
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Inference of User Intent in Adaptive Input Interfaces /

Permalink
https://escholarship.org/uc/item/1t97m9rw

Author
Cheamanunkul, Sunsern

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1t97m9rw
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Inference of User Intent in Adaptive Input Interfaces

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Sunsern Cheamanunkul

Committee in charge:

Professor Yoav Freund, Chair
Professor Kamalika Chaudhuri
Professor John Hildebrand
Professor Bhaskar Rao
Professor Lawrence Saul

2014

Copyright

Sunsern Cheamanunkul, 2014

All rights reserved.

The dissertation of Sunsern Cheamanunkul is approved, and

it is acceptable in quality and form for publication on micro-

film and electronically:

Chair

University of California, San Diego

2014

iii

DEDICATION

To my parents, Somnouk and Nongluk, who have always been my

greatest supporters.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . ix

Acknowledgements . x

Vita . xi

Abstract of the Dissertation . xii

Chapter 1 Introduction . 1
1.1 The Automatic Cameraman (TAC) 3
1.2 The uRight System . 4
1.3 Thesis Organization . 6

Chapter 2 User Engagement Identification on the Automatic Cameraman (TAC) 8
2.1 System Architecture . 8
2.2 User Engagement Identification 10
2.3 Face Localization . 11

2.3.1 Margin-based Active Training Methodology 13
2.3.2 Skin-color Detector 16
2.3.3 Face Detector . 18
2.3.4 Face Tracker . 19

2.4 Face Recognition . 21

Chapter 3 Non-convex Boosting and Random Label Noise 32
3.1 Background and Related Work 32
3.2 BrownBoost and RobustBoost 36
3.3 Adaptive-ε Heuristic . 46
3.4 Experiments . 49
3.5 Conclusions . 53

Chapter 4 uRight: Co-adaptive Handwriting Recognition System 58
4.1 Co-adaptive Handwriting Recognition System 60
4.2 System Architecture and Implementation 63
4.3 Adaptive Recognition Algorithms 66

v

Chapter 5 Co-adaptation in Handwriting Recognition 78
5.1 Handwriting Recognition as a Communication Channel . . . 79
5.2 Experiment . 82
5.3 Results and Discussion . 83
5.4 Conclusions . 85

Chapter 6 Improved kNN Rule for Small Training Sets 94
6.1 Introduction . 94
6.2 Background . 97
6.3 Minimizing KL-Divergence Rule 97
6.4 Experiments . 101
6.5 Discussion . 104
6.6 Conclusions . 106

Chapter 7 Conclusions and Recommendations 113

Bibliography . 116

vi

LIST OF FIGURES

Figure 1.1: Text entry rate and training time of various methods. 5

Figure 2.1: Frontal view of TAC . 9
Figure 2.2: Layout of the area in which TAC is set up 10
Figure 2.3: User interaction with TAC. 12
Figure 2.4: Face localization unit on TAC. 13
Figure 2.5: Example of boosting score distribution 14
Figure 2.6: Annotated images for skin detection 17
Figure 2.7: Results of the skin-color detector after the first iteration of active

training . 23
Figure 2.8: Results of the skin-color detector after several iterations of training 24
Figure 2.9: Results of the skin-color detector with and without majority voting . 24
Figure 2.10: On-screen button on TAC . 25
Figure 2.11: Face detection features . 26
Figure 2.12: Face detection mask . 27
Figure 2.13: Score distributions of the face detector over multiple iterations of

training . 28
Figure 2.14: Examples of face images categorized by their classification scores . 29
Figure 2.15: An output from the face tracker 29
Figure 2.16: Result of the face recognition . 30
Figure 2.17: Error rate of the face recognition unit on TAC over multiple sessions. 31

Figure 3.1: Potential functions of different boosting algorithms 36
Figure 3.2: A single iteration of the chip game 38
Figure 3.3: RobustBoost algorithm. 47
Figure 3.4: Margin distributions of BrownBoost and RobustBoost using differ-

ent ε on Long dataset . 48
Figure 3.5: Test errors of RBA and BBA using different θ on LS with 20% noise 52
Figure 3.6: Test errors of ADB, LLB, BBA, RBA while varying number of

training examples at different noise levels η 53
Figure 3.7: Margin distribution progression and potential loss function of ADB,

LLB, BBA and RBA on LS with 30% label noise 55
Figure 3.8: Average ROC curves of ADB, LLB, BBA and RBA while varying

training size and noise level . 56
Figure 3.9: Margin distribution progression and potential loss function of ADB,

LLB, BBA and RBA on Face and Satimage 57

Figure 4.1: Handwriting variations . 59
Figure 4.2: Screenshots from the uRight game 64
Figure 4.3: Connectivity of various components of the uRight system 65
Figure 4.4: Web interface of uRight . 66

vii

Figure 4.5: Example of bit-per-second (BPS) and accuracy plot over time of a
user . 67

Figure 4.6: Prototypes over time for a user . 68
Figure 4.7: Mistakes made by a user . 69
Figure 4.8: Confusion Matrix for a user . 70
Figure 4.9: Average error rate as a function of the training set size and the value

of the mixing parameter ρ . 74
Figure 4.10: Hidden state reduction process . 76

Figure 5.1: Handwriting recognition channel. 80
Figure 5.2: Channel rate per session of all users 87
Figure 5.3: Average writing time per session and the average mutual informa-

tion per session under the condition Rfixed. 88
Figure 5.4: Average channel rates . 89
Figure 5.5: Confusion between two prototypes 90
Figure 5.6: Conditional entropy of a “z” . 91
Figure 5.7: Three confusing handwriting examples from a single user 92
Figure 5.8: Posterior distributions as a function of time 93

Figure 6.1: Problem with the majority rule when N is small 95
Figure 6.2: Results from the synthetic data experiment. 107
Figure 6.3: Handwriting trajectories from the uRight handwriting dataset. . . . 108
Figure 6.4: Average error rates of MinKL and Majority for each user. 109
Figure 6.5: Examples classified incorrectly by the majority rule but correctly by

the MinKL rule . 110
Figure 6.6: Visualization of the empirical center distributions 111
Figure 6.7: MNIST and SVHN results . 112

viii

LIST OF TABLES

Table 3.1: Various training parameters of BrownBoost (BB) and RobustBoost
(RB) using ε slightly below and above the noise level η 48

Table 3.2: Average test error rates of ADB, LLB, BBA and RBA 51
Table 3.3: Average area under ROC of ADB, LLB, BBA and RBA on Face and

Satimage. 54

Table 6.1: Summary of the datasets used in our experiments. 102

ix

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Yoav Freund, for all

the guidance. Also, thanks to my committee, Kamalika Chaudhuri, John Hildebrand,

Bhaskar Rao and Lawrence Saul. I greatly appreciate all their time and helpful sugges-

tions during their service on my dissertation committee.

I also would like to thank all my friends here in San Diego for all the love and

care. Finally, thanks all of the coffee vendors on campus for my daily dose of caffeine

to keep me awake throughout the years.

Chapter 2 is based on joint work with Evan Ettinger, Matt Jacobsen, Patrick

Lai and Yoav Freund titled “Detecting, Tracking and Interacting with People in a Public

Space” appearing in the 11th International Conference on Multimodal Interfaces and 6th

Workshop on Machine Learning for Multimodal Interaction in 2009. The dissertation

author along with Evan Ettinger were the primary investigators and authors of this paper.

Chapter 3 is based on unpublished work that is currently in submission as of

the writing of this thesis. It is joint work with Evan Ettinger and Yoav Freund. The

dissertation author is the primary investigator and author of this work.

Chapter 5 is based on unpublished work that is currently in submission as of the

writing of this thesis. It is joint work with Yoav Freund. The dissertation author is the

primary investigator and author of this work.

Chapter 6 is based on unpublished work that is currently in submission as of the

writing of this thesis. It is joint work with Yoav Freund. The dissertation author is the

primary investigator and author of this work.

x

VITA

2007 B. S. in Computer Science cum laude, Carnegie Mellon Univer-
sity, Pittsburgh

2010 M. S. in Computer Science, University of California, San Diego

2014 Ph. D. in Computer Science, University of California, San Diego

PUBLICATIONS

S. Cheamanunkul, Y. Freund, “Co-adaptation in a Handwriting Recognition System”,
In submission, 2014.

S. Cheamanunkul, Y. Freund, “Improved kNN Rule for Small Training Sets”, In sub-
mission, 2014.

S. Cheamanunkul, E.Ettinger, Y. Freund, “Non-convex Boosting Overcomes Random
Label Noise”, In submission, 2014.

J. Cho, B. Benson, S. Cheamanunkul, R. Kastner, “Increased Performace of FPGA-
Based Color Classification System”, FCCM, 2010.

S. Cheamanunkul, E. Ettinger, M. Jacobsen, P. Lai and Y. Freund, “Detecting, Tracking
and Interacting with People in a Public Space”, ICMI-MLMI, 2009.

xi

ABSTRACT OF THE DISSERTATION

Inference of User Intent in Adaptive Input Interfaces

by

Sunsern Cheamanunkul

Doctor of Philosophy in Computer Science

University of California, San Diego, 2014

Professor Yoav Freund, Chair

As computers are increasingly ubiquitous, it is becoming more important to

make our interaction with them as easy and as efficient as possible. As alternatives

to the standard duo: keyboards and mice, we have touch screens, handwriting recogni-

tion, voice recognition, gesture recognition, etc. The challenge of recognition systems

is that they need to accurately interpret ambiguous signals, such as pen trajectories or

speech, into discrete events, such as a sequence of letters. We call this task inference of

user intent. Over time, as a particular user uses the interface, we would like performance

of the inference to improve. There are two sides to this improvement. The first is that

the user improves over time, as she learns how to speak or gesture in a less ambiguous

way. The second is the adaptation of the computer, achieved through machine learning

methods. We refer to this type of interaction as co-adaptation.

xii

This dissertation is a study of intent inference and of co-adaptation. The study is

done in the context of two systems. The first system is a touch-free interface that is set

up in a public space, called The Automatic Cameraman (TAC). On TAC, we focus on the

problem of real-time user engagement. The second system is an adaptive handwriting

recognition system for mobile phones, called uRight. The main characteristic of this

system is that it not only adapts to each individual user but also provides insightful

feedback to reinforce human learning. On this system, we explore the impact of co-

adaptation on the information transfer rate in the context of handwriting recognition.

Using machine learning to process and combine signals from two sensing modal-

ities: visual and audio, TAC was able to robustly detect and track a user with minimal

calibration. The engagement of the user was effectively identified by using a simple

hand interaction protocol. Our experiment in co-adaptation confirmed our intuition that

machine learning works best when matched with human adaptation. The concept of co-

adaptation provides an interesting direction for future research on recognition systems.

xiii

Chapter 1

Introduction

Today we live in environments with ubiquitous computing. Our homes, gardens,

cars, phones are all controlled by computer systems. We use a variety of modalities to

interact with these computers through their input interfaces. For example, to change

channels on an entertainment system, we press a button on a remote control. To search

for a dinner recipe on the internet, we type in keywords into a web browser with a

keyboard. To call a friend on a smartphone, we use a virtual keypad on a touch screen

or voice commands through a voice recognition system.

Input interfaces are available in many forms and operate on various modalities.

Some of them are more suitable for some applications than others. For desktop com-

puters, mice and keyboards have been considered the golden standard as they are easy

to operate and capable of achieving a high throughput for experienced users. On small

form factor devices such as smartphones or tablets where space is limited, touch- and

pen-based interfaces are widely used instead of mice and keyboards. In our living rooms,

entertainment systems are often controlled by remote controls with only a few buttons.

Voice recognition and camera-based interfaces are often used in situations where hands

are already occupied in certain applications such as gaming, in-car entertainment sys-

tems, or surgical operations.

There are a number of challenges involved in designing an effective input inter-

face. In particular, we are interested in two problems related to the inference of user

intent. First, we consider the problem of identifying when a user wants to engage with

the interface. We refer to this problem as the engagement identification problem. When

1

2

the interface is based on discrete events such as pressing a key or touching a screen,

such events are commonly used as indications of the intent to engage. While this is true

most of the time, it is also possible that the signals were triggered unintentionally such

as when the user unknowingly leans on a keyboard or accidentally dials a smartphone

while walking. On the other hand, for interfaces that lack such discrete events such as

voice- or visual-based interfaces, the problem can be quite difficult especially when the

environment is unconstrained. A voice recognition interface may be able to detect the

beginning of a speech from a single person in a quiet room but fail in a room full of

people talking to each other. In human-to-human communication, we often use subtle

cues such as body language and eye-contact to establish the intent to engage with one

another, but it is difficult for computers to perceive and interpret such signals.

After the user is engaged with the interface, the next problem to consider is how

to interpret the information transmitted by the user. Specifically, the input interface

must be able to recover the message, or information, from the user so that the rest of

the system can respond appropriately. In case of keyboards, information is encoded

into a sequence of discrete key-presses from which the original message can be trivially

inferred. However, when the information is encoded into complex continuous signals

such as pen trajectories (in pen-based interfaces) or speech (in voice recognition), the

inference problem becomes much more difficult due to noise and variety of the input

signals.

An important quantity to consider in this context is the amount of information

successfully transferred over a time period. It is also known as the information transfer

rate, which is measured in bits per second, regardless of the communication modality.

Consider again the problem of entering texts to an entertainment system. A poor but

common choice is to have an on-screen keyboard controlled by using arrow keys and a

few buttons on a typical remote control. This method might be intuitive for novice users

but it performs poorly in terms of the information transfer rate. An alternative approach

is to include a keyboard on the remote control. Although this approach allows the user

to enter text more quickly than the previous approach, it results in a remote control with

a large number of buttons that can be confusing to use. The contention between the

information transfer rate and the user’s effort is always present and we need to find a

3

balance between them in order to design an efficient input interface.

This dissertation surrounds our machine learning-based solutions to the two in-

ference problems in the context of two systems: a multimodal, touch-free interface

called the Automatic Cameraman (TAC) and an adaptive handwriting recognition sys-

tem called uRight. We will introduce each system in its own section below.

1.1 The Automatic Cameraman (TAC)

The first part of this dissertation is centered around the development of a mul-

timodal, touch-free interface that allows people to interact with a computer system

through speech and gestures. We followed the “smart room” approach where a cam-

era and a set of microphones are used to capture users’ speech and gestures, and built

an autonomous system that engages people passing through a public space who are not

immediately aware of the system’s presence. We call this system, the Automatic Cam-

eraman (TAC) as its main task is to interact with the users allowing them to record videos

of themselves through speech and gestures.

One of the challenges we have to contend with when placing a system in a public

space is the many different interaction scenarios that can occur within the environment.

First, the number and location of users are unconstrained. Second, the lighting and

sound conditions are much worse than those that can be achieved in a controlled labora-

tory, and even worse, these conditions can vary with time. Therefore, a large amount of

calibration and re-calibration is required to get to a level of acceptable accuracy and re-

liability. In our system, we use machine learning methods to make our system adaptive

to its environment and user-base.

In order to use the machine learning methods, we need to collect large amounts

of training data. This brings us to one of the inherent problems in developing systems

that are based on machine learning: on the one hand, one needs training data in order

to train the system, but on the other hand, one needs an operational system in order to

collect data. Our solution to this cyclical problem is to adopt an evolutionary approach to

system development. We first used a minimalistic calibration process to get the system

roughly working. At first, the accuracy of the system was poor and it took significant

4

effort to automatically record any useful data. Once we managed to record a sufficient

amount of data, we retrained the system, which improved its accuracy and allowed us

to collect useful data more easily. With larger corpus of more useful video recordings,

we were also able to add new features such as face recognition, making the interaction

more interesting and engaging.

To identify whether the users want to engage the system or just passing by, we

developed into TAC a protocol for the user to start and stop video recording by putting

their hands in and out of an on-screen button. The protocol is initiated by a user calling

out the system. Based on audio input to the microphone array, TAC determines the

origin of the sound and points the pan-tile-zoom (PTZ) camera roughly in the direction.

Next, based on visual input, it locates and centers the camera at the user’s face. Then, it

shows an on-screen button that requires skin-color to activate. The user needs to place

one of their hand inside the on-screen button, take it out, and then back inside again to

start the recording. To stop the recording, the user will need to place their hand inside the

on-screen again. The benefits of this protocol are twofold. First, it serves as a consent

for TAC to record them. Second, it is to ensure that the user really wants to engage the

system. We will discuss the technical details in Chapter 2.

1.2 The uRight System

One of the challenges brought on by the miniaturization of mobile computing

devices such as smart phones and tablets is the difficulty of entering information into

the device. The communication bandwidth from the device to the human, utilizing high-

resolution screens and high fidelity sound, is very high. However, the bandwidth from

the human to the device is severely constrained by the size of our fingers and by the

difficulty of performing voice recognition in noisy environments.

As the screen real estate becomes smaller, the standard soft-keyboard can only

fit up to about 40 fingertip-sized keys on one screen. While 40 keys are sufficient for lan-

guages with a small set of characters such as English, it is not suitable for languages with

more characters such as Thai or Chinese which contains more than 60 and thousands of

different characters respectively. For such languages, as well as in the multilingual set-

5

tings, the users are required to repeatedly switch between different keyboard layouts in

order to find the desired character. Many alternatives to the standard soft-keyboard ex-

ist. For example, Swype R© provides a method for tracing a path between keyboard keys

and lifting the finger from the screen at the end of each word. Dasher [GWM+03] is a

particularly innovative method where typing is replaced by using a joystick-like pointer

to fly through clouds of characters. Finally, there are handwriting recognition software

that allow the user to enter information using natural handwriting.

A user of any one of these methods typically improves significantly with prac-

tice. There are many competitions between different data entry methods. However, these

comparisons are inherently flawed in that the contender is always a person who can en-

ter information faster than the current record holder, most likely as a result of extensive

training. In other words, the effect of user adaptation cannot be ignored. Figure 1.1

shows the text entry rate and the approximate training time of various input methods.

Training time

w
or

ds
 p

er
 m

in
ut

e

Full-sized
keyboard
(40 wpm)

Handwriting on paper
(25 wpm)

Stenograph
type

(225 wpm)
Gregg shorthand

on paper
(120 wpm)

Swype
(40 wpm)

Soft- keyboard
(20 wpm)

Natural
handwriting
recognition
(15 wpm)

Unistrokes
(34 wpm)

Days Months Years

20

40

120

10
12-button
multi-tap
(10 wpm)

Word Flow
for Windows
Phone 8.1
(80 wpm)

Figure 1.1: Text entry rate and training time of various methods.

As we are interested in machine learning methods, we arrive at the interesting

situation in which both the computer and the human adapt over time in an effort to max-

imize the information transfer rate of the data entry method. We refer to this situation

6

as co-adaptation. Based on this idea, we developed a handwriting recognition system

called uRight and studied the impact of co-adaptation on the information transfer rate in

the context handwriting recognition, which will be discussed in detail in Chapter 4- 5.

1.3 Thesis Organization

This dissertation is organized as follows. In Chapter 2, we address the engage-

ment identification problem on TAC, which is to identifying when the user wants to

interact. We explicitly outline the user interaction protocol of TAC and the design and

implementation of the underlying face localization unit that includes a skin-color de-

tector, a face detector and a face tracker. In addition to the face localization unit, we

describe our approach to face recognition implemented on TAC.

During the development of our face detector for TAC, we found an interesting

situation where some of face images in our training set were incorrectly labeled, causing

negative impact on the classification accuracy of traditional boosting algorithm such

as AdaBoost and LogitBoost. In Chapter 3, we investigate two non-convex boosting

algorithms: BrownBoost and RobustBoost and present empirical evidence showing that

the two boosting algorithms are less sensitive to the label noise than AdaBoost and

LogitBoost.

In Chapter 4 we describe our design philosophy and the architecture of a co-

adaptive handwriting recognition system called uRight. We also outline the algorithms

for training and adapting the handwriting recognizer.

In Chapter 5, we devise an information-theoretic framework for quantifying the

efficiency of a handwriting recognition system that considers both the user and the com-

puter as a single system. We use this framework to characterize the impact of machine

adaptation and of human adaptation based on empirical data from a small deployment.

In Chapter 6, we present a simple k-NN rule that incorporates non-majority

classes into the prediction and show that, by using this new rule, we achieve lower error

rates compared to the traditional majority rule in many datasets including our handwrit-

ing recognition dataset.

7

Finally, in Chapter 7 we give overall conclusions of our studies and suggest

directions for future work.

Chapter 2

User Engagement Identification on the

Automatic Cameraman (TAC)

In this chapter, we discuss the problem of user engagement identification on

Automatic Cameraman (TAC) with an emphasis on the design and implementation of

the face localization unit, which enables TAC to detect, locate and track the user by

using visual input from a pan-tilt-zoom (PTZ) video camera.

The chapter is organized as follows. First, in Section 2.1, we briefly describe

the overall system architecture of TAC. In Section 2.2, we describe how TAC interacts

with a user. Finally, we describe our implementation of the face localization on TAC in

Section 2.3.

2.1 System Architecture

The Automatic Cameraman (TAC) is a touch-free interactive system setup for

recording self-videos, located on the 4th floor of the Computer Science and Engineering

building (EBU-3b) at UC San Diego. The display consists of four 52” plasma TVs

set up in a 2x2 grid. TAC uses two sensing modalities: a pan-tilt-zoom (PTZ) video

camera and an array of 7 microphones. The PTZ camera is mounted at the top-middle

of the display. Figure 2.1 shows the display configuration and the PTZ camera. The

microphones are mounted at different locations: one at each corner of the display and

another three on the ceiling. The system is set up in the public lobby where there are

8

9

Figure 2.1: A frontal view of TAC display unit. The position of the PTZ camera and
four of the microphones are shown.

traffic coming from either the elevators or the stairwells. Figure 2.2 depicts a sketch of

the lobby in which TAC is set up. In the lobby, there is a large floor-to-ceiling window

to the left of the display that changes the lighting of the room depending on the position

of the sun and the weather condition.

The signals from the PTZ camera and the microphone array are digitized and

fed into 2.66 Ghz quad-core G4 Mac located on the other side of the wall from the

display. The audio signal is processed by the audio localization unit that is responsible

for locating the source. The video signal is processed by the face localization unit. To

interact with the user, TAC utilizes the outputs from these two units.

TAC is implemented in Max 5 graphical programming environment1. Max al-

lows for quick and simple development of signal processing applications by a simple

graphical programming model. At a high level, programming in Max involves connect-

ing functional units, called patches together with edges that represents signal traffic.

Each functional unit can be implemented separately using more conventional languages

such as C and Java. The audio localization patch is written in C while the face localiza-

1Available from http://cycling74.com/products/max/

10

Figure 2.2: A layout of the lobby area in which TAC is set up.

tion patch is written in Java.

2.2 User Engagement Identification

Since TAC is set up in a public area where people either want to engage with

the system or ignore it completely, it is important for TAC to identify those who want

to engage effectively. Our approach is to use machine learning methods to process and

combine inputs from two sensing modalities: audio and video, allowing the system to

detect and track the user in real-time. To determine the user engagement, we implement

a simple hand interaction protocol based on skin-color detection. Note that it is not

enough to just detect a user. Ultimately, we want to determine the intent of the user –

whether not the user wants to engage with the system. The hand interaction protocol

serves as a confirmation of the intent.

An interaction with TAC is initiated by a user calling out to TAC. Using the

audio localization, TAC determines the origin of the sound based on time delay of ar-

rival (TDOA) [Ett10] and issues an appropriate pan-tilt commands to point the camera

11

roughly at the location. Next, it scans for a front-facing face in the area using the face

localization unit, which will be discussed in detail in Section 2.3. This step is important

as audio signal alone often leads to false detection due to various noise in the environ-

ment such as the elevator sound, the sound from people taking on the phone or even

footsteps. When it finds a face, additional pan-tilt-zoom commands are issued to the

camera so that the face is positioned at the center of the frame and has size roughly

about 200-by-200 pixels. After the face is detected, it is continuously tracked by the

face tracking unit on TAC. At this stage, the user can control the recording, namely start

and stop recording, by placing one of their hands on an on-screen button. The activa-

tion of the button is based on the amount of skin-color in the button area. Figure 2.3

illustrates an interaction with TAC.

To start a recording, the user is instructed to place one of their hand inside an

on-screen button, move outside and back inside again. This hand-in-out-in sequence

is designed to ensure that the user wants to engage the system and to minimize false

detection. To stop the recording, we again require the user to put their hand on another

on-screen button placed at a different location than the start button to prevent an imme-

diate stopping of the recording when the user holds their hand on the start button for too

long.

2.3 Face Localization

The face localization unit consists of three major components: a skin-color de-

tector, a face detector and a face tracker. The skin-color detector operates at pixel level

and determines whether a pixel has the color of human skin. The face detector is re-

sponsible for producing candidate face locations along with their likelihood scores in a

specific region of the frame. Finally, the face tracker combines the current candidate face

locations from the face detector with the temporal information from previous frames to

determine a single face location for the current frame. It also controls the region in

which the face detector scans for candidates. Figure 2.4 shows the connections between

the components in the face localization unit.

We take machine learning approach in designing both the skin-color detector and

12

(a) TAC resting

(b) Locate speaker (c) Put hand on button (d) Take hand off

(e) Onto button again (f) Recording starts (g) Stop recording

Figure 2.3: User interaction with TAC.

the face detector. Specifically, the detectors are trained using boosting [SF12] on a train-

ing set collected from the actual setup of TAC. The key benefit of this approach is that

it is calibration-free as the parameters are learned automatically through machine learn-

ing. However, this approach requires labeled examples which are typically expensive to

collect in a large number. To reduce the amount of labeling, we adopt an active learning

technique [CAL94], which excels in the situation where the unlabeled data is abundant

and the labeled data is expensive. In particular, our training algorithm is based on the

margin-based active learning algorithm proposed in [BBZ07], which fits naturally into

the boosting framework.

13

Figure 2.4: Face localization unit on TAC.

2.3.1 Margin-based Active Training Methodology

We first briefly review the notion of classification margin and score in context of

boosting. Recall that boosting is a learning algorithm that combines many “weak” rules

to form a “strong” or final classifier. More precisely, let (x,y), with y∈ {−1,+1} denote

a labeled example. Let hi : X → {−1,+1} denote the weak rules. Then, the output of a

boosting algorithm is a rule of the form

F(x) = sign

(
∑

i
αihi(x)

)
Following the notation in [SFBL98], the classification score of an example is defined as:

s(x) = ~α ·~h(x)

and the classification margin of an example is defined as:

m(x,y) = y~α ·~h(x)

14

where ~α and~h defined in the natural way. It follows that m(x,y) > 0 if and only if the

classification rule is correct on the example (x,y). Intuitively, the notion of margin is

related to the notion of confidence of the classifier. When the margin of an example is

high, the classifier is more confident about its prediction of that example. The examples

with small margins are considered “hard” for the classifier. These “hard” examples are

crucial to improving the performance of the classifier as the learning algorithm focuses

more on them rather than “easy” examples i.e examples with large margins. This idea

is the basis of the margin-based active training methodology. Figure 2.5 shows a score

distribution with low- and high-margin regions indicated.

Figure 2.5: Example of boosting score distribution. The positive class is shown in blue
and the negative class is shown in red.

Our training algorithm is based on the margin-based active learning algorithm

proposed and analyzed by Balcan et al. in [BBZ07]. The training process happens in

rounds. In the first round, we create a set of labeled examples by sampling from the

pool of unlabeled examples and labeling them. Let D0 denote the initial training set.

Using D0, we train a boosted classifier C0. In round k, we run Ck−1 on a new set of

unlabeled examples. Using the notion of classification score, we partition the examples

into 3 groups with respect to their scores. The first group consists of examples with high

15

Algorithm 1 Margin-based active training algorithm
Input: The initial training set D0, the number of training rounds R.

Output: The trained classifier CR.

1: for k = 1 to R do

2: Train a classifier Ck using Dk−1 as the training set.

3: Run Ck on a new set of unlabeled examples and partition the examples into 3

groups:

• High positive: examples with s(x)> θ .

• High negative: examples with s(x)<−θ .

• Unsure: examples with −θ ≤ s(x)≤ θ .

4: Create Dk by combining Dk−1 with samples from the high-positive group and the

negative-group labeled positive and negative respectively, and with examples in

the unsure group labeled manually.

5: end for

positive scores s(x)> θ . These examples corresponds to what Ck−1 classifies as positive

with high confidence. The second group consists of examples with low negative scores

s(x) < −θ . These examples corresponds to what Ck−1 classifies as negative with high

confidence. Lastly, the third group consists of examples whose score is close to zero,

−θ ≤ s(x)≤ θ . The examples in this group are considered “unsure” by Ck−1.

After the unlabeled examples are partitioned, a new training set Dk is created by

adding new examples to Dk−1 in the following fashion. First, with a small probability

p, we sample the examples from the first group and the second group, label them as

positive and negative respectively, and add them to the new training set. Next, we look

at the examples in the “unsure” group, label them and add them to the new training set.

The training algorithm is summarized in Algorithm 1.

16

2.3.2 Skin-color Detector

In TAC, skin color information is used as a low-level feature for face detection

and as a control mechanism for on-screen buttons. We design a simple, yet effective

skin-color detector that identifies each pixel as either skin or non-skin. Per our design

goals, we want our skin-color detector to be efficient and adaptive to TAC’s user-base

and lighting conditions.

In order to minimize the response time, we avoid using any high-level contexts

as detection features. Instead, the detector operates solely at the pixel level, in particular

in the HSV color space. One of the challenges of a pixel-based skin-color detector is

that pixel values of the same object vary tremendously depending on the environment

e.g. lighting conditions, camera model, etc. Thus, learning simple ranges on each color

channel does not work well in practice. Instead, we train our detector using a discrimina-

tive approach, and by doing so, we make no explicit assumptions about the distribution

of skin color in color space. In addition, since the detector is trained from actual video

collected by TAC, the resulting detector is specialized to how skin appears in our given

environment.

Technically, our skin-color detector is a boosted binary classifier. In addition to

the binary prediction, it also gives a likelihood score referred to as “skin score” which is

essentially the boosting score defined in Section 2.3.1.

As for training, we follow the training methodology described in Section 2.3.1.

The training data is a set of 320x240 RGB images extracted from the early videos

recorded by TAC. For labeling, we use a software called Digital Notebook 2 to man-

ually annotate regions of each training image as skin and non-skin. The pixels in the

annotated regions are then sampled to create the training set. We use the hue, satura-

tion and volume (HSV) representation of the pixel as features in the boosting process.

Figure 2.6 shows examples of annotated images.

We run AdaBoost [FS96, FS99] with decision stumps as based rules. We use the

implementation of AdaBoost available from the JBoost package 3. The output classifier

is in the format of an alternating decision tree (ADT) [FM99]. Briefly, an ADTree is

2Available from http://www.bioimage.ucsb.edu/Digital%20Notebook
3Available from http://jboost.sourceforge.net/

17

Figure 2.6: Annotated images for skin detection. Skin and non-skin pixels are indicated
by green regions and red regions respectively.

a generalized decision tree that has tree levels that alternate between decision nodes

and prediction nodes. Decision nodes are exactly the same as those in a decision tree,

typically a threshold on an individual feature. The prediction nodes give a real valued

prediction which in the boosting terminology correspond to the α values associated

with each weak hypotheses. Unlike a decision tree where examples follow a single

path in the tree, in an ADTree whenever an example encounters a prediction node, it

traverses to all the children decision nodes below it. By changing the growing procedure

during learning one can emulated traditional boosted stumps or something very similar

to boosted decision trees.

The results of the skin-color detector after the first iteration of training is shown

in Figure 2.7. The detection gets better as we retrain the detector in the active training

fashion. Figure 2.8 show the improvement from several iterations of active training.

The detection results can be further improved by applying a smoothing filter over

the neighboring pixels. Specifically, we determine the label of a pixel by performing a

majority vote among neighboring pixels. The results of the skin-color detector with and

without voting scheme are shown in Figure 2.9.

On TAC, our Java implementation of the trained detector operates at the rate

of 25 frames per seconds at the resolution of 320x240. Although this performance

is sufficient for TAC, the performance can be greatly increased when implemented on

field-programable gate array (FPGA). The FPGA implementation of the same detector

can achieve up to 233 frames per second at 640x480 [CBCK10].

Aside from being used as low-level features for face detection, the output of the

18

skin-color detector is also used for “on-screen” buttons on TAC. The on-screen buttons

are buttons that appear spliced into the video displayed on one of the displays similar

to “hot spot” work of [JL05]. TAC uses these buttons as a means to interact with the

user. A user can simply place their hand hovering over the virtual buttons in order to

activate them. In the current implementation, the system uses one of these buttons to get

authorization from the user before recording a video. The activation of each buttons is

determined by the amount of skin pixels contained within the button’s boundaries. When

a user places their hand on the button, the number of skin pixels in the button area is

counted and the button is activated whenever this number is greater than some threshold.

Figure 2.10 shows the on-screen button used for starting and stopping recording on TAC.

2.3.3 Face Detector

The face detector for TAC is based on the sliding window approach in the Viola-

Jones face detector [VJ01]. The main difference between the Viola-Jones face detector

and ours is the feature set. Instead of Haar-like features, our classification features are

based on the histogram of skin scores produced by the skin detector and the histogram of

gradients (HOG) [DT05], which is popular in visual object detection tasks. Figure 2.11

shows images of the skin scores and the gradients and Figure 2.12 shows the mask used

to extract a feature vector from a square image patch. In each region of the mask, a

histogram of skin scores and of HOGs are calculated and concatenated into a single

feature vector.

Similar to the skin-color detector, the face detector is also a boosted binary clas-

sifier. The classifier is trained using LogLossBoost, which is a LogitBoost [FHT98]

implementation in JBoost. The output classifier is also an alternating decision tree

(ADTree).

We use margin-based active learning approach discussed in Section 2.3.1 to re-

duce amount of labeling needed. In the first round of training, the OpenCV face detector

was used on the recordings from TAC to extract square patches of images that contain

a face, giving us an initial set of positive examples. Randomly selected patches from

TAC’s video are added as negative examples. After training an initial detector, we then

used it on new videos from TAC, adding new training examples to the training set ac-

19

cording to the following three rules: (1) if the patch has high boosting score it is assumed

to be a face and added as a positive example, (2) if the patch has large negative score it

assumed a non-face and is added as a negative example, and (3) if it has score near zero

then an operator must hand label it as face or non-face. After completing this process

on a few new videos, the face detector was re-trained using the new training set. Since

many examples are automatically labeled by the previous round’s detector, the labeling

workload is significantly reduced compared to labeling all examples. Figure 2.13 shows

score distributions over multiple iteration of training and Figure 2.14 shows examples

of face images categorized by their classification scores.

When the detector is deployed, one major computational bottleneck is in calcu-

lating the feature vector for each image patch. In particular, we need to compute skin

scores for each pixel, HOG values, and collect their histograms within each region of

the detection mask. Normally, we need to do this for every location-size pair in the

image, quickly becoming very computationally expensive. If the face was detected in a

previous frame we can use tracking which is described in the next section. The compu-

tational time for a full scan can be reduced greatly using the integral image technique

presented in [VJ01]. This technique leverages a nice mathematical trick to avoid the re-

peated computation of feature values across patches and quickly returning the histogram

values needed for transforming an image patch into a feature vector for input into the

boosted face detector.

2.3.4 Face Tracker

In principle, face localization can be realized solely by running full-frame face

detection at every frame. However, this solution is too computational expensive. On

TAC, our full-frame face detection needs to calculate scores of about 75000 candidate

windows. At the maximum, it can run at the rate of only 1-2 frame per second. As the

number of candidate windows at which the detections happen is fixed, the detections

are of limited accuracy and jittery. A better use of resources is to use an adaptive grid

where the range of locations and sizes that are measured is based on detections at pre-

vious frames. We instead use a tracking algorithm to combine detections from the face

detector.

20

Translating the output of the detector into predictions of the location of a face

requires solving two related problems. The first problem is peak-finding, in practice, a

reliable detector would not detect a face only in a single location and size but in a range

of locations and sizes. It is therefore necessary to identify the location of the “best”

detection. Using the location with the maximal score is reasonable, but results in a very

noisy and jittery detection. It is better to smooth the scores before finding the maximum,

but then the question becomes how much to smooth. The second problem is that of

tracking, i.e. taking into account that the face is likely to either stay at one location or

else move at slowly varying speed (recall that the location of our PTZ camera is fixed

and that the pan and tilt are known and can be subtracted away).

Our solution to the above problems is to apply a tracking algorithm to take

into account the dynamics of the face. In particular, we use a variant of particle fil-

ters [AMGC02] called Normal Hedge tracking algorithm proposed by Chaudhuri et al.

in [CFH10]. The Normal Hedge tracking algorithm is derived from a parameter-free

online algorithm for hedging over the predictions from a group of N experts that has

strong theoretical guarantees [CFH09]. The algorithm is summarized in Algorithm 2.

The speed-up obtained by using the tracker is significant over using face detec-

tion alone without tracking. Without the tracking algorithm, we need to calculate the

score of 75,000 boxes in the video frame. As a result, we can perform face detection

only 2-3 times per second and the resolution of our detections is not very high, resulting

in jittery behavior. On the other hand, when we use our variant of the tracking algo-

rithm, we calculate scores for only 500 boxes per frame. As a result we can track at

30 frames per second, which is the rate of the video camera, and as the locations of the

detection boxes is adaptive, we get a much smoother and less jittery detection. On the

other hand, the tracker can get stuck in local maxima, i.e. locations that are not faces but

seem similar to faces and have the correct dynamics. We therefore perform a complete

scan of the video frame every second to detect the actual location of the face and get the

tracker out of local maxima. Figure 2.15 shows a screen capture of the tracker in action.

21

Algorithm 2 Normal Hedge tracking algorithm

Initial Assumptions: At time t−1, we have the set of particles x(i)t−1 and Normal Hedge

weights w(i)
t−1, i ∈ {1, . . . ,m}

1: Regret Update: Obtain losses `(i)t for each particle and update discounted cumula-

tive regrets R(i)
t = (1−α)R(i)

t−1 +(`A
t − `

(i)
t).

2: Resample: For each particle x(i)t with R(i)
t < 0, resample a new particle in its place

1. Choose a current particle x(k)t according to {w(i)
t }m

i=1.

2. Let the new particle x(i)t = x(k)t +uk, where uk is Gaussian noise.

3. Assign R(i)
t = (1−α)R(k)

t +(`A
t − `(x(i)t)).

3: Weight Updates: Update the weights of each particle by finding ct > 0 that satisfies
1
N ∑

N
i=1 exp

(
([R(i)

t]+)
2

2ct

)
= e. Then, update weight distribution for round t + 1 by

w(i)
t+1 =

[R(i)
t]+
ct

exp
(

([R(i)
t]+)

2

2ct

)
. Normalize the weights so they sum to one.

4: Dynamics: Propagate the particles through the transition equation x(i)t = g(x(i)t−1).

2.4 Face Recognition

Once TAC has localized a face, the next step is to identify the person. The

face recognition algorithm on TAC is based on the popular notion of eigenfaces [SK87,

TP91]. This method has proven to work well when the face is captured in a frontal view

and carefully registered. On TAC, we perform face recognition when these conditions

hold true, which hold quite often since we are engaging users causing them to look

directly at the camera.

To detect whether the face is frontal and registered, we first convolve the region

around the face detection with a face template. The template face is obtained by averag-

ing over the frontal and registered faces that the system has seen thus far. TAC will try

to recognize a detected face only when this correlation is high.

After a registered face is obtained, TAC computes its projection onto each eigen-

face and feeds them into a series of boosted binary classifiers. Each binary classifier

gives a score corresponding to how likely the detected face comes from a particular per-

22

son in the TAC database. A person in the database is recognized when the score from

his/her boosted classifier are consistently high for several seconds. Since our user-base

is not too large, this scheme works well to recognize regular users and further engage

them in the interaction process.

TAC updates its database nightly. This includes adding newly recognized people

to its database, updating the average face, updating the eigenfaces, and retraining the

per-person classifiers.

To show how well the face recognizer improves as users interact with the system

more and more, we performed the following analysis: for three frequent users, we took

25 different video recordings of each user interacting with the system. Among the 25

recordings, we randomly selected 5 recordings for testing and used the rest for train-

ing. The training videos were ordered, and initially the training set consisted of only

the registered faces from the first video. Subsequently, the training set was grown incre-

mentally by adding new registered faces from the next video. In doing so, we simulated

repeated interactions from the user with TAC over time. The results of 3 different users

is shown in Figure 2.17. The error rate of the face recognizer goes down as the number

of training sessions increases. This indicates the improvement of the face recognizer as

more data is collected over time. Moreover, the final error of each classifier is less than

10% which allows for accurate recognition of these users over multiple frames of video.

Acknowledgements

This chapter is based on joint work with Evan Ettinger, Matt Jacobsen, Patrick

Lai and Yoav Freund titled “Detecting, Tracking and Interacting with People in a Public

Space” appearing in the 11th International Conference on Multimodal Interfaces and

6th Workshop on Machine Learning for Multimodal Interaction in 2009. The disserta-

tion author along with Evan Ettinger were the primary investigators and authors of this

paper.

23

Figure 2.7: Results of the skin-color detector after the first iteration of active training.
Green pixels indicate skin regions with high confidence and red pixels indicate predicted
skin regions, yet with lower confidence.

24

Figure 2.8: Results of the skin-color detector after several iterations of training. Left
image is the result after 1 iteration and right image is the results after several iterations
of active training. Green pixels indicate skin regions with high confidence and red pixels
indicate predicted skin regions, yet with lower confidence.

(a) No voting

(b) With voting

Figure 2.9: Results of the skin-color detector with and without majority vote among
neighboring pixels. Green pixels indicate skin regions with high confidence and red
pixels indicate predicted skin regions, yet with lower confidence.

25

Figure 2.10: On-screen button on TAC

26

(a) Original image

(b) Gradients

(c) Skin

Figure 2.11: Face detection features

27

1

5

9

13 14

2

6

10

15 16

11

7

3

12

8

4

3
2

 p
ix

e
ls

32 pixels

4 px 4 px 4 px 4 px

Figure 2.12: Face detection mask that defines the regions in which the skin scores and
histograms of gradients are computed and combined.

28

(a) After iteration 1

(b) After iteration 2

(c) After iteration 3

Figure 2.13: Score distributions of the face detector over multiple iterations of training.

29

Figure 2.14: Examples of face images categorized by their classification scores.

Figure 2.15: An output from the face tracker. Each dot correspond to each tracking
particle and the colors indicate the current weights of the particles. Yellow particles
have the highest weights, followed by green and blue respectively. The red rectangle
shows the weighted average location of all particles.

30

Figure 2.16: Result of the face recognition. The image in the left most column is the test
image and the images in the right column are the 3 most similar faces from the training
set.

31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Training Sessions

E
rr

or

Face Recognition Error

User1
User2
User3

Figure 2.17: Error rate of the face recognition unit on TAC over multiple sessions.

Chapter 3

Non-convex Boosting and Random

Label Noise

The sensitivity of Adaboost [FS96] to random label noise is a well-studied prob-

lem. LogitBoost [FHT98], BrownBoost and RobustBoost are boosting algorithms that

claim to be less sensitive to noise than AdaBoost. In this chapter, we present the results

of experiments evaluating these algorithms on both synthetic and real-world datasets.

We compare the performance on each of datasets when the labels are corrupted by dif-

ferent levels of independent label noise. In presence of random label noise, we found

that BrownBoost and RobustBoost perform significantly better than AdaBoost and Log-

itBoost, while the difference between each pair of algorithms is insignificant. Addition-

ally, we provide an explanation for the difference based on the margin distributions of

the algorithms.

3.1 Background and Related Work

Adaboost [SF12] is a very popular classification learning algorithm. While it is

a simple and effective algorithm, the sensitivity of Adaboost to random label noise is

well-documented [FS96, MO97, Die00]. The random label noise setup is one where

we take a dataset for which our learning algorithm generates an accurate classifier and

we flip each label in the training set with some small fixed probability. Note that the

classifier that was a good classifier in the noiseless setup is still a good classifier. The

32

33

problem is that, in the noisy setup, the noisy examples mislead the learning algorithm

and cause it to diverge significantly from the good classifier.

LogitBoost [FHT98] is believed to be less sensitive to random label noise than

Adaboost, but it still falls pray to high levels of random labels noise. In fact, Servedio

and Long [LS08] proved that, in general, any boosting algorithm that uses a convex po-

tential function can be misled by random label noise. A number of non-convex boosting

algorithms have been proposed to address the issue of random label noise. Bootkrajang

and Kaban suggested a boosting algorithm whose potential loss function is based on a

hyperbolic cosine [BK13]. Kalai and Kamade suggested a boosting algorithm that is

based on a relabeling process [KK09]. Freund suggested a boosting algorithm, called

Brownboost, that uses a non-convex potential function and claims to overcome random

label noise. Freund suggested two boosting algorithms: Brownboost [Fre01] and Ro-

bustBoost [Fre09], that uses a non-convex potential function and claims to overcome

random label noise. The main contribution of this chapter is experimental evidence that

support this claim. The other contribution is a heuristic for automatically tuning the

parameters that Brownboost and RobustBoost need as input.

Classification Margins, Convexity and Generalization

All non-recursive boosting algorithms generate a classification rule which is a

thresholded linear combination of so-called “base” classification rules. More precisely,

let (x,y), with y ∈ {−1,+1} denote a labeled example. Let hi : X → {−1,+1} denote

the base rules. then the output of the boosting algorithm is a rule of the form

F(x) = sign

(
∑

i
αihi(x)

)

As it turns out, the sum which is the operand of the sign function is important for under-

standing the operation of boosting algorithms as well as the generalization error of the

generated classifier. It is convenient to replace the sum with a dot product:

∑
i

αihi(x) = ~α ·~h(x)

with ~α and~h defined in the natural way.

34

To characterize the relationship of the value of the sum and the label y, Schapire

et al. [SFBL98] defines the “margin” of an example as:

m(x,y) = y~α ·~h(x)

Thus m(x,y)> 0 if and only if the classification rule is correct on the example (x,y). The

natural goal is therefore to find base rules {hi} and weights {αi} such that the number

of training examples with negative margin i.e. the number of misclassified examples is

minimized.

From a computational point of view, the easy case occurs when the training data

is separable. In other words, when there exists a setting of α such that m(x,y)> 0 for all

of the training examples. In that case, finding an appropriate setting for α can be done

using the perceptron algorithm (see Cesa-Bianchi and Lugosi [CBL06] for a survey).

On the other hand, when the training set is not linearly separable, the problem

of finding the error minimizing plane is NP-hard. We therefore have to resort to ap-

proximation techniques. The approximation used in Adaboost and Logitboost is to use

a convex function that upper bounds the step function corresponding to the number of

misclassifications. Specifically, Adaboost corresponds to minimizing the potential func-

tion:

φ(x,y) = e−m(x,y)

and Logitboost corresponds to minimizing the potential function

φ(x,y) = ln
(

1+ e−m(x,y)
)

As both of these potential functions are convex, minimizing them can be done efficiently.

Figure 3.1 depicts the 0/1 error function and the potential functions corresponding to

Adaboost and LogitBoost. Using a convex upper bound makes the problem tractable,

but obviously there can be a significant gap between the bound and the step function

which can lead to a sub-optimal solution.

Moreover, as was shown in [LS08], algorithms that minimize convex potential

functions can always be fooled by the addition of random label noise. This naturally

leads us to considering non-convex potential functions that upper bound the 0/1 error

function. However, before we get to that, we first consider the question: “is minimizing

the training error the right goal for a learning algorithm?”

35

Our ultimate goal when learning classifiers is to reduce the test error – the num-

ber of mistakes the classifier makes on the test set. As we only have access to the training

data, we cannot minimize the generalization error directly. The natural goal of the al-

gorithm is to instead minimize the training error. However, Schapire et al. [SFBL98],

showed that there is a better performance measure than the performance of the boosted

classifier on the training set. That is to maximize the number of training examples whose

normalized margin is larger than some θ > 0. Where the positive margin of the example

(x,y) is defined to be

m̂(x,y) = y
~α ·~h(x)
‖α‖1

The intuition, presented and justified in [SFBL98], is that large positive margins corre-

spond to confident predictions. Specifically, Theorem 2 in [SFBL98] states that, with

probability 1− δ over the random choice of the training set, the following inequality

holds for all θ > 0

PD (m̂(x,y)≤ 0)≤ PS (m̂(x,y)≤ θ)+O

(
1√
n

(
d log2(n/d)

θ 2 + log(1/δ)

)1/2)
(3.1)

where PD is the probability with respect to the true distribution, PS is the probability

with respect to the training set S whose size is n and d is the VC dimension of the base

classifiers.

Note that the bound consists of two terms, the first corresponds to the fraction

of the training set whose margin is at most θ and the second which is O(1/θ). The

first term increases with θ while the second term decreases with θ . As the bound holds

uniformly for all values of θ , we are free to choose the values of θ that would minimize

the bound. Intuitively, the first term corresponds to the examples on which we “give up”.

Note that giving up on an example increases the RHS of Equation 3.1 by 1/n regardless

of amount by which the margin of the example is smaller than θ .

The goal of learning now becomes to minimize a step function that is thresholded

at θ (see Figure 3.1). This does not make the problem any easier than minimizing the

training error. The suggestion is, however, that minimizing this potential function will

yield classifiers with smaller test error.

36

−1.5 −1 −0.5 0 0.5 1 1.5

margin

p
o

te
n

ti
a
l

0−1

0−1 w/ margin

AdaBoost

LogitBoost

BrownBoost

BrownBoost w/ margin

−1.5 −1 −0.5 0 0.5 1 1.5

margin

p
o

te
n

ti
a
l

t=0.0

t=0.2

t=0.4

t=0.6

t=0.8

t=1.0

Figure 3.1: Left: Zero/one loss function with and without margin plotted with potentials
for AdaBoost, LogitBoost, confidence rated BrownBoost and confidence rated Robust-
Boost. Right: How the potentials for BrownBoost vary with the time parameter t.

Random label noise

Consider the effect of random label noise on boosting. The weight assigned to

example (x,y) by Adaboost is exponential in the margin w(x,y) = e−m(x,y). Suppose

c(x) is the best rule for the noiseless data. Suppose we now add independent label noise

to the dataset. The margin of c(x) on examples whose label has been flipped will be

negative, resulting in a large weight being assigned to the noisy examples, resulting in

base classifiers that fit the noisy examples.

3.2 BrownBoost and RobustBoost

Before we describe two non-convex boosting algorithms: BrownBoost and Ro-

bustBoost, we first discuss an algorithm called Boost-by-Majority because it provides

insights into the derivation of the other two boosting algorithms.

It is worth noting that the algorithms discussed in this section are due to Freund

and can be found in [Fre95, Fre01, Fre09]. This is not original work by the author of this

thesis, but the fundamental ideas are central to the work that follows in the remainder of

this chapter.

37

Boost-by-Majority

In this setup, it is useful to think of boosting as a game between two players.

One player represents the boosting algorithm and is called the weightor. The second

player represents the weak learning algorithm and is called the chooser. Consider a fixed

training set of size n. The game proceeds in iterations that correspond to the iterations of

the boosting algorithm. In each iteration, the weightor assigns weights to each of the n

training examples and the learner responds by generating a weak classification rule that

is slightly better than random guessing with respect to the weighted training set (has

accuracy 1/2+ γ w.r.t. the weights). After T iterations the game stops and the weightor

outputs the (unweighted) majority vote over all the weak rules that were generated. The

weightor wins if this final rule is correct on all n training examples.

To get some intuition into this game, let us consider some simple cases. First,

consider a lazy weightor that always uses the uniform distribution across examples. The

adversarial response of the chooser to this strategy is simple: it chooses some weak rule

which is correct on 1/2+ γ of the training examples and always outputs this same rule

on each round. The majority rule is the same as this single fixed weak rule, and the

weightor loses. Clearly, the weightor must alter the distribution of weights in order to

prevent the chooser from always outputting the same classification rule.

As a second example, consider a lazy chooser that uses the following simple

strategy: at each iteration it picks a weak rule which is correct with probability 1/2+ γ

on each training example independently at random. Note that it is possible that the

chooser creates a rule that is correct with less than 1/2+ γ total weight over the exam-

ples, but this can only happen with constant probability, and all the chooser needs to

do is repeat this procedure until it meets this requirement. If the chooser uses this lazy

strategy, then the weightor is guaranteed to win if T is sufficiently large. In fact, it is not

hard to show that if the number of iterations is O(log(n/ε)γ2), then the probability that

the majority rule is incorrect on any of the n examples is at most ε . Moreover, this lazy

strategy is actually min-max optimal for the chooser [Fre95]. This means on the one

hand there exists no strategy for the weightor to win in a smaller number of iterations,

and on the other hand, there does exist a strategy for the weightor to win in exactly this

number of iterations no matter what strategy is used by the chooser.

38

0 1 2-1-2-3

.2

.2

.2

.1

.1

.1

.1

0 1 2-1-2-3

.2

.2

.2

.1

.1

.1

.1

0 1 2-1-2-3

Figure 3.2: A single iteration of the chip game. Weights given by the weightor are
shown inside each chip and the colored ones have been chosen by the chooser.

Let us now derive this min-max strategy for the weightor, which as a result will

give us the Boost-by-Majority (BBM) algorithm. In order to simplify the description

of the game, we replace the set of n training examples with a set of n chips. At any

iteration t each of these chips belongs to a bin indexed by the integers. At the start of the

game, all the chips start in bin 0. At each iteration, a weak rule is generated and those

examples that were classified correctly move up a bin, while those that were incorrectly

classified move down a bin. The chips that are in bin i at iteration t correspond to those

examples for which the difference between the number of correct classifications (by the

rules generated thus far in the game) minus the number of incorrect classifications is

equal to i. We denote by nt
i the number of chips that are in bin i at iteration t and n1

0 = n

(i.e. all the chips start in bin 0).

At each round t = 1, . . . ,T the following steps occur:

1. The weightor assigns a weighting function to the reachable bins wt
i ≥ 0 for all i.

2. The chooser selects, for each bin, the number of chips that it will move upwards

mt
i. This selection must adhere to nt

i ≥ mt
i ≥ 0 and

∑i mt
iw

t
i

∑i nt
iw

t
i
≥ 1

2
+ γ

3. The location of the chips are updated: nt+1
i = mt

i−1 +(nt
i+1−mt

i+1).

See Figure 3.2 for an example of a single round of the game. The weightor wins if, at the

end of the game, there are no chips in bins below bin 1. In other words, if ∑
−1
i=−T nT+1

i =

39

0. We assume that T is an odd number.1

To derive the optimal weighting strategy for the weightor, it is useful to consider

the weightor’s choice at the last round, round T . At this point the fate of most chips is

already determined. If a chip is in a negative bin, then it is hopeless to get it to cross

over to a positive bin in this last round (and vice-versa). The only chips whose fate is

still to be determined are those in bin 0 (note that chips are only in even numbered bins

at this last iteration since T is odd). It thus stands to reason that the weightor should put

all of the weight on that bin i.e. wT
0 = 1 and wT

i = 0 for all i 6= 0. This will force the

chooser to move up 1/2+ γ of the chips in bin 0.

Following this line of reasoning, [Fre95] shows that the following backwards

recursive weighting strategy is min-max optimal for the weightor

wt
i = (

1
2
+ γ)wt+1

i+1 +(
1
2
− γ)wt+1

i−1 (3.2)

with final weighting on iteration T as wT
i = 1(i = 0). This recursion can be solved to

give an explicit binomial equation for the weights

wt
i =


(T−t

T−t−i
2

)
(1

2 + γ)
T−t−i

2 (1
2 − γ)

T−t+i
2 if |i| ≤ T − t and (i− t) is odd

0 otherwise
(3.3)

Similarly, a potential can be defined that corresponds to the potential loss asso-

ciated with the chips in bin i on round t. At round T +1, after the game has completed,

any chips in bin i < 0 receive loss 1. Following this reasoning, the potential is defined

as follows

Φ
T+1
i =

1 if i < 0

0 otherwise
(3.4)

Φ
t
i = (

1
2
+ γ)Φt+1

i+1 +(
1
2
− γ)Φt+1

i−1 (3.5)

It is easy to verify that there is a simple relationship between the potential function

defined this way and the min-max weighting scheme

wt
i = Φ

t+1
i−1−Φ

t+1
i+1 (3.6)

1If T is even then we have to make an arbitrary choice as to whether or not to include nT+1
0 in the sum

and this choice complicates the notation without adding anything substantial to the analysis.

40

Moreover, using this weighting scheme, it is straightforward to show that a weak learner

(chooser) that can produce weak rules with weighted error smaller than 1
2−γ , and setting

T ≥ 1
2γ2 ln 1

2ε
will produce a final combined rule whose training error is at most ε .

BrownBoost

The BBM algorithm takes a parameter T as input. As the number of boosting

rounds approaches T , those examples with large positive or negative majority vote are

given explicit weight zero. In other words, the algorithm gives up on these examples in

the next iteration. This is an attractive behavior when label noise is introduced as we

would hope that they would have such large scores and thus be given weight zero. How-

ever, the BBM algorithm is not a practical algorithm. This is because, it is not adaptive

to the accuracies of the individual weak rules. Instead, the BBM algorithm performs an

unweighted majority vote. In addition, the BBM algorithm requires knowledge of the

advantage of each weak rule, γ , a difficult thing to measure in practice.

An adaptive version of the BBM algorithm is called BrownBoost and was de-

rived in [Fre01]. Fundamentally, BB is the BBM game taken to the continuous time

limit: a stochastic differential equation. We explain the derivation of BrownBoost here

since it will help understand the reasoning behind RobustBoost.

We would like an algorithm that can use any rule whose error is smaller than
1
2 . Moreover, we’d like the final combined rule to be a weighted majority where rules

with small error are assigned more weight than rules with large error. Consider a simple

alteration to the BBM algorithm to achieve these goals, but without regard to computa-

tional complexity. Consider running the BBM algorithm but using a very small γ which

will allow for rules that are only slightly better than random guessing. If we set γ to be

extremely small, then the changes in the weights assigned to examples on consecutive

iterations are also all extremely small. As a result, if the weighted error of the first rule

h1 is significantly better than 1
2− γ , say 1

4 , then the weighted error of h1 will continue to

be better than 1
2 − γ on subsequent iterations 2,3, After some number of iterations

k1, the weighted error of h1 with respect to the current weights will be larger than 1
2− γ ,

at which point h1 can no longer be used. At that point a new rule must be found h2 which

will “survive” until iteration k1 + k2, etc. The result is that the final majority vote will

41

have h1 appearing k1 times, h2 appearing k2 times, etc. In other words, we could rep-

resent the final rule as a weighted majority over the rules h1,h2, . . . with corresponding

weights k1,k2,

Thus, in principle, we could use BBM as an adaptive boosting algorithm. Un-

fortunately, this straightforward implementation is prohibitively expensive to calculate

in terms of computational time. We would like to be able to calculate ki in an amount

of time that does not depend on the size of ki. BrownBoost formulates this problem as

the solution of two nonlinear equations in two unknowns, allowing for the application

of standard numerical techniques.

First, let us rewrite Equation (3.5) in a slightly different equivalent form.

Φ
t
i−Φ

t−1
i = (Φt

i− 1
2Φ

t
i+1− 1

2Φ
t
i−1)− γ(Φt

i+1−Φ
t
i−1) (3.7)

We now transform this equation to the continuous domain, replacing Φt
i defined over

the integers with a new potential function defined over the reals Φ(s, t), where the real

valued s takes the place of integer i. Also, we generalize the time step from the BBM

algorithm from 1 to ∆t and the location step from 1 to ∆s. This new notation transforms

Equation (3.7) into the following:

Φ(s, t)−Φ(s, t−∆t) = −1
2 (Φ(s+∆s, t)−2Φ(s, t)+Φ(s−∆s, t))−

γ (Φ(s+∆s, t)−Φ(s−∆s, t)) (3.8)

We then let γ decrease towards zero while increasing the number of steps in the game

towards infinity. From the BBM analysis we know that we need T = β

γ2 iterations to

achieve error ε with β = 1
2 ln 1

2ε
. If we set the starting time for the game to be 0 and the

final time to be 1 we get that ∆t = 1
T = γ2

β
. In addition, if we set ∆s =

√
∆t = γ√

β
and

divide both sides of Equation (3.8) by ∆t we arrive at the following difference equation

Φ(s, t)−Φ(s, t−∆t)
∆t

= −1
2

Φ(s+∆s, t)−2Φ(s, t)+Φ(s−∆s, t)
∆s2

−
√

β
Φ(s+∆s, t)−Φ(s−∆s, t)

∆s
(3.9)

Taking the limit of the above as γ decreases to zero gives the following partial differential

equation that describes the time evolution of a Brownian process

∂Φ(s, t)
∂ t

=−1
2

∂ 2Φ(s, t)
∂ s2 −2

√
β

∂Φ(s, t)
∂ s

(3.10)

42

Adapting the boundary condition for the end of the game to continuous time gives

∀s, Φ(s,1) =

1 if s < 0

0 otherwise
. (3.11)

The above PDE can be solved in closed form for all t ≤ 1:

Φ(s, t) = 1
2

(
1− erf

(
s+2

√
β (1− t)√

2(1− t)

))
(3.12)

where erf is the Gaussian error function. We can also express the weighting function as

follows:

w(s, t) =
∂

∂ s
Φ(s, t) = exp

−
(

s+2
√

β (1− t)
)2

2(1− t)

 (3.13)

Finally, we set β according to the value of ε , the target training error which we wish to

achieve. Specifically, we choose β to satisfy the equation

ε = Φ(0,0) =
1− erf

(√
2β

)
2

(3.14)

What remains to be discussed to complete BrownBoost is how to update t,

the time variable, and s(j) the position of example j on the real line. It is shown in

[Fre01] that these updates are dictated by the following two equations in two unknowns

(∆tk,∆sk):

m

∑
j=1

y jhk(x j)w(s(j)+ y jhk(x j)∆sk, tk +∆tk) = 0 (3.15)

m

∑
j=1

Φ(s(j), tk) =
m

∑
j=1

Φ(s(j)+ y jhk(x j)∆sk, tk +∆tk) (3.16)

Here the first equation says that our current weak rule should have no advantage on the

weighted training set in the next iteration. The second equation says that the average

potential should not change, which is a requirement to a solution to the PDE above, as

shown in Theorem 2 of [Fre01]. Using a numerical technique like Newton-Raphson,

we can solve the above system of equations. On iteration k the time is updated with

tk+1 = tk +∆t. The algorithm halts when tk+1 ≥ 1 leaving us with the score distribution

across training examples given by s(j). BrownBoost takes only one parameter as input,

43

the target error ε . If the algorithm halts, we know that no more than ε fraction of our

training set has s(j) below zero.

BrownBoost is an adaptive boosting algorithm that that tries to optimize the

number of classification mistakes on the training set. This goal is captured by setting the

final potential at the end of the game, defined in Equation (3.11), to be the step function

with step placed at s = 0. However, the large margin theory of boosting described by

Equation (3.1) gives a view of boosting beyond that of just minimizing the training error,

namely we should be trying to achieve large margins instead.

Suppose we augmented the final potential function of BrownBoost to be a step

function centered at s = 1 instead of s = 0. This will indeed put pressure on creat-

ing larger margins, but not in a very meaningful way. To achieve a similar effect, we

could have taken the output of the s = 0 BrownBoost and scaled each αi up so that all

the correct training examples as a result have larger margins. With this trick we can

create arbitrary sized margins for correctly classified examples without fundamentally

changing the margin distribution. It’s clear from this thought experiment that simply

maximizing unnormalized margins is not what we want, and the large margin theorem

of Equation (3.1) agrees. It says we should instead be looking at the `1-normalized

margin
y∑i αihi(x)

∑i |αi|

RobustBoost

To address the problem of BrownBoost maximizing unnormalized margins, Fre-

und suggested another algorithm called RobustBoost in [Fre09]. RobustBoost is de-

signed to limit the variance of the margin distribution

y∑i αihi(x)
Var(∑i αihi(x))

Note the there is a similarity here to the margin bounds shown in the SVM literature with

typically have an `2-normalization. RobustBoost takes two key parameters as input: a

target error ε and a final margin θ . RobustBoost simultaneously limits the variance of

the score distribution to a constant and attempts to get 1− ε fraction of the training

examples above a margin of θ .

44

The derivation of RobustBoost starts by altering the evolution of the continuous

time version of the BBM game. In BrownBoost examples move from (s, t) to (s±
∆s, t + ∆t). For RobustBoost we instead move examples from (s, t) to (s(1− ∆t)±
∆s, t +∆t). This adds a drift in the underlying Brownian motion which pushes examples

towards zero and limits the variance of the score distribution. Adding this drift changes

Equation (3.9) into

Φ(s, t)−Φ(s, t−∆t)
∆t

= −1
2

Φ(s(1−∆t)+∆s, t)−2Φ(s, t)+Φ(s(1−∆t)−∆s, t)
∆s2

−
√

β
Φ(s(1−∆t)+∆s, t)−Φ(s(1−∆t)−∆s, t)

∆s

Set ρ =
√

β and ∆s2 = ∆t = γ2

β
like in BrownBoost. After rearranging we get

Φ(s, t)−Φ(s, t−∆t)
∆t

(3.17)

= − 1
2

Φ(s(1−∆s2)+∆s, t)−2Φ(s(1−∆s2)+∆s, t)+Φ(s(1−∆s2)−∆s, t)
∆s2

− ρ
Φ(s(1−∆s2)+∆s, t)−Φ(s(1−∆s2)−∆s, t)

∆s

+
Φ(s, t)−Φ(s(1−∆s2), t)

∆s2

We now let γ → 0 as in BrownBoost giving the following differential equation

Claim 3.1.

lim
h→0

f (x)− f (x(1−h))
h

= x
d f
dx

Proof. By Taylor expansion of f (x(1−h)) around f (x) we arrive at

lim
h→0

f (x)− [f (x)− xh f ′(x)+h2R(x,h)]
h

(3.18)

which gives the desired result.

∂Φ(s, t)
∂ t

=−1
2

∂ 2Φ(s, t)
∂ s2 +(s−2ρ)

∂Φ(s, t)
∂ s

(3.19)

This follows from the limit definition of a partial derivative. The term s∂Φ(s,t)
∂ s can be

seen after observing a fact from elementary calculus limh→0
f (x)− f (x(1−h))

h = xd f
dx (shown

45

by using a Taylor expansion of f (x(1−h)) around f (x)). The other terms can be derived

in an identical manner.

The PDE in (3.19) corresponds to the backwards Kolmogorov equation for the

mean-reverting Ornstein-Uhlenbeck diffusion process. Intuitively, this process has a

constant pressure placed on the current value to revert back towards the mean.

It can be easily verified that the following is a family of solutions for the PDE in

Equation (3.19)

Φ(s, t) = 1
2

(
1− erf

(
s−µ(t)

σ(t)

))
(3.20)

Where

σ(t) =
√

c1e−2t−1

µ(t) = c2e−t +2ρ

and c1,c2 are real valued constants. We set these constants so that the final potential

function is such that µ(1) = θ and σ(1) = σ f . These will be two parameters of the

RobustBoost algorithm, namely the final margin to shoot for θ and something similar to

the standard-deviation of the final potential σ f . Solving for these constraints we get

σ(t) =
√

(σ2
f +1)e2(1−t)−1 (3.21)

µ(t) = (θ −2ρ)e1−t +2ρ (3.22)

We set the value of ρ according to our target loss ε . Specifically we find ρ that satisfies

ε = Φ(0,0) = 1
2

1− erf

 2(e−1)ρ− eθ√
e2(σ2

f +1)−1

 (3.23)

We can also define a weight function similar to the logic used in BrownBoost as follows

w(s, t) =
∂

∂ s
Φ(s, t) =

exp
(
− (s−µ(t))2

2σ(t)2

)
if s > µ(t)

0 if s≤ µ(t)
(3.24)

We are now ready to present the RobustBoost algorithm given in Figure 3.3. Note that

the algorithm terminates when tk+1 is exactly 1.

46

Like in BrownBoost, a system of equations in two unknowns (3.15-3.16) must

be solved with the addition of each weak hypothesis, however the score updates in Ro-

bustBoost are slightly different. Remember that in BrownBoost the score position up-

dates are s(j) := s(j)+ y jhk(x j)∆sk, whereas in the algorithm for RobustBoost there is

a damping factor

s(j) := s(j)e−∆tk + y jhk(x j)∆sk (3.25)

The justification is as follows. Suppose that we divide the time step ∆t into n equal

parts of length ∆t/n. At each of these steps i = 1, . . . ,n we solve for ∆si and update s,

assuming that ∆t is sufficiently small, we know that |∆si| ≤
√

∆t/n. The step from s0 to

s1.

s1 = s0(1−∆t/n)+∆s0

if we expand this formula to two steps we get

s2 = (s0(1−∆t/n)+∆s0)(1−∆t/n)+∆s1

= s0(1−∆t/n)2 +∆s0−∆s0∆t/n+∆s1

recalling that |∆s0| ≤
√

∆t/n, this means that the term ∆s0∆t/n is smaller than (∆t)3/2

thus as n→ ∞ this term becomes negligible compared to ∆s0 and ∆s1. In other words

s2 = s0(1−∆t/n)2 +∆s0 +∆s1 +O(n−3/2)

We can now recurse over all n steps and get

sn = s0(1−∆t/n)n +
n

∑
i=1

∆si +O(n−1/2)

Taking the limit n→ ∞ we get Equation (3.25).

3.3 Adaptive-ε Heuristic

In BrownBoost and RobustBoost, we need to specify the target error rate ε . The

choice of ε can greatly influence the performance of the trained classifier. When ε is

set too low or too high, the algorithms often produce a classifier that performs poorly

even on the training data. Figure 3.4 shows the margin distributions of BrownBoost and

47

Given: ε > 0, θ > 0, σ f > 0

(x1,y1), . . . ,(xm,ym) where x j ∈X , y j ∈ Y = {−1,+1}
Set ρ to satisfy Equation (3.23).

Initialize t1 = 0, H0 ≡ 0 and s(j) := 0 for all 1≤ j ≤ m.

Repeat for k = 1,2, . . .

• Define the distribution Dk over the m training examples by normalizing w(s, t)

defined in Equation (3.24)

Dk(j) =
w(s(j), tk)

Z
, Z =

m

∑
j=1

w(s(j), tk)

• Get weak hypothesis hk : X → {−1,+1} which is slightly correlated with the

label:

E j∼Dk

[
y jhk(x j)

]
> 0

• Find ∆sk > 0,1− tk ≥ ∆tk > 0 that simultaneously satisfy the following two equa-

tions:
m

∑
j=1

y jhk(x j)w(s′(j), tk +∆tk) = 0 or ∆tk = 1− tk

m

∑
j=1

Φ(s(j), tk) =
m

∑
j=1

Φ(s′(j), tk +∆tk)

where

s′(j) .
= s(j)e−∆tk + y jhk(x j)∆sk

and Φ(·, ·),w(·, ·) are defined by Equations (3.20, 3.24)

• update: tk+1 := tk +∆tk, ∀1≤ j ≤ m, s(j) := s′(j)

Hk = Hk−1e−∆tk +∆skhk

• break if tk+1 = 1.

Output the final hypothesis Hk.

Figure 3.3: RobustBoost algorithm.

48

−1 0 1

ε = 0.28

−1 0 1

ε = 0.30

−1 0 1

ε = 0.32

−1 0 1

ε = 0.34

−1 0 1

ε = 0.36

BB

−1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1

RB

Figure 3.4: Margin distributions of BrownBoost (BB) and RobustBoost (RB) using
different ε on LS dataset with 30% label noise after 200 iterations. Noisy and clean
examples are shown in red and blue respectively.

Table 3.1: Various training parameters of BrownBoost (BB) and RobustBoost (RB)
using ε slightly below and above the noise level η . The final time and the final training
error rate with respect to clean labels are denoted by t f and E f respectively. The angle
between the true hypothesis~h and ~al pha of BB and RB using ε slightly below and above
the noise level η is shown in the last row.

η = 0.10 η = 0.20 η = 0.30
ε = η−0.02 ε = η +0.02 ε = η−0.02 ε = η +0.02 ε = η−0.02 ε = η +0.02

t f
BB 0.19 0.30 0.22 0.81 0.25 0.82
RB 0.21 0.57 0.25 0.78 0.27 0.81

E f
BB 0.40 0.14 0.34 0.00 0.28 0.00
RB 0.40 0.00 0.34 0.00 0.28 0.00

~α·~h
||~α||·||~h||

BB 0.51 0.30 0.48 0.09 0.53 0.00
RB 0.51 0.11 0.48 0.08 0.53 0.00

RobustBoost using different ε on a dataset with 30% label noise after 200 iterations.

Note that when ε ≤ 0.30, the classifier cannot separate examples around zero-margin.

When the true noise rate is known, a good rule of thumb is to set ε a little higher

than the noise rate. Table 3.1 summarizes the final time t f and the final training error rate

E f of BrownBoost and RobustBoost on a synthetic dataset with the true noise rate η =

{0.1,0.2,0.3} using two different ε settings slightly above and below η . However, when

the true noise rate in not known, the tuning of ε is usually done by cross validation. The

process can be very inefficient and usually involves a grid search over a small interval.

We propose a heuristic for tuning ε automatically for BrownBoost and Robust-

Boost. The idea is based on the following observation. When ε is too small, the time

tk advances too slowly that the boosting procedure seems “stuck”. This situation can

49

Algorithm 3 RobustBoost/BrownBoost with adaptive-ε heuristic
Initial Assumptions: The maximum number of boosting iterations T .

1: Initialize ε ← 0 and tries← 0.

2: for iter← 1 to T do

3: Solve for ∆s and ∆t.

4: if ∆t is too small or the solver fails to converge then

5: tries← tries+1

6: if tries > max_tries then

7: Increase ε by a small amount.

8: tries← 0

9: end if

10: else

11: tries← 0

12: end if

13: end for

often be remedied by slightly increasing the value of ε without having to restart the

boosting process. The heuristic can be described as follows. Initially, we set ε = 0 and

start the boosting procedure. When the boosting algorithm does not to advance for a

few iterations or the numerical solver fails to solve the non-linear equations, we slightly

increase ε and resume the boosting process. In our experiments, we denote BrownBoost

and Robust with adaptive-ε heuristic and RobustBoost with adaptive-ε , BBA and RBA

respectively. The algorithms are summarized in Algorithm 3.

3.4 Experiments

In this section we compare the performance of BrownBoost with adaptive-ε

(BBA), RobustBoost with adaptive-ε (RBA) to AdaBoost (ADB) and LogLossBoost

(LLB) 2 on 3 datasets with and without random label noise. Specifically we will look

closely at the margin distributions for each of the boosting algorithms. Additionally, we

will study the impact of using positive target margin θ on BBA and RBA.

2LogLossBoost is our implementation of LogitBoost with decision stumps.

50

We implemented all of the boosting algorithms in MATLAB and utilized the

Optimization Toolbox for numerically solving BB and RB equations. For RBA, we use

σ f = 0.001 for all experiments.

Datasets

We conducted experiments on 3 different datasets: LS, Face and Satimage. Each

dataset can be described as follows. First, LS dataset is a synthetic dataset whose con-

struction is suggested by Long and Servidio in [LS08]. The dataset has input x ∈ R21

with binary features xi ∈ −1,+1 and label y ∈ −1,+1. Each instance is generated as

follows. First, the label y is chosen to be −1 or +1 with equal probability. Given y

and the margin width parameter δ , the features xi are chosen according to the following

mixture distribution:

• Large margin: With probability 1/4, we choose xi = y for all 1≤ i≤ 21

• Pullers: With probability 1/4, we choose xi = y for 1 ≤ i ≤ 10+ δ and xi = −y

for 11+δ ≤ i≤ 21

• Penalizers: With probability 1/2, we choose 5+bδ/2c random coordinates from

the first 11 and 5+dδ/2e from the last 10 to be equal to the label y. The remaining

10 coordinates are equal to −y.

The data from this distribution can be classified perfectly by a simple linear classifier

f (x) = sgn(∑i xi). Note that δ essentially controls the separation margin of the exam-

ples. Larger δ yields a larger margin.

Face dataset is a collection of face and non-face images consisting of 10000

face images and 20000 non-faces images. For each image, a feature vector of R176 is

calculated based on histogram of colors and gradients. When label noise is added to Face

dataset, we only added noise to the negative examples. We use 70% of the examples for

training and 20% for testing.

Satimage is a dataset from the UCI repository [BL13]. There are 6435 examples

and 36 attributes. The original label of 1-3 is grouped as +1 and the rest is group as -1.

Similar to Face dataset, we use 70% of the examples for training and 20% for testing.

51

Table 3.2: Average test error rates of ADB, LLB, BBA and RBA with respect to the
noisy labels (n) and the true labels (t) on LS dataset with N=1600 in different noise
settings.

LS w/ δ = 1 ADB LLB BBA RBA

η = 0.0
n - - - -
t 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

η = 0.1
n 0.25 (0.01) 0.24 (0.01) 0.10 (0.01) 0.10 (0.01)
t 0.23 (0.01) 0.22 (0.01) 0.00 (0.00) 0.01 (0.01)

η = 0.2
n 0.32 (0.01) 0.31 (0.01) 0.21 (0.01) 0.22 (0.02)
t 0.23 (0.01) 0.23 (0.01) 0.03 (0.02) 0.05 (0.03)

η = 0.3
n 0.36 (0.01) 0.36 (0.01) 0.31 (0.02) 0.32 (0.02)
t 0.24 (0.01) 0.24 (0.01) 0.09 (0.05) 0.12 (0.05)

LS w/ δ = 3 ADB LLB BBA RBA

η = 0.0
n - - - -
t 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

η = 0.1
n 0.11 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01)
t 0.02 (0.01) 0.00 (0.00) 0.01 (0.00) 0.00 (0.00)

η = 0.2
n 0.22 (0.01) 0.21 (0.01) 0.19 (0.01) 0.19 (0.01)
t 0.06 (0.02) 0.04 (0.02) 0.02 (0.00) 0.01 (0.01)

η = 0.3
n 0.33 (0.01) 0.33 (0.01) 0.29 (0.01) 0.29 (0.01)
t 0.12 (0.02) 0.11 (0.02) 0.04 (0.01) 0.03 (0.01)

Results

We first compared the performance of ADB, LLB, BBA and RBA with different

label noise level η ∈ 0.0,0.1,0.2,0.3 on LS using 2 settings of the margin width param-

eter δ ∈ 1,3. We used the training set size N = 1600 and ran each boosting algorithm

for 200 iterations. For BBA and RBA, the margin parameter θ = 0 and σ f = 0.001.

When there was no label noise, all boosting algorithms managed to learn the

correct linear classifier. However, with presence of label noise in both settings of δ ,

BBA and RBA successfully converged to the correct classifier while ADA and LLB did

not as indicated by the higher test error rates with respect to the true labels. Table 3.2

summarizes the average test error rates with respect to the true labels and the noisy

labels over 10 runs and the standard deviation is reported in parentheses.

We also examined the progression of the margin distributions for each of the

boosting algorithms. Figure 3.7 shows the margin distributions progression when η =

0.3. In LS with δ = 1, ADB and LLB stopped progressing after 50 iterations due to the

52

0 0.4 0.8 1.2 1.6 2 2.4 2.8
0

0.05

0.1

0.15

0.2

0.25

Theta

T
es

te
rr

or
ra

te

0 0.4 0.8 1.2 1.6 2 2.4 2.8
0

0.01

0.02

0.03

0.04

0.05

0.06

Theta

T
es

te
rr

or
ra

te

BBA
RBA

𝛿 = 1 𝛿 = 3

Figure 3.5: Test errors of RBA and BBA using different θ on LS with 20% noise. The
whiskers indicate the minimum and maximum values over 10 runs.

large weights put on the noisy large-margin examples pushing the classifier away from

the correct hypothesis. On the contrary, after 100 iterations, RBA and BBA significantly

decreased the weights of the noisy large-margin examples as these examples are being

“given up”. As a result, the boosting process continued on and eventually converged

to the correct classifier. Interestingly, in LS with δ = 3, we found that all boosting

algorithms managed to attain the training error rate of 0 in all noise settings. However,

the test error rates of ADB and LLB remained relatively high compared to those of BBA

and RBA.

We further explored the benefits of the margin parameter θ . We found that using

a positive θ can improve generalization error. Figure 3.5 shows the test errors of BBA

and RBA using different θ on LS with 20% noise. Both algorithms have lower general-

ization error when using positive θ . We found that RBA is less sensitive to the setting of

θ than BBA. Figure 3.6 summarizes the test error rates as a function of training set size

for LS dataset with δ = 1 and δ = 3. For BBA and RBA, θ is tuned by cross-validation.

We also compared the performance of ADB, LLB, BBA and RBA on Face and

Satimage. We ran each boosting algorithm for 800 iterations on both datasets with 2

different noise levels η = 0.0,0.2. We also repeated the experiment after holding out of

75% of the training examples. The area under the average ROC curves is summarized

in Table 3.3.

For both Face and Satimage, using paired t-test, we found that area under ROC

of RBA and BBA is significantly larger than that of LLB with p < 0.001 in all settings.

53

8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

Log training size

T
es

te
rr

or

8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

Log training size

T
es

te
rr

or

8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

Log training size

T
es

te
rr

or

ADB
LLB
BBA
RBA

8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

Log training size

T
es

te
rr

or

8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

Log training size

T
es

te
rr

or

8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

Log training size

T
es

te
rr

or

η = 0.0 η = 0.1 η = 0.2

𝛿 = 1

𝛿 = 3

Figure 3.6: Test errors of ADB, LLB, BBA, RBA while varying number of training
examples at different noise levels η . The whiskers indicate the minimum and maximum
values over 10 runs.

We also found that the difference between ADB and RBA is insignificant in noise-

free cases and the difference between RBA and BBA is insignificant in all cases. For

Satimage dataset,

3.5 Conclusions

Our experiments show that Brownboost and Robustboost are significantly more

resistant to label noise than Adaboost and LogitBoost. We show how this is related to the

progressions of the margin distribution over time. We show that the setting of the target

error rate ε is of critical importance for the final performance and provide a practical

heuristics for setting it. Our experiments also show that, for noisy small training sets,

maximizing the margin on the examples on which we don’t “give up” is significantly

better than minimizing the training error.

54

Table 3.3: Average area under ROC of ADB, LLB, BBA and RBA on Face and
Satimage.

ADB LLB BBA RBA
η = 0.0,N = 21000 0.9996 (0.0001) 0.9979 (0.0004) 0.9996 (0.0001) 0.9996 (0.0000)
η = 0.0,N = 5250 0.9998 (0.0000) 0.9994 (0.0001) 0.9998 (0.0000) 0.9997 (0.0000)
η = 0.2,N = 21000 0.9991 (0.0001) 0.9992 (0.0001) 0.9995 (0.0001) 0.9995 (0.0001)
η = 0.2,N = 5250 0.9983 (0.0003) 0.9982 (0.0003) 0.9992 (0.0001) 0.9993 (0.0001)

(a) Face

ADB LLB BBA RBA
η = 0.0,N = 4504 0.9830 (0.0003) 0.9832 (0.0007) 0.9770 (0.0010) 0.9757 (0.0005)
η = 0.0,N = 1126 0.9764 (0.0018) 0.9720 (0.0021) 0.9770 (0.0016) 0.9729 (0.0022)
η = 0.2,N = 4504 0.9679 (0.0026) 0.9699 (0.0021) 0.9749 (0.0018) 0.9715 (0.0038)
η = 0.2,N = 1126 0.9459 (0.0043) 0.9421 (0.0053) 0.9607 (0.0039) 0.9656 (0.0047)

(b) Satimage

Acknowledgements

This chapter is based on unpublished work that is currently in submission as of

the writing of this thesis. It is joint work with Evan Ettinger and Yoav Freund. The

dissertation author is the primary investigator and author of this work.

55

−1 0 1

ADB

−1 0 1

LLB

−1 0 1

BB

−1 0 1

RB

−1 0 1 −1 0 1 −1 0 1 −1 0 1

−1 0 1 −1 0 1 −1 0 1 −1 0 1

−1 0 1 −1 0 1 −1 0 1 −1 0 1

−1 0 1 −1 0 1 −1 0 1 −1 0 1

Iter

1

Iter

10

Iter

50

Iter

100

Iter

200

(a) LS w/ δ = 1

−1 0 1

ADB

−1 0 1

LLB

−1 0 1

BB

−1 0 1

RB

−1 0 1 −1 0 1 −1 0 1 −1 0 1

−1 0 1 −1 0 1 −1 0 1 −1 0 1

−1 0 1 −1 0 1 −1 0 1 −1 0 1

−1 0 1 −1 0 1 −1 0 1 −1 0 1

Iter

1

Iter

10

Iter

50

Iter

100

Iter

200

(b) LS w/ δ = 3

Figure 3.7: Margin distribution progression and potential loss function of ADB, LLB,
BBA and RBA on LS with 30% label noise. Noisy and clean examples are shown in red
and blue respectively.

56

0 1 2 3 4 5

x 10
−3

0.75

0.8

0.85

0.9

0.95

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

ADB
LLB
BBA−0.6
RBA−0.6

0 1 2 3 4 5

x 10
−3

0.75

0.8

0.85

0.9

0.95

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

ADB
LLB
BBA−1.4
RBA−1.8

0 1 2 3 4 5

x 10
−3

0.75

0.8

0.85

0.9

0.95

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

ADB
LLB
BBA−0.6
RBA−0.8

0 1 2 3 4 5

x 10
−3

0.75

0.8

0.85

0.9

0.95

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

ADB
LLB
BBA−1.4
RBA−1.8

η = 0.0

η = 0.2

N = 21000N = 5250

(a) Face

η = 0.0

η = 0.2

N = 4504N = 1126

0 0.05 0.1 0.15 0.2
0.75

0.8

0.85

0.9

0.95

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

ADB
LLB
BBA−1.0
RBA−1.0

0 0.05 0.1 0.15 0.2
0.75

0.8

0.85

0.9

0.95

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

ADB
LLB
BBA−1.0
RBA−1.0

0 0.05 0.1 0.15 0.2
0.75

0.8

0.85

0.9

0.95

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

ADB
LLB
BBA−1.0
RBA−1.0

0 0.05 0.1 0.15 0.2
0.75

0.8

0.85

0.9

0.95

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

ADB
LLB
BBA−1.0
RBA−1.0

(b) Satimage

Figure 3.8: Average ROC curves of ADB, LLB, BBA and RBA while varying training
size and noise level. The dotted lines correspond to the standard deviation. The chosen
values of θ are included in the legend.

57

−1 0 1

ADB

−1 0 1

LLB

−1 0 1

BBA

−1 0 1

RBA

−1 0 1 −1 0 1 −1 0 1 −1 0 1

−1 0 1 −1 0 1 −1 0 1 −1 0 1

−1 0 1 −1 0 1 −1 0 1 −1 0 1

−1 0 1 −1 0 1 −1 0 1 −1 0 1

Iter

1

Iter

100

Iter

200

Iter

400

Iter

800

(a) Face

−1 0 1

ADB

−1 0 1

LLB

−1 0 1

BBA

−1 0 1

RBA

−1 0 1 −1 0 1 −1 0 1 −1 0 1

−1 0 1 −1 0 1 −1 0 1 −1 0 1

−1 0 1 −1 0 1 −1 0 1 −1 0 1

−1 0 1 −1 0 1 −1 0 1 −1 0 1

Iter

1

Iter

100

Iter

200

Iter

400

Iter

800

(b) Satimage

Figure 3.9: Margin distribution progression and potential loss function of ADB, LLB,
BBA and RBA on Face and Satimage. For Face, true positive and fake positive examples
are shown in green and red respectively. Negative examples are shown in blue. For
Satimage, noisy and clean examples are indicated by red and blue respectively.

Chapter 4

uRight: Co-adaptive Handwriting

Recognition System

Handwriting recognition is an input method that utilizes the screen space ef-

ficiently. With a small writing area on the screen, users can potentially compose a

message using a mixed of characters from multiple languages,without having to switch

between different keyboard layouts. Technically, the task of handwriting recognition is

to translate a spatial representation of a character into its semantic meaning e.g. translate

the ink trail of “a” into the letter “a” [PS00]. The difficulty of such task stems from the

followings.

• Between-writer variation. Different people write differently even though their

intents are the same. The difference can be cultural or context-dependent. This is

demonstrated by the variation between rows in Figure 4.1. This problem can be

addressed by training a recognizer for a particular writer.

• Within-writer variation. When a particular writer writes a specific letter several

times, each instance would be slightly different. This is demonstrated in Fig-

ure 4.1. This effect increases with writing speed. While within-writer variation is

usually smaller than between user variation, it is harder to solve.

• Segmentation. The handwriting recognition problem is inexorably entangled with

handwriting segmentation. In order to recognize the individual characters, we

58

59

Variability within the same writer

Va
ria

bi
lit

y
ac

ro
ss

 d
iff

er
en

t w
rit

er
s

Figure 4.1: Handwritten character “x” from 3 different writers (vertically) and the vari-
ation of the handwriting within the same writer (horizontally). The green and red dots
indicate where the writing starts and stops respectively.

need to first partition the handwriting into individual letters. On the other hand,

finding the correct way to segment the handwriting requires identifying the indi-

vidual characters. This is a difficult task, especially for cursive handwriting, and

often is avoided by performing the recognition at the word level, or by requiring

the user to write in a certain, restricted way e.g. using exactly one stroke for each

character.

Machine learning methods are commonly used in handwriting recognition [PS00].

Moreover, It has long been recognized that, in order to get high classification accuracy,

it is beneficial to train the classifier specifically for the particular user. There has been

significant work on such personalization [MGDV93, CJ02]. However, all of the work

on personalization that we are aware of is based on passive data collection. The user is

asked to write a predefined set of sentences, independent of the properties of the user’s

handwriting. In addition, there is no attempt to teach the user how to write in a way that

would make recognition easier.

60

The need to balance computer adaptation and human adaptation is manifest in

two of the early commercial handwriting recognition systems: Apple’s Newton [YWL98]

and PalmOS Graffiti. The Newton was one of the early handwriting recognition sys-

tems which was based on neural networks. It did adapt to the individual user by default.

Unfortunately, the result was so poor that it was parodied by both Doonsbury and the

Simpsons. Coming on the heels of the Newton’s failure, the choice of the PalmOS de-

velopers was to adopt the Graffiti system which enforced a predefined set of character

gestures to which the user had to adapt.

In this chapter we present an adaptive handwriting recognition system called

uRight that we have built to investigate the adaptive capabilities of both the human and

the machine. We first give an overview of the system in Section 4.1. Then, in Sec-

tion 4.3, we discuss the choice of adaptive recognition algorithms that we have consid-

ered to include in the system.

4.1 Co-adaptive Handwriting Recognition System

Past research in adaptive handwriting recognition can be partitioned into two

broad categories: machine adaptation and human adaptation. The machine adaptation

approach places the responsibility for adaptation on the computer. In this approach

machine learning algorithms are trained on past instances of handwriting to improve

the future error rate. A number of machine learning algorithms have been applied to

the problem such as time delay neural network [JMW00] and support vector machines

[BHB02]. Generative models such as Hidden Markov model (HMM) are commonly

used to model handwritten characters [TG11].

The human adaptation approach requires the human to adapt to the computer.

This is usually done by defining a specific handwriting letter set and requiring the user

to learn it. Unistrokes [GR93] and Palm’s Graffiti are notable examples. Such systems

require significant training on the part of the user, in exchange, they provide low error

rate and high communication rate [MZ97].

In a sense, human adaptation is always present, whether or not the recognition

algorithm takes advantage of it. Users engaging in a handwriting interface will, in some

61

cases, try to change the way in which they write to reduce errors and increase speed. In

other cases they might dig in their heels and keep writing in the way they are used to.

We consider a new approach to the handwriting recognition, called co-adaptation,

that combines machine adaptation with human adaptation. The key characteristics of

the co-adaptive handwriting recognition system are the followings.

• Adapting to each individual user. The recognition algorithm re-estimates the

handwriting model for each user using the past observations. This process is also

referred to as personalization.

• Assisting the user to adapt to the system. The system constantly provides feedback

to the users to teach/guide them to achieve a better performance.

Each property of the co-adaptive system is described in detail as follows.

Personalization

The concept of personalization, or writer-dependent recognition, has been well-

established and shown to perform better than the writer-independent counterpart in term

of recognition accuracy [MGDV93, CJ02]. The technique addresses the individual dif-

ference of handwriting by adapting to each user individually. For example, some people

write faster than others, some people write smaller than others. By specializing the rec-

ognizer for each user, the recognition task becomes easier because the variability of the

handwriting across different users is eliminated. Moreover, the personalization fits well

with the mobile platform where there is only one primary user.

However, the lack of data in the initial sessions is a challenge for personalization.

Obviously, some handwriting examples from each user is required in order to “train” the

personalized recognizer. To overcome this problem, the system could ask the user to en-

gage in a dedicated training session. We believe that a handwriting recognition system

should work “out of the box”. Therefore, we decide not to have an explicit training

session but, instead, we initialize the recognition algorithm with a recognizer that was

trained using data from multiple users, writer-independent recognizer, and then gradu-

ally tune it according to the handwriting of each user as more data become available.

We will discuss the recognition algorithm in detail in Section 4.3.

62

Feedback Delivery

Feedback information is a necessary component of any human-computer inter-

action. The functionality of feedback ranges from acknowledging a user’s action to

promote understanding of the system. It is well-established that humans can learn and

improve performance of various motor control tasks using feedback information[Bil66].

Existing handwriting recognition systems do not provide sufficient feedback in-

formation for the users to understand and improve future performance. Normally, only

two types of feedback are provided to the users. First, as the user writes on the touch

screen, the system draws an ink trail at the locations of the touches to acknowledge

that the input handwriting has been received. The second feedback is the recognition

result which is usually given to user after the recognition process has ended. According

to [FHM95], given only these types of feedback, the users did not know how to avoid

future mistakes when the recognition had failed because they did not understand how

the recognition system worked.

In the co-adaptive system, we provide the users with additional feedback that

aids the user in the writing process. The additional feedback can be described based on

their delivery timing as follows.

• Immediate feedback The immediate feedback is referred to the information given

to the user continuously during the writing process [BM08]. The main purpose

of this type of feedback is to continuously communicate to the user of what has

been understood by the system so far and to allow the user to detect mistakes

early. In this work, the immediate feedback is derived from the likelihood of each

letter which is re-evaluated continuously as the user writes. Inferring from the

likelihood information, the user can detect a mistake earlier (before the writing

ends), or to stop writing when the likelihood indicates the correct intent. The

delivery of this feedback can be done visually or acoustically.

• Instructional feedback The instructional feedback is given from time to time.

The objective of this feedback is to automatically teach or guide the user to achieve

a better recognition accuracy. The instructional feedback is derived from the per-

sonalized handwriting model using offline analysis and is given to the users in

63

various formats. For example, the system can point out two characters that are

often confused with other and encourage the users to emphasize more on the dif-

ference between them.

4.2 System Architecture and Implementation

uRight is a personalized handwriting recognition system that we developed based

on the idea of co-adaptation where both users and the interface itself can adapt to each

other simultaneously. In the current state, uRight is presented in a format of “racing”

game where, in each round, the user is presented with 10-15 randomly selected symbols,

one symbol at a time. The objective of the game is that the user must write the symbol

shown on screen as fast as possible. At the each of each round, the user will receive

feedback in terms of a score indicating how many bits of information were successfully

transferred per second (BPS) and a list of mistakes made by the recognizer. Figure 4.2

shows screenshots from the uRight game. It is important to note that the user can design

their own gestures for any given symbol. This effectively allows the user to invent their

own shorthand for different symbols.

The advantage of implementing uRight as a game is twofold. First, it allows us to

control what the user is writing since the system specifically tells them what they need to

write. Using this label information, we can easily collect labeled data for re-training of

the handwriting model. Second, it provides an incentive for the users to regularly engage

the system as they compete against their friends in the racing game. Consequently, this

allows us to collect even more data for training the recognition system.

The uRight system consists of a centralized server that runs computationally ex-

pensive machine learning algorithms and Apple’s iOS client applications that implement

the handwriting recognition capability. The central server implements the data collec-

tion and adaptation capabilities of the system. On the server, there is a separate account

for each user. This decouples the users from the devices, allowing different users sharing

the same device and a single user using multiple devices. The main functionality of the

server is to collect and store handwriting examples that were sent by client applications.

In our setup, the users are told which letter to write, so each example corresponds to a

64

Figure 4.2: Screenshots from the uRight game. From left to right, the main menu,
during each round, and the summary screen at the end of the round.

known letter. The server uses these labeled examples to update the handwriting model

specifically for each user. The updated model is then pushed back to the device the next

time the user uses the device.

The recognition interface is implemented as an iOS application that runs natively

on Apple iPads and iPhones. The application is responsible for recognizing the user’s

handwriting in real time and for episodic communication with the central server. The

device sporadically receives a set of character prototypes, personalized to each user from

the central server. Based on these prototypes, the recognition algorithm finds the closest

match to the current letter written by the user. This matching process is performed in

real-time as the user is writing, allowing for more immediate feedback. Contrast this

with other recognition systems such as Siri and Google goggles, that send each utter-

ance/image to the a server which performs the recognition and sends back the result.

Our system does not require a network connection for recognition and is able to respond

within the time that the user is writing each character. Much of the development effort

went into insuring a very fast response time while writing. Communication with the

central server is needed only in order to update the prototypes and achieve better per-

65

sonalization. The iOS application is available for free from Apple’s App Store 1 as of

April 2014 and the source code of the uRight system is also publicly available 2.

Another advantage of basing our design on the client-server architecture is that

prototypes can be shared between users. New users can therefore benefit from the infor-

mation collected from long-term users that have a similar handwriting. This allows us

to design a system that requires much less initial training. Figure 4.3 summarized the

connectivity of various components of the uRight system

Figure 4.3: Connectivity of various components of the uRight system

We also developed a web interface and a scoreboard system to promote further

user engagement. We found that the scoreboard system is effective at motivating the user
1Download link from Apple App Store: https://itunes.apple.com/us/app/uright/id642218957
2The source code of uRight system is available from https://github.com/sunsern/uright-ios-app

66

engagement and enjoyable for the users. Through the web interface (Figure 4.4), the

users can track their progress (Figure 4.5), view their prototypes over time (Figure 4.6),

review recent mistakes and a confusion matrix (Figure 4.7- 4.8).

Figure 4.4: Web interface of uRight

4.3 Adaptive Recognition Algorithms

This section outlines the recognition algorithm in the uRight system. We con-

sider a particular variant of the handwriting recognition problem known as online hand-

writing recognition. The problem can be formalized as follows. Each input character Xi

is defined by a sequence of strokes and each stroke is defined by a sequence of points

67

Figure 4.5: Example of bit-per-second (BPS) and accuracy plot over time of a user

(p1, p2, . . . , pn) where pi is a point on the xy-plane. Let Σ be the set of all possible labels.

Given a training set D = {(Xi,yi ∈ Σ) : ∀1≤ i≤ m}, the task is to learn a classification

function C that maps an input instance X to its label y.

A number of machine learning algorithms have been applied to handwriting

recognition. In general, they can be categorized into two types: generative and dis-

criminative. The generative approach is based on constructing generative models, and

the classification is often done by Bayesian inference. Hidden Markov models are com-

monly used to model handwritten characters [HBT96, CJ02, TG11]. This approach

relies heavily on certain assumptions of the underlying model. The performance suffers

when the assumptions fail to hold.

Discriminative approach, on the other hand, does not make such assumption and

learns the classifier directly from the labeled training data. The discriminative learning

algorithms have been applied to the this problem by many people [MGDV93, KC06,

KAB08]. However, there is a fundamental issue with applying these algorithms directly

to the problem of handwriting recognition. Most standard discriminative learning algo-

rithms such as Neural Network and Support Vector Machine (SVM) [CV95, CST00],

requires fixed-length input vectors but the handwritten data can have a variable length

due to different writing speeds and sizes. An additional step must be taken in order to

obtain a fixed-length feature representation. A naive solution would be to linearly scale

the data so that they all have the same length, but the proper scaling factor is usually

non-linear and not trivial. A better solution is to use a technique called dynamic time

68

Figure 4.6: Prototypes over time for a user

warping [BHB02]. Another way is to develop an ensemble of global feature detectors,

e.g. cusp detector or loop detector, and use their output as feature presentation for dis-

criminative learning [JMW00]. Alternatively, there is Fisher kernel [JH99, TAKM04]

that utilizes a generative model in order to generate fixed-length feature representation.

During the development of the uRight system, we have implemented two adap-

tive recognition algorithms from each of the categories. In the following sections, we

discuss a discriminative algorithm that is based on SVM with Fisher kernel and then a

generative algorithm that is based on a variant of nearest neighbor algorithm. It is worth

noting that we ended up choosing the nearest neighbor algorithm over the SVM with

Fisher kernel algorithm to include in the uRight system due to hardware limitation and

the realtime recognition requirement.

69

Figure 4.7: Mistakes made by a user

SVM with Fisher Kernel

Support vector machines (SVM) [CV95, CST00] are inherently developed for

binary classification. However, there are various multiclass extensions to the SVM.

Among them, 1-v-1 SVM is the most appealing to us because it allows us to perform

pairwise analysis directly and also known to work well in practice [HL02]. The multi-

class classifier generated from 1-v-1 SVM is basically a collection of binary classifiers

between all possible pairs of classes. The final prediction is obtained by taking a major-

ity vote.

Unlike traditional kernel functions, Fisher kernel [JH99, TAKM04] can operate

on variable-length data. The idea behind Fisher kernel is that two similar sequences

induce similar gradients in the space of the model’s parameter. Formally, suppose

L (Θ|X) is the log-likelihood function of a generative model parameterized by Θ for

an example X . Consider two input sequences Xi and X j. Fisher kernel suggests that if Xi

and X j are similar then ∂L (Θ|Xi)
∂θ

and ∂L (Θ|X j)
∂θ

will be also similar for every θ ∈ Θ. Let

~gi = [∂L (Θ|Xi)
∂θ

: ∀θ ∈Θ]. Fisher kernel function is defined by

K(Xi,X j) =~g>i I−1~g j (4.1)

where I = ED

[(
∂L (Θ|X)

∂θ

)>(
∂L (Θ|X)

∂θ

)]
. The Fisher information matrix I functions

as a normalization factor for each parameter. The training process can be summarized

below.

70

Figure 4.8: Confusion Matrix for a user

1. Train the generative model Θ using Xi ∈D .

2. For each Xi ∈D , extract the gradients~gi with respect to Θ.

3. Use~gi’s along with yi’s to train the classifier C using SVM.

Training Hidden Markov Model

The first step is to train the generative model Θ. We use hidden Markov mod-

els (HMM) to model different characters since they are widely used for this prob-

71

lem [HBT96, CJ02] and known to performs well. Each state of the HMM is represented

by a multivariate Gaussian distribution with the following variables:

• Pen direction3

• Curvature.3

• Y-position.

Additionally, there is a special pen-up state where the emission probability is

close to 1 when the input point is a pen-up and close to 0 otherwise. For state transitions,

we allow transitioning from state i to state j where j > i. The number of states is fixed

to 20 by cross-validation.

Suppose Π,A ,B be the state prior probabilities, the state transition probabil-

ities and the state emission probabilities respectively. To estimate Π,A and B, we

use Expectation-Maximization algorithm [Bil97] to maximize the log-likelihood of the

training data D . Note that the estimated parameters might not be optimal for the dis-

crimination task [vdM11]. However, the advantage of maximizing the log-likelihood is

that it can be done even without labeled data.

Computing Fisher Gradients

Once we have estimated the parameters Θ = (Π,A ,B) of the HMM, we can

compute the log-likelihood gradient vector ~gi for each example Xi. For our system, the

gradient vector~g only contains partial derivatives with respect to pik ∈Π and apq ∈A .

Given a training character X = (p1, p2, . . . , pT). Suppose N is the number of

states in the HMM. Let αi(t) = P(X ,St = i|Θ) ∀1 ≤ i ≤ N be the probability of being

in state i at time t and B j(p) is the probability of state j generating observation p. The

gradient vector~g(X) with respect to πk ∈Π and apq ∈A can be written as

~g(X) =

[
N

∑
j=1

∂α j(T)
∂θ

: ∀θ ∈Π∪A

]
(4.2)

3For calculation details, please refer to Jaeger et al. [JMW00]

72

where

∂α j(t +1)
∂πk

=

[
n

∑
i=1

∂αi(t)
∂πk

ai j

]
B j(pt+1)

∂α j(1)
∂πk

=

B j(p1) if j = k

0 otherwise

and

∂α j(t +1)
∂apq

=



[
∑

n
i=1

∂αi(t)
∂πk

ai j

]
B j(pt+1)

+αp(t)B j(pt+1)
if q = j

[
∑

n
i=1

∂αi(t)
∂πk

ai j

]
B j(pt+1) otherwise

∂α j(1)
∂apq

= 0, ∀1≤ j ≤ N

After we have computed ~gi for every training example, the Fisher kernel can

computed by using Equation 4.1.

Training Personalized Classifier

To personalize the SVM classifier, we use different example weights for the user

data and for the other users’ data. Suppose we want to train a classifier for user k. Let

ρ be the ratio of the weight of each example from user k to the weight of each example

from other users. As ρ increases, the classifier becomes more and more specific to the

data from user k. When ρ = 0.0, the user’s data has zero weights, this is equivalent to

writer-independent classifier. On the other hand, when ρ = ∞ the other users’ data gets

zero weights, this is equivalent to a purely-personalized classifier.

To do so, we modify the objective function for SVM slightly.

min
1
2
‖w‖2 +C

m

∑
i=1

ωiξi (4.3)

where ωi is the weight for example i. For any given ρ , the classifier for user k, Cρ

k can

be obtained by optimizing Equation 4.3 where

ωi =

1.0 if example i does not belong to user k

ρ if example i belongs to user k

73

Note that, if ρ = ∞, then let ωi = 0 when example i do not belong to use k and ωi = 1

otherwise.

For the SVM implementation, we use the weighted version of C-SVM in the LIB-

SVM library, which is a well-known public implementation of SVM [CL11]. To train a

1-v-1 classifier for each of the 26 lowercase English characters, we need to train a total

of
(26

2

)
= 325 binary classifiers. For each of the classifier, prior to the actual training, we

perform a 5-fold cross-validation to find the best regularization parameter C via a simple

grid-search method in the range of [0.1,5.0]. Then, each binary classifier is trained with

the best value of C.

In Figure 4.9 we show the performance of classifiers generated using different

values of ρ . the data is split into training and test set randomly and both training and

test data are weighted using the same value of ρ .

The results for ρ = ∞ (data only from the individual user) and ρ = 0 (data only

from other users) are as expected. Using data from other users is initially better, because

the training set is larger. Somewhere around 9 examples/character there is a transition

where using only the personal data becomes better. The graphs for ρ = 1,2,4,8 are

largely overlapping implying that setting ρ to any of these non-extreme values works

reasonably well.

DTW-based Nearest Neighbor Algorithm

We implemented another recognition algorithm based on the nearest neighbor

algorithm with dynamic time warping divergence. At a high-level, the recognition al-

gorithm can be outlined as follows. For each user, we create and maintain one or more

character models for each character in E . We refer to each of such models as a proto-

type. Each prototype is basically a representative handwriting instance from the user.

Technically, the prototypes can be viewed as left-to-right hidden Markov models with

Gaussian observation [TG11]. Let Pu denote the set of prototypes for a user u. The

adaptivity of our system comes directly from the fact that Pu is modified over time.

In the decoding process, given a handwriting trajectory and a set of prototypes Pu, the

system computes a posterior distribution Yfinal and, when a single prediction is needed,

the element with the maximum likelihood is predicted.

74

2 4 6 8 10 12 14
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of training examples per class per user

A
ve

ra
ge

 e
rr

or
 r

at
e

ρ = 0 (others data only)
ρ = 1.0
ρ = 2.0
ρ = 4.0
ρ = 8.0
ρ = ∞ (individual data only)

Figure 4.9: Average error rate as a function of the training set size and the value of
the mixing parameter ρ . The horizontal axis corresponds to the number of training
examples per character for the individual user. The order of the data is randomized to
remove the effect of user adaptation.

Feature vectors and distance function

In addition to the x- and y-coordinate, each handwriting trajectory is supple-

mented with writing direction information. Specifically, each handwriting instance is

represented by a sequence of feature vectors 〈 f1, . . . , fT 〉 where fi = (xi,yi,dxi,dyi).

(xi,yi) denotes the normalized touch-screen coordinate and

(dxi,dyi) = (
xi− xi−1

z
,
yi− yi−1

z
),z =

√
(xi− xi−1)2 +(yi− yi−1)2

denotes the writing direction.

To measure the similarity between two handwriting instances, we use dynamic

75

time warping (DTW) divergence [RJ93] as the distance function in our algorithm. The

DTW measure is commonly used for variable-length data such as handwriting and

speech. The calculation can be done efficiently using dynamic programming.

Initial adaptation

The initial adaptation is critical for any intelligent system. It is unquestionable

that the performance of any well-behaved intelligent system increases as the system

learns more about the user. If the initial adaptation is poor, the users might get frustrated

with the system and stop using it even before it can fully adapt to them.

We address the problem of initial adaptation by sharing data across different

users. Typically, people do have similar handwriting especially when they share the

same educational culture. The process of the initial adaptation can be described as fol-

lows. In the very first interaction with the user u, our system has no information about

the user and, therefore, assign a set of typical prototypes which has been trained using

data from multiple users in the past. Specifically, the typical prototypes are the centroids

of the clusters returned by running a clustering algorithm (k-means) on a set of training

handwriting instances. We refer to this set of prototypes as P0. After the first interac-

tion, the system creates a new set of prototypes P(u,1) by recomputing the centroids of

the clusters after adding the examples from the user to the pool with significantly higher

weights than the rest. For our dataset, we found that, at most 2 prototypes are sufficient

for each user-character pair.

Adapting the prototypes over time

After collecting a few examples of the user’s handwriting, the system again per-

forms the weighted clustering algorithm on the data to generate a new set of prototypes

P(u,i+1). In this stage, only examples from the user and previous prototypes are consid-

ered. This adaptation process happens after 3-5 new examples are acquired.

To improve real-time performance, we need to keep the lengths (number of

states) of the prototypes as small as possible. After the new prototypes are chosen,

the system performs an additional step to shorten the length of each prototype. This

pruning process is similar in spirit to removing and merging unnecessary hidden states

76

in an HMM. The basic idea is to remove unwanted states while maintaining the same

recognition power using a variant of forward-backward algorithm [Bil97]. Figure 4.10

shows the hidden states before and after the reduction step.

Figure 4.10: The hidden state reduction process is applied to each prototype to remove
rarely visited states with respect to the training set. The originally trained prototype is
shown on the left and the reduced prototype is shown on the right. The intensity of the
colors corresponds to the expected number of times the state being mapped to.

Decoding

Our decoding algorithm is based on the standard Bayesian inference. Namely,

given a trajectory W1:T and the current set of prototypes Pu, the algorithm computes the

distance from W1:t to each of the prototypes in Pu for all 1 ≤ t ≤ T . The distances are

then transformed into a probability distribution Yt . We use e−x as the transfer function.

When a single prediction is expected, the algorithm simply returns the prediction with

the maximum likelihood.

77

Algorithm 4 Beam-search forward algorithm
Initial Assumptions: {T1, ..Tm} = the prototype set

K = beam width

Ai, j,k = the transition probability from state j to state k of prototype Ti

Bi, j(ft) = the emission probability of state j of prototype Ti with observation ft

1: α
(0)
i,1 ← the prior probability of prototype Ti

2: active←{α(0)
i,0 ;∀ 1≤ i≤ m}

3: for each time step t do

4: new_active←{}
5: while active 6= /0 do

6: remove α
(t−1)
i, j from active

7: for 0≤ k ≤ 2 do

8: α
(t)
i, j+k← α

(t−1)
i, j Ai, j, j+kBi, j+k(ft)

9: insert α
(t)
i, j+k to new_active or add to the existing value

10: end for

11: end while

12: active← top_states(new_active,K)

13: end for

Chapter 5

Co-adaptation in Handwriting

Recognition

Handwriting is a natural and versatile method for human-computer interaction,

especially on small mobile devices such as smart phones. As handwriting varies signif-

icantly from person to person, it is difficult to design a handwriting recognition system

that performs well for all users. Modern handwriting recognizers resort to machine

learning methods to adapt and specialize their handwriting models to each individual

user.

Most machine learning methods are developed under the assumption that the

data is generated by an oblivious process that does not change in reaction to the learning

process. However, many applications of machine learning in Human Computer Interac-

tion (HCI), such as speech recognition, handwriting recognition and gesture recognition

do not obey this rule. In these cases the user is participating in an interaction where they

can provide corrective feedback when their intent is misunderstood. As a result, the

user is motivated to subsequently change their speech, handwriting or gestures so as to

avoid errors and speed up the interaction. We call this learning situation co-adaptation

to emphasize that the human and the computer are adapting to each other in parallel.

In general, co-adaptation can manifest in any adaptive system. Designing a sys-

tem that co-adapts with the users is a challenging problem on its own [H0̈0, Mae94,

LD09]. Our goal in this chapter is not to address those challenges, but rather to focus

on characterizing the impact of machine adaptation and of human adaptation in the con-

78

79

text of handwriting recognition. We believe that this study will provide us with useful

insights towards designing a more efficient adaptive handwriting recognition system.

In order to evaluate performance of a handwriting recognition system under co-

adaptation, we introduce a framework based on the idea of Shannon’s communication

channel [Sha48] that considers both the user and the handwriting recognizer in a single

system. Under this framework, we define the notion of “channel rate” that measures the

amount of information successfully transferred from the user to the computer.

To quantify the effect of machine adaptation and of user adaptation empirically,

we developed a handwriting recognition system that is capable of adapting to the hand-

writing of each individual user over time. We collected usage data from 15 different

users and performed an analysis of the channel rate.

This chapter is organized as follows. First, in Section 5.1, we present the infor-

mation-theoretic framework for quantifying the efficiency of a handwriting system where

the system includes both the user and the computer. In Section 5.2, we describe the ex-

periment and present the results in terms of the performance measures derived from the

proposed framework. Finally, we draw some conclusions in Section 5.4.

5.1 Handwriting Recognition as a Communication Chan-

nel

Unlike typing, which transmits information to the computer at discrete time

points, handwriting continuously transmits information as the writer creates the tra-

jectory. Traditionally, handwriting data is analyzed one “unit” at a time where “unit”

can be a stroke, a character, a word or even a sentence. In this work, we propose an

alternative analysis where the data is analyzed in fixed intervals of time. We consider

the process of writing as a process through which the intended letter is disambiguated

from the other possible letters.

We formalize this process using the concept of communication channel [Sha48].

Let E denote the set of all possible input. Technically, the set E can be a set of sentences,

a set of words, or a set of characters. Without loss of generality, in this work, we assume

that E is a set of 26 English characters. We also ignore dependencies between characters

80

due to the language model and due to the co-articulation effects between neighboring

handwritten characters.

Figure 5.1: Handwriting recognition channel.

As shown in Figure 5.1, the channel is comprised of two separate processes.

First, the handwriting process is the process of which the user translates an intent M ∈ E

into a series of hand movements which is sampled at some rate to create a discrete time

trajectory: W1:T = [(x1,y1), . . . ,(xT ,yT)]. In other words, this process encodes the intent

M into a trajectory W1:T . Let W denote the entire trajectory vector. The distribution

P(W |M) denotes the variability of the encoding process. The second process is the

recognition process that decodes the handwriting trajectory back into the original intent.

For each time step t where 1≤ t ≤ T , the process maps a trajectory W1:t to a distribution

over E , denoted by Qt .

Let Tfinal and Qfinal denote the final writing duration and the posterior distribu-

tion when the user finishes writing the trajectory. According to the theory of channel

capacity, the information transmitted through the channel can be quantified by the mu-

tual information between the input M and the decoding posterior Qfinal, denoted by

I(M;Qfinal). We define the mean posterior of Qfinal conditioned on M and the average

posterior distribution as follows.

P(Qfinal|M) =
∫

W∼P(W |M)

P(Qfinal|W)P(W |M)

P(Qfinal) = ∑
m∈E

P(M = m)P(Qfinal|M = m)

81

Given these two expressions, we define the mutual information between the character

M and the decoding Qfinal as

I(M;Qfinal) = H(Qfinal)− ∑
m∈E

P(M = m)H(Qfinal|M = m)

where the entropy of Qfinal is defined as

H(Qfinal) =− ∑
m∈E

P(Qfinal = m) log2 P(Qfinal = m)

Next, we can define the channel rate in terms of the mutual information and

expected writing duration as

RMI =
I(M;Qfinal)

E [Tfinal]
(5.1)

However, the channel rate RMI is not suitable for practical implementation for two rea-

sons. First, the estimation of H(Qfinal|M) requires an extensive amount of data. Sec-

ondly, suppose the original intent is m, RMI yields a high value as long as P(Qfinal|M =

m) concentrates any single intent n even when n 6= m. Thus, we propose an alternative

measure to the RMI based on the idea of log loss, called RLL. We define RLL to be

RLL =

H(Qfinal)− ∑
m∈E

P(M = m)(− log2 P(Qfinal = m|M = m))

E [Tfinal]
(5.2)

The relationship between RMI and RLL is worth noting. When (− log2 P(Qfinal =

m|M = m)) is small then the conditional entropy H(Qfinal|M) is also small. As a re-

sult, the mutual information I(M;Qfinal) will be close to its maximal possible value of

H(Qfinal). In other words, the log loss term (− log2 P(Qfinal = m|M = m)) provides an

upper bound for the conditional entropy H(Qfinal|M) up to some constant factor. For the

remaining of this chapter, when we refer to the channel rate, we strictly refer to RLL.

Intuitively, the channel rate is a measure that quantifies both accuracy and speed

of a handwriting recognition channel at the same time. Handwriting, as well as many

other motor control tasks, obeys the speed-accuracy tradeoff [Fit54]. It is not sufficient

to quantify the efficiency of a handwriting recognition system by its recognition accu-

racy alone. For example, a system that requires the user to write each character in a

specialized form may attain a very high recognition accuracy, but it would require the

82

user more time and effort to use. Such system might not be as efficient as a system that

makes more errors but allows the user to write freely. This leads us to believe that the

channel rate is a suitable measure that any handwriting recognition system should aim to

maximize. In a sense, maximizing the channel rate is equivalent to finding a balance be-

tween maximizing the recognition accuracy and minimizing the writing time and effort

of the user.

Based on this framework, it follows that the channel rate can be improved by a

combination of human learning and machine learning, which corresponds to improving

the handwriting process and the recognition process respectively. Ideally, Qfinal will

always be concentrated on the original intent M. This would mean that the channel

is perfect and works without error. However, in real-world scenarios, errors will oc-

cur. One source of errors comes from mistakes made in the recognition process. These

recognition errors can be reduced using training data and machine learning. The harder

problem is when there is a significant overlap between P(W |M) for different intents. In

this situation, we will need to rely on the user to make their handwriting less ambigu-

ous. Although the effect of human learning is always present, we believe that it can be

enhanced by giving useful feedback to the user in the form of guidance or lessons.

5.2 Experiment

The main objective of our experiment is to determine and quantify the effect of

machine adaptation and of human adaptation when the users interact with the system

over some period of time. We implemented the handwriting recognition system de-

scribed in Chapter 4. The system was presented to the users as a writing game. In each

session, each participant was presented with a random permutation of the 26 lowercase

English alphabets i.e. E = [a . . .z] and P(M) is uniform. The objective of the game

was to write the presented characters as quickly as possible and, more importantly, the

handwritten characters should be recognizable by the system. A score, which is the

average channel rate of the session, was given to the user right after each session to

reflect the performance of the session. There were 15 participants in this experiment.

We asked them to play our game for at least 20 sessions over multiple days in his/her

83

own pace. We did not control past experience of the participants. Some of them had

more experience with touch screens than others.

The experiment was set up to demonstrate a condition called co-adaptation

where both the user and the computer were allowed to adapt together. We denote this

condition Radapt. To investigate the effect of co-adaptation, we create a controlled con-

dition called Rfixed where the computer was not allowed to adapt with the user. In other

words, we ran a simulation to figure out what the channel rates would have been if the

prototype sets were never changed from P0. Ideally, it would be more preferable to

have Rfixed determined by another control group where the prototypes were kept fixed

and never changed. However, the results from the simulated condition can be seen as

a lower bound on the amount of the improvement attributable to human learning and,

therefore, it is sufficient to demonstrate our point.

5.3 Results and Discussion

The average channel rates per session of the two conditions Radapt and Rfixed are

shown in Figure 5.2a and Figure 5.2b respectively. In both conditions, the results show

increases of the channel rate over time where the improvement in the early sessions

seems to be larger than in the later sessions. Figure 5.2c shows the difference of Radapt

and Rfixed which corresponds to the channel rate of the system when we ignore the effect

of user adaptation. From the result, we observe that the impact of machine adaptation

tapers off after 10 sessions.

Although the prototype set was not changing in Rfixed, we observe that channel

rate increases over the sessions. To quantify our confidence to this increase, we perform

the paired t-test to compare the difference between the average channel rate in the first 5

sessions and in the last 5 sessions. We find that the difference is statistically significant

with p-value < 0.0011. This suggests that the users improve the handwriting on their

own even without machine adaptation. In other words, the effect of user adaptation is

indeed significant.

Furthermore, Figure 5.3a and Figure 5.3b reveal that the major contribution of

user adaptation comes from the fact that the users write faster in the last 5 sessions

84

compared to the first 5 sessions (p < 0.0001), and not because of the system received

more information from the user (p = 0.9723). This result is as expected according to

the law of practice [NR81].

We also perform per-user analysis of the channel rate. In Figure 5.4a, we com-

pare Radapt and Rfixed for each user. We find that the channel rate of Radapt is significantly

higher than that of Rfixed with p < 0.0006. This result confirms that the machine adap-

tation helps improving the overall channel rate. In addition, we calculate the theoretical

maximum of the channel rate under the assumption of the perfect recognition, denoted

by Rideal. The maximum rates are given by H(Qfinal)/E [Tfinal] and we approximated

H(Qfinal) = log2(26).

In the case of perfect recognition, a simple way to increase the channel rate is

to expand the character set E to include more symbols. However, in reality, doing so

can lead to a recognition error rate which impairs the channel rate. An interesting future

direction is to design a character set that would maximize the channel rate. Figure 5.4b

reveals the efficiency of each letter for our handwriting channel. Characters with com-

plex stokes, such as ’q’, ’g’,’k’, are not as efficient as characters with simple strokes

such as ’c’ ,’o’, ’l’. While this finding is not surprising, it implies that, for a handwriting

system to be truly efficient, it must allow the user to write in a less complex style while

not losing recognition accuracy. How to exactly design such system is still an open

problem and requires a more elaborate study.

Confusion and the conditional entropy

In addition to the experiment, we performed a detailed analysis on the recogni-

tion errors made by the system. Specifically, we computed a confusion matrix based on

the data from the experiment. The confusion matrix indicated that 99% of the mistakes

concentrate among 33 pairs of prototypes out of the total of 2278 pairs. This suggests

that the confusions only happen between a few pairs of prototypes. Figure 5.5 shows

some of the confusion pairs and the handwritten examples that were misrecognized.

By inspection, we found that the confused handwritten characters were very similar for

some letter pairs such as ’n’-’u’, ’n’-’h’ or ’r’-’v’.

The confusion is closely related to the conditional entropy H(Qfinal|M). When

85

this is no confusion, the entropy quickly converges to zero as demonstrated in Figure 5.6.

This suggests that early termination of the writing is viable. The system could have

notified the user to stop writing at 2 and it can still recognize the partial handwriting as

a ’z’. On the other hand, when there is a confusion, the entropy does not necessarily

converge to zero when at the end of the writing e.g. the entropy of ’y’ in Figure 5.8c.

In Figure 5.8, we look closely at the evolution of P(Qt |W1:t) of a confusable

triplet: ’g’, ’y’ and ’q’. In Figure 5.8a, the probability of ’g’ starts to dominate other

contenders e.g. ’s’ and ’a’ after 3. Similarly, in Figure 5.8b, the posterior distribution

evolves similarly to what we observe in Figure 5.8a then the probability of ’q’ increases

towards the end of the handwriting. This indicates that the crucial information that dis-

tinguishes between ’g’ and ’q’ is concentrated towards the end of the trajectory. Based

on 5.5, the system sometimes confuses ’y’ with ’g’. We suspect that such confusion

happens when the probability of ’y’ between 1 and 2 is too small relative to the prob-

abilities of the contenders. The posterior distribution of a correctly recognized ’y’ is

shown in Figure 5.8c.

In Figure 5.7, we show the posterior distributions over time of 3 examples se-

lected from a single user: a correctly recognized ’n’, a correctly recognized ’h’ and an

’n’ that was recognized as an ’h’. We notice that, when the system correctly recognized

an ’n’, the probability of ’n’ increases significantly between 2 and 4, which corresponds

to the upward movement of the hand when writing both ’n’ and ’h’. This information

can be delivered to the user in a form of the instructional feedback to encourage the user

to pay more attention to the upward movement part when writing the pair.

5.4 Conclusions

We presented a information-theoretic framework for quantifying the information

rate of a system that combines a human writer with a handwriting recognition system.

Using the notion of channel rate, we investigated the impact of machine adaptation and

human adaptation in an adaptive handwriting recognition system. We analyzed data

collected from a small deployment of our adaptive handwriting recognition system and

concluded that both machine adaptation human adaptation have significant impact on

86

the channel rate. This result led us to believe that, for a handwriting recognition system

to achieve the maximum channel rate, both machine adaptation and human adaptation

are required and must be present together. Specifically, such system should be able to

adapt to the user and, at the same time, allow the users to write or scribble using simple

hand movement as improving writing speed is crucial for attaining a higher channel rate.

Additionally, the system should have a mechanism to giving feedback to the user when

their handwriting cannot be recognized.

Acknowledgements

This chapter is based on unpublished work that is currently in submission as of

the writing of this thesis. It is joint work with Yoav Freund. The dissertation author is

the primary investigator and author of this work.

87

2

2.5

3

3.5

4

4.5

5

5.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

session

av
er

ag
e

ch
an

ne
l r

at
e

(b
ps

)

(a) Radapt

2

2.5

3

3.5

4

4.5

5

5.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

session

av
er

ag
e

ch
an

ne
l r

at
e

(b
ps

)

(b) Rfixed

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

session

D
iff

er
en

ce
 (

bp
s)

(c) Radapt−Rfixed

Figure 5.2: Channel rate per session of all users with (5.2a) and without (5.2b) presence
of machine learning.

88

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

session

av
er

ag
e

tim
e

pe
r

le
tte

r
(s

ec
)

(a) Writing duration

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

sessionav
er

ag
e

in
fo

rm
at

io
n

ga
in

ed
 p

er
 le

tte
r

(b
its

)

(b) Mutual information

Figure 5.3: Average writing time per session and the average mutual information per
session under the condition Rfixed.

89

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

user

av
er

ag
e

ch
an

ne
l r

at
e

(b
ps

)

R

fixed

R
adapt

R
ideal

(a)

c o i r v l z e s j h w x a b t n p u y m f d q g k
0

1

2

3

4

5

6

av
er

ag
e

ch
an

ne
l r

at
e

(b
ps

)

(b)

Figure 5.4: Average channel rates. (a) The average channel rate of each user in Radapt
and Rfixed. Rideal shows the maximum channel rate possible given the average writing
speed of each user. (b) Average channel rate of each character under the condition Radapt.

90

Fi
gu

re
5.

5:
C

on
fu

si
on

be
tw

ee
n

tw
o

pr
ot

ot
yp

es
(c

ir
cl

e
no

de
s)

is
re

pr
es

en
te

d
by

an
ed

ge
.

So
m

e
of

th
e

co
nf

us
in

g
ex

am
pl

es
ar

e
sh

ow
n

in
sq

ua
re

no
de

s.
O

nl
y

co
nf

us
ab

le
pr

ot
ot

yp
es

ar
e

sh
ow

n.

91

z

Figure 5.6: Conditional entropy of a “z” . The conditional entropy H(Qfinal|M) quickly
reduces to 0 when there is no confusion with other prototypes.

92

nn

v

m
r

h

n

k
p

r

nn

v

m
r

Figure 5.7: Three confusing handwriting examples from a single user. The top example
and the bottom example are recognized correctly as an ’n’ and an ’h’ respectively. The
middle example is recognized as an ’h’ instead of the true label ’n’.

93

g

s

a
g

q
s

a

y

gq

Fi
gu

re
5.

8:
Po

st
er

io
rd

is
tr

ib
ut

io
ns

as
a

fu
nc

tio
n

of
tim

e.
T

he
to

p
ro

w
is

th
e

pa
rt

ia
lh

an
dw

ri
tin

g
tr

aj
ec

to
ri

es
up

to
ea

ch
do

tte
d

lin
e.

T
he

m
id

dl
e

ro
w

is
th

e
lik

el
ih

oo
d

di
st

ri
bu

tio
ns

ov
er

tim
e

w
he

re
ea

ch
co

lo
rc

or
re

sp
on

ds
to

ea
ch

la
be

l.
T

he
bo

tto
m

ro
w

is
th

e
en

tr
op

y
ov

er
tim

e.

Chapter 6

Improved kNN Rule for Small Training

Sets

The traditional k-NN classification rule predicts a label based on the most com-

mon label of the k nearest neighbors (the plurality rule). It is known that the plurality

rule is optimal when the number of examples tends to infinity. In this chapter we show

that the plurality rule is sub-optimal when the number of labels is large and the number

of examples is small. We propose a simple k-NN rule that takes into account the labels

of all of the neighbors, rather than just the most common label. We present a number

of experiments on both synthetic datasets and real-world datasets, including MNIST

and SVHN. We show that our new rule can achieve lower error rates compared to the

majority rule in many cases.

6.1 Introduction

The k-nearest neighbors (k-NN) algorithm is one of the oldest methods of pattern

recognition and machine learning. Given an unlabeled instance s, the algorithm finds

the k labeled examples that are closest to s according to some measure of distance or

divergence. The algorithm then counts the number of times each of the m possible label

appears within this set of k elements and predicts with the label that appears the largest

number of times. This is called the “plurality vote”. In the binary label case (m = 2),

the plurality vote is equal to the majority vote. In this chapter, our focus is on problems

94

95

(k)

(h)

(h)

(m)

(m)

(k)

k

h

m
Model for ‘k’

Model for ‘h’

Model for ‘m’

Induced empirical distribution

5 nearest neighbors

Figure 6.1: Problem with the majority rule when N is small. The five nearest neighbors
of an example from handwriting recognition are shown on the left with their true labels
shown in parentheses. The majority rule predicts either h or m while the true label is k.
However, when the label distribution of the neighborhood is mapped onto the probability
simplex shown on the right, a better classification rule is to minimize the KL-divergence
(solid lines) between the empirical distribution (red dot) and the typical neighborhood
distributions of letter h, m and k (blue dots).

where m� 2.

Fix and Hodges [FH51] show that for sufficiently large datasets the k-NN rule

achieves the Bayes error rate r∗ under very mild conditions. More precisely, if n denotes

the number of examples which grows to infinity n→∞, and we choose k as a function of

n so that k(n)→ ∞ and k(n)/n→ 0 then the error rate of the k-NN rule approaches the

Bayes optimal error rate. Furthermore, Cover and Hart [CH67] show that, when k = 1,

the asymptotic error rate of the 1-NN rule is upper bounded by r∗(2− m
m−1r∗).

However, real-world datasets are always finite and often small. In such cases, the

theoretical results give little guidance. Indeed, as we will show, there are good reasons

to suggest that rules other than the plurality rule might perform significantly better. The

basic intuition is that, in all cases other than the binary case, the plurality vote ignores

information present in the counts of labels other than the largest label.

To motivate our approach, consider the following example from handwriting

recognition using 5-NN where the distances between examples are computed using a

standard elastic matching divergence. Figure 6.1 shows an instance of a handwritten

letter “k” and its 5 nearest neighbors: two “h”s, two “m”s and a single “k”. The plurality

vote will go for either “h” or “m”, both of which are incorrect. To avoid this mistake, we

propose an alternative classification rule. The key is to bring into the model the average

96

neighbor distribution for each letter. In other words, using the labeled training set, we

can estimate a model for the distribution of labels of the k neighbors for each label. In

most cases, the most common neighbor label will be the same as the label of the queried

point. However, the distribution will also capture information about the other labels that

tend to be in the k-NN set of a point.

In Figure 6.1, we represent the model distributions for the letters “k”, “h” and

“n” as points on the 2D triangular simplex. Note that the neighbors for “h” and “m”

assign very small probabilities to having the label “k” in their neighborhood, while the

letter “k” has a significant probability of having “h” or “m” in its neighborhood. On

the same simplex we plot the empirical distribution (2,2,1) (indicated by a red dot).

By using the Kullback-Leibler divergence, we can recover the fact that the letter is a

“k”. This reversal of the classification is based on the following logic: while it is true

that there are more instances of “h” and “m” in the 5-NN neighborhood, there exists

one instance of “k”. On the other hand, it is common for “h” and “m” to be in the

neighborhood set of a “k” while it is very rare for a “k” to be in the neighborhood of

an “h” or an “m”. The result is that “k”, even though it is in the minority, is a better

explanation of the observed labels.

Our approach is related to work on learning label embeddings [CSM09, BWG10].

The main difference is that our approach is far simpler, does not require any convex op-

timizations and can be seamlessly integrated into the k-NN framework. Another related

work is [BJM01] which introduces a bias term to the likelihood ratio testing which is

justified by the difference between the estimated and the true class conditional probabil-

ity.

This chapter is organized as follows. In Section 6.2, we describe the frame-

work and the notations. In Section 6.3, we describe our approach and justification. In

Section 6.4, we present experiments comparing our approach with the traditional k-NN

algorithm using both synthetic data and real-world data. Then, we discuss the results in

Section 6.5 and conclude the chapter in Section 6.6.

97

6.2 Background

Let S = {(x1,y1,) . . .(xN ,yN)} be a set of training examples where each in-

stance xi comes from an example space X of which the distance between any two

examples is measured by d(·, ·). Without loss of generality, we assume that each label

yi takes on a value from Y = {1,2, . . . ,m}. To simplify the analysis, we assume that the

distribution of classes is uniform and the number of examples per class is denoted by n.

Let Nk(x) denote the neighborhood of size k of an example x ∈X with respect

to the distance measure d. The traditional k-NN rule predicts the label of an example

x with the majority of the labels in Nk(x). More formally, given x and Nk(x), we can

define an empirical distribution P̂(x,S ,k) such that, for each i ∈ Y ,

P̂(x,S ,k)(i) =
#{occurrences of label i in Nk(x)}

k

The k-NN rule predicts the label ŷ such that

ŷ = argmax
i∈Y

P̂(x,S ,k)(i)

For any example x∈X , we can consider the true class distribution of x, denoted

by P(x) which is given by, for each i ∈ Y ,

P(x)(i) = Pr(Y = i|X = x)

Under certain assumptions, it is shown in [FH51] that, for every class label i ∈ Y ,

lim
n→∞
k→∞

k/n→0

P̂(x,S ,k)(i) = P(x)(i)

Therefore, the majority rule is asymptotically optimal. However, in the finite sample

scenario, it can be sub-optimal due to the discrepancy between the empirical distribution

P̂(x,S ,k) and the true distribution P(x) as demonstrated by the example in Figure 6.1.

6.3 Minimizing KL-Divergence Rule

We propose a new k-NN rule that predicts the class label based on the entire

class distribution P̂(x,S ,k) instead of just the mode (majority) of P̂(x,S ,k). We refer to

98

Algorithm 5 The MinKL k-NN rule: Training

Initial Assumptions: Training set S and k Output:The center distributions Q̂ j for all

j ∈ Y

1: Q̂ j←~0 for j ∈ Y

2: for each example (x, j) ∈S do

3: Q̂ j← Q̂ j + P̂(x,S ,k)

4: end for

5: Q̂ j← Q̂ j/|Si| for all j ∈ Y

Algorithm 6 The MinKL k-NN rule: Prediction
Initial Assumptions: Training set S ,

A test example x,

The center distributions Q̂ j for all j ∈ Y Output:Predicted label ŷ

1: ŷ = argmini∈Y DKL(P̂(x,S ,k)||Q̂i)

this rule as the minimizing KL-divergence rule (MinKL). Given a training set S and

the neighborhood of size k, we define, for each class j, an empirical center distribution

Q̂(j,S ,k) as

Q̂(j,S ,k) =
∑(x, j)∈S j P̂(x,S ,k)

|S j|
where S j = {(x,y) ∈S |y = j} consists of all examples with class label j. To classify

a new example x, the empirical class distribution P̂(x,S ,k) is compared to each of the

center distributions Q̂(j,S ,k) with respect to the KL-divergence DKL(P̂(x,S ,k)||Q̂(j,S ,k))

and the class label that minimizes the distance is then predicted. More formally, the

predicted label ŷ is given by

ŷ = arg min
j∈Y

DKL(P̂(x,S ,k)||Q̂(j,S ,k))

where the KL-divergence between two discrete distributions p and q is defined as

DKL(p||q) = ∑
i

p(i) log
p(i)
q(i)

A summary of the algorithm is given in Algorithm 5 and Algorithm 6.

To analyze our approach in the finite sample setting, we introduce a few more

notations. Let
−→
P (x,k) denote the expected class distribution of an example x induced by

99

a neighborhood of size k, which is given by

−→
P (x,k) = ES [P̂(x,S ,k)]

Similarly, let
−→
Q (j,k) denote the expected center distribution for examples of class j de-

fined by
−→
Q (j,k) = ES [Q̂(j,S ,k)]

Note that the expectation is taken over all possible training sets of size N.

Ideally, the empirical distribution P̂(x,S ,k) should be compared to the expected

center distribution
−→
Q (j,k). However, in practice, we use Q̂(j,S ,k) as an estimate for

−→
Q (j,k). This is reasonable because Q̂(j,S ,k) for each class j is estimated from a relatively

large amount of examples in the training set.

To justify our approach, we begin by defining the KL-divergence between a

distribution p and a set of distributions E. Then, we prove a lemma to show that an

empirical distribution p̂ induced by drawing examples from a true distribution p ∈ E is

likely to be “close” to the set E in the KL-divergence sense.

Definition 6.1. The KL-divergence between any distribution p and a set of distribu-

tions E is defined as

DKL(p||E) .
= argmin

q∈E
DKL(p||q) (6.1)

Lemma 6.2. Let E be a set of distributions over some domain χ . For any p ∈ E, let xn

be a sample of size n drawn from p and let p̂ be the empirical distribution induced by

xn. Then,

Pr{DKL(p̂||E)> ε} ≤ (n+1)|χ|e−nε

Proof. Theorem 11.2.1 in [CT91] states that, for any distribution p and any ε > 0,

Pr{DKL(p̂||p)> ε} ≤ (n+1)|χ|e−nε

Since p ∈ E, by definition,

Pr{DKL(p̂||E)> ε} ≤ Pr{DKL(p̂||p)> ε}

So we have

Pr{DKL(p̂||E)> ε} ≤ (n+1)|χ|e−nε

100

Suppose E1,E2, . . . ,Em be sets of distributions such that
⋂

Ei = /0. We assume

that a sample of size n, xn is generated by the following process:

1. Class i∗ is chosen with probability πi∗ .

2. A distribution p is chosen such that Pr{p ∈ Ei∗} ≥ 1−δ

3. xn is sampled from the distribution p.

Theorem 6.3. Let E1,E2, . . . ,Em be sets of distributions such that
⋂

Ei = /0. Suppose xn

is generated according to the above process with respect to the correct class i∗ and the

true distribution p where Pr{p ∈ Ei∗} ≥ 1− δ . Let p̂ denote the empirical distribution

induced by xn. Then,

Pr{DKL(p̂||Ei∗)> min j 6=i∗DKL(p̂||E j) | p ∈ Ei∗}

≤ (m−1)(n+1)|χ|e−n∆

where ∆
.
= mini, j; j 6=i minq∈P max(DKL(q||E j),DKL(q||Ei))

Proof. By applying Lemma 6.2

Pr{DKL(p̂||Ei∗)> min j; j 6=i∗DKL(p̂||E j) | p ∈ Ei∗}

≤ ∑
j; j 6=i∗

Pr{DKL(p̂||Ei∗)> DKL(p̂||E j) | p ∈ Ei∗}

≤ ∑
j; j 6=i∗

Pr{DKL(p̂||Ei∗)> ∆) | p ∈ Ei∗}

≤ (m−1)(n+1)|χ|e−n∆

Using Theorem 6.3, we can justify Algorithm 7 under the assumptions about the

data generation process. It is worth noting that Algorithm 7 is not quite the same as

Algorithm 6 since, in Algorithm 6, we only compare the KL distance from the empirical

distribution p̂ to a single center distribution Q̂ j. However, we can show that if each E j

contains only distributions that are α-close to the center Q̂ j, then Algorithm 6 is also

justified by applying Lemma 6.5.

101

Algorithm 7 Theoretical MinKL
Initial Assumptions: The number of classes m, the sets of distributions E1,E2, . . . ,Em,

and the empirical distribution p̂

Output: Predict i∗

1: for all i ∈ 1, . . . ,m do

2: pi← argminq∈Ei DKL(p̂||q)
3: end for

4: i∗ = argmini DKL(p̂||pi)

Definition 6.4. For any α > 0, a distribution p is said to be α-close to another distri-

bution q if and only if

(1−α)q(x)≤ p(x) ∀x ∈ χ

Lemma 6.5. If every q ∈ E j is α-close to Q̂ j, then

DKL(p||E j)≤ DKL(p||Q̂ j)+ log
1

1−α

for any distribution p

Proof.

DKL(p||E j) = min
q∈E j

DKL(p||q)

= min
q∈E j

∑
x

p(x) log
p(x)
q(x)

≤ min
q∈E j

∑
x

p(x) log
p(x)

(1−α)Q̂ j(x)

≤∑
x

p(x) log
p(x)

(1−α)Q̂ j(x)

≤ DKL(p||Q̂ j)+ log
1

1−α

6.4 Experiments

In this section, we describe experiments we have performed with both synthetic

data and real-world data. For each dataset, we compare the error rates of the k-NN with

102

Table 6.1: Summary of the datasets used in our experiments.
Dataset No. of classes No. of train ex. No. of test ex.
SYN-1 10 up to 1600 10000
SYN-2 64 up to 6400 6400
SYN-3 10 up to 1600 10000
uRight 26 9945 -
MNIST 10 60000 10000
SVHN 10 73257 26032

the minimizing KL-divergence rule (MinKL) to those of the k-NN with the majority rule

(Majority) under various conditions. A summary of the datasets is given in Table 6.1.

Synthetic data

We performed 3 experiments using synthetic data that can be described as fol-

lows. Each example x is a point inside a wrap-around d-dimensional hypercube of size

b, or x ∈ [0,b−1]d . The instances of each class are generated by a normal distribution

with mean located at each integer lattice point of the hypercube and a covariance matrix

σId . Thus, the total number of classes is bd . The distribution of the classes in each

dataset is uniform. In Figure 6.2, the generating distributions of each dataset are shown

in the left-most column. The Manhattan distance (L1 norm) is used for measuring the

distance between examples.

In our first experiment, we generated a dataset called SYN-1 using the following

parameters: b = 10,d = 1 and σ = 1.5. SYN-1 was intended to mimic the situation de-

scribed in Figure 6.1. The number of classes in SYN-1 is 10. In the second experiment,

we generated another dataset called SYN-2 using the following parameters: b= 4, d = 3

and σ = 0.4. SYN-2 has a very similar structure to SYN-1 but it is more complex with

the total of 64 classes. In our third experiment, we generated yet another dataset called

SYN-3. Similar to SYN-1, each instance of SYN-3 is one-dimensional. However, the

generating distribution for class i is a mixture of two normal distributions centered at i

and i+ 3 and the mixing coefficient is 0.8 and 0.2 respectively. SYN-3 is intended for

simulating when δk > 0.

In Figure 6.2, we compare the error rates of MinKL and Majority using different

103

n and k for each dataset. For each n, we ran both MinKL and Majority for k ranged.

The center column of Figure 6.2 shows the error rates for different k when n is fixed

at 20 per classes for each dataset. Then, for each n, the best error rate of both MinKL

and Majority over k are shown in the right-most column of Figure 6.2. The error rates

of both MinKL and Majority converge to the Bayes error as n increases. In SYN-1 and

SYN-2, MinKL converges faster than Majority and is able to attain lower error rates

especially when n is small. However, in SYN-3, MinKL has higher average error rates

than Majority for when n is small.

uRight

The uRight dataset contains handwriting trajectories of the 26 lowercase English

characters. We collected the handwriting data from 15 different users writing isolated

lowercase English characters on a touch screen of a mobile phone with their fingers.

Each example is a sequence of (x,y, t) where x and y are the (x,y)-coordinates and t

is the timestamp of each sample point. Figure 6.3 shows some examples of the hand-

writing trajectories. There are 9945 examples in the dataset and the distribution of the

class labels is fairly uniform. The similarity between two examples is measured by the

dynamic time warping (DTW) distance [BB04].

Using k = 5, the average error rates of MinKL and Majority for each user are

summarized in Figure 6.4. According to the paired t-test, the average error rate of

MinKL (3.76%) is significantly smaller than the average error rate of Majority (5.86%)

with p-value < 0.001. Figure 6.5 displays some of the examples that were misclassified

by Majority but correctly classified by MinKL.

MNIST

The MNIST dataset [LBBH98] contains images of handwritten digits. Each ex-

ample is a 28x28 grayscale image. There are 60000 training examples and 10000 test

examples included in the dataset. We preprocessed the data by de-skewing and down-

sampling the images. After the preprocessing, we ran PCA on the training data. The

feature vector of each example corresponds to the coefficients of the first 100 PCA com-

104

ponents. The Euclidean distance is used as the similarity measure in the neighborhood

calculation.

The test error rates we obtained from our experiment are comparable to what

reported in [LBBH98]. The performance of both MinKL and Majority are very similar

for this dataset. The lowest error rate of 1.89% for Majority and 1.90% for MinKL was

obtained when k = 5. Figure 6.7 shows the test error rates of both MinKL and Majority

obtained using different k.

SVHN

The SVHN dataset [NWC+11] contains images of digits taken from the Google

street view data. It is considered a harder dataset than MNIST due a higher degree of

variations. Each example in SVHN is a 32x32 RGB image. There are 73257 training

examples and 26032 test examples included in the dataset. We computed, for each

example, the HOG features [DT05] using the block size of 4x4 with 8 orientations per

block. The Manhattan distance is used as the similarity measure in the neighborhood

calculation.

In [NWC+11], the test error rate for HOG features combined with an SVM is

reported to be around 15%. In our experiment, the test error rates of both MinKL and

Majority are between 16% to 17% with MinKL performing slightly better than Major-

ity at every k > 1. Figure 6.7 shows the test error rates of both MinKL and Majority

obtained using different k.

6.5 Discussion

In our experiments with SYN-1 and SYN-2, we observed that MinKL performs

significantly better than Majority when n is small. This result also confirms our intuition

we have on the example in Figure 6.1. Our explanation for this boost in performance is

the fact that, for small n (implied a small k), the majority rule is prone to error because

the prediction is based on solely the majority of the empirical class distribution P̂(x,S ,k)

induced from a relatively small k; while the MinKL rule makes the prediction based on

the entire class distribution.

105

From our analysis in Section 6.3, we show that our approach will perform op-

timally when the training set has δk = 0. However, when δk is small relative to the

distance between the center distributions of different classes, we expect our approach to

perform reasonably well. In SYN-3, we deliberately designed the dataset such that its

δk is quite large. As expected, the error rates for our approach are inferior to those of

the majority rule even when n is small. A workaround is to increase the representation

power of the center distribution by allowing multiple centers per class.

The performance gap between the MinKL rule and the majority rule for MNIST

is very small, especially for small k. This is due to the fact that the center distributions

for the MNIST dataset are very close to the Dirac delta function in which case the

MinKL reduces to the majority rule. Figure 6.6 depicts the center distributions in each

row of the matrix. For MNIST, the mass is heavily concentrated on the diagonal.

Another factor that plays a role in the performance of MinKL is the distances

between the center distributions. If they are far away from each other, then we expect

our approach to work well. This effect is also demonstrated in Figure 6.6. The rows in

the uRight matrix is more distinct than the rows in the SVHN matrix. The improvement

we obtained on the uRight dataset is significantly larger than what we obtained on the

SVHN dataset.

In practice, other divergences might work better than the KL-divergence. The

KL-divergence is considered a special case of a more general divergence function called

Alpha-divergence [CA10], which is given by

D(α)
A (p||q) = 1

α(α−1)

(
n

∑
1

pα
i q1−α

i −1

)
, α ∈ R {0,1}

The KL-divergence can be expressed as DKL(p||q) = limα→1 D(α)
A (p||q). For the uRight

dataset, we were able to obtain even lower error rate by using Alpha-divergence with

α = 2.

Technically, the minimizing KL-divergence idea can be applied to other clas-

sification algorithms as well. The k-NN algorithm is very computational expensive in

classifying a new example. In some applications, it is important to be able to classify

new examples quickly. A simple modification to the k-NN algorithm that significantly

reduces the classification time is to keep only a small number of representatives per class

106

and discard the rest of the examples. This algorithm is called the k nearest-centroid al-

gorithm (k-NC) where only the k-centroids are kept as the class representatives. In the

k-NC, the class distribution Px can be estimated by

P̂x(j) =
ed(x,C(j))

∑i ed(x,C(i))

Then we can apply MinKL rule to the class posterior computed above.

6.6 Conclusions

We proposed a simple k-NN rule that predicts based on the entire empirical class

distribution rather than the majority in the neighborhood. The algorithm can be de-

scribed as follows. Given a training set, we estimate the center distribution for each

class. To classify a new example, we measure the KL-divergence between the empirical

distribution induced by the neighborhood and the center distribution of each class. The

class that minimized the KL-divergence is then predicted. In a sense, our approach is a

simple method for leveraging the class information in the label space. We justified our

approach in the finite sample setting under a certain assumption about the data. Finally,

we show experimental results comparing the error rates of our approach to the majority

rule. We found that our approach managed to outperform the majority rule in many

cases.

Acknowledgements

This chapter is based on unpublished work that is currently in submission as of

the writing of this thesis. It is joint work with Yoav Freund. The dissertation author is

the primary investigator and author of this work.

107

0
2

4
6

8
1
0

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

k

0
.7

4

0
.7

5

0
.7

6

0
.7

7

0
.7

8

0
.7

9

0
.8

0

0
.8

1

0
.8

2

error rate

M
a
jo

ri
ty

M
in

K
L

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

N
u
m

b
e
r

o
f

e
x
a
m

p
le

s
(p

e
r

cl
a
ss

)

0
.7

3
5

0
.7

4
0

0
.7

4
5

0
.7

5
0

0
.7

5
5

0
.7

6
0

0
.7

6
5

error rate

M
a
jo

ri
ty

M
in

K
L

B
a
y
e
s

(a
)S

Y
N

-1
:(

le
ft

)D
at

a
m

od
el

s,
(c

en
te

r)
er

ro
rr

at
e

vs
.k

w
hi

le
n

fix
ed

,(
ri

gh
t)

er
ro

rr
at

e
vs

.n
w

hi
le

k
fix

ed

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

0
5
0

1
0
0

1
5
0

2
0
0

si
ze

 o
f

n
e
ig

h
b
o
rh

o
o
d
 (

k)

0
.5

2

0
.5

4

0
.5

6

0
.5

8

0
.6

0

0
.6

2

0
.6

4

0
.6

6

0
.6

8

0
.7

0

error rate

M
a
jo

ri
ty

M
in

K
L

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

N
u
m

b
e
r

o
f

e
x
a
m

p
le

s
(p

e
r

cl
a
ss

)

0
.5

0

0
.5

2

0
.5

4

0
.5

6

0
.5

8

0
.6

0

0
.6

2

error rate

M
a
jo

ri
ty

M
in

K
L

B
a
y
e
s

(b
)S

Y
N

-2
:(

le
ft

)D
at

a
m

od
el

s,
(c

en
te

r)
er

ro
rr

at
e

vs
.k

w
hi

le
n

fix
ed

,(
ri

gh
t)

er
ro

rr
at

e
vs

.n
w

hi
le

k
fix

ed

0
2

4
6

8
1
0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

si
ze

 o
f

n
e
ig

h
b
o
rh

o
o
d
 (

k)

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

error rate

M
a
jo

ri
ty

M
in

K
L

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

N
u
m

b
e
r

o
f

e
x
a
m

p
le

s
(p

e
r

cl
a
ss

)

0
.4

5

0
.4

6

0
.4

7

0
.4

8

0
.4

9

0
.5

0

0
.5

1

error rate

M
a
jo

ri
ty

M
in

K
L

B
a
y
e
s

(c
)S

Y
N

-3
:(

le
ft

)D
at

a
m

od
el

s,
(c

en
te

r)
er

ro
rr

at
e

vs
.k

w
hi

le
n

fix
ed

,(
ri

gh
t)

er
ro

rr
at

e
vs

.n
w

hi
le

k
fix

ed

Fi
gu

re
6.

2:
R

es
ul

ts
fr

om
th

e
sy

nt
he

tic
da

ta
ex

pe
ri

m
en

t.

108

[1] [1]

[2]

[1]
[1]

Figure 6.3: Handwriting trajectories from the uRight handwriting dataset.

109

98 99 74 75 79 82 85 86 87 88 89 111 93 94 63
users

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

e
rr

o
r

ra
te

Majority

MinKL

Figure 6.4: Average error rates of MinKL and Majority for each user.

110

[1] [2]

true label = y

a b c d e f g h i j k l mno p q r s t uvwx y z

[1]

true label = k

a b c d e f g h i j k l mno p q r s t uvwx y z

[1]

true label = c

a b c d e f g h i j k l mno p q r s t uvwx y z

Figure 6.5: Examples classified incorrectly by the majority rule but correctly by the
MinKL rule. Each handwriting trajectory is shown on the left and the corresponding
empirical distribution induced by its 5 neighbors is shown on the right.

111

0 5 10 15 20 25

0

5

10

15

20

25

(a) uRight

0 2 4 6 8

0

2

4

6

8

(b) MNIST

0 2 4 6 8

0

2

4

6

8

(c) SVHN

Figure 6.6: Visualization of the empirical center distributions. Each row in each matrix
corresponds to the center distribution for each class.

112

0 2 4 6 8 10 12 14 16
size of neighborhood (k)

0.018

0.019

0.020

0.021

0.022

0.023

0.024

te
st

 e
rr

o
r

ra
te

Majority

MinKL

(a) MNIST

0 5 10 15 20 25 30
size of neighborhood (k)

0.16

0.17

0.18

0.19

0.20

0.21

0.22

te
st

 e
rr

o
r

ra
te

Majarity

MinKL

(b) SVHN

Figure 6.7: MNIST and SVHN results

Chapter 7

Conclusions and Recommendations

The problem of intent inference has manifested itself in all classes of input inter-

faces. The difficulty of the problem quickly increases when the interface has to interpret

ambiguous signals such as pen trajectories, video streams, or speech. Our machine

learning-based approach has been shown to be effective on our systems for improving

robustness and efficiency for the task and can be applied to other recognition systems in

the future.

In Chapter 2 we discussed the problem of user engagement in the context of the

Automatic Cameraman (TAC). The challenge was to identify the user engagement in

real-time. Our solution was to use machine learning methods to process and combine

multiple input modalities to detect and track the user. Then, we implemented a simple

hand interaction to determine the engagement. Using this method, TAC was able to

engage with the users autonomously for days without any human intervention showing

the robustness against various conditions of the room.

As the production cost for advanced sensing technology such as high-speed

video cameras, MEMS microphones, or 3D depth sensors decreases, the idea of combin-

ing multiple input modalities becomes more and more important. The signals produced

by a single modality are easily corrupted by noise, especially when the signals are com-

plex and high-dimensional. By combining multiple modalities, we essentially introduce

redundancy and effectively reduce noise, allowing for more accurate interpretation of

the event.

Another advantage of our method is that the amount of calibration needed for the

113

114

system is minimal as most of the parameters are tuned continuously and automatically

from observations. Parameter tuning is a tedious task that usually requires several trials

and errors. Additionally, a slight modification to the system could invalidate the current

setting of parameters and require another round of the calibration. Through machine

learning, TAC is able to adapt to changes in the environment and only requires minimal

amount of calibration.

It is important for any interactive system to react quickly to the user. The com-

mon consensus shows that the reaction time should be below 100ms in order for the

interaction to feel natural to a human user. On TAC, the low-level visual feature calcula-

tion accounts for a large portion of the CPU time, compromising the overall responsive-

ness of the entire system. To mitigate the problem, some of the computations were move

to a dedicated implementation on a Field-programmable gate array (FPGA). The study

of FPGA was beyond the scope of this dissertation, but it definitely deserves a more

detailed investigation. We believe that FPGA-based solution will be a viable option for

future interactive systems.

There are plenty rooms for improvements for TAC. As of current, TAC only

supports two commands: start and stop recording. While our method works well for

the two commands, it is interesting to see how well the system will perform when more

commands are added. The commands could be either voice-based commands or gesture-

based commands. As the system supports more commands, it is possible to introduce

other tasks to TAC such as gaming or browsing the web.

In Chapter 5 we discussed an approach to improve the input rate of a handwriting

recognition system based on the idea of co-adaptation. Recall that co-adaptation is

referred to situations where both the human user and the computer system adapt to each

other in parallel. Based on our study, we have shown that both human adaptation and

computer adaptation have significant impact on the overall information transfer rate in

the context of handwriting recognition. In other words, both sides of adaptation should

be considered in order to achieve an efficient handwriting recognition system.

Our study was done deliberately on mobile devices where handwriting recog-

nition is a promising yet underutilized input method. We were motivated by the inef-

ficiency of the mainstream soft-keyboard where each letter is represented by a small

115

button on the touch screen. The situation is worsen when the user needs to enter text

in multiple languages. Typically, to enter text in multiple languages, the user needs to

switch between different keyboard layouts and each layout has its own set of letters and

placement. Handwriting recognition is a promising approach to the multilingual prob-

lem. However, its downside is due to its limited information transfer rate. Our study

suggested that machine adaptation works best when matched with human adaptation

and that co-adaption could be a contributing factor towards a more efficient handwriting

recognition system.

The concept of co-adaptation is not only limited to handwriting recognition. It

can be applied to other recognition systems such as voice recognition and gesture recog-

nition as well. While machine adaptation is already well-utilized in many recognition

systems, the notion of user adaptation has not been explored enough. Most recognition

systems simply do not provide enough feedback to the users when they make mistakes.

This often leads to confusion, an unpleasant user experience and an inefficient commu-

nication due to repetitive errors. Although we were able to suggest that giving feedback

to users is important, the question of how and when the feedback should be delivered

still remains for future studies.

Bibliography

[AMGC02] M S Arulampalam, S Maskell, N Gordon, and T Clapp. A tutorial on par-
ticle filters for online nonlinear/non-Gaussian Bayesian tracking. Signal
Processing, IEEE Transactions on, 50(2):174–188, February 2002.

[BB04] C Bahlmann and H Burkhardt. The writer independent online handwriting
recognition system frog on hand and cluster generative statistical dynamic
time warping, 2004.

[BBZ07] Maria-Florina Balcan, Andrei Broder, and Tong Zhang. Margin Based Ac-
tive Learning. In Nader H Bshouty and Claudio Gentile, editors, Learn-
ing Theory 20th Annual Conference on Learning Theory COLT 2007 San
Diego CA USA June 1315 2007 Proceedings, volume 4539 of Lecture
Notes in Artificial Intelligence, pages 35–50. Springer Berlin Heidelberg,
2007.

[BHB02] Claus Bahlmann, Bernard Haasdonk, and Hans Burkhardt. On-Line Hand-
writing Recognition with Support Vector Machines - A Kernel Approach.
In Proceedings of the Eighth International Workshop on Frontiers in
Handwriting Recognition (IWFHR ’02), pages 49–54. IEEE Computer So-
ciety, 2002.

[Bil66] Edward A Bilodeau. Acquisition of skill. Academic Press, New York, NY,
USA, 1966.

[Bil97] J Bilmes. A Gentle Tutorial of the EM Algorithm and its Application to
Parameter Estimation for Gaussian Mixture and Hidden Markov Models.
Technical report, ICSI, 1997.

[BJM01] J. Bilmes, G. Ji, and M. Meila. Intransitive likelihood-ratio classifiers.
Advances in Neural Information Processing Systems, pages 0–4, 2001.

[BK13] Jakramate Bootkrajang and A Kabán. Boosting in the presence of label
noise. UAI, 2013.

[BL13] K Bache and M Lichman. {UCI} Machine Learning Repository, 2013.

116

117

[BM08] Olivier Bau and Wendy E Mackay. OctoPocus: a dynamic guide for learn-
ing gesture-based command sets. In Proceedings of the 21st annual ACM
symposium on User interface software and technology, UIST ’08, pages
37–46, New York, NY, USA, 2008. ACM.

[BWG10] S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large
multi-class tasks. Advances in Neural Information Processing Systems,
23(1):1–10, 2010.

[CA10] A. Cichocki and S. Amari. Families of Alpha- Beta- and Gamma-
Divergences: Flexible and Robust Measures of Similarities. Entropy,
12(6):1532–1568, June 2010.

[CAL94] David Cohn, Les Atlas, and Richard Ladner. Improving generalization
with active learning. Machine Learning, 15(2):201–221, 1994.

[CBCK10] Junguk Cho, Bridget Benson, Sunsern Cheamanukul, and Ryan Kastner.
Increased performance of FPGA-based color classification system. In Pro-
ceedings - IEEE Symposium on Field-Programmable Custom Computing
Machines, FCCM 2010, pages 29–32, 2010.

[CBL06] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games.
Cambridge University Press, New York, NY, USA, 2006.

[CFH09] Kamalika Chaudhuri, Yoav Freund, and Daniel Hsu. Tracking using
explanation-based modeling. CoRR, abs/0903.2, March 2009.

[CFH10] Kamalika Chaudhuri, Y Freund, and Daniel Hsu. An Online Learning-
based Framework for Tracking. In UAI, 2010.

[CH67] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, 13(1):21–27, 1967.

[CJ02] S D Connell and A K Jain. Writer adaptation for online handwriting recog-
nition. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
24(3):329–346, 2002.

[CL11] C.-C. Chang and C.-J. Lin. {LIBSVM}: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology,
2(3):27:1—-27:27, 2011.

[CSM09] M. Collins and N. Singh-Miller. Learning label embeddings for nearest-
neighbor multi-class classification with an application to speech recog-
nition. Advances in Neural Information Processing Systems, pages 1–9,
2009.

118

[CST00] N Cristianini and J Shawe-Taylor. An introduction to support Vector Ma-
chines: and other kernel-based learning methods. Cambridge University
Press, New York, NY, USA, 2000.

[CT91] Thomas M Cover and Joy A Thomas. Elements of Information Theory,
volume 6 of Wiley Series in Telecommunications. Wiley, 1991.

[CV95] C Cortes and V Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[Die00] Thomas G Dietterich. An Experimental Comparison of Three Methods
for Constructing Ensembles of Decision Trees: Bagging, Boosting, and
Randomization. Machine Learning, 40(2):139–157, 2000.

[DT05] N. Dalal and B. Triggs. Histograms of oriented gradients for human detec-
tion. 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), 1, 2005.

[Ett10] Evan Ettinger. Audio Localization in the Automatic Cameraman. PhD
thesis, University of California, San Diego, 2010.

[FH51] E. Fix and J. L. Hodges. Discriminatory analysis, nonparametric discrimi-
nation. USAF School of Aviation Medicine, Randolph Field, Texas, Project
21-49-004, Report 4, 1951.

[FHM95] Clive Frankish, Richard Hull, and Pam Morgan. Recognition accuracy and
user acceptance of pen interfaces. In Proceedings of the SIGCHI confer-
ence on Human factors in computing systems, CHI ’95, pages 503–510,
New York, NY, USA, 1995. ACM Press/Addison-Wesley Publishing Co.

[FHT98] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive Logistic
Regression: a Statistical View of Boosting. Annals of Statistics, 28:2000,
1998.

[Fit54] P M Fitts. The information capacity of the human motor system in con-
trolling the amplitude of movement. Journal of Experimental Psychology,
47(6):381–391, 1954.

[FM99] Yoav Freund and Llew Mason. The Alternating Decision Tree Learning
Algorithm. In ICML ’99: Proceedings of the Sixteenth International Con-
ference on Machine Learning, pages 124–133, 1999.

[Fre95] Yoav Freund. Boosting a weak learning algorithm by majority. Inf. Com-
put., 121(2):256–285, 1995.

[Fre01] Yoav Freund. An Adaptive Version of the Boost by Majority Algorithm.
Mach. Learn., 43(3):293–318, 2001.

119

[Fre09] Yoav Freund. A more robust boosting algorithm. arXiv:0905.2138
[stat.ML], 2009.

[FS96] Yoav Freund and Robert E Schapire. Experiments with a New Boosting
Algorithm. In Proceedings of the 13th International conference on Ma-
chine Learning, pages 148–156. Morgan Kaufmann, 1996.

[FS99] Yoav Freund and Robert E Schapire. A Short introduction to Boost-
ing. Journal of Japanese Society for Artificial Intelligence, 14(5):771–780,
September 1999.

[GR93] David Goldberg and Cate Richardson. Touch-typing with a stylus. In
Proceedings of the SIGCHI conference on Human factors in computing
systems CHI 93, CHI ’93, pages 80–87. ACM Press, 1993.

[GWM+03] Matthew Garrett, David Ward, Iain Murray, Phil Cowans, and David
Mackay. Implementation of Dasher, an information efficient input mecha-
nism. Nature, pages 1–6, 2003.

[H0̈0] K Höök. Steps to take before intelligent user interfaces become real. In-
teracting with computers, 12:409–426, 2000.

[HBT96] J Hu, M K Brown, and W Turin. HMM based online handwriting recog-
nition. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
18(10):1039–1045, October 1996.

[HL02] C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support
vector machines. Neural Networks, IEEE Transactions on, 13(2):415–425,
March 2002.

[JH99] TS S Jaakkola and David Haussler. Exploiting generative models in dis-
criminative classifiers. In Proceedings of the 1998 conference on Advances
in neural information processing systems II, pages 487–493, Cambridge,
MA, USA, 1999. MIT Press.

[JL05] Alejandro Jaimes and Jianyi Liu. Hotspot Components for Gesture-Based
Interaction. In INTERACT 2005, pages 1062–1066, 2005.

[JMW00] S Jaeger, S Manke, and A Waibel. Npen++: An On-Line Handwriting
Recognition System. In in 7th International Workshop on Frontiers in
Handwriting Recognition, pages 249–260, 2000.

[KAB08] K Kumara, R Agrawal, and C Bhattacharyya. A large margin approach for
writer independent online handwriting classification. Pattern Recognition
Letters, 29(7):933–937, 2008.

120

[KC06] Wolf Kienzle and K Chellapilla. Personalized handwriting recognition via
biased regularization. In Proceedings of the 23rd International Confer-
ence on Machine Learning (ICML ’06), number Section 6, pages 457–464,
Pittsburgh, Pennsylvania, 2006.

[KK09] A Kalai and V Kanade. Potential-Based Agnostic Boosting. NIPS, pages
1–11, 2009.

[LBBH98] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11), 1998.

[LD09] Brian Y. Lim and Anind K. Dey. Assessing demand for intelligibility in
context-aware applications. Proceedings of the 11th international confer-
ence on Ubiquitous computing - Ubicomp ’09, page 195, 2009.

[LS08] Philip M. Long and Rocco a. Servedio. Random classification noise de-
feats all convex potential boosters. Proceedings of the 25th international
conference on Machine learning - ICML ’08, pages 608–615, 2008.

[Mae94] P Maes. Agents that Reduce Work and Information Overload. Communi-
cations of the ACM, 1994.

[MGDV93] N Matic, I Guyon, J Denker, and V Vapnik. Writer adaptation for on-line
handwritten character recognition. In Proceedings of the Second Interna-
tional Conference on Document Analysis and Recognition (ICDAR ’93),
pages 187–191. IEEE, 1993.

[MO97] Richard Maclin and David Opitz. An Empirical Evaluation of Bagging
and Boosting. In In Proceedings of the Fourteenth National Conference
on Artificial Intelligence, pages 546–551, 1997.

[MZ97] I Scott Mackenzie and Shawn X Zhang. The immediate usability of graffiti.
In Proceedings of Graphics Interface ’97, pages 129–137, 1997.

[NR81] A Newell and P S Rosenbloom. Mechanisms of skill acquisition and the
law of practice. In J R Anderson, editor, Cognitive skills and their acqui-
sition, volume 6 of Cognitive skills and their acquisition, chapter 1, pages
1–55. Erlbaum, 1981.

[NWC+11] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Read-
ing Digits in Natural Images with Unsupervised Feature Learning. NIPS
Workshop on Deep Learning and Unsupervised Feature Learning, pages
1–9, 2011.

[PS00] R Plamondon and S N Srihari. On-Line and Off-Line Handwriting Recog-
nition: A Comprehensive Survey. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 22(1):63–84, January 2000.

121

[RJ93] Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of Speech
Recognition, volume 103 of Prentice Hall signal processing series. Pren-
tice Hall, 1993.

[SF12] Robert E Schapire and Yoav Freund. Boosting: Foundations and Algo-
rithms. The MIT Press, 2012.

[SFBL98] Robert E Schapire, Yoav Freund, Peter Bartlett, and W S Lee. Boosting
the margin: A new explanation for the effectiveness of voting methods.
The Annals of Statistics, 26(5):1651–1686, 1998.

[Sha48] C E Shannon. A Mathematical Theory of Communication. Bell System
Technical Journal, 27(July 1928):379–423, 1948.

[SK87] L Sirovich and M Kirby. Low-dimensional procedure for the characteriza-
tion of human faces. J. Opt. Soc. Am. A, 4(3):519–524, 1987.

[TAKM04] Koji Tsuda, Shotaro Akaho, Motoaki Kawanabe, and Klaus-Robert
Müller. Asymptotic properties of the Fisher kernel. Neural computation,
16(1):115–37, January 2004.

[TG11] Thomas Ploetz and Gernot A Fink. Markov Models for Handwriting
Recognition. SpringerBriefs in Computer Science. Springer, 2011.

[TP91] M A Turk and A P Pentland. Eigenfaces for Recognition. Journal of
Cognitive Neuroscience, 3(1):71–86, 1991.

[vdM11] L van der Maaten. Learning Discriminative Fisher Kernels. In Lise Getoor
and Tobias Scheffer, editors, Proceedings of the 28th International Con-
ference on Machine Learning (ICML ’11), pages 217–224, New York, NY,
USA, June 2011. ACM.

[VJ01] Paul Viola and Michael Jones. Robust Real-time Object Detection. In
International Journal of Computer Vision, 2001.

[YWL98] L S Yaeger, B J Webb, and R F Lyon. Combining Neural Networks and
Context-Driven Search for On-Line, Printed Handwriting Recognition in
the Newton. In Neural Networks: Tricks of the Trade, this book is an
outgrowth of a 1996 NIPS workshop, pages 275–298, London, UK, 1998.
Springer-Verlag.

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	The Automatic Cameraman (TAC)
	The uRight System
	Thesis Organization

	User Engagement Identification on the Automatic Cameraman (TAC)
	System Architecture
	User Engagement Identification
	Face Localization
	Margin-based Active Training Methodology
	Skin-color Detector
	Face Detector
	Face Tracker

	Face Recognition

	Non-convex Boosting and Random Label Noise
	Background and Related Work
	BrownBoost and RobustBoost
	Adaptive-e Heuristic
	Experiments
	Conclusions

	uRight: Co-adaptive Handwriting Recognition System
	Co-adaptive Handwriting Recognition System
	System Architecture and Implementation
	Adaptive Recognition Algorithms

	Co-adaptation in Handwriting Recognition
	Handwriting Recognition as a Communication Channel
	Experiment
	Results and Discussion
	Conclusions

	Improved kNN Rule for Small Training Sets
	Introduction
	Background
	Minimizing KL-Divergence Rule
	Experiments
	Discussion
	Conclusions

	Conclusions and Recommendations
	Bibliography

