
Lawrence Berkeley National Laboratory
LBL Publications

Title

Quantum Algorithm for High Energy Physics Simulations

Permalink

https://escholarship.org/uc/item/1t76q563

Journal

Physical Review Letters, 126(6)

ISSN

0031-9007

Authors

Nachman, Benjamin
Provasoli, Davide
de Jong, Wibe A
et al.

Publication Date

2021-02-12

DOI

10.1103/physrevlett.126.062001
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1t76q563
https://escholarship.org/uc/item/1t76q563#author
https://escholarship.org
http://www.cdlib.org/
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Particles produced in high energy collisions that are charged under one of the fundamental forces
will radiate proportionally to their charge, such as photon radiation from electrons in quantum
electrodynamics. At sufficiently high energies, this radiation pattern is enhanced collinear to the
initiating particle, resulting in a complex, many-body quantum system. Classical Markov Chain
Monte Carlo simulation approaches work well to capture many of the salient features of the shower
of radiation, but cannot capture all quantum effects. We show how quantum algorithms are well-
suited for describing the quantum properties of final state radiation. In particular, we develop
a polynomial time quantum final state shower that accurately models the effects of intermediate
spin states similar to those present in high energy electroweak showers. The algorithm is explicitly
demonstrated for a simplified quantum field theory on a quantum computer.

While quantum computers hold great promise for
efficiently solving classical problems such as querying
databases [1] or factoring integers into primes [2], their
most natural application is to describe inherently quan-
tum physical systems [3]. The most direct connection
between quantum systems and quantum computers oc-
curs for analog circuits that try to mimic the evolution
of a Hamiltonian as closely as possible [4]. Analog cir-
cuits for a generic quantum field theory are impractical,
as the closest analogs to high energy scattering processes
are other high energy scattering process.

A promising alternative to analog circuits are digital
quantum circuits, which use quantum algorithms to de-
scribe inherently quantum physical systems without di-
rectly implementing the system’s Hamiltonian. However,
many physical systems are too complex or have too many
degrees of freedom to fully model with a quantum cir-
cuit using near-future noisy intermediate scale devices [5].
This is true for a generic quantum field theory, where
there are both continuous quantum numbers as well as
an infinite number of degrees of freedom. While tools
have been developed to model quantum field theories by
discretizing spacetime [6] and even including continuous
quantum numbers [7], the number of quantum bits (or
their continuous analog) required to compute any rele-
vant scattering amplitude is impractically large. Results
with simplified quantum field theories on a lattice are
promising [8], but the full dynamics of high energy scat-
tering processes are too complex for both lattice methods
as well as traditional perturbation theory when the num-
ber of final state particles becomes too large.

A successful classical approach for simulating these dy-
namics is known as the parton shower [9], which relies on
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reorganizing the traditional perturbative series about a
fundamental coupling constant to instead expand around
the collinear and soft limit of emissions [10, 11]. This
leads to different series expansions where each term in the
new series includes infinitely many terms from the orig-
inal series expansion and is the basis of parton shower
Monte Carlo (MC) programs [12–15], which are a key
component of high energy quark and gluon scattering
simulations.

Parton shower models are implemented using classi-
cal Markov Chain MC (MCMC) algorithms to efficiently
generate high multiplicity radiation patterns. This re-
liance on classical MCMC algorithms implies that sev-
eral quantum interference effects need to be neglected.
For example, showers describing emissions in the strong
interaction can only be implemented in the limit of a
large number of colors (NC = 3 → ∞). While an im-
pressive research effort to include subleading color effects
exists [16–18], there is a fundamental limitation in the
ability of MCMC methods to efficiently capture these
physical effects. For showers describing the electroweak
interactions [19], interference effects can arise because
physically distinct particles can have related interactions,
such that amplitudes which differ in their intermediate
particles can interfere with one another. An important
example is the interference of amplitudes involving inter-
mediate Z bosons and photons.

Our primary motivation is to develop a quantum cir-
cuit describing the quantum properties of parton show-
ers. In this work, we consider showers with interferences
from different intermediate particles, using a simplified
model that captures these effects without having to in-
troduce the full complexity of the Standard Model (SM).
The variable describing the scale of the shower evolution
is discretized and at each step an emission can occur or
not. We will show that a classical MCMC is not able
to capture the important quantum interference effects in
this model, and that a full classical calculation scales ex-
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ponentially with the number of steps1. The proposed
quantum algorithm will be able to sample from the full
probability distribution in polynomial time. After de-
scribing the physics of the simplified model, we will in-
troduce the quantum circuit and show empirical results
with both a simulated and a real quantum computer.
The article ends with outlook towards a full SM quan-
tum parton shower algorithm.

To begin, consider a simple quantum field theory, with
two types of fermion fields, f1 and f2, interacting with
one scalar boson φ governed by the following Lagrangian:

L =f̄1(i/∂ +m1)f1 + f̄2(i/∂ +m2)f2 + (∂µφ)2

+ g1f̄1f1φ+ g2f̄2f2φ+ g12

[
f̄1f2 + f̄2f1

]
φ . (1)

In such a theory, the scalar field φ can couple to either
fermion via the coupling constants g1 or g2, or to one
fermion of each type, with coupling constant g12. The
collinear dynamics of the theory are that fermions can
radiate scalars (f → f ′φ) and scalars can split into pairs
of fermions (φ → ff̄ ′). The couplings of fermions to
scalar bosons occur in the Higgs sector of the SM, and
it has been demonstrated that the final state collinear
radiation at high energy can be written in terms of a
parton shower [19, 24].

We will revisit the connection to the full SM later;
for now, we will consider final state radiation governed
by Eq. (1) with generic couplings. This model can con-
tain important interference effects when all couplings are
non-zero, since the unobserved intermediate state of the
fermions can be a superposition of fi for i ∈ {1, 2}. The
observable final state is a set of fermions and bosons with
their corresponding energies and locations inside the ‘jet’
of particles. Ignoring the φ→ ff̄ ′ splitting for now, the
jet is specified by the number and kinematic properties
of the emitted bosons. For the amplitude

Ai→i
′

n ≡ A(i→ i′ + nφ), (2)

there are n−1 internal fermions and thus a total of 2n−1

unobservable configurations. For example, to leading or-
der in the coupling constants,

A1→1
1 = g1Â1(p1) (3)

A1→1
2 = (g2

1 + g2
12)Â2(p1, p2), (4)

where pi is the momentum of boson i and Ân(p1, . . . , pn)
denotes the contribution to the amplitude which does not
involve the coupling constants and is the same for all con-
figurations. Already with two emissions, there is a non-
trivial interference between the f1 swapping twice and
not swapping at all. For the emission of more bosons,

1 There are efficient algorithms to account for spin correlations in
quantum chromodynamics [20–23], but these do not apply for
our model where the emission probability depends on the spin.

the combinatorics required to obtain the coupling con-
stant rapidly becomes combinatorially hard. Note that
in the limit that g12 → 0, Ai→in is simply ∝ gni .

To model Ân, one needs to choose a physical scale
to order emissions. One common choice is to evolve
based on the angle of emissions θ, where the emissions
are ordered down to a collinear cutoff θ = ε > 0 be-
low which further emissions cannot be resolved. In the
strongly ordered limit that applies to parton showers,
θ0 � θ1 � · · · � θn, the kinematic part of the ampli-
tude factorizes as follows

Ân(θ1, . . . , θn) = Â(θ0|θ1)Â(θ2|θ1) . . . Â(θn|θn−1) , (5)

where Â(θn|θn−1) denotes the amplitude to emit one par-
ticle at angle θn given the angle of the previous emission.
In general, AÂ also depends on the momentum fraction
of the emitted particle; in our setup, this is completely
factorized from the angular dependence and henceforth
ignored.

In the limit g12 → 0, Eq. (5) allows for an efficient
MCMC method for calculating high-multiplicity cross
sections. This is performed by introducing two splitting
functions

Pi→iφ(θ) = g2
i P̂ (θ) , (6)

and a no-branching probability (Sudakov factor)

∆i(θ1, θ2) = exp

[
−g2

i

∫ θ2

θ1

dθ′P̂ (θ′)

]
, (7)

where P̂ (θ) encodes the scale-dependence of the emission
probability. The Sudakov factor encapsulates the virtual
(and unresolved real) contributions and is responsible for
the resummation mentioned above. The Sudakov factor
and splitting function satisfy the unitarity relation

∆i(θ1, θ2) +

∫ θ2

θ1

dθ Pi(θ) ∆(θ1, θ) = 1 . (8)

A classical parton shower would predict the cross-sections
to be

σn,i(θ1, ..., θn) = g2n
i

[
n∏
i=1

∆(θi−1, θi)P̂ (θi)

]
∆(θn, ε) .

(9)

One can efficiently sample from Eq. (9) using a Markov
Chain algorithm by generating one emission at a time,
conditioned on the last emission. While this will cor-
rectly reproduce the physics of a theory with g12 = 0, it
does not reproduce the interference arising in the full the-
ory given by Eq. (1) (still excluding φ→ ff̄), where the
fermion can change in the emission. The resulting inter-
ference effects can only be included by working with the
amplitudes directly. A single emission that changes the
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type of fermion can be treated using a density matrix for-
malism [19], where each splitting function is represented
through a splitting matrix as

Pi→jφ(θ) |fi〉 〈fj | . (10)

In the limit of g12 → 0 we have Pi→jφ(θ) → δi,jg
2
i P̂ (θ),

but for non-zero g12 the full matrix structure of the split-
ting function needs to be retained. The complexity of
taking this into account to all orders, reduces to the full
amplitude calculation.

In what follows, we construct a quantum algorithm
to sample from the full amplitude, including all interfer-
ence effects. We consider the complete case, including
φ → ff̄ , which still follows the Markov Chain of ampli-
tudes in Eq. (5). The core idea of the quantum algorithm
is to encode the particles as qubits (Appendix A) and
first rotate to a particle basis where there is no mix-
ing between fermion states (Appendix B). In this su-
perposition basis, emissions between states are uncorre-
lated. Sudakov factors can then be used to govern the no
emission probability of the uncorrelated fermions. The
bulk of the quantum circuitry will then be dedicated to
book-keeping, to encode the emission history and decide
which fermions/bosons radiate/split at a given step in
the shower.

Figure 1 is the quantum circuit implementing the
quantum final state radiation algorithm for one of N
steps. The circuit calls for six registers, which are are de-
tailed in Appendix A and summarized in Table I. The ini-
tial state consists of nI particles (which can be fermions
or bosons) in the f1/2 basis. One starts by rotating this
initial particle state from the f1/2 basis to the fa/b ba-
sis, using a simple unitary R operation discussed in Ap-
pendix B. Then, a series of operations evolving the par-
ticles states are applied: the number of particles of each
type are counted (Ucount), Sudakov factors are used to de-
termine if an emission occurred (Ue), given an emission, a
particular particle is chosen to radiate/branch (Uh), and

the resulting particle state is updated (U
(m)
p ). Finally,

the state is rotated back to the f1/2 basis through the

R† operation. This process is repeated for all of the N
steps. The rotation needs to be performed separately at
each step because in general the matrix R depends on θ
through the running of the couplings. At each step, there
are four operations, which are summarized in Table II.
More details can be found in the appendices.

Performing the evolution in the fa/b basis and then
rotating to the f1/2 basis, creates interferences between
equivalent final states which had different intermediate
fermions. One event is generated by measuring all of
the qubits after the final rotation back to the f1/2 basis.
By repeating the entire process, we can generate a large
number of events which we can then use to compute phys-
ical observables for our theory. The number of standard
quantum gates (single qubit and CNOT gates) required
at each step is discussed in Appendix I and summarized
in Table II.

Register Purpose # of qubits

|p〉 Particle state 3(N + nI)

|h〉 Emission history Ndlog2(N + nI)e
|e〉 Did emission happen? 1

|nφ〉 Number of bosons dlog2(N + nI)e
|na〉 Number of fa dlog2(N + nI)e
|nb〉 Number of fb dlog2(N + nI)e

TABLE I: All of the registers in the quantum circuit with
the number of qubits they require for N steps and nI initial

particles. The symbol d. . .e denotes the ceiling function.

|p〉 / R(m) p p U
(m)
p R(m)†

|h〉 / Uh h

|e〉 U
(m)
e

e

|nφ〉 /

Ucount

nφ

Uh|na〉 / na

|nb〉 / nb

FIG. 1: Quantum circuit block for one step, to be repeated
N times for the full circuit.

The practical challenge with above circuit is that it
requires more connected qubits and operations than are
currently available in state-of-the-art hardware. In order
to show an implementation of our algorithm, we there-
fore consider a special case that is amenable to measure-
ment on existing technology. This special case ignores
the φ→ ff̄ splitting (naturally suppressed in gauge the-
ories, but not in the scalar-only theory), ignores the run-
ning coupling, and has only a single fermion (possibly
in a superposition) as the initial state. This results in
a much simpler circuit since there is only one fermion,
but an arbitrary number of scalars (Appendix I). A de-
composition of the resulting circuit into single qubit and
CNOT gates requires ngates = 12N + 2 (Appendix G).
This model is however still sufficiently complex that the
classical MCMC described earlier2 fails to capture im-
portant quantum effects when g12 6= 0.

Figure 2 presents the normalized differential cross sec-
tions of four examples from a class of observables,

∑
i θ
α
i ,

for both classical simulations/calculations, quantum sim-
ulators [25], and chip experiments of public and Hub

2 While the standard parton shower-inspired MCMC algorithm
fails, we have discovered a quantum-inspired classical algorithm
that can efficiently sample from the full probability distribution
- see Appendix K. However, this algorithm only works when ne-
glecting the φ→ ff̄ and cannot solve our full model.
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FIG. 2: The normalized differential cross section of the observables
∑
i θ
α
i for α = 0 (bottom right), α = 1 (bottom left),

α = 2 (top right), and α =∞ (top left). The α =∞ case is simply represented as the angle of the first emission. Interference
effects are turned on (g12 = 0) and off (g12 = 0), where the classical simulations/calculations are expected to agree with the

quantum simulations and measurements. As a demonstration of the full circuit with φ→ ff̄ is also included with two
simulated steps both with g12 = 0 and g12 = 1. Over 105 events contribute to each line.

Member quantum chips through cloud access on the IBM
Quantum Experience. All cases are started from the ini-
tial state containing a single f1 fermion. The data of
experimental measurements shown in Figure 2 were col-
lected on the IBM Q 5 Tenerife chip. This quantum com-
puter has five qubits, so N = 4 is the maximum number

of steps that can be modeled. In addition to presenting
the simplified model with both quantum hardware and
simulations, Figure 2 also shows a simulation with the
full model (including φ→ ff̄) for 2 steps.

For the top left plot, the histogram of the 4 step quan-
tum simulation agrees exactly with the 24 step simula-
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Operation App.
Complexity

Scaling (N = 4) (N = 24)

count particles [Ucount] C N lnN 4.93× 102 5.45× 104

decide emission [Ue] D N4 lnN 9.29× 103 8.75× 106

create history [Uh] E N5 lnN 1.69× 105 1.19× 109

adjust particles [ Up] F N2 lnN 5.01× 103 3.37× 105

TABLE II: List of the circuit operations with the number of
standard gates required for given numbers of steps assuming
nI = 1. Further details about the calculations involved and

the counting of the number of gates can be found in the
indicated appendices. As discussed in App. G 5, the overall
scaling reduces by 2 powers of N if one measures and resets

the history register after each step.

tion. For the other plots, the observable is introducing
a dependence on the number of steps, which disappears
as N → ∞. When interference effects are turned off
(g12 = 0), we find excellent agreement for all observ-
ables between both the classical and quantum simula-
tions as well as the quantum computer measurements.
For g12 = 1 the spectra are harder, leading to more emis-
sions and at larger angles. For all quantum simulations
the fraction of events with no emissions (first bin in the
bottom right plot) agree separately for each value of g12.
This is because the simulation is started with a single
fermion state, where the splitting φ → ff̄ is irrelevant.
For a higher number of emissions, the φ → ff̄ splitting
affects the distribution, and in particular lowers the frac-
tion of events with a single emission. The data points
for the quantum computer are much closer together for
g12 = 0 and g12 = 1 compared with the simulations.
Additional simulations with a noise model indicate that
this is likely due to the noise present in the existing hard-
ware. There are clear differences between the g12 = 0 and
g12 = 1 case also for the full model, but the granularity
is not yet sufficient to resolve the structure of these dif-
ferences.

With improved quantum hardware beyond the current
noisy intermediate scale devices [5], our algorithms will
be able to produce calculations that are currently not
possible with classical devices. On the algorithmic side,
near term development will include modifying Eq. 1 to
be the electroweak sector of the SM. Capturing the full
interference effects of collinear electroweak radiation al-
ready has important practical implications for ultra-high
energy dark matter indirect detection, where PeV-scale
particles charged under the electroweak force would ra-
diate copious electroweak bosons not captured properly
by classical MCMC methods [26]. Circuit simplification
and quantum error correction may result in useful results
for near-term hardware. The further goal of this line of
research is to also capture interference and entanglement
from soft radiation, which is the key challenge in mod-
eling strong force final state radiation. There has been
significant progress with classical algorithms to include
some of these effects as corrections [27–32], but a com-
plete calculation may only be possible with pure quantum
or quantum-classical hybrid algorithms. The richness of
quantum phenomena in high energy physics makes them
an excellent testbed for studying the power of quantum
algorithms. By focusing on final state radiation, quan-
tum algorithms may be able to provide key insight into
the dynamics of quantum field theories underlying the
laws of nature.
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Appendix A: The registers of the quantum circuit

The quantum circuit introduced in this paper has a
total of 6 registers. The first two registers are physical
registers, holding the information created by the circuit.
The final 4 registers are work registers, which means that
they are reset to their original value after each step. Thus
they hold no information after the circuit has been run,
and the same work registers can be used for each step.
As discussed in other appendices, additional work qubits
will be necessary when actually implementing some of
the more involved circuit operations.

The first register, |p〉, contains the flavor information
about each particle. Each particle in the system can be
in one of 6 states |0〉, |φ〉,

∣∣fa/b〉, and
∣∣f̄a/b〉. To encode

these 6 states one requires 3 qubits, and we choose the
representation as

|p〉i =



000

001

010

011

100

101

110

111


=



0

φ

−
−

f1/fa
f2/fb
f̄1/f̄a
f̄2/f̄b


, (A1)

where the third and fourth states are not used and one
chooses f1/2 and fa/b before and after the basis change
discussed in Appendix B, respectively. Since there can
be up to N + nI particles in the system (where nI is the
initial number of particles and N is the number of steps),
one needs a total of

dim[|p〉] = 3(N + nI) (A2)

qubits to encode this register.
The second register, |h〉, holds the information about

which particle emitted a particle at a given step. At the
start of the mth step (where the first step has m = 0),
there are up to m + nI particles that can have emitted
the extra particle, and at the mth step |h〉m needs to be
able to hold the integers 0 . . .m+nI (where 0 denotes no
particle having emitted something). When considering

N steps, the register therefore needs to hold
∑N−1
m=0(m+

nI) = N(N + 2nI + 1)/2 integers, requiring

dim[|h〉] = dlog2[N(N + 2nI + 1)/2]e , (A3)

, where d. . .e denotes the ceiling function. It might be
simpler to have each |h〉m be of the same size, in which
case each |h〉m would need to hold the integers 0 . . . N +
nI − 1. This would require

dim[|h〉] = Ndlog2[(N + nI)]e (A4)

qubits.
The third register, |e〉 temporarily holds the informa-

tion whether an emission has occurred in the current step.

This is binary information, and therefore requires a single
qubit, giving

dim[|e〉] = 1 . (A5)

The remaining three registers are count registers,
which temporarily hold the information about how many
bosons, fermions of type a and fermions of type b (count-
ing both f and f̄) are in the current state. Since the
count registers are used for every step, they have to hold
the integers 0, . . . , N + nI . We again choose the binary
representation to hold these integers, and one needs

dim[|nφ〉] = dim[
∣∣na/b〉] = dlog2[(N + nI)]e (A6)

qubits.
The summary of these registers was already shown in

Table I.
At the start of the circuit, all work registers |e〉, |nφ〉,
|na〉, and |nb〉 are initialized to |0〉, where for the count
registers |0〉 refers to the integer 0 in binary notation.
For the physical registers, all history registers |h〉m as
well as the particle registers |p〉m>nI are initialized to

zero. The only non-zero registers are |p〉m≤nI , which are

initialized to the initial particle content (possibly in a
superposition).

Appendix B: Diagonalizing the splitting matrix

In this appendix we discuss the rotation required to
go from the basis with fermions f1/2 to a new basis with
fa/b. The splitting matrix in Eq. (10) can be written in
terms of the coupling constants g1, g2 and g12 as

Pi→jφ(θ) = Gij P̂ (θ) ≡

(
g1 g12

g12 g2

)
P̂ (θ) . (B1)

The coupling matrix G can be diagonalized as

Gdiag = UGU† =

(
ga 0

0 gb

)
, (B2)

with

ga =
g1 + g2 − g′

2
, gb =

g1 + g2 + g′

2
, (B3)

where

g′ = sign(g2 − g1)
√

(g1 − g2)2 + 4g2
12 . (B4)

The matrix U in Eq. (B2) is given by

U =

( √
1− u2 u

−u
√

1− u2

)
, (B5)

with

u =

√
(g1 − g2 + g′)

2g′
. (B6)
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Since each particle is represented by a 3-qubit state,
the operation R that rotates a single particle from the
f1/2 basis to the fa/b basis is represented by a 8 × 8
unitary matrix R, and it must be applied to all of these
3-qubit particle states. It is defined in terms of the matrix
U , introduced in Eq. (B5). For the representation of the
particles given in Appendix A, one has

R =


I 0 0 0

0 I 0 0

0 0 U 0

0 0 0 U

 , (B7)

where I denotes the 2×2 identity matrix. The rotation R
correctly mixes the fermion states, while it leaves alone
the |φ〉 and |0〉 states. Because of the running of the
coupling constants the matrix U , and in turn the matrix
R, will be different at each step in the evolution.

Appendix C: Populating the register for counting
the particles

In this section we give details about the operation
which counts the number of each particle type in the
current state and stores these numbers in the count reg-
isters |nφ〉, |na〉 and |nb〉. As discussed, at the beginning
of each step they are in the state |0〉. To perform this

counting we apply the controlled U
(m)
count gate, which is

broken down in Figure 3. For each particle in the state
|p〉 we apply the unitary operation U+ to the appropriate
count register. The operation U+ is defined on a set of
integer states ranging from 0 . . . N + nI as

U+ |n〉 = |n+ 1〉modN+nI
, (C1)

or in matrix form, (U+)ij = 1 if j = i+ 1 mod (N + nI)
and 0 otherwise. This is a simple operation, and the
gate decomposition of the U+ operator can be found in
Appendix G.

|p〉 / φ a b |p〉 / p

|nφ〉 / U+ ≡ |nφ〉 /

Ucount|na〉 / U+ |na〉 /

|nb〉 / U+ |nb〉 /

FIG. 3: The circuit operation for counting the particles.

Appendix D: Sudakov factors in the quantum circuit

In this section we discuss how we implement the second
operation required in each step, which decides whether

an emission happens or not. In the a/b basis the split-
ting can not change the flavor of the emitting fermion,
and the evolution can therefore be described in terms of
individual splitting functions and Sudakov factors, just
as in a usual MCMC. For the fermions there are 2 differ-
ent splitting functions

Pi→iφ(θ) = g2
i P̂f (θ) , (D1)

where i ∈ {a, b}. The splitting of the bosons is given by

Pφ→īi(θ) = g2
i P̂φ(θ) , (D2)

Using these splitting functions, one can define Sudakov
factors, which describe the probability to have no emis-
sion from a given particle in a given step m. One finds

∆i(θm) ≡ exp [−∆θ Pi(θm)]

∆φ(θm) ≡ exp [−∆θ Pφ(θm)] , (D3)

where

Pi(θm) ≡ Pi→iφ(θm)

Pφ(θm) ≡ Pφ→aā(θm) + Pφ→bb̄(θm) , (D4)

and

∆θ = θm − θm+1 . (D5)

The probability to have no emission from a state con-
taining nφ bosons and na/b fermions of type a/b, is then
given by

∆(m)(θm) = ∆
nφ
φ (θm)∆na

a (θm)∆nb
b (θm) . (D6)

From this one can derive the probability to have a branch-
ing at a given step, which is given by

qp(θm) ≡
∫ θm+1

θm

dθPp(θm)∆p(θm, θ)

= 1−∆p(θm, θm+1) . (D7)

One therefore finds the unitarity condition

∆p(θm, θm+1) + qp(θm) = 1 . (D8)

This splitting probability can be encoded in the quan-

tum circuit through the rotation U
(m)
e on the qubit |e〉.

It starts off in the state |0〉 and is transformed to |1〉 if
there is an emission and stays in the |0〉 state if there is
no emission. The emission matrix is given by

U (m)
e =

( √
∆(m)(θm) −

√
1−∆(m)(θm)√

1−∆(m)(θm)
√

∆(m)(θm)

)
.

(D9)
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|e〉 / U
(m)
e

|nφ〉 / nφ

|na〉 / na

|nb〉 / nb

FIG. 4: circuit operation for determining whether an
emission occurred at the mth step.

Appendix E: Selecting a particle to radiate or split

The second operation discussed in the previous ap-
pendix only decided if an emission happened or not, but
did not have any information about which of the exist-
ing particles the emission originated from. This deci-
sion happens in the third operation, which creates the
emission history by deciding if an emission happened,
which particle might have emitted and assigning the cor-
rect amplitude for the given splitting. In order to select
the histories one needs to “loop” over all particles in the
register, up to the (m+ nI)

th particle for step m, which
can be written in terms of sub-operations as shown in
Figure 5. Each sub-operation controls on one of the |p〉i

|p〉M / p

. . .

|p〉2 / p

|p〉1 / p

|h〉m / U
(m,1)
h U

(m,2)
h U

(m,M)
h

/0

|e〉 • • . . . • X

|nφ〉 /

U
(m,1)
h U

(m,2)
h U

(m,M)
h

|na〉 /

|nb〉 /

FIG. 5: Details of the circuit for the second operation in
each step. One loops over all particles up to M = m+ nI for

step m.

in the particle register, and the final operation ensures
that the emission qubit is back in the |0〉 state after the
operation. The sub-operation which controls on the kth

particle is shown in Figure 6. Here a control on |pk〉
means that the controlled unitary operation Uh depends
on the flavor of particle pk, while φk, ak and bk are true or
false if |p〉k is either a boson, an a-fermion, or a b-fermion,
respectively.

|p〉k / p p φ a b

|h〉m / U
(m,k)
h U

(m,k)
h

|e〉 • ≡ •

|nφ〉 /

U
(m,k)
h

nφ U−

|na〉 / na U−

|nb〉 / nb U−

FIG. 6: Circuit for the kth sub-operation from the second
operation in each step.

For each particle in |p〉 we apply U
(m,k)
h if the emission

has occurred in the given step. U
(m,k)
h is a 2× 2 unitary

sub-matrix which always acts between the states |0〉 and
|k〉 of |h〉m. Defining

P (nφ, na, nb)(θm) =
∑
p

npPp(θm) , (E1)

where Pa, Pb and Pφ are given coefficients, the mentioned
2× 2 submatrix is given by

U
(m,k)
h =

 √1− Ppk (θm)

P (nφ,na,nb)
−
√

Ppk (θm)

P (nφ,na,nb)√
Ppk (θm)

P (nφ,na,nb)

√
1− Ppk (θm)

P (nφ,na,nb)

 .

(E2)

The coefficients of the matrix U
(m,k)
h depend on nφ, na

and nb, which is why we control on the count registers.
Thus, if an emission has occurred, in each sub-operation

the controlled U
(m,k)
h gate rotates between the states |0〉

and |k〉 in the |h〉 register. This is done recursively in a
way that builds up the correct amplitudes for each pos-
sible emission history.

After each application of U
(m,k)
h , the count register is

reduced, changing the value of P (nφ, na, nb)(θm) in the
next step. For example, if it was a fa which emitted, the
count na will go to to na − 1. This means in particular
that in the last sub-operation one has

P (nφ, na, nb)(θm) = Ppk(θm) , (E3)

such that the last of the 2 × 2 sub-matrix is always of
form

U
(m,m)
h =

(
0 −1

1 0

)
(E4)

As a result, in the last sub-operation the amplitude of
the |0〉 state of |h〉m is fully transferred to the |m〉 state.

In the history register, this operation generates a su-
perposition of states corresponding to all the possible
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emissions which could have happened. The amplitude
for the emission to be associated with a particle pk is
given by

Apk =

√
Ppk∑
pk
Ppk

, (E5)

but this procedure includes the interference from all pos-
sible flavors each particle can have.

Notice that at the end of the step, the U− gates have
been applied conditionally on all of the particles in |p〉,
which is exactly the inverse of the first operation, where
we counted the particles. As a result the three count
registers will be back to the initial state |0〉 at the end
of each step, ready to be used again. Furthermore, the
emission register is reset back to |0〉 by the last controlled
X operation.

Appendix F: Adjusting the particle state

The final operation in each step adjusts the particle
flavors according to the emissions that happened. For
example, if a boson splits into a faf̄a pair, we must re-
move a φ from |p〉 and add an fa and an f̄a. In general,
if it is a fermion that emits we simply have to add a
boson to the |p〉 register, while if it is a boson which
emits we must add fermion-antifermion pair to |p〉 and
remove the boson which emitted. The schematic of the
circuit which performs this operation is shown in Figure
7. Each sub-register in |p〉, made up of three qubits, cor-

|p〉M+1 / Up

|p〉k / Up

|h〉m / k

FIG. 7: Circuit for the operation at step m which fixes the
particle register after the emission has happened. As before,
M = m+ nI − 1. Notice that if we control on |h〉 being in
the |k〉 state, we apply Up to the kth sub-register |p〉k and

the (M + 1)th sub-register |p〉M+1.

responds to one particle state and can be in any of six
possible states: 0, φ, fa, fb, f̄a and f̄b. The sub-register
|p〉M+1 will encode the new particle which has just been
emitted and it always starts out in the 0 state, while
the registers below encode the previous particle states.
The operation labeled Up, conditional on the kth state in
|h〉, is a map from the kth and (M + 1)th particle states
before the emission, and the same particle states after
the emission. Notice that this operation is controlled on
the history states, which specify which particle emitted,

though they do not hold the information of what kind of
particle that was. That information is provided by the
kth particle state. The Up gate is always the same and
we want it to take

|fi〉 |0〉 → |fi〉 |φ〉∣∣f̄i〉 |0〉 → ∣∣f̄i〉 |φ〉
|φ〉 |0〉 →

∑
i=a,b

ĝi
(
|fi〉

∣∣f̄i〉+
∣∣f̄i〉 |fi〉) , (F1)

where

ĝi ≡
gi√

2(g2
a + g2

b )
. (F2)

Here we used the vector representation of the particle
states given in Eq. (A1). We can write this transforma-
tion as a single unitary operator as follows:

Up =
∑
i=a,b

|fi〉 |φ〉 〈fi| 〈0|+
∑
i=1,b

∣∣f̄i〉 |φ〉 〈f̄i∣∣ 〈0| (F3)

+
∑
i=a,b

ĝi
(
|fi〉

∣∣f̄i〉+
∣∣f̄i〉 |fi〉) 〈φ| 〈0| .

Since the particle states of different flavors are orthogo-
nal to one another, this transformation is unitary. The
circuit decomposition of Eq. (F3) can be found in Ap-
pendix G.

Appendix G: Circuit Decomposition

We now explain in some detail how to break down
the operations in our general quantum circuit from Fig-
ure 1 (including φ → ff̄ and the running coupling) into
standard quantum gates (single qubit gates and CNOT
gates), so that we can run the circuit on a simulator
and eventually on an actual testbed. While every effort
was made to find an efficient breakdown of the circuit,
we anticipate that a reduction in the number of stan-
dard quantum gates is still possible. The following dis-
cussion gives the number of gates required for each step
0 ≤ m < N − 1 in the evolution. Table II gives the
number of gates needed after summing over all steps.

1. The first sub-operation, Ucount

We start with the counting operation shown in Fig-
ure 3. We store integers in the counting registers using
the conventional bit representation, then the U+ gate (see
Appendix C) can be implemented as shown in Figure
8. A general integer a has the form |q`...q3q2q1〉, where
` = dlog2(a)e is the number of bits necessary to store the
integer (we round up to the nearest integer). Therefore,
in our circuit the number of gates needed to implement
a specific U+ gate depends on the maximum integer we
might have to store. As shown in Figure 3, the U+ gate is
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w`−1 . . . . . .

w`−2 . . . . . .

. . . . . . . . .

w2 . . . . . .

w1 . . . . . .

q1 X • . . . . . . •

q2 • . . . . . . •

q3 . . . . . .

. . . . . . . . .

q`−1 . . . • • . . .

q` . . . . . .

FIG. 8: Decomposition of the U+ gate for integers as large
as a, where ` = dlog2(a)e.

controlled on the particle state |p〉 being a type a fermion,
a type b fermion or a φ boson. As illustrated in Fig. 9, the
first two cases require controlling on two qubits from |p〉,
while the latter case requires controlling on all three the
qubits from |p〉. These controls are applied to all of the
operations shown in Figure 8, yielding many instances
of an X-gate being controlled on multiple qubits. It is
a known result (see e.g. Ref. [33]) how to decompose a
C(n)(U) operation, requiring n−1 work qubits, 2×(n−1)
Toffoli gates plus a C(U) operation. A Toffoli gate re-
quires 16 standard gates while a C(U) operation where
U is real requires 5 standard gates in general (although
if U = X it is simply a CNOT gate). For n > 2 and
controlling on all qubits being in the |1〉 state, we then
need ∣∣∣C(n)[X]

∣∣∣ = 32n− 31∣∣∣C(n)[U ]
∣∣∣ = 32n− 27 (G1)

standard gates. To this count we add 2 X-gates for each
time we control on a qubit being in the |0〉 state instead
of the |1〉 state. Using these results, the total number
of standard gates necessary for the counting operation
when simulating the mth step is:

909dlog2(m+ nI)e − 1010 . (G2)

The above number includes many pairs of adjacent X
gates (coming from controlling on a |0〉, rather than |1〉)
that cancel. Ignoring all such X gates gives

ccount(m,nI) = 873dlog2(m+ nI)e − 968 . (G3)

The true answer lies in between (G2) and (G3); the effect
is small and henceforth we ignore the difference arising
from controlling on |0〉 versus |1〉. We therefore write the

final answer as

Nsub1(m,nI) = ccount(m,nI) . (G4)

• •

• •

|φ〉 |a〉 |b〉

FIG. 9: Controls for the particle states φ, fa and fb. It is
possible to rearrange the particle representation given in

(A1) to use only 2 controls for all, but subsequent
operations become more complicated in this case.

2. The second sub-operation, U
(m)
e

Let’s now look at the operation in which we deter-
mine whether or not we had an emission, whose circuit is
shown in Figure 4. If we are at the mth step, the largest
number of particles we can have is m + nI , while the
minimum is nI . This means that we have to apply Ue
gates controlled on all the possible combinations of three
integers, ranging from 0 to m + nI , whose sum is in the
range [nI ,m+ nI ]. There are

c(m,nI) =
m+ 1

6
(m2 + 3mnI + 5m+ 3n2

I + 9nI + 6)

(G5)

such such combinations. For each of these we run a
C(3dlog2(m+nI)e(Ue) operation, where the Ue gates are
RY (θ) rotations. Using the results from above about
C(n)(U) operations, the total number of standard gates
necessary for the emission operation is

Nsub2(m,nI) = c(m,nI) (96dlog2(m+ nI)e − 27) .
(G6)

3. The third sub-operation, Uh

The next operation we need to break down is the cre-
ation of the emission history shown in Figure 5. If we
are in the mth step of the evolution, we can have up
to m + nI particles in |p〉, so we must run m + nI of
the sub-operations depicted in Figure 6. We notice that
the second part of the circuit for the sub-operation is the
same as the counting operation, except we have U− gates
instead of U+ gates. The U− gate is implemented very
similarly to the U+ gate, the only difference being that
we control on work qubits being in the |1〉 state instead
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of the |0〉 state. Therefore, the number of standard gates
necessary to apply the controlled-U− operations when
simulating the mth step is ccount(m,nI) given in (G3).

In the first part of the sub-operation circuit, the gate
Uh has the same controls on the count registers that we
found in the emission operation, plus having controls on
the particle state and on the emission qubit (which has
to be in the |1〉 state for an emission to have happened).
As we have seen the particle state can be in any of six
states specified by three qubits; however, the emission
probability is the same for particle and anti-particle, and
no Uh is the identity if the particle is in state |0〉. There-
fore the number of possible combinations of particle state
and count states in sub-operation j is 3 c(m,nI), which
is the number of times we must apply Uh gates controlled
on 4 + 3dlog2(m + nI − j)e qubits. The history register
contains states labeled by integers from 0 to m+ nI and
we use the standard bit representation to encode these
integers in qubits. For the jth sub-operation the matrix
Uh is an a× a unitary matrix, where a = 2b with

b = dlog2(j)e . (G7)

Uh only differs from the identity matrix in the row / col-
umn 1 and (j+1), which form the submatrix in Eq. (E2).
Therefore, Uh is a particular type of two-level unitary
transformation acting on b qubits, which we call U [b].
There is a standard procedure to break such matrices
U [b] down into standard qubit gates, and one can use
this result to derive a break-down of a controlled U [b]
transformation. One finds∣∣∣C(n)[U [b]]

∣∣∣ = 32(n− 1) +
∣∣∣C(1)[U [b]]

∣∣∣
= 32(n− 1) + 2(b− 1)

∣∣∣C(1)[X]
∣∣∣+
∣∣∣C(1)[U ]

∣∣∣
= 64b2 − 94b+ 32n+ 3 . (G8)

For our case we have n = 4 + 3dlog2(m + nI − j)e),
and combining these results the total number of stan-
dard gates necessary to implement the controlled-Uh op-
erations is

Nsub3(m,nI) =

m+nI∑
j=1

[
ccount(m,nI)

+ 3c(m,nI)
∣∣∣C(4+3dlog2(m+nI−j)e)[U [b]]

∣∣∣ ] . (G9)

4. The fourth sub-operation, U
(m)
p

Lastly, we must break down the operation in which we
adjust the particle states in |p〉. Given the transformation
in Eq. (F3), we can implement Up efficiently as shown
in Figure 10. In the circuit H is the Hadamard gate and
Ur is given by

Ur =
1√

g2
a + g2

b

(
ga −gb
gb ga

)
. (G10)

Ur

H

• • • • •

|pk〉

•

•

|pj〉

FIG. 10: The circuit which implements the Up operation.
Here, k = m+ nI .

The operation Up is controlled on the possible states
in |h〉. There are m + nI such states, each requiring
dlog2(m + nI)e controls. Thus, for each of the m + nI
occurrences of Up one adds dlog2(m + nI)e controls to
each operation in Fig. 10. This gives

Nsub4(m,nI) = (m+ nI) (224dlog2(m+ nI)e+ 143) .
(G11)

standard gates.

5. Summary

Adding all sub-operations together and summing over
0 < m < N − 1, one finds that the overall scaling of our
circuit is N5 lnN . Fig. 11 shows the number of gates as
a function of N for N < 50.

Note that one can obtain a much shallower circuit re-
quiring less qubits if one takes into account that in the
end states with different history registers do not interfere
with one another. This implies that one can measure the
history register after the third operation in each step, and
reset it back to zero. This collapses the quantum state
to one with a definite history. Having a state with a defi-
nite history gives definite knowledge about the number of
bosons nφ, as well as the total number of particles ntot.
This is because the history allows us to infer how many
emissions have happened, which means that the state has
a definite number of particles; since one also knows at any
step at which an emission happened if the emitting parti-
cle was a fermion or a boson, one knows the total number
of bosons. Thus, instead of counting and keeping track of
the 3 values nφ, na and nb, it suffices to only keep track
of na and from that derive nb = ntot−nφ−na. Following
similar steps outlined in this section in this case, one can
easily see that the scaling of the depth of the circuit is
reduced significantly, with an overall scaling of N3 lnN ,
instead of the N5 lnN . Unfortunately, current quantum
hardware does not allow for such repeated measurements.



13

0 10 20 30 40 50
Number of steps (N)

104

105

106

107

108

109

1010

1011
Nu

m
be

r o
f S

ta
nd

ar
d 

Ga
te

s

Calculation
fit to N5log(N)

FIG. 11: The number of standard qubit gates as a function
of the number of states, using the formulae given in

Eqs. (G4), (G6), (G9) and (G11) . The asymptotic behavior
is illustrated with a fit to N5 lnN .

Appendix H: Results for two steps

Figure 12 presents an overview of the possible out-
comes from running the full circuit with two steps. In
this case with N = 2, 24 total qubits were used. Sev-
eral interesting features can be observed from this result.
First, given that the initial state in a single f1 fermion,
for g12 = 0 one can only end up in a state containing an
odd number of f1 fermions. In contrast, for g12 = 1, even
with no emissions the fermion can change type. This can
be traced to virtual corrections involving fermion chang-
ing interactions. This figure also gives a sense how big
the effect of φ→ ff̄ splittings is (first three sets of bars
versus last three sets of bars) for the chosen parameter
values. This simulation is also used to predict the distri-
bution of observables shown in Fig. 2.

Appendix I: Circuit with no φ→ ff̄

Ignoring the φ → ff̄ splittings, ignoring the running
coupling, and starting with only one fermion (possibly in
a superposition) as the initial state, allows us to dras-
tically simplify our quantum circuit, since all one needs
now is a single qubit which represents the fermion fla-
vors, and a boson register, which keeps track of whether
or not a boson was emitted at a given step. This boson
register is the equivalent to the emission register plus the
particle register in the general circuit. We no longer need
a history register, since we know the fermion is the only
particle which can emit, nor do we need the count reg-

isters since in this limit the probability of a boson being
emitted only depends on the flavor of the fermion. The
full evolution can be carried out with the much simpler
circuit shown in Figure 13.

The U and U† gates are the same as in Eq. (B5), while

the U
a/b
i gates are given by the matrices

U
a/b
k =

( √
∆a/b(θk) −

√
1−∆a/b(θk)√

1−∆a/b(θk)
√

∆a/b(θk)

)
, (I1)

which encode the amplitude for the fermion to emit or
not emit a boson at a given step. These gates are con-
trolled on the fermion state since the gate parameters
depend on the flavor of the fermion. The circuit con-
struction demonstrates that the scaling for generating a
single event is linear with the number of steps.

At each step the Ua and U b gates are conditionally
applied to a new qubit, but after that the qubit is left
alone until the final measurement at the end of the evo-
lution. Therefore, at each step one could measure the
qubit on which the Ua/b gates act on, store the result
in a classical register, reset it to the initial |0〉 state and
reuse it for the next step. Using this method of repeated
measurements and resetting the measured qubits one can
rewrite the circuit in terms of just two qubits as shown
in Figure 14. At each step one records the measurement
on the second qubit, and at the very end the first qubit
is measured. The combination of these measurements
makes up one event. Note that because this circuit can
be implemented using just 2 qubits, one can in fact find
an efficient quantum inspired classical algorithm. This is
derived in Appendix K.

We now discuss how to implement this circuit on cur-
rently available hardware. Given that repeated mea-
surements as used in Figure 14 is not possible on cur-
rently existing hardware, we use the circuit shown in Fig-
ure 13. To implement this, one needs to break down the
controlled operations into standard gates, namely single
qubit gates and CNOT gates. To achieve this, one first
uses the well known result

X • X
=

U U

In our case the gate U consists of a RY (θ) rotation
gate. Furthermore, we use the fact that for an arbitrary
controlled-U operation, one has

• • • P
=

U C B A

where

P =

(
1 0

0 eiψ

)
, (I2)
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2-step Full Quantum Simulation
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FIG. 12: The distribution of final states after two steps when running the full circuit including φ→ ff̄ (but still no running
coupling) and starting with the state f1. When g12 = 1, the transition f1 → f2 can happen due to interference effects.

|φN 〉 Uan Ubn

. . . . . .

|φ1〉 Ua1 Ub1 . . .

|f〉 U • . . . • U†

FIG. 13: A quantum shower for the interfering model with
no φ→ ff̄ splitting and no running coupling.

|φ〉
U1

|0〉
U2

|0〉 . . .
UN

|f〉 U . . . U†

FIG. 14: A quantum shower for the interfering model with
no φ→ ff̄ splitting using only 2 qubits. The Ui blocks

correspond to the U ia, U ib controlled operations from
Figure 13.

and the following conditions are satisfied

U = exp(iψ)AXBXC ; ABC = I . (I3)

To apply this to the controlled-RY (θ) gate one chooses

A = RY (α) B = RY (β) C = RY (α) , (I4)

where α, β and ψ satisfy

α =
θ

4
β = −θ

2
, ψ = 0 . (I5)

This gives gates A, B, C, P (where P is the trivial iden-
tity matrix) that satisfy all conditions. Using this infor-
mation one finds that each step requires a total of 12 sim-
ple quantum gates (8 single qubit gates and four CNOT
gates), and in addition two transformations are required
at the beginning and end of the circuit which also consist
of single qubit gates. Generating a single event therefore
requires a total of

ngates = 12N + 2 (I6)

single qubit and CNOT gates.

Appendix J: Renormalization of the theory

When computing higher order corrections to the sim-
ple model given in Eq. (1) one encounters divergences
as in any quantum field theory. These divergences can



15

be removed using a renormalization procedure by includ-
ing counter-terms which are then determined using a so-
called renormalization prescription. This is accomplished
by writing the bare fields, masses and couplings of the un-
renormalized theory [denoted with a superscript (0)] in
terms of renormalized quantities, with the relation given
by renormalization factors. This gives

f
(0)
i = Z

1/2
ij fj , φ(0) = Z

1/2
φ φ

g
(0)
i = Zg,igi , m

(0)
i = Zm,imi . (J1)

Starting from the bare Lagrangian given in Eq. (1), one
therefore finds the renormalized Lagrangian

L =f̄i(i/∂ +mi)fi + (∂µφ)2 + gij f̄ifjφ

+

([
Z

1/2
ik

]†
Z

1/2
il − δikδil

)
f̄ki/∂fl

+

([
Z

1/2
ik

]†
Z

1/2
il Zm,i − δikδil

)
f̄kmifl

+
(
Z

1/2
φ − 1

)
(∂µφ)2

+

([
Z

1/2
ik

]†
Z

1/2
jl Zg,ij − δikδil

)
gij f̄kflφ , (J2)

where repeated indices are summed over, and we have
defined gii ≡ gi and gij = gji. The divergences of the
counter-terms given in the last 4 lines of Eq. (J2) need to
cancel all divergences arising from higher-loop diagrams,
but their finite terms need to be fixed by a renormaliza-
tion scheme.

The simplest renormalization scheme is the so-called
minimal subtraction (MS) scheme, in which the finite
contributions of the counter-terms are defined to vanish,
however other schemes are possible (and widely used).
A reader not too accustomed with quantum field theo-
ries might be worried that one could choose a scheme
that eliminates all contributions giving rise to the mix-
ing between the fermions considered in this work. How-
ever, one needs to keep in mind that the loop corrections
in the theory give rise to a scale dependence, and that
the interactions in the renormalized theory depend on
a scale called the renormalization scale. The renormal-
ization scheme provides a relation at a single scale only,
which implies that it is not possible to eliminate mixing
effects at a general renormalization scale.

However, the fact that all renormalized quantities de-
pend on a renormalization scale implies that the basis
change that eliminates the fermion mixing is scale de-
pendent, since it depends on the values of the scale de-
pendent coupling constants. The evolution of a parton
shower can be viewed as an evolution in the renormal-
ization scale, such that each step in our algorithm corre-
sponds to a different value of the renormalization scale.
This explains why the rotation matrix U in Eq. (B5) de-
pends on the step.

Appendix K: A quantum-inspired classical algorithm

In this Appendix a classical algorithm that can be used
to simulate the circuit in Figure 13 is introduced. We
show how the classical algorithm works by considering
the kth step. Because the second qubit is reset to |0〉
after each step, the state at the beginning of the step
(before Uk is applied) will always be of the form

|ψk〉 =


a

(k)
1

0

a
(k)
3

0

 . (K1)

After applying the Uk operation through matrix multi-
plication one finds

|ψk〉 → Uk |ψk〉 =


b
(k)
1

b
(k)
2

b
(k)
3

b
(k)
4

 , (K2)

where the b
(k)
i are determined from the a

(k)
1 and a

(k)
3

through multiplication with the matrix Uk.
From this one finds that the probabilities P0 and P1 to

measure the second qubit as |0〉 or |1〉are given by

P0 = b
(k)
1

2
+ b

(k)
3

2
, P1 = b

(k)
2

2
+ b

(k)
4

2
(K3)

The corresponding states after resetting the second qubit
to |0〉 are given by

|ψk〉0 =
1√
P0


b
(k)
1

0

b
(k)
3

0

 , |ψk〉1 =
1√
P1


b
(k)
2

0

b
(k)
4

0

 .

(K4)

Both of these states have form

|ψk+1〉 =


a

(k+1)
1

0

a
(k+1)
3

0

 , (K5)

which has exactly the same form of the state we started
with, so that this process can be repeated again.

The same result can be obtained classically by the fol-
lowing classical algorithm for generating a single event,
which starts from a fermion in the superposition f =
af1 +

√
1− a2f2, and where we have defined the matrix

U ≡ Uk. The event is stored in the classical register
cf holding the type of fermion and cφ[step], which holds
whether an emission happened at the given step. The
procedure is described algorithmically in Alg. (1).
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Create empty vector for classical register cφ[m]
Set a1 = a and a3 =

√
1− a2

for step = 1 . . .m do
Set bi = Uijaj
Set P0 = (b21 + b23) and P1 = b22 + b24
if rand() < P0 then
c[step] = 0
a1 = b1/

√
P0 and a3 = b3/

√
P0

else
c[step] = 1
a1 = b2/

√
P1 and a3 = b4/

√
P1

end if
end for
if rand() < a21/(a

2
1 + a23) then

cf = 0
else
cf = 1

end if

ALGORITHM 1: Quantum inspired classical algorithm.
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