
UC San Diego
Technical Reports

Title
Bucking Free-Riders: Distributed Accounting and Settlement in Peer-to-Peer Networks

Permalink
https://escholarship.org/uc/item/1t94s7cq

Authors
Agrawal, Abhishek
Brown, Douglas
Ojha, Aditya
et al.

Publication Date
2003-06-24

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1t94s7cq
https://escholarship.org/uc/item/1t94s7cq#author
https://escholarship.org
http://www.cdlib.org/

Bucking Free-Riders: Distributed Accounting and Settlement in

Peer-to-Peer Networks

Abhishek Agrawal, Douglas J. Brown, Aditya Ojha, and Stefan Savage �

Department of Computer Science & Engineering

University of California, San Diego, CA

1 Introduction

The practice of free-riding – consuming service with-
out providing equivalent service in return – is a well-
documented problem in contemporary peer-to-peer
(P2P) networks. For example, recent measurement
studies of the Napster and Gnutella file-sharing sys-
tems reveal that the majority of files are provided by
only 7% of hosts, while the majority of requests are
generated by the remaining 93% [8, 1]. This “tragedy
of the commons” effect is driven by the combination
of individual self-interest coupled with the absence of
adequate incentives to encourage (or enforce) fair use.
Unfortunately, concentrating service among a small
number of hosts in this manner is not only unfair,
but it also undermines the key advantages of service
distribution, including scalability, availability and ro-
bustness under attack.

Existing approaches to the free-riding problem fall
into two rough categories: reputation systems [4, 6, 7]
and commerce systems [3]. The first approach relies
on identifying greedy or misbehaving users after the
fact (either automatically or manually) and then re-
fusing service to hosts with “bad” reputations. In con-
trast, the second approach is predicated on economic
mechanisms that require each user to “purchase” ser-
vice on demand, using a virtual currency that is ob-
tained as payment for providing service in turn. While
it is premature to reach strong conclusions about the
limitations of each method, to a first approximation,
reputation systems appear better suited to managing
actively greedy users in a reactive fashion, while com-
merce systems are a more natural approach for pro-
actively implementing appropriate incentives among
passively self-interested users. We believe this latter
property represents a more pressing requirement for
large-scale peer-to-peer systems and consequently it
is the focus of this paper.

There are two key components in any commerce-
based resource management system: an accounting
mechanism to securely store the currency held by in-
dividual users and a settlement mechanism to fairly
exchange currency for services. Since the integrity of

�

fabhishek, dbrown, aojha, savageg@cs.ucsd.edu

these services is critical, the simplest implementation
approach, exemplified by Horn et al., is to centralize
these functions within a single trusted third-party [3].
However, such a solution is at odds with the goals of
P2P networks, which are by their nature highly dis-
tributed. Instead, this paper offers an alternative de-
sign that distributes accounting and settlement func-
tions widely, providing powerful incentives without
depending on a centralized trusted third-party to me-
diate each transaction.

In the remainder of this paper we present our over-
all system model, assumptions and requirements, fol-
lowed by an in-depth description of the distributed ac-
counting and settlement protocols. We conclude with
a discussion of the performance implications and an
examination of open research issues in this design.

2 System Model

Our system model presumes a large, structured peer-
to-peer file sharing network, in which each user of the
system has associated with them a currency balance
that is maintained in an account. On a file transfer,
the data provider’s account is credited with an amount
that is debited from the consumer’s account. A user
cannot arbitrarily create wealth in the system, pre-
venting it from consuming indefinitely without also
providing data to the system.

The currency held by each peer is stored in an
account managed by a set of unbiased peers called
accountants. Since peers are not presumed to trust
one another, files are exchanged for currency through
a multi-phase settlement transaction involving both
peers, their respective accountants, and an optional
mutually-selected third-party mediator. Integrity is
established probabilistically through the distributed
nature of the system—an adversary must maintain a
large conspiracy of peers before it can subvert the ac-
counting or settlement mechanisms.

Before describing these protocols in more depth,
we briefly discuss the assumptions and requirements
that we have set. Among the key assumptions:

� Unique identity. We assume the existence of a se-
cure bootstrapping service that can establish the

1

uniqueness of a given user and thereby prevent
Sybil-style attacks on the system [2].

� Rational actors. Unless otherwise noted, we as-
sume that all peers are primarily concerned with
maximizing their own benefit rather than penal-
izing other users.

� Limited adversary capabilities. An adversary
may compromise a limited set of peers and such
peers may act in a Byzantine fashion with re-
spect to the protocols described here. However,
we assume that an adversary cannot easily com-
promise a large fraction of the accountants for a
given user.

Assuming this environment, our design is moti-
vated by the the following requirements:

� Currency conservation. A user must not be able
to create new currency on demand. We do not
require a closed steady-state economy—currency
may be created independently of settlement—but
the process of wealth creation cannot be manipu-
lated by individual users.

� Persistent accounting state. We require that the
balance of a user’s account be stored in suffi-
ciently robust a fashion that the failure of a small
set of nodes does not threaten the persistence of
this state.

� Settlement atomicity. We require that the ex-
change of currency for files should have atomic
semantics. That is, users should be protected
from an adversary defaulting on a settlement
transaction and obtaining currency without pro-
viding service in return (or vice versa).

� Neutral third-party incentives. We require that,
apart from the two principal actors, all other par-
ticipants should have no incentive to misbehave
in any particular settlement transaction.

In the following two sections we describe dis-
tributed accounting and settlement protocols that are
designed to meet these requirements.

3 Distributed Accounting

Since our design distributes accounting state (i.e. cur-
rency balances) among many hosts, this presents two
challenges: selecting which hosts will act as accoun-
tants for a particular user and ensuring the persistence
and consistency of currency balances as host member-
ship in the P2P network changes.

3.1 Accountant Selection

Accountant selection exploits distributed hash table
(DHT) functionality whereby each node in the net-
work is associated with a unique value from some
identifier space [9].

Consider a node n with identifier id
n

and a parame-
terized hash function h(:; :) that maps a key to a value
in a uniformly distributed manner. r

1

; r

2

; : : : ; r

k

are
preselected global constants used to parameterize the
hash functions to reduce the likelihood that two nodes
share a subset of accountants. If we wish to select
k accountants A1

; A

2

; : : : ; A

k to perform accounting
for node n, we first compute:

A

1

val

= h(id

n

; r

1

)

A

2

val

= h(A

1

val

; r

2

)

...

A

k

val

= h(A

k�1

val

; r

k

)

Now we may use the DHT operation get node(V)

to returns the identifier of the actual node that is near-
est to V in the identifier space. In this manner we
determine the identifiers of the accountants for each
node n:

A

1

id

= get node(A

1

val

)

A

2

id

= get node(A

2

val

)

...

A

k

id

= get node(A

k

val

)

Although the identifiers A

1

id

; A

2

id

; : : : ; A

k

id

may
change as nodes join and leave the system, the val-

ues A1

val

; A

2

val

; : : : ; A

k

val

are static and depend only
on the identifier id

n

. When a node joins the system
for the first time, it determines the identifiers of its
accountants and sends a request to each of them to
initiate a new account. From this time, the system
will maintain persistent accounting state for this node.
Since r

1

: : : r

k

and get node(V) are well-known and
deterministic, this same process may be employed by
any node to determine the accountants for a particular
user.

3.2 Consistency and Replacement

While the aforementioned selection algorithm en-
sures that there are always k identifiable accountants
for each node in the system, there must be a means by
which accounting state is maintained when accoun-
tants are replaced due to dynamic system member-
ship. For this purpose, each accountant i will peri-
odically route a message to the nodes identified by

get node(A

i

val

) and get node(A
(i+1) mod k

val

) accord-
ing to a system-configured polling interval T

poll

.
When an accountant node hears such a message

from itself, it knows that it has not been replaced by a

new node whose identifier is closer to Ai

val

. If it does
not hear such a message, however, this signals that
it has been replaced and must purge the relevant ac-
counting state. Similarly, if a node that was not previ-
ously an accountant for node n hears such a message,

it knows that it has now been assigned to this role. It
then queries the other k � 1 accountants and awaits
a quorum indicating the current accounting state for
node n that it will record and maintain.

This polling facility ensures that the system func-
tions correctly in the face of accountant failure so
long as all accountants for a given node n do not fail
within the same polling period. However, it is impor-
tant that T

poll

be selected to be greater than the mini-
mum transaction time in the system. Otherwise, it is
possible for accountants to fail without being replaced
during a single transaction – ultimately undermining
the systems’ ability to achieve the necessary quorum.

4 Settlement Protocols

The second key feature of our design is a settlement
protocol that allows currency to be moved between
two parties in exchange for the delivery of services
(i.e. a file transfer). This is similar in spirit to pre-
vious research in the realm of atomic exchange pro-
tocols [10]. Because accounting state is distributed
throughout the network, every transaction involves
the participation of the accountants for each party.
Using the Small Byzantine Quorum (SBQ) proto-
col [5], the settlement protocol can maintain the con-
sistency and integrity of a user’s account until more

than (k � 1)=3 of their accountants are subverted. 1

Furthermore, in order to ensure currency conserva-
tion, all currency exchange occurs between accoun-
tants: no other party is ever in possession of a node’s
currency.

In the presentation of settlement protocols that fol-
lows, we denote the actors as follows: (B)illy is
a buyer that desires to obtain some data object R;
(S)usan is a seller that possesses objectR; A

fBg

is the

set of Billy’s accountants; A
fSg

is the set of Susan’s

accountants, and M is an optional mutually-selected
mediator.

The first protocol we present assumes that each of
these actors exhibit purely rational behavior: they will
not violate the protocol unless they directly benefit
in doing so. This assumption allows a weak atomic-
ity guarantee since actors will only exploit race con-
ditions that benefit them significantly. The second
protocol provides a stronger atomicity guarantee, and
some protection against irrational users, using a third-
party mediator to manage the settlement transaction at
the expense of additional overhead.

4.1 Unmediated Transactions

Prior to the initiation of the transaction, Billy and Su-
san locate each other, negotiate a price X , and select a
transaction identifier t

id

through an out-of-band chan-
nel. Billy then identifies himself to each member of

1The SBQ protocol requires a read quorum of size 2f + 1 and a write

quorum of size 3f + 1 in order to tolerate f failures.

A
 S

k1
A

 S : Susan’s accountants−

 B

1
A

 B
A

 k
− : Billy’s accountants

A
S

2

A
S

k

A
S

1

A
B

k

A
B

2

A
1

B

S B

1a. Seller Identification
1b. Transaction Initiation

1b

1a

2

3

4

5a. Buyer Identification
5b. Payment Authorization

5b
5a

6

7

8

S : Resource Seller (Susan)

2. Lien Request
3. Lien Verification
4. Resource Transfer I

7. Payment Verification
8. Resource Transfer II

6. Currency Transfer *

* Multiple messages

B : Resource Buyer (Billy)

Figure 1: Unmediated Transactions

A

fBg

and indicates that they will be hearing from Su-

san regarding transaction t
id

, and that he is willing to
spend X currency units on this transaction that Susan
may hold as a lien for up to duration T . This step
prevents Susan from engaging in a denial-of-service
(DoS) attack against Billy by placing a lien on his
currency indefinitely or without his permission.

Billy next signals to Susan that he is initiating the
transaction. At this point, Susan requests a lien from
Billy’s accountants to ensure that he will have suffi-
cient currency to complete the transaction and to pre-
vent him from engaging in a wealth manipulation at-
tack. Upon hearing from a quorum of A

fBg

verifying

this lien, Susan transmits a version of R encrypted
with a symmetric key K

e

of her choosing (denoted
E

K

e

(R)) to Billy. When she is finished transmit-
ting E

K

e

(R), Susan also sends a message to each of
her accountants identifying Billy and specifying the
amount X of currency that it should expect to receive
from A

fBg

.

After receiving E

K

e

(R), Billy sends a message to
each of his accountants authorizing it to complete the
payment for the transaction. Because Billy has only
received an encrypted version of the desired data, he
cannot exploit the non-atomic exchange at this point,
ensuring under the rational behavior assumption that
there is no incentive for him to deny payment to Su-
san. This prompts A

fBg

to transfer X units of cur-

rency from Billy’s account to Susan’s and to guaran-
tee that a quorum of A

fSg

receives a correct update

from a quorum of A
fBg

. This direct communication

between the accountants ensures that Susan and Billy
are unable to collude at this phase of the transaction.

After completing the currency transfer, each mem-
ber of A

fSg

contacts Susan to indicate that her ac-

count has been credited. Assuming payment verifi-
cation from a quorum of A

fSg

, Susan completes the

data transfer by transmitting K

e

to Billy. As we as-
sume that the act of sending the key K

e

to Billy is

A
 S

k1
A

 S : Susan’s accountants−

 B

1
A

 B
A

 k
− : Billy’s accountants

A
B

k

A
B

2

A
1

B

A
S

2

A
S

k

A
S

1

S B

1

6

2b

3

4

5 2a
7

11

9

10

M

8a. Payment Authorization (to B’s accountants)

11. Resource Transfer II

10. Payment Verification

8b. Payment Authorization (to S’s accountants)

8a8b

3. Lien Request
4. Lien Verification
5. Transaction Initiation
6. Resource Transfer I
7. Resource Receipt Acknowledgement

S : Resource Seller (Susan)
B : Resource Buyer (Billy)

9. Currency Transfer

1. Arbiter Selection

*

* Multiple messages

*

M : Trusted Mediator (Molly)

2a. Seller Identification (to M)

2b. Seller Identification (to B’s accountants)

Figure 2: Mediated Transactions

of negligible cost, there is no incentive for a rational
Susan to deny Billy this key.

4.2 Mediated Transactions

The preceding protocol allows for two unfamiliar par-
ties to conduct a transaction while minimizing each
actor’s exposure to fraud. However, it is impossible
to provide instantaneous atomicity in two party ex-
change – the nature of the activity dictates that there
will be a point in such a transaction during which one
irrational principal will be able to cheat the other by
withholding the encryption key and prematurely ter-
minating the transaction.

We now present an alternative protocol that uses a
mutually-trusted third-party mediator in order to min-
imize the exposure to key withholding attacks. This
mediator, (M)olly, is selected by Susan and Billy ac-
cording to a process (given in Appendix A) whereby
each selects half of the bits constituting its identify
in order to ensure that he is unlikely to favor either
primary actor.

As before, Billy and Susan establish a price X and
a transaction identifier t

id

. Billy then identifies him-
self to Molly and his accountants indicating his will-
ingness to participate in transaction t

id

with Susan. In
this identification, Billy also indicates X and T (as in
Section 4.1).

Should Molly be unwilling to participate in the
transaction, it may abort at this stage, protecting it-
self from potential DoS by Billy and/or Susan. If it
is willing to proceed, Molly next requests a lien from
Billy’s accountants and awaits its verification (as done
by Susan in Section 4.1).

Assuming a correct verification from a quorum of
A

fBg

, Molly initiates the transaction by sending Su-

san a message confirming that he is willing to serve
as mediator, that Billy is capable of proceeding with
the transaction, and containing a randomly chosen en-
cryption key K

A

. This motivates Susan to randomly
chose an encryption keyK

B

, encryptR with K
B

, and
transmit E

K

B

(R) to Billy along with E
K

A

(K

B

).
When E

K

B

(R) and E
K

A

(K

B

) have been received,

Billy acknowledges receipt of the encrypted data by
sendingE

K

A

(K

B

) to Molly. Molly then decrypts this
using K

A

to obtain the key K
B

and sends a message
to each member of A

fBg

and each member of A
fSg

authorizing payment for the transaction.
This prompts A

fBg

to communicate with A

fSg

in

such a manner as to transfer X units of currency from
Billy to Susan (as in Section 4.1). After completing
this currency transfer, each member of A

fSg

contacts

Molly to indicate that the currency transfer has been
completed. As in the previous protocol, the direct
communication between the accountants for account-
ing purposes renders it impossible for Susan, Billy,
and Molly to collude in any way to create currency
in the system. Assuming payment verification from
a quorum of A

fSg

, Molly completes the data transfer

by transmitting K
B

to Billy.

5 Performance

The use of any of the above settlement protocols in
combination with the distributed accounting scheme
discussed in Section 3 provides a means of facilitat-
ing exchange in a distributed, non-hierarchical fash-
ion. This is advantageous over a centralized approach
in that it provides superior scalability, fault-tolerance,
and resistance to attack. Nevertheless, the perfor-
mance implications of our strategy merit discussion.

One metric relevant to performance is the band-
width requirement imposed by our framework. Since
all of the messages sent in the settlement protocols are
small in size, particularly when compared to the size
of the music and movie files typically shared on P2P
networks—the bandwidth overhead of our protocols
is not significant.

The SBQ protocol used to ensure accountant state
consistency requires that the lien request, currency
transfer, and payment verification steps in the proto-
cols be conducted with a quorum of the accountants
in agreement. As such, the number of messages ex-
changed for any of the protocols is dominated by the
currency transfer phase, in which each accountant for
S communicates with a quorum of the B’s accountants
to update S’s account. Both Susan and Billy also issue
get node() requests to identify each others’ accoun-
tants. Assuming k accountants for each node and a
Chord-like O(logN) DHT routing substrate [9], an

O(k

2

+ k � logN) bound is implied on the total num-
ber of messages per transaction. We argue, however,
that the number of messages is not the best indicator
of system performance as perceived by an user.

Firstly, the get node() requests can be sent in par-
allel and as part of the pre-protocol stage, ensuring
that when the principal nodes identify each other, they
do not contribute to the latency overhead imposed by
the settlement protocols. Secondly, since communi-
cation with a node’s accountants can occur in parallel,
the overall latency for any step involving communica-

tion with accountants is independent of the number of
messages exchanged. The latency of each step instead
depends on the time taken by the last accountant in a
quorum to respond. Assuming that t

slow

is the upper
bound on the time taken to send a small message to a
correct node with the reliable delivery guarantee, the
overall latency overhead excluding the data transfer
phase is bounded by (�t

slow

) where the value of de-
pends on the number of sequential rounds. For exam-
ple, for the unmediated protocol (Figure 1), the seller
identification and transaction initiation steps can take
place in parallel. Similarly sender identification and
payment authorization can occur in parallel. Since
currency transfer phase involves a two way commu-
nication, we get = 8 for unmediated transactions.
A similar calculation for mediated transactions (Fig-
ure 2), taking into account that mediator selection in-
volves 3 sequential rounds gives = 13.

Since t

slow

refers to one way communication be-
tween two nodes, it can be approximated by (rtt=2),
where rtt is the worst case round trip latency in the
network. Hence, the overall latency overhead, exclud-
ing the data transfer time, is bounded by (4 � rtt) for
unmediated transactions and (6:5 � rtt) for mediated
transactions. Assuming that the download bandwidth
available to a broadband user is 500kbps, it takes 64
seconds to download a 4MB music file. Further as-
suming that the worst case round-trip latency is about
300ms, the overall latency overhead is roughly 2 sec-
onds, less than 4% of the actual data transmission
time. A more detailed analysis of these and other per-
formance implications, like effect of accountant re-
placement strategy, remains a topic for future explo-
ration. In particular, implementation of the proposed
infrastructure would allow a quantitative assessment
of our proposal.

6 Conclusion

The problem of free-riding in P2P systems is virtually
ubiquitous. We have proposed in this paper a poten-
tial design for the technical infrastructure necessary
to implement a sharing policy centered around micro-
payments. A scheme centered around a distributed
set of accountants was suggested to provide a means
of performing distributed accounting for each node in
the system. Several settlement protocols were also
presented that leverage this accounting facility. The
relative merits and demerits of each of these schemes
was discussed.

While our settlement protocols strive to ensure
that users exhibiting rational behavior cannot benefit
through improper behavior, there remains the reality
that some users may engage in malicious, irrational
behavior that could place other participants at a disad-
vantage. To help protect users from these situations, it
could prove beneficial to implement a reputation sys-
tem [4, 6, 7] within the resource sharing framework.
In such a system, users would have the ability to re-

port a transaction that they claim has been soured: the
state recording this report would be maintained by the
accountants of each primary actor in the transaction.
A malicious seller may also cheat by sending spuri-
ous data instead of that which the buyer requested.
The implementation of a mechanism within mediated
transactions to verify the transmitted data in order to
protect against this attack remains another area for fu-
ture research.

References

[1] E. Adar and B. Huberman. Free Riding on Gnutella. First

Monday, October 2000.

[2] J. Douceur. The Sybil Attack. In Proceedings of the Inter-

national Workshop on Peer-to-Peer Systems, March 2002.

[3] B. Horne, B. Pinkas, and T. Sander. Escrow services and

incentives in peer-to-peer networks. In Proceedings of the

3rd ACM Conference on Electronic Commerce, 2001.

[4] A. Josang and R. Ismail. The beta reputation system. In Pro-

ceedings of the 15th Bled Conference on Electronic Com-

merce, June 2002.

[5] J.-P. Martin, L. Alvisi, and M. Dahlin. Small byzantine

quorom systems. In Proceedings of the International Con-

ference on Dependable Systems and Networks (DSN), 2002.

[6] P. Resnick, R. Zeckhauser, E. Friedman, and K. Kuwabara.

Reputation systems. Communications of the ACM,

43(12):45–48, December 2000.

[7] J. Sabater and C. Sierra. Regret: A reputation model for gre-

garious societies. In Proceedings of the Fifth International

Conference on Autonomous Agents, June 2001.

[8] S. Saroiu, P. Krishna Gummadi, and S. Gribble. A mea-

surement study of peer-to-peer file sharing systems. In

Proceedings of the Multimedia Computing and Networking

(MMCN), January 2002.

[9] I. Stoica, R. Morris, M. Frans Kaashoek D. Karger, and

H. Balakrishnan. Chord: A scalable peer-to-peer lookup

service for internet applications. In Proceedings of ACM

SIGCOMM 2001, August 2001.

[10] J. Su and J. D. Tygar. Building blocks for atomicity in elec-

tronic commerce. In Proceedings of the Sixth USENIX Se-

curity Symposium, 1996.

Appendix A - Arbiter Selection

1. Billy chooses a sequence of n=2 bits, A
b

. Susan sim-

ilarly chooses a sequence of n=2 bits, A
s

;

2. Billy sends y = h(A

b

) to Susan. Upon receipt of y,

Susan sends A
s

to Billy;

3. After receiving A

s

, Billy sends A
b

to Susan. Susan

then verifies that y = h(A

b

). If this is not true, Susan

aborts the protocol, otherwise each transaction partic-

ipant can now identify the mediator as A = (A

b

A

s

).

