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Deep neural networks are widely successful for many tasks of image analysis, including

image segmentation. Ensemble strategies are generally used with deep neural networks not only

to enhance the performance but also to improve the robustness of predictions. In particular,

robustness is currently a limiting factor for image segmentation networks. Here we propose

3Nsemble which uses stacked generalization with a trained meta-classifier to improve image

segmentation of Electron Microscopy (EM) image data. This research, using neurobiology

data, has shown highly accurate automated segmentations of organelles that greatly benefits

the study of connectomics and moves us closer to understanding the brain and brain disorders.
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We compare prediction performance of a trained meta-classifier against simple averaging. The

additional costs of training and applying the meta-classifier is outweighed by the benefit of

improved performance. The results show improvement in performance metrics with the trained

predictions and most notably saw at least a 12% increase in Intersection Over Union (IOU) score.
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Introduction

As part of the BRAIN initiative, extensive work has been done to further the understanding

of the human brain and brain disorders [1]. A major milestone in achieving this, is to be able

to recreate a complete map of the mouse brain [2]. As a result, expert scientists are working

towards producing highly accurate imaging and segmentation tools to map the connections of

the brain. This is no small feat, as there are numerous challenges to imaging and understanding

the brain as put forth by Jeff W. Lichtman and Winfried Denk [3]. Consequentially, researchers

in the field need more robust and accessible computational tools to analyze information-rich

and diverse data without resorting to manual labeling. Additionally, keeping such tools freely

available online enables scientists, who do not have the computational resources, easy access to

quick segmentation of 3D microscopy data.

These challenges put forth have propelled the development of more accurate, efficient

and robust tools for analyzing microscopy data. A recently developed cloud based application,

CDeep3M, makes highly accurate image segmentation widely accessible to the scientific com-

munity for multiple microscopy modalities [4]. This work proposes improvements to the existing

CDeep3M prediction method.

Key terminology that is used throughout the following sections is defined below for

clarification and convenience:

• Segmentation: Labeling of objects in image data to extract meaning and aid in a variety

of applications.

• Ensemble Learning: A broad machine learning technique that combines diverse models
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to enhance prediction performance and robustness. There are many ensemble techniques

and strategies that are discussed briefly in sections 1.5 and 1.6.

• 3Nsemble: An improved version of CDeep3M that uses a trained meta-classifier to

produce better predictions.

• Meta-classifier: Used in ensemble systems to combine individual model hypotheses to

form final classification or prediction.

• Averaged prediction: Segmentation produced by using an averaging strategy to combine

predictions in an ensemble system.

• Trained prediction: Segmentation produced by using a trained neural network to combine

predictions in an ensemble system.

• Anisotropic: Data that has varying in resolution in different axes.

• Frame (fm): A 2D image that makes up one plane in a volume stack of images.
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Chapter 1

Background

This research is an interdisciplinary exploration of methods to further enhance our

analysis tools in neuroscience and computer vision. In this study, we propose improvements to

image analysis methods of microscopic images. In order to understand the research problem at

hand, we must explore topics in neurobiology, microscopy imaging, image segmentation, and

deep learning using ensemble learning.

Although the methods described in this paper apply to all types of images in general, this

research was conducted using Electron Microscopy data specifically.

1.1 Electron Microscopy

Electron Microscopy (EM) is an imaging method that utilizes an electron beam to capture

high resolution images of biological and non-biological samples. EM imaging is particularly

useful in neuroscience for imaging the brain and is one of the imaging techniques that provides

the highest resolution imaging with increasingly fast acquisition times.

The development of 3D EM techniques make it possible to visualize blocks of tissue

samples. Volume EM (VEM) allows scientists to process large volumes of data while retaining

dense low level sub-cellular information. This is very useful in the area of connectomics where

the goal is to understand and model the structural and functional interconnections of the brain

[5]. VEM data has the resolution needed to image synapses and synaptic vesicles involved in the
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transmission of neuronal messages. This low level information is crucial to understanding the

higher level structure and behavior of neurons. [6]. In combination with the ability to process

large volumes of data, VEM plays a forefront role in the journey to understand the brain.

There are two main types of EM, Transmission EM (TEM) and Scanning EM (SEM).

TEM uses a projection of transmitted electrons passed through a thin sample to create the image.

On the other hand, SEM uses a raster scanning pattern over the sample surface and produces the

image from reflected electrons. Each type has it’s own strengths and weaknesses which need

to be considered when choosing a method for a particular scientific investigation. Specifics on

the different types of EM and existing imaging technology are detailed in Briggman and Bock’s

article [7]. In this study the datasets were obtained using SEM imaging.

1.2 Challenges with Electron Microscopy Datasets

EM data can face certain challenges that need to be addressed in relation to our study

on computational image analysis methods. The biggest issue is the need for automated analysis

tools to efficiently work with the increasing amount of image data due to high-throughput VEM

[8, 6]. Additionally, a lot of existing EM data is fundamentally complicated because of the

anisotropic property of image stacks [9, 6]. This property stems from the serial section imaging

approach in which the x-y resolution is much higher than in the z plane where the slices occur.

This impacts 3D segmentation since structures can change shape and size between slices that

is not captured in the image. Thus it is a challenge to accurately segment the continuation of

structures between layers. Despite recent advancements in technology that aim to solve this

problem, the majority of existing data suffers from this property. Additionally, accessibility to

cutting edge technology that addresses this issue is difficult for the majority of research labs.

Another challenge is in the nature of preparing samples, which does not guarantee a

standardized signal to noise ratio (SNR) or intensity range in the images. This means that the

segmentation must be robust to varying noise and intensities between individual sample volumes.
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There is also the importance of retaining structural integrity during imaging so as to get the

most accurate representation of the sample in the images. Images of sub-cellular structures are

especially difficult to segment because texture and intensities can be very similar for different

structures [10].

Current research focuses on minimizing these challenges via improved imaging and

reconstruction methods. Kornfeld does an excellent job of taking stock of recent advances in

VEM that are bringing us closer to modeling complex neural systems. He details the evolution

from hybrid expert-machine approaches to the now highly successful Flood Fill Networks (FFN)

[11]. Of interest to us is the ensemble of Convolutional Neural Networks (CNNs) to address a

key aspect in connectomics: segmentation.

1.3 Image Segmentation

Image segmentation is the task of separating and labeling different parts of an image to

extract meaningful information. In this work we focus on semantic segmentation where we treat

all instances of the object as one class. Since the goal of connectomics is to map the neuronal

structures and circuits of the brain at a sub-cellular level, methods to detect and label structures

is crucial. These structures are difficult to segment since they are densely packed and their

image textures are very similar [10]. Manual labeling and reconstruction is possible for very

simplistic neural systems; however, with increasing complexity such methods become futile,

thus motivating the need for highly accurate automated segmentation tools.

The challenge with developing segmentation tools for information-dense images is two-

part. The first is generating highly accurate 2D segmentations of each image plane. This can be

done appropriately using trained deep learning networks. The second part involves using these

2D segmentations to interpolate between layers and reconstruct 3D structures. This is typically

performed by techniques such as region growing or flood filling networks [12, 13]. These

techniques primarily use deep learning to produce highly accurate, automated segmentations.
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To address the aforementioned challenges in VEM data and 3D segmentation, researchers

developed a hybrid 2D-3D deep learning model [6]. This hybrid model strategically combines

2D and 3D contextual information for each image plane. In fact, this strategy has achieved near

human level performance for 3D neurite segmentation. Recent systems which have adopted this

approach show significant improvement in prediction accuracy [14, 15]. One major result of this

work is the creation of CDeep3M.

1.4 CDeep3M

CDeep3M is an open source program that employs deep learning techniques to perform

2D segmentation on VEM data. This program is available with pretrained weights for multiple

microscope modalities and organelles, and aims to streamline the process of automated image

segmentation for all researchers. It consists of three networks that utilize a different number of

image planes of the sample volume to produce independent probability maps that are combined

to compute the final segmentation [4]. This unification of diverse networks, also known as an

ensemble system, broadens the applicability of CDeep3M to various segmentation tasks and

imaging modalities.

1.5 Ensemble Learning

Ensemble learning is a powerful and widely used approach that is based upon a very

intuitive idea: leverage the strengths of individual networks to improve final predictions. This

divide and conquer approach is beneficial since perfect data does not exist. There are numerous

types of ensemble learning, most notably Bagging, Boosting and Adaboost. Polikar’s IEEE

article provides a thorough explanation of ensemble learning strategies and their advantages [16].

In his article, Polikar explains that the success of ensemble systems lies in the diversity

of classifiers used and the method of combining each classifier’s prediction. Diversity in the

classifiers can be obtained in a variety of ways, for example using different architectures or
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different feature vectors for training. Likewise, there is no single method for combining the

classifier outputs. Polikar refers to this component of the ensemble system as the combination

rule, which can be non-trainable or trainable. A commonly used deterministic combination rule

is to simply compute the mean or a weighted average; however, there may be a trained rule that is

better at learning the optimum combination of classifiers. Nonetheless, ensemble methods have

shown a lot of success in situations when there is too much or too little data or when the problem

at hand is quite complex. The reason for the success of ensemble learning can be understood

through the statistics involved in machine learning algorithms.

In traditional learning algorithms the goal is to find the single best approximation of an

unknown function that fits the data out of a set of possible hypotheses. There are some drawbacks

to this single solution approach that can be classified into the statistical, computational or

representation problem [17]. The statistical problem deals with the case in which a large space

of possible hypotheses increases the probability of multiple solutions having the same accuracy,

leading to a algorithm with high variance. The computational problem deals with computational

variance in which the available computation methods are not guaranteed to find the best solution

every time. The representation problem arises when there is not a good solution to the problem

in the space, i.e. the network suffers high bias. These problems are visualised in Figure 1.1.

To prevent these situations, ensemble learning finds a set of independent hypotheses.

Then depending on the implementation, the best hypothesis is chosen or combined with the other

top hypotheses to produce the final solution. This strategy improves the bias and variance of the

overall learning algorithm.

The choice of combination rule used can make a significant difference in the final

predictions depending on the nature of the dataset and task. Currently CDeep3M utilizes an

averaging strategy which weighs each network’s output equally. The next section details the

ensemble strategy and trained combination rule that is the basis of this study.
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Figure 1.1. Visualization of statistical problems encountered in traditional machine learning
algorithms [17]

1.6 Stacked Generalization

Stacked generalization or ”Stacking” is an ensemble technique used to combine the

results of multiple classifiers into a final prediction. This technique was originally put forth by

Wolpert in 1992 with the key idea of generalizing a model’s prediction accuracy by ”stacking”

levels of neural networks [18].

The first level, level 0, consists of the base classifiers which are trained on different sets

of the training data. Level 1 is the meta classifier which uses cross validation to train on the

level 0 hypotheses. The mathematical background of how this works is explained thoroughly in

Wolpert’s paper. This strategy of training on the level 0 probability maps leads to an unbiased

final prediction since the meta-classifier never sees the original data [16, 19]. A useful diagram

detailing this technique is shown in Figure 1.2.

Previous studies of stacking has shown that the best results are obtained when the meta-

classifier uses class probabilities as it’s training data rather than classification labels [20]. The

success of this method in preventing overfitting and increasing generalization accuracy has led to

8



Figure 1.2. Diagram detailing stacked generalization ensemble technique from Polikar’s article
[16]. C1, ..,CT make p the first level of classifiers which output hypothesis h1, ...,hT . CT+1 is the
meta-classifier that uses the hypotheses to train and produce the final prediction.

it being coined a ”super learner” [21]. Choosing the right network for training the meta-classifier

is crucial. For image segmentation tasks, CNNs and it’s variants have been extremely successful.

1.7 U-Net

Computer visual analysis performance has drastically improved in the last decade with

the help of deep learning. Convolutional neural networks (CNNs), have played a big part in this

[22]. Due to its success, there have been numerous developments to tailor CNNs for biomedical

image segmentation tasks; most notably U-Net and MaskR-CNN [23, 24].

U-Net is a very popular network used for semantic segmentation of biomedical images.

The fully convolutional network architecture achieves a U-shape with a contracting path for

feature extraction and expanding path for localization [23]. The network was originally used on

EM data for segmentation of neuronal structures and achieved impressive results. It was also
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successfully used on light microscopy images for cell segmentation. Since then, the network has

been used and adapted to numerous applications.

1.8 Challenges

Although there are many benefits to using deep learning, a significant drop in prediction

performance can be easily experienced with less ideal conditions. With smaller datasets it is

easy to overfit the network during training, which results in the model to poorly generalize. To

combat this we can use regularization techniques such as weight decay, dropout, cross-validation,

early stopping, simplifying model complexity, etc.

Deep learning networks are also hard to understand because of their black-box nature.

For example, it is increasingly evident that deep networks are prone to adversarial attacks [25].

Usually in order to combat this, attempts are made to resist the injection of noise (e.g. by

training with noisy data), blurred and distorted images, but in the field of biomedical imaging an

extremely wide range of distortions and differences in images can occur, and training for each

of them is to date not possible and will not be the most appropriate solution. Thus the need to

ensure robustness of these networks is pressing.

Another challenge is tuning hyperparameters. There is a lot of literature on best practice

and we followed Leslie Smith’s guidelines closely to ensure the best possible training [26]. Even

with these guidelines, there is not one single way to approach hyperparameter tuning, and there

involves some extent of experimentation in this aspect.

1.9 Research Aims

In order to combat the challenges discussed previously, our research introduces 3Nsem-

ble as an improved version of CDeep3M. 3Nsemble uses a trained meta-classifier to predict

segmentations of 2D images rather than an averaging strategy. 3Nsemble implements a trained

U-Net as out meta-classifier in order to improve prediction performance. Our work also tries to
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show that ”stacking” increases the generalization and robustness of the system.

To summarize, our main aims of this project are:

1. Introduce trained combination rule to CDeep3M in the form of a meta-classifier to

enhance prediction performance.

2. Demonstrate that ”stacking” increases the generalization and robustness of the sys-

tem.

We hypothesize that our improved system, 3Nsemble, produces better predictions than

CDeep3M because it is able to weigh each base classifier’s hypothesis appropriately. The

averaging strategy employed by CDeep3M can be thrown off by small errors in alignment and

noise whereas a trained meta-classifier can deal with such errors more effectively.

1.10 Research Significance

The previous sections summarized some of the key components and challenges that

currently exist in the pipeline to mapping a brain model. Our research focuses on improving

image segmentation prediction by using deep learning and ensemble techniques. Improvements

in EM image segmentation will enable scientists to expand their understanding of neuronal

functions.

There have been many related studies that show success of deep learning with ensemble

techniques for biomedical image segmentation tasks [27, 28, 29]. In particular to stacking

and trainable classifiers, there are a great number of studies catalogued such as [19], which

demonstrated stacking for membrane protein classification, and [27], which used an ensemble of

random forests to classify blood vessels. Studies such as [30] demonstrated general robustness

of deep learning ensemble strategies and [28] have demonstrated the success of these methods

for small biomedical datasets.

Many published works on membrane and mitochondria segmentations in EM images

exist thus far [9, 8, 31]. There has also been a lot of progress in segmenting synapses, such as in
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[32, 10]; however, there is less literature on individual vesicle segmentation methods. Recent

work highlights the importance and proposes machine learning methods to address this [33]. Our

work also contributes to this need by demonstrating that stacking can greatly improve vesicle

segmentation performance.

In addition, making highly accurate, efficient and relevant segmentation tools to the

scientific community allows faster development and progress towards larger community goals.

Overall, the contribution of this research is interdisciplinary and stretches beyond connectomics.

It is clear that this work can be applied to other image segmentation applications beyond

biomedical research. The presentation of our work details the data and methods used to implement

our experiments (Chapter 2), our results (Chapter 3). Following this is a discussion covering the

key takeaways from this study (Chapter 4) and a conclusion summarizing significance and future

work (Chapter 5).
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Chapter 2

Datasets and Methods

2.1 Datasets Used in this Study

The images used in this research are Electron Microscopy (EM) images of mitochondria,

membrane and synaptic vesicles of mice and rat brains that were collected and imaged by

experts in the field. The mitochondria and vesicles were collected at the National Center of

Microscopy and Image Research (NCMIR) and can be found in the Cell Image Library (CIL) at

http://www.cellimagelibrary.org/home. The membrane image stack is publicly available and is

used in the SNEMI3D membrane segmentation challenge [34].

For our study, each dataset consists of the raw EM image stack, corresponding labels, and

CDeep3M base classifier probability maps. The raw images are annotated by expert scientists

with the help of IMOD, a software that allows contour drawing to create ground truth labels, for

performance evaluation. These images and labels are fed into CDeep3M’s 1fm, 3fm and 5fm

networks to produce 3 probability maps which are saved in the dataset to implement the different

combination rules.

A total of five datasets were used in this study. All images were obtained using Scanning

Electron Microscopy (SEM). The following subsections describe each in more detail. A summary

of dataset specifications are provided in Table 2.1 and sample images from each dataset are

provided in Figure 2.1.
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2.1.1 Mitochondria Datasets

There are two mitochondria datasets used in this research, Mitochondria and Mitochon-

dria2, which were sampled from different areas of the mouse brain.

The Mitochondria dataset was collected from a mouse hippocampus, and was imaged

using serial block-face scanning electron microscopy (SBEM) as described in Nature Methods

2018 [4]. The training data was 80 image planes of 1024x1024 resolution with corresponding

ground truth labels. 15% of the images were reserved for testing and the remaining were split

into training and validation appropriately.

The Mitochondria2 dataset includes 20 image planes of 500x500 pixel resolution col-

lected from a mouse suprachiasmatic nucleus (SCN). 25% of the data was reserved for testing

and the rest were used in training and validation.

2.1.2 Membrane Dataset

The Membrane dataset was collected by the Lichtman Lab at Harvard University and

was used in the ISB 2013 segmentation challenge [34]. The sample preparation and imaging

methods are detailed in Cell (2015) [35]. This dataset contains a total of 20 image planes with

1024x1024 pixel resolution, of which 25% was used for testing. The dataset is available at

http://brainiac2.mit.edu/SNEMI3D/.

Table 2.1. Summary of datasets used for this research. Includes total number of images, image
size in pixels (pixel resolution), and number of images used for testing.

Dataset name Total # Images Image Size Test Set Size
Mitochondria 80 [1024,1024] 12 images
Mitochondria2 20 [500,500] 5 images
Membrane 20 [1024,1024] 5 images
Vesicles-24nm 11 [319,270] 3 images
Vesicles-20nm 20 [552,322] 4 images
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Figure 2.1. Sample images of each dataset. Each panel shows the raw image on the left and
corresponding ground truth mask on the right.

2.1.3 Synaptic Vesicles Datasets

There are two vesicles datasets obtained using different cutting intervals: Vesicles-24nm

and Vesicles-20nm.

Vesicles-24nm consists of a total 11 image planes of 270x319 pixel resolution. The 24nm

here indicates the cutting interval used when imaging. Within this dataset, three images were

reserved to be used as a test set, and the remaining made up the train and validation sets. It is to

be noted that this is the smallest dataset used in this study.

Vesicles-20nm was collected from a rat cerebellum and imaging was done using SBEM

with Gemini 3View, 20nm cutting interval, 2.5keV, 4nm pixels and 12kx9k raster. From large

area of the image volume, a 270x319 pixel area with distinct and well-separated vesicles was

chosen and 20 image planes of this area was extracted. From the 20 images, 4 images were

reserved for testing and the remaining were used in training and validation.
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Figure 2.2. Comparison of training and prediction paths for Cdeep3M and 3Nsemble. a)
Original workflow showing deterministic combination rule resulting in final averaged prediction
b) 3Nsemble workflow showing stacked meta-classifier trained on ensemble level 0 probability
maps to make final trained prediction

2.2 Methods

2.2.1 3Nsemble Workflow

3Nsemble employs a U-Net that is stacked onto the level 0 base classifiers to improve the

final prediction performance. The training path involves feeding the training images and labels

into the 1fm, 3fm and 5fm networks which produce 3 independent probability maps. These

probability maps are each network’s hypothesis of the prediction. They are then fed into a U-Net

for training along with the ground truth labels (see Figure 2.3). For the prediction path, the

training images are input into the base classifiers to get 3 prediction hypotheses that are stacked

and fed into the trained meta-classifier to output the final segmentation. The complete workflows

for the original CDeep3M and improved 3Nsemble systems are detailed in Figure 2.2.
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Figure 2.3. Mitochondria example of stacked probability maps from level 0 classifiers being
transformed into a single input which undergoes augmentations before being fed into the U-Net
for training.

2.2.2 Averaged Prediction

The averaging strategy employed in CDeep3M involves computing the mean of the 1fm,

3fm, 5fm probability maps and thresholding the result. Exhaustive thresholding was used for

each dataset with a sweep from 50 to 250 and the optimal threshold was determined by the

intersection of F1, precision and recall values (as seen in Figure 2.4). Threshold values for each

dataset are listed in Table 2.2.

Table 2.2. Optimal thresholds for each dataset calculated using exhaustive thresholding.

Mitochondria Mitochondria2 Membrane Vesicles-24nm Vesicles-20nm
Threshold 203 224 164 131 228

2.2.3 Training the Meta-classifier

Using fastai library [36], a python library that simplifies the implementation of fast

machine learning algorithms, we were able to implement the trained meta-classifier in Google

Colab for comparison with the averaged prediction. Colab was chosen for it’s free access to

GPU resources, which allows researchers to reduce training time without investing in expensive

hardware or paid cloud computing. Fastai has an inbuilt U-Net architecture with pre-trained
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Figure 2.4. Exhaustive thresholding scans through possible intensities in [0,255] and calculates
corresponding metrics to find optimum threshold

weights ready for use which we were able to make use of for transfer learning. We used a

resnet50 backbone for all datasets in order to balance learning with model complexity. The

network hyper-parameters were tuned using suggestions from Leslie Smith’s paper [26]. We

performed training using the one cycle policy described in Smith’s paper which speeds up

training significantly. With this policy, the learning rate is steadily incremented for a portion of

the training and then decremented for the remainder, leading to superconvergence (See Figure

2.5a).

We specified the optimum learning rate for training each dataset according to the inbuilt

Fastai learning rate finder, which plots the loss for a range of learning rates. The maximum rate

of change in the resulting plot can be used to determine an optimal learning rate (See Figure

2.5b). We chose the learning rate to be the rounded up number from the point.

We did not implement any weight decay since we found that it over-regularized the model;

however, all datasets were trained with early stopping based on the validation loss with specified

patience of n epochs and a minimum delta of d (See Appendix for detailed hyper-parameter
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Figure 2.5. a) One Cycle Policy: Example of learning rate configurations during training. b)
Example of learning rate plot from Fastai documentation. The red dot indicates point of greatest
gradient change [36].

tuning). Another method of regularization used was data augmentations on the training set in

the form of -180 to 90 degree rotations and left/right flips. The augmentations were performed

randomly with a probability of 0.5. In addition, the size of the larger 1024x1024 images were

reduced to 512x512 in order to run the larger resnet50 network on the available GPUs of Google

Colab.

We set the maximum number of epochs M for the initial training and F < M for fine

tuning. For the fine tuning, we used a smaller learning rate than for the training since the

pretrained weights do not need drastic adjustments. Cross entropy loss was used to monitor

training progress.

2.2.4 Testing and Evaluation

Testing images were used for the performance evaluation of all the trained models.

Metrics used to evaluate both the averaged and trained ensemble segmentations were accu-

racy, precision, recall, Interscetion Over Union (IOU, also referred to as Jaccard index) and

F1 score (also known as Dice score)1. These can be calculated using the confusion matrix

1For better comparison, evaluation of the experiments were made using the same metrics as in the CDeep3M
paper [4].
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[[T N,FP][FN,T P]] detailing the percentage of pixels that were True Positive (TP), True Nega-

tive (TN), False Positive (FP) and False Negative (FN). From this the metrics are calculated with

the following formulas:

Accuracy =
(T N +T P)∗100

T P+T N +FP+FN
(2.1)

Precision =
T P

T P+FP
(2.2)

Recall =
T P

T P+FN
(2.3)

IOU =
T P

T P+FP+FN
(2.4)

F1Score =
2∗ (precision∗ recall)
(precision+ recall)

(2.5)

2.2.5 Validation Experiments

In order to validate whether the stacking approach makes the predictions more robust,

two experiments were performed:

The first validation experiment aimed to compare how each combination strategy per-

forms when the image stack contains misaligned planes. To do so, image planes 10 and 15

in the mitochondria dataset were translated by [15,10] and [12,12] pixels respectively. The

complete stack containing the misaligned data was fed into the ensemble of classifiers and the

resulting 1fm, 3fm and 5fm probability maps were used for each strategy (averaging and trained

meta-classifier). The averaging strategy followed the same way as described in Section 2.2.2. For

our validation we required that the stacking approach both trained on and tested on a misaligned

image. Thus, Image 15 was designated for training while Image 10 was kept separately for

testing. All other details of the experiment followed the methods described in Section 2.2.3,

and extended details of the trained model and hyper-parameters are listed in Appendix A. This

experiment aimed to confirm that the trained meta-classifier would be able to detect that one of

the ensemble classifiers predicts better than the others. In this the 2D classifier is expected to
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perform better than the other 3D classifiers, since the misalignment throws them off track [6].

The second experiment dealt with the injection of noise to the Mitochondria dataset. 20

Mitochondria images were injected with white gaussian noise of zero mean and 0.01 variance.

A set of 5 images was used for testing. The performance of CDeep3M and 3Nsemble were

compared on these noisy inputs. The meta-classifier was trained using the same conditions

that were applied for the non-noise control case to make comparison easier and are detailed in

Appendix A.

2.2.6 Software Availability

The CDeep3M data and pretrained models are available here. It can be run via Docker,

Singularity, Amazon Web Services (AWS) or Google Colab. 3Nsemble scripts will be made

available here via Github and Google Colab. The following is a breakdown of the main scripts

available on 3Nsemble2:

• AveragedEnsemble is a notebook that runs through the averaging, threshold optimization

and metrics calculations of the 1fm,3fm and 5fm predictions.

• TrainedEnsemble runs through the entire training process of the trained ensemble model,

from loading the data, initializing the network, training and fine tuning the network and

producing the final metrics on the test set.

• ShowPredictions takes a trained prediction network and produces an overlay of False

Positive, True Positive and False Negative predictions on the specified image.

• Stacked takes the 1fm, 3fm and 5fm predictions and stacks them into a 3D tensor for use

in training.

The 3Nsemble code currently has dependencies with Fastai v1, PyTorch and ScikitLearn

metrics.

2This is list may undergo changes as software implementation is optimized and streamlined for public use
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Chapter 3

Results

3.1 Key Results

The results of this study show significant increase in overall performance with relatively

little training time (See Table 3.1). In particular, Intersection Over Union (IOU) increased by

more than 12% for all datasets. This improvement was followed by precision, recall and F1 score.

Accuracy also improved but to a lesser extent. It is important to note that increase in performance

depends highly on the CDeep3M prediction. Additionally, datasets with poor baseline predictions

to start with have more room to improve and thus we can see larger percentages of improvements.

A more detailed summary of the training for each dataset is found in Appendix A.

The large increase in performance is at a small cost of extra training time. The metrics

improved for all organelles with less than an hour of total training time, and for the majority

was less than half an hour. Note that train time is proportional to dataset size and total epochs.

Mitochondria took the most training time and was the biggest dataset (as seen previously in

Table 2.1). Table 3.2 contains a summary of the training time and epochs relative to dataset size.
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Table 3.1. Comparison of CDeep3M (averaged predictions) and 3Nsemble (trained predictions)
on all data sets. Includes epochs total, total train time in minutes, precision, recall, Intersection
Over Union (IOU), F1 score and accuracy.

Precision Recall IOU F1 Accuracy
Mitochondria
CDeep3M 0.8775 0.8891 0.7909 0.8832 0.9824
3Nsemble 0.9428 0.9427 0.8917 0.9427 0.9921
Improvement (%): 7.4 6.0 12.7 6.7 1.0
Mitochondria2
CDeep3M 0.8808 0.9313 0.8271 0.9054 0.9928
3Nsemble 0.9601 0.9625 0.9262 0.9617 0.9970
Improvement (%): 9.1 3.4 12 6.2 0.4
Membrane
CDeep3M 0.8131 0.8834 0.7343 0.8468 0.9132
3Nsemble 0.9377 0.9372 0.8823 0.9375 0.9664
Improvement (%): 15.3 6.1 20.2 10.7 5.8
Vesicles-24nm
CDeep3M 0.6405 0.6020 0.4500 0.6207 0.9093
3Nsemble 0.8872 0.8596 0.7749 0.8732 0.9660
Improvement (%): 38.5 42.8 72.2 40.7 6.2
Vesicles-20nm
CDeep3M 0.7362 0.7767 0.6076 0.7559 0.9757
3Nsemble 0.8800 0.8589 0.7688 0.8693 0.9876
Improvement (%): 19.5 10.6 26.5 15 1.2

Table 3.2. Comparison of dataset size and train time. Includes training set size, number of
epochs and total train time in minutes.

#Train Images Epochs Train Time (min)
Mitochondria 68 85 54.7

Mitochondria2 15 75 8.6
Membrane 15 97 12.5

Vesicles-24nm 8 144 13
Vesicles-20nm 16 61 6.3

23



Below are some sample predictions from each dataset (Figures 3.1 to 3.4). Majority of

images were brightened for presentation purposes in order to clearly visualize the prediction

overlays. Legends for True Positive (TP), False Positive (FP) and False Negative (FN) pixel

predictions are included and captions state IOU and F1 scores. Images of 3Nsemble predictions

are from the test set.

Figure 3.1. Comparison of mitochondria predictions via averaging and stacked generalization.
a) Averaged prediction (IOU: 0.76, F1: 0.87) b) 3Nsemble prediction (IOU: 0.81, F1: 0.89),
showing visible decrease in FP and FN pixels.
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Figure 3.2. Comparison of mitochondria2 predictions via averaging and stacked generalization.
a) Averaged prediction (IOU: 0.81, F1: 0.9) b) 3Nsemble prediction (IOU: 0.86, F1: 0.93),
showing visible decrease in FP and FN pixels.

Figure 3.3. Comparison of membrane predictions via averaging and stacked generalization.
a) Averaged prediction (IOU: 0.74, F1: 0.85) b) 3Nsemble prediction (IOU: 0.89, F1: 0.94)
showing visible increase in TP and decrease in falsely detected pixels

25



Figure 3.4. Comparison of vesicle-24nm predictions via averaging and stacked generalization.
a) Combined probability maps from level 0 base classifiers b) Averaged prediction (IOU: 0.47,
F1: 0.64) c) 3Nsemble prediction (IOU: 0.49, F1: 0.66) showing visible decrease in FP pixels

Figure 3.5. Comparison of vesicle-20nm predictions via averaging and stacked generalization.
a) Combined probability maps from level 0 base classifiers b) Averaged prediction (IOU: 0.66,
F1: 0.80) c) 3Nsemble prediction (IOU: 0.80, F1: 0.89)
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3.2 Validation Results

The initial validation experiment as described previously, focused on showing robustness

to misaligned image stacks. A summary of the results are shown in Table 3.3. Image 10 and 15

were misaligned in the train and test set respectively and their results are shown underneath each

strategy. The implementation of both strategies is described in Section 2.2.5.

The second validation experiment involved injection of noise to the training images. All

images were injected with the same type of noise as detailed in Section 2.2.5. The preliminary

results of this are shown in Table 3.4, where a comparison of noise-less and noisy mitochondria

images are used to test the robustness of 3Nsemble.

Table 3.3. Results of misalignment experiment on the mitochondria dataset. Shows improvement
in metrics by using the stacked generalization approach over a simple averaging.

Precision Recall IOU F1 Score Accuracy
Averaging 0.8585 0.8280 0.7285 0.8430 0.9736
Image 10 0.706 0.226 0.206 0.342 0.915
Image 15 0.751 0.169 0.160 0.276 0.933
Stacked Generalization 0.9213 0.9248 0.8570 0.9230 0.9856
Image 10 0.901 0.500 0.474 0.643 0.946
Image 15 0.930 0.923 0.863 0.926 0.988

Table 3.4. Noise validation experiment on Mitochondria dataset. Images were injected with
white gaussian noise with zero mean and 0.01 variance. Comparison of CDeep3M and 3Nsemble
performance for noise and no-noise experiments are displayed.

Precision Recall IOU F1 Accuracy
CDeep3M 0.815 0.944 0.778 0.875 0.974

CDeep3M with noise 0.783 0.886 0.712 0.832 0.965
Drop (%) 4.0 6.1 8.5 4.9 0.9
3Nsemble 0.909 0.931 0.852 0.920 0.985

3Nsemble with noise 0.900 0.910 0.826 0.905 0.982
Drop (%) 0.9 2.3 3.1 1.6 0.3
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Chapter 4

Discussion

3Nsemble segmentations show significant improvement in the accuracy, precision, re-

call, Intersection Over Union (IOU) and F1 score compared to CDeep3M. The performance

improvement outweighs the additional training time. Specifically, IOU saw the biggest increase

of 12-70% indicating a greater overlap of the prediction mask and ground truth (Table 3.1).

Higher precision and recall scores lead to increased IOU because they are proportional to the

percentage of correctly identified positive pixels (Equation 2.2 and 2.3). They also affect the F1

score, which is calculated using the harmonic mean of both (Equation 2.5).

The improvement in metrics is relative to the baseline CDeep3M prediction. Datasets

with high performance using averaging see relatively small improvements with the trained meta-

classifier. For example, CDeep3M produced a 0.993 accuracy for Mitochondria2 and 3Nsemble

improved this by 0.4%. In comparison, Vesicles-24nm saw the lowest CDeep3M accuracy of

0.91 which allowed room for 3Nsemble to improve by 6.2%. This trend can be seen on a larger

scale as well: Vesicles-24nm had the lowest CDeep3M metrics but also saw the largest increases

with 3Nsemble. This indicates that even when the base classifiers produce poor hypotheses,

stacking a trained meta-classifier combines the strengths of each to greatly improve the final

prediction without even seeing the original training images.

Data augmentation and early stopping provides ample regularization for the meta-

classifier to avoid overfitting. The train and test image metrics are very similar indicating
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the generalizability of the model to the entire dataset. In addition, the results of the validation

experiment also show the robustness of the model given noisy or misaligned images. With more

testing in these areas we can further catalogue the extent to which stacking has increased to

robustness and generalization of the predictions.

A crucial challenge in deep learning is having enough data to train and test on. Using our

methods we are able to show significant improvements in datasets as small as 11 images. This is

can be attributed to the ensemble learning approach which alleviates the issue of data size. Other

techniques that aided in this were the U-Net architecture and data augmentations. It is always

beneficial to have more training data, however labeling ground truths can be time consuming and

difficult, therefore it is very significant to see such a small dataset improve using 3Nsemble.

Additionally, it is important to note that manually annotating ground truth masks is

prone to small errors or inconsistencies. These can be due to human error or the occasional

subjective nature of deciding whether a section is to be labeled or not (for example, non ordinary

structures resulting from imaging or tissue anomalies). This can lead to under or over masking of

images and can affect the prediction metrics. Therefore, although the segmentation can be done

automatically and with high performance, expert analysis is still required to qualitatively validate

the segmentations. This is true for any machine learning system. Depending on application, false

positives may be preferred to false negatives and depending on the organelle and further analysis

tasks, region contours might be more valuable than individual pixel classifications. For example,

with membrane segmentation often scientists prioritize segmenting closed and accurate contours

of each cell as it is more useful for cell count and 3D analysis.

The validation experiments show promising results on the robustness of 3Nsemble.

Further work needs to be done to quantitatively measure robustness against varying misalignment

and noise to fully evaluate the extent of the model’s robustness.

Another point of exploration is using k-fold cross validation for training the meta-classifer.

This is the original approach to stacked generalization as described by Wolpert [18]. We did

not apply such a thorough training process but regardless saw success in our strategy. The
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implementation of k-fold cross validation would be a worthwhile future endeavor.

In summary, stacking a trained meta-classifier significantly increases the performance

of the ensemble systems. The additional costs of training and applying the meta-classifier is

outweighed by this increased performance and improves the robustness to noise and misalignment.

This method can especially aid when encountering poor baseline probability maps. Further

testing should be done to quantify the increase in robustness and generalizability to broader data.
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Chapter 5

Conclusion

We have presented the benefits of stacked generalization in Electron Microscopy (EM)

segmentation. 3Nsemble uses a trained meta-classifier that significantly improves prediction

performance compared to CDeep3M’s averaging strategy. Even with poor baseline predictions

3Nsemble is able to improve the segmentations greatly. This ensemble technique also increases

the robustness of the model to noise and misalignment and can be applied to various organelles

and microscopy image data. Highly accurate automated segmentations of organelles greatly

benefits the study of connectomics and moves us closer to understanding the brain and brain

disorders.

Future work involves training a generalized meta-classifier to work for a range of common

organelles and datasets. This can then be made available for predictions and would eliminate

extra training time while still enhancing the prediction performance. Early experiments in

this show promising results. Other work consists of quantifying 3Nsemble’s robustness and

generalizability and implementing k-fold cross validation.
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Appendix A

Extended Results

Table A.1 summarizes the CDeep3M prediction performance over all datasets. These

results form the baseline for which all comparison of 3Nsemble performance is done. Sample

predictions for each dataset is shown in the Results section (Figures 3.1 to 3.5). The specific

metrics for each sample shown is logged in Table A.2.

Table A.1. Summary of CDeep3M averaged prediction performance over all datasets

Threshold Confusion Precision Recall IOU F1 Score Accuracy

Mitochondria 203
[[91.6, 0.93]
[ 0.83, 6.64]] 0.8775 0.8891 0.7909 0.8832 0.9824

Mitochondria2 224
[[95.8, 0.47]
[ 0.26, 3.46]] 0.8808 0.9313 0.8271 0.9055 0.9928

Membrane 164
[[67.4, 5.51]
[ 4.91, 7.42]] 0.8131 0.8834 0.7343 0.8468 0.9132

Vesicles-24nm 131
[[83.5, 4.17]
[4.91, 7.42]] 0.6405 0.6020 0.4500 0.6207 0.9093

Vesicles-20nm 228
[[93.8, 1.35]
[ 1.08, 3.76]] 0.7362 0.7767 0.6076 0.7559 0.9757

Table A.2. Performance metrics of CDeep3M sample predictions shown in the Results section

Precision Recall IOU F1 Score Accuracy
Mitochondria 0.87 0.86 0.76 0.87 0.97

Mitochondria2 0.86 0.94 0.81 0.90 0.99
Membrane 0.80 0.91 0.74 0.85 0.92

Vesicles-24nm 0.60 0.69 0.47 0.64 0.94
Vesicles-20nm 0.76 0.84 0.66 0.80 0.98
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The following figures (A.1 to A.7) show extended details on each dataset’s model, training

and testing specifications in table form. Although many hyper-parameters were uniform over

all experiments, they are listed in these summaries to show that they are available to tweak for

future training.
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Figure A.1. Details of Mitochondria model parameters and performance
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Figure A.2. Details of Mitochondria2 model parameters and performance
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Figure A.3. Details of Membrane model parameters and performance
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Figure A.4. Details of Vesicles-24nm model parameters and performance
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Figure A.5. Details of Vesicles-20nm model parameters and performance
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Figure A.6. Details of model parameters and performance for misaligned validation experiment.
The corresponding CDeep3M predictions were made using a 183 thresholding value.
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Figure A.7. Details of model parameters and performance for noise validation experiment. The
corresponding CDeep3M predictions were made using a 170 thresholding value.
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