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High-Velocity Oxygen Fuel Thermal Spray of Fe-Based
Amorphous Alloy: a Numerical and Experimental Study

L. AJDELSZTAJN, J. DANNENBERG, J. LOPEZ, N. YANG, J. FARMER,
and E.J. LAVERNIA

The fabrication of dense coatings with appropriate properties using a high velocity oxygen
fuel (HVOF) spray process requires an in-depth understanding of the complete gas flow field
and particle behavior during the process. A computational fluid dynamics (CFD) model is
implemented to investigate the gas flow behavior that occurs during the HVOF process and a
simplified one-dimensional decoupled model of the in-flight thermal behavior of the amorphous
Fe-based powder particles was developed and applied for three different spray conditions. The
numerical results were used to rationalize the different coating microstructures described in the
experimental results. Low porosity and amorphous coatings were produced using two different
particle size distributions (16 to 25 lm and 25 to 53 lm). The amorphous characteristics of the
powder were retained in the coating due to melting and rapid solidification in the case of very
fine powder or ligaments (<16 lm) and to the fact that the crystallization temperature was not
reached in the case of the large particles (16 to 53 lm).

DOI: 10.1007/s11661-009-9900-7
� The Author(s) 2009. This article is published with open access at Springerlink.com

I. INTRODUCTION

THERE has been increasing interest in producing
Fe-based amorphous alloy coatings on crystalline
substrates due to their fundamental scientific impor-
tance and attractive combinations of engineering prop-
erties: improved strength and hardness, greater wear
resistance, and corrosion resistance.[1–3] In the past
decade, a series of new bulk amorphous alloys with
multicomponent chemistry and high glass-forming abil-
ity have been developed in Zr-, Mg-, La-, Pd-, Ti-, and
Fe-based systems[4–11] with various rapid solidification
techniques. The discovery of bulk amorphous alloys has
opened up the opportunity for the synthesis of thick
amorphous alloy coatings via thermal spray processes.

Thermal spray coatings may involve high cooling rates
due to the small size of droplets impinging onto the cold
substrate, forming a splat, quenching, and bonding to the
cold substrate surface with a large contact area. The
microstructure evolution of the sprayed coating is influ-
enced by bothmomentum and thermal transport between

the flame gas and the powder particles during flight. With
decreasing powder particle size, the cooling rate increases,
and formation of intermetallic compounds can be sup-
pressed in thermal spray coatings, forming an amorphous
structure.[12] High velocity oxygen fuel (HVOF) thermal
spray is a widely used thermal spraying technology in
both research and industry, due to its flexibility and the
superior quality coatings that it generates. High particle
kinetic energy is available in HVOF processing, resulting
in increased thickness, higher bond strength, and lower
porosity. TheHVOF thermal spraying techniquewas first
developed in the late 1970s and early 1980s. Since then, it
has been widely used to produce protective coatings,
typically, 100- to 800-lm thick, on the surfaces of
engineering components.[1–3] The materials sprayed
include metallic alloys, ceramics, and polymers. In the
HVOF process, oxygen and a fuel gas are mixed and
reacted in a combustion gun at high pressures in order to
produce a gas jet with high temperature and high
speed.[2,3] At the same time, powder particles, normally
in the range size of 15 to 53 lm, are delivered into the gun
system, where they are heated and accelerated toward the
exit of the supersonic nozzle. The particles are either
partially or fully melted due to heat transfer that occurs in
the flight toward the substrate. On arrival at the substrate,
particles are ideally softened and easily deformable and,
upon impact, they adhere to the substrate and to each
other. The HVOF gun scans across the substrate to build
up the required coating thickness in a number of passes.
The properties of a thermally sprayed coating are

strongly affected by the microstructure of the droplets
and the phases formed during flight. These, in turn, will
be determined by the process parameters, such as total
gas flow rate, fuel-to-oxygen ratio, and standoff distance
between gun and substrate. The gas flow behavior
governs the thermal behavior of particles and the
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subsequent mechanical properties of coatings. Several
previous numerical computational fluid dynamics
(CFD) simulations have investigated gas and particle
flows in HVOF thermal spray guns.[13–21] Whereas a
similar numerical analysis is used in the present study,
our aim is to provide insight into the behavior of
amorphous Fe, which has heretofore never being stud-
ied. Accordingly, in this study, we seek to understand
the influence of spray conditions on particle velocity and
temperature during flight, and, ultimately, how they are
related to the coating microstructure.

In the current work, a CFD model was developed for
an HVOF gun design similar to the Sulzer–Metco
Diamond Jet gun system (Sulzer Metco, Westbury,
NY). A schematic representation of this gun is shown in
Figure 1. Oxygen and propylene are injected into awater-
cooled convergent-divergent nozzle, through an annular
array of fine orifices, where the chemical reaction takes
place and the combustion products are accelerated down
the nozzle exit. Powder particles are axially delivered into
the combustion nozzle by a carrier gas (e.g., nitrogen).
The mixture of particle and gas reaction products leaves
the nozzle at a high temperature and velocity toward the
substrate, which is typically placed 0.15 to 0.30 m from
the nozzle exit. In this article, a simplified one-dimen-
sional decoupled model of the in-flight thermal behavior
of the amorphous Fe-based powder particles during the
HVOF process will be briefly described and applied for
three different spray conditions, and the numerical results
will be used to explain the different coating microstruc-
tures described in the experimental results.

II. CFD MODEL

For the gun geometry shown in Figure 1, the flow is
assumed to be axisymmetric and the computational
domain consists of the gas inlets, the convergent-
divergent nozzle, and an external region. In the present
study, the fuel and oxygen inlet gas stream is modeled as
an annular ring with the same total area as the equally
spaced inlet orifices and is centered at the same radial
location as the orifices. The carrier gas (e.g., nitrogen)
enters the gun through the powder inlet orifice, although
in the present analysis a solid particle flow was not
included. Detailed computational assumptions and
boundary conditions are described elsewhere.[13,14]

A. Fluid Dynamics

Because of the gun geometry, a two-dimensional,
axisymmetric, steady-state simulation was performed in

a commercially available software package, CFD-ACE.
The basic equations solved by CFD-ACE are a series of
viscous Navier–Stokes formulas, which include the
conservation of mass, momentum, and energy in a
compressible, turbulent, chemically reacted gas flow.[22]

Each gas mixture follows the Navier–Stokes formula.
The mass fraction of each gas mixture is solved in the
chemical combustion reactions described in Section B.
The standard k-e turbulence model is applied along with
the upwind and cell-centered control volume algorithm.

B. Chemical Reactions

In the present work, the propylene-plus-oxygen inlet
stream is assumed to be completely mixed, and the
combustion of propylene takes place in the combustion
nozzle at an infinite reaction rate. Classically, the end
products of propylene combustion are regarded as
carbon dioxide and water:

C3H6 þ 4:5O2 ! 3CO2 þ 3H2O ½1�

However, hydrocarbon combustion is a very complex
process and may consist of a number of intermediate
products. When the environment temperature is
beyond 2000 K, CO2 and H2O will dissociate into a
number of different species, which is in the so-called
equilibrium reaction.[15] For a given oxygen-to-fuel
ratio, e.g., f, the equation can be written as

C3H6 þ fO2 ! n1CO2 þ n2COþ n3Hþ n4H2

þ n5H2Oþ n6Oþ n7OH
½2�

where ni represents the equilibrium number of moles
of each of the intermediate products of the reaction.
For a setup where temperature and pressure are fixed,
these equilibrium constants, the ni values, can, in
principle, be uniquely determined for a given value of
oxygen-fuel ratio. A global, one-step chemistry rate
equation for calculating equilibrium combustion
reactions, taking into account dissociation, is suitable
for representing the combustion process, as Oberkampf
and Talpallikar suggested.[16] In this article, the for-
mula is given as

C3H6 þ 3:552O2 ! 1:036CO2 þ 1:964CO

þ 0:44Hþ 0:476H2 þ 1:937H2O

þ 0:397Oþ 0:734OH ½3�

III. PARTICLE THERMAL MODEL

In this section, a simplified one-dimensional decou-
pled model of the in-flight thermal behavior of the
powder particles during the HVOF process will be
briefly described.

A. Governing Equations

We shall assume that the shape of the particles
is perfectly spherical. Taking into account that the

Fig. 1—Geometry of the convergent-divergent Laval nozzle.
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physical properties of the particle in the solid and liquid
phases are independent of temperature and that no
density change occurs during the solidification process,
the nondimensional particle temperature T ¢ as a func-
tion of time can be expressed in spherical coordinates as

@T 0s
@t0
¼ as

al

2

x0
@T 0s
@x0
þ @

2T 0s
@x02

� �
for x0 � X0I ½4�

@T 0l
@t0
¼ 2

x0
@T 0l
@x0
þ @

2T 0l
@x02

� �
for X0I<x0<1 ½5�

where

T 0 ¼ T� T0

Tm � T0
; t0 ¼ al

t

r2p
; and x0 ¼ x

rp

where T0 is the initial temperature of the particle; Tm is
the ‘‘normal’’ freezing temperature; as,l = ks,l/(qs,lcs,l) is
the thermal diffusivity with qs,l, cs,l, and ks,l the density,
specific heat, and thermal conductivity of the particle,
respectively; x is the radial coordinate; and rp is the
radius of the particle. Subscripts s and l denote,
respectively, the solid and liquid phases. The nondimen-
sional solid-liquid interface position X0I is determined
at each instant using the procedure described in the
Section B. Figure 2 shows a schematic representation of
the problem.

The initial and boundary conditions of the problem
are given by

T 0s;l x
0; 0ð Þ ¼ 0 ½6�

@T 0s;l
@x0

����
x0¼0
¼ 0 ½7�

@T 0s;l
@x0

����
x0¼0
¼ Bi T 0g � T 0s;l

� �
½8�

where T 0g is the nondimensional surrounding gas tem-
perature and Bi = hrp/ks,l is the Biot number. The
heat-transfer coefficient h was determined by the
Ranz–Marshall semiempirical relation:[23]

h ¼ kg
2rp

2þ 0:6Re1=2Pr1=3
� �

½9�

where Re = 2qg rp|vp – vg|/lg and Pr = cpg lg/kg are,
respectively, the Reynolds and Prandtl numbers, qg,
cpg, lg, and kg being the density, specific heat, dynamic
viscosity, and thermal conductivity of the gas, respec-
tively; vg the surrounding gas velocity; and vp the parti-
cle velocity. The temperature and velocity of the
surrounding gas are obtained from the numerical
solution of the gas fluid equations, and, considering
that the drag force plays a dominant role over other
factors,[24] the particle velocity vp is obtained at each
instant using the following expression:

dvp
dt
¼

3cDqg

8rpqp

vg � vp
� �

vg � vp
�� �� ½10�

where cD is the drag coefficient, which depends on the
Reynolds number and is obtained from the following
empirical expression:

cD ¼
24:0

Re
1:0þ 0:1118Re0:6567
� �

þ 0:4305

1:0þ 3305:0=Re

½11�

B. Numerical Procedure

Equations [4] and [5] are discretized using central
differences for the spatial derivatives and a fully implicit
time integration scheme, which allows large time-steps
to be used. The boundary conditions given by Eqs. [7]
and [8] are discretized using, respectively, second-order
forward and backward finite difference approximations,
and Eq. [10] is integrated over each time interval using a
second-order Runge–Kutta method (for example, Press
et al.[25]).
Equations [4] and [5] have been resolved separately for

the solid and liquid phases, respectively. To this end,
extrapolated temperature values on both sides of the
solid-liquid interface are obtained in the following way.
The signed distance / to the interface is computed on
both solid (/s > 0) and liquid (/l < 0) nodes close to the
interface and the corresponding solid and liquid ghost
temperature values T 0Gs;l can be obtained using the
following linear extrapolation (for example, Figure 3(a)):

T0Gs;l ¼ 1�
/l;s

/s;l

 !
T 0I þ

/l;s

/s;l

T 0s;l ½12�

where T 0l is the nondimensional solid-liquid interface
temperature. The system of algebraic equations resulting
from the preceding discretization is tridiagonal and can
be easily solved using the Thomas algorithm.[26]

At each instant t0n; the nondimensional velocity V0n of
the solid-liquid interface is obtained by the Stefan
condition:

V 0n ¼
dX 0I
dt0
¼ �St @T 0l

@n
� ks

kl

@T 0s
@n

� �
½13�

where St is the Stefan number given by St =
(Tm–T0)cl/L, with L the latent heat of fusion and n
the normal vector to the interface. Similarly, as inFig. 2—Schematic representation of the problem.
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Udaykumar et al.,[27] for two-dimensional problems,
the temperature gradients at each side of the interface
are calculated using the following second-order finite-
difference approximation:

@T 0s;l
@n
¼

4T
0p1
s;l � T

0p2
s;l � 3T 0l

2Dx0
½14�

where T
0p1
s;l and T

0p2
s;l are the nondimensional temperature

values at the probe nodes located, respectively, at
distances Dx¢ and 2Dx¢ from the solid-liquid interface.
These values are obtained by linear interpolation from
the temperature distribution on both sides of the
interface (example in Figure 3(b)). Once the interface
velocity V0n; is obtained from Eq. [13], the solid-liquid
interface X0I; is explicitly advanced to the next instant
t¢n+1.

A uniform grid step size Dx¢ was used and the time-
step size Dt¢ was chosen to satisfy Dt¢ = 50Dx¢2 when
the particle is completely melted or solidified, or
Dt¢ = min (50Dx¢2, 0.1 Dx¢/V0n) when the particle is
partially solidified.

The values of the thermophysical properties of the
particles are shown in Table II (the properties of the
surrounding gas are also included in the table). Note
that although the properties of the solid and liquid
phases are considered identical in this work, different
values could be introduced into the model with no loss
of generality. The gas temperature and velocity were
obtained from the previous solution of the CFD
model at a finite number of discrete points along the
centerline. During the particle thermal simulations, the
temperature and velocity of the gas in other centerline
locations may be needed. These values were obtained
from a natural cubic spline interpolation based on the
mentioned CFD results.

Different grids were used to check the grid dependency
of the solution for the cases presented in this work. An
increase in the grid size from 81 to 161 nodes along the
radial coordinate of the particle produced differences
in the numerical results for the mean temperature of
less than 0.05 pct in the most unfavorable cases.

We conclude that using 81 nodes along the radial
coordinate produced nearly grid-independent results for
all the cases presented in this work.
It should be mentioned that in all the cases consid-

ered in this work, the Biot number was lower than
0.03, which means that the thermal gradient inside the
particle could be considered negligible and that the
governing equations of the heat transfer between a
single particle and the gas may be reduced to a first-
order ordinary differential equation. Therefore, simpler
thermal models, such as those proposed by Cheng
et al.[14] or Li and Christofides,[20] among others, may
produce sufficiently accurate results for spherical par-
ticles. However, the idea behind this work was to
develop a more general model, albeit at the cost of a
more complex implementation, which can be used for
other operating conditions and can serve as a frame-
work for future extensions to higher dimensions to
accurately study the thermal behavior of particles with
any type of nonspherical shape. This will be the subject
of a future work.

IV. EXPERIMENTAL METHODOLOGY

Several Fe-based amorphous metal formulations have
been found that appear to be corrosion resistant
comparable to, or better than, Ni-based alloy C-22,
according to the breakdown potential and corrosion
rates.[28] These formulations use chromium (Cr), molyb-
denum (Mo), and tungsten (W) to provide corrosion
resistance; boron (B) to enable glass formation; and
yttrium to lower the critical cooling rate (CCR). The
Fe-based amorphous alloy used in this work is identified
as SAM1651. The alloy has high carbon content
(Fe48Cr15Mo14B6C15Y2) and a nominal CCR of only
80 K/s. The low CCR, due to the addition of yttrium,
enables it to be rendered as a completely amorphous
thermal spray coating. The amorphous powder was
sieved and classified into two groups of particle size
prior to spray experiments, 16 to 25 lm and 25 to 53 lm
(Figure 4).

Fig. 3—Example of (a) ghost temperature values extrapolation and (b) probe temperature values interpolation on both sides of the solid-liquid
interface.
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Before spraying, the substrates were degreased, grit
blasted, and cleaned with acetone. A Sulzer Metco
Diamond Jet DJ 2700 HVOF thermal spray facility
(Sulzer Metco Inc., Westbury, NY) was used for thermal
spraying of the Fe-based powders. The spraying param-
eters are summarized in Table I. Values are given in
standard cubic feet per hour (SCFH), because this is the
practical unit used on the control console of the DJ 2700
system.

X-ray diffraction (XRD) measurements were car-
ried out with a Scintag XDS-2000 diffractometer
(Scintag, Cupertino, CA) equipped with a graphite

monochromator using Cu Ka radiation. The coatings
microstructure was examined using a PHILIPS* XL30

field emission gun scanning electron microscope. Prior
to SEM observations, cross sections of the coating were
prepared by standard metallographic techniques. Back-
scattered electron images were obtained, and energy
dispersive spectrometry analysis was conducted on the
coating samples.

V. RESULTS AND DISCUSSION

A. Effects of Gas Flow Rate and Fuel-to-Oxygen Ratio

In this HVOF gun system, key process variables are
total gas flow rate, oxygen-to-fuel mass ratio, and
standoff distance between combustion nozzle and sub-
strate. The results presented in this section relate once
again to the gun geometry of Figure 1, in which the
combustion nozzle length is around 77 mm. The gas
flow rates and fuel-to-oxygen ratios correspond to
values described in the experimental procedures. The
effect of varying the gas flow parameters on flow
behavior was examined. Three different propylene mass
flow rates were considered, namely, 144, 180, and 216
SCFH, and, for each rate, three fuel-to-oxygen ratios,
namely, 0.25, 0.31, and 0.373, were investigated. The
oxygen mass flow rate and air mass flow rate were fixed
as 578 and 857 SCFH, respectively.

Fig. 4—Particle morphology of the SAM1651 powder: (a) 16 to
25 lm and (b) 25 to 53 lm.

Table I. Inlet Gas Mass Flow Rates and Pressure

Case

Oxygen Propylene Air

Mass Flow
Rate (SCFH)

Pressure
(psi)

Mass Flow
Rate (SCFH)

Pressure
(psi)

Mass Flow
Rate (SCFH)

Pressure
(psi)

A 578 150 144 105 857 100
B 578 150 180 105 857 100
C 578 150 216 105 857 100

Table II. Values of Material Properties Used
in the Numerical Model

Powder Properties Used for Sam1651
Density, kgm�3 7310
Melting temperature, K 1394
Latent heat of fusion, Jkg�1 3.25Æ105

Specific heat capacity, Jkg�1 K�1 460
Thermal conductivity, Wm�1 K�1 22.5

Gas Properties
Density, kgm�3 0.35
Specific heat capacity, Jkg�1 K�1 1250
Thermal conductivity, Wm�1 K�1 0.08
Dynamic viscosity, kgm�1 s�1 5Æ10�5

*PHILIPS is a trademark of Philips Electronic Instruments Inc.,
Mahwah, NJ.
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Centerline gas temperatures are plotted vs axial
distance in Figure 5. This form of presentation is
particularly relevant to developing a semiquantitative
understanding of how powder particles will be affected
by different process variables, since it has already been
demonstrated that the carrier gas flow remains closely
aligned with the symmetry axis.[13,14] The maximum
temperature reached within the combustion nozzle is
found to vary with gas flow rate ratio, as shown in
Figure 5.

The general trend for the gas temperature is to
increase sharply within the combustion nozzle and to
reach the peak within the vicinity of nozzle inlet before
decreasing along the length of the nozzle. It is noted that
the higher centerline temperature is around 2700 K, i.e.,
right below the highest flame temperature for propylene.
Outside the gun, the temperature is only affected by the
flow rate. It is apparent that the total gas flow rate and
gas flow rate ratio have a negligible effect on the gas
temperature distribution trend within the nozzle. How-
ever, the higher total flow rate and higher fuel-to-oxygen
ratios give a higher centerline temperature.

This form of presentation is particularly relevant to
developing a semiquantitative understanding of how
powder particles will be affected by different process
variables, since it has already been demonstrated that
the carrier gas flow remains closely aligned with the
symmetry axis.[13,14] The maximum temperature reached
within the combustion nozzle is found to vary with the
gas flow rate ratio, as shown in Figure 5.

Figure 6 shows the centerline axial gas velocities
plotted against axial distance. The overall trend is that
the velocity increases sharply in the convergent portion
of the nozzle but increases gradually in the divergent
region. At the exit of the nozzle, the velocity increases
and decreases as a result of expansion-compression wave
circles just outside the nozzle and then undergoes a slow
decay after four diamond shocks as ambient air reaches
the centerline. Both total flow rate and gas ratio affect
the velocity profile. Maximum velocity is achieved at
the highest total gas mass flow rate and the highest fuel-
to-oxygen ratio (0.373). Conversely, the lowest gas mass

flow rate and lowest oxygen-rich ratio (0.25) led to the
lowest velocity.
These steady-state flow field calculations demonstrate

the potential effect of variations in the process param-
eters on powder particle heating and oxidation. First, an
increase in total gas flow rate will cause powder particles
to fly at higher speeds and experience higher gas
temperatures. Second, an increase in the fuel-to-oxygen
gas ratio at a fixed total flow rate will marginally
increase gas velocity with little effect on gas temperature.
Meanwhile, it will have a strong effect on the oxygen
content of the gas and could reduce the oxidation of
sprayed materials.
The general trend for the gas temperature is to

increase sharply within the combustion nozzle and to
reach the peak within the vicinity of nozzle inlet before
decreasing along the length of the nozzle. It is noted that
the higher centerline temperature is around 2700 K, i.e.,
right below the highest flame temperature for propylene.
Outside the gun, the temperature is only affected by
the flow rate. It is apparent that the total gas flow rate
and gas flow rate ratio have a negligible effect on the
gas temperature distribution trend within the nozzle.
However, the higher the total flow rate and fuel-
to-oxygen ratios, the higher the centerline temperature.

B. Effects of Flame Conditions on Particle Velocity
and Temperature

Figure 7 represents the mean particle temperature
(left column) and particle velocity (right column) as a
function of the distance along the centerline for particle
diameters ranging between 10 and 60 lm and gas flow
conditions corresponding to cases A, B, and C of
Table I. The gas temperature Tg and velocity vg
obtained from the previous solution of the CFD model
are also included in the figure with dotted lines. It can be
observed that the mean temperature and velocity of
the particles increase as the particle diameter decreases,
for a given gas flow condition, and as the fuel-to-
oxygen ratio increases, for a given particle diameter.
The smallest particles may reach velocities as high as

Fig. 5—Temperature distribution along centerline. Fig. 6—Velocity distribution along centerline.
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900 ms�1, although they are then sharply decelerated
due to their relatively lower momentum inertia. For
larger particles, the acceleration is slower and the
maximum velocity is reached as they impact on the
substrate. On the other hand, it can be seen that only
the smaller particles are heated to melting point and that
these are only partially melt during flight (in the case of
particles with diameter equal to 10 lm, 14 and 35 pct of
the total volume of the particle is melted during in-flight
behavior for cases B and C, respectively). Even in that
situation, note that the particles will reach the substrate
completely solidified due to the high cooling rates (the

values of the cooling rate of the smaller particles just
before reaching the substrate may be as high as around
1.6Æ106, 2.1Æ106, and 2.9Æ106 for the gas flow conditions
A, B, and C, respectively). For larger particles, the
temperature, which increases slowly and becomes
almost constant near the substrate, does not reach the
melting point and the particles will keep their solid state.
The results of a simpler model, similar to that used by

Cheng et al.[14] and implemented by us only for valida-
tion purpose, are represented with open circles in
Figure 7 for the lowest particle diameter and different
flow gas conditions. Note that the differences between

Fig. 7—Mean particle temperature (left column) and particle velocity (right column) for different particle diameters (ranging between 10 and
60 lm) and gas flow conditions (cases A, B, and C of Table I) as a function of the distance along the centerline. The open circles correspond to
the results obtained with a simpler model similar to that used by Cheng et al.[14]
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the results of the simpler model and those obtained with
the proposed model (continuous line) are very small,
which makes the use of simpler models sufficiently
accurate for the operating conditions considered in this
work. For future works, however, the proposed model
will allow us to obtain, in a straightforward manner,
accurate results for more general cases, such as those
corresponding to operating conditions with higher Biot
numbers; large differences between the physical proper-
ties of liquid and solid phases; or extremely rapid
solidifications, such as those produced during recales-
cence processes (the last situation would occur for
particle diameters smaller than those considered in this
work).

C. Coating Microstructure

The powder and coating XRD patterns (Figure 8)
have shown that there is no crystallization or at least no
X-ray detectable crystallization of the powder after gas
atomization and on the coatings after HVOF processing.

A typical and representative cross section of the
coating is shown in Figure 9 (this particular coating was
sprayed using condition B of Table I and 25- to 53-lm
powder size distribution). All the deposited coatings
studied in this work showed limited porosity (<1 pct).
Figure 10 shows BSE images of the coatings produced
from the 16- to 25-lm powder in the three spray
conditions A, B, and C described in Table I. Dark areas
in the images correspond to oxidized regions of the
coating. It is noticeable that sample C presented slightly
more oxidized regions than A and B. Energy dispersive
spectrometry analysis on the oxide regions has shown
the presence of Fe and small traces of Y element,
suggesting that those regions are likely to be composed
of Fe oxides with a smaller amount of yttrium oxide.

According to the results presented in Figure 7,
particles sprayed in conditions C experienced higher
temperatures and velocities than those sprayed in

conditions A and B. The microstructure observed in
Figure 10 corroborates the numerical results, as sample
C presented higher oxide content than A and B,
suggesting higher temperatures during spraying.
The coating microstructure results also suggest that

the small particles probably experienced melting, exten-
sive deformation, and severe oxidation, as predicted by
the numerical modeling. On the other hand, larger
(>16 lm) particles do not reach the melting point but
also undergo extensive flattening and plastic deforma-
tion during impact. This extensive deformation of the
large particles is well documented in Figure 11, where
the cross section of the coating produced with the 25- to
53-lm powder is presented. Two important observations
can be drawn from this image: first, the coating
presented significantly less oxidation, suggesting much
lower in-flight temperatures as predicted by the model;
and second, even large particles (53 lm) underwent
extensive deformation and flattening, since no ‘‘unde-
formed’’ particles could be found in the coating cross
section. This result suggests that the material as a
metallic glass could reach its glass transition tempera-
ture during spraying and easily deform to fill in all the
gaps in the coating; it also explains its low porosity
without the need to achieve melting.
The yttrium-containing SAM1651 formulation has a

glass transition temperature of ~584 �C, a crystallization
temperature of ~653 �C, and a melting point of
~1121 �C. Because crystallization or devitrification was
not observed or detectable from the SEM and XRD
results in any of the coatings, one can speculate that the
crystallization temperature was never reached for the
unmelted large particles, as indicated by the numerical
results. It is possible, however, that these particles could
experience melting and fast cooling rates upon impact
that prevented crystallization, which would contradict
our numerical results. Moreover, the small melted
particles may cool at a rate as high as 104 K/s during
splatting and solidification upon impact. Given the low
CCR of the SAM1651 alloy (85 K/s), formation of an
amorphous glass is certain to occur.

Fig. 8—XRD patterns of the SAM1651 powder and HVOF coating
(sprayed with conditions B of Table I and powder size from 25 to
53 lm). Fig. 9—Typical microstructure of the SAM1651 coatings.
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VI. CONCLUSIONS

A comprehensive CFD model based on CFD-ACE
has been applied to investigate the gas flow behavior in a
specific HVOF thermal spray system. The model was
used to investigate the influence of three different fuel-
to-oxygen mass ratios on gas temperature and velocity
distributions and their effect on particle temperatures
and velocities of Fe-based amorphous glass during
spraying. The thermal behavior of the particles was
analyzed using a one-dimensional decoupled model,
which uses an explicit front-tracking method to calculate
the solid-liquid interface position at each time-step.
Numerical results obtained with the particle thermal
model were compared with those obtained with a
simpler model, with a good degree of agreement for
the operating conditions considered in this work. When
the influence of the gas flow conditions on the particle
thermal behavior was determined for different particle
diameters, the results allowed us to relate the different

Fig. 10—BSE images of the coatings produced from the 16- to 25-lm powder size at the three spray conditions A, B, and C described in
Table I, respectively.

Fig. 11—BSE images of the coating produced from the 25- to 53-lm
powder at the spray conditions B described in Table I.

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 40A, SEPTEMBER 2009—2239



operating conditions with the coating microstructures
obtained in this work.

High-quality HVOF coatings were achieved in the
spray conditions used in this work, amorphous coatings
with less than 1 pct porosity being produced. Different
degrees of oxidation were observed depending on
particle size and spray conditions. These results can be
explained by the temperature distribution predicted by
the numerical model. No signs of detectable (by XRD or
SEM) crystallization (for the melted material) or devit-
rification (unmelted material) were observed in the
sprayed coatings.
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