation coefficient (R) measures the degree of statistical association (positive or negative) between 
variables. The RMSE measures the goodness of fit, giving higher weight to high values of observations. by com-
paring the estimated values and the observed values. The MAE measures the distribution of goodness of fit at 
moderate values57. The models’ performances are optimal if the R and RMSE are closer to 1 and 0, respectively. 
This study also employs various graphical methods to display models’ results.

Results and discussion
Evaluating indicators.  Among the selected parameters the ratio of rural to the urban population directly 
relates to the per capita renewable water, whereas the population density, internet users, and education index 
exhibit an inverse relation with the per capita renewable water worldwide. It means the per capita renewable 
water decreases with decreasing rural to urban population and increasing population density, internet users, and 
education index. The urban population has increased in developing regions, which feature increasing population 
density. People’s health is threatened by poor urban sanitary infrastructure leading to disease and social decay. 
Increasing population density and a reduction in per capita renewable water inflict social harm and disrupt soci-
ety’s economic growth58. Population density also is positively related to the relative number of elderly and social 
vulnerability because potential casualties increase with population size40. On the other hand, with the increase of 
Internet users and education index, the per capita renewable water has increased. As long as the knowledge and 
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Table 3.   The GEP model parameters.

General characteristics

Linking function Summation

Fitness function error type RRSE

Genetic operator values

MR 0.044

IR 0.1

ISTR 0.1

RISTR 0.1

OPRR 0.3

TPRR 0.3

GRR​ 0.1

GTR​ 0.1
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awareness of communities improved, the consumption algorithm decreased, leading to a reduction of renewable 
water per capita. Therefore, the level of literacy and knowledge for a community can be the basis for making 
the right decisions in agriculture, health, natural resource management, and other activities related to water 
resources for decision-makers. The latter situation calls for better communication among water users through 
social media and improved education to learn and develop optimal water management.

Evaluating models and developing hydro‑social equations.  Three soft-computing approaches, 
namely ANN-LM, ANFIS-SC, and GEP, were applied to develop predictive equations with social indicators 
worldwide. The ANN-Levenberg–Marquardt (LM) backpropagation algorithm with one hidden layer was 
applied, and the hidden nodes’ number was determined by trial and error. A hybrid algorithm was combined 
with the ANFIS-SC models. There is no rule for determining the radii values of the ANFIS-SC models. The final 
radii values were determined by trial-and-error.

The numbers of neurons in the ANN-LM models and the radii values of the ANFIS-SC models are listed in 
Table 4. The activation functions of the output nodes were linear for all the continents. The activation functions 
of the hidden nodes of the ANN-LM models for the P1 through P4 indicators were respectively the tangent 
sigmoid, tangent sigmoid, tangent sigmoid, and logarithm sigmoid for Africa; the activation functions of the 
proportion of rural to urban population was the tangent sigmoid for all the continents. Table 5 lists the results of 
the soft computing optimal models’ estimates of the proportion of rural to urban population (PRUP), population 
density (PD), internet users (IU), and education index (EI), denoted respectively by P1 through P4, during the 
test period in the world’s continents. Figures 4 and 5 display the characteristics of ANN (the number of neurons 
and activation functions of hidden and output layers) and ANFIS-SC (radii values) models, respectively. The 
values of R and RMSE for Africa corresponding to the ANN-LM models were respectively (0.921, 0.981, 0.858, 
0.862) and (0.193, 0.058, 0.190, 0.172) associated with the PRUP, PD, IU, and EI parameters, respectively. The 
values of R and RMSE for Africa corresponding to the ANFIS-SC models equaled respectively (0.933, 0.991, 
0.868, 0.891) and (0.130, 0.044, 0.186, 0.156) for the P1 through P4 parameters, respectively. Concerning the 
GEP models, the root relative squared error (RRSE) was selected as the pressure tree’s fitness function. The 
values of RMSE for GEP models equaled (0.084, 0.029, 0.178, 0.135), (0.197, 0.056, 0.152, 0.163), (0.151, 0.036, 
0.123, 0.210), (0.182, 0.039, 0.148, 0.204) and (0.141, 0.030, 0.226, 0.082) for Africa, America, Asia, Europe, 
and Oceania, respectively. Table 5 results for the R, RMSE, and MAE values establish the GEP model estimates 
of PRUP, PD, IU, and EI indicators had the highest R values and the lowest RMSE values. The average R values of 
the best models (GEP) for all selected social parameters equaled 0.942, 0.909, 0.910, 0.889, and 0.947 for Africa, 
America, Asia, Europe, and Oceania, respectively. These results indicate the climatic characteristics of the con-
tinents influence the performance of the models. The models’ performances for Africa and Oceania associated 
with the type B dominant Koppen climate classification was the best. The models’ performances for Asia and 
America that have similar climatic classification were nearly equal. The average model performance for Europe 
in the type D climate classification was the poorest among the continents.

Figures 6, 7, 8, 9 and 10 show the observed and estimated social parameters obtained with the soft-computing 
models during the test period in Africa, America, Asia, Europe, and Oceania, respectively. Figure 11 compares 
the R, RMSE, and MAE values from the soft-computing models. The R values for soft-computing models are 
close to 1, with the quality relations being: RGEP > RANFIS-SC > RANN-LM for all social indicators. Figure 11 
establishes that the ANFIS-SC model exceeded the ANN-LM models’ performance. Also, the GEP models had 
better performance than the ANFIS-SC and ANN-LM for estimating the proportion of rural to urban population 
(PRUP), population density (PD), internet users (IU), and education index (EI) parameters in Africa, America, 
Asia, Europe, and Oceania.

The main advantage of the GEP over other soft computing methods (e.g., ANFIS and ANN) is in producing 
predictive equations. The equations obtained with the optimal models for the social indicators (i.e., the propor-
tion of rural to urban population (PRUP), population density (PD), internet users (IU), and education index 
(EI) in Africa, America, Asia, Europe, and Oceania) are listed in Table 6. The equations that the GEP model 
discovers as a structure do not necessarily correspond to reality. The equations listed in Table 6 merely show the 
optimal equations extracted from the model after the evolution, for all indicators and in all basins (considering 
renewable water per capita as a decision variable).

Table 4.   The characteristics of ANN (the number of neurons) and ANFIS (radii values) models corresponding 
to social indicators and continents.

Indicators (Pi) Africa America Asia Europe Oceania

P1
ANN-LM 3 2 2 4 4

ANFIS-SC 0.20 0.28 0.21 0.20 0.34

P2
ANN-LM 4 2 3 3 2

ANFIS-SC 0.31 0.30 0.26 0.22 0.23

P3
ANN-LM 3 3 2 3 2

ANFIS-SC 0.22 0.25 0.33 0.32 0.22

P4
ANN-LM 3 2 4 2 4

ANFIS-SC 0.38 0.37 0.30 0.27 0.36
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The performance of the GEP models in estimating the social indicators in three ranges of values, namely, 20% 
of the maximum estimated values (20%max), 60% of median estimated values (60%mid or 20%min to 20%max), 
and 20% of minimum estimated values (20%min), during the test period for the proportion of rural to urban 
population (PRUP), population density (PD), internet users (IU) and the education index (EI) parameters of 
Africa, America, Asia, Europe, and Oceania are listed in Table 7. Table 7’s results indicate there is not a regular 
rule to determine the best-cited ranges performances. The education index and the population density have 
the lowest and highest R values among the other parameters in the three different ranges (20%max, 60%mid, 
and 20%min) in Africa, America, Asia, Europe, and Oceania. Therefore, the results indicate a strong pattern of 
association between the population density parameter and water resources status in all continents of the world.

Figure 12 depicts the distribution of estimated data values of the social parameters (i = 1, 2, 3, 4) and their 
comparison through the continents. The box plots are a graphic display integrating multiple numerical relations. 
One approach to understanding the distribution or dispersion of data is through the box diagram, which is based 
on the "minimum," "first quartile-Q1(0.25%)", "median (0.50%)", "third quartile-Q3(0.75%)" and "maximum" 

Table 5.   The results of soft computing optimal models corresponding to the testing period in the world’s 
continents.

Indicators (Pi) Model

Africa America

R RMSE MAE R RMSE MAE

PRUP (P1)

ANN-LM1 0.921 0.193 0.101 0.673 0.252 0.195

ANFIS-SC1 0.933 0.130 0.082 0.778 0.220 0.178

GEP1 0.972 0.084 0.061 0.837 0.197 0.166

PD (P2)

ANN-LM2 0.981 0.058 0.038 0.960 0.090 0.054

ANFIS-SC2 0.991 0.044 0.029 0.979 0.066 0.037

GEP2 0.998 0.029 0.021 0.985 0.056 0.030

IU (P3)

ANN-LM3 0.858 0.190 0.131 0.849 0.190 0.130

ANFIS-SC3 0.868 0.186 0.125 0.894 0.172 0.108

GEP3 0.878 0.178 0.117 0.917 0.152 0.094

EI (P4)

ANN-LM4 0.862 0.172 0.132 0.832 0.198 0.156

ANFIS-SC4 0.891 0.156 0.118 0.868 0.180 0.141

GEP4 0.921 0.135 0.094 0.896 0.163 0.130

Indicators (Pi) Model

Asia Europe

R RMSE MAE R RMSE MAE

PRUP (P1)

ANN-LM1 0.824 0.191 0.142 0.725 0.237 0.183

ANFIS-SC1 0.834 0.188 0.14 0.800 0.206 0.157

GEP1 0.899 0.151 0.114 0.856 0.182 0.149

PD (P2)

ANN-LM2 0.991 0.047 0.034 0.980 0.070 0.043

ANFIS-SC2 0.993 0.040 0.03 0.991 0.047 0.030

GEP2 0.995 0.036 0.025 0.994 0.039 0.023

IU (P3)

ANN-LM3 0.925 0.131 0.103 0.809 0.183 0.136

ANFIS-SC3 0.933 0.127 0.102 0.834 0.171 0.122

GEP3 0.936 0.123 0.096 0.878 0.148 0.105

EI (P4)

ANN-LM4 0.797 0.217 0.163 0.762 0.234 0.183

ANFIS-SC4 0.803 0.214 0.159 0.787 0.224 0.177

GEP4 0.810 0.210 0.155 0.826 0.204 0.160

Indicators (Pi) Model

Oceania

R RMSE MAE

PRUP (P1)

ANN-LM1 0.834 0.181 0.136

ANFIS-SC1 0.874 0.165 0.129

GEP1 0.905 0.141 0.106

PD (P2)

ANN-LM2 0.982 0.081 0.063

ANFIS-SC2 0.989 0.063 0.041

GEP2 0.997 0.030 0.024

IU (P3)

ANN-LM3 0.880 0.246 0.206

ANFIS-SC3 0.887 0.230 0.190

GEP3 0.905 0.226 0.182

EI (P4)

ANN-LM4 0.95 0.118 0.082

ANFIS-SC4 0.965 0.103 0.078

GEP4 0.981 0.082 0.059
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statistical indicators. Figure 12 shows Oceania and Africa exhibit the smallest and largest values of the rural to 
urban population, respectively. America has the lowest values of the first to the third quartile. The estimated 
population density value in Europe has the most values in the third quartile (0.75%). The median values of 
estimated internet users have the smallest and largest values in Africa and Europe, respectively. America has the 
lowest values of the first quartile, median, third quartile, and maximum values associated with the estimated 
education index values among the continents.

The summary of hydro-social equations performance is listed in Table 8, where it is seen the best models’, 
performances are such that PD > PRUP > EI > IU, PD > IU > EI > PRUP, PD > IU > PRUP > EI, PD > PRUP > IU > E
I and PD > EI > IU > PRUP for Africa, America, Asia, Europe, and Oceania, respectively.

This paper’s results indicate the pattern of association between social parameters and water resources is 
complex. Renewable water per capita was estimated using social indicators PRUP, PD, IU, and EI based on gene 
expression programming. The results of GEP to estimate RWPC corresponding to the testing period in the 
world’s continents as listed in Table 9. The values of RMSE for optimal GEP models equaled 0.089, 0.058, 0.042, 
0.049, and 0.036 for Africa, America, Asia, Europe, and Oceania, respectively. Figure 13 displays the observed 
and estimated RWPC parameter during the test period in the world’s continents. The equations obtained with 
the optimal models for the renewable water per capita in Africa, America, Asia, Europe, and Oceania are listed 
in Table 10. The fitted equations can be applied at variable spatial and temporal scales. The derived equations 
imply that water resources in Africa and Oceania are governed by the PRUP, PD, IU, and EI indicators. Also, the 
PRUP, PD, and IU indicators in Europe and PD and IU indicators in America and Asia have the most influence 
on their water resources status. The association between social parameters and water resources in all continents is 
variable. The linking of these social indicators with the per capita renewable water is a function of the countries’ 
cultural and economic conditions, thus bearing on the future management and policymaking across continents. 
This study’s results concerning hydro-social indicators are consistent with the findings by Forouzani et al.2, Carey 
et al.15, Lima et al.25, Pande et al.7, Diep et al.26, and Diaz et al.22.
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This paper’s results establish the importance of examining the interactions between climate, the status of 
water resources, and social indicators. The state and social conditions of a country reflect the status of its water 
resources. Therefore, this study has shown how significant an impact the management and planning of a coun-
try can have on its water resources. Each successful water resources project rests on a successful social setting.
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Figure 6.   Observed and estimated social parameters during the testing period in Africa.
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Concluding remarks
One of the most critical issues in the water resources systems is its social context, which poses many challenges 
in systems analysis. Therefore, the impact of social indicators on water issues, and vice versa, is crucial. On 
the other hand, direct measurement of social indicators and their evaluation in water resources management 
is complicated, time-consuming, and expensive. Therefore, it would be beneficial to implement development 
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Figure 7.   Observed and estimated social parameters during the testing period in America.
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plans, and management measures better if we can estimate social indicators and water indicators and their 
interrelationship. Therefore, studies on hydro-social indicators would help us predict social changes related to 
water resources and vice versa in management plans to face fewer consequences. Social conditions may preclude 
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Figure 8.   Observed and estimated social parameters during the testing period in Asia.
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Figure 9.   Observed and estimated social parameters during the testing period in Europe.
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Figure 10.   Observed and estimated social indicators during the testing period in Oceania.
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meeting water-resources planning objectives. Therefore, such planning must be socially grounded for its success. 
This study assesses several social indicators, i.e., the proportion of rural to urban population (PRUP), population 
density (PD), internet users (IU), and education index (EI) worldwide, and concludes these indicators have a 
high correlation with the per capita renewable water. These social indicators must be considered in water policy 
decisions and planning for sustainable water management and planning. It is concluded the modeling the associa-
tion of hydro-social indicators with the per capita renewable water using the soft-computing methods is viable 
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Figure 11.   Comparison of R, RMSE and MAE values corresponding to the soft computing methods.



17

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17424  | https://doi.org/10.1038/s41598-021-96776-9

www.nature.com/scientificreports/

and insightful. The performance criteria of the GEP models performed better than those of the ANFIS-SC and 
ANN-LM models for the world’s continents. This paper shows it is possible to estimate the water status and social 
indicators of a society based on hydro-social equations developed when there is a paucity of information about 
the social status. These estimates are useful for water resources management. This study has shown a successful 
application of hybrid soft computing to determine functional relations between socio-economic parameters and 
water and environmental resources parameters.

Recommendations
Some specific recommendations for improving future research are as follows:

•	 Examining other quantitative and qualitative social indicators.
•	 Examining other indicators such as environmental, economic, cultural, and political indicators.
•	 Applying other models of soft computing methods for exploring hydro-social relationships.
•	 Applying soft computing methods in examining the interrelationships between social indicators and water 

resources indicators to specific issues of water management, such as flood and drought management.

Table 6.   Mathematical equations governing hydro-social indicators. H denotes Hydro: renewable water per 
capita.

Continent Equations

Africa

PRUPts = [H2
ts cos(Hts cos(Hts))]1/2 + 0.07

PDts = [sin(0.45− Hts) cos(6.1Hts)]3 +Hts(0.84+Hts(Hts − 1))+ 0.94

IUts = exp[A tan((−7.03)(3Hts + 2.49))] + A tan(−2Hts)+ cos(A tan(A tan(cos(Hts)))

EIts = (sin(A tan(Hts)))[A tan(sin(Hts))]3 + 0.03(A tan(18.15Hts))+ [cos(A tan(Hts))
1/3] cos(Hts(Hts + 1))

America

PRUPts = −0.46[sin(sin(H2
ts))] + Hts + 0.18

PDts = cos(A tan(Hts)+H
1/3
ts )+Hts[H

1/3
ts + A tan(Hts)]

IUts = [0.33A tan(H
1/3
ts )] cos(7.87+Hts)+ sin(Hts − 9.33)+ [A tan(3.62+ 2Hts)]1/3

EIts = 0.61(1−Hts)+ 0.47(cos(Hts)− 0.47)+ 0.67

Asia

PRUPts = [sin(Hts)−Hts] + sin[[ln(A tan(cos(H3
ts −Hts)))]2] + Ln[exp(H1/3

ts )+ (Hts(Hts − 1))]2

PDts = cos[H3
ts − (H sin(Hts))

2] + A tan(A tan((−1.14) sin(Hts))] − 0.13Hts − sin(Hts)+ A tan(A tan(Hts))

IUts = A tan(sin(H3
ts)−Hts)

3 + cos(H
1/2
ts )−Hts + 0.61Hts sin(Hts)

EIts = H
4/3
ts + cos(Hts)− 1.48Hts

Europe

PRUPts = Hts + [A tan(cos(Hts))]2 + 1.69

PDts = sin[(Hts(1−Hts) sin(Hts)]3 + [H4
ts − sin(H2

ts)]
3 − Hts + 1

IUts = [exp((Hts − 2.97)− 8.25Hts)] sin((−8.25Hts)− 0.34(
exp(Hts)

cos(Hts)
) cos(A tan(Hts))+ 1.26

EIts = (Hts + 1.36)1/6 − A tan(Hts)+ [cos(cos(4.45+H2
ts))]

1/2 + (1−Hts)(6.72+Hts) exp(Hts − 5.65)− 1.11

Oceania

PRUPts = (sin(Hts))
2 +H2

ts sin(Hts)− A tan(Hts)

PDts = A tan(8.77− (2Hts)
1/3 +H3

ts)−Hts − 0.48

IUts = Ln(cos(H
1/2
ts ))+ cos((sin(sin(Hts)))

1/3)+H2
ts(1−Hts)

EIts = (−0.55)A tan(0.75Hts)− 0.25A tan(Hts sin(2Hts))+ cos(Hts)
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Table 7.   The performance of GEP models with respect to selected ranges.

Indicators (Pi) Range

Africa America

R RMSE MAE R RMSE MAE

PRUP (P1)

20%min 0.910 0.073 0.069 0.649 0.177 0.160

60%mid 0.886 0.082 0.064 0.335 0.270 0.296

20%max 0.554 0.094 0.050 0.203 0.220 0.194

PD (P2)

20%min 0.957 0.018 0.012 0.848 0.038 0.022

60%mid 0.991 0.036 0.028 0.961 0.068 0.040

20%max 0.993 0.018 0.016 0.959 0.020 0.009

IU (P3)

20%min 0.637 0.067 0.044 0.724 0.050 0.035

60%mid 0.442 0.229 0.189 0.720 0.192 0.129

20%max 0.772 0.201 0.112 0.765 0.073 0.032

EI (P4)

20%min 0.547 0.165 0.111 0.506 0.159 0.138

60%mid 0.748 0.142 0.105 0.708 0.130 0.111

20%max 0.588 0.095 0.067 0.447 0.184 0.129

Indicators (Pi) Range

Asia Europe

R RMSE MAE R RMSE MAE

PRUP (P1)

20%min 0.419 0.158 0.114 0.672 0.118 0.105

60%mid 0.633 0.147 0.108 0.518 0.177 0.136

20%max 0.458 0.149 0.126 0.722 0.228 0.206

PD (P2)

20%min 0.907 0.029 0.019 0.808 0.046 0.028

60%mid 0.955 0.044 0.035 0.969 0.046 0.030

20%max 0.969 0.017 0.011 0.963 0.016 0.012

IU (P3)

20%min 0.699 0.070 0.048 0.523 0.072 0.068

60%mid 0.669 0.164 0.148 0.673 0.181 0.136

20%max 0.743 0.072 0.052 0.419 0.087 0.062

EI (P4)

20%min 0.393 0.142 0.106 0.317 0.255 0.202

60%mid 0.325 0.232 0.182 0.546 0.208 0.168

20%max 0.324 0.221 0.157 0.570 0.151 0.120

Indicators (Pi) Range

Oceania

R RMSE MAE

PRUP (P1)

20%min 0.945 0.073 0.047

60%mid 0.797 0.151 0.112

20%max 0.797 0.192 0.183

PD (P2)

20%min 0.926 0.027 0.020

60%mid 0.995 0.035 0.031

20%max 1.000 0.014 0.012

IU (P3)

20%min 0.945 0.260 0.219

60%mid 0.872 0.232 0.209

20%max 0.999 0.010 0.007

EI (P4)

20%min 1.000 0.003 0.001

60%mid 0.967 0.082 0.068

20%max 0.489 0.093 0.065
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Figure 12.   Distribution of estimated data values of social indicators (Pi, i = 1, 2, …, 4).

Table 8.   Summary of hydro-social equations performance.

Africa America Asia Europe Oceania

Hydro-social equations

PD PD PD PD PD

PRUP IU IU PRUP EI

EI EI PRUP IU IU

IU PRUP EI EI PRUP
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Table 9.   The results of GEP estimating RWPC corresponding to the testing period in the world’s continents.

Continent R RMSE MAE

Africa 0.965 0.089 0.065

America 0.984 0.058 0.034

Asia 0.994 0.042 0.034

Europe 0.990 0.049 0.031

Oceania 0.994 0.036 0.025
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Figure 13.   Observed and estimated RWPC parameters during the test period in the world’s continents.
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