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Abstract 

The objective of this dissertation is to integrate information from a nonlinear ration 

formulation model, a thermal balance model, and emission and excretion models to evaluate the 

environment impact of dairy cattle and the effect of climate on dairy cattle at the farm level. The 

first chapter investigated the application of iterative linear programming (iteLP), sequential 

quadratic programming (SQP) and mixed-integer nonlinear programming based deterministic 

global optimization (MINLP_DGO) on designing feed formulation for dairy cattle based on 

NRC (2001). A simulation study showed that iteLP had limited capability to design least cost 

diets when nonlinearity existed in the constraints. Both SQP and MINLP_DGO were able to 

handle nonlinear constraints well, with SQP being faster but MINLP_DGO being more reliable. 

In the second chapter, a thermal balance model was developed to predict the body temperature 

and heat fluxes for Holstein dairy cattle under heat stress conditions. The model included five 

nodes representing the body core, skin and coat of a dairy cow. Heat production by the animal, 

heat conduction through the body core, skin and coat, and heat flows between the animal and the 

environment, including conduction, convection, evaporation and radiation, were calculated based 

on existing models and physical principles. Model evaluation suggested a likely overestimation 

of body temperature. Sensitivity analysis showed that heat production, surface area, air pressure 

and the parameters relative to respiration and sweating were the most sensitive. In the third 

chapter, environmental impact of dairy cattle was evaluated by considering relevant outputs 

simultaneously. Three multivariate Bayesian regression models were developed to predict enteric 

methane (CH4), carbon dioxide (CO2), water intake (Waterin), volatile solids (VS), biodegradable 

VS (dVS), fecal DM (FDM), fecal water (FW), fecal carbon (FC), fecal nitrogen (FN), total urine 

(Ut), urine carbon (UC) and urine nitrogen (UN) for lactating cows, nonlactating cows and heifers. 
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Most equations predicted the response variables with reasonable accuracy, except Waterin and Ut 

equations for nonlactating cows and heifers. In the last chapter, a simulation study was 

conducted to evaluate the environment impact of dairy cattle and the effect of climate on dairy 

cattle at the farm level. The ration, body temperature, heat flows, greenhouse gas emission and 

manure excretion were predicted for two heifer herds, three lactating cow herds and one 

nonlactating cow herd. 
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Introduction 

Mathematical modeling has been widely used to evaluate and quantify different components 

of the dairy system, including biology (Hanigan and Baldwin, 1994; Hanigan et al., 2007), 

nutrition (Moraes et al., 2015; Dijkstra et al., 2018), environmental impact (Beauchemin et al., 

2010; Li et al., 2012) and whole-farm systems (Beukes et al., 2008; Rotz et al., 2012). A model 

can be defined as one equation or a set of equations which represents the behavior of a system in 

a mathematical manner (Dym, 2004). There are several ways to classify models into different 

categories, for example, a model can be classified as an empirical or a mechanistic model based 

on whether the model inputs and outputs are related empirically or based on the underlying 

structure of the system.  

Most empirical models are built based on statistical analysis, including regression analysis 

and analysis of variance (ANOVA). Empirical models are widely used because they are simple 

and can be easily implemented in well-developed packages, such as R (R Core Team, 2020), 

SAS (SAS Institute Inc., 2013) and SPSS (IBM Corp., 2020). One important application of 

empirical models is to reveal the significance of treatment effect in animal trials based on 

ANOVA or regression analysis. Empirical models are also widely used to build prediction 

equations through Bayesian or frequentist regression methods, both of which are valid 

approaches (Wakefield, 2013). For example, Moraes et al. (2014) developed a set of equations to 

predict enteric methane emissions from dairy cattle using Bayesian regression models; 

Appuhamy et al. (2014) developed models to predict volume and nutrient composition of fresh 

manure from lactating cows using frequentist regression methods. Although empirical models 

are commonly used, but there are some critiques of this approach. When conducting data mining, 

empirical models only reveal association instead of causality. In other words, the covariates in an 
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empirical model might be a confounder or mediator instead of the true causal factor. If only the 

prediction is of interest, using confounder or mediator may generate a good result, but if causal 

inference is also of interest, other statistical techniques are required. There are some approaches 

to reduce the bias from confounders, such as propensity score matching (Rosenbaum and Rubin, 

1983), but these approaches were not commonly used in dairy science modeling. Another 

limitation of empirical models is that they are highly dependent on the dataset used for model 

development, which makes the model only applicable within a narrow range. For example, Niu 

et al. (2018) developed prediction equations for methane emissions from dairy cows using the 

data from several continents, and the equations for different regions had different coefficients.  

Mechanistic models are developed based on the underlying mechanism of the system, and 

there are many of them developed for dairy cattle. Baldwin et al. (1987) developed a mechanistic 

model for the digestive metabolism of dairy cattle. The model contains dozens of equations 

describing either the mass action or Michaelis–Menten kinetics in the digestive tract. There are 

some other mechanistic models, such as Manure-DNDC model (Li et al., 2012) describing the 

biogeochemical process in the livestock manure and thermal balance model describing the heat 

flows for livestock (Turnpenny et al., 2000). All these models contain many equations, 

parameters and variables. Since mechanistic models represent the mechanism of the system, it is 

easy to interpret all the model components and the relationships among them, but the model 

complexity makes them difficult to use. Some of the mechanistic model inputs or parameters are 

difficult to obtain in application and need empirical equations to obtain an estimate. For example, 

in the thermal balance model (Turnpenny et al., 2000), the animal surface area and respiration 

rate are estimated through empirical equations, which make the mechanistic model not purely 

mechanistic. In principle, mechanistic models can be used in a much wider range than empirical 
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models. However, as described above, some parameters or inputs for a mechanistic model need 

to be estimated through empirical equations, which may require reevaluation under some 

situations, e.g., the empirical equation built for predicting the respiration rate of dairy cows in 

tropical regions might not be able to predict the cow in subtropical regions accurately without 

modifications.  

Optimization models are another important type of mathematical models. Optimization 

models aim at optimizing a certain objective, which may be subject to a set of constraints. The 

calculation of the objective and constraints may involve empirical and mechanistic models, so it 

is hard to classify an optimization model as empirical or mechanistic. In animal science, one 

typical example of optimization model is using linear programming to formulate least-cost feed 

rations that meet all the nutrient requirements (Chandler et al., 1972; O’Connor, et al., 1989). 

There are several others, such as optimization of dairy heifer management decisions (Mourits et 

al., 2000), an optimization model of pasture-based model (Doole et al., 2013) and an 

optimization model considering multiple objectives to minimize environmental impact and 

maximize economic benefit (Breen et al., 2019). In the future, more complicated optimization 

models targeting the whole-farm system are expected, which will become an essential tool to 

support decision-making on farm. 

The overall objective of this dissertation is to integrate information from a nonlinear ration 

formulation model, a thermal balance model, and emission and excretion models to evaluate the 

environment impact of dairy cattle and the effect of climate on dairy cattle at the farm level. The 

first chapter of this dissertation describes an optimization model of dairy ration formulation 

using nonlinear programming, which provides a framework for ration formulation based on 

nonlinear constraints. In the second chapter, a thermal balance model was developed to 
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understand the heat flows in dairy cattle under heat stress. The model can be used to guide the 

application of cooling strategies. The third chapter describes a multivariate Bayesian regression 

model for evaluating the environmental impact from dairy cattle. In the last chapter, the models 

developed in the previous three chapters were integrated together through a simulation study at 

the farm level.  
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Chapter 1: The application of nonlinear programming on designing feed formulation for 

dairy cattle  

J. H. Li1, E. Kebreab1, F. You2, J. G. Fadel1, T. L. Hansen3, C. VanKerkhove4 and K.F. 

Reed3 

1Department of Animal Science, University of California, Davis 95616 

2 Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 

Ithaca, NY 14853, USA 

3 Department of Animal Science, Cornell University, Ithaca, NY 14853 

4 School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 

14853 

Abstract 

The objective of this study was to compare the application of iterative linear programming 

(iteLP), sequential quadratic programming (SQP) and mixed-integer nonlinear programming 

based deterministic global optimization (MINLP_DGO) on ration formulation for dairy cattle 

based on Nutrient Requirements of Dairy Cattle (NRC 2001). Least-cost diets were formulated 

for lactating cows, dry cows and heifers. Nutrient requirements including energy, protein and 

minerals, along with other limitations on dry matter intake, NDF and fat were considered as 

constraints. Five hundred simulations were conducted, with each simulation randomly selecting 

3 roughages and 5 concentrates from the feed table in NRC (2001) as the feed resource for each 

of three animal groups. Among the 500 simulations for lactating cows, there were 57, 45 and 21 

simulations without a feasible solution for iteLP, SQP and MINLP_DGO, respectively. All the 

simulations for dry cows and heifers were feasible when using SQP and MINLP_DGO, but there 

were 49 and 11 infeasible simulations for iteLP, respectively. Average ration costs per animal 
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per day obtained by iteLP, SQP and MINLP_DGO were $4.78 (± 0.71), $4.45 (± 0.65) and $4.44 

(± 0.65) for lactating cows, $2.39 (± 0.52), $1.48 (± 0.26) and $1.48 (± 0.26) for dry cows, and 

$0.98 (± 0.72), $0.97 (± 0.15) and $0.91 (± 0.14) for heifers, respectively. The average 

computation time of iteLP, SQP and MINLP_DGO were 0.59 (± 1.87) s, 1.15 (± 0.62) s and 

58.69 (± 68.45) s for lactating cows; 0.041 (± 0.070) s, 0.76 (± 0.37) s and 14.84 (± 39.09) s for 

dry cows, and 1.60 (± 2.90) s, 0.51 (± 0.19) s and 16.45 (± 45.56) s for heifers, respectively.  

Key words: feed formulation, nonlinear programming, dairy cattle, NRC (2001) 

Introduction 

Feed costs account for around 50 to 70% of the expenses of operating a dairy farm (Bozic et 

al., 2012), so it is important to control the cost when designing the feed formulation. Diet 

formulation relies on the nutrient requirements of the animal and nutrient compositions of feeds, 

which depends on systems for estimating requirements, such as Nutrient Requirements of Dairy 

Cattle (NRC, 2001) or Cornell Net Carbohydrates and Protein System (CNCPS, Fox, et al., 

2004). Linear programming (LP) optimizes a linear objective function subject to a set of linear 

constraints and is a good method to formulate least-cost diets that fulfill all the nutrient 

requirements of dairy cattle (Chandler et al., 1972; O’Connor, et al., 1989). There are several 

studies considering the variation of feed compositions in the constraints (Tozer, 2000) or 

different objective functions (Qu, et al. 2019; Alqaisi et al. 2021) while using LP for ration 

formulation. However, LP only allows linear objective functions and constraints. Some equations 

in the dairy nutrition model are nonlinear when adapted to a LP structure. For example, the 

calculation of microbial protein production in NRC (2001) and digestibility of TDN in CNCPS 

(2004) are dependent on intake and the ration composition and therefore create nonlinear 

constraints for the ration optimization. In NRC (2001), nonlinearity mainly exists in the 
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calculation of energy and protein contents of feeds. For energy, the TDN values of feeds are 

corrected by the animal intake level, which consequently affects metabolizable and net energy 

values. For protein, the calculation of passage rates for each feed requires DMI and dietary 

concentrate percentage. These rates are then used to calculate rumen degradable and 

undegradable protein (RDP and RUP) contents. The intake level and dietary concentrate 

percentage are unknown before formulating the diet, so adapting these equations to an 

optimization programming creates the nonlinearity.  

Not many studies have investigated how to handle nonlinearity in ration optimization, 

which is important because increasingly more nonlinear equations may appear along with the 

advances of dairy nutrition. Moraes et al. (2012) used an iterative linear programming (iteLP) 

method to deal with the nonlinearity in the NRC (2001) for ration formulation. However, iteLP 

has certain limitations, which will be discussed in this paper. A nonlinear programming 

optimizer, sequential quadratic programming (SQP, Boggs and Telle, 1995), was employed in 

the CPM dairy model to formulate rations based on CNCPS (Boston et al., 2000), but the 

performance of using SQP based on NRC (2001) is unknown. Mixed-integer nonlinear 

programming based deterministic global optimization (MINLP_DGO) algorithms are able to 

solve a broader range of nonlinear programming problems compared to SQP.  

Mathematical modeling has been an important technique to evaluate production and 

environmental impacts of dairy systems (France and Kebreab, 2008). Whole farm models like 

the Integrated Farm Systems Model (IFSM) can provide holistic estimates of production and 

environmental outcomes in response to changes in weather and management (Rotz et al., 2016; 

Veltman et al., 2018) and require a method to determine feed use and delivery. The IFSM 

currently uses an iteLP approach for ration formulation with requirements modified from the 
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NRC (2001) (Rotz et al., 2016). The limitations of the ration formulation method in IFSM are 

among the factors that have led our group to develop a new, flexible whole-farm model to 

evaluate connections between dairy system components, including animal husbandry and 

feeding, manure management, field and crop management, and feed storage (Kebreab et al., 

2019). The nonlinear programming framework for ration formulation developed in this study 

will automate simulation of feed use and production within the Ruminant Farm Systems Model 

and represent an advancement over extant whole-farm models (Kebreab et al., 2019). The 

objectives of this study are to (1) introduce a methodology to use MINLP_DGO to find least-cost 

ration solutions that depend on with nonlinear nutrition equations of the NRC (2001) and (2) 

compare the performance of iteLP, SQP and MINLP_DGO on designing feed formulation based 

on NRC (2001). 

Methods 

Least-cost diets were formulated to meet the nutrient requirements of dairy cattle in 

different life-stages with the nutrient compositions of feeds as described by the NRC (2001). 

Model constraints created to meet the animal’s requirements for nutrients were drawn directly 

from the recommendations of the NRC (2001) and included net energy requirements for 

maintenance (NEM), lactation (NEL) and growth (NEG), metabolizable protein (MP) requirement, 

and calcium and phosphorus requirements. Additional constraints were introduced to guide 

formulation of diets that meet requirements for rumen function. These included a fat constraint 

of less than 7% of diet DM (NRC, 2001), an NDF constraint of greater than 25 % and less than 

40 % of diet DM (NRC, 2001; Moraes et al., 2012), and a constraint of forage NDF greater than 

19% of diet DM (NRC, 2001). Finally, DMI was limited to be less than the predicted DMI in 

NRC (2001), so that low quality feeds would not be overfed in the case of low feed prices. 
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Detailed information of all the constraints is shown in the Appendix 1. Three optimization 

strategies, iteLP, SQP and MINLP_DGO, use different approaches to deal with the nonlinearity 

existing in the energy and protein constraints as described below. 

Optimization strategies 

iteLP. Moraes et al. (2012) reported solving LP iteratively to deal with the nonlinearity in 

the NRC (2001). Formulating least-cost diets using LP can be written as:  

Min Z	=" cjxj

m

j	=	1

 

Subject to	" aijxj	≥	bi for i	=	1, 2, …, n
m

j	=	1

 

where Z ($) is the diet cost; cj ($/kg DM) is the feed price of feed j; xj (kg DM) is the amount of 

feed j; aij is the coefficient for xj in constraint i; bi is the lower bound of constraint i. For 

example, if constraint i represents NEM requirement, then bi is the minimum NEM requirement 

and aij are the NRC (2001) predicted amount of NEM in feed j (Mcal/kg DM). To ensure that 

energy and protein requirements are met, the feed ingredients (aij) start at certain initial values, 

and then are updated according to the DMI at the solution. The iteration process is repeated until 

DMI and dietary concentrate percent at the solution are relatively constant (Moraes et al., 2012). 

However, we found that iterating based on DMI and dietary concentrate percent does not always 

result in a satisfactory solution depending on the feed ingredients. During the iteration process, 

two solutions may have very similar DMI and concentrate percentage but very different values of 

dietary TDN and RDP intake, leading to a large discrepancy between nutrient requirement and 

nutrient supply at the final solution. Therefore, the iteration was based on intake level and MCP 

production in this study. The algorithm stopped when the differences of intake level and MCP 

production between two iterations were both lower than 0.1%. In order to prevent infinite 
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iterations when intake level or MCP does not converge, the maximum number of iterations was 

set to be 1000. 

SQP. Sequential quadratic programming allows nonlinear constraints, so the nutrient 

requirement constraints can be built according to NRC (2001) directly. The basic structure of an 

SQP problem is: 

Min Z	=" cjxj

m

j	=	1

	

Subject to	gi(x)	≤	0, for i	=	1, 2, …, n 

where x is a vector of xj and gi(x) is constraint i, which must be twice continuously differentiable 

with respect to all xj in x. However, there are several equations in NRC (2001) that result in 

either nondifferentiable or discrete constraints. For example, the calculation of feed energy 

values requires intake level, which is calculated as:  

IntakeLevel	=	 "
1, if TotalTDN	<	0.35 BW0.75

TotalTDN
0.35 BW0.75 , if TotalTDN	≥	0.35 BW0.75 

 [1] 

where IntakeLevel (dimensionless) is the incremental intake above maintenance; TotalTDN (%) 

is dietary TDN percentage. Intake level is used to adjust the TDN value of feeds since feed 

intake above maintenance would decrease the nutrient digestibility (NRC, 2001). This equation 

is not differentiable at the point TotalTDN equal to 0.35 BW0.75 and IntakeLevel equal to 1. 

Besides, the calculation of microbial crude protein (MCP, kg) production is discrete: 

MCP	=	min	(0.13 TDNintake, 0.85 RDPintake) [2] 

where TDNintake (kg) is discounted TDN intake; RDPintake (kg) is RDP intake. These constraints 

present challenges to formulating diets with SQP, which will be discussed in the results and 

discussion section. Additionally, SQP algorithm converges to a local optimal, which could be far 

away from the global optimal solution of a non-convex nonlinear optimization problem. 
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MINLP_DGO. Another optimization strategy MINLP_DGO allows a mixture of continuous 

and binary deision variables. Note that MINLP includes a wide range of nonlinear optimization 

problems containing continuous and integer variables. Solving an MINLP problem usually 

involves multiple algorithms and techniques (Kronqvist et al., 2019). Several solvers, including 

Couenne (Burer, 2009), BARON (Tawarmalani and Sahinidis, 2013) and Gurobi (Gurobi 

Optimization, LLC, 2021), are able to find deterministic global solutions in MINLP problems. 

The basic structure of an MINLP problem is: 

Min Z	=" cjxj

m

j	=	1

 

Subject to gi(x, y)	≤	0, for i	=	1, 2, …, n 

where y is a binary variable vector. Using binary variables enables the conversion of Eq. [1] and 

[2] into several constraints. For Eq. [1], the intake level calculation can be written into 3 

equations: 

1 – M	×	(1 – y1)	≤	IntakeLevel	≤	1	+	M	×	(1	–	y1) [3] 

0.035 BW0.75	–	M	×	y1	≤	TotalTDN	≤	0.035 BW0.75	+	M	×	(1 – y1) [4] 

TotalTDN
0.035 BW0.75 	–	M	×	y1	≤	IntakeLevel	≤	 TotalTDN

0.035 BW0.75 	+	M	×	y1 [5] 

where M is a large positive number (suppose M = 100000) and y1 is a binary variable. If y1 is 

equal to 0, then Eq. [3] models an intake level greater than a very small number and smaller than 

a very large number, which makes Eq. [3] ineffective. Eq. [4] models a TotalTDN greater than 

0.035 BW0.75 and smaller than a large number, which is equivalent to TotalTDN greater than 

0.035 BW0.75. Eq. [3] models an intake level greater or equal to TotalTDN/0.035 BW0.75 and 

smaller than or equal to TotalTDN/0.035 BW0.75, which is equivalent to intake level equal to 

TotalTDN/0.035 BW0.75. Similarly, if y1 is equal to 1, Eq. [5] is ineffective. Eq. [4] is equivalent 
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to TotalTDN smaller than 0.035 BW0.75, and Eq. [3] is equivalent to intake level equal to 1. In 

summary, Eq. [3] to [5] together are equivalent to Eq. [1]. The same technique can be used for 

the conversion of Eq. [2]: 

0.13 TDNintake	–	M	×	y2	≤	MCP	≤ 0.13 TDNintake	+	M	×	y2 [6] 

0.85 RDPintake – M	×	%1	–	y2&	≤	MCP	≤	0.85	RDPintake	+	M	×	(1	–	y2) [7] 

0.13 TDNintake	–	M	×	y2	≤	0.85 RDPintake	≤	0.13 TDNintake	+	M	×	(1	–	y2) [8] 

where y2 is a binary variable. Similar as Eq. [3] to [5], if 0.13 TDNintake ≥ 0.85 RDPintake, y2 = 1, 

MCP = 0.85 RDPintake; if 0.13 TDNintake < 0.85 RDPintake, y2 = 0, MCP = 0.13 TDNintake.  

Simulation 

A simulation study was conducted to compare the three optimization strategies, iteLP, SQP 

and MINLP_DGO. We simulated three animal groups: lactating cows, dry cows and heifers. The 

animal inputs needed to define the nutrient requirement constraints are summarized in Table 1. A 

total of 500 simulations were conducted by randomly selecting a set of feeds containing five 

concentrates and three forages from 100 feeds (details in Appendix 2) in the feed table provided 

by NRC (2001). Calcium phosphate (monobasic) was kept for all 500 sets of feeds to minimize 

excess mineral feeding. The 2020 annual average feed prices were taken from the Pennsylvania 

State University feed price list (https://extension.psu.edu/files/feed-price-lists). For each animal 

group, three least-cost diets were designed based on each set of the randomly selected feeds 

using iteLP, SQP and MINLP_DGO, respectively, which gave 4500 (3 × 3 × 500) diets in total. 

Evaluation  

To demonstrate the validity of each optimizer, all the formulated diets were evaluated with 

the NRC (2001) equations to examine whether all the nutrient requirements were truly met by 

the feed supply. The difference between requirement and supply was calculated for all the 
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nutrient constraints. In addition, diet cost and computation time for three optimizers were 

compared with an i7-5500U computer processor (2.40 GHz). 

Software  

All the simulation and computation were conducted in Python 3.7.4 (Van Rossum and 

Drake, 2009). The SciPy package (Virtanen et al., 2020) was used as solvers for iteLP and SQP. 

Gurobi (Gurobi Optimization, LLC, 2021) is free to academic users and can be easily 

implemented in Python, so it was used as the solver for MINLP_DGO in this study.  

Results and Discussion  

An example simulation 

A set of feeds in one simulation is shown in Table 2. The diets formulated based on the 

feeds by iteLP, SQP and MINLP are shown in Table 3. For lactating and dry cows, the rations 

obtained by SQP and MINLP_DGO were the same, but the ones obtained by iteLP were more 

expensive. For heifers, the rations obtained by three optimizers were close.  

Feasibility and nutrient balance 

While formulating diets for lactating cows, there were 57 (11.4%) infeasible simulations for 

iteLP, 6 of which were infeasible because the SciPy package could not find a feasible solution in 

the first several iterations. The other 51 simulations were infeasible because the maximum 

number of iterations was reached before the convergence of intake level and MCP. In these 

cases, the value of intake level or MCP oscillated between two or several values and failed to 

converge during the iteration process (Figure 1), which highlights a flaw of iteLP. For 

MINLP_DGO, there were 21 simulations without feasible solutions. In order to investigate the 

reason of infeasibility, the 21 simulations were rerun after adding two dummy feed variables, 

including a “supper protein” feed with 100% of protein and a “supper energy” feed with 30 Mcal 
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of digestible energy. Both feeds were set to be very expensive (i.e., $100 per kg of DM), so that 

they would not be used when feeds can fulfill the protein and energy requirements. The 

appearance of them in the solution indicates a lack of protein or energy from feeds. The results 

showed that all 21 simulations were infeasible due to protein deficiency. The same 21 

simulations were also infeasible for SQP and there were 24 additional infeasible simulations due 

to a failure to fulfill the protein requirement. These 24 simulations were feasible when using 

MINLP_DGO, which means SQP did not fully explore the feed potential in these cases. 

Optimization with SQP relies on the gradient of the objective function and constraints, but the 

MP constraint is not continuous due to the discrete choice between prediction of MCP based on 

energy or protein availability represented in Eq. [2]. The SciPy package calculates the gradient 

numerically instead of analytically, which makes fitting a discrete constraint into SQP possible. 

In the MP constraint, the MCP production is either limited by TDN intake or RDP intake, which 

creates two discrete value domains. In most cases, the optimum exists in one of the domains and 

is far away from the other, so SQP solver is able to search for the optimum within one domain 

without the influence from discreteness. However, sometimes when the optimum is close to the 

boundaries of two domains, SQP may not be able to find a proper solution based on the gradient 

due to the discreteness on the optimum direction. On the other hand, by including binary 

variables, MINLP_DGO is able to find the optimum through the branch and bound approach 

(Land and Doig, 1960), which is able to evaluate the suboptimal solutions in each domain and to 

find the best one (Taylor, 2009). Heuristically, MINLP_DGO will consider both TDN limited 

and RDP limited cases for MCP production and select the better solution. The requirement of 

NEL did not result in any infeasible solutions for SQP, even though the NEL constraint contained 

a nondifferentiable function (Eq. [1]). Since Intake Level represents the incremental intake above 
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maintenance, the Intake Level value of diets fulfilling the requirements of NEM, NEL and NEG at 

the same time was always greater than 1, and the nondifferentiable point (Intake Level = 1) does 

not disrupt the solution. All the infeasible simulations for SQP and MINLP were also infeasible 

for iteLP. While formulating diets for dry cows and heifers, a feasible solution was obtained for 

all the simulations using SQP and MINLP_DGO, but there were 49 and 11 infeasible simulations 

for iteLP, respectively. For dry cows and heifers, the protein requirement did not cause 

infeasibility in SQP, probably due to much smaller nutrient requirement of dry cows and heifers. 

All the infeasible simulations were removed for the following analysis. 

Boxplots of the difference between requirements and estimated nutrient delivery of the 

ration solutions for lactating cows from all feasible simulations are shown in Figure 2. Only NEL 

and MP balance values are shown because the other constraints were linear and did not differ 

greatly between the three optimizers. The NEL and MP balance values were positive for the 

solutions obtained by iteLP, SQP and MINLP_DGO in all feasible simulations, but the NEL 

balance values were higher for iteLP, which suggests a tendency for rations formulated with 

iteLP to overfeed energy. Differences between the rations simulated for dry cows and heifers 

(Figure 3 and 4) by iteLP, SQP and MINLP_DGO were similar to those for lactating cows.  

Ration cost 

Average ration costs per animal obtained by iteLP, SQP and MINLP were $4.78 (± 0.71), 

$4.45 (± 0.65), $4.44 (± 0.65) for lactating cows, $2.39 (± 0.52), $1.48 (± 0.26), $1.48 (± 0.26) 

for dry cows, and $0.98 (± 0.72), $0.97 (± 0.15), $0.91 (± 0.14) for heifers, respectively (Figure 

2, 3 and 4). Ration costs were similar for SQP and MINLP_DGO, which indicated that the 

solution obtained through SQP was very close to the global optimum in ration optimization. 

However, the costs obtained by iteLP were greater, especially for dry cows. The iterations in 
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iteLP do not push the solution along the optimum direction, but blindly replaces the initial value 

with the solution from last iteration, therefore, the ration cost is only minimized within each 

iteration instead of the whole process and is likely to be greater than the one obtained by SQP or 

MINLP_DGO.  

Computation time 

The average computation time of iteLP, SQP and MINLP_DGO were 0.59 (± 1.87) s, 1.15 

(± 0.62) s and 58.69 (± 68.45) s for lactating cows, 0.041 (± 0.070) s, 0.76 (± 0.37) s and 14.84 

(± 39.09) s for dry cows, and 1.60 (± 2.90) s, 0.51 (± 0.19) s and 16.45(± 45.56) s for heifers, 

respectively (Figure 2, 3 and 4). The computation time of iteLP and SQP was much shorter than 

that of MINLP_DGO, especially when formulating diets for lactation cows. Since MINLP_DGO 

solves the problem involving integers, the resulting problem becomes computationally 

expensive. When the solver Gurobi solves MIMLP problems, the best bound and the suboptimal 

solution are updated throughout the computation. The best bound is the upper bound of the 

objective function value for a maximization problem (or the lower bound of a minimization 

problem), and the suboptimal solution is the best feasible solution found so far. By default, the 

computation stops when the gap between the two values decreases below 0.01%, but it may take 

hours to obtain such a solution. The computation time was limited within 3 min in this study. In 

total, 98, 21 and 33 simulations for lactating cows, dry cows and heifers exceeded the time limit 

(computation time equal to 3 min), respectively, but the gaps for them were all less than 0.1%, 

meaning the solution found was close enough to the true optimum. 

Conclusions 

Our study investigated various optimization approaches to design least-cost diets given 

nonlinear constraints, which provides a framework for future ration formulation when the 
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constraint equations are nonlinear. We considered the most important nutrient constraints based 

on NRC (2001), but other constraints, such as mineral requirements apart from calcium and 

phosphorus, vitamin requirements and feedstuff limitations, can be easily fitted in the nonlinear 

programming framework. In conclusion, iteLP had limited capability to formulate least-cost diets 

when nonlinearity existed in the constraints. Both SQP and MINLP_DGO were able to handle 

nonlinear constraints well, with SQP being faster but MINLP_DGO being more reliable. Thus, 

both nonlinear programming frameworks for least-cost ration formulation represent an 

advancement over previous linear programming techniques. Either can be used to find the least-

cost ration for a given set of feed and nutrient constraints within ration formulation software or 

whole-farm simulation models. The current presentation based on the NRC (2001) will be 

integrated within a new whole-farm model, the Ruminant Farm Systems model (Kebreab, et al., 

2019), to enable simulation of feed delivery, consumption, and production for multiple groups of 

animals over time. 
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Tables and Figures 

Table 1. Animal attributes of the lactating cows, dry cows and heifers for the simulation study 
 Latating cows Dry cows Heifers 
Body weight, kg 650 720 300 
Parity 2 3 0 
Milk production, kg 35 - - 
Milk protein, % 3.0 - - 
Milk fat, % 3.5 - - 
Days in milk, d 100 - - 
Days of pregnancy, d 0 260 0 
Age, month - - 9.5 
Calving interval, d 370 370 370 
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Table 2. Chemical compositions (% of DM) and price ($/kg of DM) of an example feed set 
Feed CP EE NDF ADF Ca P TDN* Price 
Almond hulls 6.5 2.9 36.8 28.7 0.28 0.13 58.36 0.16 
Canola meal 37.8 5.4 29.8 20.5 0.75 1.10 69.88 0.31 
Steam flaked corn 9.4 4.2 9.5 3.4 0.04 0.30 91.67 0.18 
Corn silage 8.8 3.2 45.0 28.1 0.28 0.26 68.82 0.18 
Cotton seed 23.5 19.3 50.3 40.1 0.17 0.60 77.22 0.26 
Grass hay 13.3 2.5 57.7 36.9 0.66 0.29 59.72 0.24 
Legume hay 20.2 2.1 39.6 31.2 1.52 0.26 58.95 0.31 
Soybean meal 46.3 8.1 21.7 10.4 0.36 0.66 88.53 0.37 
Calcium phosphate 
monobasic 0 0 0 0 16.40 21.60 0 0.96 

*TDN are the standard values from the NRC (2001) table. 
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Table 3. Feed ration designed by iterative linear programming (iteLP), sequential quadratic 
programming (SQP) and mixed-integer nonlinear programming based deterministic global  
optimization (MINLP_DGO) given an example feed set. 

 
  

 Lactating cow Dry cow Heifer 
 iteLP SQP MINLP_

DGO 
iteLP SQP MINLP_

DGO 
iteLP SQP MINLP_

DGO 
Ingredient (% of DM) 
Almond 
hulls 0 0 0 7.72 0 0 0 0 0 

Canola meal 0 0 0 0 0 0 0 0 0 

Steam 
flaked corn 10.42 7.73 7.73 5.60 3.23 3.23 2.09 2.30 2.03 

Corn silage 10.02 8.42 8.42 0 3.01 3.01 1.81 2.06 1.90 

Cotton seed 0 0 0 0 0 0 0 0 0 

Grass hay 0 0 0 0 0 0 0 0 0 

Legume hay 0 0 0 0 0 0 0 0 0 

Soybean 
meal 2.99 3.49 3.49 0.54 0.73 0.73 0.48 0.43 0.48 

Calcium 
phosphate 
monobasic 

0.30 0.31 0.31 0.10 0.17 0.17 0.09 0.09 0.09 

Chemical composition (% of DM) 
CP 13.67 15.45 13.67 9.15 12.69 12.69 12.89 12.19 12.86 
NDF 25.90 26.47 25.90 25.00 25.51 25.51 25.00 25.37 25.58 
ADF 14.67 15.00 14.67 17.64 14.46 14.46 14.09 14.38 14.50 
Fat 4.21 4.39 4.21 3.60 4.08 4.08 4.12 4.04 4.10 
Ca 0.39 0.45 0.39 0.30 0.56 0.56 0.52 0.48 0.52 
P 0.60 0.68 0.60 0.37 0.83 0.83 0.77 0.72 0.77 
Diet cost ($/animal) 
 5.08 4.96 5.08 2.54 1.56 1.56 0.97 1.03 0.97 
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Figure 1. An example of microbial crude protein (MCP) production oscillating between several 
values and failing to converge when using iterative linear programming (iteLP) to design feed 
formulation for lactating cows (using corn grain, cotton seed meal, corn distillers, corn cob, 
canola meal, mixed grass-legume hay, alfalfa meal, mixed grass-legume silage and calcium 
phosphate monobasic). formulation for lactating cows (using corn grain, cotton seed meal, corn 
distillers, corn cob, canola meal, mixed grass-legume hay, alfalfa meal, mixed grass-legume 
silage and calcium phosphate monobasic).   
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Figure 2. NEL balance (diet NEL supply – animal NEL requirement), MP balance (diet MP 
supply – animal MP requirement), diet cost and computation time of 500 simulations for 
lactating cows based on three optimizers. iteLP = Iterative linear programming, SQP = 
Sequential quadratic programming, MINLP_DGO = mixed-integer nonlinear programming 
based deterministic global optimization.  
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Figure 3. NEL balance (diet NEL supply – animal NEL requirement), MP balance (diet MP 
supply – animal MP requirement), diet cost and computation time of 500 simulations for dry 
cows. iteLP = Iterative linear programming, SQP = Sequential quadratic programming, 
MINLP_DGO = mixed-integer nonlinear programming based deterministic global optimization.  
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Figure 4. NEL balance (diet NEL supply – animal NEL requirement), MP balance (diet MP 
supply – animal MP requirement), diet cost and computation time of 500 simulations for heifers. 
iteLP = Iterative linear programming, SQP = Sequential quadratic programming, MINLP_DGO 
= mixed-integer nonlinear programming based deterministic global optimization.  
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Appendix 1 

The equations in the NRC (2001) used to calculate nutrient requirements of animals and 

nutrient supply from feeds on a daily basis is shown below. Nutrient requirements include net 

energy requirements for maintenance (NEM), lactation (NEL) and growth (NEG), metabolizable 

protein (MP) requirement, calcium and phosphorus requirements. Additional constraints 

included a fat constraint of less than 7% of diet DM, an NDF constraint of greater than 25 % and 

less than 40 % of diet DM, a constraint of forage NDF greater than 19% of diet DM, and DMI 

less than the predicted DMI in NRC (2001). Equations are shared by lactating cows, dry cows 

and heifer or indicated otherwise. 

NEM requirement 

Net energy requirements for maintenance requirement includes two parts: maintenance 

requirement and activity requirement. 

CBW	=	MW	× 0.06275 [A.1] 

where CBW = Calf birth weight (kg); MW = Mature body weight (kg), 682 kg for Holstein cow 

by default. 

CW	= '(18	+	(DOP – 190)	×	0.665)	× (CBW
45
) , if DOP	>	190

0, otherwise
 [A.2] 

where CW = Conceptus weight (kg); DOP = Days of pregnancy. 

NEmaint	= '
0.08	×	(BW – CW)0.75, for  cows

((SBW – CW)0.75)×%0.086	×	COMP	+ 0.0007	×	(20 – PrevTemp)&, for heifers 

 [A.3] 

where NEmaint = Maintenance requirement, Mcal; SBW = shrunk body weight, kg; COMP = 

0.8 + (CS9 – 1) × 0.05; CS9 = Body condition score based on a 1 to 9 system; PrevTemp = 

Average ambient temperature for last month, °C. 
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NEa1 = *cG	×	BW, if Housing	=	Grazing
0, otherwise  [A.4] 

where NEa1 = Net energy for activity requirement caused by grazing system, Mcal; cG = Grazing 

coefficient (0.0012 for cows and 0.0025 for heifers). 

NEa2 = *0.006	×	BW, if Topography	=	Hilly
0, otherwise  [A.5] 

where NEa2 = Net energy for activity requirement caused by hilly topography, Mcal. 

NEa =	Distance	×	0.00045	×	BW	+	NEa1	+	NEa2 [A.6] 

where NEa = Total net energy for activity requirement, Mcal; Distance = Daily walking distance, 

km. 

NEMNEM = NEmaint + NEa [A.7] 

where NEM = Net energy requirements for maintenance, Mcal. 

NEG requirement 

MSBW = 0.96 × MW [A.8] 

where MSBW = Mature shrunk body weight, kg. 

SBW =0.96 × BW [A.9] 

where SBW = Shrunk body weight, kg. 

EBW = 0.891 × SBW [A.10] 

where EBW = Empty body weight, kg. 

EQSBW =	(SBW	–	CW)	×	 478
MSBW

 [A.11] 

where EQSBW = Equivalent shrunk body weight, kg. 
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ADG =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

(0.92	–	0.82)	×	MSBW
CI

, if Parity	=	1
(1 – 0.92)	×	MSBW

CI
, if Parity	=	2

0, if Parity	>	2
(0.55	×	MSBW	–	SBW)

(Age1stBred – Age)	×	30.4
, for heifers before breeding

(0.82	×	MSBW	– SBW)
(Age1st – Age)	×	30.4

, for heifers after breeding

 [A.12] 

where ADG = Average daily gain, kg; CI = Calving interval, d; Age1stBred = First breeding age, 

month; Age = Current age, month; Age1st = First calving age, month. 

EQEBG =	0.956	×	ADG [A.13] 

where EQEBG = Equivalent empty weight gain, kg. 

EQEBW =	0.891	×	EQSBW [A.14] 

where EBW = Equivalent shrunk body weight, kg. 

NEG =	0.0635	×	EQEBW0.75	×	EQEBG1.097 [A.15] 

where NEG = Net energy for growth requirement, Mcal. 

NEL requirement 

Net energy requirements for lactation requirement includes two parts: lactation requirement 

and pregnancy requirement. 

Milken	=	0.0929	×	Fat_Milk	+	 0.0547
0.93

	×	TP_Milk	+	0.0395	×	Lactose_Milk [A.16] 

where Milken = Milk energy, Mcal/kg of milk production; Fat_Milk = Milk fat proportion; 

TP_Milk = Milk true protein proportion; Lactose_Milk = Milk lactose proportion. 

NElact	=	Milken	×	Milk [A.17] 

where NElact = Net energy requirement for lactation, Mcal. 

MEpreg = '(2	×	0.00159	×	DOP	– 0.0352)	× CBW
45	×	0.14

, if DOP	>	190
0, otherwise

 [A.18] 
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where MEpreg = Metabolizable energy requirement for pregnancy, Mcal. 

NEpreg =	MEpreg	×	0.64 [A.19] 

where NEpreg = Net energy requirement for pregnancy, Mcal. 

NEL =	NElact	+	NEpreg [A.20] 

where NEL = Net energy for lactation requirement, Mcal. 

Protein requirements 

Protein requirement is divided into 4 components: maintenance, growth, pregnancy and 

lactation (all in metabolizable protein, g). 

MPm = 0.3 × (BW – CW)0.6 + 4.1 × (BW – CW)0.5 + (30 × DMI – 0.125 × MPbact) + 7.045 × 

DMI	 [A.21]	

where MPm = Metabolizable protein requirement for maintenance, g; MPbact = Bacteria 

metabolizable protein production, g. 

NPg = '
0, if ADG	=	0

ADG	×	(268	–	29.4	×	 NEg
ADG

)	 [A.22] 

where NPg = Net protein requirement for growth, g. 

EffMP_NPg = '
(83.4	–	0.114	×	EQSBW)

100
, if EQSBW	≤	478

0.28908, otherwise
 [A.23] 

where EffMP_NPg = Efficiency of converting metabolizable protein to net protein. 

MPg = NPg
EffMP_NPg

 [A.24] 

where MPg = Metabolizable protein requirement for growth, g. 

MPpreg	= '(0.69	×	DOP	–	69.2)	×	 CBW
45×0.33

, if DOP	>	190
0, otherwise

 [A.25] 

where MPpreg = Metabolizable protein requirement for pregnancy, g. 

MPlact =	Milk	×	 TPMilk
100

	×	 1000
0.67

 [A.26] 
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where MPlact = Metabolizable protein requirement for lactation, g. 

MPreq =	MPm	+	MPg	+	MPpreg	+	MPlact [A.27] 

Calcium requirement 

Calcium requirement is divided into 4 components: maintenance, growth, pregnancy and 

lactation (all in g). 

Camain =/
0.031	×	BW	+	0.08	×	 BW

100
, if DOP	>	0

0.0154	×	BW+ 0.08	×	 BW
100

, if DOP	=	0
 [A.28] 

where Camain = Maintenance calcium requirement, g. 

Cagrowth	=	9.83	×	MW0.22	×	BW-0.22	×	 ADG
0.96

 [A.29] 

where Cagrowth = Calcium growth requirement, g. 

Capreg =0
0.02456	× exp%(0.05581	–	0.00007	×	DOP)	×	DOP& –	0.02456	×

exp (%0.05581	–	0.00007	×	(DOP	–	1)&	×	(DOP	–	1)) , if DOP	>	190
0, if DOP≤190

 [A.30] 

 

where Capreg = Calcium pregnancy requirement, g; DOP = Days of pregnancy. 

Calact=	1.22	×	Milk [A.31] 

where Calact = Calcium lactation requirement, g; Milk = Milk production, kg. 

Careq=	Camain	+	Cagrowth	+	Capreg	+	Calact [A.32] 

where Careq = Total calcium requirement, g. 

Phosphorus requirement 

Phosphorus requirement is divided into 4 components: maintenance, growth, pregnancy and 

lactation (all in g). 

Pmain = *	DMI	+	0.002	×	BW, for lactating cows and dry cows
0.8	×	DMI	+ 0.002	×	BW, for heifers  [A.33] 
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where Pmain = Phosphorus maintenance requirement, g. 

Pgrowth	=	%1.2	+	4.635	×	MW0.22	×	BW-0.22&	×	 ADG
0.96

 [A.34] 

where Pgrowth = Phosphorus growth requirement, g. 

Ppreg	=0
0.02743	× exp%(0.05527	–	0.000075	×	DOP)	×	DOP& –

0.02743	× exp (%0.05527	–	0.000075	×	(DOP – 1)&	×	(DOP – 1)) , if DOP	>	190
0, if DOP	≤	190

 [A.35] 

where Ppreg = Phosphorus pregnancy requirement, g. 

Plact	=	0.9	×	Milk [A.36] 

where Plact = Phosphorus lactation requirement, g. 

Preq	=	Pmain	+	Pgrowth	+	Ppreg	+	Plact [A.37] 

where Preq = Total phosphorus requirement, g. 

Dry matter intake estimation 

Dry matter intake was estimated for lactating cow and dry cow, but not for heifers. 

FCM =	(0.4	×	Milk) + (15	×	Fat_Milk	× Milk
100

) [A.38] 

where FCM = Fat corrected milk, kg. 

DMIest	=/
(0.372	×	FCM	+	0.0968	×	BW0.75)	×	(1	–	exp%–0.192	×	(WOL	+	3.67)&, for lactating cows

$1.97 – 0.75	×	exp%0.16	×	(DOP – 280)&'

100
	×	BW, for dry cows

 [A.39] 

where DMIest = Dry matter intake estimation, kg; WOL = Week of lactation, which is the 

integer part of days in milk (DIM) divided by 7; DOP = Days of pregnancy. 

Energy supply 

Energy supply from the feed include NEm, NEl and NEg. NEm provides energy for 

maintenance and activity requirement; NEl provides energy for lactation and pregnancy; NEg 
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provides energy for growth. Values of NEl are corrected based on the intake level, but NEm and 

NEg are not affected by the intake according to NRC (2001). 

TotalTDN	=∑ Feedi	×	
TDNi
100i  [A.40] 

TotalTDN = Dietary TDN content, kg; Feedi = The amount of feed i in the diet, kg; TDNi = 

standard TDN value of feed i in NRC (2001). 

TDNconc	=	 TotalTDN
DMI

	×	100 [A.41] 

where TDNconc = TDN concentration, %. 

IntakeLevel	= 2
1, if TotalTDN	<	0.035×BW0.75

TotalTDN
0.035×BW0.75 , otherwise

 [A.42] 

where IntakeLevel = is the incremental intake above maintenance, dimensionless. 

Discount	= '
1, if TDNconc	<	60

%TDNconc	–	(0.18	×	TDNconc – 10.3)	×	(IntakeLevel	–	1)&
TDNconc

, otherwise [A.43] 

where Discount = TDN discount, TDN digestibility decrease caused by DMI and TDNconc. 

TDNact( = TDN( × Discount [A.44] 

where TDNacti = Actual TDN content of feed i, %; TDNi = Standard TDN content of feed i, %. 

DEacti	=	DEi	×	Discount [A.45] 

where DEacti = Actual digestible energy of feed i, Mcal/kg; DEi = Standard DE feed i in NRC 

(2001), Mcal/kg. 

MEacti	=0

1.01	×	DEacti	–	0.45	+	0.0046	×	(EEi	–	3), if feed type is not fat and
 fat content	≥	3%;

1.01	×	DEacti	–	0.45, if feed type is not fat and fat content	≤	3%;
DEi, if feed type is fat

 [A.46] 

where MEacti = Corrected metabolizable energy of feed i, Mcal/kg; EEi = Fat content of feed i, 

%. 
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NElacti	=

⎩
⎪
⎨

⎪
⎧ 0.703	×	MEacti	–	0.19	+	 0.097	×	MEacti	+	0.19

97
	×	(EEi	–	3), if feed	

type is not fat and fat content	≥	3%;
0.703	×	MEacti	–	0.19, if feed type is not fat and fat content	≤	3%;

DEacti	×	0.8, if feed type is fat

 [A.47] 

where NElacti = Corrected net energy for lactation of feed i, Mcal/kg. 

NEmi	= *
1.37	×	MEi	–	0.138	×	MEi

2	+	0.0105	×	MEi
3	–	1.12, if feed type is not fat	

MEacti	×	0.8, if feed type is fat
 [A.48] 

where NEmi = Net energy for maintenance of feed i, Mcal/kg; MEi = Standard metabolizable 

energy of feed i in NRC (2001), Mcal/kg. 

NEgi= *
1.42	×	MEi	–	0.174	×	MEi

2	+	0.0122	×	ME3	–	1.65, if feed type is not fat 
MEi	×	0.55, if feed type is fat

 [A.49] 

where NEgi = Net energy for growth of feed i, Mcal/kg. 

Protein supply 

Protein supply from the feed include 2 parts: digestible rumen undegradable protein (RUP) 

and digestible microbial crude protein (MCP), which is produced through rumen degradable 

protein (RDP). Production of MCP requires nitrogen source and energy source, so MCP is either 

nitrogen limited or energy limited. 

Kpi	=

⎩
⎪
⎨

⎪
⎧ 2.904	+ 1.375	×	 DMI

BW
	×	100	–	0.02	×	PercentConc, if feedi is concentrate

3.362	+	0.479	×	 DMI
BW

	×	100	–	0.017	×	NDFi	–	0.007	×	PercentConc, if feedi is forage

3.054	+	0.614	×	 DMI
BW

	×	100, if feedi is wet forage

 [A.50] 

where Kpi = Protein passage rate of feed i, %/h; PercentConc = Dietary concentrate percentage, 

% of DM; NDFi = Neutral detergent fiber (ether extract) content of feed i, %. 

RDPi	= 2
Kdi

Kdi+Kpi
×	

NBi
100
	×	CPi	+	

NAi
100
	×	CPi, if Kpi	+	Kdi	>	0

0, if Kpi	+	Kdi	≤	0
 [A.51] 
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where RDPi = Rumen degradable protein of feed i, % of DM; Kdi = Protein degradation rate of 

feed i, %/h; NAi = Fraction A of protein of feed i, % of CP; NBi = Fraction B of protein of feed i, 

% of CP. 

RUPi	=	CPi	–	RDPi [A.52] 

where RUPi = Rumen undegradable protein of feed i, % of DM. 

MPbact	=	0.64	×	min	(1000	×	0.13	×	TDNactdiet, 1000	×	0.85	×	RDPdiet) [A.53] 

where MPbact = Metabolizable bacterial protein production, g; TDNactdiet = Dietary actual TDN, 

kg; RDPdiet = Dietary RDP, kg. 

RUPdiet	=∑ feedii ×	RUPi	×	dRUPi [A.54] 

where RUPdiet = Dietary digestible RUP, kg; feedi = Dry matter intake of feed i, kg; dRUPi = 

RUP digestibility of feed i, % of RUP. 

MPsupply	=	MPbact	+	RUPdiet	+	0.4	×	11.8	×	DMI [A.55] 

where MPsupply = Total metabolizable protein supply; 0.4 × 11.8 × DMI = Endogenous protein. 

Mineral supply 

Casupply=∑ feedii ×	Cai	×	
dCai
100

 [A.56] 

where Casupply = Dietary calcium supply, kg; Cai = Calcium content of feed i, % of DM; dCai = 

Calcium digestibility of feed i, % of Ca. 

Psupply	=	 ∑ feedii ×	Pi	×	
dPi
100

 [A.57] 

where Psupply = Dietary phosphorus supply, kg; Pi = Phosphorus content of feed i, % of DM; dPi 

= Phosphorus digestibility of feed i, % of P. 
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Appendix 2 

Table A2.1. Feeds from NRC (2001) used in 500 simulations 

Entry1 Feed Description Type2 Price3 
1 Alfalfa Meal, 17% CP Forage 0.32 
2 Almond Hulls Conc 0.16 
3 Apple Pomace, wet Conc 0.24 
4 Bakery byproduct Byproduct meal Conc 0.15 
5 Bakery byproduct Bread, waste Conc 0.15 
6 Bakery byproduct Cereal byproduct Conc 0.15 
7 Bakery byproduct Cookie byproduct Conc 0.15 
8 Barley Grain, rolled Conc 0.18 
9 Barley Malt sprouts Conc 0.18 
10 Barley Silage, headed Forage 0.18 
11 Beet, sugar Pulp dried Conc 0.27 
12 Bermudagrass Coastal, hay, early head Forage 0.16 
13 Bermudagrass Tifton-85, hay, 3-4wk growth Forage 0.16 
14 Blood Meal, ring dried Conc 0.86 
15 Blood Meal, batch dried Conc 0.86 
16 Brewers grains Dried Conc 0.23 
17 Brewers grains Wet Conc 0.23 
18 Canola Seed Conc 0.31 
19 Canola Meal, mech. Extracted Conc 0.31 
20 Chocolate Byproduct Conc 0.18 
21 Citrus Pulp dried Conc 0.03 
22 Corn, yellow Cobs Conc 0.18 

23 Corn, yellow Distillers grains with solubles, 
dried Conc 0.23 

24 Corn, yellow Gluten feed, dried Conc 0.19 
25 Corn, yellow Gluten meal, dried Conc 0.57 
26 Corn, yellow Grain, cracked, dry Conc 0.18 
27 Corn, yellow Grain, ground, dry Conc 0.18 
28 Corn, yellow Grain, steam-flaked Conc 0.18 
29 Corn, yellow Grain, rolled, high moisture Conc 0.18 
30 Corn, yellow Grain, ground, high moisture Conc 0.18 
31 Corn, yellow Grain and cob, dry, ground Conc 0.18 

32 Corn, yellow Grain and cob, high moisture, 
ground Conc 0.18 

33 Corn, yellow Hominy Conc 0.18 
34 Corn, yellow Silage, immature <25% DM Forage 0.18 
35 Corn, yellow Silage, normal 32-38% DM Forage 0.18 
36 Corn, yellow Silage, mature >40% DM Forage 0.18 
37 Cotton seed Whole seeds with lint Conc 0.26 
39 Cotton seed Meal, solvent, 41% CP Conc 0.36 
43 Fats and oils Tallow Fat 0.94 
45 Feathers Hydrolyzed meal Conc 0.38 



 41 

49 Grasses, cool season Pasture, intensively managed Forage 0.21 
50 Grasses, cool season Hay, all samples Forage 0.24 
51 Grasses, cool season Hay, immature <55% NDF Forage 0.24 
52 Grasses, cool season Hay, mid maturity 55-60% NDF Forage 0.24 
53 Grasses, cool season Hay, mature >60% NDF Forage 0.24 
54 Grasses, cool season Silage, all samples Forage 0.24 
55 Grasses, cool season Silage, immature <55% NDF Forage 0.24 

56 Grasses, cool season Silage, mid maturity 55-60% 
NDF Forage 0.24 

57 Grasses, cool season Silage, mature >60% NDF Forage 0.24 

58 Grass-legume mixtures pr. 
gr.  (17-22% hcel.) Hay, immature <51% NDF Forage 0.24 

59 Grass-legume mixtures pr. 
gr.  (17-22% hcel.) Hay, mid maturity 51-57% NDF Forage 0.24 

60 Grass-legume mixtures pr. 
gr.  (17-22% hcel.) Hay, mature >57% NDF Forage 0.24 

61 Grass-legume mixtures pr. 
gr.  (17-22% hcel.) Silage, immature <51% NDF Forage 0.24 

62 grass-legume mixtures pr. 
gr.  (17-22% hcel.) 

Silage, mid maturity 51-57% 
NDF Forage 0.24 

63 Grass-legume mixtures pr. 
gr.  (17-22% hcel.) Silage, mature >57% NDF Forage 0.24 

64 Mixed grass-legume (12-
15% hcel.) Hay, immature <47% NDF Forage 0.26 

65 Mixed grass-legume (12-
15% hcel.) Hay, mid maturity 47-53% NDF Forage 0.26 

66 Mixed grass-legume (12-
15% hcel.) Hay, mature >53% NDF Forage 0.26 

67 Mixed grass-legume (12-
15% hcel.) Silage, immature <47% NDF Forage 0.26 

68 Mixed grass-legume (12-
15% hcel.) 

Silage, mid maturity 47-53% 
NDF Forage 0.26 

69 Mixed grass-legume (12-
15% hcel.) Silage, mature >53% NDF Forage 0.26 

70 Grass-legume mixtures pr. 
lg. (10-13% hcel.) Hay, immature <44% NDF Forage 0.24 

71 Grass-legume mixtures pr. 
lg. (10-13% hcel.) Hay, mid maturity 44-50% NDF Forage 0.24 

72 Grass-legume mixtures pr. 
lg. (10-13% hcel.) Hay, mature >50% NDF Forage 0.24 

73 Grass-legume mixtures pr. 
lg. (10-13% hcel.) Silage, immature <44% NDF Forage 0.24 

74 Grass-legume mixtures pr. 
lg. (10-13% hcel.) 

Silage, mid maturity 44-50% 
NDF Forage 0.24 

75 Grass-legume mixtures pr. 
lg. (10-13% hcel.) Silage, mid maturity >50% NDF Forage 0.24 
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76 Legumes, forage Pasture, intensively managed Forage 0.23 
77 Legumes, forage Hay, all samples Forage 0.31 
78 Legumes, forage Hay, immature <40% NDF Forage 0.31 
79 Legumes, forage Hay, mid maturity 40-46% NDF Forage 0.31 
80 Legumes, forage Hay, mature >46% NDF Forage 0.31 
81 Legumes, forage Silage, all samples Forage 0.31 
82 Legumes, forage Silage, immature <40% NDF Forage 0.31 

83 Legumes, forage Silage, mid maturity 40-46% 
NDF Forage 0.31 

84 Legumes, forage Silage, mature >46% NDF Forage 0.31 
85 Linseed (flax) Meal, solvent Conc 0.35 
88 Molasses Beet sugar Conc 0.25 
89 Molasses Sugarcane Conc 0.25 
90 Oats Grain, rolled Conc 0.22 
91 Oats Hay, headed Forage 0.12 
92 Oats Silage, headed Forage 0.12 
98 Sorghum, grain type Grain, dry rolled Conc 0.14 
99 Sorghum, grain type Grain, steam-flaked Conc 0.14 
100 Sorghum, grain type Silage Forage 0.26 
101 Sorghum, sudan type Hay Forage 0.21 
102 Sorghum, sudan type Silage Forage 0.26 
104 Soybean Meal, expellers, 45% CP Conc 0.37 
105 Soybean Meal, nonenzymatically browned Conc 0.37 
106 Soybean Meal, solvent, 44% CP Conc 0.38 
107 Soybean Meal, solvent, 48% CP Conc 0.38 
108 Soybean Seeds, whole Conc 0.41 
109 Soybean Seeds, whole roasted Conc 0.41 
110 Soybean Silage, early maturity Forage 0.26 
111 Sunflower Meal, solvent Conc 0.26 
114 Triticale Silage, headed Forage 0.21 
115 Wheat Bran Conc 0.19 
116 Wheat Grain, rolled Conc 0.21 
118 Wheat Middlings Conc 0.16 

122 Calcium Phosphate 
monobasic Ca(H2PO4)2 Mineral 0.96 

1Entry numbers refer to Tables 15–1 and 15–2a in NRC (2001). 
2Feed type, Conc = concentrate. 
3Feed price in $/kg of DM based on Penn State University feed price list. 
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Abstract 

A dynamic model describing the thermal balance of Holstein dairy cattle was developed. 

The model quantified the heat flow of five main nodes at the body core, top and bottom skin, and 

top and bottom coat of a dairy cow. Heat production by the animal, heat conduction through the 

body core, skin and coat, and heat flows between the animal and the environment, including 

convection, evaporation, radiation and conduction to the ground while lying down, were 

calculated based on existing models and physical principles. The model requires climate 

information (Julian day number, air temperature, relative humidity, wind speed and annual 

average air temperature), animal information (body weight, milk production, feed intake and 

feed ingredients) and location (latitude and altitude) as inputs, and returns body core, skin and 

coat temperatures as outputs. The thermal balance model was evaluated through two datasets. 

The root mean squared error of prediction for body temperature was 1.16 °C (2.9% of the 

observation mean) and 0.40 °C (1.0% of the observation mean) for the two datasets, respectively. 

A simulation study was conducted based on a Holstein dairy cow with 600 kg of body weight 

and 25 kg of daily milk yield under a typical California summer environment for three days. The 

average simulated temperatures of body, top and bottom skin, and top and bottom coat were 
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40.9, 35.6, 35.9, 34.1 and 33.7 °C, respectively. A local and a global sensitivity analyses showed 

that heat production, surface area and the parameters relative to respiration and sweating were 

the most sensitive. The model is able to predict the dynamic change of body temperature under 

hot weather, and to guide the use of physical cooling strategies, such as shade, fans, sprinklers 

and cooling mats in dairy facilities. 

Key words: dairy cow, thermal balance model, heat stress 

Introduction 

Thermal stress is a major factor that can cause losses in production of dairy cows, who 

prefer an ambient temperature between 5 and 25 ℃ (Roenfeldt, 1998). Heat stress can be defined 

as the sum of external forces (dry bulb temperature, humidity, wind speed and radiation) that act 

to displace the animal’s body temperature from ground state (Hansen et al., 2020). Heat stress 

negatively affects the health of animals through their physiology (Lacetera et al., 1996), 

metabolism (Nardone et al., 2010) and immune system (Das et al., 2016), resulting in decreased 

production. Temperature humidity index (THI), calculated using air temperature and relative 

humidity, has been used as a way to express heat stress experienced by animals (Mader et al., 

2006). However, THI evaluates the thermal environment instead of the thermal condition of the 

animal, therefore it is not accurate enough to evaluate thermal stress. Body temperature of dairy 

cattle shows great susceptibility to hot weather (Akari et al., 1984), which makes it a more 

sensitive indicator of thermal stress. When the body temperature is over 39 ℃ under hot weather 

conditions, cows are likely to be in heat stress (Zimbelman et al., 2009). It has been suggested 

that milk production significantly decreases when rectal temperature is over 39 ℃ for more than 

16 h (Igono et al., 1990), with 1.8 kg of production decline for every 0.55 ℃ increase in rectal 

temperature (West, 2003). Increase of body temperature also depresses the conception rate 
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(Nabenishi et al., 2011) and cause severe damage on follicles when body temperature is over 40 

℃ (Roth et al., 2000). 

Many attempts have been made to investigate the heat flow and temperature change of dairy 

cows under different climate conditions. Some studies focused on certain types of heat transfer 

mechanisms, including evaporative cooling (Gebremedhin et al., 2001; Maia et al., 2005a; 

Berman, 2006), respiratory heat loss (da Silva et al., 2002; Maia et al., 2005) and solar radiation 

(Yamamoto et al., 1994). However, this approach does not connect heat transfer with body 

temperature. McArthur (1987) developed a comprehensive model describing the thermal 

interaction between animal and microclimate, which was modified by Turnpenny et al. (2000a), 

but their model was not evaluated thoroughly and can only predict body temperature under a 

static environment (i.e., environmental conditions do not change). Thompson et al. (2014a) 

developed a thermal balance model for beef cattle by connecting the heat flows with body 

temperature. Their model structure allows for the prediction of dynamic body temperature under 

a constantly changing environment, thus was used in this study. We aim to develop a thermal 

balance model for dairy cows in order to understand the thermal conditions of the animal and to 

improve the heat mitigation strategies under hot climate. 

Materials and Methods 

Model Description 

The most important difference between our model and previous ones (McGovern and 

Bruce, 2000; Turnpenny et al., 2000a; Thompson et al., 2014a) is that our model includes heat 

conduction between the animal and the ground surface when the animal lies down, while 

previous ones do not. Although cows in heat stress tend to stand rather than lie down (Shultz, 
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1984; Chen et al., 2016), lying down still accounts for about one third of the total time budgets of 

dairy cows in summer (Cook et al., 2007), therefore it is necessary to consider it. 

The heat balance model developed in this study requires climate information (Julian day 

number, air temperature, relative humidity, wind speed and annual average air temperature), 

animal information (body weight, milk production, feed intake and feed ingredients), location 

(latitude and altitude) and timing of behaviors (lying down and standing up) as inputs for animals 

outdoor, and returns body core, skin and coat temperatures as outputs. Black globe temperature 

is required as an additional input for animals located indoor. The temperatures of body core, skin 

and coat were calculated in absolute units (Kelvin) in the model but converted to Celsius degree 

in results for ease of understanding. The model and all the analyses were coded in R statistical 

software (Version 3.5.3, R core team, 2019). The FME package (Soetaert and Petzoldt, 2010) 

was used to solve the differential equations. 

Differential equations. A heat balance model with five main nodes (the surface layer of 

body core, top and bottom skin and, top and bottom coat) was developed. A similar model 

structure was adopted in previous studies (McGovern and Bruce, 2000; Thompson et al., 2014a) 

to represent different temperatures and thermal properties (conductivity, specific heat, etc.) of 

each node. The skin and coat were divided into top and bottom parts to account for different heat 

transfer mechanisms occurring in these regions when the animal lies down, with the bottom skin 

and coat representing the part in contact with the ground surface (0.2; Ortiz et al., 2015) and the 

top part representing the rest (0.8). The geometry of the nodes is represented by three concentric 

cylinders (top and bottom skin and coat consist of two cylinders), and the control volume 

surrounding each node has uniform internal temperature and thermal properties. The temperature 

of each node is regulated by different heat flows as shown in Fig. 1. The dynamic change of heat 
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at each node results in temperature changes. For the body core node, the heat flows include heat 

production by the animal, heat dissipation through respiration, and heat conduction between 

body core and skin. For the top skin node, the heat flows include heat conduction between body 

core and skin, heat conduction between skin and coat, and heat dissipation through evaporation. 

The bottom skin node shares the same heat flows as the top one when the animal stands up. 

When the animal lies down, we assumed that evaporation does not happen at the bottom skin, 

therefore the heat flows include the conduction between body core and skin and the conduction 

between skin and ground surface. For the top coat node, the heat flows include solar radiation, 

heat conduction between skin and coat, heat convection at the coat surface, and long wave 

radiation between the coat and the surrounding. The bottom coat node has the same heat flows as 

the top one when the animal stands up. When the animal lies down, no heat transfer was 

considered for the bottom coat, and we assumed that it has the same temperature as bottom skin. 

Besides, we also assumed that no heat transfer occurs between top and bottom skin, or between 

top and bottom coat. Heat flows are in the unit of W to represent heat transfer rate in Fig. 1 and 

can be converted to heat flux (W∙m-2) by dividing by the surface area to represent the heat 

transfer rate per unit of area. Five differential equations representing the dynamic heat and 

temperature change of body core, top and bottom skin, and top and bottom coat can be developed 

based on the nodal energy balances as follows: 

Body core node: d(Mb cpb Tb)/dt = HE – A [pc q’’cond, b-s1 + (1 – pc) q’’cond, b-s2 + q’’resp] (1.1) 

Top skin node: d[(1 – pc)Ms cps Ts1]/dt = (1 – pc) A (q’’cond, b-s1 – q’’cond, s1-c1 – q’’evap1)  (1.2) 

Bottom skin node:  

d(pc Ms cps Ts2)/dt = '
pc	A (q’’cond, b-s2 –	q’’cond, s2-c2	– q’’evap2), when standing up 

pc A (q’’cond, b-s2 – q’’cond, s2-g), when lying down  (1.3) 

Top coat node: d[(1 – pc)Mc cpc Tc1]/dt = (1 – pc) A (q’’cond, s1-c1 + q’’sol1 – q’’conv1 – q’’lw1) (1.4) 
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Bottom coat node:  

d(pc Mc cpc Tc2)/dt = *
pc A (q’’cond, s2-c2 + q’’sol2 – q’’conv2 – q’’lw2), when standing up 

0, when lying down  (1.5) 

where A (m2) is animal surface area; Mb, Ms and Mc (kg) are the mass of body core, skin and 

coat, respectively; cpb, cps and cpc (J kg-1 K-1) are the specific heat capacity of body core, skin and 

coat, respectively; Tb, Ts1, Ts2, Tc1 and Tc2 (K) are the temperature of body core, top skin, bottom 

skin, top coat and bottom coat, respectively; pc (dimension less) is the proportion of contacting 

surface to the animal surface area when the animal lies down, taken equal to 0.2 (Ortiz et al., 

2015); HE (W) is the heat production by animal; q’’cond, b-s1 and q’’cond, b-s2 (W m-2) are heat 

conduction between body core and top and bottom skin, respectively; q’’resp (W m-2) is heat loss 

through respiration; q’’cond, s1-c1 and q’’cond, s2-c2 (W m-2) are heat conduction between top skin and 

coat and between bottom skin and coat, respectively; q’’evap1 and q’’evap2 (W m-2) are heat 

evaporation through sweating at top and bottom skin, respectively; q’’cond, s2-g (W m-2) are heat 

conduction between bottom skin and ground surface; q’’sol1 and q’’sol2 (W m-2) is solar radiation 

at top and bottom coat, respectively; q’’conv1 and q’’conv2 (W m-2) are heat convection at top and 

bottom coat, respectively; q’’lw1 and q’’lw2 (W m-2) are the net heat flux from the animal to the 

environment through long wave radiation at top and bottom coat, respectively. One should note 

that all the heat transfer could happen in both directions depending on the temperature difference 

between two surfaces, except evaporation and solar radiation. For example, q’’cond, b-s1 is 

subtracted in equation 1.1 to indicate a heat outflow from the body core, which is true when the 

body temperature is higher than the top skin temperature. When the top skin temperature is 

higher, q’’cond, b-s1 is negative and becomes a heat inflow from top skin to body core.  
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The condensed model equations are shown below, and detailed description of the model 

equations is presented in Appendix A. The differential equations allow for solving the five 

unknowns, Tb, Ts1, Ts2, Tc1 and Tc2 after quantifying all the other variables. 

Heat production by the Animal. The average daily heat production (HE, W) can be calculated as: 

HE = (ME – RE)/86400  (2.1) 

where ME is daily metabolizable energy intake (J); RE is daily retained energy (J); 86400 is the 

amount of time per day in second. Given the feed ingredients of a diet, feed intake, milk 

production and body weight change, ME and RE can be estimated based on NRC (2001). Heat 

production can also be roughly estimated through an empirical equation (Purwanto et al., 1990) 

when detailed dietary information is not available: 

HE = ch BW0.75/3.6  (2.2) 

where ch (dimensionless) is the heat production coefficient equal to 44.1 for high production 

cows (daily milk yield ≥ 30 kg), 37.8 for intermediate production cows (daily milk yield < 30 

kg) and 29.7 for dry cows. Some researchers have claimed that drinking cold water helps with 

heat mitigation in summer (Bewley et al., 2008) while others only found transient effect of cold 

water (Baker et al., 1988). We roughly estimated the heat mitigation through drinking water by 

assuming a cow drinking 100 L of 25 °C water per day and heating all of it up to the body 

temperature (38.5 °C). All water consumed would be lost through manure, milk or sweat. The 

amount of heat absorbed by the consumed water (5.6 × 106 J approximately) is less than 1% of 

the total heat production by the animal based on our calculation, therefore the cooling effect of 

drinking water is not considered in the model.  

Heat conduction between body core and skin. Heat conduction between body core and top 

skin surface (q’’cond, b-s, W m-2) can be calculated based on McArthur (1987): 
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q’’cond, b-s1 = ρcp (Tb – Ts1)/rs1 (3.1) 

where ρcp (J m-3 K-1) is volumetric heat capacity of air and rs1 (s m-1) is skin resistance. Skin 

resistance is a function of Ts1, reflecting the change of skin conductivity in response to heat stress 

(McArthur, 1987): 

rs1 = max (–5.44 (Ts1 – 273.15) + 225, 29) (3.2) 

where 29 s m-1 is the minimum of skin resistance. The conduction between body core and bottom 

skin surface can be calculated by replacing Ts1 with Ts2 in equations 3.1 and 3.2. 

Heat loss through respiration Heat loss through respiration (q’’resp, W m-2) consists of 

sensible heat transfer (q’’sen, W m-2) and latent heat transfer (q’’lat, W m-2): 

q’’resp = q’’sen + q’’lat  (4.1) 

Sensible heat transfer happens between inhaled air and exhaled air due to temperature difference, 

while latent heat transfer happens due to the transformation of water from liquid to vapor at lung 

without temperature change. The equations are described as follows (McGovern, 2000; Monteith 

and Unsworth, 2013): 

q’’sen = Vt RR ρcp (Tve – Tva)/A  (4.2) 

q’’lat = λ Vt RR (χe - χa)/A (4.3) 

where Vt (m3 breath-1) is tidal volume; RR (breath s-1) is respiration rate; Tve (K) and Tva (K) are 

virtual temperatures of exhaled air and inhaled air, respectively; λ (2430 J g-1) is latent heat of 

vaporization of water (Monteith and Unsworth, 2013); A (m2) is area of animal body surface; χe 

(g m-3) and χa (g m-3) are absolute humidity of exhaled air and inhaled air, respectively.   

Heat conduction between skin and coat. Heat conduction between top skin and top coat 

(q’’cond, s-c, W m-2) is calculated as: 

q’’cond, s1-c1 = keff (Ts1 – Tc1)/dc  (5.1) 
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where keff (W m-1 K-1) is effective thermal conductivity of coat, and dc (0.0025 m) is the coat 

thickness (Bertipaglia et al., 2005). Coat layer is a mixture of fur and air, the thermal 

conductivity for which is derived by Gebremedhin et al. (2001) as: 

keff = 0.5 (kx + ky)  (5.2) 

kx = (ρh π dh2/4) kf + (1 – ρh π dh2/4) ka  (5.3) 

ky = ka (1/ρh0.5 – dh) ρh0.5 + dh ka kf/(dh ka + (1/ρh0.5 – dh) kf)  (5.4) 

where kx (W m-1 K-1) is horizontal thermal conductivity; ky (W m-1 K-1) is vertical thermal 

conductivity; ρh (9.87 hairs mm-2) is fur density (Bertipaglia et al., 2005); dh (0.0625 mm) is hair 

diameter (Bertipaglia et al., 2005); kf (0.26 W m-1 K-1) is fur conductivity (Gebremedhin et al., 

2016); ka (0.024 W m-1 K-1) is air conductivity. Based on the above parameter values, keff = 

0.028 W m-1 K-1. The conduction between bottom skin and bottom coat can be calculated by 

replacing Ts1 and Tc1 with Ts2 and Tc2 in equation 5.1. 

Heat evaporation through sweating. Heat loss through sweating is limited by either 

sweating rate or potential evaporation rate, which is dependent on the environmental conditions 

(Thompson et al., 2014a). Therefore, the minimum value of two functions (Gebremedhin and 

Wu, 2001; Silva and Maia, 2011) based on sweating rate and potential evaporation rate is used to 

represent the heat evaporation at the top skin (q’’evap1, W m-2):  

q’’evap1 = min (31.5 + 3.67 exp[(Ts1 – 301.05)/2.19],  λ (χs1 - χa)/[1/hm + (dc + da)/D]) (6.1) 

where χs1 (g m-3) is absolute humidity at the top skin; χa (g m-3) is absolute humidity of air, which 

is the same as the absolute humidity of inhaled air in equation 4.3; hm (m s-1) is mass transfer 

coefficient; da (m) is laminar thickness; D (dimensionless) is diffusion coefficient of water vapor 

in air. The first part is an empirical equation representing q’’evap1 through sweating rate based on 

Ts1, while the second part describes the potential evaporation rate based on the environmental air 
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conditions. Heat evaporation at the bottom skin can be calculated by replacing Ts1 with Ts2 in 

equation 6.1. 

Heat convection at coat surface. Conduction occurs between two still surface while 

convection occurs between a still surface and fluid in motion, therefore the heat transfer between 

coat surface and air is considered as convection. Heat convection at the top coat surface (q’’conv1, 

W m-2) can be expressed using Newton’s law of cooling as: 

q’’conv1 = hc (Tc1 – Ta)  (7.1) 

where hc (W m-2 K-1) is the convection heat transfer coefficient, which is a function of Nusselt 

number and surface properties (Monteith and Unsworth, 2013). The calculation of Nusselt 

number is based on Reynolds number, which is dependent on the nature of the fluid motion, 

surface geometry and the assortment of fluid thermodynamic (Gebremedhin and Wu, 2001). The 

convection at the bottom coat can be calculated by replacing Tc1 with Tc2 in equation 7.1. 

Heat flux through long wave radiation. Thermal radiation is the energy emitted by matter 

that is at a nonzero absolute temperature. The radiation between the top coat surface and 

surroundings (q’’lw1, W m-2) has longer wavelength than solar radiation, and can be prescribed by 

the Stefan-Boltzmann law: 

q’’lw1 = σ εc (Tc14 – Tr4)  (8.1) 

where σ (5.67 × 10-8 W m-2 K-4) is Stefan-Boltzmann constant; εc (0.98, dimensionless) is the 

emissivity of coat (Maia and Loureiro, 2005); Tr (K) is the average radiant temperature of the 

surrounding. When the animal is outdoor, Tr is calculated as the average of sky temperature 

(Tsky, K) and ground temperature (Tg, K): 

Tr = (Tsky + Tg)/2  (8.2) 
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Similarly, when the animal is indoor, Tr can be calculated as the average of roof temperature and 

floor temperature. However, estimating roof temperature is difficult, therefore indoor Tr is 

estimated through black globe temperature (Kuehn et al., 1970; Thorsson et al., 2007): 

Tr = (Tblack4 + 1.1 × 10-8 u0.6 (Tblack – Ta)/2.029)0.25  (8.3) 

where Tblack (K) is black globe temperature and u (m s-1) is wind speed. The long radiation 

between the bottom coat and surroundings can be calculated by replacing Tc1 with Tc2 in 

equation 8.1. 

Heat flux through solar radiation. Solar radiation is an important heat input to animals 

when exposed to the sun. Turnpenny et al. (2000a) divided heat flux through solar radiation 

(q’’sol, W m-2) into three parts, including direct and diffusive radiation from the sun, and the 

radiation reflected by the ground: 

 q’’sol = (1 – ρc) [(Ah/A) Sb + 0.5 Sd + 0.5 ρg (Sb + Sd)]  (9.1) 

where ρc (0.3, dimensionless) is the reflection coefficient of coat (Turnpenny et al., 2000b); Ah/A 

(dimensionless) is the proportion of body surface the receives the direct solar radiation, taking 

the orientation of the animal and the solar altitude angle into account; Sb (W m-2) is the direct 

radiation from the sun; Sd (W m-2) is the diffusive radiation from the sun; ρg (dimensionless) is 

the reflection coefficient of ground. The coefficient 0.5 represents the assumption that half of the 

body surface faces towards the sky and receives diffusive solar radiation, while the other half 

faces towards the ground and receives the reflected radiation from the ground. Then the heat 

flow through solar radiation (qsol, W) received by the animal is: 

qsol = A q’’sol (9.2) 

Since the coat was divided into top and bottom parts in this study, the equation was modified to 

quantify the solar radiation at the top (qsol1, W) and bottom coat (qsol2, W) separately: 
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qsol1 = A (1 – ρc) (Ah/A) Sb + 0.5 A Sd + (0.5 – pc) A ρg (Sb + Sd)  (9.3) 

qsol2 = pc A ρg (Sb + Sd)  (9.4) 

We assumed that the direct radiation and diffusive radiation are received the top coat, and that 

the bottom coat only receives the reflected radiation from the ground. Since the proportion of 

bottom coat to the total coat (pc = 0.2) is smaller than 0.5, the rest of the reflected radiation from 

the ground is received by the top coat. Then the heat flux of solar radiation in the equation 1.4 

and 1.5 can be calculated by dividing the heat flow by the area: 

q’’sol1 = qsol1/[(1 – pc) A] (9.5) 

q’’sol2 = qsol2/(pc A) (9.6) 

Solar radiation is affected by cloud (Hottel, 1976), which was not considered in this study. 

Cloudiness is difficult to quantify and highly varied, therefore it is better to obtain solar radiation 

through direct measurement instead of estimation on cloudy days.  

Heat conduction between animal and ground when lying down. A finite difference method 

(Bastian et al., 2003) was used to quantify the heat conduction between the animal and the 

ground through dividing the vertical distance between contacting surface and an adiabatic layer 

underground into many small nodes. The adiabatic layer was estimated using thermal penetration 

depth 2.3 (αsoil t)0.5 (Bergman et al., 2011), where αsoil (m2 s-1) is the thermal diffusivity and t (s) 

is the time after lying down. In this study, we assumed a soil type of heavy clay with thermal 

diffusivity equal to 5.9 × 10-7 m2 s-1 (Najib et al., 2020). To estimate the thermal penetration 

conservatively, the undisturbed depth was set to be 0.5 m when the animal lies down for the 

whole day (t = 86400 s). The vertical distance from the contact surface to the adiabatic layer was 

divided into 50 nodes, with the distance of di equal to 0.01 m between each of two nodes (Fig. 1). 
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The heat conduction (q’’cond, 1, W m-2) into the first node, i.e., the conduction between the animal 

and the ground surface (q’’cond, s2-g), was calculated as (Radoń et al., 2014): 

q’’cond, s2-g = (Ts’ – Tg, 1)/rsg (10.1) 

where Tg, 1 (K) is the ground temperature at the first node; rsg (0.1 m2 K W-1) is the thermal 

contact resistance between the skin and the ground surface (Radoń et al., 2014). We assume that 

Tg, 1 is equal to the ground surface temperature (Tg) at the beginning of animal lying down. The 

net heat flux into interior control volume (q’’cond, 1, W m-2) of node 1 was calculated as the 

conduction from the bottom skin minus the conduction to node 2: 

q’’cond, 1 = q’’cond, s2-g – (Tg, 1 – Tg, 2)/(di/2) (10.2) 

where Tg, 2 (K) is the underground temperature at node 2. Node spacing was set to be di/2 for the 

first and last nodes, and to be di for all the other nodes (Bastian et al., 2003). The net heat flux 

into each interior control volume (q’’cond, i, W m-2) from nodes i = 2 to 49 was calculated as the 

conduction input from node i – 1 minus the conduction output to node i + 1:  

q’’cond, i = ksoil [(Tg, i – 1 – Tg, i) – (Tg, i – Tg, i + 1)]/di (10.3) 

where ksoil (W m-1 K-1) is the thermal conductivity of soil; Tg, i – 1, Tg, i and Tg, i + 1 (K) are the 

underground temperature at node i – 1, i and i + 1, respectively. The heat flux at the last node 

(0.5 m deep underground, q’’cond, 50, W m-2) was calculated as the conduction input from node 49 

minus the conduction output to the adiabatic layer: 

q’’cond, 50 = ksoil [(Tg, 49 – Tg, 50) – (Tg, 50 – Tadl)]/(di/2) (10.4) 

where Tg, 49 (K) the temperature at node 49; Tg, 50 (K) is the temperature at node 50; Tadl (K) is 

the temperature at the adiabatic layer, which was assumed to be a constant equal to the annual 

average air temperature of the location (Zarrella & De Carli, 2013). We assumed that the heat 

conduction among the nodes is one-dimensional and shares the same contact area as that between 
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the animal and the ground surface. The net heat flux into each control volume in the soil is equal 

to the thermal storage in that control volume with time: 

d(Msoil cpsoil Tg, i)/dt = pc A q’’cond, i  (10.5) 

where Msoil (kg) is the soil mass for each node; cpsoil (J kg-1 K-1) is the specific heat capacity of 

soil. Soil mass can be written as the product of volume and density (Msoil = pc A di ρsoil), which 

converts the above equation to: 

d(ρsoil cpsoil Tg, i di)/dt = q’’cond, i (10.6) 

where ρsoil (kg m-3) is the soil density. Different soil has different thermal properties; we assume 

a heavy clay soil with cpsoil = 1784 J kg-1 K-1, ρsoil = 1784 kg m-3 and ksoil = 1.64 W m-1 K-1 in this 

study, which is typical in the Central Valley in California (Najib et al., 2020). 

Model evaluation 

Two datasets (Dikmen & Hansen, 2009; Chen et al., 2015) were used to evaluate the 

predictability of the model for body temperature. Both datasets were collected in the afternoon 

based on the experimental design. The body temperature data from Dikmen & Hansen (2009) 

were collected indoor in the afternoon from June to September 2007 in Florida, thus solar 

radiation was considered to be 0. Measurements were taken over 2 h when the animals were 

standing up. After removing the data collected from animals exposed to sprinklers, 347 

observations from 304 animals were used for evaluation. The dataset from (Chen et al., 2015) is 

publicly available on the Dryad Digital Repository (https://doi.org/10.25338/B88P7H). They 

collected body temperature data over 1 h when the cows were standing up under the sun in the 

afternoon from June to August 2011 in California. Only the data collected from animals without 

any cooling treatment were used (486 observations from 18 animals). Climate data near the 

animal including air temperature, relative humidity, wind speed and black globe temperature 
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were recorded when the rectal temperature was measured every 1 to 3 min for 2 h in the dataset 

of Dikmen & Hansen (2009) and every 5 to 10 min for 1 h in the dataset of Chen et al. (2015). 

The weather data were assumed to change linearly between each time point. The heat production 

was estimated based on the herd average body weight and milk production. The dataset of Chen 

et al. (2015) also contained RR measurements for all the 486 observations, which were used to 

compare two RR estimation equations (Thompson et al., 2011; Atkins et al., 2017). Both are 

linear equations regressed on Tb: RR = 37Tb – 1385 (Thompson et al., 2011) and RR = 19.8Tb – 

707 (Atkins et al., 2017), where Tb is in °C and RR is in breath min-1. 

Correlation between observations and predictions (r2), root mean squared error of prediction 

(RMSEP) and concordance correlation coefficient (CCC; Lawrence and Lin, 1989) were used to 

evaluate the accuracy and precision of the model on body temperature and respiration rate 

estimation.   

Simulation example 

A simulation example was conducted based on a Holstein dairy cow weighing 600 kg, with 

176 MJ of metabolizable energy intake per day, producing 25 kg of milk (3.2% of milk protein, 

3.5% of milk fat and 4.85% of lactose) per day and having no body weight change. The heat 

production rate was estimated to be 1240 W based on NRC (2001). Milk production was set to 

be low because the simulation was conducted under an outdoor environment in hot summer 

when the animal was likely under heat stress. Three days of simulation were run based on the 

weather condition in Davis, California from July 26 to 28, 2019. Hourly air temperature, relative 

humidity and wind speed were obtained from Weather Underground 

(https://www.wunderground.com/weather/us/ca/davis). Weather data were interpolated 

linearly to provide information of inputs varying on a per second basis (Fig. 2), with the average 
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air temperature, relative humidity and wind speed being 25.8 °C (min = 13.3 °C, max = 37.7 °C), 

51.0% (min = 16.0 %, max = 95 %) and 2.0 m/s (min = 0.67 m s-1, max = 3.8 m s-1), 

respectively. Annual average temperature in Davis (16.2 °C) was obtained from U.S. Climate 

Data (https://www.usclimatedata.com/climate/davis/california/united-states/usca0284). The 

timing of animal lying down and standing up is also required to quantify the conduction between 

animal and ground. In the simulation, we assumed that the animal did not lie down when the 

ground surface temperature was higher than the lower skin temperature. The proportion of lying 

down during other time was set based on Drwencke et al. (2020), resulting 7.5 h of lying down 

per day (details in Appendix B).  

Sensitivity analysis 

Sensitivity measures how influential a parameter is on the model output. A local and a 

global sensitivity analyses were conducted to estimate the sensitivities of the model parameters. 

The local sensitivity analysis evaluates the effect of each parameter at a steady state, while the 

global sensitivity analysis evaluates them dynamically.  

Local sensitivity analysis. In the local sensitivity analysis, 50 model parameters (detailed 

information in Appendix B), three of which were climate variables (air temperature, relative 

humidity and wind speed), were analyzed. The climate variables were set to nominal values, with 

air temperature being 34 °C, relative humidity being 18 % and wind speed being 2.8 m s-1, which 

mimicked a typical summer afternoon in Davis, California. The model was run with the baseline 

values of all the parameters (p̅i, i = 1, ..., 50) until the outcome Tb reached a steady state (the 

outcome does not change more than 0.01 % within 1 h). Then the model was rerun twice for each 

parameter after changing the baseline value by ± 3% (Thompson et al., 2014b) and fixing all the 

others. The sensitivity Si (dimensionless) for parameter i was calculated as: 
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Si = (ΔTbi/Δpi) (p̅i/T̅b) (S.1) 

where ΔTbi is the change of Tb caused by the change of parameter i (Δpi), and T̅b is the outcome 

of Tb under the baseline value of parameter p̅i. In order to investigate the difference of sensitivity 

between cows standing up and lying down, two local sensitivity analyses were conducted using 

the same procedures as described above, except that the animal was assumed to stand up in one 

analysis while to lie down in the other.  

Global sensitivity analysis. Global sensitivity analysis measured the sensitivity of each 

parameter throughout 24 h based on the method described by Saltelli et al. (2008) and Thompson 

et al. (2014b). The three climate parameters changed across time and could not be included in the 

global sensitivity analysis, thus only the rest 47 parameters were included. A parameter matrix X 

(xij, i = 1, ...,10000 and j = 1, ..., 47) was constructed with each column representing a parameter 

and each row representing a simulation. The values for each parameter were drawn from a 

uniform distribution, with upper and lower bounds given as ± 3% of the baseline value. In total, 

10000 simulations were performed, with the parameter inputs for each simulation given by a row 

from the parameter matrix. The Tb outputs were saved from each run every 15 min throughout 24 

h (96 outcomes in total) and stored in a model output matrix Y (yik, i = 1, ...,10000 and k = 1, ..., 

96). 

All columns of the parameter matrix and the output matrix were standardized to X' and Y' 

as: 

x'ij = (xij – x̅.j)/sxj and y'ik = (yik – y̅.k)/syk (S.2) 

where x̅.j and sxj are the mean and standard deviation of column j in the parameter matrix X, y̅.k 

and syk are the mean standard deviation of column k in the output matrix Y. Then each column of 

the standardized output matrix was regressed on the standardized parameter matrix as: 
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Y'k = X' βk + ek (S.3) 

where Y'k is a vector (10000 × 1) of column k in the standardized output matrix, X’ (10000 × 47) 

is the standardized parameter matrix, βk is a regression coefficient vector (47 × 1), and ek (10000 

× 1) is a residual vector. 

In a standardized regression setting, the total variation of the output equals one and the 

sensitivity of a parameter can be represented by its regression coefficient squared, which 

describes the fraction of the model variance that is accounted for by variation of the parameter. 

As a result, each parameter had 96 sensitivities corresponding to each time point. The R2, the 

coefficient of determination, from the standardized regression will be close to 1 if the model is 

linear in its parameters. The global sensitivity analysis was conducted using the same lying time 

as that in the simulation, and climate condition in Davis, California on July 26, 2019. 

Results and Discussion  

Model evaluation 

The RMSEP of the thermal balance model prediction of body temperature on the data from 

Dikmen & Hansen (2009) was 1.16 °C (2.9% of the observation mean), while the data from 

Chen et al. (2015) was 0.40 °C (1.0% of the observation mean). The prediction on the data from 

Dikmen & Hansen (2009) had lower r2 (0.43 vs 0.91, respectively) and CCC (0.36 vs 0.79, 

respectively) than the data from Chen et al. (2015). Fig. 3 suggests that the model was likely to 

overestimate the body temperature for both datasets, given many predictions were higher than 

the observations. Cows stood indoor for 2 h in Dikmen & Hansen (2009) while cows were forced 

to stand under the sun for 1 h in Chen et al. (2015) when sampling, which resulted in a higher 

average body temperature from Chen et al. (2015) than that from Dikmen & Hansen (2009). The 

variance of the body temperature in the dataset of Dikmen & Hansen (2009) was 0.62, while that 
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in the dataset of Chen et al. (2015) was 0.39. The thermal balance model fitted the dataset from 

Chen et al. (2015) better, probably because Dikmen & Hansen (2009) collected 347 observations 

from 304 animals, which resulted in a larger animal variation. In contrast, Chen et al. (2015) 

collected 486 observations of body temperature from 18 animals consecutively, which can be 

better described by our model. However, we did not have data from cows lying down, so the 

evaluation of the conduction between the animal and ground requires future experimentation to 

take the appropriate measurements. 

For respiration rate prediction (Fig. 4), the equation from Thompson et al. (2011) had a 

similar RMSEP (25.0 vs 23.5 breath s-1, respectively; 26.4% vs 24.8% of the observation mean, 

respectively) as the one from Atkins et al. (2017), but a greater CCC value (0.45 vs 0.33, 

respectively). Both equations predict respiration rate by a linear regression on body temperature, 

thus had the same r2 of 0.66. Thompson’s equation had a slightly larger RMSEP but a better 

CCC value, thus was used in our model. Thompson’s equation was derived through a meta-

analysis using data from Bos taurus cattle, which included animals other than dairy cows 

(Thompson et al., 2011), while Atkins’s equation was developed based on an animal trial using 

only 8 cows (Atkins, et al., 2017). Both equations may not be accurate enough, therefore a meta-

analysis on dairy cattle respiration rate should be conducted in the future to refine the respiration 

rate equation.  

Simulation example 

The simulated temperature of body core, skin and coat is shown in Fig. 5. The average 

temperatures of body, top and bottom skin, and top and bottom coat were 40.9 °C (min = 39.0 

°C, max = 42.1 °C), 35.6 °C (min = 32.5 °C, max = 38.6 °C), 35.9 °C (min = 32.5 °C, max = 40.8 

°C), 34.1 °C (min = 21.6 °C, max = 48.1 °C) and 33.7 °C (min = 21.7 °C, max = 40.8 °C), 
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respectively. The body temperature was higher than normal (38.5 °C), probably due to the 

assumption that the animal was unshaded and had no access to any cooling equipment (roofs, 

fans or sprinklers). The variation of body core temperature is the smallest, followed by skin 

temperature, and coat temperature. The body temperature oscillated every 24 h, with the peak 

occurring around 1600 to 1700 h and the minimum occurring around 0400 to 0500 h. The top 

skin and coat temperatures followed the same pattern, with the peak occurring around 3 h earlier 

and the minimum occurring 1 h earlier than the body temperature. Environmentally, the peak 

temperature of top coat and skin temperatures occurred around 1 h after the solar radiation peak, 

while body temperature reached a peak around 1 h after peak air temperature. A similar pattern 

was also reported by Scott et al. (1983), indicating the process of heat accumulation. The bottom 

skin and coat temperature changed periodically because of lying down and standing up. When 

the animal lied down, the bottom skin temperature was higher than the top skin temperature due 

to lack of evaporation. After standing up, the bottom skin and coat temperature gradually 

changed to the same as the top skin and coat temperature due to the same heat transfer 

mechanism happening to top and bottom parts. However, when the animal keeps standing when 

the ground surface temperature was higher the bottom skin temperature, bottom skin and coat 

temperatures were lower than the top ones because of the stronger solar radiation received by the 

top coat. 

The proportions of five ways of heat dissipation are shown in Table 1. Evaporation 

accounted for 48.0% of the total amount of dissipated heat on average throughout the simulation, 

followed by long wave radiation (18.2%), respiration (16.2%), convection (14.9%), and 

conduction (2.7%). Fig. 6 shows the heat flux over the three days. Evaporation, convection, solar 

radiation, long wave radiation are shown as the weighted average heat flux at the top and bottom 
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nodes (e.g., evaporation = 0.8 evaporation at the top skin + 0.2 evaporation at the bottom skin). 

Solar radiation was an important heat source thus shading is essential in summer to prevent heat 

stress. Evaporation was the major way to dissipate heat in the afternoon when the air temperature 

was high and relative humidity was low, which is also suggested by previous studies (McGovern 

and Bruce, 2000; Thompson et al., 2014a). Heat dissipation through respiration followed a 

similar pattern as air temperature while long wave radiation showed an opposite pattern to air 

temperature, because respiration is mainly dependent on the air temperature and body 

temperature while long wave radiation depends on the difference between coat temperature and 

surrounding radiant temperature, which was smaller at noon and larger at midnight. Heat 

convection increased when solar radiation increased, because coat temperature increased due to 

solar radiation and caused a larger driving temperature difference for convection from the coat 

surface. Heat conduction between the animal and surface ground accounted for a very low 

percentage of the total heat dissipation, because only 20% of the animal surface is in contact with 

the ground when lying down (Ortiz et al., 2015). Based on our assumption, the animal did not lie 

down during most of the daytime when the temperature of ground surface was higher than skin 

temperature. Although the total heat dissipation through conduction was small, the heat flux of it 

showed a peak every time when the animal lied down between midnight and sunrise, which 

agrees with Bastian et al. (2003) reporting a great amount of heat dissipation through conduction 

when the ground temperature is low. 

Sensitivity analysis 

Local sensitivities of the top 10 parameters are shown in Fig. 7. Two analyses shared the 

same top 10 parameters with small differences in the rank. Air temperature was the most 

sensitive among the 10 parameters for both animal standing up and lying down. Besides, two 
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parameters (qevap_c and qevap_d) related to heat evaporation and four parameters (RR_a, 

RR_b, Vt_b and Te_b) related to respiration were also sensitive for both animal standing up and 

lying down. The other three top 10 sensitive parameters were heat production, surface area and 

air pressure, probably because heat production and surface area were in the differential equations 

and directly determine the gain and loss of heat, and air pressure was used to calculate multiple 

heat transfer mechanisms, including conduction, evaporation and respiration. The average R2 of 

the regressions in the global sensitivity analysis was 0.96, indicating that the heat balance model 

was linear in the parameters and regression was a valid technique to investigate the global 

sensitivities. Six parameters with minimum global sensitivity greater than 0.05 are shown in Fig. 

8. Two respiration parameters were the most sensitive before around 8 am, while the evaporation 

rate parameter became the most sensitive afterwards. All the six parameters were also within the 

top 10 local sensitivities. 

The sensitivity analysis suggests that the parameters related to respiration and heat 

evaporation through sweating must be well quantified since small changes in those parameters 

can change the outcome considerably. Most of these parameters were derived from either old or 

small datasets, thus reevaluation of them with a large and recent dataset may improve the model 

accuracy and resolve the model overestimation. Heat production is assumed to be constant in our 

model, which does not account for the heat increment effect of feeding (Sprinkle, et al., 2000). In 

addition, heat stress induces behavioral and metabolic changes in cattle including reduced dry 

matter intake, selective consumption and reduced heat production (Fox and Tylutki, 1998), while 

the estimation of heat production in our model is based on a non-stressed condition. Since heat 

production is also a sensitive parameter, the bias of the overall heat production estimation may 

impact the model outcome. Besides, the long-term effect of heat stress and resulting 
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physiological changes were not considered in our model, and if incorporated, may change the 

sensitivity values. 

Conclusions  

In conclusion, a dynamic model describing the thermal balance of Holstein dairy cattle was 

developed in this study. Heat production by the animal, heat conduction among the body core, 

skin and coat, and heat flows between the animal and the environment, including conduction, 

convection, evaporation and radiation were considered. The model had an overestimation for the 

body temperature based on two real datasets, which may be resolved by reevaluating several 

sensitive parameters including respiration and evaporation coefficients using recent data. Despite 

some limitations, the thermal balance model can provide a guideline on the thermal condition of 

the animal under hot climate and a mechanistic modeling framework for future studies. Our 

future work will focus on evaluating and guiding the use of cooling strategies based on the 

thermal balance model. 
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Tables and Figures 

Table 1. The average percentage (%) of heat dissipation through convection, evaporation, long 
wave radiation, respiration and conduction between animal and ground surface to the sum of 
them during different time periods for the simulation based on the weather condition in Davis 
(CA) from July 26 to 28, 2019. 

 0000 to 0600 h 0600 to 1200 h 1200 to 1800 h 1800 to 2400 h Entire day 
Convection 14.1 19.8 14.9 8.0 14.9 

Evaporation 32.6 49.3 57.0 45.7 48.0 
Long wave 
radiation 28.7 16.6 11.5 21.8 18.2 

Respiration 15.9 13.8 16.6 19.7 16.2 

Conduction 8.7 0.5 - 4.8 2.7 
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Figure 1. The thermal network diagram of the heat balance model for a dairy cow standing (A) 
up and lying down (B). Tb = Body temperature, Ts1 = Top skin temperature (K), Ts2 = Bottom 
skin temperature (K), Tc1 = Top coat temperature (K), Tc2 = Bottom coat temperature (K), Ta = 
Air temperature (K), Tr = Surrounding radiant temperature (K), HE = Heat production (W), qresp 
= Heat dissipation through respiration (W), qcond, b-s1 = Heat conduction between body core and 
top skin (W), qcond, b-s2 = Heat conduction between body core and bottom skin (W), qevap1 = Heat 
dissipation through evaporation through sweating at the top skin (W),  qevap2 = Heat dissipation 
through evaporation through sweating at the bottom skin (W), qcond, s1-c1 = Heat conduction 
between top skin and top coat (W), qcond, s2-c2 = Heat conduction between bottom skin and top 
coat (W), qsol1 = Solar radiation at the top coat (W), qsol2 = Solar radiation at the bottom coat 
(W), qconv1 = Heat convection at the top coat surface (W), qconv2 = Heat convection at the bottom 



 76 

coat surface (W), qlw1 = Long wave radiation between the top coat and surrounding (W), qlw2 = 
Long wave radiation between the bottom coat and surrounding (W), qcond, s2-g = Heat conduction 
between bottom skin and ground surface (W). For each node, the capacitance is able to store and 
dissipate heat with time, which brings about transient temperature changes. The arrow indicates 
the one-way direction of heat flows (HE, qresp, qevap1, qevap2, qsol1 and qsol2), while the other heat 
flows can happen in either direction to or from the node. When the animal lies down (B), the 
vertical distance from the bottom skin to adiabatic layer is divided into 50 nodes, with the 
distance between each of two nodes di equal to 0.01 m, and the dashed lines represent the center 
of each control volume. The bottom coat capacitance was not accounted and Ts2 is the same as 
Tc2 when the animal lies down.  
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Figure 2. Air temperature, relative humidity and wind speed in Davis (CA) from July 26 to 28, 
2019.  



 78 

 
Figure 3. Observed body temperatures from Dikmen and Hansen (2009) and Chen et al. (2015) 
against predicted body temperatures based on the thermal balance model. The solid line (y = x) 
represents a perfect prediction.  
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Figure 4. Observed respiration rate from Chen et al. (2015) against predicted respiration rate 
based on y = 37x – 1385 (Thompson et al., 2011) and y = 19.8x – 707 (Atkins et al., 2017), 
where x is body temperature (°C) and y is respiration rate (breath/min). The solid line represents 
a perfect prediction.  
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Figure 5. Simulation of body temperature (Tb), top (Ts1) and bottom (Ts2) skin temperature, and 
top (Tc1) and bottom (Tc2) coat temperature based on the air temperature (Ta), relative humidity 
and wind speed in Davis (CA) from July 26 to 28, 2019.  
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Figure 6. Simulated heat flux of respiration, evaporation, convection, solar radiation, long wave 
radiation and conduction between animal and ground based on the weather condition in Davis 
(CA) from July 26 to 28, 2019. Evaporation, convection, solar radiation, and long wave radiation 
are shown as the weighted average heat flux (e.g., evaporation = 0.8 evaporation at the top skin + 
0.2 evaporation at the bottom skin) at the bottom and top nodes.   
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Figure 7. Top 10 sensitive parameters in the local sensitivity analyses for a dairy cow standing 
up (A) and lying down (B) when changing the parameters ± 3%. Ta = Air temperature (K), 
qevap_c = Parameter c for evaporation rate (dimensionless), RR_a = Parameter a for respiration 
rate (dimensionless), Te_b = Parameter b for exhaled air temperature, HE = Heat production 
(W), RR_b = Parameter b for respiration rate (dimensionless), Vt_b = Parameter b for tidal 
volume (dimensionless), qevap_d = Parameter d for evaporation rate (dimensionless), A = 
Animal surface area (m2), P = Air pressure (Pa).  
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Figure 8. Global sensitivity (top 6) of the parameters throughout 24 h. qevap_c = Parameter c for 
evaporation rate, RR_a = Parameter a for respiration rate, RR_b = Parameter b for respiration 
rate, HE = Heat production (W), A = Animal surface area (m2), qevap_d = Parameter d for 
evaporation rate (dimensionless).  
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Appendix A 

Detailed description of variables and equations used in the thermal balance model are as follows. 

Variables and parameters 

Table A1. Description of all variables and parameters used in the model 

Symbol Description Unit Reference 

A Animal surface area m2 Brody, 1945 

a0 Atmospheric transmittance coefficient, 
intercept dimensionless Hottel, 1976 

a1 Atmospheric transmittance coefficient, 
slope dimensionless Hottel, 1976 

Ah/A The ratio of shadow area to body area dimensionless Monteith and Unsworth, 2013 

Al Altitude km - 

as Skin parameter, 1.11 for lactating 
animals and 1.17 for nonlactating ones dimensionless Smith and Baldwin, 1974 

BW Animal body weight kg - 

Cf Drag coefficient dimensionless Gebremedhin and Wu, 2001 

ch 

Heat production coefficient, 44.1 for 
high production cows (milk yield ≥ 30 
kg/d), 38.7 for intermediate production 
cows (milk yield < 30 kg/d) and 29.7 
for dry cows. 

dimensionless Purwanto et al., 1990 

cp Specific heat of air, 1006 J kg-1 K-1 - 

cpsoil Specific heat of soil, 1784 J kg-1 K-1 Najib et al., 2020 

cpb Specific heat capacity of body core, 
3472 J kg-1 K-1 Gebremedhin et al., 2016 

cpc Specific heat capacity of coat, 1006.43 J kg-1 K-1 Gebremedhin et al., 2016 

cps Specific heat capacity of skin, 3472 J kg-1 K-1 Gebremedhin et al., 2016 

D Diffusive coefficient of water vapor m2 s-1 Gebremedhin and Wu, 2001 

d Characteristic diameter m Ehrlemark ,1988 

da Laminar thickness m Gebremedhin and Wu, 2001 

dc Coat thickness, 0.0025 m Bertipaglia et al., 2005 
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dh Hair diameter, 0.0625 mm Bertipaglia et al., 2005 

di Distance between two nodes 
underground, 0.01 m - 

Do Diffusive coefficient of water vapor 
under To and Po, 2.2 ×10-5 m2 s-1 Gebremedhin and Wu, 2001 

Gsc Solar constant, 1367 W m-2 Duffie and Beckman, 2013 

HE Heat production rate W Purwanto et al., 1990; NRC 
(2001) 

hc Convection coefficient W m-2 K-1 Monteith and Unsworth, 2013 

hm Mass transfer coefficient m s-1 Gebremedhin and Wu, 2001 

k Atmospheric transmittance coefficient, 
rate  dimensionless Hottel, 1976 

ka Air conductivity, 0.024 W m-1 k-1 Gebremedhin et al., 2016 

keff Effective thermal conductivity W m-1 K-1 Gebremedhin et al., 2001 

kf Fur conductivity, 0.26 W m-1 k-1 Gebremedhin et al., 2016 

ksoil Soil conductivity, 1,64 W m-1 k-1 Najib et al., 2020 

kx Horizontal thermal conductivity W m-1 K-1 Gebremedhin and Wu, 2001 

ky Vertical thermal conductivity W m-1 K-1 Gebremedhin and Wu, 2001 

l Body length, 2.15 m Gebremedhin and Wu, 2001 

Mb Body core mass kg - 

Mc Coat mass kg Berman, 2008 

ME Metabolizable energy intake J - 

Ms Skin mass kg Smith and Baldwin, 1974 

Mw Molar mass of water, 18 g mol-1 - 

n Julian day number, 1 to 365 d - 

Nu Nusselt number dimensionless Gebremedhin and Wu, 2001 

P Air pressure Pa - 

pc Proportion of contact surface to the 
whole animal surface area, 0.2 Dimensionless Ortiz et al., 2015 

Po Atmospheric pressure, 101325 Pa - 
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Pr Prandtl number, 0.7 dimensionless Gebremedhin and Wu, 2001 

Pw, sat(Ta)  Saturation vapor pressure at Ta Pa Murray, 1967 

Pw, sat(Te)  Saturation vapor pressure at Te Pa Murray, 1967 

Pw, sat(Ts1) Saturation vapor pressure at Ts1 Pa Murray, 1967 

Pw, sat(Ts2) Saturation vapor pressure at Ts2 Pa Murray, 1967 

Pw(Ta)  Vapor pressure at Ta Pa - 

q’’cond, b-s1 Heat conduction between body core 
and top skin W m-2 - 

q’’cond, b-s2 Heat conduction between body core 
and bottom skin W m-2 - 

q’’cond, i Heat conduction flux at node i 
underground W m-2 - 

q’’cond, s1-c1 Heat conduction between top skin and 
top coat W m-2 - 

q’’cond, s2-c2 Heat conduction between bottom skin 
and bottomcoat W m-2 - 

q’’cond, s2-g Heat conduction between bottom skin 
and ground W m-2 - 

q’’conv1 Heat convection at top coat surface W m-2 - 

q’’conv2 Heat convection at bottom coat surface W m-2 - 

q’’evap1 Heat evaporation through sweating at 
top skin W m-2 Silva and Maia, 2011; 

Gebremedhin and Wu, 2001 

q’’evap2 Heat evaporation through sweating at 
bottom skin W m-2 Silva and Maia, 2011; 

Gebremedhin and Wu, 2001 
q’’lat Latent heat transfer W m-2 Monteith and Unsworth, 2013 

q’’lw1 Long wave radiation at top coat W m-2 - 

q’’lw2 Long wave radiation at bottom coat W m-2 - 

q’’resp Heat loss through respiration W m-2 
McGovern, 2000; da Silva et 

al., 2002; Monteith and 
Unsworth, 2013 

q’’sen Sensible heat transfer W m-2 Monteith and Unsworth, 2013 

q’’sol1 Solar radiation at top coat W m-2 Turnpenny et al., 2000a 

q’’sol2 Solar radiation at bottom coat W m-2 Turnpenny et al., 2000a 

R Molar gas constant, 8.314 J mol-1 K-1 - 
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Rd Gas constant, 287  J kg-1 K-1 - 

RE Retained energy J - 

Re Reynolds number dimensionless Gebremedhin and Wu, 2001 

RH Relative humidity % - 

RR Respiration rate breath s-1 Thompson et al., 2011 

rsg Heat conduction resistance between the 
skin and the ground surface, 0.1 m2 K W-1 Radoń et al., 2014 

Sb Direct radiation W∙m-2 Duffie and Beckman, 2013 

Sc Schmidt number Dimensionless Gebremedhin and Wu, 2001 

Sd Diffuse radiation W m-2 Duffie and Beckman, 2013 

Se Extraterrestrial radiation W m-2 Duffie and Beckman, 2013 

St Standard time h - 

Ta Air temperature K - 

Tb Body temperature K - 

Tblack Black globe temperature K - 

Tc1 Top coat temperature K - 

Tc1 Bottom coat temperature K - 

Tdp Dew point temperature °C Sonntag, 1990 

Te Exhaled air temperature K Maia et al., 2005 

Tg Ground surface temperature K Thompson, 2011 

Tg, i Ground temperature at node i, for i = 
1, …, 50 K - 

To 0 Celsius degree in Kelvins, 273.15 K - 

Tr Radiant temperature of environment K 
Kuehn et al., 1970; Thorsson 
et al., 2007; Thompson et al., 

2014a  
Ts1 Top skin temperature K - 

Ts2 Bottom skin temperature K - 
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Tsky Sky temperature K Duffie and Beckman, 2013 

Tva Virtual temperature of inhaled air K Monteith and Unsworth, 2013 

Tve Virtual temperature of exhaled air K Monteith and Unsworth, 2013 

u Wind speed m s-1 - 

v Kinematic viscosity of air m2 s-1 Gebremedhin and Wu, 2001 

Vt Tidal volume m3 breath-1 Stevens, 1981 

αs Solar altitude angle, π/2 – θz rad - 

δ Declination rad Monteith and Unsworth, 2013 

γ Azimuth angle rad - 

γa 
Animal angle (the angle between the 
animal long axis and south direction), -
π/2 to π/2 

rad - 

γs Solar azimuth angle rad Monteith and Unsworth, 2013 

εc Emissivity of coat, 0.98 Dimensionless Maia, 2005 

θz Zenith angle rad Monteith and Unsworth, 2013 

λ Latent heat of vaporization of water, 
2430 J g-1 Monteith and Unsworth, 2013 

μ Dynamic viscosity of air kg m-1 s-1 - 

π Constant, 3.14 - - 

ρ Air density kg m-3 - 

ρc Reflection coefficient of coat, 0.3 dimensionless Turnpenny et al., 2000b 

ρcp Volumetric heat capacity of air J m-3 K-1 - 

ρg 

Reflection coefficient of ground, 0.25 
for grass, 0.08 for wet dark soil, 0.13 
for dry dark soil, 0.10 for wet light soil 
and 0.18 for dry light soil 

dimensionless Campbell and Norman, 1998 

ρh Fur density, 9.87 hairs mm-2 Bertipaglia et al., 2005 

ρsoil Soil density, 1559 kg m-3 Najib et al., 2020 

σ Stefan-Boltzmann constant, 5.67 × 10-8 W m-2 K-4 - 
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τb Atmospheric transmittance for beam 
radiation dimensionless Hottel, 1976 

τd Atmospheric transmittance for diffuse 
radiation dimensionless Liu and Jordan, 1960 

φ Latitude, -π/2 to π/2 rad - 

χa Absolute humidity of inhaled air g m-3 Monteith and Unsworth, 2013 

χe Absolute humidity of exhaled air g m-3 Monteith and Unsworth, 2013 

χs1 Absolute humidity of top skin surface g m-3 Monteith and Unsworth, 2013 

χs2 Absolute humidity of bottom skin 
surface g m-3 Monteith and Unsworth, 2013 

ω Hour angle rad Monteith and Unsworth, 2013 

Symbol Description Unit Reference 

A Animal surface area m2 Brody, 1945 

a0 Atmospheric transmittance coefficient, 
intercept dimensionless Hottel, 1976 

a1 Atmospheric transmittance coefficient, 
slope dimensionless Hottel, 1976 

Ah/A The ratio of shadow area to body area dimensionless Monteith and Unsworth, 2013 

Al Altitude km - 

as Skin parameter, 1.11 for lactating 
animals and 1.17 for nonlactating ones dimensionless Smith and Baldwin, 1974 

BW Animal body weight kg - 

Cf Drag coefficient dimensionless Gebremedhin and Wu, 2001 

ch 

Heat production coefficient, 44.1 for 
high production cows (milk yield ≥ 30 
kg/d), 38.7 for intermediate production 
cows (milk yield < 30 kg/d) and 29.7 
for dry cows. 

dimensionless Purwanto et al., 1990 

cp Specific heat of air, 1006 J kg-1 K-1 - 

cpsoil Specific heat of soil, 1784 J kg-1 K-1 Najib et al., 2020 

cpb Specific heat capacity of body core, 
3472 J kg-1 K-1 Gebremedhin et al., 2016 

cpc Specific heat capacity of coat, 1006.43 J kg-1 K-1 Gebremedhin et al., 2016 

cps Specific heat capacity of skin, 3472 J kg-1 K-1 Gebremedhin et al., 2016 
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D Diffusive coefficient of water vapor m2 s-1 Gebremedhin and Wu, 2001 

d Characteristic diameter m Ehrlemark ,1988 

da Laminar thickness m Gebremedhin and Wu, 2001 

dc Coat thickness, 0.0025 m Bertipaglia et al., 2005 

dh Hair diameter, 0.0625 mm Bertipaglia et al., 2005 

di Distance between two nodes 
underground, 0.01 m - 

Do Diffusive coefficient of water vapor 
under To and Po, 2.2 ×10-5 m2 s-1 Gebremedhin and Wu, 2001 

Gsc Solar constant, 1367 W m-2 Duffie and Beckman, 2013 

HE Heat production rate W Purwanto et al., 1990; NRC 
(2001) 

hc Convection coefficient W m-2 K-1 Monteith and Unsworth, 2013 

hm Mass transfer coefficient m s-1 Gebremedhin and Wu, 2001 

k Atmospheric transmittance coefficient, 
rate  dimensionless Hottel, 1976 

ka Air conductivity, 0.024 W m-1 k-1 Gebremedhin et al., 2016 

keff Effective thermal conductivity W m-1 K-1 Gebremedhin et al., 2001 

kf Fur conductivity, 0.26 W m-1 k-1 Gebremedhin et al., 2016 

ksoil Soil conductivity, 1,64 W m-1 k-1 Najib et al., 2020 

kx Horizontal thermal conductivity W m-1 K-1 Gebremedhin and Wu, 2001 

ky Vertical thermal conductivity W m-1 K-1 Gebremedhin and Wu, 2001 

l Body length, 2.15 m Gebremedhin and Wu, 2001 

Mb Body core mass kg - 

Mc Coat mass kg Berman, 2008 

ME Metabolizable energy intake J - 

Ms Skin mass kg Smith and Baldwin, 1974 

Mw Molar mass of water, 18 g mol-1 - 

n Julian day number, 1 to 365 d - 
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Nu Nusselt number dimensionless Gebremedhin and Wu, 2001 

P Air pressure Pa - 

Po Atmospheric pressure, 101325 Pa - 

Pr Prandtl number, 0.7 dimensionless Gebremedhin and Wu, 2001 

Pw, sat(Ta)  Saturation vapor pressure at Ta Pa Murray, 1967 

Pw, sat(Te)  Saturation vapor pressure at Te Pa Murray, 1967 

Pw, sat(Ts) Saturation vapor pressure at Ts Pa Murray, 1967 

Pw(Ta)  Vapor pressure at Ta Pa - 

q’’cond, b-s Heat conduction between body core 
and upper skin W m-2 - 

q’’cond, b-s’ Heat conduction between body core 
and lower skin W m-2 - 

q’’cond, i Heat conduction flux at node i 
underground W m-2 - 

q’’cond, s-c Heat conduction between upper skin 
and coat W m-2 - 

q’’cond, s’-c Heat conduction between lower skin 
and coat W m-2 - 

q’’cond, s’-g Heat conduction between skin and 
ground W m-2 - 

q’’conv Heat convection at coat surface W m-2 - 

q’’evap Heat evaporation through sweating W m-2 Silva and Maia, 2011; 
Gebremedhin and Wu, 2001 

q’’lat Latent heat transfer W m-2 Monteith and Unsworth, 2013 

q’’lw Long wave radiation W m-2 - 

q’’resp Heat loss through respiration W m-2 
McGovern, 2000; da Silva et 

al., 2002; Monteith and 
Unsworth, 2013 

q’’sen Sensible heat transfer W m-2 Monteith and Unsworth, 2013 

q’’sol Solar radiation W m-2 Turnpenny et al., 2000a 

R Molar gas constant, 8.314 J mol-1 K-1 - 

Rd Gas constant, 287  J kg-1 K-1 - 

RE Retained energy J - 
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Re Reynolds number dimensionless Gebremedhin and Wu, 2001 

RH Relative humidity % - 

RR Respiration rate breath s-1 Thompson et al., 2011 

rsg Heat conduction resistance between the 
skin and the ground surface, 0.1 m2 K W-1 Radoń et al., 2014 

Sb Direct radiation W∙m-2 Duffie and Beckman, 2013 

Sc Schmidt number Dimensionless Gebremedhin and Wu, 2001 

Sd Diffuse radiation W m-2 Duffie and Beckman, 2013 

Se Extraterrestrial radiation W m-2 Duffie and Beckman, 2013 

St Standard time h - 

Ta Air temperature K - 

Tb Body temperature K - 

Tblack Black globe temperature K - 

Tc Coat temperature K - 

Tdp Dew point temperature °C Sonntag, 1990 

Te Exhaled air temperature K Maia et al., 2005 

Tg Ground surface temperature K Thompson, 2011 

Tg, i Ground temperature at node i, for i = 
1, …, 50 K - 

To 0 Celsius degree in Kelvins, 273.15 K - 

Tr Radiant temperature of environment K 
Kuehn et al., 1970; Thorsson 
et al., 2007; Thompson et al., 

2014a  
Ts Upper skin temperature K - 

Ts’ Lower skin temperature K - 

Tsky Sky temperature K Duffie and Beckman, 2013 

Tva Virtual temperature of inhaled air K Monteith and Unsworth, 2013 

Tve Virtual temperature of exhaled air K Monteith and Unsworth, 2013 
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u Wind speed m s-1 - 

v Kinematic viscosity of air m2 s-1 Gebremedhin and Wu, 2001 

Vt Tidal volume m3 breath-1 Stevens, 1981 

αs Solar altitude angle, π/2 – θz rad - 

δ Declination rad Monteith and Unsworth, 2013 

γ Azimuth angle rad - 

γa 
Animal angle (the angle between the 
animal long axis and south direction), -
π/2 to π/2 

rad - 

γs Solar azimuth angle rad Monteith and Unsworth, 2013 

εc Emissivity of coat, 0.98 Dimensionless Maia, 2005 

θz Zenith angle rad Monteith and Unsworth, 2013 

λ Latent heat of vaporization of water, 
2430 J g-1 Monteith and Unsworth, 2013 

μ Dynamic viscosity of air kg m-1 s-1 - 

π Constant, 3.14 - - 

ρ Air density kg m-3 - 

ρc Reflection coefficient of coat, 0.3 dimensionless Turnpenny et al., 2000b 

ρcp Volumetric heat capacity of air J m-3 K-1 - 

ρg 

Reflection coefficient of ground, 0.25 
for grass, 0.08 for wet dark soil, 0.13 
for dry dark soil, 0.10 for wet light soil 
and 0.18 for dry light soil 

dimensionless Campbell and Norman, 1998 

ρh Fur density, 9.87 hairs mm-2 Bertipaglia et al., 2005 

ρsoil Soil density, 1559 kg m-3 Najib et al., 2020 

σ Stefan-Boltzmann constant, 5.67 × 10-8 W m-2 K-4 - 

τb Atmospheric transmittance for beam 
radiation dimensionless Hottel, 1976 

τd Atmospheric transmittance for diffuse 
radiation dimensionless Liu and Jordan, 1960 

φ Latitude, -π/2 to π/2 rad - 
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χa Absolute humidity of inhaled air g m-3 Monteith and Unsworth, 2013 

χe Absolute humidity of exhaled air g m-3 Monteith and Unsworth, 2013 

χs Absolute humidity of skin surface g m-3 Monteith and Unsworth, 2013 

ω Hour angle rad Monteith and Unsworth, 2013 

Differential equations 

d(Mb cpb Tb)/dt = HE – A [pc q’’cond, b-s1 + (1 – pc) q’’cond, b-s2 + q’’resp] (A.1.1) 

d[(1 – pc)Ms cps Ts1]/dt = (1 – pc) A (q’’cond, b-s1 – q’’cond, s1-c – q’’evap1)  (A.1.2) 

d(pc Ms cps Ts2)/dt = '
pc	A (q’’cond, b-s2 –	q’’cond, s2-c– q’’evap2), when standing up 

pc A (q’’cond, b-s2 – q’’cond, s2-g), when lying down  (A.1.3) 

d[(1 – pc)Mc cpc Tc1]/dt = (1 – pc) A (q’’cond, s1-c1 + q’’sol1 – q’’conv1 – q’’lw1) (A.1.4) 

d(pc Mc cpc Tc2)/dt = *
pc A (q’’cond, s2-c2 + q’’sol2 – q’’conv2 – q’’lw2), when standing up 

0, when lying down  (A.1.5) 

A = 0.15 BW0.56  (A.1.6) 

Given that the coat and skin thickness are very small compared to the body diameter, the surface 

areas of body core, skin and coat were considered as the same. 

Ms = as BW0.51  (A.1.7) 

Mc = 0.0022 A  (A.1.8) 

Mb = BW – Ms  (A.1.9) 

Coat mass is very small and can be ignored when calculating body core mass.  

Heat production 

HE = (ME – RE)/86400  (A.2.1) 

Or  

HE = ch BW0.75/3.6  (A.2.2) 

The heat production can be calculated based NRC (2001) as 2.1, or be roughly estimated using 

2.2 (Purwanto et al., 1990). 
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Heat conduction between body core and skin 

q’’cond, b-s1 = ρcp (Tb – Ts1)/rs1 (A.3.1) 

rs1 = max (–5.44 (Ts1 – 273.15) + 225), 29)  (A.3.2) 

ρcp = cp P/(Rd Ta)  (A.3.3) 

q’’cond, b-s2 = ρcp (Tb – Ts2)/rs2 (A.3.4) 

rs2 = max (–5.44 (Ts2 – 273.15) + 225), 29)  (A.3.5) 

Heat loss through respiration 

q’’resp = q’’sen + q’’lat  (A.4.1) 

q’’sen = Vt RR ρcp (Tve – Tva)/A  (A.4.2) 

q’’lat = λ Vt RR (χe - χa)/A (A.4.3) 

Vt = 0.0198 (60 RR)-0.463  (A.4.4) 

RR = [37 (Tb – 273.15) – 1385]/60  (A.4.5) 

Te = 9.47 + 1.18 (Ta – 273.15) – 0.01278 (Ta – 273.15)2 + 273.15  (A.4.6) 

Tve = Te [1 + 0.38 Pw, sat(Te)/P]  (A.4.7) 

Tva = Ta [1 + 0.38 Pw(Ta)/P]  (A.4.8) 

Pw, sat(Te) = 611 exp [17.27 (Te – 273.15)/(Te – 35.86)] (A.4.9) 

Pw, sat(Ta) = 611 exp [17.27 (Ta – 273.15)/(Ta – 35.86)]  (A.4.10) 

Pw (Ta) = Pw, sat(Ta) RH (A.4.11) 

χe = Mw Pw, sat(Te)/(R Te)  (A.4.12) 

χa = Mw Pw(Ta)/(R Ta)  (A.4.13) 

Heat conduction between skin and coat 

q’’cond, s1-c1 = keff (Ts1 – Tc1)/dc  (A.5.1) 

keff = 0.5 (kx + ky)  (A.5.2) 

kx = (ρh π dh2/4) kf + (1 – ρh π dh2/4) ka (A.5.3) 
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ky = ka (1/ρh0.5 – dh) ρh0.5 + dh ka kf/(dh ka + (1/ρh0.5 – dh) kf) (A.5.4) 

q’’cond, s2-c2 = keff (Ts2 – Tc2)/dc  (A.5.5) 

Heat evaporation through sweating 

q’’evap1 = min (31.5 + 3.67 exp[(Ts1 – 301.05)/2.19],  λ (χs1 - χa)/[1/hm + (dc + da)/D]) (A.6.1) 

χs1 = Mw Pw, sat(Ts1)/(R Ts1)  (A.6.2) 

Pw, sat(Ts1) = 611 exp [17.27 (Ts1 – 273.15)/(Ts1 – 35.86)]  (A.6.3) 

hm = (D/d) 0.28 Re0.6 Sc0.44  (A.6.4) 

d = 0.06 BW0.39  (A.6.5) 

D = Do (Po / P) (Ta / To)3/2  (A.6.6) 

Re = u d/v  (A.6.7) 

v = μ/ρ  (A.6.8) 

ρ = P/(Rd Ta)  (A.6.9) 

μ = (0.00452 (Ta – 273.15) + 1.734) × 10-5  (A.6.10) 

A.6.10 is empirically fitted for Ta ranging from 15 °C to 45 °C. 

Sc = v/D  (A.6.11) 

da = 2 v/(u Cf)  (A.6.12) 

Cf = 2 Sc2/3 hm/u  (A.6.13) 

q’’evap2 = min (31.5 + 3.67 exp[(Ts2 – 301.05)/2.19],  λ (χs2 - χa)/[1/hm + (dc + da)/D]) (A.6.14) 

χs2 = Mw Pw, sat(Ts2)/(R Ts2)  (A.6.15) 

Pw, sat(Ts2) = 611 exp [17.27 (Ts2 – 273.15)/(Ts2 – 35.86)]  (A.6.16) 

Heat convection at coat surface 

q’’conv1 = hc (Tc1 – Ta)  (A.7.1) 

hc = Nu ka/d  (A.7.2) 
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Nu = '	(0.43 + 0.5 Re0.5) Pr0.38, 1 < Re ≤ 103 
0.25 Re0.6	Pr0.38, Re	>	103 

 (A.7.3) 

q’’conv2 = hc (Tc2 – Ta)  (A.7.4) 

Heat flux through long wave radiation 

q’’lw1 = σ εc (Tc14 – Tr4)  (A.8.1) 

Tr = (Tsky + Tg)/2  (A.8.2) 

Or 

Tr = (Tblack4 + 1.1 × 10-8 u0.6 (Tblack – Ta)/2.029)0.25  (A.8.3) 

When outdoors, Tr is calculated as 8.2 (Thompson et al., 2014); When indoors, Tr is estimated 

using Tblack as 8.3 (Kuehn et al., 1970; Thorsson et al., 2007). 

Tsky = Ta [0.711 + 0.0056 Tdp + 0.000073 Tdp2 + 0.013 cos(15 St π/180)]0.25  (A.8.4) 

Tdp = 243.12 [log(RH/100) + 17.62 (Ta – 273.15)/(Ta – 30.03)] / (17.62 – [log(RH/100) + 17.62 

(Ta – 273.15)/(Ta – 30.03)])  (A.8.5) 

Tg = 1.33 (Ta - 273.15) - 2.65 (Ta – 273.15)0.5 + 3.21 log(Sb + Sd + 1) + 3.5 + 273.15 (A.8.6) 

q’’lw2 = σ εc (Tc24 – Tr4)  (A.8.7) 

Heat flux through solar radiation 

q’’sol1 = (A (1 – ρc) ((Ah/A) Sb + 0.5 Sd + (0.5 – pc) ρg (Sb + Sd)))/((1 – pc) A)  (A.9.1) 

q’’sol2 = ρg (Sb + Sd)  (A.9.2) 

Ah/A = cosec αs [(2/π) (l/d) (1 – cos2 αs cos2 γ)0.5 + cos αs cos γ]/[2 (l/d+ 1)]  (A.9.3) 

γ = |γs – γa|  (A.9.4) 

γs = sign(ω) |cos-1[(cos θz sin φ – sin δ) / sin θz cos φ]|  (A.9.5) 

cos θz = cos φ cos δ cos ω + sin φ sin δ  (A.9.6) 

δ = 23.45 sin (2π (284 + n)/365) π/180  (A.9.7) 

ω = 15 (St − 12) π/180  (A.9.8) 
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Sb = Se τb (A.9.9) 

Sd = Se τd  (A.9.10) 

Se = Gsc [1 + 0.033 cos(2π n /365)] cos θz (A.9.11) 

τb = a0 + a1 exp(-k/cos θz)  (A.9.12) 

a0 = 0.4237 – 0.00821 (6 – Al)2 (A.9.13) 

a1 = 0.5055 + 0.00595 (6.5 – Al)2 (A.9.14) 

k = 0.2711 + 0.01858 (2.5 – Al)2  (A.9.15) 

A.9.12 to A.9.15 were obtained under the condition of one standard atmosphere with 23 km 

visibility and altitudes less than 2.5 km. The equations must be used cautiously outside the scope. 

τd = 0.271 – 0.294 τb (A.9.16) 

Heat flux through conduction between skin and ground surface when the animal lies down 

q’’cond, s2-g = (Ts2 – Tg, 1)/rsg (A.10.1) 

The vertical distance from contacting surface to adiabatic layer was divided into 50 nodes. Heat 

conduction at node 1 was calculated as: 

q’’cond, 1 = q’’cond, s2-g – ksoil (Tg, 1 – Tg, 2)/(di/2) (A.10.2) 

The heat flux at node i (q’’cond, i, W m-2) for i = 2 to 49 was calculated as:  

q’’cond, i = ksoil [(Tg, i – 1 – Tg, i) – (Tg, i – Tg, i + 1)]/di (A.10.3) 

The heat flux at the last node 50 was calculated as: 

q’’cond, 50 = ksoil [(Tg, 49 – Tg, 50) – (Tg, 50 – Tadl)]/(di/2) (A.10.4) 

Differential equation for node i underground 

d(di ρsoil cpsoil Tg, i)/dt = q’’cond, i  (A.10.5) 
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Appendix B 

Table B1. The amount of time lying down throughout 24 h in the simulation 

Time Time lying down (%/h) 

0000 to 0100 62 

0100 to 0200 70 

0200 to 0300 60 

0300 to 0400 65 

0400 to 0500 37 

0500 to 0600 80 

0600 to 0700 80 

0700 to 0800 40 

0800 to 0900 0 

0900 to 1000 0 

1000 to 1100 0 

1100 to 1200 0  

1200 to 1300 0 

1300 to 1400 0 

1400 to 1500 0 

1500 to 1600 0 

1600 to 1700 0 

1700 to 1800 0 

1800 to 1900 0 

1900 to 2000 0 

2000 to 2100 62 

2100 to 2200 68 

2200 to 2300 60 

2300 to 2400 67 
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Appendix C 

Table C1. Parameters analyzed in the sensitivity analysis 

Parameter* Description Unit Baseline value Equation 

A Animal surface area m2 5.39 1.1 to 1.5 

a0 Atmospheric transmittance 
coefficient, intercept dimensionless 0.13 9.12 

a1 Atmospheric transmittance 
coefficient, slope dimensionless 0.76 9.12 

cp Specific heat of air J kg-1 K-1 1006 3.3 

cpb Specific heat capacity of 
body core J kg-1 K-1 3472 1.1 

cpc Specific heat capacity of 
coat J kg-1 K-1 1006.43 1.4, 1.5 

cps Specific heat capacity of 
skin J kg-1 K-1 3472 1.2, 1.3 

cpsoil Specific heat capacity of 
soil J kg-1 K-1 1784 10.5 

d Characteristic diameter m 0.8 6.7 

dc Coat thickness m 0.0025 5.1, 5.5 

HE Heat production rate W 1240 1.1 

k Atmospheric transmittance 
coefficient, rate  dimensionless 0.39 9.12 

keff Effective thermal 
conductivity W m-1 K-1 0.028 5.1, 5.5 

ksoil Soil conductivity W m-1 K-1 1.64 10.2, 10.3, 10.4 

l Body length, 2.15 m 2.15 9.3 

Mb Body core mass kg 570.95 1.1 

Mc Coat mass kg 0.012 1.4, 1.5 

Ms Skin mass kg 29.05 1.2, 1.3 

P Air pressure Pa 101325 3.3, 4.7, 4.8, 6.6, 6.9 

qevap_a Parameter a for evaporation 
rate - 31.5 6.1, 6.14 

qevap_b Parameter b for evaporation 
rate - 3.67 6.1, 6.14 

qevap_c Parameter c for evaporation 
rate - 27.9 6.1, 6.14 
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qevap_d Parameter d for evaporation 
rate - 2.19 6.1, 6.14 

RH Relative humidity % 18 4.11, 8.5 

RR_a Parameter a for respiration 
rate - 37 4.5 

RR_b Parameter b for respiration 
rate - 1385 4.5 

rs_a Parameter a for skin 
resistance - –0.0544 3.2, 3.5 

rs_b Parameter b for skin 
resistance - 2.25 3.2, 3.5 

Ta Air temperature K 307.15 
3.3, 4.6, 4.8, 4.10, 
4.11, 4.13, 6.6, 6.9, 
7.1, 7.4, 8.3 to 8.6 

Tadl Temperature at the 
adiabatic layer K 289.31 10.4 

Te_a Parameter a for exhaled air 
temperature - 9.47 4.6 

Te_b Parameter b for exhaled air 
temperature - 1.18 4.6 

Te_c Parameter c for exhaled air 
temperature - 0.01278 4.6 

Tg_a Parameter a for ground 
temperature - 1.33 8.6 

Tg_b Parameter b for ground 
temperature - 2.65 8.6 

Tg_c Parameter c for ground 
temperature - 3.21 8.6 

Tg_d Parameter d for ground 
temperature - 3.5 8.6 

Tsky_a Parameter a for sky 
temperature - 0.711 8.4 

Tsky_b Parameter b for sky 
temperature - 0.0056 8.4 

Tsky_c Parameter c for sky 
temperature - 0.000073 8.4 

Tsky_d Parameter d for sky 
temperature - 0.013 8.4 

u Wind speed m s-1 2.86 6.7, 6.12, 8.3 

Vt_a Parameter a for tidal 
volume - 0.0198 4.4 

Vt_b Parameter b for tidal 
volume - -0.463 4.4 

γa Animal angle  rad π/4 9.4 
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ρc Reflection coefficient of 
coat dimensionless 0.03 9.1 

ρg Reflection coefficient of 
ground dimensionless 0.08 9.1, 9.2 

ρsoil Soil density kg m-3 1559 10.5 

τd_a 
Parameter a for atmospheric 
transmittance of diffuse 
radiation 

- 0.271 9.15 

τd_b 
Parameter b for atmospheric 
transmittance of diffuse 
radiation 

- 0.294 9.16 

Parameter* Description Unit Baseline value Equation 

A Animal surface area m2 5.39 1.1 to 1.4 

a0 Atmospheric transmittance 
coefficient, intercept dimensionless 0.13 9.11 

a1 Atmospheric transmittance 
coefficient, slope dimensionless 0.76 9.11 

cp Specific heat of air J kg-1 K-1 1006 3.3 

cpb Specific heat capacity of 
body core J kg-1 K-1 3472 1.1 

cpc Specific heat capacity of 
coat J kg-1 K-1 1006.43 1.4 

cps Specific heat capacity of 
skin J kg-1 K-1 3472 1.2, 1.3 

cpsoil Specific heat capacity of 
soil J kg-1 K-1 1784 10.4 

d Characteristic diameter m 0.8 6.7 

dc Coat thickness m 0.0025 5.1 

HE Heat production rate W 1240 1.1 

k Atmospheric transmittance 
coefficient, rate  dimensionless 0.39 9.11 

keff Effective thermal 
conductivity W m-1 K-1 0.028 5.1 

ksoil Soil conductivity W m-1 K-1 1.64 10.2, 10.3 

l Body length, 2.15 m 2.15 9.2 

Mb Body core mass kg 570.95 1.1 

Mc Coat mass kg 0.012 1.4 

Ms Skin mass kg 29.05 1.2, 1.3 
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P Air pressure Pa 101325 3.3, 4.7, 4.8, 6.6, 6.9 

qevap_a Parameter a for evaporation 
rate - 31.5 6.1 

qevap_b Parameter b for evaporation 
rate - 3.67 6.1 

qevap_c Parameter c for evaporation 
rate - 27.9 6.1 

qevap_d Parameter d for evaporation 
rate - 2.19 6.1 

RH Relative humidity % 18 4.11, 8.5 

RR_a Parameter a for respiration 
rate - 37 4.5 

RR_b Parameter b for respiration 
rate - 1385 4.5 

rs_a Parameter a for skin 
resistance - –0.0544 3.2 

rs_b Parameter b for skin 
resistance - 2.25 3.2 

Ta Air temperature K 307.15 
3.3, 4.6, 4.8, 4.10, 
4.11, 4.13, 6.6, 6.9, 

7.1, 8.3 to 8.6 

Tadl Temperature at the 
adiabatic layer K 289.31 10.3 

Te_a Parameter a for exhaled air 
temperature - 9.47 4.6 

Te_b Parameter b for exhaled air 
temperature - 1.18 4.6 

Te_c Parameter c for exhaled air 
temperature - 0.01278 4.6 

Tg_a Parameter a for ground 
temperature - 1.33 8.6 

Tg_b Parameter b for ground 
temperature - 2.65 8.6 

Tg_c Parameter c for ground 
temperature - 3.21 8.6 

Tg_d Parameter d for ground 
temperature - 3.5 8.6 

Tsky_a Parameter a for sky 
temperature - 0.711 8.4 

Tsky_b Parameter b for sky 
temperature - 0.0056 8.4 

Tsky_c Parameter c for sky 
temperature - 0.000073 8.4 

Tsky_d Parameter d for sky 
temperature - 0.013 8.4 
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u Wind speed m s-1 2.86 6.7, 6.12, 8.3 

Vt_a Parameter a for tidal 
volume - 0.0198 4.4 

Vt_b Parameter b for tidal 
volume - -0.463 4.4 

γa Animal angle  rad π/4 9.3 

ρc Reflection coefficient of 
coat dimensionless 0.03 9.1 

ρg Reflection coefficient of 
ground dimensionless 0.08 9.1 

ρsoil Soil density kg m-3 1559 10.4 

τd_a 
Parameter a for atmospheric 
transmittance of diffuse 
radiation 

- 0.271 9.15 

τd_b 
Parameter b for atmospheric 
transmittance of diffuse 
radiation 

- 0.294 9.15 

*All the parameters were analyzed through both local and global sensitivity analyses, except RH, 

Ta and u, which were only analyzed through a local sensitivity analysis. 
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J. Li1, D. P. Casper2 and E. Kebreab1 

1Department of Animal Science, University of California, Davis, CA 95616; 2Casper’s Calf 

Ranch, Freeport, IL 61032 

Abstract 

Although several models exist that predict greenhouse gas emissions, water intake and 

excretion variables, most if not all, are univariate models considering one output at a time. 

Multivariate techniques consider the relationships between variables in an overarching way and 

quantify the relationship between them. The study aimed to evaluate the environmental impact of 

dairy cattle by considering relevant outputs simultaneously. Three multivariate Bayesian 

regression models were developed to predict enteric methane (CH4, g/d), carbon dioxide (CO2, 

kg/d), water intake (Waterin, kg/d), volatile solids (VS, kg/d), biodegradable VS (dVS, kg/d), 

fecal DM (FDM, kg/d), fecal water (FW, kg/d), fecal carbon (FC, g/d), fecal nitrogen (FN, g/d), 

total urine (Ut, kg/d), urine carbon (UC, g/d) and urine nitrogen (UN, g/d) for lactating cows, 

nonlactating cows and heifers. In addition, milk yield (kg/d) was predicted for lactating cows. 

The model selection was conducted through a bidirectional selection method, selecting 

covariates from variables of diet compositions and animal status. The final selected models were 

evaluated through K-fold cross validation and assessed using root mean square prediction error 

(RMSPE). The results showed that DMI was the most important covariate present in all the 

equations with the exception of predicting Ut for nonlactating cows. Most model predictions had 

reasonable accuracy (RMSPE < 25%), except Fw (RMSPE = 38.6%) and UC (34.9%) for 

lactating cows, Waterin (RMSPE = 53.7%) and Ut (RMSPE = 56.1%) for nonlactating cows, and 
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CO2 (RMSPE = 34.1%), Waterin (RMSPE = 79.7%), UC (RMSPE = 38.4%) and Ut (RMSPE = 

43.9%) for heifers. The models provided an assessment of greenhouse gas emissions and manure 

excretions of dairy farms, which can be integrated with other models to evaluate the 

environmental impact of dairy production systems. 

Key words: dairy cattle, greenhouse gas emissions, manure excretion, multivariate model, water 

intake 

Introduction  

The environmental impact of livestock, including greenhouse gas (GHG) emissions, manure 

excretion and water usage has been investigated in several studies. For example, the GHG 

emissions from agriculture are estimated to account for 14.5% of global anthropogenic GHG 

emissions (Gerber et al., 2013), while methane (CH4) from enteric fermentation of livestock is 

responsible for 40% of agricultural GHG emissions in the United States (Tubiello et al., 2013). 

Several studies have investigated the mitigation strategies (e.g., Waghorn et al., 2008; Klop et 

al., 2016; Honan et al., 2021), measurements (e.g., Pinares-Patiño et al., 2008; Hammond et al., 

2016), and prediction (e.g., Moraes et al., 2014; Appuhamy et al., 2016a; Niu et al., 2018) of 

enteric CH4 emissions for dairy cattle.  

Manure produced by animals generates CH4, nitrous oxide (N2O) and ammonia (NH3) 

through decomposition, hydrolysis, nitrification and denitrification processes, which makes it 

another important source of pollutants (Li et al., 2012). The organic matter (or volatile solids, 

VS) in manure is closely related to the potential CH4 production from manure and is used as a 

factor for CH4 production estimation in the Intergovernmental Panel on Climate Change (IPCC) 

Tier 2 methodology (IPCC, 2019). However, lignin in manure is resistant to anaerobic digestion 

and does not contribute to CH4 production, therefore VS without lignin, also known as 
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biodegradable VS (dVS) is a better variable for manure CH4 production estimation (Appuhamy 

et al., 2018). Various prediction models dealing with whole farm emissions, including emissions 

at animal, manure or soil level have been developed in recent years (e.g., Li et al., 2012; Rotz et 

al., 2014). The quantification of detailed manure compositions, including carbon, nitrogen and 

water content, can provide inputs for the whole-farm models. Water intake is essential to milk 

production, and in predicting manure water excretion and overall water footprint at animal level. 

Most extant models for the prediction of GHG emissions, excretion and water intake are 

univariate (e.g., Appuhamy et al., 2014; Niu et al., 2018). However, univariate models do not 

take correlations between response variables into consideration and may lead to model bias 

(Moraes et al., 2015). Most emissions and manure excretion variables are highly correlated with 

each other, so a multivariate model is more suitable during development of a prediction model 

for multiple response variables simultaneously. Van Lingen et al. (2018) developed a 

multivariate model to predict emissions and excretion for dairy cows, but the model only 

includes CH4, dVS and manure nitrogen as the response variables. In this study, we aimed to 

develop a multivariate model to predict CH4, CO2, VS, dVS, manure carbon and nitrogen, water 

intake and milk production in dairy cows. Because most studies focus on the environmental 

effects of lactating cows alone, we expanded the model to include nonlactating cows and heifers 

to enable the assessment of emissions, excretion and water intake at the whole farm level. 

Materials and Methods  

Data Sources 

A dataset containing individual records of CH4 production, excretion and water intake from 

Holstein and Jersey lactating (n = 1111, Holstein = 1038, Jersey = 73) and nonlactating (n = 591, 

Holstein = 575, Jersey = 16) cows, and Holstein, Jersey and Angus-Hereford cross heifers (n = 
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414, Holstein = 220, Jersey = 109, Angus-Hereford cross = 85) was assembled. Records were 

collected in 53 trials at the former USDA Energy Metabolism Unit at Beltsville, Maryland from 

1963 to 1995. Descriptive statistics for diet composition, type of animal, methane production and 

manure excretion are shown in Table 1.  

Multivariate Model 

In order to predict environmental and production outcomes in dairy cattle, 13 variables 

including CH4 (g/d), CO2 (kg/d), water intake (Waterin, kg/d), VS (kg/d), dVS (kg/d), fecal DM 

(FDM, kg/d), fecal water (FW, kg/d), fecal carbon (FC, g/d), fecal nitrogen (FN, g/d), total urine 

(Ut, kg/d), urine carbon (UC, g/d), urine nitrogen (UN, g/d) and milk yield (MY, kg/d), were 

considered for prediction by a multivariate model for dairy cows. However, VS and dVS were 

not available directly in the dataset. Urine OM is approximately 4 times of urine carbon (Dijkstra 

et al. 2013), therefore, VS was calculated as the sum of measured fecal OM and 4 times the 

measured UC, i.e., VS = fecal OM + 4 UC (Appuhamy et al., 2018). Then dVS was obtained by 

subtracting fecal lignin from VS.  

The following notations are used to present the details of model development. We used n, j, 

k, t and to m represent the number of observations, studies, animals, response variables and 

covariates, respectively. A Bayesian multivariate model was constructed as follows: 

Y = X B + Z1 Δ + Z2 Α + Ε [i] 

where Y is an n × t matrix, with each row representing the response variables of each 

observation; X (n × m), Z1 (n × j) and Z2 (n × k) are the design matrices relating B, Δ and Α to 

Y; B is an m × t matrix with each row representing the regression coefficients predicting each 

response variable; Δ is a j × t matrix with each row representing the study random effects on 

each response variable; Α is k × t matrix with each row representing the animal random effects 
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on each response variable; E is an n × t error matrix. Animal was included as a random effect 

because one animal was used in multiple studies and had multiple observations in the dataset. To 

understand the distributions of study, animal and error effect, consider Δ, Α and E matrices as 

stacked column-wise δ, α and ϵ vectors:  

𝚫 = [𝛅𝟏 𝛅𝟐 …	 𝛅𝐭], 𝐀 = [𝛂𝟏 𝛂𝟐 …	 𝛂𝐭], 𝐄 = [𝛜𝟏 𝛜𝟐 …	 𝛜𝐭], 

𝛅 = J

𝛅𝟏
𝛅𝟐
⋮
𝛅𝐭

L , 𝛂 = J

𝛂𝟏
𝛂𝟐
⋮
𝛂𝐭

L , 𝛜 = J

𝛜𝟏
𝛜𝟐
⋮
𝛜𝐭

L [ii] 

where δp (j × 1), αp (k × 1) and ϵp (n × 1) are pth column of the 𝚫, A and E, respectively for p = 1 

to t. Then the distribution of δ, α and ϵ was: 

M
𝛅
𝛂
𝛜
N	~	𝑁 QM

𝟎
𝟎
𝟎
N , S

𝐈𝐣	⨂	𝐆𝛅 𝟎 𝟎
𝟎 𝐈𝐤	⨂	𝐆𝛂 𝟎
𝟎 𝟎 𝐈𝐧	⨂	𝐑𝛜

XY [iii] 

where Ij, Ik and In are identity matrices of order j, k and n, respectively; Gδ, Gα and Rϵ are 

unstructured covariance matrices of order t for δ, α and ϵ, respectively. Minimally informative 

distributions were specified for the priors so that the inference is mostly influenced by the 

observed data (Gelman et al., 2004). All the regression coefficients were set to follow a normal 

prior with 0 mean and variance equal to 1010. Inverse Wishart priors were specified with degrees 

of freedom equal to 0.1 and scale matrix equal to 104 It, where It is an identity matrix of order t.  

Covariates for model selection included breed, DMI (kg/d), OM intake (OMI, kg/d), days in 

milk (DIM, d), BW (kg), milk yield (MY, kg/d), milk protein (mPro, %), milk fat (mFat, %), and 

dietary contents of DM (% of diet), NDF (% of DM), ADF (% of DM), CP (% of DM), EE (% of 

DM), lignin (% of DM) and ash (% of DM). Although MY was a response variable, it was used 

as a covariate for predicting other response variables in the model for lactating cows but not used 

when MY was a response variable. The pairwise Pearson’s correlations among the covariates are 
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shown in Figure 1. In order to avoid the collinearity, covariates with correlation greater than 0.5 

were not used to predict one response variable at the same time. Model selection was based on 

deviance information criterion (DIC). A decrease of DIC value by more than 10 units indicates a 

substantial improvement by an additional covariate (Spiegelhalter et al., 2002). Otherwise, the 

covariate was considered unnecessary. Given the multivariate model contained 13 response 

variables and 15 covariates, the computation load of a greedy search for the best model was 

extremely heavy. Instead, a bidirectional selection was conducted in this study (Draper and 

Smith, 1998). At each step, all possible additions and deletions of a single covariate were made, 

and the action that improves DIC the most was taken. The procedure was repeated until no 

improvement can be made, or the improvement of DIC was less than 10 units, for each of the 

response variable one by one. 

The Markov Chain Monte Carlo (MCMC) was generated using Gibbs sampling. After 

checking the MCMC convergence based on graphical methods, including trace, autocorrelation 

and running mean plots (Roy, 2020), the chain length was set to be 1.1 × 105 with the first 104 

iterations removed as burn-in and chain thinning of 25. All the models were developed using the 

MCMCglmm package (Hadfield, 2010) in R (R Core Team, 2020). 

Model Evaluation 

The three multivariate models for three animal groups were evaluated using the K-fold cross-

validation method (Efron and Tibshirani, 1993), in which folds were individual studies (K = 

number of studies). Each fold was used as a validation set, and its predicted response variables 

were calculated based on the model fitted from the remaining folds. The goodness of model 

prediction was assessed by the root mean square prediction error (RMSPE; Bibby and 
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Toutenburg, 1977), RMSPE to standard deviation of observed values ratio (RSR; Moriasi et al., 

2007), mean bias (MB) and slope bias (SB). The calculation of the assessment is: 

MSPE = ∑ %Yi – YZ i&
2/n n

i=1  [iv] 

RMSPE = √MSPE [v] 

RSR = RMSPE/So [vi] 

MB = (P\ – O])2 [vii] 

SB = (Sp – r So)2 [viii] 

Where Yi and	YZ i are observed and predicted value of ith observation, respectively; So and Sp are 

the standard deviation of observations and predictions, respectively; O]  and P\ are the mean of 

observation and prediction, respectively; r is the Pearson’s correlation between observations and 

predictions. Briefly, RMSPE implies the model performance, while RSR quantifies the relative 

magnitude of RMSPE compared to observed data variance. A value of RSR between 0 and 1 

indicates acceptable model performance. MSPE is decomposed to MB and SB to identify the 

source of model biases. In the results, RMSPE is presented as a percentage to the observation 

mean, while MB and SB are presented as percentages to MSPE. 

Results and Discussion  

The final selected multivariate models for lactating cows, nonlactating cows and heifers are 

shown in Tables 2, 3 and 4, respectively. Given some information may not be available on farm, 

previous studies built multiple models for GHG emission and nutrient excretion using 

information from different levels. For example, Appuhamy et al. (2014) and Niu et al. (2018) 

built models at the animal level (DMI, milk production, milk composition, etc.), diet level 

(nutrient composition) or both so that users can select an appropriate model based on the 

available information to them. The major concern was DMI because individual feed intake 



 112 

records are rarely kept on farm. However, the models containing DMI had much lower RMSPE 

than those without it (Appuhamy et al., 2014; Niu et al., 2018), indicating DMI is an important 

covariate explaining the variation of GHG production and nutrient excretion. Although DMI may 

not be available at the individual level, DMI at the group level can easily be obtained from farms 

to estimate the average herd GHG emission and nutrient excretion, which is of interest in this 

study. Therefore, multiple models with different levels of covariates were not considered and 

only the best multivariate model was presented.  

The average pairwise Pearson’s correlation among the response variables were 0.59, 0.50 and 

0.53 for lactating cows, nonlactating cows and heifers, respectively (Figure 2), which indicated 

the necessity of using multivariate models. CH4, CO2, FDM, FN, FC, Fw, VS and dVS are highly 

correlated with other for all three animal groups, probably because GHG emission and fecal 

excretion are all directly affected by DMI, which provides substrate from them. Urine variables 

are not as correlated with other variables, especially for nonlactating cows. Waterin is highly 

correlated with Ut for nonlactating cows and heifers, but not as correlated for lactating cows, 

probably because water intake is used for both milk and urine production in lactating cows.  

All the equations contained an intercept for lactating and nonlactating cows, but all the 

equations for heifers did not except FW, FC, and FN. The intercepts were excluded from those 

equations because they were highly varied (SD > 10 × mean), which could cause model bias, 

mean bias specifically, and undermine the cross validation. The most important factor of 

predicting GHG emissions and nutrient excretions was feed intake, which was contained in all 

the equations except the Ut equation for nonlactating cows. Appuhamy et al. (2018) predicted VS 

and dVS using OMI instead of DMI, because OMI excludes ash and is more relevant to manure 

OM excretions. Although OMI improved the model compared to DMI in some equations, we 
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found minor differences between models replacing DMI with OMI or vice versa. Breed was not 

present in any equations in the final selected models. Similarly, Moraes et al. (2014) did not find 

any significant effects of breed on emissions when dietary compositions and animal status were 

considered, indicating a similar biological process of producing GHG production and manure 

excretions shared by bovine breeds (Klevenhusen et al., 2011). 

GHG Production 

The prediction of enteric CH4 production (Equation 1, 14 and 26 in Tables 2, 3, and 4) 

involved DMI for all three animal groups, because DMI provides substrate for microbial 

fermentation to produce CH4 (Niu et al., 2018). Dietary structural and non-structural 

carbohydrate concentrations have an impact on the profile of volatile fatty acids in the rumen 

(Bannink et al., 2008). Structural carbohydrates are positively correlated with CH4 production 

(Moe and Tyrrell, 1979; Bannink et al., 2008), which was represented through the positive 

coefficients of ADF and NDF in the CH4 production equations for lactating cows and heifers. 

However, Equation 14 did not contain NDF or ADF, indicating other factors might have a more 

important effect for nonlactating cows. Dietary EE presented in the CH4 production equation for 

nonlactating cows had a negative coefficient, which agrees with previous studies showing that 

inclusion of lipids in the diet has a CH4 mitigation effect (e.g., Beauchemin et al., 2008; Moate et 

al., 2011). However, the CH4 production equation for lactating cows contained MY and mFat 

instead of EE. The positive coefficient of mFat may be due to the relationship between acetate 

production and milk fat. Acetate is required for de novo milk fat synthesis, and it is also 

associated with the generation of hydrogen for methanogenesis in the rumen (Moraes et al., 

2014). The negative coefficient of MY may be explained by the energy balance between CH4 
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emission and milk production, because the carbon in gas energy could be used for milk 

production if not eructated out as CH4.  

Kirchgessner et al. (1991) reported the estimation of CO2 production through DMI and BW, 

or through MY and BW. However, BW was not present in any CO2 production equations in this 

study, probably because the variance of BW was largely captured by DMI. The CO2 production 

equation for lactating cows (Equation 2) also contained CP as a covariate, but the coefficient was 

smaller than 0.1, indicating a small effect of dietary CP content on CO2 production. Pedersen et 

al. (2008) reported a linear increase of CO2 emission with the increase of respiration quotient, 

which can be estimated based on dietary compositions including CP. Note that the mean bias was 

large (94.2%) for CO2 prediction equation of heifers, which indicates that a proper intercept is 

required. However, the intercept was not fit because the variance was very large as discussed 

above. A larger dataset for heifer is required to accurately estimate an intercept.  

Milk Production and Water Intake 

In the final selected model for lactating cows (Equation 4), MY was predicted using DMI, 

DIM and CP. This is expected because milk production is closely related to DMI (NRC, 2001) 

and DIM (Wood, 1967). Dietary CP provides nitrogen source for rumen microbes and affects the 

rumen-available protein, which in turn profoundly affects milk yield (Nocek and Russell, 1988).  

Besides DMI, dietary DM and ash were present in the Waterin equations (Equation 3, 16 and 

28), which agrees with a previous study by Appuhamy et al. (2016b). Although the RMSPE of 

Waterin was large for nonlactating cows (53.7%), the MB and SB were both small, indicating a 

part of Waterin variance was not captured by the equation. For heifers, both the RMSPE and MB 

was large, indicating a better intercept is required. Water consumption of animals is highly 

dependent on the ambient temperature (Khelil-Arfa et al., 2014), which was not available in our 
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dataset and needs to be considered in future studies. On the other hand, the RMSPE of Waterin 

for lactating cows (21.7%) was much lower. Milk production highly relies on the water 

consumption, because milk consists around 87% water. The presence of MY in the equation 

might compensate the lack of data on ambient temperature.  

Manure Excretion 

The FDM of lactating cows (Equation 5) was positively associated with ADF and negatively 

associated with CP, which is reasonable because increasing dietary lignocellulose causes 

decreased DM digestibility (Van Soest, 1965) and increased dietary CP tends to decrease FDM 

(Tomlinson et al., 1996). In the FDM equation for nonlactating cows (Equation 17), NDF was 

present instead, probably in a similar role to ADF. However, CP was absent in Equation 17, 

which agrees with Wilkerson et al. (1997) that fecal excretion for nonlactating cows is mainly 

dependent on DMI and dietary NDF level. Nennich et al. (2005) reported an equation to estimate 

fecal excretion for heifers using DMI and BW, however, we only found a significant effect of 

DMI on FDM for heifers (Equation 29).  

Increasing dietary CP level can increase nitrogen excretion (Broderick, 2003), which was 

represented by the positive association of CP with nitrogen excretion (FN and UN) for all animal 

categories. Lignin was positively associated with FN for lactating cows and heifers (Equation 6 

and 30), and NDF was positive associated with UN for nonlactating cows (Equation 22), which 

might be due to the inhibition of fiber on digestibility (Lloyd et al., 1961). Previous studies 

reported a significant effect of BW on nitrogen excretion (Wilkerson et al., 1997; Appuhamy et 

al., 2014), however, we only found such effect on UN for lactating cows (Equation 10). In 

addition, MY was negatively associated with UN, suggesting an increase of nitrogen efficiency 

with increasing of MY (Wilkerson et al., 1997). Dietary EE was positively associated with FN for 
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heifers (Equation 30), which could be explained by the decrease of CP digestibility due to 

increase of EE level (NRC 2001).  

Dietary CP and ADF were significantly associated with FC for lactating cows (Equation 7), 

which agrees with Nousiainen et al. (2009) reporting the positive and negative effects of CP and 

ADF on feed digestibility. Besides, mFat and mPro were also positively and negatively 

associated with FC for lactating cows, respectively, which might be due to the association 

between indigestible non-fiber carbohydrates and milk compositions (Firkins et al., 2001; 

Cabrita et al., 2007). Only ADF was present in the FC equations for nonlactating cows and 

heifers though (Equation 19 and 31). Dietary CP and BW were positively associate with UC for 

lactating cows (Equation 11), which agrees with the result obtained by (Appuhamy et al., 2014). 

Increasing CP level is associated with increasing urinary purine, thus increases UC (Colmenero 

and Broderick, 2006). There was a large MB (44.1%) for the prediction of UC for heifers, 

indicating a proper intercept was required through a larger dataset. 

Dietary ADF was positively related to FW across all the animal categories (Equation 8, 20 

and 32). This could be due to the positive association of ADF with saliva input to the rumen, 

which in turn increases FW (Appuhamy et al., 2014). Dietary CP content was negatively related 

to FW in the Equation 8 and 32, which could be explained by the elevated blood urea 

concentrations due to increasing CP intake, causing water transfer from gut to blood and ending 

up with less water in feces (Silanikove and Tadmore, 1989). Dietary DM and DIM were also 

negatively related to FW for lactating cows, indicating that less dietary water content tends to 

decrease FW and cows in early lactation excrete less water in feces (Appuhamy et al., 2014). 

Dietary CP was positively associated with Ut for lactating cows (Equation 9), probably due to 

higher protein level leading to more urine (Gonda and Lindberg, 1994). Dietary sodium and 
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potassium have shown significant effects on the urine output (Bannik et al., 1999; Spek et al., 

2012), which could be the reason that dietary ash was present in the Ut equations for nonlactating 

cows and heifers (Equation 21 and 33). The RMSPE of the two equations was quite large (56.1 

and 43.9%, respectively), but SB were small for both nonlactating cows and heifers, and MB 

(12%) was only medium for heifers, which indicates that other covariates not present in our 

dataset may be required for better prediction.  

Manure VS and dVS were predicted through feed intake (DMI or OMI) and structural 

carbohydrates (NDF or ADF), which is consistent with the negative relationship of dietary 

structural carbohydrates with feed digestibility (Lloyd et al., 1961). However, Equation 25, 36 

and 37 included feed intake as the only covariate, which might be due to higher NDF level in the 

diet and smaller DMI of nonlactating cows and heifers so that two covariates confounded with 

each other.  

Conclusions 

Three multivariate models of GHG emissions, manure excretion and water intake, along with 

milk production, were developed for lactating cows, nonlactating cows and heifer. All the 

models required DMI as the most important covariate. Most equations predicted the response 

variables with reasonable accuracy (RMSPE < 25%), except Fw and UC for lactating cows, 

Waterin and Ut for nonlactating cows, and CO2, Waterin, UC and Ut for heifers. The prediction of 

these variables may require additional variables outside the dataset in this study or a nonlinear 

equation to obtain a better prediction. 
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Tables and Figures 

Table 1. Descriptive statistics of diet compositions, animal status emission and excretion for the 
dataset used in this study 

Item1 Lactating cows (n = 1111) Nonlactating cows (n = 591) Heifers (n = 414) 
Mean (SD) Min Max Mean (SD) Min Max Mean (SD) Min Max 

CP, % of DM 16.2 (2.5) 5.2 23.5 16.0 (2.4) 4.9 21.8 15.6 (2.9) 10.4 23.6 
NDF, % of DM 34.3 (7.5) 14.9 76.1 36.3 (10.0) 14.0 74.0 41.2 (14.9) 13.2 78.3 
ADF, % of DM 20.0 (4.2) 7.7 47.1 21.6 (6.9) 5.0 47.4 24.6 (11.4) 4.3 48.3 
Lignin, % of 
DM 

4.4 (1.4) 0.5 9.4 4.8 (2.0) 0.8 14.3 5.2 (2.7) 0.4 13.5 

EE, % of DM 2.8 (1.0) 1.0 7.0 2.7 (0.9) 0.8 7.6 2.9 (1.1) 0.9 6.3 
Ash, % of DM 6.4 (1.1) 3.7 12.1 7.3 (2.3) 3.5 22.1 6.4 (1.9) 3.1 13.7 
DM, % of diet 65.3 (19.8) 30.2 97.4 67.9 (20.9) 19.4 98.7 56.2 (27.0) 19.7 97.0 
DMI, kg 16.5 (4.3) 3.9 29.4 6.7 (2.0) 2.3 13.4 5.4 (1.6) 1.8 12.8 
OMI, kg 15.4 (4.0) 3.6 27.3 6.2 (1.9) 2.1 12.8 5.0 (1.5) 1.7 11.9 
DIM, d 162 (82.1) 11.0 488 - - - - - - 
BW, kg 594 (88.6) 302 854 668 (88.4) 328 893 345 (72.9) 195 542.0 
MY, kg/d 23.3 (10.3) 0.1 56.6 - - - - - - 
mPro, % 3.3 (0.4) 2.3 5.8 - - - - - - 
mFat, % 3.67 (0.75) 1.42 7.6 - - - - - - 
CH4, g/d 298 (91.8) 68.3 551 162 (43.1) 42.4 322.9 119 (37.6) 47.9 248 
CO2, kg/d 10.6 (2.1) 3.7 17.1 6.4 (1.3) 2.2 10.3 4.6 (1.1) 2.4 8.5 
Waterin, kg/d 60.5 (28.3) 2.0 121.3 24.6 (14.9) 1.0 124.4 14.3 (10.8) 0.2 109.2 
VS, kg/d 5.9 (1.8) 1.5 12.1 2.2 (0.9) 0.7 6.1 1.9 (0.7) 0.4 7.8 
dVS, kg/d 5.3 (1.6) 1.4 11.4 2.0 (0.8) 0.7 5.8 1.7 (0.6) 0.4 7.6 
FDM, kg/d 5.5 (1.8) 1.1 11.2 1.9 (0.8) 0.5 5.5 1.7 (0.6) 0.3 4.1 
FW, kg/d 27.1 (10.2) 4.8 65.9 8.1 (4.1) 1.5 29.7 6.6 (3.0) 1.0 21.6 
FC, g/d 2541 (798.2) 539 5208 882 (383.9) 215 2626 789 (302.2) 143 2017 
FN, g/d 150 (54.8) 35.1 377.6 51.2 (19.1) 13.2 125.2 46.9 (18.3) 11.8 119.4 
Ut, kg/d 17.5 (8.9) 4.4 138.3 15.9 (11.4) 2.5 103.8 9.6 (5.0) 1.8 31.8 
UC, g/d 232 (99.9) 12.1 1925 137 (71.0) 29.2 1115 99.5 (78.7) 29.4 237.4 
UN, g/d 152 (65.8) 22.3 363 108 (37.1) 17.0 248 71.7 (34.2) 18.1 212.5 

1MY = milk yield, mPro = milk protein, mFat = milk fat, VS = volatile solids, dVS = 
biodegradable volatile solids, FDM = fecal DM, FW = fecal water, FC = fecal carbon, FN = fecal 
nitrogen, Ut = total urine, UC = urine carbon, UN = urine nitrogen 
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Table 2. Selected multivariate model and root mean square prediction error (RMSPE, % of 
observed mean) for enteric CH4 (g/d), CO2 (kg/d), water intake (Waterin, kg/d), milk yield (MY, 
kg/d), fecal DM (FDM, kg/d), fecal nitrogen (FN, g/d), fecal carbon (FC, g/d), fecal water (Fw, 
kg/d), total urine (Ut, kg/d), urine nitrogen (UN, g/d), urine carbon (UC, g/d), VS (kg/d) and dVS 
(kg/d) of lactating cows (n = 1111). 

Eq.  Selected model1 Model performance2 
RMSPE, % RSR MB, % SB, % 

(1) CH4 = –108.00 (13.96) + 17.65 (0.56) × DMI + 

3.04 (0.40) × ADF + 25.86 (1.95) × mFat – 

1.89 (0.22) × MY 

16.7 0.54 0.66 4.4 

(2) CO2 = 2.77 (1.18) + 0.39 (0.019) × DMI + 

0.077 (0.033) × CP 

7.5 0.38 0.58 4.5 

(3) Waterin = –19.98 (9.08) + 2.71 (0.28) × DMI + 

0.35 (0.11) × DM + 0.48 (0.11) × MY 

21.7 0.49 0.29 8.3 

(4) MY = 10.59 (2.11) + 0.93 (0.050) × DMI – 

0.058 (0.0017) × DIM + 0.4 (0.084) × CP 

10.6 0.33 0.13 0.15 

(5) FDM = –0.34 (1.23) + 0.38 (0.019) × DMI – 

0.084 (0.032) × CP + 0.047 (0.015) × ADF 

14.9 0.41 0.14 3.1 

(6) FN = –62.71 (7.14) + 10.22 (0.19) × DMI + 

2.00 (0.33) × CP + 2.59 (0.56) × Lignin 

10.8 0.34 0.18 0.50 

(7) FC = 149.3 (116.55) + 177.51 (2.56) × DMI + 

19.93 (2.29) × ADF – 42.22 (4.18) × CP + 

35.27 (11.36) × mFat – 111.47 (19.32) × mPro 

14.7 0.39 0.0011 2.4 

(8) Fw = –4.07 (2.69) + 2.08 (0.046) × DMI + 0.42 

(0.036) × ADF – 0.35 (0.076) × CP – 0.068 × 

(0.022) DM – 0.0076 (0.0016) × DIM 

38.6 0.92 0.23 3.3 

(9) Ut = 1.11 (2.84) + 0.65 (0.094) × DMI + 0.71 

(0.14) × CP – 0.24 (0.037) × MY 

20.6 0.83 0.64 0.32 

(10) UN = –242.33 (11.69) + 9.59 (0.38) × DMI + 

16.24 (0.49) × CP + 0.053 (0.014) × BW – 2.47 

(0.15) × MY 

20.3 0.47 0.020 7.4 
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(11) UC = –215.88 (31.58) + 8.54 (0.84) × DMI + 

11.20 (1.35) × CP + 0.14 (0.035) × BW + 10.85 

(2.40) × Lignin 

34.9 0.91 0.47 1.1 

(12) VS = –1.56 (1.10) + 0.41 (0.020) × OMI + 

0.061 (0.015) × ADF 

10.5 0.35 0.84 0.016 

(13) dVS = –1.25 (1.10) + 0.37 (0.020) × OMI + 

0.025 (0.010) × NDF 

11.3 0.37 0.73 0.011 

1Model parameters are reported as posterior means and standard deviation in parenthesis. DMI is 
in kg/d; CP, NDF, ADF and Lignin are in % of dietary DM; mFat = milk fat, %; mPro = milk 
protein, %; DM is % of as-fed diet; DIM = day in milk; BW is in kg; OMI = organic matter 
intake, kg/d. 
2RMSPE = Root mean square prediction error, expressed as a percentage of observed mean; RSR 
= Ratio of RMSPE to observed standard deviation; MB = Mean bias, expressed as a percentage 
of MSPE; SB = Slope bias, expressed as a percentage of MSPE.  
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Table 3. Selected multivariate model and root mean square prediction error (RMSPE, % of 
observed mean) for enteric CH4 (g/d), CO2 (kg/d), water intake (Waterin, kg/d), fecal DM (FDM, 
kg/d), fecal nitrogen (FN, g/d), fecal carbon (FC, g/d), fecal water (Fw, kg/d), total urine (Ut, 
kg/d), urine nitrogen (UN, g/d), urine carbon (UC, g/d), VS (kg/d) and dVS (kg/d) of nonlactating 
cows (n = 591).  

Eq.  Selected model1 Model performance2 
RMSPE, % RSR MB, % SB, % 

(14) CH4 = 45.43 (5.99) + 17.84 (0.48) × DMI – 

2.40 (1.11) × EE 

15.9 0.59 1.6 0.58 

(15) CO2 = 2.87 (1.17) + 0.57 (0.057) × OMI 9.4 0.45 0.21 1.8 

(16) Waterin = 8.58 (4.21) + 1.15 (0.31) × DMI + 

0.91 (0.35) × Ash 

53.7 0.35 0.46 0.37 

(17) FDM = –1.16 (1.24) + 0.35 (0.054) × DMI + 

0.023 (0.012) × NDF 

14.9 0.39 1.9 1.6 

(18) FN = –27.14 (3.35) + 9.11 (0.18) × DMI + 1.16 

(0.16) × CP 

14.7 0.32 2.5 1.3 

(19) FC = –526.36 (33.35) + 151.36 (2.56) × DMI + 

19.24 (0.82) × ADF  

13.9 0.42 4.1 0.48 

(20) Fw = –6.38 (1.33) + 1.58 (0.069) × DMI + 0.20 

(0.021) × ADF 

21.0 0.98 1.0 0.0062 

(21) Ut = 8.84 (2.78) – 0.14 (0.067) × ADF + 1.22 

(0.25) × Ash 

56.1 0.93 0.53 0.15 

(22) UN = –124.87 (9.79) + 12.16 (0.44) × DMI + 

8.15 (0.44) × CP + 0.44 (0.10) × NDF 

19.1 0.56 8.64 0.36 

(23) UC = 5.68 (18.13) + 14.54 (1.54) × DMI + 3.90 

(1.62) × Ash 

22.6 0.97 1.06 0.68 

(24) VS = –0.84 (1.24) + 0.36 (0.058) × OMI + 

0.039 (0.016) × ADF 

15.5 0.39 0.97 1.33 

(25) dVS = –0.16 (1.18) + 0.32 (0.055) × DMI 19.2 0.49 3.7 0.077 
1Model parameters are reported as posterior means and standard deviation in parenthesis. DMI is 
in kg/d; CP, NDF, ADF, EE and Ash are in % of dietary DM; OMI = organic matter intake, kg/d. 
2RMSPE = Root mean square prediction error, expressed as a percentage of observed mean; RSR 
= Ratio of RMSPE to observed standard deviation; MB = Mean bias, expressed as a percentage 
of MSPE; SB = Slope bias, expressed as a percentage of MSPE.  



 129 

Table 4. Selected multivariate model and root mean square prediction error (RMSPE, % of 
observed mean) for enteric CH4 (g/d), CO2 (kg/d), water intake (Waterin, kg/d), fecal DM (FDM, 
kg/d), fecal nitrogen (FN, g/d), fecal carbon (FC, g/d), fecal water (Fw, kg/d), total urine (Ut, 
kg/d), urine nitrogen (UN, g/d), urine carbon (UC, g/d), VS (kg/d) and dVS (kg/d) of heifers (n = 
414). 

Eq.  Selected model1 Model performance2 
RMSPE, % RSR MB, % SB, % 

(26) CH4 = 16.64 (0.56) × DMI + 0.86 (0.12) × 

NDF 

20.0 0.63 5.6 0.014 

(27) CO2 = 0.62 (0.070) × OMI 34.1 1.4 94.2 0.12 

(28) Waterin = 1.69 (0.23) × DMI + 0.093 (0.054) × 

DM + 1.18 (0.27) × Ash 

79.7 0.58 30.2 0.028 

(29) FDM = 0.34 (0.066) × DMI 22.0 0.43 1.4 1.3 

(30) FN = –35.040 (20.10) + 9.40 (0.20) × DMI + 

1.17 (0.17) × CP + 1.57 (0.25) × Lignin + 2.22 

(0.48) × EE 

16.8 0.33 0.27 1.5 

(31) FC = –369.69 (42.91) + 160.22 (2.56) × DMI + 

12.25 (0.79) × ADF 

12.7 0.60 26.6 0.17 

(32) Fw = –2.75 (19.80) + 1.38 (0.075) × DMI + 

0.16 (0.028) × ADF – 0.098 (0.060) × CP 

24.8 0.84 10.6 1.5 

(33) Ut = 0.53 (0.11) × DMI + 1.27 (0.13) × Ash 43.9 0.98 12.0 0.21 

(34) UN = –71.25 (21.92) + 10.72 (0.43) × DMI + 

5.31 (0.35) × CP  

23.6 0.49 3.2 6.9 

(35) UC = 13.38 (2.12) × DMI 38.4 1.0 44.1 2.9 

(36) VS = 0.37 (0.066) × DMI  22.7 0.59 4.5 0.0048 

(37) dVS = 0.36 (0.069) × OMI  23.0 0.60 6.6 0.057 

 1Model parameters are reported as posterior means and standard deviation in parenthesis. DMI 
is in kg/d; CP, NDF, ADF, EE and Ash are in % of dietary DM; OMI = organic matter intake, 
kg/d. 
2RMSPE = Root mean square prediction error, expressed as a percentage of observed mean; RSR 
= Ratio of RMSPE to observed standard deviation; MB = Mean bias, expressed as a percentage 
of MSPE; SB = Slope bias, expressed as a percentage of MSPE.  
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Figure 1. Heatmaps of pairwise Pearson’s correlations among covariates for lactating cows, 
nonlactating cows and heifers. Covariates included CP (% of DM), NDF (% of DM), ADF (% of 
DM), Lignin (% of DM), EE (% of DM), Ash (% of DM), DM (% of diet), DMI (kg), OMI (kg), 
DIM = Days in milk (d), BW (kg), mPro = Milk protein (%) and mFat = Milk fat (%). Covariates 
for nonlactating cows and heifers did not include DIM, mPro and mFat. 
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Figure 2. Heatmaps of pairwise Pearson’s correlations among CH4 (g/d), CO2 (kg/d), milk yield 
(MY, kg/d), water intake (Waterin, kg/d), fecal DM (FDM, kg/d), fecal nitrogen (FN, g/d), fecal 
carbon (FC, g/d), fecal water (FW, kg/d), total urine (Ut, kg/d), urine nitrogen (UN, g/d), urine 
carbon (UC, g/d), VS (kg/d) and dVS (kg/d) for lactating cows, nonlactating cows and heifers. 
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Chapter 4: A simulation study at farm level using nonlinear ration formulation, thermal 

balance, emission and excretion models 

Abstract  

The objective of this chapter is to integrate information from a nonlinear ration formulation 

model, a thermal balance model, and emission and excretion models to evaluate the environment 

impact of dairy cattle and the effect of climate on dairy cattle at the farm level. A simulation 

study was conducted for a dairy herd with 550 heifers and 1000 cows, which included 16% of 

early-lactation, 23% of mid-lactation, 46% of late-lactation and 15% of nonlactating cows. A 

ration was designed for each animal group using mixed integer nonlinear programming, then the 

ration was used to estimate the greenhouse gas (GHG) emissions and manure excretion for all 

animals. Thermal balance for lactating and nonlactating cows was predicted under a typical 

California summer weather condition using the thermal balance model, which used the ration 

designed to estimate the heat production. Based on the ration designed using the herd average 

characteristics, the daily as-fed feeds consumed included 4.1 tons of corn silage, 12.2 tons of 

cracked corn grain, 2.9 tons of grass silage, 3.9 tons of soybean meal, 5.1 tons of bermudagrass 

hay and 0.22 ton of dibasic calcium phosphate. The total daily feed cost was $4,773. Using the 

ration designed for each animal group, the total GHG emission was 23.6 tons of CO2 equivalents, 

including 372.6 kg of methane. The total daily manure excretion was 63.6 tons, including 0.4 ton 

of nitrogen and 3.5 tons of carbon. The thermal balance results showed that the average body 

temperature for early-, mid-, late-lactation and dry cows were 41.0 °C, 42.2 °C, 40.3 °C and 39.3 

°C, respectively. Evaporation was the major heat dissipation method, which accounts for about 

50% of the total heat dissipation on average for both lactating and nonlactating cows. 

Key words: dairy cattle, simulation, ration, thermal balance, emission, excretion 
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Introduction  

Mathematical modeling has been used to address issues of dairy industry related to 

improving efficiency and reducing negative impacts on the environment (Bannink et al., 2011; 

Ryan et al., 2011; Moraes et al., 2015). Many of these issues need to be addressed at the farm 

level using a systematic whole farm approach. Whole-farm models are able to investigate major 

farm components, the interactions among these components, and their interaction with the 

environment (Rotz, et al., 1999). Whole-farm models are valuable because complex dairy 

systems are difficult to fully investigate by field research (Kebreab et al., 2019). Several whole-

farm models were developed for different purposes (e.g., Cabrera et al., 2006; Johnson et al., 

2008; Rotz et al., 2012). Cabrera et al. (2006) developed an integrated dairy farm model to 

reduce environmental impacts, mainly focusing on the nitrogen excretion. Johnson et al. (2008) 

developed pasture-based model for grazing system. Rotz et al. (2012) developed an integrated 

farm system model, which is able to simulate crop, dairy, or beef production over years to 

determine the long-term animal performance, environmental impact, and economics. These 

models have certain flaws, such as inflexibility and narrow applicability (Kebreab et al., 2019). 

A new whole-farm model, ruminant farm system model including four integrated biophysical 

modules of animal, manure, soil, crop and storage, and three system balance modules of water, 

energy, and economics, is under development (Kebreab et al., 2019). In addition, it incorporates 

big data artificial intelligence and allows users to adjust the model parameters to achieve the 

flexibility (Kebreab et al., 2019). The nonlinear ration formulation, thermal balance, greenhouse 

gas (GHG) emission and manure excretion models developed in previous chapters can be 

integrated to the ruminant farm system model easily. This study aims at integrating the models 

described in this dissertation through a simulation study at farm level.  
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Materials and Methods  

Dairy herd simulation 

The simulation was conducted on a daily time step. A dairy herd consisting of six groups 

was simulated: younger and older heifers, early-, mid-, and late lactation cows, and nonlactating 

cows. The animal characteristics are summarized in Table 1. Calves were not investigated in this 

dissertation. We assumed a cow group of 1,000 animals containing 16% of early-lactation, 23% 

of mid-lactation, 46% of late-lactation and 15% of nonlactating cows (Rotz, et al., 1999). Based 

on the average culling rate and replacement needs in the United States, total number of heifers 

required to maintain 1,000 cows is at least 528 (Overton and Dhuyvetter, 2020), therefore, we set 

the heifer group size to be 550, with younger and older heifers each accounting for 50%, 

respectively. 

Ration formulation 

Rations for each animal group were designed based on mixed integer nonlinear 

programming based deterministic global optimization (MINLP_DGO) as described in Chapter 1. 

Three different sets of feed resources were used for heifers, lactating and nonlactating cows as 

shown in Table 2. Least cost diet was formulated based on the nutrient requirements and feed 

ingredients in NRC (2001). Nutrient constraints including net energy requirements for 

maintenance (NEM), lactation (NEL) and growth (NEG), metabolizable protein (MP) requirement, 

calcium and phosphorus requirements, along with several ingredient constraints including fat 

(less than 7% of diet DM), NDF (greater than 25 % and less than 40 % of diet DM) and forage 

NDF (greater than 19% of diet DM), were considered. In addition, DMI was limited to be less 

than the predicted DMI in NRC (2001), so that low quality feeds with low price would not be 
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overfed. Lastly, the forage content was required to be greater than 40% for lactating cows to 

avoid rumen malfunction. 

Emission and excretion 

Based on the formulated rations, animal GHG emission and manure excretion, including 

enteric methane (CH4), carbon dioxide (CO2), volatile solids (VS), biodegradable VS (dVS), 

fecal DM (FDM), fecal water (FW), fecal carbon (FC), fecal nitrogen (FN), total urine (Ut), urine 

carbon (UC) and nitrogen (UN), were predicted for each animal group using the multivariate 

models described in Chapter 3. 

Thermal balance 

The thermal balance model described in Chapter 2 was used to predict the thermal condition 

of lactating and nonlactating cows under hot weather based on the herd average characteristics. 

Heifers were not included in the thermal balance simulation, because heifers generate less 

metabolic heat and have greater body surface area relative to body mass, which make them able 

to dissipate body heat efficiently and more tolerant of heat stress (West, 2003). The heat 

production rate was estimated using metabolizable energy intake based on the ration minus the 

retained energy (milk, pregnancy and body weight change). Three days of simulation were run 

based on the weather condition in Davis, California from July 26 to 28, 2019. Hourly air 

temperature, relative humidity and wind speed were obtained from Weather Underground 

(https://www.wunderground.com/weather/us/ca/davis). Weather data were interpolated linearly 

to provide information of inputs varying on a per second basis, with the average air temperature, 

relative humidity and wind speed being 25.8 °C (min = 13.3 °C, max = 37.7 °C), 51.0% (min = 

16.0 %, max = 95 %) and 2.0 m/s (min = 0.67 m s-1, max = 3.8 m s-1), respectively. Unlike the 

simulation in Chapter 2, animal thermal balance was simulated for indoor under a roof, which is 
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a more realistic situation. The proportion of lying down during other time was set based on 

Drwencke et al. (2020), resulting 11.9 h of lying down per day. 

Results and Discussion  

Ration formulation 

Nutrient requirements and rations formulated for the six animal groups are shown in Table 

3. The milk production process requires a large amount of energy and protein, therefore lactating 

cows had the largest nutrient requirements. Based on the ration designed using the herd average 

characteristics, the daily total amount of feeds consumed (as-fed basis) was: 15.2 tons of corn 

silage, 9.5 tons of cracked corn grain, 2.9 tons of grass silage, 4.0 tons of soybean meal, 3.3 tons 

of bermudagrass hay and 0.22 ton of dibasic calcium phosphate. The total daily feed cost was 

$4773, which consisted of $675.8 (14.2%) for heifers, $3806.4 (79.7%) for lactating cows and 

$291 (6.1%) for dry cows. Daily total milk production was 27.4 tons, and the average feed cost 

was $0.14/kg of milk, which falls in the range 0.1 to 0.2 $/kg of milk reported by Alqaisi and 

Schlecht (2021). 

GHG emission and manure excretion 

The GHG emission and manure excretion per animal based on the herd average 

characteristics are shown in Table 4. Based on the results, the daily total emission of enteric CH4 

and CO2 were 372.6 kg and 13.1 tons, respectively. The global warming potential of CH4 is 

about 28 times of that of CO2 (IPCC, 2019), therefore the total emission was 23.6 tons of CO2 

equivalents. Many studies have investigated the CH4 mitigation strategies (Waghorn et al., 2008; 

Klop et al., 2016; Roque et al., 2019), among which 3- nitrooxypropanol (3NOP) and nitrate 

have been most widely investigated. Two meta-analyses concluded that, at the average 3NOP 

dose of 123 mg/kg of DM and nitrate dose of 18g/kg DM of nitrate, the CH4 mitigation effects 
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were 32.5% (Dijkstra et al., 2018) and 14.4% (Feng et al., 2020) for lactating cows, respectively. 

Based on their conclusions, the total CO2 equivalents could be decreased to 21.1 or 22.5 tons if 

adding 3NOP at dose of 123 mg/kg of DM or nitrate of 18 g/kg of DM to diets of lactating cows. 

The CH4 mitigation effects of 3NOP and nitrate on nonlactating cows and heifers were not fully 

studied, but lactating cows contributed the most to GHG emission, accounting for 75.5% in our 

simulation.  

Total daily manure (FDM + FW + Ut) excretion was 63.6 tons, including 0.4 ton of nitrogen 

and 3.5 tons of carbon. Total VS and dVS excretion were 7.8 and 7.0 tons, respectively. Manure 

OM can generate CH4, nitrous oxide (N2O) and ammonia (NH3) through decomposition, 

hydrolysis, nitrification and denitrification processes, which makes it an important source of 

pollutants and has to be controlled (Li et al., 2012). High-production animals have greater 

nutrient requirements and feed intake but feed efficiency decreases with feed intake (Broderick, 

2003; Gourley et al., 2012), so it is important to avoid overfeeding and underfeeding. 

Overfeeding not only increases unnecessary feed cost, but also increases the environmental 

impact (Connor, 2015). Feed efficiency can be increased through dietary strategies. Decreasing 

dietary protein could decrease urine nitrogen excretion without affecting production if energy 

and protein are well balanced (Dijkstra et al., 2011). Both energy and nitrogen efficiencies are 

negatively associated with dietary ADF (Phuong et al., 2013), which was also used to estimate 

FC and VS in our study. Feed additives such as yeast supplementation (Schingoethe et al., 2004; 

Moallem et al., 2009) and fibrolytic enzyme (Yang et al., 1999; Holtshausen et al., 2011) could 

also improve feed efficiency.  
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Thermal balance 

The temperature of changes of body core, skin and coat over three days for lactating and dry 

cows are shown in Figure 1. The average body temperature for early-, mid-, late-lactation and 

dry cows were 41.0 °C, 42.2 °C, 40.3 °C and 39.3 °C, respectively. The body temperature was 

positively associated with heat energy generation, which is dependent on the milk production. 

Lactating animals are more susceptible to heat stress, especially high-lactating cows (Kadzere et 

al., 2002), therefore, it is essential to cool lactating cows in order to maintain the milk 

production. The proportions of heat dissipation through convection, evaporation, long wave 

radiation, respiration and conduction are shown in Table 5. Different animal groups exhibited a 

similar pattern that evaporation was the major way to dissipate heat during all the time periods. 

Sprinkler with fan cooling can increase heat dissipation through evaporation and convection, and 

has been suggested as an effective cooling strategy (Strickland et al., 1989; Turner et al., 1992). 

One should note that evaporation rate is affected by the environmental humidity, and low 

humidity promotes evaporation. When applying cooling sprinklers, small droplets may evaporate 

before reaching the animal, which increases the environmental humidity and limit the 

evaporation potential, thus should be avoided (Chen et al., 2015). Another physical cooling 

strategy is cooling mat, which cool the animal through conductive cooling. However, conduction 

between the animal and ground surface only accounts for 5 to 6 percent of total heat dissipation 

on average in the simulation result, since only 20% of the animal surface is accessible to 

conductive cooling (Ortiz et al., 2015). Drwencke et al. (2020) reported that burying a cooling 

mat with temperature of 18.8 °C under the bed at depth of 10.2 cm did not effectively mitigate 

the heat stress, which agrees with our simulation result.  
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In conclusion, the nonlinear ration formulation model, thermal balance model, and emission 

and excretion models developed in previous chapters were integrated to gain a better knowledge 

of nutritional and environmental factors of a dairy system. However, our study did not involve 

the interaction between calves and the environment, which may be addressed by the future 

studies.  
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Tables and Figures 

Table 1. Average animal characteristics of the six animal groups in the simulation 
 Younger 

heifers 
Older 
heifers 

Early-
lactation 
cows 

mid-
lactation 
cows 

Late-
lactation 
cows 

Nonlactating 
cows 

Number of animals 275 275 160 230 460 150 
Body weight, kg 200 450 650 620 680 720 
Parity - - 2 2 2 2 
Milk production, kg - - 35 45 25 - 
Milk protein, % - - 3 3 3 - 
Milk fat, % - - 3.5 3.5 3.5 - 
Days in milk, d - - 50 150 250 - 
Days of pregnancy, d 0 90 0 60 160 260 
Age, month 6 18 - - - - 
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Table 2. Chemical compositions (% of DM) and price ($/kg of DM) of feeds for heifers, 
lactating and nonlactating cows 

Feed1 CP EE NDF ADF Ca P TDN2 Price 
Corn silage 8.8 3.2 45.0 28.1 0.28 0.26 68.8 0.18 
Cracked corn grain 9.4 4.2 9.5 3.4 0.04 0.30 85.0 0.18 
Grass silage 17.6 2.9 54.5 35.7 0.89 0.36 56.7 0.24 
Soybean meal 49.9 1.6 14.9 10.0 0.40 0.71 80.0 0.38 
Legume silage 21.9 2.2 43.2 35.2 1.36 0.35 56.8 0.31 
Cotton seed 23.5 19.3 50.3 40.1 0.17 0.60 77.2 0.26 
Grass hay 13.3 2.5 57.7 36.9 0.66 0.29 59.7 0.24 
Bermudagrass hay 10.4 2.7 73.3 36.8 0.49 0.27 52.9 0.16 
Beet pulp 10.0 1.1 45.8 23.1 0.91 0.09 69.1 0.27 
Calcium phosphate 
dibasic 0 0 0 0 22.0 19.3 0 0.96 

1Feeds used for heifers: corn silage, cracked corn grain, grass silage and calcium phosphate 
dibasic; feeds used for lactating cows: corn silage, cracked corn grain, soybean meal, legume 
silage, cotton seed, grass hay, bermudagrass hay and calcium phosphate dibasic; feeds used for 
nonlactating cows: corn silage, grass silage, soybean meal, bermudagrass hay and calcium 
phosphate dibasic. 
2TDN are the standard values from the NRC (2001) table. 

  



 145 

Table 3. Nutrient requirements and feed ration per animal for the six animal groups 
 Younger 

heifers 
Older 
heifers 

Early-
lactation 
cows 

Mid-
lactation 
cows 

Late-
lactation 
cows 

Nonlactating 
cows 

Nutrient requirement1 
NEM, Mcal/d 4.6 8.5 10.6 10.2 11.0 10.4 
NEL, Mcal/d 0 0 24.3 31.2 17.3 3.4 
NEG, Mcal/d 1.7 1.9 0.64 0.62 0.66 0.64 
MP, g/d 461.1 460.7 2366.7 3024.4 1788.1 765.3 
Calcium, g/d 17.0 19.8 64.8 76.1 53.6 32.7 
Phosphorus, g/d 11.6 10.5 54.6 69.0 41.2 16.1 
Ingredient (kg of DM) 
Corn silage 0 1.1 7.5 0 5.9 7.5 
Cracked corn grain 2.2 3.9 7.6 11.2 6.4 - 
Grass silage 3.0 1.4 - - - 0 
Soybean meal - - 4.6 4.9 3.2 1.3 
Legume silage - - 0 0 0 - 
Cotton seed - - 0 0 0 - 
Grass hay - - 0 0 0 - 
Bermudagrass hay - - 0.73 10.9 0.57 0 
Beet pulp - - - - - 0 
Calcium phosphate 
dibasic 

0.04 0.07 0.21 0.22 0.18 0.1 

Chemical composition (% of DM) 
CP 13.9 10.9 18.0 17.1 17.1 14.8 
NDF 34.9 25.0 25.8 35.9 25.7 40.0 
ADF 21.7 14.4 15.0 17.9 14.9 25.1 
Fat 3.4 3.71 3.2 3.1 3.2 2.9 
Ca 0.7 0.5 0.5 0.5 0.5 0.6 
P 0.5 0.5 0.6 0.5 0.6 0.6 
Diet cost ($/animal) 
 1.2 1.3 4.8 5.9 3.7 2.0 

NEM = Net energy for maintenance; NEL = Net energy for lactation; NEG = Net energy for 
growth; MP = Metabolizable protein 
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Table 4. Average GHG emission and manure excretion per animal of the six animal groups 
 Younger 

heifers 
Older 
heifers 

Early-
lactation 
cows 

Mid-
lactation 
cows 

Late-
lactation 
cows 

Nonlactating 
cows 

CH4, g/d 119.3 130.0 326.2 432.4 267.0 197.2 
CO2, kg/d 3.0 3.8 12.2 14.7 10.4 7.7 
Fecal DM, kg/d 1.8 2.2 6.7 9.4 5.1 2.9 
Fecal nitrogen, g/d 43.8 50.2 188.8 257.5 141.9 71.0 
Fecal carbon, g/d 734.2 843.9 3134.7 4409.2 2396.4 1304.4 
Fecal water, kg/d 6.6 7.4 34.6 47.0 24.2 12.7 
Total urine, kg/d 10.9 9.3 19.0 20.1 17.8 12.3 
Urine nitrogen, g/d 57.0 55.4 198.3 216.7 165.3 120.8 
urine carbon, g/d 70.1 86.6 272.7 327.6 227.5 158.4 
VS, kg/d 1.9 2.4 7.4 10.0 5.7 3.2 
dVS, kg/d 1.8 2.2 6.7 9.1 5.1 2.7 
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Table 5. The average percentage (%) of heat dissipation (J) through convection, evaporation, 
long wave radiation, respiration and conduction during different time periods for the simulation 
of early-, mid-, late-lactation and dry cows based on the weather condition in Davis (CA) from 
July 26 to 28, 2019. 

 0000 to 0600 h 0600 to 1200 h 1200 to 1800 h 1800 to 2400 h Entire day 
Early-lactation      
Convection 13.2 10.4 2.2 7.2 8.2 
Evaporation 34.4 56.9 71.1 46.5 52.4 
Long wave 
radiation 27.8 6.5 0.43 21.2 13.8 

Respiration 15.9 21.0 25.4 19.8 20.6 
Conduction 8.7 5.3 0.94 5.3 5.0 
Mid-lactation      
Convection 12.2 9.5 2.3 6.9 7.7 
Evaporation 38.7 58.1 70.2 48.7 54.2 
Long wave 
radiation 24.9 6.1 0.76 18.9 12.5 

Respiration 16.3 21.5 25.7 20.4 21.0 
Conduction 7.9 4.8 0.94 4.9 4.6 
Late-lactation      
Convection 13.9 11.3 2.0 7.5 8.6 
Evaporation 31.7 55.6 72.0 44.4 51.0 
Long wave 
radiation 30.2 6.8 0.12 23.1 15.0 

Respiration 15.1 20.6 24.8 19.2 20.0 
Conduction 9.1 5.7 0.95 5.7 5.3 
Dry cow      
Convection 14.9 12.7 1.6 7.9 9.3 
Evaporation 28.8 54.6 73.0 42.3 49.7 
Long wave 
radiation 33.5 7.3 0.50 26.1 16.9 

Respiration 13.2 18.9 23.9 17.6 18.4 
Conduction 9.7 6.3 0.97 6.1 5.8 
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Figure 1. Simulated body (Tb), top skin (Ts1), bottom skin (Ts2), top coat (Tc1) and bottom coat 
(Tc2) temperature of early-, mid-, late-lactation and dry cows based on the weather condition in 
Davis (CA) from July 26 to 28, 2019. 

 




