UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Explanation-Based Retrieval in a Case-Based Learning Model

Permalink
https://escholarship.org/uc/item/1tb3g6xd
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 13(0)

Author
Weber, Gerhard

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/1tb3q6xc
https://escholarship.org
http://www.cdlib.org/

Explanation-Based Retrieval in a Case-Based Learning Model

Gerhard Weber

Department of Psychology
University of Trier
D-5500 Trier, Germany
weber@uni-trier.dbp.de

Abstract

Retrieving previous similar cases from a memory of cases
is central 1o case-based reasoning systems. In most
systems, this retrieval is done by a detailed indexing
mechanism. Thagard and Holyoak argue that indexing is
the wrong way to retrieve analogues. They propose a
retrieval model (ARCS) based on a competing constraint-
satisfaction approach. In this paper, an explanation-based
retrieval method (EBR) for retrieving analogues from a
case-base with cases stored with respect lo an interpretat-
ion of these cases as analyzed by a cognitive diagnostic
component is described. The system is designed to the
domain of problem solving in LISP. In a simulation study,
it can be shown that the EBR-method performs equally well
or even better than the ARCS-method.

Analogical Retrieval and Indexing

Both case-based reasoning (CBR) and finding analogies
are concerned with retrieving previous cases and problem
solutions. In CBR-systems, cases are usually retrieved by
elaborated indexing mechanisms. Thagard & Holyoak
(1989) argue in their contribution to the 1989 Case-Based
Reasoning Workshop that indexing is the wrong way lo
retrieve analogues. They make their points on two different
levels of argumentation. On a more general level, they
claim
+ that CBR when viewed as a cognitive model is based

only on anecdotes,

+ that CBR generally is concerned with analogies within a
single domain only, and

« that their own model for analogical reasoning is a
component of a more general cognitive architecture.

On a more detailed level they claim about indexing,

« that it is excessively serial instead of simultaneously
probing into memory,

* that the retrieval process is not competitive,

« that indexing overemphasizes pragmatic features such as
goals and prediction failures, whereas semantic features
and structural similarities are underemphasized, and

« that indexing requires to much pre-processing.

In this paper, it will be shown how a CBR-system can
be built in a way that most of these arguments can be
rejected. Such a system retrieves analogues as good as the
ARCS-program (Thagard et al. 1990) does, or even better.

As Thagard et al. (1990) point out, five aspects central Lo
analogue retrieval in human memory are implemented in
their ARCS-program. These are the constraints of (1)
semantic similarity, (2) structural consistency, and (3)

522

pragmatic centrality. Additionally, (4) a parallel algorithm
has to be used for determining stored analogues fitting best
these three constraints and (5) there must be a competition
between potential candidates for source analogues.

In analogical retrieval (compared to mapping analogues)
finding semantic similarities between elements and relations
in the target analogue and in the source analogues in
memory is essential (Holyoak & Koh 1987; Holyoak &
Thagard 1990). But, structural and pragmatic constraints
also contribute to the retricval process. For most analogue
retricval models, it is a problem to consider all constraints
simultancously like it is done in ARCS.

In case-based reasoning systems, the retrieval of similar
cases depends on indexes used to probe the case base. These
indexes consist of relevant features of the input problem
determined in a first analysis phase (Riesbeck & Schank
1989). For CBR-systems, it is critical how indexes can be
found, how specific they are to identify the most similar
cases, and how common they are, so that they apply to a
wide range of possible cases.

To address these problems of indexing in CBR-systems
we have built an 'Episodic Learner Model' (ELM), a case-
based learning model in the domain of learning LISP. In
this model, previous cases are stored such that information
from stored cases can be used to analyze new cases. These
interpreted input problems can be used directly to access
similar previous cases. The ELM-model is used as a student
model in an intelligent tutoring system for the programm-
ing language LISP (Weber 1988). One of the intelligent
features to support tutoring is an analogical component.
This component searches for similar cases to a given
siluation to give the tutorial component the opportunity to
explain to the student his or her bugs and misconceptions
related to previous errors and to solutions for these errors.
One of the central tasks of this component is to retrieve
analogous cases. As the ELM-LISP-Tutor is an on-line
system, the retricval process has to be fast enough to
respond to the student within acceptable time. So, retriev-
ing a candidate for an analogue with an acceptable effort in
memory space and time is one further constraint for the
retrieval process.

In the next section, the ELM-model is described to show
how cases (LISP-programs students have completed to
solve programming problems) are interpreted and stored. In
the following section, the algorithm of the explanation-
based retrieval method (EBR) is described. Finally, this
method is compared to the ARCS-model by a simulation
study.

mailto:weber@uni-trier.dbp.de

ELM: A Case-Based Learning Model

The ELM student model is a type of user model containing
knowledge about the user (student) in terms of a collection
of episodes. In the sense of 'case-based learning', such
episodes can be viewed as cases. To construct the student
model, the student's code is analyzed related to the domain
knowledge on the one side and to a task description on the
other side. This cognitive diagnosis results in a derivation
tree of concepts and rules the student might have used to
solve the problem. These concepts and rules are instantiat-
ions of units from the knowledge base, The episodic student
model is made up by these instantiations and later general-
ization based thereupon. To understand this form of episodic
student model, a short description of the knowledge
representation and the diagnostic process will be given.

Students have to program function definitions in a
structured LISP-editor (K6hne & Weber 1987). So, the
function code is at least syntactically correct. A series of a
student's attempts to solve a programming problem from
the exercises is shown in Tab. 1. The "cognitive analysis"
of the program code works like an explanation-based
generalization (EBG) method (Mitchell, Keller, & Kedar-
Cabelli 1986; DeJong & Mooney 1986). It starts with a
task description related to higher concepts, plans, and
schemata in the knowledge base. For every concept, a set of
rules is stated describing different ways to solve the goal
given by the plan of the concept. These rules are compar-
able to the notation of implementation methods for goals in
PROUST (Johnson 1986). There are "good", "suboptimal”,
and "buggy" rules explaining correct, correct but sub-
optimal, and incorrect solutions of the current goal or
subgoal. The set of buggy rules is comparable to an error
library in other ITSs (e.g. in Anderson's LISP-tutor
(Anderson & Reiser 1985)). Applying a rule results in
comparing the current plan description to the corresponding
part of the student's code. In the plan description, further
concepts may be addressed. The cognitive diagnosis is called
recursively until a function name, a parameter, or a constant
is matched.

The cognitive diagnosis results in a derivation tree
(Weber 1989) built from all concepts and rules identified to
explain the student's solution (Tab. 2). This derivation tree
is an explanation structure in the sense of EBG and is the
basis to build up the episodic learner model. Concepts and
rules addressed in the derivation tree are the basis to create
cpisodic frames. These frames are integrated into the knowl-
edge base as instances of their concepts and rules. Slots in
these instances refer to the context where they were used
(especially the current task), to the type of transformations
of concepts, to the observed rules, and to the argument
bindings. The set of these instances (and further general-
izations) constitutes the episodic student model.

In the next step, episodic frames are generalized. These
generalizations represent the class of types of plans and
corresponding data which will be used in further cognitive
analyses to interpret the student's code. Generalizations refer
to structural and semantic similarities of observed data for
related concepts and rules. So, this is a form of similarity-

523

Problem:
"Define a function that returns the third element of a list."

Solution 1:
(DEFUN THIRD-EL (EXPR)
(REST (REST (FIRST EXPR))))

Solution 2:
(DEFUN THIRD-EL (EXPR)
(SECOND (FIRST (REST EXPR))))

Solution 3:
(DEFUN THIRD-EL (EXPR)

(SECOND (REST EXPR)))

Table 1: A series of subsequent attempts to solve a
programming problem from the exercises used in our LISP-
course.

(THIRD-ELEM
Third-Elem-With-Second-Rule
(SECOND-ELEM-CALL
Unary-Func-Rule
(SECOND-ELEM-OPERATOR
Correct-Coding-Rule)
(REDUCE-LIST
Unary-Func-Rule
(REDUCE-LIST-OPERATOR
Correct-Coding-Rule)
(PARAMETER
Correct-Param-Rule))))

Table 2: Explanation structure for the body of the
function definition of solution 3 in Table 1.

based generalization within the framework of an EBG-
method. If an episodic frame is the first instance under a
concept of the knowledge base, this single case is general-
ized from structural and semantic aspects in the data so that
this generalization will explain further matching data. In
Fig. 1, a hierarchy of episodic instances and generalizations
under the concept "THIRD-ELEM" is shown. The first
generalization frame THIRD-ELEM.GEN-1 was obtained
by a single-case generalization after diagnosing Solution 1
from Table 1. The frame THIRD-ELEM.GEN-2 was
generalized after the student's second attempt to solve the
problem with a different plan. The third generalization
frame THIRD-ELEM.GEN-3 resembles the communalities
of the second and third attempt to solve the problem. In
Tab. 3 the generalized structures for DATUM-slot and for
the PLAN-RULE-SEQUENCE-slot are shown.

With increasing knowledge about a particular student,
hierarchies of generalizations and instances are built under
the concepts and rules of the knowledge base. They
constitute the episodic student model. This generalization
mechanism is comparable to the single-case generalization
in the "explanation-based learning" approach (Mitchell et al.
1986). One single event (or case) is interpreted considering
the knowledge base and the student model and the result of
this interpretation is integrated into the student model.

THIRD-ELEM —— THIRD-ELEM.GEN-2 <

THIRD-ELEM.GEN-1 —— THIRD-ELEM.F.9-1

THIRD-ELEM.GEN-3 <

THIRD-ELEM.F.9-2
THIRD-ELEM.G.9-3

Figure 1: Hierarchy of episodic instances and gencralizations under the concept THIRD-
ELEM for the three solutions in Table 1.

DATUM
(SECOND (<SELECTOR-OPERATOR> ?ARG-273))

7PLAN-RULE-SEQUENCE
(THIRD-ELEM Third-Elem-With-Second-Rule !SEQ-273)

Table 3: Part of the slots of the generalization frame
THIRD-ELEM.GEN-3 from Fig. 1.

This EBL-method implies that not only pragmatic
aspects are stored in the case memory (as in most other
case-based reasoning systems). The hierarchy of stored
solutions for different subproblems resembles the structure
of the solution. Stored and generalized data structures
emphasize semantic similarities and may also be considered
to observe superficial aspects of similarity.

In the context of the ELM-model in the ELM-LISP-
tutor, two typical situations emerge where analogous cases
are retriecved. On the one side, analogues are needed by the
tutorial component to offer the student remindings and
analogies to examples in the materials when an error or a
suboptimal solution is detected by the diagnostic
component in the student's program code. Such remindings
can be used to explain to the student how the error is
similar to a previous error and how the problem can be
solved, or how the incorrect part of the code resulted from
superficial similarities to previous solutions which were
incorrectly mapped to the current problem. On the other
side, if the student asks for help while developing the code
for the current problem the tutorial system should be able
to offer the student analogies to similar previous problems
or examples. Here, the analogical component has to look
for analogies for the solution of the next subproblem to be
solved in the context of subgoals solved up to that point.

In both cases, existing program code is the basis to
retrieve analogous cases from the case-base. In the next
section, it is explained how an explanation-based retrieval
method (EBR) is suited to find analogues in a case-memory
of a case-based learning system.

The Explanation-Based Retrieval Method

On the basis of the explanation structure stored into
distributed frames for the steps of the solution path, it is
easy to retrieve analogical problem solutions for the current
problem. There are two different situations where an
analogue may be retrieved.

Similar solution situation. In this situation, the retrieval
component is given a solution of a known problem and has
to look in the case memory for the best analogues to the
given solution. These analogues may help to interpret how

524

the person solved the problem in the given way or why an
observed error may have happened.

Similar problem situation. In this situation, the retrieval
component is given a problem and possibly, a partial
solution. By its knowledge about the problem, a solution
can be gencrated considering the case memory and the
partial solution. On the basis of the concepts and rules used
to gencrate this solution, the case memory can be probed
for cases most similar to this solution and analogues can be
found for missing parts of the partial solution. As different
subproblems have to be solved and gathered for the final
solution there may be several different analogues which
may match best the subproblems. This is a by-product of
the distributed storage of problems in terms of solutions
for the different subproblems. So, analogies to the sub-
problems may be detected in different previous cases which,
therefore, may be retrieved as analogues.

Both situations differ with respect to the question
whether the problem is already solved or not. In the first
case, the already existing solution is used for analogy, in
the latter case, a solution generated automatically is used for
an interpretation and for retrieving analogues afterwards.

The algorithm of the EBR-method works in five steps as
follows:

Step 1: Diagnose the solution of a problem which is
either submitted by the problem solver or generated
automatically by the system. This will result in an
explanation structure of all concepts and rules which may
be used to solve the problem.

Step 2: Store all elements of the explanation structure
into episodic frames of the case memory and generalize if
possible. If the solution was generated automatically by the
system, store episodic frames and generalizations only
temporarily.

Step 3: Scan all episodic frames of the new (target)
episode and look for similar episodic frames in previous
episodes. All those episodic frames subsumed under the
same direct generalization frame are given the highest
similarity weight. For other similar episodic frames
subsumed under higher levels of abstraction or indexed by
related rules assign lower similarity weights, accordingly.

Step 4: For each episode considered in Step 3, sum the
similarity weights of the similar frames assigned in Step 3.
For each episodic frame of the source episode only one
similar frame of a previous episode may be considered.

Step 5: Sort the considered target episodes by their
summed weights of episodic frames similar to the source
episode computed in Step 4.

In the first place, this algorithm pays attention to
semantic similarities of concepts, plans, and rules identified
by the analysis of the program code. But, as structural

_similarities play an important role in the generalization of
episodic frames, structural consistencies arc considered, too.
Pragmatic aspects are not considered directly in the current
version of the EBR-algorithm. But, it would be casy to
give special pragmatic weights to observed buggy rules and
to poorly solved concepts so that corresponding episodic
frames from previous cases can dominate the retrieval of
these episodes. So, tutorial goals could give pragmatic
constraints to the retrieval process. An algorithm to retrieve
analogues for special subgoals is still under development.

Using an explanation structure in the EBR-method to
retrieve analogues cases is comparable to the construction
of a hypothesis tree in the explanation-based indexing (EBI)
approach (Barletta & Mark 1988). But, the EBR-method
differs from the EBI-method in the distributed representation
of episodic instances of concepts and rules.

A Simulation Study Comparing the EBR-
Method with the ARCS-Model

The ARCS-model (Thagard et al. 1990) is supposed to be a
general model for analogue retrieval. As the algorithm of
this retrieval method is fully described in Thagard et al.
(1990) and easy to compute, it can directly be compared to
other methods in a simulation study. One of the basic
assumptions of the ARCS-model is to represent the target
and the potential source candidates in terms of the predicate
calculus. Therefore, it is critical for this method how the
description of a problem is decomposed into predicates.

For retrieving analogues of LISP-programs from a case-
library of stored LISP-programs, the decomposition into
predicates can be computed by an explicit algorithm. As
LISP-programs are composed of hierarchically nested funct-
ion calls, they can be decomposed into predicates as shown
in Holyoak & Thagard (1989). Function calls are represent-
ed as predicates with n+1 arguments where n arguments
stand for the arguments of the function and the additional
argument for the result of the function call. Only special
forms (e.g. schemata for defining functions with "defun”
(special decomposition for variable list and function body)
or schemata for case decisions with "cond") are handled
specifically to reflect their semantics. An example for a
decomposition of a simple function definition into a set of
predicates for the ARCS-method is shown in Tab. 4A.

Identifying semantic similarities is the second critical
point for the ARCS-method. As mentioned in several
studies (e.g. Holyoak & Koh 1987; Ratterman & Gentner
1987; Ross 1987) semantic similarities are most important
for retrieving analogues. In their ARCS-model, Thagard et
al. (1990) use WordNet (Miller, Fellbaum, Kegl, & Miller
1988) to identify different kinds of semantic relations (e.g.
synonyms, superordinates, coordinates, subordinates, holon-
yms, antonyms, etc.) and assign to them different weights
determining their influence on the retrieval process.

Since analogs of LISP-programs are retrieved, the case of
within-domain analogies is given. Therefore, most semantic
similarities stem from the identity of function names.
Further degrees of semantic relations can be obtained from
hierarchically clustering functions by their meaning.

525

A) Decomposition of code into propositions:

(DEFUN (THIRD-EL Varlist-931 form-933) P-937)
(VARLIST (EXPR Varlist-931) P-932)

(SECOND (arg-934 form-933) P-936)

(REST (EXPR arg-934) P-935)

B) Decomposition of diagnosed code into
propositions:

(DEFINE-PROCEDURE

(Proc-Def-Rule arg-938) P-948)
(BODY-FORMS

(Rule-For-Body arg-939 arg-938) P-947)
(THIRD-ELEM

(Third-Elem-With-Second-Rule arg-940 arg-939) P-946)
(SECOND-ELEM-CALL

(Unary-Func-Rule arg-941 arg-940) P-945)
(REDUCE-LIST

(Unary-Func-Rule arg-942 arg-941) P-944)
(PARAMETER

(Correct-Param-Rule arg-942) P-943)

Table 4: An example for a decomposition into
propositions for A) LISP-code and B) the result of the
explanation-based diagnosis for Solution 3 from Tab. 1.

For example, all predicates or all arithmetic functions are
grouped into clusters of lower similarity, type predicates,
arithmetic functions for performing addition, types of case-
decisions, and so on, within these clusters are building
smaller clusters with medium similarity, and synonyms
(e.g. car and first) are linked on a high level of similarity.

One can argue that there is much preprocessing in the
EBR-method diagnosing the LISP-code by the ELM-model
to get the explanation structure. Also, the explanation
structure may contain more information so that the EBR-
method is able to retrieve better analogues than the ARCS-
method based only on the pure LISP-code. As the
explanation structure consists of a hierarchy of nested
concepts and rules, this nested list can be decomposed into
propositions, too. Different weights of similarity for
concepts and rules were obtained from the hierarchy of
concepts and rules in the knowledge base. A decomposition
of diagnosed code into propositions is shown in Tab. 4B.

Our implementation of the ARCS-method was run with
the same values for parameters as described in Holyoak &
Thagard (1989) and Thagard et al. (1990) with decomposing
LISP-programs and assigning weights for semantic
similarities as described above.

Data for the simulation study were gathered from inter-
action protocols of 13 students computing function definit-
ions for exercises of an introductory LISP-course. All
function definitions were programmed in a structured LISP-
editor (Kohne & Weber 1987), so they were at least
syntactically correct. The range of programming problems
comprised 5 lessons beginning with the first exercises
defining LISP-functions to programming recursive
functions. In these five lessons, 35 different problems could
be solved by the students. All student's attempts to evaluate
a complete function definition were considered as candidates
for targets of analogies.

For each student, the sequence of solutions for different
tasks within each lesson was matched step by step against
all previous solutions within the same lesson and against
the examples from the materials for these lessons. Retriev-
ing analogues was restricled to analogies within one lesson
for two reasons. First, examples and solutions within a
lesson are thematically more similar than those between
lessons. In simulations considering data from all lessons,
only very few analogies were found between lessons.
Second, the computational effort to retrieve analogues by
the ARCS-method from a basis of more than 10 possible
candidates increased dramatically, consuming too much time
and space on a serial computer. All in all 406 cases were
observed where analogue cases could be retrieved.

The same procedure to retrieve analogues for observed
problem solutions step by step within each lesson was
performed by the EBR-method. Time to retrieve an
analogue by this method ranged from 0.05 seconds to 2
seconds for the range of problems described above. This is
more than 200 times faster than the time needed to build up
the network of hypotheses only. If we consider a minimum
of 7 cycles to retrieve the best analogue, the ARCS-method
takes more than 2000 times longer on a serial computer.

The results comparing both methods by the described
procedure are shown in Tab. 5. In about 3 out of 4 cases,
both methods (EBR and ARCS) retrieved the same analogue
as their best result. This was computed by an algorithm
comparing rank orders of retrieved episodes. As expected,
the correspondence between both methods is slightly higher
if the ARCS-method is run on a propositional decomposit-
ion of the explanation structure (77.3%) compared to a
decomposition of the LISP-code (72.7%). When there was a
discrepancy between the results of both methods two
experienced LISP-programmers rated which of both methods
retrieved the best analogue or whether both methods failed.

In less than 5% of all cases, the ARCS-method retrieved
the better optimal analogue. With 4.7%, the ARCS-method
worked slightly better with a propositional decomposition
of the LISP-code (compared to 2.7% with interpreted code).
In 1.7% of all cases, this resulted from errors or combinat-
ions of errors in the student's LISP-code which could not
sufficiently be interpreted by the diagnostic component of
the ELM-model. So, a retrieval process must be preferred
which is based particularly on semantic similarities of
predicates without knowledge about intentions and meaning
of the program code and interpretations of errors. In most
other cases, the ELM-method failed because the current
generalization mechanism in the ELM-model is slightly too
sensitive to structural differences in the student's LISP-code.

In about 6% of all cases, different analogues were
retrieved as best results, but both analogues could be
accepted equally well. In these cases, there was a very
similar (and possibly buggy or incomplete) previous
solution and additionally, a similar good example. In most
cases, the correct similar example was preferred by the
EBR-method whereas the similar, but possibly incorrect,
previous solution was preferred by the ARCS-method.

526

diagnosis code

same 7713 727
different both methods equally well 6.4 5.9
EBR better 11.6 15.0

ARCS beltter 2.7 4.7

both methods failed 2.0 1.7

Table 5: Percentage of cases showing the same or
different best retrieved analogues by the EBR- and the
ARCS-method for a total of 406 cases. In the "diagnosis"
column, the ARCS-method was run with a propositional
decomposition of the explanation structure from the
cognitive diagnosis in the ELM-model, in the "code"
column, the ARCS-method was run with a propositional
decomposition of the LISP-code.

In more than 10% of all cases, the best analogue was
retrieved by the EBR-method. In many of these cases, this
could be attributed to two problems inherent to the
constraint-satisfaction algorithm of the ARCS-method. In
at least 8 cases (2%), the so-called "gang-effect”
(McClelland & Rumelhart 1981) was observed. In these
cases, very similar or identical solutions for a similar
problem existed in the case base because the student solved
the same problem twice with the same solution or recoded
an example from the materials. These identical solutions
grouped to a gang and supported each other while another
better analogue was suppressed. In at least 15 cases (3.7%),
a problem occured which we call the "additional-
proposition-effect”. This means that if two solutions differ
in that one has an additional proposition, this solution was
preferred though the other one was more similar. This must
result from more supporting relations in the net of
hypotheses in the case of the additional proposition.

In 2% of all cases both methods failed. That is, the
retrieved cases could not be accepted as good analogues. In
most cases, this resulted from the absence of appropriate
examples in the case-base or from very buggy and
uncommon solutions.

Conclusion

The ARCS-model (Thagard et al. 1990) is a very general
and well suited program to model human retrieval. But,
there are some questions about the efficiency of its
algorithm. Thagard & Holyoak (1989) argue that indexing
in case-based reasoning systems needs too much pre-
processing and therefore, may not be appropriate. But, the
ARCS-model needs very much time to build up the
network of hypotheses. Even if the following process of
settling the network is performed on a parallel computer and
therefore, will be very fast, the network is temporarily built
up only once for one retrieval process. For the next retrieval
of another analogue a new network has to be constructed
and for a little bit more complex problems than usually
shown in examples, this is very much space and time
consuming. For example, in the data of our students it is
very typical that in the final lesson more than 40 previous

solutions and examples have to be considered as possible
candidates for source analogues. Probing all candidates in
parallel with the ARCS-model resulted in more than 3500
nodes and more than 200,000 symmetric links to be built
up. Even on a fast 12 MIPS computer this requires more
than 30 MByte of memory and more than 10 minutes to
build up the network. If we extrapolate to situations in
typical human retrieval situations where many more
previous situations may be candidates for analogue retrieval
because of overlap in their semantics, it cannot be imagined
how such a problem could be handled by the ARCS-
algorithm. An incremental model (Keane 1990) may be
better suited to retrieve analogues from a large set of cases.

In this study, it could be demonstrated that the ARCS-
methods has some problems if analogues have to be
retrieved from a case base where possibly very similar
previous cases exist. As shown for the "gang-effect" and the
"additional-proposition-effect”, the ARCS-method may fail
if some special constellations of very similar cases exist.
Maybe, this could not be observed in other studies with the
ARCS-method because all cases in these examples differed
in many aspects. But, in realistic, non-experimental
situations, for example while learning to program, it is
typical that many very similar cases are observed. In such a
situation, the EBR-method seems to yield generally better
resulls,

The EBR-method can be seen as an approximation 1o a
competitive, parallel method of analogue retrieval as
realized in the ARCS-model. As powerful parallel
computers cannot be used in most cases, the EBR-method
may be preferred in on-line situations (e.g. in tutorial
systems). Additionally, information can be gathered about
the mechanism how concepts and episodic structures are
stored and retrieved from human memory.

Acknowledgments

This research was supported by the Deutsche Forschungs-
gemeinschaft under Grant We 498/12.

References

Anderson, J. R., and Reiser, B, J. (1985). The LISP tutor.
Byte 10(4):159-175.

Barletta, R., and Mark, W. (1988). Explanation-Based
Indexing of Cases. In J. L. Kolodner (Eds.), Proceedings of

the DARPA-workshop on Case-Based Reasoning, 50-60.
Los Altos, CA: Morgan Kaufmann Publishers.

DeJong, G., and Mooney, R. (1986). Explanation-based
learning: an alternative view. Machine Learning 1:145-176.

Holyoak, K. J., and Koh, K. (1987). Surface and structural
similarity in analogical transfer. Memory & Cognition
15:332-340.

Holyoak, K. J., and Thagard, P. (1989). Analogical
mapping by constraint satisfaction. Cognitive Science
13:295-356.

527

Holyoak, K. J., and Thagard, P. (1990). A constraint-
satisfaction approach to analogue retrieval and mapping. In
K. J. Gilhooly, M. T. G. Keane, R. H. Logie, & G. Erdos
(Eds.), Lines of thinking (Vol. 1, pp. 205-220). Chichester,
England: Wiley.

Johnson, L. W. (1986). Intention-based diagnosis of novice
programming errors, London: Pitman.

Keane, M. T. G. (1990). Incremental analogizing: theory
and model. In K. J. Gilhooly, M. T. G. Keane, R. H.
Logie, & G. Erdos (Eds.), Lines of thinking (Vol. 1, pp.
221-236). Chichester, England: Wiley.

Koéhne, A., and Weber, G. (1987). STRUEDI: a LISP-
structure editor for novice programmers. In H. J. Bullinger,
& B. Schackel (Eds.), Human-Computer Interaction
INTERACT "87 (pp. 125-129). Amsterdam: North-Holland.

McClelland, J. L., and Rumelhart, D. E. (1981). An
interactive activation model of context effects in letter
perception: Part 1. An account of basic findings.
Psychological Review 88:375-407.

Miller, G. A., Fellbaum, C., Kegl, J., and Miller, K.
(1988). WORDNET: An electronic lexical reference system
based on theories of lexical memory. Revue Québécoise
Linguistique 17:181-213.

Mitchell, T. M., Keller, R. M., and Kedar-Cabelli, S. T.
(1986). Explanation-based generalization: a unifying view.
Machine Learning 1:47-80,

Ratterman, M., and Gentner, D. (1987). Analogy and
similarity: determinants of accessibility and inferential
soundness. In Proceedings of the Ninth Annual Conference
of the Cognitive Science Society, 23-35. Hillsdale, NIJ:
Erlbaum.

Riesbeck, C. K., and Schank, R. C. (1989). Inside case-
based reasoning. Hillsdale, NJ: Lawrence Erlbaum
Associales.

Ross, B. H. (1987). This is like that: the use of earlier
problems and the separation of similarity effects. Journal of
Experimental Psychology: Learning, Memory, and
Instruction 13:629-639.

Thagard, P., and Holyoak, K. J. (1989). Why indexing is
the wrong way to think about analog retrieval. In K, J.
Hammond (Ed.), Proceedings of the Second Workshop on
Case-Based Reasoning (pp. 36-40).

Thagard, P., Holyoak, K. J., Nelson, S., and Gochfeld, D.
(1990). Analog retrieval by constraint satisfaction (CSL-
Report No. 41). Princeton University.

Weber, G. (1988). Cognitive diagnosis and episodic
modelling in an intelligent LISP-tutor. In Proceedings of
Intelligent Tutoring Systems ITS-88, 207-214. Montreal,
June 1-3.

Weber, G. (1989). Automatische kognitive Diagnose in
einem Programmier-Tutor. In D. Metzing (Ed.), Kiinstliche
Intelligenz GWAI-89 (pp. 331-336). Berlin: Springer.

	cogsci_1991_522-527

