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ABSTRACT The polarity of oxide surfaces can dramatically impact their surface reactivity, in 

particular with polar molecules such as water.  The surface species that result from this 

interaction change the oxide electronic structure and chemical reactivity in applications such as 
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photoelectrochemistry, but are challenging to probe experimentally. Here we report a detailed 

study of the surface chemistry and electronic structure of the perovskite LaFeO3 in humid 

conditions using ambient pressure X-ray photoelectron spectroscopy. Comparing the two 

possible terminations of the polar (001)-oriented surface, we find that the LaO-terminated 

surface is more reactive toward water, forming hydroxyl species and adsorbing molecular water 

at lower relative humidity than its FeO2-terminated counterpart. However, the FeO2-terminated 

surface forms more hydroxyl species during water adsorption at higher humidity, suggesting 

adsorbate-adsorbate interactions may impact reactivity. Our results demonstrate how the 

termination of a complex oxide can dramatically impact its reactivity, providing insight that can 

aid in the design of catalyst materials. 

TOC GRAPHICS 

  

Perovskite oxides such as LaFeO3 show great promise as catalysts for energy conversion and 

storage. Applications such as electrocatalysis,1–4 photoelectrochemistry,5–7 and gas sensing8–10 all 

take place in an aqueous or humid environment, where the interaction with water plays a key role 

in determining the functionality of these complex oxides.11–13 The formation of surface hydroxyl 

groups and adsorption of water can impact the surface electronic structure14 and ultimately the 

mechanisms and kinetics of surface chemical reactions.15,16 Initial studies have considered the 

reactivity of perovskites with water using ambient pressure X-ray photoelectron spectroscopy 
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(AP-XPS),12,17 enabling study of the surface species present in equilibrium with water vapor. The 

hydroxylation of these surfaces appeared greater than that of binary transition metal oxides.18 

However, the chemical nature of the hydroxyl site in such systems remained elusive due to the 

unknown surface termination. 

The polar layers of (001)-oriented polar perovskite LaFeO3 (LFO) have been the subject of 

numerous recent investigations that consider the dipole formed at the (Nb-doped) SrTiO3 

substrate-film interface19–21 and the formation of a 2D metal at this interface22. However, despite 

the promising photoelectrochemical activity5 and sensing capabilities,9,10 missing is an 

experimental understanding of the surface properties for each layer. Density functional theory 

(DFT) calculations report a lower work function for LaO- versus FeO2-termination,23 which is 

expected to result in notably different chemical reactivity. Of further interest is how the 

electronic structure of each surface changes as a result of the formation of e.g. hydroxyl species, 

where surface band bending in aqueous environments24 is the critical component to charge 

separation at the semiconductor/water interface in photoelectrochemical water splitting.  

In the present work, we consider (001)-oriented epitaxial films of LFO distinctly terminated on 

(LaO)+ or (FeO2)
− planes to probe the influence of perovskite surface termination on chemical 

reactivity using ambient pressure X-ray photoelectron spectroscopy (AP-XPS).18,25,26 We find 

LaO-terminated LFO (LaO-LFO) is more reactive toward water, forming hydroxyl species at 

lower relative humidities than its FeO2-terminated (FeO2-LFO) counterpart, consistent with DFT 

calculations that indicate a greater stability of hydroxylated LaO-LFO.12 The LaO surface is also 

characterized by an additional surface oxygen species in both dry and humid conditions, the 

formation of which is attributed to the positive charge of a (LaO)+ layer and its high surface 

energy. Core level shifts and changes in the gas-phase water peak indicate a downward band 
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bending/flattening27 and a decrease in work function,28 respectively, resulting from 

hydroxylation and water adsorption.  

Epitaxial 9 unit cell (u.c.) LFO films were fabricated by oxygen-assisted molecular beam 

epitaxy (MBE) on Nb-doped SrTiO3 (001) surfaces at Pacific Northwest National Laboratory 

(Figure S1). The substrate was prepared with SrO or TiO2 termination, resulting in LaO-LFO or 

FeO2-LFO, respectively (Figure 1). Cross-sectional high-angle annular dark field (STEM-

HAADF) images, shown in Figure 1, confirm the excellent quality and epitaxy of the film. We 

observe differences in the surface termination, although damage resulting from TEM sample 

preparation makes it difficult to unambiguously identify the surface layer. Instead, the 

termination of the as-prepared film was confirmed by angle resolved XPS (Table S1) and 

remained unchanged during AP-XPS experiments (Figure S2). 

 

Figure 1. Colorized cross-sectional STEM-HAADF images and schematics of the 9 unit cell 

(u.c.) LaFeO3/Nb:SrTiO3 films fabricated by oxygen assisted MBE. FeO2-LFO was grown on a 
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TiO2-terminated substrate (A), and LaO-LFO was grown on a SrO-terminated one (B). Surface 

terminations were confirmed by angle resolved XPS (Table S1).19 

Upon introduction to the AP-XPS chamber at the Advanced Light Source, the films were 

cleaned of ambient carbon contaminants by heating to 300 °C in 100 mTorr oxygen. The 

resulting O 1s spectra are compared in Figure 2 (top panel) for the LaO- and FeO2-terminated 

surface, with the C 1s spectra shown in the inset. For the FeO2-LFO, one main O 1s peak is 

present, characteristic of bulk lattice oxygen, with a small shoulder at ~1.1 eV higher binding 

energy attributed to hydroxyl (OH) species, the location of which was determined from 

difference spectra during subsequent water dosing (Figure S3). For LaO-LFO, a third peak is 

present at ~2.3 eV higher binding energy, termed “surf”. Such a surface feature has been often 

observed for epitaxial perovskite films of unknown termination, as well as perovskite particles, 

and has been attributed to a host of potential species such as carbonates,29,30 adsorbed water,31,32 

hydroxyls,31–33 peroxide species,34 undercoordinated oxygen,35,36 and the terminal layer(s) of a 

polar surface due to a shift in Madelung potential.17 Considering the AP-XPS spectra collected at 

300 °C in 100 mTorr oxygen (and similarly at ~24 mTorr oxygen, Figure S4), we rule out the 

presence of carbonates and adsorbed water, and the lack of such a feature on the FeO2-terminated 

surface suggests it does not arise from a change in Madelung potential at the surface. Instead, we 

propose that the feature at ~2.3 eV above bulk oxygen arises from oxygen species present on the 

surface with reduced screening, where DFT calculations on MgO surfaces support such a binding 

energy offset for peroxo groups,34 although a similar offset is also reported for OH groups on 

MgO.37 The higher surface energy of the LaO- versus FeO2-terminated surface predicted by 

DFT12 supports the model that the (LaO)+ surface reconstructs chemically (adsorbing additional 

oxygen) and/or electronically to compensate its polarity, while the (FeO2)
− surface seems stable 
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with only formation of a few hydroxyl groups (Figure 2B). A similar feature is observed on the 

SrO-terminated surface of (001)-oriented SrTiO3, but not for the TiO2 termination (Figure S5).  

 We next perform a water isobar to probe the LFO surfaces under different relative 

humidity (RH). After removing oxygen gas, 100 mTorr H2O is introduced into the chamber at 

300 °C (corresponding to a RH of 10-4%). The OH feature on LaO-LFO increases notably, while 

that on FeO2-LFO increases only slightly (Figure 2 middle panel). The feature at ~2.3 eV on 

LaO-LFO from undercoordinated oxygen/peroxo species persists in humid environments, which 

might protonate with minimal shift in binding energy. A peak from gas phase water is present at 

>5 eV higher binding energy than bulk oxygen. Further cooling leads to the formation of 

adsorbed water (H2Oads) at ~3.4 eV above bulk oxygen (Figure 2 bottom panel), the location of 

which is confirmed by difference spectra upon removal of water (Figure S6). The wider bulk 

peak at higher temperatures is consistent with thermal (vibrational) broadening. Due to the high 

propensity of LFO to form carbonate upon interaction with any residual CO2 in the chamber,38 

care was taken to quantify such species in the O 1s spectra from the intensity in the C 1s core 

level (Experimental methods). All spectra were fit with the species described above with fitting 

parameters found in Table S2, and depth profiling by changing the incident photon energy 

confirms that the “surf” peak, OH, CO3, and H2Oads are located above that of the bulk (Figure 

S7). 
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Figure 2. O 1s spectra and C 1s spectra (inset) for (A) LaO-LFO and (B) FeO2-LFO at 300 °C in 

100 mTorr O2 (top), 300 °C in 100 mTorr H2O (middle) and 25 °C in 100 mTorr H2O (bottom). 

Raw data are shown as points with fitted components and envelope (black) as lines. O 1s 

components correspond to the bulk oxide (orange), hydroxide (light blue), carbonate (gray), 

surface (peach), adsorbed water (medium blue), and gas phase water (dark blue). C 1s 

components correspond to carbonate (gray), adventitious carbon (purple), and an intermediate 

carbon oxidation (teal). The binding energy scale is shown relative to the bulk oxide (O 1s) and 

adventitious carbon (C 1s) to better illustrate relative offsets of species in fitting.  
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The chemical reactivity of each surface toward water can be assessed by considering the extent 

of hydroxyl species present as a function of RH. Figure 3A compares the OH and H2Oads 

components normalized to the bulk oxygen signal (likely canceling out any thermal broadening 

effects), with similar trends observed when considering them as a percentage of total oxygen 

signal (Figure S8) or using a multilayer electron attenuation model17 to compute coverage 

(Figure S9, Table S3). Both terminations display similar OH contents in dry conditions (300 °C 

in 100 mTorr oxygen, yellow band in Figure 3A). In humid conditions, however, LaO-LFO is 

much more reactive toward water, with notable hydroxyl content at low RH. This is consistent 

with DFT calculations that report greater stability of hydroxylated LaO- versus FeO2-LFO.12 The 

amount of hydroxyls on the LaO surface remains roughly constant upon further increase of RH 

during the isobar, suggesting sites with a high binding strength for hydroxyls saturate at low RH. 

 The FeO2-terminated surface has notably less hydroxyl species at low RH, which remains 

constant until ~10-3% RH. At this point, H2Oads begins to form on the surface, and the amount of 

OH on FeO2-LFO increases in parallel. This is in direct contrast to the hydroxyl behavior of 

LaO-LFO, but similar to that observed on Fe3O4 
39 and Fe2O3 

40 surfaces, where it was attributed 

to adsorbate-adsorbate interactions. In contrast, LaO-LFO adsorbs more water at a given RH 

with a lower onset RH; however, this does not significantly impact the formation of OH species. 
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Figure 3. (A) Area of the OH (light blue, circles) and H2Oads (medium blue, squares) normalized 

to that of the bulk oxide as a function of RH probed by changing temperature in a 100 mTorr 

H2O isobar. Dry conditions (300 °C in 100 mTorr O2) are indicated with a yellow bar. LaO-LFO 

(solid) is more reactive toward water compared to FeO2-LFO (open). (B) Location of the gas-

phase H2Ovap peak relative to the bulk oxygen peak for LaO-LFO (solid) and FeO2-LFO (open) 

as a function of RH. The increase in binding energy corresponds to a decrease in sample work 

function, or formation of a surface dipole aiding photoelectron removal.  

 

The use of AP-XPS also enables assessment of changes in the work function or surface dipole 

through shifts in the gas phase peak.28,41 The H2Ogas peak shifts to higher binding energy with 

RH, indicating a decrease in sample work function and/or formation of a surface dipole (Figure 
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3B). For example, adsorption of polar OH− species have been shown to increase the surface 

potential of ceria.41 This ~0.5 eV shift is similar to that observed on Fe3O4,
39 where DFT 

indicated adsorption of OH, H2O, or co-adsorption of the two would lower the surface work 

function. For LFO, we highlight that the LaO-terminated surface exhibits a steady increase in gas 

phase binding energy with RH, while that of the FeO2-terminated surface remains constant until 

~10-3% RH. This suggests that the decrease in work function is most influenced by the 

adsorption of polar water molecules, confirmed by its reversal upon decreasing the water 

pressure and desorbing H2Oads (Figure S10). 

Further insight regarding changes in the electronic structure upon OH and H2O adsorption can 

be obtained from the metal core levels and valence band. Aside from changes to the lanthanum-

oxygen ionicity reflected in the satellite intensity (Figure S11),42 the line shape of the La 4d and 

Fe 3p are negligibly affected by the formation of OH and H2Oads groups. However, their absolute 

binding energies (Figure 4) are affected, with shifts to a higher binding energy reflecting 

downward band bending. This shift is greatest for LaO-LFO, which also exhibits greater 

reactivity toward water. The change in spectral intensity at ~2.5 eV in FeO2-LFO is not fully 

understood and merits further study. 
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Figure 4. Noted Fe 3p, La 4d core levels and valence band (VB) for (A-C) LaO-LFO and (D-F) 

FeO2-LFO. Solid lines are for 690 eV incident photon energy with a larger information depth 

than dashed lines for 350 eV. Conditions are 300 °C in 100 mTorr O2 (black), 300 °C in 100 

mTorr H2O (orange) and 25 °C in 100 mTorr H2O (blue). The shift to higher binding energies 

with increasing RH corresponds to downward band bending, and is greater for LaO-LFO. 

 

In conclusion, we have presented a detailed study of the interaction between water and (001)-

oriented LaFeO3 films terminated with either the LaO or FeO2 plane. Using ambient pressure X-

ray photoelectron spectroscopy to probe the surface species present in equilibrium with gas 

phase water, we find greater hydroxylation of the LaO- versus FeO2-LFO surface at low 

humidity, consistent with previous reports using DFT. However, the ultimately larger amount of 

OH on FeO2-LFO at high humidity (commensurate with water adsorption) suggests adsorbate-
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adsorbate interactions may play an important role in dictating reactivity. An additional surface 

oxygen species often observed on perovskites is present only on the LaO termination, such as a 

peroxo group that could protonate in humid conditions. Core level shifts and changes in the gas-

phase water peak indicate a downward band bending/flattening and a decrease in work function, 

respectively, upon interaction with water. This experimental study of the impact of termination 

in complex oxides on chemical reactivity and the resultant electronic structure brings new insight 

to applications such as photoelectrocatalysis. 

 

Experimental Methods 

Film growth LFO/n-STO(001) heterojunctions were prepared using oxygen-assisted MBE. 

Films were grown at 600 ± 50°C at a rate of one monolayer (either LaO or FeO2) every 43 

seconds using effusion cells and alternately shuttering the La and Fe beams, with a mixed O/O2 

beam generated by an electron cyclotron resonance source continuously incident on the 

substrate.43 A pair of 0.05% Nb-doped STO substrates (Crystec) were prepared side-by-side 

using a boiling deionized water treatment,44 followed by an anneal in air at 1000 °C for 30 

minutes. The samples were then cleaned in ozone on the bench and loaded into an oxide MBE 

system (DCA) with an appended x-ray photoelectron spectrometer (VG Scienta R3000 analyzer 

and monochromatic Al Kα x-ray source). The TiO2 termination was confirmed using angle-

resolved XPS measurements (Table S1). A single monolayer of SrO was then deposited using an 

effusion cell on one of the substrates to achieve the A-site termination, also confirmed by angle-

resolved XPS.19 Increments of three u.c. (1 u.c. = ~3.9Å) of LFO were then grown with a 

shuttering sequence configured to match the substrate termination (i.e. FeO2 (LaO) layer 

deposited first on the SrO- (TiO2-) terminated substrate) up to a total of 9 u.c. 
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Ambient pressure X-ray photoelectron Spectroscopy AP-XPS was collected at Beamline 9.3.2 

at Lawrence Berkeley National Laboratory’s (LBNL) Advanced Light Source (ALS).45 LFO 

films were placed directly onto a ceramic heater and held in place by spring-loaded Inconel tips 

separated with an Al2O3 spacer. The film was grounded through a thermocouple pressed into a 

gold foil placed directly onto the sample surface for temperature measurements and isolated from 

the sample holder clip with an Al2O3 spacer. Further fitting details are provided in the 

Supplemental Information. 
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Figure 1. Colorized cross-sectional STEM-HAADF images and schematics of the 9 unit cell (u.c.) 
LaFeO3/Nb:SrTiO3 films fabricated by oxygen assisted MBE. LaO-LFO was grown on a SrO-terminated 

substrate (A), and FeO2-LFO was grown on a TiO2-terminated one (B). Surface terminations were confirmed 

by angle resolved XPS (Table S1).19  
Figure 1  
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Figure 2. O 1s spectra and C 1s spectra (inset) for (A) LaO-LFO and (B) FeO2-LFO at 300 °C in 100 mTorr O2 
(top), 300 °C in 100 mTorr H2O (middle) and 25 °C in 100 mTorr H2O (bottom). Raw data are shown as 

points with fitted components and envelope (black) as lines. O 1s components correspond to the bulk oxide 
(orange), hydroxide (light blue), carbonate (gray), surface (peach), adsorbed water (medium blue), and gas 
phase water (dark blue). C 1s components correspond to carbonate (gray), adventitious carbon (purple), 

and an intermediate carbon oxidation (teal). The binding energy scale is shown relative to the bulk oxide (O 
1s) and adventitious carbon (C 1s) to better illustrate relative offsets of species in fitting.  
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Figure 3. (A) Area of the OH (light blue, circles) and H2Oads (medium blue, squares) normalized to that of the 
bulk oxide as a function of RH probed by changing temperature in a 100 mTorr H2O isobar. Dry conditions 
(300 °C in 100 mTorr O2) are indicated with a yellow bar. LaO-LFO (solid) is more reactive toward water 

compared to FeO2-LFO (open). (B) Location of the gas-phase H2Ovap peak relative to the bulk oxygen peak 
for LaO-LFO (solid) and FeO2-LFO (open) as a function of RH. The increase in binding energy corresponds to 

a decrease in sample work function, or formation of a surface dipole aiding photoelectron removal.  
Figure 3  
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Figure 4. Noted Fe 3p, La 4d core levels and valence band (VB) for (A-C) LaO-LFO and (D-F) FeO2-LFO. Solid 
lines are for 690 eV incident photon energy with a larger information depth than dashed lines for 350 eV. 
Conditions are 300 °C in 100 mTorr O2 (black), 300 °C in 100 mTorr H2O (orange) and 25 °C in 100 mTorr 
H2O (blue). The shift to higher binding energies with increasing RH corresponds to downward band bending, 

and is greater for LaO-LFO.  
Figure 4.  
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