
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
A dynamic neural field model of self-regulated eye movements during category learning

Permalink
https://escholarship.org/uc/item/1t77n0fz

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 37(0)

Authors
Barnes, Jordan I
Blair, Mark R
Tupper, Paul F
et al.

Publication Date
2015
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1t77n0fz
https://escholarship.org/uc/item/1t77n0fz#author
https://escholarship.org
http://www.cdlib.org/


A dynamic neural field model of self-regulated 
eye movements during category learning 

Jordan I. Barnes (jordanb@sfu.ca) 
Mark R. Blair (mblair@sfu.ca) 

Department of Psychology, Simon Fraser University 
8888 University Drive, Burnaby, BC V5A 1S6 Canada 

Paul F. Tupper (pft3@sfu.ca) 
Department of Mathematics, Simon Fraser University 
8888 University Drive, Burnaby, BC V5A 1S6 Canada 

R. Calen Walshe (r.c.walshe@sms.ed.ac.uk) 
Department of Psychology, The University of Edinburgh 

7 George Square, Edinburgh, EH8 9JZ Scotland 

Abstract 

Computational models of category learning and attention have 
historically focused on capturing trial and experiment level 
interactions between attention and decision. However, 
evidence has been accumulating that suggests that the 
moment-to-moment attentional dynamics of an individual 
affects both their immediate decision-making processes as 
well as their overall learning performance. To extend the 
scope of these formal theories requires a modeling approach 
that can index fine-grained decision-making at millisecond 
time scales. Here we implement a model of eye movements 
during category learning using concepts from Dynamic 
Neural Field Theory research. Our model uses a combination 
of timing signals, spatial competition and Hebbian association 
to simultaneously account for a number of foundational 
attentional efficiency results from eye tracking and category 
learning. We report the results of fitting this model to 
accuracy, fixation probabilities, fixation counts and fixation 
duration data in 42 subjects from a standard category learning 
experiment. 

Keywords: attention, eye-tracking, dynamic field theory, 
cognitive modeling, category learning. 

Introduction 
Attention and learning are intrinsically related (Shepard, 
Hovland & Jenkins, 1961; Kruschke, 2011). When we learn 
a new skill, we learn to selectively attend to information 
relevant to that skill. As research into the fundamental 
neurophysiological principles of attention and learning 
progresses however, the historical psychological methods 
for studying attention and learning, and those implied by 
modern approaches in computational neuroscience, have  
thus far failed to converge. In the category learning 
literature for instance, where some of the clearest 
formalizations of the relationships between learning and 
attention have been developed, ‘attention’ is simply a 
weight on a feature dimension indicating the degree of 
importance it is assigned when making category decisions. 
Mathematical learning techniques that adjust these weights 
trial-by-trial over the course of an experiment have worked 
relatively well in fitting human data (Kruschke, 1992). 

These approaches have been used in explanations for 
phenomena such as: attentional blocking and highlighting 
(Kruschke, Kappenman, & Hetrick, 2005), rapid attentional 
shifting (Kruschke & Johansen, 1999), and cluster driven 
attention (Love, Medin, & Gureckis, 2004). However, the 
biological basis for these techniques has not always been 
clear. What is becoming more clear, is that the brain is 
using a complex set of systems to perform attentional 
functions that may only look like those described by 
attention weights at a trial-level (Gottlieb, 2012).  

As a first step toward bridging the gap between attention 
weights at a trial-level and the ongoing attentional decisions 
made within a trial, a recent model called RLAttn, standing 
for Reinforcement Learning of Attention (Barnes, 
McColeman, Stepanova, Blair & Walshe, 2014), used 
temporal difference error to learn transition probabilities 
between micro-information states, which get traversed by 
eye movements as part of arriving at a decision. This model 
showed the possibility of using aggregated eye movements 
to index attention in ways that correspond to classical 
descriptions of learned attention in terms of bias to 
particular feature dimensions. RLAttn is a first step, but it 
must be admitted that the target of a saccade is not just a 
function of the relative values of different information 
states. The spatial arrangement (Lipinkski, Spencer & 
Samuelson, 2010) and perceptual salience of visual 
information (McColeman, & Blair, 2013) for instance, 
affects these decisions as well. A more fundamental account 
of these systems guided by advancements in neuroscience 
is needed. For this reason, we have developed a new model 
that couples together the dynamically operating cognitive 
mechanisms needed to interface sensori-motor signals with  
learned attention.  

Decision timing 
When the relationships between category decisions and 
other measures like reaction time and ocular motor fixation 
durations are looked at closely, it quickly becomes clear 
that there is quite a bit happening beneath the level of the 
category decision. For instance, Blair and Watson (2008) 
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show that category learning performance can be well 
predicted from the duration of time that participants spent 
looking at the stimulus during the feedback phase in just the 
first 10 trials. Furthermore, individuals develop patterned 
fixation orders, and fixation durations tend to decrease over 
the course of the experiment, especially to relevant 
information (Rehder & Hoffman, 2005; Meier & Blair, 
2013; Chen, Meier, Blair, Watson & Wood, 2013). 

What then are the determinants of these sub-decisions 
regarding where and when to look, and how do they affect 
the trajectory of learning? These are some of the core 
questions we are trying to investigate with this model. Only 
by having a model that evolves its behaviour through 
learning can you begin to say how the factors influencing 
these decisions relate to one another. In a review of the 
cognitive and neural factors that influence decision timings 
for instance, Wittman and Paulus (2008) argue that timings 
are strongly related to attention and are influenced by a 
number of specialized neural networks. Inspired by ideas 
like these, we incorporate neurons for both decision 
responses and for saccade initiation mechanisms, whose 
activations grow with time and are reset when the relevant 
task is performed. One can think of these units as 
implementing a kind of impatience. Like Wittman and 
Paulus who suggest that timing is highly individual 
specific, Ghafurian and Reitter (2014) have implicated 
impatience as being a distinct trait between individuals. 
This work has shown that individuals maintain a constant 
offset in timing decisions, above and beyond factors like 
risk aversion, in tasks where individuals need to estimate 
optimal response times in order to maximize reward. 

Dynamic Neural Field Theory 
Models that attempt to describe processes as they unfold in 
time are naturally described in the language of differential 
equations. There are many models of the temporal 
characteristics of eye movements (see Nuthmann, Smith, 
Engbert, & Henderson, 2010, for example) but only a few 
are described purely in dynamic terms (see Perone & 
Spencer, 2013, or Schneegans, Spencer, Schöner, Hwang & 
Hollingworth, 2014). We opt for a modeling framework that 
looks beyond just the timing of a decision however, to 
incorporate a level of spatial dynamics that contributes to 
the actual decisions made. One framework that does this is 
called Dynamic Neural Field Theory (DNFT, or just DFT), 
and is built on some of the known properties of neural 
populations (Georgopoulos, Schwartz, &  Kettner, 1986; 
Erlhagen & Schöner, 2002). The elements of these neural 
fields are defined by the entire population of neurons, 
weighted by their individual tuning preferences for the 
given element. These preferences are typically modeled by a 
standard receptive field across the population which has a 
locally excitatory and globally inhibitory difference of 
Gaussians (also known as 'Mexican hat') approximation (see 
Kopecz & Schöner, 1995, for an example of this kind of 
lateral interaction in a similar context).  

Abstract fields with these properties can develop self-
sustaining peaks of activity even in the absence of 
exogenous input, allowing for a kind of memory (Amari, 

1977). The general form of the 2-dimensional field 
equation, like those used here, for a field u, is defined by: 

!  
where 𝜏 scales the time, x and y represent points in space, h 
is a resting level, S is exogenous input, w specifies the 
interaction kernel of the field and f is a sigmoidal 
thresholding function. In this framework, any sufficiently 
activated neuron will contribute excitatory or inhibitory 
activation to the abstract field according to a distance along 
a metric of representation governed by the receptive field of 
the neuron. 

Model 
The model presented here is designed to work with similar 
kinds of task constraints as human subjects given the same 
experiment. A trial begins with the model looking at the 
center of a screen in the same manner that a human begins a 
trial with a central fixation cross. It then makes simulated 
eye movements to stimulus features that compete for 
attention. Each eye movement registers foveated 
information in a kind of visual working memory. This 
activates associated categories, which then affect the 
decisions about where to look next and when to look at 
feedback or end the trial. Experiment instructions specifying 
a particular set of features and responses are similarly coded 
into the model. 

The model contains many dynamically interacting parts, 
as shown in Figure 1. To begin with, the visual field (A) has 
2 spatial dimensions defined in retinotopic coordinates with 
the fovea always at the center. A 3rd dimension on this field 
contains the feature values for a particular trial that serve as 
input to a feature detection layer of neurons once a 
particular location is foveated; a particular color is only 
defined for one location for the whole experiment. Feature 
neurons (D) tuned to these specific locations of the color 
dimension of the input are connected to a layer of category 
neurons through a synaptic weight matrix. As a feature 
neuron is activated, it activates categories as a function of 
the level of its activation and the weight (F) on the synapse. 

!  
Figure 1: Schematic structure of the 3 sub-sections of the 
model: spatial representation, category learning, saccade 
initiation. Green shapes represent free parameters. 
Dashed lines indicate inhibitory connections. 
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A small gain factor is also applied that attenuates category 
activation according to the consistency of a feature with 
particular categories. This is done because there is often 
non-diagnostic information that is correlated across all 
categories. 

The mutually inhibitory category neurons (G) in the 
model play a central role in the prioritization of attention 
and timing of decisions. These category neurons feed into a 
decision neuron (H) which, if activated strongly enough, 
will make a category decision, either initiating a feedback 
phase or, if very highly activated end the trial without 
looking at feedback. This decision neuron is excited by 
exponentially increasing input, whose rate of growth is set 
by the trial-impatience free parameter (I). The larger this 
number, the faster the model will tend to make a decision on 
a particular trial. Toward the start of an experiment when 
categories are not very strongly activated, the timing of 
category decisions is largely determined by the impatience 
of the model pushing the neuron over a threshold, but as 
categories begin to get selectively activated over the course 
of learning, category feedback pushes this neuron across 
threshold faster and response times gradually decrease. The 
same processes generalize to the feedback phase.  

While this is happening, activity from the category 
neurons recurrently feeds back through the synaptic weight 
matrix and into a layer of feature expectation neurons (E). 
As particular categories grow in activation over the course 
of the trial, the outstanding features associated with that 
category become activated. Gain is again applied for this 
direction of the flow of activity, biasing the model to 
saccade to highly relevant features. Inhibitory input from the 
feature detection neurons simultaneously reduces the 
expectation of already viewed information, acting as a kind 
of inhibition of return on a time scale set by the memory for 
items in working memory. 

The feature expectation neurons do two things. First, they 
magnify inputs along the 3rd dimension of the visual field. 
This has the effect of acting as a kind of salience boost to 
that information. Second, the feature expectation neurons 
are connected to specific locations on the spatial attention 
field (B). This divergence models the distinction between 
salience driven attention and the relative weightings that 
might be calculated there, and task level attention which 
could much more strongly drive voluntary shifts in 
attention. 

The spatial attention field is modeled as a 2-dimensional 
dynamic neural field which represents the elements of the 
stimulus in spatiotopic, or world-centric, coordinates as 
opposed to the retinotopic coordinates of the visual field. 
The extant point of fixation receives an excitatory boost 
from a fixation neuron (K), which plays a role akin to 
neurons at the rostral pole of the superior colliculus. The 
intermediate layers of this brain region are known to 
topographically organize the selection of saccadic end-
points (Robinson, 1972). Here, neurons coding for 
amplitude and direction of the eye movement compete in the 
initiation of saccades (Munoz & Wurtz, 1993). A gaze 

change neuron (L) acts as the target for the exponentially 
increasing fixation-impatience parameter (N). This input 
ensures that the model will make new fixations. This gaze 
change neuron inhibits the fixation neuron, consequently 
modifying the balance of competition on the attention field, 
while also exciting the saccade motor field (C) and a 3rd and 
final neuron, the saccade initiation neuron (M). When this 
neuron crosses a threshold, the location of maximum 
activation on the saccade motor field is selected as a 
saccadic end-point and a saccade is initiated. This re-orients 
the visual field, which is suppressed during the saccade and 
resets the fixation impatience timer. Oscillatory fixation 
dynamics can be generated a number of different ways, for 
instance by treating the fixation neuron’s resting level as a 
separate state variable sensitive to the changes in activation 
of the fixation neuron (Perone & Spencer, 2013), but we 
chose an impatience parameter as a way of separating the 
contribution of an individual’s processing speed from their 
gaze strategy, which may cause saccades prior to finishing 
processing (Kiani, Hanks & Shadlen, 2008). 

Learning occurs after the model has made a category 
decision and a feedback phase is entered. When the model 
looks at a particular location in space, where a feedback 
“button” is located, additional input to the correct category 
is provided. For every moment that the model spends in the 
feedback phase, Hebbian co-activation type association 
strengthens (J) the weights between the active features and 
the correct category. This is modulated with every fixation, 
in that the activation of a feature detecting neuron is boosted 
by fixational input above and beyond the attractor defined 
by the self-sustaining level of the feature detecting neurons, 
effectively increasing its association with the category 
active category in the feedback phase. 

Method 
Eye tracking and category learning data was obtained from 
the publicly available Meier and Blair (2013) dataset . Full 1

technical details can be found in the original paper. The 
experiment required participants to sort images of fabricated 
microorganisms defined by 3 organelle features (see Figure 
2) into 1 of 4 categories (A1, A2, B1, B2) on each trial. 
Feedback indicating the subject’s choice and the correct 
category was provided after each decision. We use only 
participants in the equal category base rate condition (as 
opposed to a condition where some categories appear more 
frequently) of this experiment, who had at least 70% of their 
gaze collected, and who reached a criterion of 24 trials in 
row correct (n=42). From these subjects, we only look at the 
first 360 trials of this data for each subject. 

The category structure, shown in Table 1,  is defined such 
that feature 1 is more informative than either feature 2 or 
feature 3, in that its value determines which of feature 2 or 
3 is relevant for a particular trial. Optimal attention then, 
requires participants fixate feature 1 first. 

 http://summit.sfu.ca/item/127151
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Table 1. Feature 1 is relevant for all categories. Feature 
2 is relevant only for the A categories, and Feature 3 is 
relevant for only the B categories. 
 

!             !  

!         !  
Figure 2: A: Example stimulus from Meier and Blair 
(2013). The three features of interest subtend 
approximately 1.7° of visual angle each, and are spaced 
roughly 10.6° apart. B: Three equidistant color features 
presented to the model. C/D: The two feature options for 
each location.  

While the stimuli from this experiment are more complex 
than can be currently processed by the model, we have 
elsewhere employed the simple color stimuli suitable for 
use with the model (Barnes & Blair, 2014). 

Simulations 
To find out how well the model could simulate the human 
data we employed a grid search algorithm, varying our 3 
free parameters (learning rate, trial impatience and fixation 
impatience) in looking for the best fitting version of the 
model for each individual. Model fits were judged based on 
the difference in mean and slope of 4 aspects of the human 
data (accuracy, trial fixation counts, probability of fixating 
the irrelevant feature and fixation durations). A single 
simulation of a single participant can take several hours, 
consequently, the model was just run several times at each 
level of a fairly coarse grid. Each subject's data was then fit 
with the point on the grid that minimized the weighted least 
squares error. 

In what follows, we assess the quality of our fitted model 
in two ways. For each measure we first look at how the 
model performs on a representative individual in the 
population. This representative individual is the one with the 
median weighted squared error; so there are roughly equal 
numbers of subjects that we fit better or worse than this 
representative individual. We do this such that the reader 
can get a sense of the variability of the model under a single 
set of parameters. We next look at the distribution of the all 
the subjects and the corresponding fitted models for all the 
subjects.   

! !  
Figure 3: Accuracy learning curves. Grey bars indicate 
population standard deviation. On left is the fit of the 
model for the representative subject and on the right is 
the average behaviour over all subjects and fits. 

Accuracy 
We considered the fit of the accuracy, that is the fraction of 
the categories that were correctly guessed, as an important 
benchmark. As seen in Figure 3, the model performed well 
in fitting the learning performance data.  

Probability of fixating irrelevant feature 
Here we report a measure of attentional optimization 
characterized by the averaged binary probability of looking 
at an irrelevant feature on a particular trial. As seen in 
Figure 4, while the model captures the decreasing 
probability of fixating irrelevant information well across the 
whole experiment, the model always fixates all features at 
the beginning, whereas human do not. There are several 
non-exclusive possibilities that might explain this. The first 
possibility we considered is that the eye tracker may be 
losing track of the eyes at times during the experiment (due 
to blinks, or head turns, for instance) possibly depressing 
the initial probabilities of fixating irrelevant information. 
Upon further investigation, controlling for gaze loss at the 
individual level, this did not appear to account for the 
reduce probabilities. Further, Rehder and Hoffman (2005) 
report similar initial fixation probabilities for the features in 
their experiment. It is possible that not looking at all the 
features might be a strategic choice that human participants 
make in order to test simple rules first (possibly due to the 
assumption that the task itself could be quite simple). The 
simple rule first hypothesis is common to category learning 
models (e.g. Love, Medin & Guereckis, 2004; Nelson & 
Cottrell, 2007) and occurs naturally in models like RLAttn, 
where guessing the category may have as high an action 
selection probability as fixations to features until incorrect 
answers have a chance to punish this behaviour. Finally, it 
may be the case that precise fixations are not totally 
necessary in most category learning experiments (see Tatler, 
Hayhoe, Land & Ballard, 2011 and Coren, 1986). In any 
event, as currently constructed, the model presented here is 
too fastidious to produce the human data on this score. 

Fixation Counts 
Another common form of attentional optimization is to 
reduce the overall number of fixations (to features) per trial 
over the course of the experiment (McColeman et. al, 2014). 
Figure 5 shows human and model data. The model captures 
the overall trend of decreasing fixation count across the  

Feature 1 Feature 2 Feature 3 Category
0 0 0/1 A1
0 1 0/1 A2
1 0/1 0 B1
1 0/1 1 B2

A

C

B

D
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! !  
Figure 4: The probability of fixating irrelevant feature 
over the course of the experiment. 

! !  

Figure 5: The total fixation counts to all features over 
the course of the experiment. The standard deviation for 
the sample of model runs that best fit the representative 
individual was very small. 

course of the experiment, but once again overestimates the 
number of fixations at the beginning of the experiment.  

Fixation Durations 
We believe that fixation durations are an important measure 
for models to fit going forward as they reflect a number of 
important cognitive processes such as scene perception 
(Walshe & Nutthman, 2013), fixation type (Ballard, 
Hayhoe, Pook & Rao, 1997), and information relevance 
(Chen et. al, 2013) among others. Figure 6 shows the human 
data and model simulations. On average the model fits 
human data well. The model shows a modest but similar 
decline in durations as the human subjects over the course 
of the experiment, within a similar magnitude. 

Discussion 
Modeling eye movements during category learning is a 
recent trend (Nelson & Cottrell, 2009; Barnes et al,. 2014). 
There are disparate motivations for moving in this direction. 
Recent work has shown that learning methods based on 
error reduction alone are insufficient to explain human eye 
movement data in category learning, pointing to a need for 
new kinds of models that might learn with different methods 
(Blair, Walshe, Barnes & Chen, 2011; McColeman et. al, 
2014). Additionally, work by Ballard, Hayhoe, Pook and 
Rao, (1997) on the relationship between working memory 
and skill acquisition, emphasizes the importance of "just-in-
time" decision-making at an embodied time scale operating 
at around 1/3 - 2 sec. The motivating intuition is that there 
should be physical actions that line up with the time scales 
of information processing required for variable binding.  In 
this view, instructions about where to look next can be  

! !  
Figure 6: The mean fixation durations to all features, 
irrespective of relevance, over the course of the 
experiment. 

thought of as being stored "in the world" as opposed to in 
the head, reducing the representational demands on the 
computational cognitive system.  

While ours is a much different model, the decisions it 
makes about where to look next are contingent on serially 
accessed parts of the visual world. In general, the category 
learning paradigm is well-suited for analysis at the 
embodied time scale because moment-to-moment decisions 
can reflect subtle manipulations in the category structure 
(Meier & Blair, 2013). Ultimately, the mechanisms that 
make gaze fixations relevant to overall learning are only just 
starting to be understood. The model of just-in-time gaze 
learning advances the idea that attentional optimization is a 
natural consequence of quickly dropping fixationally bound 
variables from working memory (Ballard, Hayhoe, Pook 
and Rao, 1997). A recent DNFT model of infant gaze 
behaviours (Perone & Spencer, 2013), with many 
similarities to our model, showed how the durations of 
individual fixations can work to modulate an infant’s well-
documented familiarity to novelty bias transition at around 
8-10 weeks of age (Wetherford & Cohen, 1972): the idea 
being that longer fixations leave a larger Hebbian 
association in long term memory which combines with 
inhibition from working memory to make parafoveal 
information relatively more salient. Only models that allow 
for moment-to-moment changes in attention could feasibly 
model these kinds of emergent differences over the course 
of learning. 

We believe that this line of research has the potential to 
show how complex behaviours can emerge from the 
interactions of a simple set of parameters, in our case just 
learning rate, fixation impatience and trial impatience, over 
the course of learning. Not only does the model presented 
here scale its learning through its overall gaze time but it 
also scales what it looks at it by what it knows. To our 
knowledge, no other model has attempted to simultaneously 
fit such a wide array of behavioural measures.  An important 
future direction for these modeling efforts is to rigorously 
test this approach on other kinds of category structures, 
timing constraints and stimulus types. With the introduction 
of this model, we hope to provoke efforts that seek to 
explain many kinds of cognitive and sensori-motor 
behaviours simultaneously. 
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