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Abstract

In this paper we investigate different methods that may be used to compare coherent
systems having heterogeneous components. We consider both the case of systems with
independent components and the case of systems with dependent components. In the
first case, the comparisons are based on the new concept of the survival signature due
to Coolen and Coolen-Maturi (2012) which extends the well-known concept of system
signatures to the case of components with lifetimes that need not be independent and
identically distributed. In the second case, the comparisons are based on the concept
of distortion functions. A graphical procedure (called an RR-plot) is proposed as an
alternative to the analytical methods when there are two types of components.
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1. Introduction

In this paper we deal with two specific analytical methods for comparing the reliability
functions of two coherent systems (defined as in Barlow and Proschan [4]) whose components
are assumed to have independent but not identically distributed lifetimes. This problem has
been quite successfully treated using ‘system signatures’ as a tool under the more restrictive
assumption that the components of both systems have lifetimes that are independent and
identically distributed (i.i.d.) with a common reliability function F(t) = P(X > t). Details
on that work may be found in Samaniego [27]; it will be briefly reviewed in Section 2 of this
paper. The development of useful expressions and representations of the reliability function
of a coherent system when component lifetimes are independent but not identically distributed
(i.n.i.d.) has been a challenging problem that has been approached heretofore by opportunistic
calculations and through the use of elementary tools such as system structure functions. Our
purpose here is to describe two new approaches to the problem which show substantial promise
for advancing the state of the current methodology for system comparisons. Worthy of special
mention is the fact that the distortion function method treated in Sections 4 and 5 of the paper
is shown to extend to the case in which conponent lifetimes are dependent.

The first method we present involves an extension of the notion of system signatures to the
i.n.i.d. case; it is built upon a recent breakthrough in this area by Coolen and Coolen-Maturi [7].
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The second method uses the notion of distortion functions (see [10]) to exploit the functional
form of the reliability functions of coherent systems with i.n.i.d. components in developing
the comparisons of interest. The two methods differ from each other quite significantly, both
in the mathematical ideas involved and in the manner in which the reliability functions of the
systems of interest are treated. The signature-based approach is constructive; its main purpose
is to construct a representation of the reliability function using a method that is applicable to
coherent systems having arbitrary size and structure and based on independent heterogeneous
components. The second approach assumes that the reliability functions of such systems have
been obtained (by whatever means possible; see, e.g. [18]) and it exploits the character of the
associated distortion functions in comparing the reliability of two or more systems.

The complementary purposes of these two approaches suggest an interesting potential
synergy between them. While both approaches can be used directly to compare two systems of
interest, it is clear that the main strength of the first approach lies in obtaining an explicit repre-
sentation of a system’s reliability function, while the second approach focuses on comparing two
reliability functions once both have been obtained in closed form. In the sections that follow,
we will treat each of the two approaches in turn, giving examples of how each may be used to
compare the reliability of two coherent systems in i.n.i.d. components. In Section 5 we provide
some guidance on how the problem of comparing systems with independent heterogeneous
components may be handled by numerical or graphical means when an analytical solution to
the problem proves intractable. In Section 6 we discuss some possible directions for future
research.

We close this section with a collection of ideas that will be employed in the sequel. Through-
out this paper, we say that a function h : R

n → R is increasing (decreasing) if h(x1, . . . , xn) ≤
h(y1, . . . , yn) (≥) for all xi ≤ yi , i = 1, . . . , n. Analogously, if g, h are two functions
g, h : S → R, then g ≤ h means g(z) ≤ h(z) for all z ∈ S.

We shall study the following stochastic orders. Their basic properties and applications to
reliability studies can be seen in [4] and [29]. Let F andG be the distribution functions of two
random variables X and Y with respective reliability functions F = 1 − F and G = 1 − G.
We have the following:

(i) X is said to be smaller than Y in the usual stochastic order (denoted by X ≤ST Y ) if
F(t) ≤ G(t) for all t ;

(ii) X is said to be smaller than Y in the hazard rate order (denoted byX ≤HR Y ) ifG(t)/F (t)
is increasing in t ;

(iii) X is said to be smaller than Y in the reversed hazard rate order (denoted by X ≤RH Y )
if G(t)/F (t) is increasing in t ;

(iv) X is said to be smaller than Y in the likelihood ratio order (denoted by X ≤LR Y ) if
g(t)/f (t) is increasing in t , where g = G′ and f = F ′ are the respective probability
density functions.

The following relationships are well known (see [29]):

X ≤LR Y �⇒ X ≤HR Y

�� ��
X ≤RH Y �⇒ X ≤ST Y .
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2. Comparisons based on the survival signature

As described in Barlow and Proschan [4], the structure function ψ of an n-component
system maps the state vector x ∈ {0, 1}n of the components of a given system (where ‘1’
signifies ‘working’) to the state of the system ψ(x) ∈ {0, 1}. A coherent system is one in
which every component affects the working or failure of the system and for which the structure
function is monotone in every component. While structure functions do characterize coherent
systems, they have not proven very useful in comparative studies.

Samaniego [25] introduced an alternative index for coherent systems that, while narrower
in scope than the structure function, is substantially more useful. Assuming that the lifetimes
of the system’s components are i.i.d., the signature s of a coherent system of order n is the
n-dimensional probability vector whose ith element is si = P(T = Xi:n), where T is the
system lifetime and X1:n, . . . , Xn:n are the order statistics of the n i.i.d. component lifetimes
X1, . . . , Xn. Under the i.i.d. assumption, the signature vector is a distribution-free function
that constitutes a pure measure of the system’s design. The i.i.d. assumption has the effect
of ‘leveling the playing field’ among systems, eliminating anomalies such as the fact that a
series system in good components can outperform a parallel system in poor components even
though that latter system is clearly ‘better’ from a design point of view. The utility of signatures
derives from the fact that combinatorial mathematics is applicable in their computation and, as
is made clear below, the theory of order statistics for i.i.d. samples from a common continuous
distributionF is applicable for identifying the system’s lifetime characteristics. Some examples
of signatures: the signature s = ( 1

3 ,
2
3 , 0) of the 3-component coherent system with minimal

cut sets {1} and {2, 3}, the signature s = (0, 1
5 ,

3
5 ,

1
5 ,0) of the widely referenced 5-component

bridge system, and the signature s = (0, . . . , 0, 1k, 0, . . . , 0) ∈ [0, 1]n of the k-out-of-n system
(which fails upon the kth component failure). Explicit expressions to obtain s from ψ can be
found in [5], [14], and [27]. Extensions of signatures to the case of two systems with shared
components are treated in [11], [17], and [19].

The utility of signatures is evident from the following representation theorem drawn from
[25]. It shows that the lifetime reliability of a mixed system (i.e. a stochastic mixture of coherent
systems) based on n components with i.i.d. lifetimes having common reliability function F
can be written as a function of the system’s signature and the underlying distribution of its
components. This result can be stated as follows.

Consider a system of order n based on components with i.i.d. lifetimes X1, . . . , Xn dis-
tributed according to a common lifetime distribution F . Let T be the system’s lifetime. Then

FT (t) ≡ P(T > t) =
n∑
i=1

siF i:n(t) =
n∑
i=1

si

i−1∑
j=0

(
n

j

)
Fj (t)F

n−j
(t), (2.1)

where F(t) = 1 − F(t) and s = (s1, . . . , sn) is the system’s signature vector.
Signature vectors have proven especially useful when comparing the performance of com-

peting systems. For example, Kochar et al. [12] established the following preservation results.
Let s1 and s2 be the signatures of two systems of order n, both based on components with

i.i.d. lifetimes with common distribution F . Let T1 and T2 be their lifetimes.

(i) If s1 ≤ST s2 then T1 ≤ST T2.

(ii) If s1 ≤HR s2 then T1 ≤HR T2.

(iii) If s1 ≤LR s2 and F is absolutely continuous, then T1 ≤LR T2.
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Consider the possibility of comparing systems of arbitrary sizes. Two systems with i.i.d.
component lifetimes having common reliability function F will be said to be equivalent if
their reliability functions are identical. This will clearly occur if two systems have the same
signature since their reliability functions admit the same representation displayed in (2.1). But
the equivalence of systems goes well beyond this special circumstance. It is now known that,
given an arbitrary mixed system in n i.i.d. components, there exists an equivalent mixed system
in m i.i.d. components for any m > n. Samaniego [26] established the result below. Repeated
use of this result accomplishes the stated goal for arbitrary m > n. It can be stated as follows.

Let s = (s1, . . . , sn) be the signature of a mixed system in n i.i.d. components with common
reliability function F . Then the mixed system with (n + 1)-components with i.i.d. lifetimes
having common reliability function F and corresponding to the signature vector s∗ given by

(
n

n+ 1
s1,

1

n+ 1
s1 + n− 1

n+ 1
s2,

2

n+ 1
s2 + n− 2

n+ 1
s3, . . . ,

n− 1

n+ 1
sn−1 + 1

n+ 1
sn,

n

n+ 1
sn

)

(2.2)
has the same reliability as the n-component mixed system with signature s. Navarro et al. [23]
provided an exact formula in the latter case showing that it is also valid in the case of exchange-
able components.

The signature vector s of a given n-component system, as defined above, has the very
desirable and useful property of being distribution-free under the assumption that the system’s
components have i.i.d. lifetimes. On the other hand, when the component lifetime distributions
vary, the vector s with ith element si = P(T = Xi:n) for i = 1, . . . , n will, in general,
depend on the underlying component distributions. This fact renders this particular metric
inappropriate in the development of representation and preservation results such as those given
above for the i.i.d. case; see [23] for a more detailed discussion. Indeed, it has not been clear,
until very recently, that the notion of system signatures could be generalized to apply to the case
of heterogeneous components. An important advance was presented by Coolen and Coolen-
Maturi [7]. The authors defined a new metric, which they called the survival signature, which
is distribution-free and depends only on the system design. This metric is defined as follows.

Definition 2.1. Consider an n-component system with components of r different types. Sup-
pose that the system has mk components of type k, where k = 1, . . . , r . Assume that the
lifetimes of components of the same type are exchangeable and that the lifetimes of components
of different types are independent. Then the survival signature of the system is a nonnegative
function φ of r variables, where φ(i1, . . . , ir ) for ik = 0, . . . , mk and k = 1, . . . , r , represents
the probability that the system works when precisely ik components of type k are working for
k = 1, . . . , r .

Coolen and Coolen-Maturi [7] discussed the calculation of the survival signature under the
conditions stated above, and showed that, under these assumptions, φ does not depend on
the component distributions. Note that, in the preceding definition, the assumptions (about
exchangeability of the components of the same type and independence of components of
different types) can be removed but, in this case, φ may depend on the joint distribution of
the component lifetimes.

Coolen and Coolen-Maturi [7] also showed that, under the stronger assumption that, for
k = 1, . . . , r , components of type k have i.i.d. lifetimes with common distribution Fk , the
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system’s reliability function can be obtained via the representation

FT (t) =
m1∑
i1=0

· · ·
mr∑
ir=0

φ(i1, . . . , ir )

r∏
k=1

(
mk

ik

)
F
mk−ik
k (t)F

ik
k (t). (2.3)

Under the stated assumptions, the representation in (2.3) follows easily from the law of total
probability. In particular, if the components are i.i.d., that is, r = 1 and m1 = n, then we have

φ(k) = P(the system works | exactly k components work) =
n∑

i=n−k+1

si

for k = 1, . . . , n and φ(0) = 0; see [7, Equation (18)]. Hence, (2.3) reduces to

FT (t) =
n∑
k=1

φ(k)

(
n

k

)
Fn−k(t)F k(t) =

n∑
k=1

( n∑
i=n−k+1

si

)(
n

k

)
Fn−k(t)F k(t)

(see [7, Equation (30)]) which, upon letting j = n− k, yields

FT (t) =
n−1∑
j=0

( n∑
i=j+1

si

)(
n

j

)
Fj (t)F

n−j
(t),

which is equivalent to the representation given in (2.1); see also [5].
Another particular case is r = n and mk = 1 for k = 1, . . . , n (independent nonidentically

distributed components), in which (2.3) reduces to

FT (t) =
∑

i1,...,in∈{0,1}
ψ(i1, . . . , in)

n∏
k=1

F
1−ik
k (t)F

ik
k (t),

where ψ is the structure function (which in this case coincides with the survival signature φ).
This expression was given in [4, Equation (1.8)].

In the general case (i.e. 1 ≤ r ≤ n), without loss of generality (by choosing an appropriate
structure function), we can assume that the m1 components of type 1 are placed in the system
in the first m1 positions, the m2 components of type 2 are placed in the positions m1 + 1 to
m1 +m2, and so on. Under this assumption, the survival signature φ can be obtained from the
structure function ψ as

φ(i1, . . . , ir ) = 1(
m1
i1

) · · · (mr
ir

) ∑
∑m1
j=1 xj=i1

∑
∑m1+m2
j=m1+1 xj=i2

· · ·
∑

∑n
j=n−mr+1 xj=ir

ψ(x1, . . . , xn),

where x1, . . . , xn ∈ {0, 1} and ik ∈ {0, . . . , mk} for k = 1, . . . , r . If the components are
i.i.d., this expression reduces to the expression obtained by Boland [5, p. 599]; see also [14,
Equation (3)].

Remark 2.1. The notation used in Coolen and Coolen-Maturi [7] differs from the standard
approach to signature computation found in the existing literature on the subject. System
signatures are defined in terms of a system’s ‘failure’ rather than its ‘survival’. However, it
is clear that there is a deterministic relationship between the survival signature defined above



Comparisons of systems with heterogeneous components 93

and what these authors might have called a system’s ‘failure signature’ φ∗. Assuming, as the
authors do, that there are mk components of type k, it follows that

φ(i1, . . . , ir ) = P(the system works | exactly ik comp. of type k work, k = 1, . . . , r)

= P(the system works | exactly mk − ik comp. of type k fail, k = 1, . . . , r)

= 1 − P(the system fails | exactly mk − ik comp. of type k fail, k = 1, . . . , r)

= 1 − φ∗(m1 − i1, . . . , mr − ir ). (2.4)

The results discussed in the sequel are stated in terms of Coolen and Coolen-Maturi’s survival
signatures but can be easily rewritten in terms of the failure signatures using (2.4) above.

While Coolen and Coolen-Maturi’s treatment of survival signatures opens the door to
studying the behavior of systems with heterogeneous components, it does not provide guidance
on whether, and how, the survival signature can be utilized in comparisons between competing
systems. The determination of whether or not one system has better performance than another
remains to be investigated. Furthermore, questions regarding possible ‘preservation’ results
such as those mentioned above for the i.i.d. case remain unanswered. Here, we propose to
investigate the questions involving the comparative performance of systems with components
of different types. As the following examples show, the availability of this new tool will prove
useful in this investigation.

A quick glance at the representation in (2.3) above does in fact suggest a very strong condition
which guarantees that the lifetimes of two particular heterogeneous competing systems will be
stochastically ordered, that is, that one system will be uniformly superior to the other. Suppose
that two n-component systems have precisely the same number of components of each of
r types. Assuming that components of the same type have i.i.d. lifetimes and components of
different types have independent lifetimes, it follows from (2.3) that a system with a uniformly
larger survival signature than another system will provide better performance than the second
system. We record this fact as follows.

Theorem 2.1. Consider two systems in independent components withmk components of type k
having the distribution function Fk for k = 1, . . . , r . Let system 1 have lifetime T1 and survival
signature φ1 and the system 2 have lifetime T2 and survival signature φ2. If, for all vectors
(i1, . . . , ir ), with ik = 0, . . . , mk and k = 1, . . . , r, the inequality

φ1(i1, . . . , ir ) ≤ φ2(i1, . . . , ir )

holds, then it follows that T1 ≤ST T2 for all distribution functions F1, . . . , Fr .

Even though the domination of one system’s survival signature over another’s is quite a
strong assumption, the result mentioned here is not vacuous. A comparison in which the ST
ordering of two system results from such domination is shown below.

Example 2.1. Assume that the two systems shown in Figures 1 and 2 each have two components
of type A and one component of type B, with all components independent.

System 2 is uniformly ST-better than system 1 when all three components have i.i.d. lifetimes
since the respective signatures are s1 = ( 1

3 ,
2
3 ,0) and s2 = (0, 2

3 ,
1
3 ). However, it may not be

obvious that this is also the case when components of type A and type B have different lifetime
distributions. The latter domination does follow, however, from the uniform domination of the
two survival signatures shown in Table 1, where the number of working components of type A
and of type B are recorded in the first and second arguments, respectively, of each φ.
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A

A

B

Figure 1: System 1 in Example 2.1.

A

A B

Figure 2: System 2 in Example 2.1.

Table 1: The survival signatures of the systems shown in Figures 1 and 2.

(i1, i2) (0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1)

φ1(i1, i2) 0 0 0 1
2 1 1

φ2(i1, i2) 0 0 1
2 1 1 1

From Theorem 2.1, it follows that T1 ≤ST T2.

The uniform domination of survival signatures as in Example 2.1 is not a common occurrence.
To see how systems might be compared when such a domination fails to occur, we include the
following example.

Example 2.2. Consider the comparison of the two systems in Figures 3 and 4, where we will
assume that the lifetimes of components of type A are i.i.d. with distribution FA, the lifetimes
of components of type B are i.i.d. with distribution FB and components of different types have
independent lifetimes.

System 1 has the structure of a 5-component bridge system connected in series with a
single component, while system 2 consists of two 3-component parallel systems connected

A

A

B

B B

A

Figure 3: System 1 in Example 2.2.
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A

A

A

B

B

B

Figure 4: System 2 in Example 2.2.

Table 2: The survival signature of the system shown in Figure 3.

φ1(i1, i2) i2 = 0 i2 = 1 i2 = 2 i2 = 3

i1 = 0 0 0 0 0
i1 = 1 0 0 1

9
1
3

i1 = 2 0 0 4
9

2
3

i1 = 3 1 1 1 1

Table 3: The survival signature of the system shown in Figure 4.

φ2(i1, i2) i2 = 0 i2 = 1 i2 = 2 i2 = 3

i1 = 0 0 0 0 0
i1 = 1 0 1 1 1
i1 = 2 0 1 1 1
i1 = 3 0 1 1 1

to each other in series. Since the respective signatures are s1 = ( 5
30 ,

9
30 ,

13
30 ,

3
30 ,0, 0) and

s2 = (0, 0, 1
10 ,

3
10 ,

6
10 ,0), then s1 ≤ST s2 and hence it is clear that system 2 is uniformly ST-

superior to system 1 when all six components have i.i.d. lifetimes. However, neither of the
survival signatures of these two systems dominates the other, as can be seen from the Tables 2
and 3.

The values of φ1 and φ2 from Tables 2 and 3 show that φ1(1, 2) < φ2(1, 2)while φ1(3, 0) >
φ2(3, 0). Thus, the domination of one survival signature exploited in Example 2.1 does not
occur in the systems considered here. A comparison of these two systems will require a more
refined analysis. Let T1 and T2 be the lifetimes of the two 6-component systems above. Using
the representation of a system’s reliability function in (2.3), the difference FT2(t)− FT1(t) =
P(T2 > t)− P(T1 > t) can be written as

FT2(t)− FT1(t) =
m1∑
i1=0

· · ·
mr∑
ir=0

[φ2(i1, . . . , ir )− φ1(i1, . . . , ir )]
r∏
k=1

(
mk

ik

)
F
mk−ik
k (t)F

ik
k (t).

To simplify the notation and facilitate the desired comparison between these systems, we will
replace the variable FA(t) = 1 − FA(t) by the variable x and replace the variable FB(t) =
1 − FB(t) by the variable y. The pair (x, y) varies in the unit square as t varies from 0 to ∞.
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For t ∈ [0,∞), the difference FT2(t)− FT1(t) can be written as the multinomial expression

D(x, y) = 9x(1 − x)2y(1 − y)2 + 8x(1 − x)2y2(1 − y)+ 2x(1 − x)2y3

+ 9x2(1 − x)y(1 − y)2 + 5x2(1 − x)y2(1 − y)+ x2(1 − x)y3 − x3(1 − y)3.

(2.5)

The calculation of D(x, y) in (2.5) at a grid of points in the unit square quickly reveals that
the function can be either positive or negative for specific (x, y) ∈ [0, 1]2. While uniform
domination of the survival signatures is absent in this example, it is nonetheless possible to
identify a sufficient condition on the reliability of components of types A and B that ensures
that one system is superior to the other. The result can be stated as follows.

Theorem 2.2. Consider the two systems shown in Figures 3 and 4. For i = 1, 2, let Ti
be the lifetime of system i. Assume that the lifetimes of components of type A are i.i.d. with
reliability FA, the lifetimes of components of type B are i.i.d. with reliabilityFB and components
of different types have independent lifetimes. If FA(t) ≤ FB(t) for all t , then T1 ≤ST T2.

Proof. To prove this result consider the function D(x, y) in (2.5), where x = FA(t) and
y = FB(t). Then the stated result follows from the following facts:

0 < x ≤ y < 1 �⇒ 1 − x

x
≥ 1 − y

y

�⇒ 9
1 − x

x
≥ 1 − y

y

�⇒ 9x2(1 − x)y(1 − y)2 ≥ x3(1 − y)3

�⇒ D(x, y) ≥ 0.

In addition, D(x, y) = 0 if x = 0 and D(x, y) ≥ 0 if y = 1. �

The result above illustrates that systems with heterogeneous components can indeed be
compared, and that conditions under which one system provides better performance than another
can indeed be identified. A new tool, the survival signature of a system with heterogeneous
components, provides entry into the study of the comparative behavior of competing systems
of this type. While the two results above are restricted to the comparison of systems which
have the same number of components of type k, for k = 1, . . . , r , we show, in the next section,
that developments involving equivalent systems of different sizes allow us to expand the scope
of such comparisons to systems of different sizes. Theorem 2.2 above has been used with
profit in comparing systems of the same size having components with i.i.d. lifetimes. We begin
Section 3 with a result that provides the recursive relationship between the survival signatures
of equivalent systems of sizes n and (n+ 1), a result that can be used repeatedly to obtain two
systems which satisfy the conditions of Theorem 2.1 and thus facilitate the type of analysis
illustrated in this section.

3. Comparisons of heterogeneous systems with different numbers of one or more
component types

Let φ be the survival signature of a system with independent components of r different types.
Assume that there are mk components of type k for k = 1, . . . , r . Recall that φ is defined as
follows. For k = 1, . . . , r and 1 ≤ ik ≤ mk , φ(i1, . . . , ir ) is the probability that the system
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will work when exactly ik components of type k are working. The size of the system will be
denoted by n = m1 + · · · +mr .

In developing the recursive formula below connecting the survival signatures of two equiv-
alent heterogeneous systems in independent components, we will utilize the approach taken by
Lindqvist and Samaniego [13] for constructing equivalent systems. We will first briefly review
that work, as the alternative approach taken there to the proof of (2.2) and its generalization
to two equivalent systems of arbitrary sizes is the approach we will utilize in comparing the
heterogeneous systems discussed in this section. The ‘one-step’ version of the result may be
stated as follows. If an independent irrelevant component is added to a coherent or mixed
system based on n components with i.i.d. lifetimes, the resulting (n+1)-component system is a
monotone system whose signature is given in (2.2) and is equivalent (i.e. has the same lifetime
distribution) as the original n-component system. Lindqvist and Samaniego [13] also provide
a constructive argument showing that, for any positive integer r , a system of size (n+ r) that is
equivalent to a given n-component system may be obtained by adding r irrelevant components
to the original system.

Now, suppose that an irrelevant component whose type is among the r-types of components
present in the original system is added to this system, resulting in a monotone system of
size n + 1. Since the irrelevant component has no effect on the performance of the larger
system, the larger and smaller systems have the same reliability functions in the arguments
uk = Fk(t), k = 1, . . . , r , where t ∈ [0,∞) is a fixed but arbitrary positive time point.
Let φ∗ be the survival signature of the system of size n+ 1 obtained by adding a component
of type k. The following result identifies the relationship between φ∗ and φ. As we shall see,
this recursion will prove to be a useful tool in the comparison of two systems of arbitrary sizes
whose components are drawn from a collection of components of r possible types, where r ≥ 2.

Theorem 3.1. Consider a system with n independent components, where mj components are
of type j for j = 1, . . . , r . Let the system have survival signature φ. Suppose that an irrelevant
component of type k is added to the system, and let φ∗ be the survival signature of the resulting
(n+ 1)-component system. The relationship between the survival signatures φ∗ and φ of these
two systems is shown below.

(i) For 0 ≤ ij ≤ mj , j = 1, . . . , k − 1, k, . . . , r ,

φ∗(i1, . . . , ik−1, 0, ik+1, . . . , ir ) = φ(i1, . . . , ik−1, 0, ik+1, . . . , ir ).

(ii) For 0 ≤ ij ≤ mj , j = 1, . . . , k − 1, k, . . . , r , and for 1 ≤ ik ≤ mk ,

φ∗(i1, . . . , ik−1, ik, ik+1, . . . , ir ) = ik

mk + 1
φ(i1, . . . , ik−1, ik − 1, ik+1, . . . , ir )

+ mk − ik + 1

mk + 1
φ(i1, . . . , ik−1, ik, ik+1, . . . , ir ).

(iii) For 0 ≤ ij ≤ mj , j = 1, . . . , k − 1, k, . . . , r ,

φ∗(i1, . . . , ik−1,mk + 1, ik+1, . . . , ir ) = φ(i1, . . . , ik−1,mk, ik+1, . . . , ir ).

Proof of Theorem 3.1(i). This follows from the fact that, if ij components of type j are
working, for j �= k, and 0 components of type k are working in the system of size n+ 1, then 0
components of type k are working in the system of size n. Thus, the survival signatures φ
and φ∗ are identical. �
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Proof of Theorem 3.1(ii). Consider the computation of φ∗(i1, . . . , ik−1, ik, ik+1, . . . , ir ) for
1 ≤ ik ≤ mk . Since it is assumed that the (n + 1)-component system has ik working
components of type k, the equivalent n-component system must have either ik or ik − 1
components of type k working. Since components of type k have i.i.d. lifetimes with common
distributionFk , the probability that the n-component system has exactly ik working components
(that is, the probability that the irrelevant component does not belong to the group of ik working
components) is given by (

mk
ik

)(1
0

)
(
mk+1
ik

) = mk − ik + 1

mk + 1
.

The complementary probability that the n-component system has exactly ik − 1 working
components is thus given by (

mk
ik−1

)(1
1

)
(
mk+1
ik

) = ik

mk + 1

(that is, the probability that the irrelevant component belongs to the group of ik working
components). Then it follows that φ∗(i1, . . . , ik−1, ik, ik+1, . . . , ir ) is given by the mixture
of φ(i1, . . . , ik−1, ik, ik+1, . . . , ir ) and φ(i1, . . . , ik−1, ik − 1, ik+1, . . . , ir ) with mixing coef-
ficients as stated in Theorem 3.1(ii). �

Proof of Theorem 3.1(iii). This follows from the fact that, if ij components of type j are
working, for j �= k, and all the components of type k are working in the system of size n+ 1,
then all components of type k are working in the system of size n. Thus, the two survival
signatures with the respective arguments are identical as stated in Theorem 3.1(iii). �

A similar result for the k = 1 case was obtained in [7, Equation (26)]. The expressions
for this case were also obtained in [23, Equation (2.1)]. The inclusion of the other component
types is straightforward as can be seen in the preceding proof.

The following example illustrates the use of the survival signatures, together with the
recursive relationship between the survival signatures of two equivalent systems to execute a
comparison of the reliability of two systems in heterogeneous components. While the example
only compares two systems of moderate size, it serves to make the point that the tools we have
discussed in this and the preceding section have quite wide applicability.

Example 3.1. Consider the system in five components given in Figure 5 which has two com-
ponents of type A and three components of type B. Assume that the A components have i.i.d.
lifetimes with distribution FA and the B components have i.i.d. lifetimes with distribution FB,
and the lifetimes of A and B components are independent.

We begin with the computation of the survival signature of this system. In Table 4 we show
the number of working A and B components (that is, i1 and i2) and the survival signature
φ1(i1, i2) for each i1, i2 pair.

In order to compare this system with the system given in Figure 4 (system 2 in Example 2.2)
which has three components of type A and three components of type B, we consider the
equivalent system of order 6 obtained by adding an irrelevant component of type A to the
system given in Figure 5. Thus, by using Theorem 3.1, we obtain the survival signature of
order 6 given in Table 5.

Comparing this survival signature with that of the system in Figure 4 given in Example 2.2,
we see that φ∗

1 (i1, i2) ≤ φ2(i1, i2) for all i1, i2, and therefore, from Theorem 2.1, the system in
Figure 4 is ST-better than that in Figure 5 for all distributions function FA, FB.
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B
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B

A

Figure 5: System 1 in Example 3.1.

Table 4: The survival signature of the system shown in Figure 5.

φ1(i1, i2) i2 = 0 i2 = 1 i2 = 2 i2 = 3

i1 = 0 0 0 0 0
i1 = 1 0 1

6
1
3

1
2

i1 = 2 0 1 1 1

Table 5: The survival signature of the system shown in Figure 5 with an additional independent irrelevant
component of type A.

φ∗
1 (i1, i2) i2 = 0 i2 = 1 i2 = 2 i2 = 3

i1 = 0 0 0 0 0
i1 = 1 0 1

9
2
9

1
3

i1 = 2 0 4
9

5
9

2
3

i1 = 3 0 1 1 1

Remark 3.1. While Example 3.1 compares two systems which each contains components of
two particular types, it is worth noting that the results of this section are applicable to any
two heterogeneous systems with independent components. For example, if system 1 has two
components of type A and three components of type B while system 2 has three components
of type B and three components of type C, then the two systems can be compared using their
survival signatures by three irrelevant components of type C to the first system and adding two
irrelevant components of type A to the second system. The original systems need not have the
same types of components nor the same number of components of a given type to proceed with
the approach considered here.

In order to calculate the survival signature of a system that is equivalent to a given het-
erogeneous system, it may appear that one must use Theorem 3.1 repeatedly, and this can be
somewhat cumbersome when comparing two systems for which the number of components of
a given type differ substantially and such differences occur for many or even all of the types
from 1 to r . The following result can simplify the calculation substantially, guaranteeing its
completion in at most r steps, one step for each component type whose frequency differs in the
two systems of interest.
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Theorem 3.2. Consider a system with n independent components, where mj components are
of type j for j = 1, . . . , r . Let the system have survival signature φ. For a given component
type, say type k, suppose that dk irrelevant components of type k are added to the system, and
let φ∗ be the survival signature of the resulting (n + dk)-component system. The relationship
between the survival signatures φ∗ and φ of these two systems is given by

φ∗(i1, . . . , ir ) =
min(ik,mk)∑

j=max(0,ik−dk)

(
mk
j

)(
dk
ik−j

)
(
mk+dk
ik

) φ(i1, . . . , ik−1, j, ik+1, . . . , ir ) (3.1)

for all vectors (i1, . . . , ir ) with 0 ≤ ij ≤ mj for j �= k and with 0 ≤ ik ≤ mk + dk .

Proof. Consider, first, the computation of φ∗(i1, . . . , ir ) for a vector (i1, . . . , ir ) with 0 ≤
ij ≤ mj for j �= k and with 0 < ik < mk + dk . We assume that the (n + dk)-component
system has ik working components of type k. Suppose that the equivalent n-component system
has j working components of type k. It is evident that the integer j must obey the following
constraints:

0 ≤ j ≤ mk, 0 ≤ ik − j ≤ dk.

Now assuming that these constrains are satisfied, and since components of type k have i.i.d. life-
times with common distribution Fk , the probability that the n-component system has exactly j
working components is given by (

mk
j

)(
dk
ik−j

)
(
mk+dk
ik

) .

From the law of total probability, it follows that the survival probability φ∗ of the (n + dk)-
component system is correctly specified in (3.1). We may extend (3.1) to the cases where ik = 0
or ik = mk + dk by noting the following. In the first instance, there are no components of type
k working in the (n+dk)-component system, so there can be no components of type k working
in the n-component system. Thus, both the upper and lower bound on the index j in (3.1) are
equal to 0 and, in this case, it reduces to

φ∗(i1, . . . , ik−1, 0, ik+1, . . . , ir ) = φ(i1, . . . , ik−1, 0, ik+1, . . . , ir )

which is, of course, the value of φ∗ in (3.1) when ik = 0. On the other hand, when ik = mk+dk ,
all mk components in the n-component system must be working, so that both the upper and
lower bound on the index j in (3.1) are equal to mk and, in this case, it reduces to

φ∗(i1, . . . , ik−1,mk + dk, ik+1, . . . , ir ) = φ(i1, . . . , ik−1,mk, ik+1, . . . , ir )

which is, of course, the value of φ∗ in (3.1) when ik = mk + dk . Thus, (3.1) holds for any fixed
values of i1, . . . , ir with 0 ≤ ij ≤ mj for j �= k and with 0 ≤ ik ≤ mk + dk . �

The following example illustrates the use of Theorem 3.2.

Example 3.2. Consider the coherent system displayed in Figure 6 having seven independent
components (one component of type A and six components of type B).

Suppose that one wished to compare the performance of this system to a competing system
that happens to have six components of type A and six components of type B. A first step in
the comparison process would be to use Theorem 3.2 to construct the survival signature of a
system that is equivalent to the system in Figure 6 yet has six components of type A. Denoting
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Figure 6: System in Example 3.2.

Table 6: The survival signature of the system shown in Figure 6.

φ1(i1, i2) i2 = 0 i2 = 1 i2 = 2 i2 = 3 i2 = 4 i2 = 5 i2 = 6

i1 = 0 0 0 0 0 0 0 0
i1 = 1 0 0 3

5
9

10 1 1 1

Table 7: The survival signature of the system shown in Figure 6 with five additional independent irrelevant
components of type A.

φ∗
1 (i1, i2) i2 = 0 i2 = 1 i2 = 2 i2 = 3 i2 = 4 i2 = 5 i2 = 6

i1 = 0 0 0 0 0 0 0 0
i1 = 1 0 0 1

10
3

20
1
6

1
6

1
6

i1 = 2 0 0 1
5

3
10

1
3

1
3

1
3

i1 = 3 0 0 3
10

9
20

1
2

1
2

1
2

i1 = 4 0 0 2
5

3
5

2
3

2
3

2
3

i1 = 5 0 0 1
2

3
4

5
6

5
6

5
6

i1 = 6 0 0 3
5

9
10 1 1 1

the number of working A and B components by i1 and i2, respectively, the survival signature
φ1(i1, i2) of the system in Figure 6 is shown in Table 6.

When five irrelevant A components are added to the system in Figure 6, we obtain, using
(3.1), the following survival signature φ∗

1 of the 12-component monotone system satisfying
the specification above. Denoting the number of working A and B components by i1 and i2,
respectively, we obtain φ∗

1 as shown in Table 7.

It is apparent from the example above that it is, in theory, possible to compare any two
systems in heterogeneous components using the Coolen and Coolen-Maturi representations
of the respective systems’ reliability functions. In order to obtain survival signatures of the
same dimension, one may employ the artifact of adding irrelevant components of various types
to each system, as needed. Assuming that there are a total of r component types involved
in both systems taken together, the two reliability functions that result can be fairly complex
multinomial expressions in the variables F 1(t), . . . , F r(t). It will often be found that neither
system will uniformly dominate the other for all possible values of these variables. As noted in
Example 2.2 above, one may, in some cases, identify sufficient conditions of these r variables to
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ensure that one system dominates the other; see also Section 5. In the worst case scenario where
an analytical comparison appears to be completely intractable, the developments of this section
can still be useful. Specifically, since the survival signature approach leads to closed-form
expressions of the reliability functions of both systems, it is possible to explore the question of
selected domination of one system over the other (and vice versa) using numerical searches,
computing, and comparing reliability functions in a lattice within the unit hypercube [0, 1]r ;
such a procedure is proposed in Section 5 in the special case in which r = 2.

We now turn our attention to a different but potentially quite useful approach to the same
problem given in the following section.

4. Comparisons based on generalized distorted distributions

Let T be the lifetime of a coherent (or mixed) system with r different types of (possibly
dependent) components having reliability functions F 1, . . . , F r . Then, from the results given
in [4], [21], and [18], its reliability function can be written as

FT (t) = Q(F 1(t), . . . , F r(t)), (4.1)

where Q is a continuous increasing function which does not depend on F 1, . . . , F r such that
Q(0, . . . , 0) = 0 and Q(1, . . . , 1) = 1. The function Q was called a dual distortion function
by Hürlimann [10]. A similar expression holds for the distribution functions, that is,

FT (t) = Q(F1(t), . . . , Fr(t)), (4.2)

where Q(u1, . . . , ur ) = 1 − Q(1 − u1, . . . , 1 − ur) and Q satisfies the same properties
as Q. The function Q is called a distortion function. These kinds of distributions were called
generalized distorted distributions (GDD) in [21] and they are the natural extensions of the
distorted distribution (DD) defined in [10], [24], and [30]–[32] which are obtained when r = 1.
To see how the functions Q and Q can be computed, we refer the reader to [18] and [21].

Under the assumption that the components are independent, (4.1) can be obtained from (2.3),
and it follows that the reliability function of the system can be written as a multinomial function
Q of the components’ reliability functions (as shown in Example 2.2). When r = n, where n is
the number of components,Q coincides with the reliability functionh defined in [4, Section 2.1].
However, note thatQ is not a reliability function in the usual sense. Moreover, if the components
are independent and r = 1 (i.e. they are i.i.d.), thenQ is a polynomial called the domination (or
reliability) polynomial in [28] which can be computed from (2.1). As in the preceding section,
these representations can be extended to the equivalent systems and the primary systems do
not have the same number of components of each type (by adding irrelevant components to the
system if necessary).

Comparison results for DD and GDD were obtained in [16], and [20]–[22]. Following a
similar approach to that used in [22], we can obtain the following distribution-free comparison
results for the systems considered in this paper.

Theorem 4.1. Suppose that two coherent (or mixed) systems with lifetimes T1 and T2 have
components taken from r different types with distributions F1, . . . , Fr . LetQ1,Q1 andQ2,Q2
be the respective distortion functions obtained from (4.2) and (4.1), respectively. We have the
following:

(i) T1 ≤ST T2 holds for all F1, . . . , Fr if and only if Q1 ≤ Q2 in (0, 1)r ;

(ii) T1 ≤HR T2 holds for all F1, . . . , Fr if and only if Q2/Q1 is decreasing in (0, 1)r ;
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(iii) T1 ≤RH T2 holds for all F1, . . . , Fr if and only if Q2/Q1 is increasing in (0, 1)r .

(iv) If the distributions of T1 and T2 are absolutely continuous, T1 ≤LR T2 holds for all
F1, . . . , Fr if γ (u1, . . . , ur , v2, . . . , vr ) is decreasing in u1, . . . , ur and increasing (de-
creasing) in vi in the set (0, 1)r × (0,∞)r−1 and F1 ≤LR Fi (≥LR) for i = 2, . . . , r ,
where

γ (u1, . . . , ur , v2, . . . , vr ) = D1Q2(u1, . . . , ur )+ ∑r
i=2 viDiQ2(u1, . . . , ur )

D1Q1(u1, . . . , ur )+ ∑r
i=2 viDiQ1(u1, . . . , ur )

and whereDiQj represents the partial derivative ofQj with respect to the ith component
for i = 1, . . . , r and j = 1, 2.

(v) If the distributions of T1 and T2 are absolutely continuous, T1 ≤LR T2 holds for all
F1, . . . , Fr if δ(u1, . . . , ur , v1, . . . , vr ) is decreasing in u1, . . . , ur and increasing (de-
creasing) in vi in the set (0, 1)r × (0,∞)r and Fi is an increasing (decreasing) hazard
rate—denoted IHR (DHR)—for i = 1, . . . , r , where

δ(u1, . . . , ur , v1, . . . , vr ) =
∑r
i=1 viuiDiQ2(u1, . . . , ur )∑r
i=1 viuiDiQ1(u1, . . . , ur )

.

Proof. The proof of Theorem 4.1(i) is immediate from (4.1).
To prove Theorem 4.1(ii), note that from (4.1),

FT2(t)

F T1(t)
= Q2(F 1(t), . . . , F r(t))

Q1(F 1(t), . . . , F r(t))
.

Therefore, T1 ≤HR T2 holds if and only if

Q2(F 1(t), . . . , F r(t))

Q1(F 1(t), . . . , F r(t))

is increasing in t for all F1, . . . , Fr . This obviously holds if Q2/Q1 is decreasing in (0, 1)r

since Fk, k = 1, . . . , r are decreasing functions. Conversely, if we assume that T1 ≤HR T2
holds for all F1, . . . , Fr and we want to prove that Q2/Q1 is decreasing, that is,

Q2(u1, . . . , ur )

Q1(u1, . . . , ur )
≥ Q2(v1, . . . , vr )

Q1(v1, . . . , vr )
for ui ≤ vi ,

we need only to consider reliability functions F 1, . . . , F r for which ui = F i(t2) and vi =
F i(t1) for i = 1, . . . , r with t1 ≤ t2 and to use the fact that FT2(t)/F T1(t) is increasing in t for
these distributions.

The proof of Theorem 4.1(iii) is similar to that of Theorem 4.1(ii) taking into account (4.2).
To prove Theorem 4.1(iv), note thatT1 ≤LR T2 holds if and only iffT2(t)/fT1(t) is increasing.

From (4.1), we have

fTj (t) =
r∑
i=1

fi(t)DiQj (F 1(t), . . . , F r(t)) for j = 1, 2,

where fi is the probability density function of Fi . Therefore,

fT2(t)

fT1(t)
= γ

(
F 1(t), . . . , F r(t),

f2(t)

f1(t)
, . . . ,

fr (t)

f1(t)

)
.

Hence, it is increasing in t if the assumptions in Theorem 4.1(iv) hold.
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Analogously, the proof of Theorem 4.1(v) is obtained from

fTj (t) =
r∑
i=1

hi(t)F i(t)DiQj (F 1(t), . . . , F r(t)) for j = 1, 2,

where the hazard rate function hi = fi/F i of the ith component is increasing (decreasing)
when Fi is IHR (DHR). �

Note that the preceding comparison results can be used to compare systems which have a
different number of components from each group. Also note that in the first three cases we
have necessary and sufficient conditions for the distribution-free comparison results. However,
in the case of the LR order, we only have sufficient conditions and we need some conditions
for the distributions of the components. If we add some conditions about the components
in the groups, then the necessary and sufficient conditions in the preceding theorem can be
changed accordingly. For example, if we assume that F 1(t) ≤ · · · ≤ F r(t), then, for example,
in Theorem 4.1(i), we need the condition

Q1(u1, . . . , ur ) ≤ Q2(u1, . . . , ur )

only for u1 ≤ · · · ≤ ur . The conditions in Theorem 4.1(ii)–(v) can be changed in a similar
way. Let us examine some examples to illustrate these theoretical results.

Example 4.1. Let us consider the systems given in Figures 1 and 7 and assume that they have
independent components.

A straightforward calculation shows that these systems cannot be ordered by using the
survival signatures. From (2.3), we obtain that the dual distortion functions of these systems
are

Q1(x, y) = x2 + xy − x2y, Q2(x, y) = 2xy − x2y.

Hence, the difference D = Q2 −Q1 is

D(x, y) = xy − x2 = x(y − x).

Therefore, these systems are not ST-ordered for all distribution functions. However, note
that D ≥ 0 in (0, 1)2 if and only if x ≤ y. Therefore, T1 ≤ST T2 holds for all FA ≤ FB, that
is, when the components of type A are ST-worse than those of type B. The ordering is reversed
if FA ≥ FB.

To study if they are HR-ordered, we compute the ratio R = Q2/Q1, obtaining

R(x, y) = 2y − xy

x + y − xy
,

B

A

A

Figure 7: Systems 2 in Example 4.1.



Comparisons of systems with heterogeneous components 105

5

H
az

ar
d 

ra
te

 f
un

ct
io

ns 4

3

2

1

0
0.0 0.5

t
1.0 1.5 2.0 2.5 3.0

Figure 8: Plots of the hazard rate functions of the components (solid) and the systems in Example 4.1
(T1 (dashed), T2 (dotted)) when the components of type A have an exponential distribution with mean 1
(constant hazard rate) and those of type B have the Weibull reliability function FB(t) = exp(−t2)

for t ≥ 0. Note that T1 ≤HR XA and T2 ≤HR XB but the other HR orderings do not hold.

which is decreasing in x and increasing in y in (0, 1)2. Therefore, they are not HR-ordered for
allFA, FB. For example, in Figure 8, we see that they are not HR-ordered when the components
from A are exponential and those from B are Weibull.

This procedure can also be used to compare systems with a different number of components
from each group. For example, to compare in the HR ordering the system in Figure 1 with a
single component of type A, we consider the ratio

R(x, y) = Q1(x, y)

x
= x2 + xy − x2y

x
= x + y − xy,

which is increasing in x and y in (0, 1)2. Therefore, T1 ≤HR XA, where XA represents
the lifetime of a component of type A (this is an expectable property due to the structure of
this system). Obviously, in Figure 8, we see that they are HR-ordered. The conditions in
Theorem 4.1(iv) and 4.1(v) do not hold and the existence of the LR ordering between these two
systems remains to be determined.

Analogously, to compare T1 with a single component of type B, we consider the ratio

R(x, y) = Q1(x, y)

y
= x2 + xy − x2y

y
= y−1x2 + x − x2,

which is increasing in x and decreasing in y in (0, 1)2. Therefore, they are not HR-ordered (for
all FA, FB) as can be seen in Figure 8. In a similar way, for the other system, we obtain

R(x, y) = Q2(x, y)

x
= 2xy − x2y

x
= y(2 − x)

and

R(x, y) = Q2(x, y)

y
= 2xy − x2y

y
= 2x − x2

and, therefore, T2 ≤HR XB (an expected property due to the structure of this system) but T2
and XA are not HR-ordered (for all FA, FB) as can be seen in Figure 8. The conditions in
Theorem 4.1(iv) and 4.1(v) do not hold, and so the existence of the LR ordering between these
two systems also remains to be determined.
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Example 4.2. Let us consider again the systems given in Figures 1 and 2 studied in Example 2.1
assuming that they have independent components. Remember that these systems are ST-ordered
from the survival signatures. A straightforward calculation from (2.3) proves that the dual
distortion functions of these systems are

Q1(x, y) = x2 + xy − x2y, Q2(x, y) = x + xy − x2y.

Note that
D(x, y) = Q2(x, y)−Q1(x, y) = x(1 − x) ≥ 0

and so T1 ≤ST T2 holds for all FA, FB. Analogously, the ratio R = Q2/Q1 is

R(x, y) = x + xy − x2y

x2 + xy − x2y
= 1 + y − xy

x + y − xy

which is decreasing in x and y in (0, 1)2. Therefore, they are HR-ordered, that is, T1 ≤HR T2 for
all FA, FB. For example, in Figure 9, we see their hazard rate functions when the components
from A are exponential and those from B are Weibull.

We have seen in Example 4.1, that T1 is HR-worse than a single component of type A for all
FA, FB and that T1 and a single component of type B are not HR-ordered for all FA, FB; see,
e.g. Figure 9. In a similar way it can be seen by using Theorem 4.1(ii) that T2 is not HR-ordered
neither with a single component of type A nor with a single component of type B for all FA, FB.
For example, as

Q2(x, y)

y
= x + xy − x2y

y
= (1 + y−1)x − x2

is increasing in x and decreasing in y in (0, 1)2, T2 is not HR-ordered with a single component
of type B for all FA, FB. However, in Figure 9, we see that T2 is HR-better than a single
component of type B for these specific distributions.

Our final example shows that this technique can also be used for systems with dependent
components and also shows that the conditions for the LR ordering stated in Theorem 4.1 might
hold.
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Figure 9: Plots of the hazard rate functions of the components (solid) and the systems in Example 4.2
(T1 (dashed), T2 (dotted)) when the components of type A have an exponential distribution with mean 1
(constant hazard rate) and those of type B have the Weibull reliability function FB(t) = exp(−t2) for
t ≥ 0. Note that T1 ≤HR T2 and T1 ≤HR XA. These are a general property for all FA, FB. Moreover, in

this example, we also have XB ≤HR T2 for these specific distributions.
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Example 4.3. Let us consider a series system with two dependent components of type A and
an independent component of type B, T1 = min(XA

1 , X
A
2 , X

B
1 ) and another series system with

two dependent components of type A, T2 = min(YA
1 , Y

A
2 ). The components of type A have

reliability FA and those of type B have reliability FB. We assume that the dependency of
components of type A is modelled by a Clayton survival copula

K(u, v) = (u−θ + v−θ − 1)−1/θ for θ ≥ 1.

Then the reliability of the first system is

FT1(t) = P(XA
1 > t,XA

2 > t,XB
1 > t) = FB(t)K(FA(t), FA(t)) = Q1(FA(t), FB(t)),

where Q1(x, y) = yK(x, x) = y(2x−θ − 1)−1/θ . Analogously, the reliability of the second
system is

FT2(t) = P(XA
1 > t,XA

2 > t) = K(FA(t), FA(t)) = Q2(FA(t), FB(t)),

where Q2(x, y) = K(x, x) = (2x−θ − 1)−1/θ . Then the gamma function defined in Theo-
rem 4.1(iv) is

γ (x, y, v2) = x−θ−1(2x−θ − 1)−1−1/θ

yx−θ−1(2x−θ − 1)−1−1/θ + v2(2x−θ − 1)−1/θ .

Hence,
1

γ (x, y, v2)
= y + v2(2x − xθ+1).

Therefore, γ is decreasing in y and v2 and increasing (decreasing) in x when θ > 1 (θ = 1) in
the set (0, 1)2 × (0,∞). Thus, if θ = 1 and FA ≤LR FB, then, from Theorem 4.1(iv), we have
T1 ≤LR T2. In general, if the Clayton copula is replaced by an arbitrary survival copula K ,
then the same property holds when

(∂/∂x)K(x, x)

K(x, x)

is decreasing. For example, this property holds when the components of typeA are independent,
i.e. the copula is the product copula and K(x, x) = x2.

Analogously, if we want to use Theorem 4.1(v), then the delta function satisfies

1

δ(x, y, v1, v2)
= y + y

v2

v1

K(x, x)

x(∂/∂x)K(x, x)

and hence δ is decreasing in y and v2 and increasing in v1. Moreover, δ is decreasing in x if

x(∂/∂x)K(x, x)

K(x, x)

is decreasing. If this last condition holds, then from Theorem 4.1(v), we have T1 ≤LR T2 for
all IHR FA and all DHR FB. This condition is not satisfied by the Clayton copula since

x(∂/∂x)K(x, x)

K(x, x)
= 2

2 − xθ

is increasing for all θ ≥ 1. Of course, this condition is satisfied by the product copula since

x(∂/∂x)K(x, x)

K(x, x)
= 2.
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5. Comparisons based on RR-plots

The purpose of this section is to provide a more detailed study of the ST ordering of two
systems. We restrict this study to the case in which we only have two type of components (i.e.
r = 2 with the notation used in the preceding sections). Thus, we give the following definition.

Definition 5.1. Suppose that two coherent systems with lifetimes T1 and T2 have components
taken from two different types. Let Q1 and Q2 be the respective dual distortion functions
obtained from (4.1). Then we define the domination region associated with these systems as

C = {(x, y) ∈ [0, 1]2 : D(x, y) ≥ 0},
where D(x, y) = Q2(x, y)−Q1(x, y).

Then we have the following immediate result.

Theorem 5.1. Suppose that two coherent systems with lifetimes T1 and T2 have components
taken from two different types with distributions F1 and F2. Let D be the domination region
associated with these systems. Then T1 ≤ST T2 holds if and only if (F 1(t), F 2(t)) ∈ D for
all t .

It follows that the ordering T1 ≤ST T2 holds for given distributions F1, F2 if the plot
(F 1(t), F 2(t)) is inside the domination region D for all t . This plot can be called an RR-plot
(reliability-reliability plot) and can be used to determine if two particular systems are ordered
for two given distributions. Of course, if the survival signatures are ordered (or if Q1 ≤ Q2),
then D = [0, 1]2. In particular, if (x, y) ∈ D for all 0 < x < y < 1, then T1 ≤ST T2
holds whenever F 1 ≤ST F 2. In the RR-plots we can also add the level curves for the function
D(x, y) to see what is the difference between the reliability functions of both systems; see the
next example and Figure 10. In the following example, we study systems with independent
components. However, note that this technique can also be applied to systems with dependent
components.

Example 5.1. Let us consider again the 6-component systems given in Figures 3 and 4 studied
in Example 2.2. The respective dual distortion functions are

Q1(x, y) = x3 + xy2 + 2x2y2 − 3x3y2 − 2x2y3 + 2x3y3

and

Q2(x, y) = 9xy − 9xy2 + 3xy3 − 9x2y + 9x2y2 − 3x2y3 + 3x3y − 3x3y2 + x3y3.

The difference of the dual distortion functions obtained in (2.5) can be reduced to

D(x, y) = 9xy − 10xy2 + 3xy3 − 9x2y + 7x2y2 − x2y3 + 3x3y − x3y3 − x3.

By plotting the level curves of the difference function D(x, y), we obtain the domination
region D for these systems given in Figure 10 (the region above the level curve with level 0).

Since the border of this region is below the diagonal, we have T1 ≤ST T2 wheneverXA ≤ST
XB. Note thatXA ≤ST XB holds if and only if the RR-plot (F 1(t), F 2(t)) is above the diagonal
for all t . Recall that this property was already obtained in Example 2.2. However, the RR-
plot allows us to develop a more accurate analysis and to show that the ordering T1 ≤ST T2
may occur even if the condition XA ≤ST XB does not hold. For example, if we want to see
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Figure 10: Domination region for the systems in Example 5.1 and RR-plots when the components of
type A have an exponential distribution with mean 1 (i.e. x = F 1(t) = exp(−t) for t ≥ 0) and those of
type B have the Weibull reliability function y = F 2(t) = exp(−t2) for t ≥ 0 (dashed) or an exponential

of mean 1
3 , i.e. y = F 2(t) = exp(−3t) for t ≥ 0 (dotted).

the performance of both systems when F 1(t) = exp(−t) (exponential) and F 2(t) = exp(−t2)
(Weibull), we may examine the RR-plot (F 1(t), F 2(t)); see the dashed line in Figure 10. There
we see that this plot is inside the domination regionD and so we have T1 ≤ST T2. Note that, in
this case, XA and XB are not ST-ordered (the dashed line crosses the diagonal). Analogously,
if F 1(t) = exp(−t) and F 2(t) = exp(−3t), we obtain the dotted line in Figure 10, obtaining
again T1 ≤ST T2. Note that in this case XA ≥ST XB (the dotted line is below the diagonal).
The level curves tell us the approximate value of the difference of the reliability functions of
both systems. In Figure 10, we see that in the first case (dashed line), the system 2 is much
better than system 1 (specially for small values of t), than in the second case (dotted line) where
the RR-plot is closer to the border of the domination region (the 0 level curve). Of course, we
can find distributions for the components in which these systems are not ST-ordered (i.e. where
the RR-plot crosses the border of D) or they are ST-ordered in the opposite direction (i.e. the
RR-plot is below the border of D).

6. Discussion

In this paper we have studied the use of the survival signature for the comparison of systems
made of components of different types, without taking lifetime distributions for components
into account. An alternative approach has also been proposed by using generalized distorted
distributions. As most real-world systems have multiple types of components, the new results
are likely to have substantially more impact than existing comparison methods for systems with
i.i.d. components.

In real applications, however, one may wish to compare different systems also with assumed
distributions for the component lifetimes, or indeed with (possibly nonparametric) statistical
inference on such distributions. In the first case, it may be natural to compare the systems’
reliability by explicitly considering the probability that one system survives the other (that
is, using the metric of ‘stochastic precedence’ as employed in [2], [9], and [15]). We note
that this approach was suggested in [7], and performed for some nonparametric predictive
inference methods using the signature in recent works by Coolen and Al-Nefaiee; see [1]
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and [6]. For the latter, the reader may wish to consider recent results on statistical inference
for system reliability using the survival signature, within the Bayesian framework (see [3]) and
within the nonparametric predictive inference framework (see [8]). These works also contain
some further relevant theoretical results on the survival signature, e.g. its computation based
on survival signatures of subsystems, and the changes to the survival signature incurred by
replacement of one component. The study of possible extensions in these directions is left for
future investigations.
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