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Abstract

Quiescent adult stem cells are important for mammalian tissues, where they act as a reserve 

that supports normal tissue turnover and can mount a regenerative response following acute 

injuries. Quiescent stem cells are well-established in certain tissues, such as skeletal muscle, 

brain, and bone marrow. The quiescent state is actively maintained and is essential for long-

term maintenance of stem cell pools. In this Review, we discuss the importance of actively 

maintaining a functional pool of quiescent adult stem cells, including hematopoietic stem cells 

(HSCs), skeletal- muscle stem cells (MuSCs), neural stem cells (NSCs), hair follicle stem cells 

(HFSCs), and mesenchymal stem cells (MSCs) such as fibro-adipogenic progenitors (FAPs) to 

ensure tissue maintenance and repair. We discuss the molecular mechanisms that regulate the 

entry into, maintenance of, and exit from the quiescent state in mice. Recent studies revealed 

that quiescent stem cells have a discordance between RNA and protein levels, indicating the 

importance of post-transcriptional mechanisms, such as alternative polyadenylation, alternative 

splicing, and translation repression, in the control of stem cell quiescence. Understanding how 

these mechanisms guide stem cell function during homeostasis and regeneration has important 

implications for regenerative medicine.
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Introduction

Stem cells have the ability to proliferate, to self-renew (produce new stem cells), or to 

differentiate [G] into different cell types, thereby offering great potential for regenerative 

medicine1,2. First described in the 19th century, stem cells include embryonic stem cells 

[G], germline stem cells [G], induced pluripotent stem cells [G], and adult stem cells [G], 
which have key roles in the maintenance and regeneration of tissues3,4. Tissues that undergo 

high cell turnover, such as the blood and the epithelium of the gut, maintain populations 

of continuously proliferating adult stem cells and progenitor cells to generate differentiating 

progeny5. However, many tissues also maintain populations of stem cells in a quiescent 

state, to support the cycling progenitors or in reserve for tissue injuries (Figure 1a).

Quiescence is a state of prolonged and reversible cell cycle exit, which is different 

from the irreversible cell-cycle exit that characterizes terminal cell differentiation or cell 

senescence2,6. Some differentiated cells can de-differentiate and proliferate to contribute 

to tissue repair (such reversible exit from the cell cycle is observed in endothelial cells 

and hepatocytes), but do not fit the stem cell paradigm of self-renewal7. Quiescent stem 

cells act as a reserve for producing progenitor cells that sustain tissue homeostasis and 

tissue regeneration in response to injury2,8. Among the best studied quiescent stem cell 

models are hematopoietic stem cells (HSCs), which are found in the bone marrow, skeletal 

muscle stem cells (MuSCs), neural stem cells (NSCs), hair follicle stem cells (HFSCs), 

and mesenchymal stem cells (MSCs), which include those in bone marrow, teeth, and the 

muscle-resident fibro-adipogenic progenitors (FAPs) (Figure 1a)2,9,10. Quiescent adult stem 

cells have recently been described in the epithelium of the gut and the mammary gland11–13, 

and may exist in other tissues as well. Germline stem cells in the ovary constitute a unique 

quiescent stem cell population that can give rise to totipotent stem cells post-fertilization.

A common feature of quiescent stem cells is their high potential for engraftment and 

self-renewal following transplantation compared to their cycling progeny, which is rapidly 

lost when these stem cells are cultured ex vivo14–18. This technical limitation poses a barrier 

to the expansion of quiescent stem cells for autologous stem cell transplantation therapies 

[G].Thus, understanding how quiescent stem cells are maintained in tissues is a topic of 

intense study. Quiescent stem cells have long been considered to be in an inactive state2. 

However, recent genetic studies have revealed many signalling pathways that must be active 

to maintain the quiescent state. When these pathways are disrupted, stem cells become 

activated prematurely and often fail to self-renew, leading to depletion of the stem cell 

pool and a loss of regeneration potential in vivo19–23. Moreover, many of these pathways 

are deregulated in ageing24 (Supplementary Table 1). Recent studies have focused on 

understanding how the mechanisms that control quiescence maintenance, exit, and re-entry 

are regulated. Much effort has gone into characterizing the transcriptional networks that 

regulate stem cell function and identity25–32. However, transcriptional networks are only 

one component of the control of stem cell function and regulation of the quiescent state33. 

Post-transcriptional regulatory mechanisms also play a key part. For example, quiescent 

MuSCs, HSCs, HFSCs, and NSCs all express genes that are crucial for stem cell activation 

[G] at the RNA level, but protein synthesis and accumulation are repressed to prevent 
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activation34–37. Such mechanisms are thought to establish a poised state that enables more 

rapid activation when required38.

In this review, we first describe key features of quiescent stem cells and the biological 

importance of stem cell quiescence. We discuss the different stem cell processes that enable 

the function of quiescent stem cells, and many of the genes that control these processes. We 

then discuss recent findings of post-transcriptional regulatory mechanisms that control the 

quiescent state in the context of tissue homeostasis and regeneration.

Key features of quiescent stem cells

Quiescent stem cells have several features that distinguish them from their activated progeny 

and other proliferating stem cells (Figure 1b). This includes a lower level of activity, a 

reduced cell size, reduced mitochondrial content, and lower levels of biomolecules such as 

RNA and protein.

Gene and protein expression signatures

Typically, quiescent stem cells are smaller than non-quiescent stem cells and have low RNA 

and protein content39–41. This is coincides with low levels of mRNA transcription, rather 

than high levels of mRNA turnover, as indicated by the low levels of Ser2 phosphorylation 

at the C-terminal domain of RNA polymerase II — a marker of transcript elongation — 

in quiescent stem cells42. Nevertheless, transcription does occur in quiescent stem cells in 

vivo43.

Quiescent stem cells are marked by low protein and RNA levels of cyclin A2, cyclin 

B1, and cyclin E2, which are the key drivers of the cell cycle, and by high levels of 

the cyclin-dependent kinase inhibitors CDKN1A (p21 or CIP1), CDKN1B (p27 or KIP1), 

and CDKN1C (p57 or KIP2), which function as inhibitors of cyclins and thus block cell 

cycle transitions2,44,45. Cycling cells progressing through G1 normally accumulate cyclin D, 

which partners with cyclin-dependent kinase 4 (CDK4) or CDK6 to inhibit retinoblastoma-

associated protein (Rb; also known as RB1) and enable S-phase entry46. Strikingly, cyclin 

D1 is expressed in quiescent HSCs and MuSCs and may function in a cell-cycle independent 

manner in these quiescent cells40,47.

In different stem cell types, distinct transcription factors marking the quiescent state have 

been identified. Quiescent MuSCs express PAX7, the level of which decreases upon MuSC 

activation48. Quiescent HFSCs express TCF3 (also known as TCF7L1) and TCF4 (also 

known as TCF7L2), which are lost upon HFSC activation49. HOXB5 and TCF15 expression 

mark quiescent HSCs27,50.

Epigenetic signatures

Quiescent stem cells have distinct patterns of epigenetic modifications and of 

heterochromatin. Quiescent MuSCs, NSCs and HFSCs can be identified in electron 

microscopy micrographs by their nuclei filled with dense heterochromatin51–53. Many 

genes in quiescent stem cells are characterized by bivalent chromatin, which includes both 

gene-repressive and permissive histone modifications54–57, suggesting that these genes are 
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poised for activation38. Quiescent stem cells express regulators of histone modifications. For 

example, Trithorax group [G] histone methyltransferases are expressed in quiescent HSCs 

and MuSCs to maintain histone H3 Lys4 tri-methylation (a gene-expression permissive 

modification)58–60. In addition, DNA methylation patterns are dynamically regulated in 

quiescent HSCs and MuSCs61,62.

Low metabolic activity.

Quiescent HSCs, MuSCs, NSCs, and HFSCs all have lower energy demands than cycling 

cells and correspondingly low mitochondrial activity63–66 (Figure 1b). Subsets of HSCs 

with low mitochondrial activity are more quiescent compared to subsets of HSCs with high 

mitochondrial activity, and show better long term engraftment67. When HSCs and HFSCs 

undergo activation, they increase mitochondria biosynthesis and gradually increase oxidative 

phosphorylation66,67. Quiescent stem cells reside in niches with low access to oxygen68. 

Accordingly, they rely on glycolysis and fatty acid oxidation to satisfy their low energy 

demands69–72. Moreover, quiescent stem cells maintain low levels of mTOR complex 1 

(mTORC1) signaling73–75, and nutrient-sensing pathways such as the AMPK and LKB1 

pathways are vital for accurate balance between quiescence and activation of MuSCs and 

HSCs76–79.

Altered DNA damage repair.

Quiescent stem cells do not undergo DNA replication and thus have no access to high-

fidelity DNA repair by homologous recombination, which generally requires a sister 

chtromatid as template for repair80,81. Instead, quiescent MuSCs, HSCs, HFSCs, and NSCs 

use the cell-cycle-independent, but error-prone process of non-homologous end-joining 

[G]81–85. Nevertheless, DNA damage does accumulate with age in quiescent stem cells, 

as shown in HSCs and MuSCs86–89. DNA damage in aged stem cells can be repaired by 

exposing the aged cells to a young systemic environment, due to a shared circulation after 

heterochronic parabiosis, or upon stem cell activation89,90. Given the importance of DNA 

repair, it is not surprising that deletion of the gene encoding checkpoint kinase ATR [G] 
results in apoptosis of activated HSCs, NSCs, and HFSCs91–93. By contrast, MuSCs lacking 

ATR spotaneously undergo activation in the absence of injury94. In quiescent MuSCs, 

ATR activity is triggered by DNA–RNA hybrids, resulting in stabilization of cyclin F and 

quiescence maintenance94.

Stem cell survival.

The quiescent state itself also affects the exposure to stress. For example, quiescent stem 

cells are protected from replication-induced DNA damage, and their low mitochondrial 

content limits the exposure to reactive oxygen species (ROS). Resilient subpopulations 

of quiescent MuSCs, HSCs, and NSCs can survive irradiation or regeneration stress95–97. 

Nevertheless, quiescent stem cells are still subject to a host of environmental stresses and 

their ability to withstand them may be limited by their low levels of gene expression and 

metabolism. Moreover, the complex changes that occur during stem cell activation render 

the cells vulnerable to damage. For example, mitochondrial biosynthesis upon activation 

poses additional risks for oxidative stress, and ramping up protein synthesis increases 
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the risk of endoplasmic-reticulum stress98–103. Quiescent MuSCs and HSCs have stress 

response pathways, which are key for maintaining the quiescent state104,105. Whether 

quiescent stem cells possess unique mechanisms that actively promote survival remains 

largely unexplored.

Key processes related to stem cell quiescence

For quiescent stem cells to contribute to tissue homeostasis and repair, they depend on the 

timely execution of multiple distinct processes. During homeostasis, the stem cells maintain 

the quiescent state. Nevertheless, a low level of stem cell activation does occur and this 

contributes to normal homeostasis by supplying the progeny to sustain tissue turnover. 

Following tissue injury, the cells must rapidly exit the quiescent state in order to activate 

and enter the cell cycle to drive the repair process. When tissue repair is underway, a subset 

of stem cells must re-establish the quiescent stem cell pool in a process. This process of 

re-quiescence ensures the establishment of a stem cell reserve population for future tissue 

needs. During all of these processes, the cells must devote resources to survival mechanisms 

in the face of stress and accumulating damage.

Maintenance of stem cell quiescence

The stem cell niche triggers signaling pathways to maintain quiescence, which is 

instrumental to preservation of the quiescent stem cell pool. For example, a common 

signaling pathway for maintaining quiescence is the Delta–Notch signaling, in which Delta 

ligands presented by the niche trigger Notch signaling in the stem cell (Figure 2). Loss 

of the receptor NOTCH2 or of RBPJ, the downstream effector of Notch signaling, causes 

activation of MuSCs, NSCs, and HSCs19–23. Moreover, the Notch target genes HES1 and 

HEY1, which encode transcription factors, are key to quiescence maintenance in all three 

stem cell types106–108. By contrast, in HFSCs, loss of HES1 has no effect in the telogen 

phase of the hair growth cycle when the HFSCs are quiescent, but it severely limits the 

anagen phase when the HFSCs are actively cycling, suggesting that HES1 has an important 

role in HFSC activation109. More surprisingly, deletion of Rbpj in HFSCs does not affect 

quiescence or activation, but results in activation of a neighboring quiescent population of 

melanocyte stem cells through paracrine retinoic acid signaling110. In addition, there are 

signaling pathways unique to each stem cell type (Supplementary Table 2). For example, 

HSCs respond to thrombopoietin signals from the bone marrow niche, whereas NSCs 

respond to neurotransmitters.

In addition to signaling from the niche, quiescent stem cells use cell-intrinsic inhibitory 

mechanisms to prevent activation in the absence of triggering cues38 (Figure 2a). As CDK 

inhibitors block the G1 cyclins (cyclin D and cyclin E)111, it is not surprising that these 

proteins are essential to maintaining a quiescent state in stem cells (Figure 2a,3a). Deletion 

of the genes encoding p21, p27 or p57 result in spontaneous activation of HSCs, NSCs, 

MuSCs, and HFSCs12,112–119. Quiescent stem cells must avoid the restriction point, from 

which the cell is fully committed to complete the cell cycle. The restriction point is defined 

by Rb phosphorylation, which relieves the inhibition of Rb on E2F (Figure 3a)111. However, 

there is a short window after Rb inactivation during which stress can force the cell back into 
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quiescence, and this window is dependent on the anaphase promoting complex/cyclosome 

(APC/C)120. Interestingly, the restriction point may be differentially regulated in different 

quiescent stem cell types. Deletion of Rb1 results in MuSC and HSC activation121–123, but 

has no effect in NSCs124. Deletion of APC/C results in HSC activation125, but while this 

lowers NSC quiescence, these cells cannot complete the cell cycle and consequently undergo 

apoptosis126.

Quiescent stem cells express high levels of p5388,127,128, which, in somatic cells, can trigger 

cell cycle exit or cell death in response to stress. Germline deletion of p53 causes aberrant 

activation of NSCs and HSCs127,128. In HSCs, this activation is due to the loss of the cell 

cycle repressors Necdin and GFI-1 (Ref.127), or owing to the indirect loss of p53 through the 

loss of OCIAD1, an inhibitor of p53 degradation129. In quiescent MuSCs, p53 is stabilized 

because Notch signaling represses MDM2 expression88. When MuSCs undergo activation, 

they lose Notch signaling and p53 level decreases (Figure 2). Upon activation, MuSCs 

that lack p53 have a higher propensity to undergo apoptosis, which can be prevented by 

pharmacological stabilization of p53 (Ref.88). This is in contrast to other stem cell types, 

where p53 stabilization induces cell death83,129–131.

Activation and exit from quiescence

Quiescent stem cells retain the capacity to undergo activation and enter the cell cycle 

in response to triggers such as acute injuries. Stem cell activation is disrupted during 

aging (BOX 1), resulting in impaired regeneration and highlighting the importance of this 

process for quiescent stem cell function. Activation is the result of loss of niche signals 

that maintain quiescence and the inhibitory signals that prevent activation, combined with 

activating signals and mitogenic and non-mitogenic signals that stimulate the cell cycle 

(Figure 2b). In preparation for cell cycle entry, the cells first complete a growth phase, 

which enables them to acquire sufficient biomass and volume to undergo DNA replication. 

Whether quiescent stem cells must overcome a size threshold to fully activate is unclear. 

Nevertheless, quiescent HSCs, NSCs, and MuSCs are smaller than their activated progeny 

and, in somatic cells there is a correlation between cell size and cell cycle speed39,41,73,132.

It is striking that the first stem cell division upon their activation requires up to two 

days — considerably longer than subsequent cell divisions, which take about half a 

day88,133,134. It is unclear whether this extended time is due to lengthening of the G1 phase, 

or whether the cells transition through several uncharacterized sub-phases of quiescence, 

similar to the different stages of the cell cycle (Figure 3). Although the process of activation 

generally concludes with progression into the cell cycle, HSCs and MuSCs can progress to 

differentiation without first entering the cell cycle19,135.

Activation of stem cells also adjusts their metabolism to meet the energetic demands of 

proliferation. This adjustment includes a switch from fatty acid oxidation and glycolysis to 

mitochondrial respiration, which requires the biosynthesis of mitochondria69,72. In addition, 

MuSCs, NSCs, and HFSCs undergoing activation increase autophagy to process large 

biomolecules into building blocks136–140. HSCs show signs of a mitochondrial checkpoint, 

in which mitochondrial biosynthesis can cause stress, which in turn pushes the cell towards 

quiescence141–143. This process suggests the existence of quiescence checkpoints analogous 
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to the cell cycle checkpoints, in which the cell can evaluate whether or not to progress with 

activation.

Stem cells are activated by growth factors (Figure 2b). MuSCs, NSCs, HSCs, and HFSCs 

undergoing activation trigger p38 MAP kinase signaling, and inhibition of p38 reduces 

activation130,144–147. Activation of HSCs, MuSCs, and HFSCs also upregulate PI3K-AKT 

(PKB) signaling and interfering with this pathway limits activation130,148,149. Activation of 

stem cells increases mTOR signaling73,150–153. In response to injuries in a different tissue, 

MuSCs and HSCs increase mTOR signaling to enter an “alert” state73,74 (Figure 3). MuSCs 

without the mTORC1 subunit regulatory-associated protein of mTOR (RAPTOR) can no 

longer enter the “Alert” state and show delayed activation73.

Quiescent stem cells are heterogeneous in their gene-expression levels and ability to 

undergo activation, which results in cells with varying degrees of “quiescence depth”154. 

For example, subpopulations of HSCs with low levels of CDK6 or the receptor tyrosine 

kinase KIT take longer to become active than subpopulations with higher levels of CDK6 or 

KIT134,155. MuSCs with high levels of the transcription factor PAX7 take longer to become 

active than MuSCs with low levels of PAX7 (Ref.156). NSCs with high levels of tyrosine-

protein kinase ABL1 take longer to become active than NSCs with low levels of ABL1 

(Ref.157). Quiescent stem cells can adjust quiescence depth in response to external cues. For 

example, distant tissue injuries can induce the more shallow Alert state in quiescent MuSCs 

and HSCs73,74, whereas fasting and ketosis can induce a deeper quiescent state in MuSCs, 

marked by delayed activation158, and norepinephrine can increase quiescence depth in 

HFSCs by limiting the expression of FGF18 (Ref.159). A deeper quiescent state can confer 

protection against certain stresses such as irradiation and chemotherapy agents2,158,160. 

However, it also hampers the cell’s ability to execute its function and generally correlates 

with impaired regeneration and impaired homeostasis during aging (BOX 1)158.

Re-entry into the quiescent state

Activated stem cells will at some point replenish the stem cell pool by undergoing re-

quiescence, which involves exiting the cell cycle and reverting to the phenotype of a 

quiescent stem cell161–164 (Figure 1b). Generally, stem cells enter the quiescent state from 

the G1 phase of the cell cycle, although there is evidence of NSCs entering quiescence in 

G2 (Ref.165). Re-quiescence occurs in concordance with a loss of growth signals and the 

reconstruction of the stem cell niche163,166 (Figure 2c). Not surprisingly, deletion of the 

genes encoding receptors that convey niche signals for the maintenance of quiescence results 

in depletion of the stem cell pool19,20,167–170. Whether this is due to a defect in quiescence 

entry, or confounded by defects in other processes, is unclear. Conditional deletion of the 

gene encoding the Notch ligand Delta-like 1 (DLL-1) considerably reduces the ability of 

activated MuSCs to re-enter the quiescent state following muscle injury, resulting in a loss of 

MuSCs171.

Stem cells that enter the quiescent state must also repress the growth signaling pathways 

that drive activation. NSCs expressing tumor necrosis factor-α receptor 1 (TNFR1; 

also known as TNFRSF1A) will re-enter the quiescent state following stimulation with 

lipopolysaccharides, which triggers a systemic immune response172. This response depends 
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on TNFR1-dependent phosphorylation of p38 (Figure 2b,c), and p38 inhibitors can partially 

abrogate re-quiescence. This function of p38 is consistent with observations in proliferating 

human and mouse MuSCs, in which inhibition of p38 enhances cell expansion173,174. In 

quiescent MuSCs, inhibition of p38 prevents cell cycle entry144, highlighting the role of 

cellular context on signaling pathways. Deletion of the gene encoding SPRY1, an inhibitor 

of ERK, abolishes MuSC re-quiescence due to increased ERK signaling175. Deletion of 

Mek1 or Pten, both negative regulators of PI3K, results in gradual depletion of the quiescent 

stem cell pool98,151,176–181. The AKT inhibitor Inositol(1,4,5)trisphosphate 3-kinase b 

(ITPKB) is key for HSC re-quiescence182. HSCs without ITPKB activate prematurely 

and fail to reestablish a population of quiescent HSCs, resulting in hematopoietic failure 

and anemia. This phenotype suggests that inhibition of AKT signaling is key for re-

quiescence182 (Figure 2c).

Self-renewal

Self-renewal is a key process for maintaining the populations of all stem cells. Self-renewal 

is not equated with quiescence entry since, for example, proliferating stem cells in the 

epithelium of the gut undergo continuous self-renewal without passing through a quiescent 

state183. However, to self-renew, quiescent stem cells must go through one cell division 

and therefore require cell cycle entry and exit. Activated stem cells must decide whether to 

continue with proliferation, whether to exit the cell cycle and differentiate, or whether to 

re-enter the quiescent state.

Post-transcriptional quiescence control

There has been a strong interest in understanding the mechanisms that regulate stem 

cell quiescence. Transcriptional gene regulation has key roles in controlling the quiescent 

state184–188; however, differential expression of transcripts only partially determines protein 

abundance. In fact, in somatic cells, mRNA abundance alone often cannot explain observed 

protein levels189, and RNA and protein abundance often do not correlate in quiescent stem 

cells26,34,38,190–195. We therefore focus in this Review on regulation of stem cell quiescence 

by post-transcriptional mechanisms, and examine their roles in the control of quiescence 

maintenance, exit and entry.

RNA regulation in the nucleus

Following transcription, the pre-mRNA undergoes a series of processing steps, which can 

be regulated to control the amount of protein that is produced. These mechanisms include 

alternative polyadenylation (APA), alternative splicing, and RNA modifications such as 

adenosine and cytosine methylation and adenosine-to-inosine (A-I) editing. The mature 

mRNA can be degraded, stored, or translated. In the following sections, we discuss how 

these post-transcriptional mechanisms regulate processes related to stem cell quiescence 

(Table 1).

Alternative polyadenylation.—One of the best studied post-transcriptional regulatory 

mechanisms is APA, in which cells create mRNA isoforms usually with different 3’ 

untranslated regions (3’UTRs)196. Transcript isoforms with different 3’UTRs can be 
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detected in multiple mouse quiescent stem cell populations, including HSCs, MuSCs, 

HFSCs, and NSCs195,197–200. HSCs exiting quiescence exhibit a global switch to shorter 

transcript isoforms197 (Figure 4). Known regulators of APA are dynamically regulated in 

HSCs and MuSCs195,197.

APA of specific genes can profoundly affect quiescence. APA of PAX3 transcripts alters the 

propensity of MuSCs to exit quiescence195. Polyadenylation sites (PASs) in the proximal 

part of the PAX3 3’UTR are blocked by U1 small nuclear RNA (snRNA), leading to 

the production of long isoforms that are subject to translation repression by microRNAs 

(miRNAs) (Figure 4a). Functional knockdown of U1 snRNA results in the expression 

of shorter PAX3 mRNAs, increased PAX3 protein levels, and MuSC activation, whereas 

U1 snRNA overexpression prevents MuSC activation195. Quiescent FAPs express mRNA 

isoforms of platelet-derived growth factor receptor alpha (PDGFRα) that terminate at either 

of two PASs in the 3’UTR, or at an intronic PAS201. Transcripts generated from the 

intronic PAS generate a truncated protein lacking the intracellular kinase domain. Blocking 

the intronic PAS with antisense oligonucleotides results in increased levels of full-length 

mRNA and protein and in increased exit from quiescence. By contrast, blocking distal PASs 

leads to increased intronic-PAS choice, production of truncated mRNA and protein, blunted 

PDGFRα signaling, and reduced activation201. These findings show that APA affects protein 

levels in quiescent stem cells. This effect differs from what has been observed in somatic 

non-stem cells, where APA affects mRNA stability or localization202,203, and thus may be a 

specific feature of quiescent stem cells.

APA also regulates quiescence exit (Figure 4b). Depletion of NUDT21 (also known as 

cleavage and polyadenylation specificity factor subunit 5) prevents HSC activation and 

subsequent differentiation. During normal HSC activation, NUDT21 induces a switch 

towards shorter glutaminase mRNA isoforms, leading to increased glutaminase protein 

levels, and inhibiting glutaminase activity can similarly block HSC activation197. Diaphragm 

MuSCs express higher levels of PAX3 compared to MuSCs in lower hindlimb muscles, 

leading to increased activation rates195. Loss of PAX3 or forced lengthening of PAX3 

mRNAs reduces MuSC activation195. Higher levels of PAX3 also confer stress resistance 

to activated MuSCs95,204. In response to stress, PAX3-expressing MuSCs have lower ROS 

levels, increased cell size, and higher mTORC1 signaling, and display increased activation 

kinetics, all suggesting these cells are in an “Alert” state95,204. FAP activation affects 

APA of PDGFRα201. Increasing intronic PAS choice leads to reduced proliferation and 

reduced fibrosis, showing that APA is key for quiescence exit. By contrast, the role of 

APA in quiescence entry is much less clear (Figure 4c). Depletion of the APA regulator 

polyadenylate-binding nuclear protein 1 (PABPN1; also known as PABP-2) in HSCs results 

in a global switch towards shorter mRNA isoforms and reduced serial engraftment potential, 

but has no effect on HSC survival197.

RNA editing.—In addition to changing mRNA 3’ ends, cells can modify individual 

nucleotides in the transcript. One established mechanism for nucleotide modification is 

RNA editing, in which adenosine is deaminated to inosine (A-I editing)205. A-I editing 

has been reported in quiescent HSCs and NSCs206,207. The enzymes catalysing RNA 

editing — ADAR (ADAR1), ADAR2 and AIMP2 — are widely expressed and their 
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mRNAs can be found in quiescent MuSCs, NSCs and HSCs in cell atlas transcriptomics 

data208–210. Moreover, at least in HSCs, ADAR1 expression is dynamically regulated and 

increases in progenitor cells compared to HSCs211. In HSCs, overexpression of ADAR, 

but not of a mutant lacking enzymatic actvity, results in activation into the cell cycle 

(Figure 4b)206. ADAR overexpression results in editing of the primary miRNA pri-miR-26a, 

preventing its maturation, and of a miRNA binding sites in the 3’UTR of MDM2, leading 

to mRNA stabilization206. By contrast, deletion of Adar leads to quiescence maintenance 

and increased levels of the cell cycle inhibitor CDKN1A206. Although these experiments 

show that RNA editing is a key mechanism controlling HSC quiescence, it remains an open 

question whether ADAR also acts in a non-enzymatic manner212.

RNA methylation.—RNA can undergo extensive methylation in cells213, and this 

modification is often mutually exclusive with RNA editing214. In quiescent HSCs, mRNAs 

of an estimated 9% of the expressed genes contain N6-methyladenosine (m6A), and this 

fraction decreases with activation215–217. The m6A writer METTL3 is expressed in HSCs, 

and methylation enzymes can also be detected in other quiescent stem cell populations in 

cell atlas data208–210,215,216. Conditional deletion of Mettl3 from HSCs leads to quiescence 

exit and a gradual increase in HSC numbers215,218,219 (Figure 4a). One target of METTL3 

is MYC mRNA, which has increased stability when methylated215,218. Similary, conditional 

loss of METTL3 in MuSCs causes an initial increase in MuSC numbers immediately 

after injury, suggesting enhanced activation220. Myc, well-known for its role in cell cycle 

progression and cell expansion, is important for quiescence maintenance in HSCs and 

NSCs221,222. This coincides with a loss in NOTCH mRNA methylation and decreased 

protein levels, while mRNA levels remain stable (suggesting decreased translation of the 

mRNA; see below)220. Deletion of Mettl3 or Mettl14 leads to reduced m6A-mRNA levels 

and delayed cell-cycle exit in embryonic NSCs, resulting in a failure to establish the 

quiescent NSC pool223 (Figure 4c). In HFSCs, the MYC-induced SUN2 catalyzes the 

formation of 5-methylcytosine (m5C) in tRNA (Figure 4b). Expression of SUN2 in HFSCs 

increases in anagen and its deletion prolongs quiescence maintenance, resulting in a delayed 

hair cycle224.

Alternative splicing.—Alternatively spliced mRNA isoforms are common in all 

cells210,225,226, but the observation that known splicing factors are dynamically regulated 

during MuSC and HSC activation indicates that alternative splicing could be an important 

regulatory mechanism in quiescent stem cells227–229. However, surprisingly little is known 

about the regulation and function of alternatively spliced isoforms in quiescent stem cells. 

The RNA binding protein quaking (QKI) regulates alternative splicing of cell polarity genes 

in MuSCs. Conditional deletion of Qki results in alternative splicing of ITGA7 and Numb, 

and reduced activation and assymetrical division230. Protein arginine N-methyltransferase 

5 (PRMT5) controls mRNA splicing in quiescent HSCs231. Following conditional deletion 

of Prmt5, HSCs show a global changes in alternative splicing, increased protein synthesis 

and increased HSC numbers, all indicating quiescence exit231. Thrombopoietin signaling 

through its receptor MPL can promote either quiescence or proliferation of HSCs in 

a concentration-dependent manner. Sensitivity of HSCs to thrombopoietin depends on 

alternative splicing of the receptor MPL, which is expressed as a full-length or as 
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a truncated, dominant-negative isoform; the RNA-binding protein OTT1 (also known 

as RBM15) determines the relative abundance of the two isoforms through alternative 

splicing232. Accordingly, by regulating the mRNA splicing of a key gene, HSCs can fine-

tune their readiness to exit the quiescent state.

Splicing can also be repressed, leading to intron retention233. Transcript isoforms that retain 

introns accumulate in quiescent MuSCs and HSCs231,234,235. In MuSCs, overexpression of 

the oncogene and proliferation regulator DEK results in intron excision of intron-retaining 

mRNAs, which is followed by MuSC activation234 (Figure 4). Depletion of DEK blocks 

intron excision and prevents cell cycle entry234, indicating that intron retention is key 

for quiescence maintenance. Loss of DEK triggers HSC activation and diminished self-

renewal236, but whether this involves altered intron retention is unknown.

Nuclear export.—Mature mRNAs are exported to the cytoplasm for translation237. 

Unsurprisingly, deletion of the gene encoding the mRNA export protein THO complex 

subunit 5 (THOC5) homolog leads to a dramatic loss of HSCs238, likely due to general 

toxicity of the loss of RNA export. Cells can regulate the export of specific RNAs. Quiescent 

NSCs in zebrafish express miR-9, which forms a complex with Argonaute (AGO) proteins, 

a component of the RNA-induced silencing complex, and accumulates in the nucleus239. 

Nuclear accumulation of miR-9 leads to quiescence maintenance, whereas cytoplasmic 

retention of miR-9 leads quiescence exit, although the downstream mRNA targets of miR-9, 

and whether any target mRNA is co-transported with it, remain unclear239.

RNA regulation in the cytoplasm

Following export into the cytoplasm, the mature mRNA can be subjected to several 

regulatory processes that control when and where a protein is produced. These mechanisms 

include RNA degradation by small RNAs, as well as RNA degradation by RNA-binding 

proteins. Transcripts can also be stored in mRNA granules. In the following sections, we 

discuss how these post-transcriptional mechanisms regulate processes related to stem cell 

quiescence (Figure 5).

RNA degradation by microRNAs.—Mammalian cells can degrade mRNA through 

several classes of small RNAs, chiefly among them miRNAs. miRNAs are processed 

from precursors by Dicer and other ribonucleases and target mRNAs through sequence 

complmantarity (mostly) to 3’UTRs, in association with Argonaute proteins. miRNAs 

are well known to affect the quiescent state240 (Figure 5). Conditional deletion of Dicer 
results in activation and apoptosis in MuSCs and in apoptosis and a self-renewal defect 

in HSCs241,242 (Figure 5a,c). These phenotypes are at least partly due to disrupted miRNA-

mediated mRNA degradation. MuSCs maintain quiescence by expressing miR-489 and 

miR-708, which downregulate DEK and tensin 3 (TNS3) mRNAs, respectively242,243. 

Overexpression of miR-489 or miR-708 prolongs quiescence, whereas their depletion 

triggers quiescence exit. Finally, quiescent MuSCs use miR-195 and miR-497 to destabilize 

mRNAs encoding the cell cycle factors CDC25A (also known as M-phase inducer 

phosphatase 1), CDC25B (also known as M-phase inducer phosphatase 2) and CCND2 

(also known as G1/S-specific cyclin D2), thereby supporting quiescence maintenanace244. In 
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HSCs, miR-21 decreases PDCD4 expression and function in the NFκB pathway to maintain 

HSC quiescence. Loss of miR-21 results in activation, whereas its overexpression prevents 

activation245 (Figure 5a).

In contrast to MuSCs and HSCs, deletion of Dicer has no apparent effect on quiescence 

maintenance in NSCs or HFSCs, but leads to a loss of activated progenitors and subsequent 

defects in neurogenesis or hair cycle progression, respectively246–248. Nevertheless, 

individual miRNAs are important for quiescence in both NSCs and HFSCs. In NSCs, 

miR-204 controls quiescence by enabling the degradation of the mRNAs of the pro-

activation factors MEIS2 and SOX11 (Ref.249). However, quiescent NSCs acquire miR-204 

from the choroid plexus and do not depend on Dicer for its synthesis249. In HFSCs, miR-29a 

and/or miR-29b1 destabilize cyclin mRNAs and components of the WNT signaling pathway 

(a potent morphogen pathway that controls cell expansion in mouse and human HFSCs, as 

well as in mouse MuSCs, whereas it maintains quiescence in mouse HSCs250–254), and loss 

of miR-29a and miR-29b1 results in activation250 (Figure 5a).

As quiescent stem cells become active, the miRNAs that prevent activation are 

downregulated. MuSCs undergoing activation decrease the expression of miR-195 and 

miR-497, resulting in increased stability of CDC25A, CDC25B and CCND2 (Ref.244). In 

parallel, the stem cells induce the expression of new miRNAs network that destabilizes 

mRNAs involved in quiescence maintenance. HSCs lacking miR-132 and miR-212 have 

stable FOXO3 mRNA levels and are more quiescent, show better engraftment and less 

apoptosis, and undergo slower activation following stimulation by lipopolysaccharides 

(Figure 5b)255. The transcription factor FOXO3 plays a role in maintaining and establishing 

the quiescent state256,257. Conversely, to establish the quiescence program, the cell needs 

to suppress the ongoing activation program. This may involve the degradation of specific 

transcripts. However, to the best of our knowledge, no studies yet have directly investigated 

the role of RNA degradation in the process of quiescence entry. Nevertheless, many studies 

of miRNAs report on decreased stem cell numbers following regeneration, hinting at a 

change in self-renewal and/or quiescence entry243,258,259. For example, long term depletion 

of miR-708 leads to apoptosis-independent reduction in MuSC numbers243 (Figure 5c).

small-RNA-independent RNA degradation.—In addition to miRNAs, quiescent stem 

cells use small-RNA-independent mechanisms to destabilize specific transcripts. Quiescent 

MuSCs express the mRNA decay activator TTP (also known as ZFP36), which degrades 

MyoD mRNA190 (Figure 5a). TTP loss results in MyoD mRNA accumulation and MuSC 

activation190. By contrast, Ttp deletion in HSCs does not affect quiescence260, possibly 

due to redundancy with its family members. MuSCs also express the RNA-binding 

protein (RBP) AUF1 (also known as HNRNPD), which targets for degradation transcripts 

containing AU-rich elements. MuSCs lacking AUF1 accumulate matrix metalloproteinase 9 

(MMP9) mRNA, resulting in increased matrix remodeling and reduced quiescence entry261. 

In HSCs, deletion of the gene encoding the RBP and m6A reader YTHDF2 leads to 

stabilization of methylated mRNAs that encode transcription factors such as TAL1, which 

in turn increases the numbers of quiescent HSCs216 (Figure 5a). RBPs can also stabilize 

mRNAs262, for example as shown by the function of ELAV proteins on the MSI1 mRNA in 

NSCs263,264.
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RNA storage.—Storage of mRNA is an intriguing possible mechanism of cellular memory 

of the activated state and priming of activation265. Processing bodies [G] (P-bodies) and 

RNA granules [G] store RNA and are key for stem cell differentiation and lymphocyte 

activation due to their regulation of differentiation and cell cycle factors266,267, yet they 

are poorly studied in the context of stem cell quiescence. The RNA granule protein 

FMRP is highly expressed in quiescent MuSCs and NSCs and its loss causes aberrant 

activation268–270. In quiescent MuSCs, miR-31 ensures the sequestration of its target mRNA 

myogenic factor 5 (MYF5; a myogenesis factor) in RNA granules containing the RNA 

helicase DDX6 (Figure 5a). Antagomirs against miR-31 result in loss of RNA granules 

and in MuSC activation194. Moreover, blocking RNA granules disassembly by inhibition of 

phosphatase 2A activity prevents MYF5 protein accumulation194. When stem cells undergo 

activation, they dissolve the RNA granules, and forced maintenance of RNA granules 

prolongs quiescence in MuSCs194. It is unclear whether MuSCs accumulate the MYF5 RNA 

in the quiescent state or during quiescence entry. In oocytes (see below), DDX6 is essential 

for establishing quiescence271. In the absence of DDX6, oocytes do not form RNA granules, 

fail to repress PI3K–AKT signaling and continuously proliferate271 (Figure 5c).

Protein synthesis and degradation

Quiescent stem cells show low levels of mRNA translation, even though the core 

components of the translation machinery are expressed26,75,98,272–275. Quiescent HSCs 

express similar levels of core rRNAs and ribosomal proteins compared to their activated 

counterparts98,275. Nevertheless, quiescent stem cells increase protein translation during 

activation26,75,98,272–274. The core translation machinery, including rRNA and ribosomal 

proteins, is dynamically regulated in both quiescent and activating stem cells26,276,277.

RNA folding.—To be translated, mRNAs need to be (un)folded such that the ribosome 

can access the start codon. 5’UTRs of mRNAs can contain regulatory elements that 

affect mRNA folding and accessibility, and that can affect activation of quiescent stem 

cells. Expression of DHX36, a helicase that unwinds RNA G-quadruplex (rG4) structures, 

increases with MuSC and HSC activation and its loss resulted in an activation defect278,279. 

In MuSCs, DHX36 specifically regulates the translation of GNAI2 mRNA by unwinding its 

5′ UTR rG4 structures278.

Translation initiation.—HSCs not expressing the ribosome assembly factor Notchless 

protein homolog 1 (NLE1) accumulate immature ribosomal RNAs and exit quiescence280 

(Figure 5a). Deletion of the transcription factor RUNX1 in HSCs similarly leads to reduced 

ribosome biosynthesis and protein translation and reduced HSC activation281. Among 

the direct targets of RUNX1 are ribosomal genes and rRNAs281. In MuSCs, eukaryotic 

translation initiation factor 2 alpha (eIF2α) is phosphorylated to inhibit translation273. 

Following the replacement of the eIF2A gene in MuSCs by a mutant gene that renders 

the protein resistant to phosphorylation, MuSCs undergo activation and fail to self-renew273 

(Figure 5a,c).

Although phosphorylated eIF2α generally inhibits translation, certain mRNAs escape this 

inhibition. The 5′ UTR of the TACC3 mRNA (encoding a mitotic spindle stability factor) 
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contains translation-inhibiting upstream open reading frames (uORFs); in stress conditions, 

translation of this mRNA is anabled by phospho-eIF2α-mediated readthrough of these 

uORFs282. Loss of TACC3 results in a MuSC activation defect, likely due to defective 

spindle formation282. Cytoplasmic polyadenylation element binding protein 1 (CPEB1) 

promotes MyoD1 protein synthesis by binding to the cytoplasmic polyadenylation elements 

within its 3’ UTRs to regulate MuSC activation and muscle regeneration283. In contrast to 

HSCs, in MuSCs, NLE1 increases early during activation, and conditional deletion of Nle1 
results in accumulation of unprocessed rRNAs and in prolonged quiescence277 (Figure 5b).

The fact that manipulation of ribosome biosynthesis has immediate effects on stem-cell 

quiescence exit is somewhat surprising, since, at least in HSCs, there is no shortage in 

functional ribosomes98. A possible mechanism for these immediate effects could be the 

biogenesis and activity of specific, specialised ribosome subunits.

Translation repression.—Cells can repress the translation of specific mRNAs through 

RBPs or miRNAs284. Quiescent HFSCs express the Sonic Hedgehog (SHH) mRNA, 

but repress its translation through the RBP Musashi to maintain the quiescent state36. 

Loss of Musashi leads to SHH signaling and HFSC activation, whereas induced 

overexpression of Musashi prolongs telogen36 (Figure 5a). Similarly, quiescent MuSCs 

express the mRNA of the activation factor MyoD, but repress its translation through the 

RBP Staufen-134. Loss of Staufen-1 leads to MyoD translation and MuSC activation34. 

Staufen-1–RNA immunoprecipitation experiments revealed that its main targets are mRNA 

of cell cycle regulators34. Quiescent NSCs express the mRNA of the centromose protein 

Ninein285. The exon-junction complex [G] binds the Ninein mRNA and prevents its 

translation, while enabling its transport to centrosomes for localized translation285. Finally, 

miRNAs can repress translation by targeting the AGO2-containing RNA-induced silencing 

complex to mRNAs. AGO2 enables translation repression and loss of AGO2 limits HSC 

activation286,287. Quiescent MuSCs in hind limb muscles maintain the quiescent state 

through miR-206-mediated translational repression of PAX3 mRNA; loss of miR-206 results 

in PAX3 translation and MuSC activation195.

Translation depends on mTORC1 activity (Figure 5b). Quiescent NSCs maintain low 

mTOR signaling by expressing MFGE8 (also known as lactadherin)288. Loss of MFGE8 

induces mTOR signaling and subsequent NSC activation, which can be rescued with 

the mTOR inhibitor rapamycin288. Loss of mTOR limits activation in HSCs, whereas 

mTOR signalling gain-of-function induces activation and limits self-renewal152. MuSCs, 

FAPs and HSCs can enter an alert state in response injury-induced systemic signals, in 

which they remain quiescent, but show active mTOR signalling and can enter the cell 

cycle more rapidly73,74. Deletion of Rptor (which encodes RAPTOR) or Met prevents the 

alert response73. Restraining the activity of the mTOR–eIF4EBP1 and mTOR–S6K1 (also 

known as RPS6KB1) axes is crucial for self-renewal 150,152,289. Finally, tRNA processing 

modulates translation; processing of tRNA-derived stress-induced small RNAs (tiRNAs) 

by the RNase angiogenin was shown to maintain HSC quiescence290. Transfection of one 

specific tRNA precursor, tiRNA-Gly-GCC, can block translation in HSCs, which leads to 

increased self-renewal290.
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Protein degradation.—Cells can regulate protein abundance through targeted protein 

degradation. E3 ubiquitin ligases covalently link ubiquitin moieties to proteins to target 

them for proteasome-mediated degradation (see more on protein modifications below). 

HSCs and MuSCs undergoing activation show increased ubiquitin expression, global protein 

ubiquitylation and proteasome activity291,292 (Figure 6). Nevertheless, the expression of 

some E3 ubiquitin ligases in quiescent HSCs and NSCs declines with activation35,293–295, 

indicating that in addition to roles in quiescence exit, protein degradation has roles in 

quiescence maintenance. Deletion of the genes encoding the E3 ubiquitin ligases FBW7, 

HUWE1 or MAEA results in HSC activation293–295. FBW7 prevents the accumulation 

of MYC294, whereas MAEA targets cytokine receptors for degradation through ubiquitin-

dependent internalization and autophagy294,295 (Figure 6a). In contrast to HSCs, loss of 

HUWE1 has no apparent effect on quiescent NSCs35.

Quiescent NSCs express the mRNA, but not the protein of the transcription factor ASCL1 

due to immediate degradation of the newly translated protein296. The ASCL1 protein can 

be stabilized through binding the transcription factor E47. However, in quiescent NSCs, 

E47 is sequestered by ID4, rendering it unable to bind ASCL1. Loss of ID4 prevents 

this sequestration, causing ASCL1 accumulation and NSC activation296. Quiescent NSCs 

degrade epidermal growth factor receptor (EGFR) through LRIG1-dependent ubiquitylation 

followed by lysosomal degradation. In the absence of LRIG1, NSCs show increased EGFR 

signaling and activation16,297 (Figure 6a). Overexpression of constitutively active EGFR can 

force quiescent NSCs to undergo activatation298. Finally, deletion of the gene encoding 

the endoplasmic reticulum associated degradation [G] protein SEL1L results in HSC 

activation299. SEL1L induces degradation of the mTOR activator RHEB and loss of RHEB 

can rescue the SEL1L phenotype299.

In HFSCs undergoing activation, SIRT7 deacetylates the transcription factor NFATC1, 

which leads to its proteasomal degradation300. In the absence of SIRT7, NFATC1 is not 

degraded and the cells stay quiescent300 (Figure 6b). In MuSCs, deletion of the essential 

protoasome component RPT3 (also known as 26S proteasome regulatory subunit 6B) results 

in reduced proteolytic activity and proliferation and in apoptosis after injury292. Chaperone-

mediated autophagy is essential for HSC and MuSC activation138,301. As discussed above, 

NSCs undergoing activation upregulate EGFR expression and signaling and downregulate of 

ID4 in order to stabilize ASCL1 (Ref.296,298). In activated MuSCs and HSCs, the cells that 

express high levels of ID1 show slow cycling and increased self-renewal302,303, suggesting 

that E47 sequestration by ID proteins could be important for quiescence exit in other stem 

cell populations as well.

In addition to clearing proteins involved in regulation of the quiescent state, stem cells must 

also clear protein aggregates. NSCs undergoing activation use the intermediate filament 

vimentin to localize proteasomes to protein aggregates and facilitate protein turnover, and 

this clearance of aggregates allows the NSCs to become active304. Loss of vimentin causes a 

decline in protein degradation and a delay in NSC activation304.

Stem cells entering the quiescent state must dispose of the proteins that drive activation 

and the cell cycle. Unsurprisingly, targeted protein degradation is therefore an important 
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mechanism for quiescence entry. In NSCs, HUWE1 ubiquitylates the ASCL1 to induce its 

degradation and block transcription of cyclin D. This is key for entry into the quiescent 

state, as NSCs without HUWE1 fail to enter the quiescent state, resulting in NSC depletion 

and loss of neurogenesis35 (Figure 6c). HUWE1 enables re-quiescence also in HSCs, 

where it induces the degradation of N-MYC293. HSCs lacking the E3 ligase MAEA fail 

to reconstitute a quiescent stem cell population, suggesting a defect in quiescence entry295. 

NSCs without LRIG1 have more surface EGFR and are less responsive to quiescence-

inducing BMPs16.

Post-translational modifications

All cells regulate protein function through post-translational modifications (PTMs), of 

which some of the best characterized are the histone PTMs, which have epigenetic roles. 

However, few studies actually examine the role of a specific modification of a specific 

protein in the regulation of stem cell quiescence. Loss of the phosphatase PTEN results 

in activation of HSCs, NSCs, HFSCs and MuSCs and gradual depletion of the stem cell 

pool98,177–179,305 (Figure 2c). Genetic interference with kinase signaling, such as the PI3K 

or MAPK pathways, affects quiescence130,144–149,176. Loss of glycosylation enzymes leads 

to activation of HSCs, MuSCs, and NSCs, possibly due to changes in the abundance of 

glycosylated Notch proteins306–308. However, none of these studies evaluate the effect of the 

modification on protein abundance and the quiescent state.

Histones bear many PTMs to regulate chromatin accessibility. Histone acetylation, 

methylation, phosphorylation and ubiquitylation have all been described in quiescent stem 

cells2,309. As discussed above, the gene encoding eIF2α was replaced in MuSCs with a 

mutant gene that encodes eIF2α that cannot be phosphorylated at Ser51, leading to MuSC 

activation, thereby directly demonstrating the importance of this particular PTM in stem 

cell quiescence273. MuSCs bearing a mutation in the gene encoding the transcription factor 

PAX7 rendering the protein insensitive to Lys193 acetylation show decreased quiescence 

entry after injury, due to changes in the protein’s DNA binding capacity310. Similarly, 

HFSCs bearing a mutation in the gene encoding the transcription factor NFATC1 rendering 

the protein insensitive to Lys612 acetylation, show decreased NFATC1 stability and 

quiescence exit300. Other known PTMs such as sumoylation, crotonylation, citrullination 

and glycosylation are yet to be studied in quiescent stem cells.

Post-transcriptional regulation of germ line quiescence

One unique stem cell model that is well-known for post-transcriptional regulation of the 

quiescent state is the oocyte311–315. Oocytes are adult-derived germ line stem cells that can 

maintain a quiescent state for decades until they are activated in response to luteinizing 

hormone. Upon their activation, oocytes either proceed to ovulation or die, but they never 

self-renew. In contrast to somatic stem cells, oocytes undergo chromatin condensation and 

are arrested in the prophase of the first meiosis stage. Although low levels of transcription 

can occur at the condensed chromatin, oocytes largely depend on post-transcriptional 

regulation of pre-synthesized mRNAs to regulate the quiescent state. Oocyte quiescence 

maintenance and exit depend on a set of key genes similar to somatic stem cell quiescence. 
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Oocytes express high levels of CDK inhibitors and low levels of cyclins. Mice lacking p27 

are infertile and have multi-oocyte follicles, consistent with a loss of quiescence316. Rb 

is unphosphorylated and active in oocytes and its conditional deletion results in activation 

and formation of teratomas317. Conditional loss of Cdk1 results in oocytes that cannot exit 

quiescence318.

To enter quiescence, oocytes express ZFP36L2, which degrades the mRNAs of transcription 

regulators to ensure transcriptional gene silencing315. Like somatic stem cells, oocytes 

express mRNA isoforms with different UTRs, which results in different levels of translation. 

However, these mRNAs are not yet polyadenylated. Instead, translation is regulated by 

cytoplasmic polyadenylation by CPEB1 upon activation319, which enables mRNA loading 

into ribosomes320. Activated oocytes undergo a shift towards isoforms with longer 3’ 

UTRs321. However, in contrast to somatic stem cells, this shift is caused by differences 

in mRNA degradation rather than by alternative cleavage and polyadenylation. Surprisingly, 

miRNAs, though present, are unable to repress their target genes due to lack of expression 

of Argonaute proteins, which explains the stability of the long 3’UTR isoforms321. Activated 

oocytes do degrade 20% of their transcriptome throug the activity of the m6A reader 

YTHDF2. Loss of YTHDF2 causes infertility due to apoptosis of activated oocytes after 

completion of meiosis322,323. Finally, recent work has shown that quiescent oocytes store 

maternal mRNAs encoding such RNA degradation factors in specialized mitochondria-

associated structures marked by Zygote Arrest 1 (ZAR1)324. Although these regulatory 

mechanisms might be unique to the oocyte, they can serve as examples of potential new 

mechanisms waiting to be uncovered in the regulation of somatic stem cell quiescence.

Conclusions and future directions

Quiescent stem cells are essential for tissue homeostasis and regeneration and their 

dysfunction contributes to aging. Genetic loss-of-function studies revealed that stem cells 

actively maintain the quiescent state and recent work has begun to uncover layers of 

regulatory control that act post-transcriptionally to fine-tune the amount of protein that is 

produced. These studies reveal a dramatic and dynamic complexity beyond transcriptional 

profiles that underscores how stem cell quiescence and its related processes are heavily 

regulated, biologically complex phenomena. Moreover, it highlights the difficulties of 

extrapolating transcriptome data to protein levels.

Adult stem cells offer the potential to develop new cell-based therapies. The post-

transcriptional regulatory mechanisms offer potential footholds to improve stem cell 

function in vivo. Antisense oligonucleotides can affect quiescent stem cell processes 

in vivo by targeting alternative polyadenylation, miRNA-dependent regulation, or 

translation34,195,201,239,325. This opens the door to therapeutics to enhance quiescent stem 

cell function, analogous to the antisense oligonucleotide technologies that are currently in 

clinic. Moreover, improved understanding of the post-transcriptional mechanisms that enable 

quiescence entry could enable interventions to improve stem cell potency following ex vivo 

stem cell expansion by pushing the expanded stem cells into the quiescent state for improved 

autologous transplantation. Allowing the cells to expand before a return to quiescence 

would also circumvent the barrier to gene therapies posed by the lack of homologous 
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recombination in the quiescent state. Finally, cancer stem cells [G] can adopt a quiescent 

state, which renders them resistant to therapy, and these quiescent cancer stem cells are 

thought to contribute to post-treatment relapse326,327. Many of the signaling pathways that 

are important for stem cell quiescence (e.g. Notch, mTORC, p38 MAPK, and CDKN1B), 

also play a role in cancer stem cell quiescence326. Therefore, a better understanding of the 

mechanisms that regulate stem cell quiescence could help pave the way toward therapeutics 

that specifically target the quiescent cancer stem cell, either by activating those cells to 

render them sensitive to other therapies, or by prolonging quiescence to prevent activation 

and relapse.

While the studies discussed in this review offer a glimpse of the regulatory mechanisms 

of quiescence maintenance, exit, and entry, ultimately, the field needs better tools to 

follow cells as they undergo the different processes. The identification of specific cell 

surface markers for quiescent stem cells will facilitate the prospective isolation and study 

of these cells. The field needs better lineage tracers to track cells as they enter the 

quiescent state. One challenge is that under certain conditions, the first division may be 

asymmetric, resulting in a daughter cell that immediately enters the quiescent state. This can 

be followed with DNA nucleotide analogs, but the time frame may be too short to allow 

for genomic recombination to activate lineage tracers. One exiting area of development is 

DNA barcoding, which has allowed for the fate mapping and simultaneous transcriptional 

profiling of single HSCs after in vivo or ex vivo activation of a barcode library27,328. 

A further challenge in the study of stem cell quiescence is that isolation of quiescent 

stem cells from their native environment tends to mimic injury and leads to cell cycle 

entry and changes in gene expression14,43,329. Accordingly, there is a need for improved 

models for the study, and manipulation, of ex vivo stem cell quiescence14,18,330,331. 

For example, BMP4 can induce in vitro quiescence in NSCs, and the HDAC6-inhibitor 

Tubastatin A can induce in vitro quiescence in MuSCs21,96,186,232,239,307,332–334. Finally, 

the majority of studies of stem cell quiescence have been done using mice. The field 

needs a better understanding of stem cell quiescence in other model organisms and would 

benefit from a non-human primate model to enable translational research. In summary, the 

post-transcriptional regulation of stem cell quiescence is an exciting and open field with the 

potential to impact regenerative medicine and our understanding of stem cell biology.
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Refer to Web version on PubMed Central for supplementary material.

GLOSSARY

Differentiate:
Differentiation is the process by which a stem cell withdraws from the cell cycle and adopts 

specialized tissue functions, while losing stem cell functions such as the ability to self-renew

Embryonic stem cells:
Cells derived from the blastocyst of the embryo and able to form all tissue lineages

Germline stem cells:
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Cells that can generate the haploid gametes

Induced pluripotent stem cells:
Cells created from somatic cells through the overexpression of specific transcription factors, 

rendering them immortal and able to form all tissue lineages

Adult stem cells:
Rare populations of cells that are found in the body throughout the majority of postnatal life 

and give rise to a limited number of mature cell types that build the tissue in which they 

reside

Autologous stem cell transplantation therapies:
Procedures in which stem cells are isolated from a person and placed back following 

expansion and/or modification such as gene correction

Stem cell activation:
The process by which a quiescent stem cell exits the quiescent state and enters the cell cycle

Trithorax group:
family of proteins that modify or remodel histones to activate genes and keep them active

Non-homologous end-joining:
A mechanism of DNA double-strand breaks repair without the need for a homologous 

template

ATR:
A serine/threonine-protein kinase that senses persistent single-stranded DNA and activates a 

DNA damage checkpoint, leading to cell cycle arrest

Processing bodies:
Cytoplasmic ribonucleoprotein (RNP) granules primarily composed of translationally 

repressed mRNAs

RNA granules:
Non–membrane-bound organelles composed of RNA and protein

Exon-junction complex:
Protein complex that forms on a pre-messenger RNA strand at the junction of two exons 

immediately after splicing

Endoplasmic reticulum associated degradation (ERAD):
A pathway that targets misfolded proteins in the endoplasmic reticulum for ubiquitylation 

and proteasomal degradation

Cancer stem cells:
Cancer cells with stem cell properties such as self-renewal; some cancer stem cells can adopt 

a quiescent state
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Bulge:
Morphologically distinct area in the hair follicle in between the opening of sebaceous gland 

and the attachment site of the arrector pili muscle that functions as the HFSC niche
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BOX 1:

Changes or loss of stem cell quiescence during aging.

Aging disrupts many aspects of stem cell functionality and impairs tissue homeostasis 

and regeneration353,354. Aged quiescent stem cells (stem cells obtained from aged mice) 

show a functional decline, which is linked to changes in the quiescent state355–358. 

Strikingly, despite this cell-intrinsic dysfunction, the transcriptomes of aged neural stem 

cells (NSCs) and skeletal-muscle stem cells (MuSCs) are remarkably similar to the 

transcriptomes of cells obtained from youg mice40,54,359. This finding indicates that 

post-transcriptional gene regulation mechanisms have a role in age-related quiescent stem 

cell dysfunction.

A number of observations support this idea. Over the course of aging, there is a global 

switch to expression of longer mRNA isoforms in populations of quiescent HSCs360, 

hinting to dynamic regulation of alternative cleavage and polyadenylation of mRNA 

and/or of transcript stability. Aged MuSCs accumulate the alternative polyadenylation 

factor U1 snRNA, and as a result express longer isoforms of CD47, and show reduced 

proliferation361. Aged NSCs accumulate ubiquitinated proteins and protein aggregates, 

suggesting changes in proteostasis139,362, 343,. The E3 ubiquitin ligase FBXW7, which 

ensures degradation of MYC and NOTCH1 during activation out of the quiescent 

state, is downregulated in aged hair follicle stem cells (HFSCs)363,364. However, few 

studies have directly investigated the role of post-transcriptional regulation in aged 

quiescent stem cells or how it contributes to aging phenotypes of the quiescent stem 

cell. In one example, aged HFSC were shown to produce the protease ELANE, which 

degrades the collagen COL17A1, resulting in premature activation and depletion of the 

HFSC pool363. Induction of COL17A1 exprression could rescue the loss of quiescent 

HFSCs363. However, a better understanding of the RNA regulation in aged quiescent 

stem cells is needed.
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Figure 1: Types of quiescent stem cells and their features.
A) Populations of quiescent stem cells have been identified in several tissues. The bone 

marrow harbors populations of quiescent hematopoietic stem cells (HSCs) 337, which are 

established in mice up to six weeks postnatally60. HSCs are required to generate the 

progenitors that sustain the daily production of billions of blood cells and can regenerate 

the complete blood-cell system following transplantation or injury46. Around 6% of mouse 

HSCs enter the cell cycle each day, though distinct subsets display different activation 

parameters46,338,339. Skeletal muscle contains a population of quiescent stem cells known 

de Morree and Rando Page 38

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2023 December 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as skeletal-muscle stem cells (MuSCs). MuSCs are established around two months after 

birth in mice340. MuSCs are essential to generate the progenitors that regenerate skeletal 

muscles341–343. Around 0.3–1.0% of mouse MuSCs enter the cell cycle each day, depending 

on the muscle, and their progeny fuse with mature myofibers, though their impact on 

muscle homeostasis is limited195,344,345. A quiescent population of mesenchymal stem 

cells also called fibro-adipogenic progenitors (FAPs) supports muscle regeneration and 

homeostasis346,347. Around 1% of mouse FAPs enters the cell cycle daily348. The adult brain 

hosts populations of quiescent neural stem cells (NSCs) in the subventricular zone lining the 

lateral ventricles and in the subgranular zone of the dentate gyrus in the hippocampus349. 

NSCs are established in mice by the second week after birth161. They are required to 

generate the progenitors that sustain continued formation of new neurons, astrocytes and 

oligodendrocytes. Around 12% of mouse NSCs enter the cell cycle each day350. The 

hair follicles in the skin harbor populations of quiescent hair follicle stem cells (HFSCs). 

Hair follicles undergo cyclic rounds of growth (anagen), degeneration (catagen) and rest 

(telogen), termed the “hair cycle”351. Quiescent HFSCs are established by 3 weeks after 

birth at the end of the first hair cycle in mice36. During anagen, HFSCs are essential to 

generate the progenitors that sustain hair growth. They generate the progeny that will start a 

new hair cycle. Around 0.5% of mouse HFSCs in the bulge [G] enter the cell cycle each day 

during telogen352. Overview of the tissue, time of establishment and spontaneous activation 

rates of five common adult quiescent stem cell types: HSCs46,60,337–339, MuSCs195,340–345, 

FAPs346–348, NSCs161,349,350, and HFSCs36,351,352.

B) Quiescent stem cells display a number of distinct features compared to their activated 

counterparts and undergo different processes, including maintenance of the quiescent state, 

exit from the quiescent state (activation), and re-entry into the quiescent state (re-quiescence, 

or self-renewal). At any point in time, quiescent stem cells must ensure survival and may 

undergo apoptosis. Quiescent stem cells possess several features distinct from their activated 

counterparts, including small cell size, low RNA and protein content, low mTOR signaling 

and mitochondrial activity, high use of glycolysis and more heterochromatin, as well as stem 

cell type specific expression of transcription factors PAX7 (Paired Box 7, MuSCs), TCF3 

and TCF4 (Transcription Factor 3 and 4, HFSCs), HOXB5 and TCF15 (Homeobox B5 and 

Transcription Factor 15, HSCs), and ID3 (Inhibitor of DNA Binding 3, NSCs).
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Figure 2: Key pathways active in quiescent stem cell processes.
Schematic highlighting key signaling pathways that are active during quiescence 

maintenance, exit, or entry. A) Signals from the niche to the quiescent stem cell that 

maintain the quiescencent state, such as ligands for Notch receptors including DLL1 (delta-

like protein 1), and quiescence factors including BMP (bone morphogenic protein), TPO 

(thrombopoietin), calcitonin, and COLV (collagen V) to their respective receptors NOTCH, 

BMPRII (bone morphogenic protein receptor 2), TPOR (thrombopoietin receptor), and 

CALCR (calcitonin receptor). Such receptor-mediated signaling induces gene expression 

patterns that maintain the quiescent state, via signalling intermediates such as NICD-RBPj, 

and SMAD2–4. The expression of cell-cycle inhibitors such as p21 similarly invokes 

quiescence maintenance via inhibition of CDK4 or CDK6, which ensures that APC/C 

(anaphase promoting complex/cyclosome) and Rb (retinoblastoma) block E2F and S-phase 

entry. B) In response to growth factors, combined with the loss of signals listed in panel (A), 

phosphorylation cascades such as the PI3K-AKT pathway and the p38 MAP kinase pathway 

induce quiescence exit and cell cycle entry. C) To exit the cell cycle and enter the quiescent 

state, stem cells interact with NOTCH ligands and suppress the phosphorylation cascades 

listed in panel (B). In activated NSCs, TNFR1 (tumor necrosis factor 1 receptor) signaling 

through p38 MAP kinase is key for re-entry into the quiescent state. PTEN (phosphatase and 

tensin homolog), MEK1 (MAPK/ERK kinase 1), and ITPKB (inositoltrisphosphate 3-kinase 

b) inhibit AKT, while Sprouty1 (SPRY1) suppresses ERK signaling to stop mitogenic 

signaling.
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NICD, notch intracellular domain; RBPj, recombination signal binding protein for 

immunoglobulin kappa j region; CDK4/6, cyclin dependent kinase 4/6; PI3K, 

phosphatidylinositol-3 kinase.
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Figure 3: Quiescence and the cell cycle.
A) Progression of somatic (stem) cells through the G1, S, G2 and M phases of the 

cell cycle involves intricate regulation by cyclins, cyclin-dependent kinases (CDKs), and 

their inhibitors. Central to cell-cycle entry and exit is the phosphorylation status of the 

retinoblastoma (Rb) proteins. Unphosphorylated Rb is chromatin-bound and blocks E2F 

transcription factors from inducing key proliferation genes. In pro-growth conditions, cyclin 

D activates CDK4 and CDK6, which phosphorylate (P) Rb and enable transcription of 

E2F target genes. Somatic stem cells enter the quiescent state early in G1, as a result 

of the downregulation of G1 cyclins — cyclin D and cyclin E (not shown) — and the 

upregulation of the CDK interacting protein (CIP) and kinase inhibitory protein (KIP) family 

of inhibitors, including p21, p27 and p57, which inhibit CDK4 and CDK6 (not shown). 

Quiescent stem cells can enter an ‘Alert’ state characterized by mTOR signalling and a 

shorter time to cell-cycle entry. B) The first division of the activation of quiescent stem 

cell is considerably longer than subsequent cell divisions. It is currently unclear whether 

that first division consists of a long G0 phase (top), a long G1 phase (middle), or several 

G0 sub-phases following each other in manner similar to the conventional cell cycle phases 

(bottom).
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Figure 4: Post-transcriptional regulatory mechanisms in the nucleus that control stem cell 
quiescence.
Quiescent stem cells regulate mRNA and protein levels through a variety of post-

transcriptional mechanisms. Selection of a cleavage and polyadenylation site (PAS) at the 

pre-mRNA can be blocked by cleavage and polyadenylation (CPA) factors. For example, 

polyadenylate-binding nuclear protein 1 (PABPN1) and U1 small nuclear RNA (U1 snRNA) 

block the use of a proximal PAS and thus favour the selection of a distal PAS and production 

of a mRNA isoform with a longer 3’ untranslated region (3’UTR); by contrast, NUDT21 

(Nudix Hydrolase 21, also known as Cleavage and Polyadenylation Specificity Factor 

25 KDa Subunit) favours the selection of a proximal PAS and production of a mRNA 

isoform with a shorter 3’UTR. The sequence of the pre-mRNA can be modified by ADAR 

(adenosine deaminase RNA specific) proteins, which deaminate adenosine nucleotides into 

inosine (A-I editing); by METLL methyltransferases that produce N6-methyladenosine 

(m6A), and by the SUN2 methyltransferase, which produces 5-methylcytosine (m5C). In 

addition, the mRNA sequence can be modified by alternative splicing; for example, the 

protein DEK (DEK Proto-Oncogene) can temporarily delay intron removal. The mature 

capped, spliced and polyadenylated mRNA is subsequently transported to the cytoplasm.

METTL3,14, N6-adenosine-methyltransferase complex catalytic subunit 3,14; m6A, N6-

Methyladenosine; m5C, 5-Methylcytosine; c-MPL, myeloproliferative leukemia protein, 

also known as thrombopoietin receptor; SUN2, sad1 and UNC84 domain containing 

2; PAX3, paired-box 3; PDGFRa, platelet-derived growth factor receptor alpha; GLS, 

glutamine synthase; MDM2, mouse double minute 2 proto-oncogene; ADAR, A-I, 

Adenosine-to-Inosine RNA editing; NOTCH, Notch receptor; MYC, m proto-oncogene; 

miR, microRNA; MYOD, myogenic differentiation 1; THOC5, THO complex 5
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Figure 5: Post-transcriptional regulatory mechanisms in the cytoplasm that control stem cell 
quiescence.
The mature mRNA can be degraded by miRNA-containing RISC complexes or RNA 

binding proteins (RBPs) with RNAse activity like TTP, stored in granules like DDX6-

containing p-bodies, or translated by ribosomes. Translation can be regulated by RNA 

binding proteins like STAU1 (Staufen 1) or by mTORC signaling, and by phosphorylation of 

eIF2a.

DDX6, DEAD-box helicase 6; MYF5, myogenic factor 5; miR, microRNA; 3’UTR, 3’ 

untranslated region; DICER, double-stranded RNA-specific endoribonuclease; RISC, RNA-

induced silencing complex; RBP, RNA-binding protein; MyoD, myogenic differentiation 

1; HNRNPD, heterogeneous nuclear ribonucleoprotein D; MMP9, matrix metallopeptidase 

9; YTHDF2, YTH N6-methyladenosine RNA binding protein 2; TAL1, T-cell acute 

lymphocytic leukemia protein 1; PDCD4, programmed cell death 4; DEK, DEK proto-

oncogene; TNS3, tensin 3; CCND2, cyclin d2; CDC25A,B, cell division cycle 25a,b; NLE1, 

notchless homolog 1; eIF2a, eukaryotic translation initiation factor 2A; MSI, musashi 

RNA binding protein 1; SSH, slingshot protein phosphatase; PAX3, paired box 3; AGO2, 

argonaute 2; mTOR1, mammalian target of rapamycin 1; MFGE8, milk fat globule EGF and 

factor V/VIII domain containing; FOXO3, forkhead box o3; AKT, AKT serine/threonine 

kinase, also known as protein kinase b.
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Figure 6: Post-translational regulatory mechanisms that control stem cell quiescence.
Once translated, the native protein can be modified with post-translational modifications 

such as phosphorylation, glycosylation, and ubiquitination, which affect protein function and 

turnover. Ubiquitinated proteins can be degraded by the proteasome and the lysosome.

FBW7, f-box and WD repeat domain containing 7; MYC, MYC proto-oncogene; Ub, 

ubiquitin; MAEA, macrophage erythroblast attacher; LRIG, leucine rich repeats and 

immunoglobulin like domains; EGFR, epidermal growth factor receptor; ID4, inhibitor of 

DNA binding 4; ASCL1, achaete-scute family BHLH transcription factor 1; SIRT7, sirtuin 

7; NFATC1, nuclear factor of activated T Cells 1; HUWE1, HECT, UBA and WWE domain 

containing E3 ubiquitin protein ligase 1.
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Table 1:

Overview of post-transcriptional mechanisms that regulate different processes in quiescent stem cells.

Mechanism
Stem cell 
model Effector Target mRNA Molecular effect

Effect on stem 
cell quiescence Refs

Alternative poly-
adenylation

MuSCs U1 snRNA high PAX3 Shorter 3’UTRs exit 195 

MuSCs U1 snRNA low PAX3 Longer 3’UTRs maintenance 195 

FAPs NA PDGFRA Intronic 3’UTRs maintenance 201 

FAPs NA PDGFRA Longer 3’UTRs exit 201 

HSCs NUDT21 high Glutaminase Shorter 3’UTRs exit 197 

HSCs NUDT21 low Glutaminase Longer 3’UTRs maintenance 197 

HSCs PABPN1 NA longer 3’UTRs entry 197 

RNA methylation (m6A 
and m5C)

MuSCs METTL3
NOTCH2 
receptor Stabilization maintenance 220 

HSCs METTL3 MYC Stabilization maintenance 215,218,219

HSCs IGF2BP2 BMI1 Stabilization maintenance 217 

NSCs
METTL3 and 
METTL14 NA Global methylation entry 223 

NSCs FTO SOCS5 Destabilization entry 335,336

HFSCs SUN2 tRNA Stabilization exit 224 

RNA editing 
(A-I)

HSCs ADAR proteins MDM2 Stabilization exit 206 

HSCs ADAR proteins pre-miR-26 Stabilization exit 206 

Intron retention
MuSCs DEK MyoD Intron excision exit 234 

HSCs DEK NA NA maintenance 236 

Alternative splicing

HSCs OTT1 high c-MPL truncated protein maintenance 232 

HSCs OTT1 low c-MPL Full-length protein exit 232 

HSCs PRMT5 NA Global isoforms maintenance 231 

MuSCs QKI ITGA7 Alternative isoforms exit 230 

Nuclear export or 
import

NSCs THOC5 NA NA maintenance 238 

NSCs miR9 NA
nuclear 
accumulation maintenance 239 

RNA storage

MuSCs DDX6 miR31, MYF5 Storage maintenance 194 

Oocytes DDX6
PI3K–AKT 
pathway Storage entry 271 

RNA degradation

MuSCs miR489 DEK Degradation maintenance 242 

MuSCs miR708 TNS3 Degradation maintenance 243 

MuSCs miR195/497 CCND2 Degradation maintenance 244 

HSCs miR21 PDCD4 Degradation maintenance 245 

NSCs miR24 SOX11, MEIS2 Degradation maintenance 249 

HFSCs miR29
WNT, BMP 
pathways Degradation maintenance 250 
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Mechanism
Stem cell 
model Effector Target mRNA Molecular effect

Effect on stem 
cell quiescence Refs

MuSCs, 
HSCs DICER NA miRNA maturation maintenance 241,242

NSCs, 
HFSCs DICER NA miRNA maturation exit 246–248

HSCs miR132/212 FOXO3 Degradation exit 255 

MuSCs miR708 NA NA entry 243 

MuSCs TTP MyoD Degradation maintenance 190 

MuSCs HNRNPD1 MMP9 Degradation maintenance 261 

HSCs YTHDF2 TAL1 Degradation maintenance 216 

RNA folding
MuSCs DHX36 GNAI2 Translation exit 278 

HSCs DHX36 NA Translation exit 279 

Translation repression

MuSCs STAU1 MyoD Repression maintenance 34 

HFSCs MSI SHH Repression maintenance 36 

MuSCs miR206 PAX3 Repression maintenance 195 

NSC MFGE8 mTORC1 Global translation maintenance 288 

MuSCs, 
HSCs, FAPs

RAPTOR or 
cMET NA Global translation exit 73,74

Translation initiation

MuSCs eIF2a NA Global translation maintenance 273 

HSCs NLE rRNA
Ribosome 
biosynthesis maintenance 280 

MuSCs NLE rRNA
Ribosome 
biosynthesis exit 277 

HSCs RUNX1 ribosomal genes
Ribosome 
biosynthesis maintenance 281 

Proteasomal degradation

HFSCs SIRT7 NFATC1
deacetylation and 
degradation exit 300 

HSCs FBW7 MYC
Proteasomal 
degradation maintenance 294 

NSCs HUWE1 ASCL1
Proteasomal 
degradation entry 35 

HSCs HUWE1 MYC
Proteasomal 
degradation entry 293 

HSCs SEL1 RHEB
Repression of 
mTORC1 maintenance 299 

NSCs VIM NA
localized 
proteasomes exit 304 

Lysosomal degradation
NSCs LRIG Surface EGFR

Lysosomal 
degradation

maintenance, 
entry 16,297

HSCs MAEA
Surface cytokine 
receptors

Lysosomal 
degradation maintenance 294,295

Protein phosphorylation

MuSCs PERK eIF2a
translation 
repression

maintenance, 
entry 273 

MuSCs, 
HSCs, 
NSCs, 
HFSCs PTEN NA NA

maintenance, 
entry 98,177–179,305
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Mechanism
Stem cell 
model Effector Target mRNA Molecular effect

Effect on stem 
cell quiescence Refs

MuSCs, 
NSCs, 
HSCs PI3K–AKT NA NA

maintenance, 
entry 130,148,149

MuSCs, 
NSCs, 
HSCs MAPK NA NA

maintenance, 
entry 130,144–147

Protein acetylation

HFSCs SIRT7 NFATC1
deacetylation and 
degradation exit 300 

HFSCs SIRT7 NFATC1 Lys612 degradation exit 300 

MuSCs
MIST1 and 
SIRT2 PAX7 Lys193 DNA binding entry 310 

Protein glycosylation

MuSCs, 
HSCs, 
NSCs

Glycosylation 
enzymes NA

Global 
glycosylation maintenance 306–308

MuSCs, 
NSCs, 
HSCs NA

NOTCH 
receptors Stability maintenance 306–308

FAPs, fibro-adipogenic progenitors; HFSCs, hair follicle stem cells; HSCs, hematopoietic stem cells; MuSCs, skeletal-muscle stem cells; NA, not 
available; NSCs, neural stem cells; UTR, untranslated region.
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