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Linear response theory is employed to derive the rate of energy dissipation in 
a binary one-body potential well whose two parts are connected by a small "win
dow" and are in slow relative motion. Under suitable randomization assumptions, 
the "completed wall-and-window formula" is obtained, including the contribution 
from the change in the mass asymmetry. The perspectives for applying the same 
method to the transitional shapes encountered in quasi-fission reactions are dis
cussed. 

1. Introduction 

As was first recognized by Hill and Wheeler, 1) the long nucleonic mean free path has profound conse-

quences for the character of large-scale nuclear dynamics. The first comprehensive study of this "new 

dynamics", often referred to as one-body nue/ear dynamic8 (since the motion of the nucleons is governed by 

the changing one-body mean field), was carried out about ten years ago within the framework of classical 

kinetic theory .2) It led to two remarkably simple formulas for the rate ot energy dissipation: the wall formula 

pertaining to a slowly deforming mononucleus, and the window formula pertaining to a dinucleus whose two 

parts are in slow relative motion. The wall and window dissipation formulas have been employed exten-

sively, with a considerable degree of success, to low-energy nuclear dynamical processes as occuring in 

fusion, fission, and damped reactions. 

Quasi-fission reactions, which were discovered only relatively recently, have provided new testing 

ground for theories of nuclear dynamics (see, for example, ref. 3). These reactions are believed to proceed 

through shapes which are somewhat intermediate between mononuclei and dinuclei: they are rather com-

pact and yet they possess a well-defined (and slowly evolving) mass asymmetry. As a consequence of this 

*This work was supported in part by the Director, Office of Energy Research, Division of Nuclear Physics of the 
Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. 
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more complicated geometry, quasi-fission reactions are harder to treat theoretically and calculations have, 

so far, employed simple ad hoc interpolations between the wall and window formulas. 4) This situation is far 

from satisfactory. In order to make progress in our understanding of these processes, it is necessary to 

develop the one-body dissipation theory to encompass also such transitional shapes. It is towards this goal 

that the present study is oriented. 

2. Characterization or the problem 

The validity of the simple wall formula has been studied in a variety of more refined formal frame-

works. Most relevant for the present study is the work by Koonin and Randrup based on linear response 

theory. 6) In that work it was shown that the one-body energy dissipation rate can be expressed as 

. • [ 0 I A I A ]. af 0 
Q=t~ <HI h dt Uo(t )-Uo(t)t HlaHo >. (1) 

The instantaneous one-body field is described by the Hamiltonian H 0 and (;0 is the associated evolution 

operator. The slow distortion of the nucleus is described by the time-dependent perturbation H I( t). The 

expression (1) can be interpreted as follows. At t =0 the nucleons have the phase-space distribution 

f o(Ho), which is assumed to depend only on the energy Ho(r,p). (Note that the factor af o/aHo in (1) 

ensures that only nucleons near the Fermi surface contribute.) Each phase-space point (r,p) is traced back 

in time from t =0 to t --00; the brackets indicate the corresponding phase-space integral. The first term 

follows the trajectory (R,P) of an individual nucleon as it bounces around in the unperturbed field H 0, 

receiving impulses if I(R,P) along the way due to the perturbation HI. The second term is a correction 

which is instrumental in ensuring convergence when regularities are present in the shape or its rate of dis-

tortion. 

If the perturbation consists of inducing local movements of the surface elements in a leptodermous 

cavity, the impulses H I are received as the nucleon is reflected from the wall. The dissipation rate then has 

the form of a double surface integral, 

(2) 

where u (a ) and u (b ) are the (normal) velocities of the surface at the points a and b. The dissipation ker-

.' \/ 
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nel1{ a ,6 ) is non-local, i.e. depends on points far apart on the surface. However, if the nuclear shape and 

its rate of distortion are sufficiently irregular, only the last reflection at t::::::o contributes to the time 

integral in (1) and, consequently, only the local part of "y contributes, 1{a ,6 )::::::pV-#(a -6 ), and the stan

dard wall formula emerges, Q waIl =pv J d2a u (a )2. In ref. 5, the important role of regularities was iIlus-

trated for the especially simple cases of slab geometry and nearly spherical shapes. The regularities con-

spire to induce correlations between impulses received at subsequent wall reflections, in such a manner as to 

diminish or, for the smallest multipolarities, completely cancel the local contribution stemming from the 

first reflection. (In particular, if the nucleus is subjected to an overall uniform translation or rotation, the 

cancellation is complete and there is no associated energy dissipation.) 

The work reported in ref. 0) can be seen as providing a "proof" of the simple wall formula, by estab-

lishing a formal tool for studying the conditions of its validity and incorporating corrections arising from 

regularities. The present paper reports an analogous application of (1) to a dinuclear geometry, in which 

the system consists of two distinct parts, in relative motion, joined by a small "window." This will provide 

a similar "proof" of the window formula and bring out explicitly the role played by regularities in the 

nuclear shapes. Moreover, the work brings us in a good position to confront the transitional shapes charac-

teristic of quasi-fission reactions, since we have now a general treatment which gives the proper description 

in the mononuclear and dinuclear extremes. 

The type of system considered is illustrated in fig. 1. The dinuclear potential well has two distinct 

parts, A and B , joined by a small planar window whose normal direction is chosen as the z -axis. The two 

parts are subjected to a small uniform translations, U A and U B, but are otherwise not changing in time. 

This yields the simplest situation for which window friction should arise. Any intrinsic distortions of A or 

B are expected to contribute separate dissipation terms of the mononuclear type discussed above (and 

approximately given by the wall formula). 

In the usual derivation of window friction 2), the nucleons in part A are assumed to have a velocity 

distribution which is shifted by the amount U=U A -U B relative to those in part B. This corresponds 

closely to how the distributions would actually develop, provided the two parts are irregular and the win-

dow is small. In the linear-response treatment there is only one velocity distribution, namely the one associ-



" 
ated with the unperturbed potential H 0, which in the present case is the dinuclear potential displayed in fig. 

1 without any relative motion. The effect of the relative dinuclear motion is manifested in the impulses 

impacted to the particles when they interact with the nuclear boundary, as explained below eq. (1). The 

analogue of having displaced velocity distributions is then that the unperturbed trajectories be suitably ran-

dom. This requirement can be expressed more concisely in the form of the following three axioms, on which 

our treatment will rely: 

I. Randomization 0/ direction. Let a particle originally located at the window have the direction Pi when 

it crosses the window the i 'th time. It is assumed that the directions Pi and Pi associated with two 

different crossing are uncorrelated, when an average is performed over the particle's initial location on the 

window at the i 'th crossing. 

IT. Randomization 0/ time. It is assumed that the time between two window crossings i and j is indepen

dent of Pi, when the average over locations in the window is performed. 

ITI. Ergodic motion. Particles originating within the same arbitrarily small phase-space element will even-

tually cover the corresponding energy shell uniformly. (Note that this requirement does not imply that ran-

domization is achieved between two successive window crossings.) 

3. Derivation of the window formula 

The time-dependent perturbation describing the relative dinuclear motion of the system shown in fig. 

1 is 

. aHo 
Ht=-u(r) . a;-=u(r)' P , 

where the local surface velocity is given by 

{

u for rEA 
u(r)= u; for rEB' 

(3) 

(4) 

In actual applications of eq. (1), it is convenient6} to invert the time integration, and the first term 

then reads 

• V 
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• , I (; I • af 0 
<-Hila dt o(t )Hl aHo> ' (5) 

dp [ , I· • I '. I • I ] • _ a / 0 =-1 dr I --3 1 dt H 1(R(r,P,t ), P(r,p,t ),t ) H l(r,p,t -0) aH . 
(211) 0 0 

Here (R,P) denotes the phase space coordinates at time t ' for the trajectory originating at the point (r,p), 

at the time t =0. With the expression (2) for iI., the time integrand is discontinuous each time the trajec-

tory starting in (r ,f) crosses the window. As illustrated in fig. 2, the values of (R,P,t) at the time of win-

dow crossings are denoted by (R; ,P; ,t; ), i =1,2, . .. . for a trajectory starting in A , rEA, the time 

integral in (5) then becomes 

(6) 

N 
=-uA . P + (UA -UB) . E (_1)1H1 P n + u(R(r,Pit » . P(r,pi t ) . 

n=1 

A similar result holds for rEB. The number of window crossings, N, is a function of r, P and t . For t -+00, 

the term u(R(r,pit» . P will cancel when integrated over a small part of phase space, since values of P and 

-P will be equally probable due to the assumption of ergodic motion. Also, the term -UA .p will cancel 

when integrated over p, since H 0 is even in p, and if 1 depends only on r. 

A key step in the derivation is the substitution of each phase space element drdp by one around the 

first window crossing dR1dPI • Let t ' I denote the time it takes to move from (r,p) to (R.,P.). The time 

dt" spent within the phase-space element at (Rl ,P.) is determined by its extension dz along the z-axis 

P ·z 
through the relation dz =_I_dt' I , where JA is the nucleon mass. Employing t ' I as an integration vari-

JA 

able, we obtain 

l\·z I I 

drdp=d O'window --dt dP8UbO 1 . (7) 
JA 

For each (R.,P 1), the upper limit of the t I I integration is found by following the trajectory backwards 

from (R.,P 1), until the window is finally covered again. It is natural to call that window crossing the zeroth 

and denote the momentum shape by Po, as shown in the example in fig. 2. When the integral over t I I is 

performed, each window phase space element substitutes a part of phase space forming a tube around the 
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trajectory starting in (Rt.-P 1)' For ergodic motion, all trajectories will eventually cross the window, so the 

entire phase space is covered by such tubes. After carrying out the substitution (7), we obtain 

. t, ,. aj a 
<-H11o dt Ua(t )H1 aHa >rEA (8) 

[ 
dp N aj a ) 

=-{UA -UB)' I dr 1-( )3 E (_1)"+1 P" aH p . UA 
211" ,,=1 a 

( I dP1 aj a (P1'i) r to dt' , N " ) 
=(UA -UB)' I dO'window 3 J, l_E=l (_1),,+1 P" P(t )] . UA 

(211") aHa I' a •• 

and equivalently for rEB. 

Axiom II provides a randomization of the time spent on trajectories between window crossings. The 

sum over the second and further window crossings can then be treated statistically. Although it is not 

strictly needed for carrying through the proof, we specialize to a leptodermous potential, in which case the 

magnitude of the momentum, P" = I P" I is the same at all window crossings, P a=P 1=· .. ;sP. For a 

given value of P , we define the quantity 

(9) 

as the average probability that a trajectory which left part A at the time t" will be located in part A at 

the current time t. The complementary probability is given by WA -+B =1-wA -+A . These quantities WA-+A 

and WA -+B depend only on the time t -t" elapsed since the first window crossing and they satisfy the rela-

tions 

WA-+A (t-t" =0) = 0, (10) 

( 
, , , , 

WA-+A t-t =O)+WA-+A(t-t =0)=1. 

After a relatively short time (of the order of the time it takes the particle to traverse the nucleus), the pro-

bability per unit time of crossing from A to B is given by the flux average 

lI" 

O'window 211" J, 2" P cosO d (-cosO) 
a I' 

O'window 
(11) 

where VA is the volume of part A . Defining AB equivalently, the differential equation for WA -+A reads 
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(12) 

and its solution is 

(13) 

For rEA, the z component of each term in the sum (_1)'1 +1 P II is positive, since the alternating sign 

compensates for the alternating direction of passage of the window. The time derivative of the sum is given 

by flux averages of the momentum in combination with the probabilities wA -A and WA -B , 

(14) 

which is integrated to give 

E (_I)II+IPII =i_P 2 A B (t-t") N 2 [ A A 
11=2 3 AA +AB 

(15) 

Inserting this result into the expression (8), and the performing a partial integration over t' , ,we obtain 

• f, . ,. af 0 

<-H1 1o dt Uo(t )Hl aHo >rEA 

f 
dPl af 0 (P1·i) 

=-(UA -UB) • f d O"window -- -- ---
(211l aHo I' 

(16) 

[P1+i _p A B t -i _p B A B l(P _p )+i _p A B [toP + L °p(t" )dt' , 1 . UA • 
( 

4 A A 2 A (A -A ) 4 A A t 1 
3 AA +AB 3 (AA +AB )2 1 0 3 AA +AB 0 0 

Here, terms containing the exponential e -(>' ... +>'8) I have been left out, since they converge to 0 for large t. 

The remaining integral of P( t' , ) in this expression will vanish, because it can be changed back into a phase 

space integral being odd in the momentum. 

Statistical considerations based upon Axiom I are still needed, in order to determine the values of to 

and Po to be inserted. in the expression (16). The momentum Po is uncorrelated with Pl. Ordering the 

integrals with increasing to, the average of Po for integrals with to within a certain interval is just the flux 

average - : PI i. Upon integration over the window, to attains its average value Ail. 
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Now remains only straightforward calculations, starting by carrying out the integral over the magni-

tude of the momentum P: 

(17) 

The entire result can be expressed in terms of averages over the directions P 1> constrained by the condition 

p·Z>O, 

. t, ,. aj 0 

<-HI fo dt Uo(t )HI aHo >rEA 

=(UA -UB) • [2PVCTwindow PI(PI·Z)PI-Pl(PfZ)PO+: A:A::
B 

t zCP1·Z)(PI-PO) (18) 

2 AB(AA -AB) Z(PfZ)(P1-PO)+ 4 AB z(Pfz)Pol . UA , 
3 (AA +AB )2 3 AA +AB 

where CTwindow denotes the area of the window. The directional averages are readily calculated: 

(19) 

The expression (18) contains a term, which is proportional to the time t. This term, plus the equivalent 

term from rEB, will be cancelled by the second term of expression (7). 

For ergodic motion, and for a leptodermous potential, the second term of equation (1) is different from 

zero, when the motion of the potential boundaries changes the volume of the systemS). For the motion 

shown on fig. 1, the change of the volume per time unit is equal to 

V =CTwindow (UA -UB) . Z , (20) 

Inserting into the result obtained in refS), one obtains for the second term of eq. (1) for large times t: 

,. 
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• A • a f 0 10 V 2 
<HI Uo(t) HI aHo t >=9 E [v] t 

[(UA -UB )'i]2 
V t . 

8 _ PF 2 
=-9 pv 21' O'window 

(21) 

Here E denotes the kinetic energy content of all particles, V is the volume, p is the particle density inside 

the potential, v is the average particle velocity, and PF is the Fermi momentum. 

Inserting the orientation averages, as well as the expression (11) for AA with (p =PF ) and the analo-

gous one for AB , all terms are finally combined with the corresponding terms from rEB to yield the result: 

Q. ( ) 1 _ (AA AA 2AA) ( ) = UA -UB . 4"Pv O'window xx+yy+ zz . UA -UB 

(22) 

4. Discussion 

In the above result (22), the first term is the standard window formula for the energy dissipation 

rate.1} This term arises from the orientation average of 1\(P1'i)P1> and is thus related to the first window 

crossing only. Since the particles do not receive impulses at the window, the window dissipation stems from 

correlated impulses in trajectories that are first reflected a couple of times in one part of the dinueleus, then 

cross the window, and are subsequently reflected a few times in the other part. Preliminary estimates for 

spherical nuclei indicate that a good convergence of the window formula is obtained after rather few 

reflections on both sides. Thus, the relaxation time for obtaining the window formula is expected to be of 

the order of several times the time it takes a particle with the Fermi velocity to cross a nucleus. 

The second term of Q in the expression (22) arises because the average amounts of time A;l and Ajjl 

spent within the two parts of the volume are not equal in the case of an asymmetric volume division. This 

term can be associated with the change in the relative mass asymmetry 

(23) 

implied by the motion depicted on fig. 1. Assuming that the change in volume is equally distributed on the 

two parts, i. e. :t (VA - VB )=0, the second term of expression (22) can be rewritten in terms of the time 
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derivative of a as 

. 4 
Qasym=g --!p_v_ (8. V)2 

O"window 
(24) 

In the case of the motion considered here, the change in the mass asymmetry is linked to the radial 

motion. The more realistic and general case of volume conserving motion of the nuclear surface, and with 

arbitrary changes of the mass asymmetry, has been considered in ref.6
), giving as the result the so-called 

completed wall and window formula. It is noteworthy that the dissipative resistance against changes in the 

mass asymmetry evaluated in ref.6) has exactly the form (24) when expressed in terms of the variable a . 

Thus we conclude that the present derivation of the expression (22) for the dissipation provides a 

proof based upon linear response theory of the completed wall and window formula for the special kind of 

motion shown in fig. 1. 

The long mean free path dynamics of nulcei provides a unique dissipation mechanism, depending so 

much on the symmetries of the motion. In particular, the transition between the wall and window dissipa-

tion has posed a key problem of large-amplitude motion of the nuclear surface for the last ten years and so 

far only schematic interpolations between the two dissipation formulas have been applied. The derivation of 

the wall formula in ref. 6) together with the present derivation of the window formula establish linear 

response theory as a reliable starting point for investigating this question. As we view it, such investigations 

would have to rely on numerical integrations of the expression (1). Furthermore, also other variables, such 

as the angular momentum, could be studies by means of response theory with the classical phase space tra-

jectories, and dispersions in the quantities could be investigated. 

This work was supported in part by the Director, Office of Energy Research, Division of Nuclear Phy-

sics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Oontract No. 

DE-AOO3-76SF00098. 
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Figure captions 

Figure 1. The dinuclear cavity. In the dinucleus, the individual nucleons move in a leptodermous 

potential that has two distinct parts, A and B. The two parts are joined by a small planar "window" whose 

normal is chosen as the z -axis. The two dinuclear parts are endowed with the uniform translational veloci-

ties U A and U B • 

Figure 2. The window crossings. A nucleon initially located at the position r and having the momen-

tum p has the momentum Pi when it first crosses the window, P 2 at its next crossing, and so forth. Back-

wards propagation of the path yields the momentum at the most recent window crossing, Po. The contri-

buting particles originate near the nuclear surface since only there is the effect of the imposed translation 

felt. 
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